Performance Metric Distribution Characteristics of Medical School Exam Items

Nicholas B. Sajjadi, BS, OMSII, Lindsay Terry, BS OMSII, Joseph Price III, PhD Oklahoma State University Center for Health Sciences: College of Osteopathic Medicine

INTRODUCTION \& OBJECTIVES

 which 3 metrics are commonly used: Difficulty, Discrimination Index, and Point Biserial. performance who answered an item correctly and the number of students in the top 27% of and values of 0.4-0.7 are ideal, subject to the mentioned limits. and to ensure continual enhancement of instruction.

Figure 1a. Item Difficulty for

 each test item, all exams.
METHODS

61 exam item datasets from the 2018-2019 academic year for the Class of 2021 and the Class of 2022 at Oklahoma State University College of Osteopathic Medicine were record interface RStudio (Version 1.3.959) Normality was assessed graphically using Q-Q plots and numerically using the Shapiro-
Wilk Normality Test. Q-Q plots are classically used to graphically analyze deviation from normality, and better appreciate the effect size of deviation. Graphs were made using the Monte Carlo simulations have shown that it has the best power for a given significance and accommodates the relatively small sample size for each exam [4,5]. The analysis' null hypothesis is that the data is normally distributed. Therefore, any p-value less than 0.05 indicates statistically significant deviations from a comparable normal distribution with the sam mean and standard deviation as the data set. These Shapiro-Wilk p-values were then adjus
for any bias arising from the multiplicity problem using the Benjamini-Hochberg procedure (using the package "p.adjust"), which controls the false discovery rate and is more powerfur than methods that control the family-wise error rate [6]. This methodology was applied in a previous study by Sajjadi et al [7].
$\begin{array}{ll}\text { Figure 1b. Item } \mathrm{DI} \text { for each test } & \begin{array}{l}\text { Figure 1c. Item } \\ \text { item, all exams. }\end{array} \\ \text { item, all forams. }\end{array}$ item, all exams.

Academic assessment, commonly in the form of written exams, is used to measure students' progress in the mastery course material, to ensure learning objectives are achieved, and to provide
instructors with feedback for improving the instruction efficacy [1,2]. Exam qualities are often instructors with feedback for improving the instruction efficacy $[1,2]$. Exam qualities are often

Difficulty represents the portion students having answered an item correctly, typically expressed as a decimal where a value of " 1.00 " corresponds to 100% of students answering is the capacity of an item to distinguish students based on their varying degrees of proficiency. DI is typically calculated by taking the difference between the number of students in the bottom 27% of performance who answered the item correctly then dividing by the total number of students in both groups. An item with a DI of 0.30 or greater is considered to have good discrimination, values of oo discrimination, and items with negative DIs should be completely revised. However, as the percent correct for an item tends toward 100% (or 0%), the possible extent of discrimination decreases to zero. Point Biserial (PB) is the Pearson Product Moment correlation of student responses to an item and overall exam performance. Strong correlations suggests that answering the item correctly was associated with high overall performance and vice versa. PB values of less A previous investigation by Terry and Price [3] characterized these metrics for 61 exams from
26 first- and second-year courses administered at the Oklahoma State University College of Osteopathic Medicine finding the mean, median, standard deviation, skewness, and kurtosis for
each metric. The findings are shown in Figure 1 for the sake of example. However, the normality of each metric. The eindings are shown in Figure 1 for the sake of example. However, the normarity of methods. Thus, the primary objective of this study is to determine the normality of the item Difficulty, DI , and PB for these 61 exams for use in future investigations seeking to improve student learning

RESULTS

Figure 2a. $\mathrm{Q}-\mathrm{Q}$ plots for item
Difficulty, all exams.

Figure 3a. Q-Q plots for item

Figure 4a. Q-Q plots for item Poin Biserial, all exams.

Figure 2b. Shapiro-Wilk BH adjusted p values for and the dotted blue line is at $x=0.05$.

Figure 3b. Shapiro-Wilk adjusted p values for ogarithmic, and the dotted blue line is at $x=0.05$.

igure 4b. Shapiro-Wilk adjusted p values for tem Point Biserial, all exams. The x-axis is
logarithmic, and the dotted blue line is at $x=0.05$.

Table 1: Item Performance Normality Characteristics for 61 Exams

Item Performance Metric	Exams with Statistically Significant Deviations from Normality
Difficulty	$57(93.44 \%)$
Discrimination Index	$39(63.93 \%)$
Point Biserial	$7(11.48 \%)$

DISCUSSION

Our results suggest that these 3 exam item performance indicators vary drastically in their distribution characteristics. Item Difficulty was by far the most deviated parameter as seen graphically by the heavily-tailed curves on most of the Q-Q plots. Many exams
exhibited points falling outside of the 95% confidence interval at the far ends of the distribution. Trailing off ends may indicate that there is high variability at the end of the distribution. Trailing off ends may indicate that there is high variability at the end of the This peaking is in keeping with previous research where the mean Difficulty for this set was found to be 0.83 with a standard deviation of 0.05 . The numerical analysis also supports the finding of non-normality. Taken together these findings suggest that most exam items from this set are of consistently low difficulty

The Point Biserial had the least deviations from normality, suggesting that inferential statistics relying on an assumption of normality may be appropriate for further analysis of towards non-normality. This is again in keeping with previous findings which suggested minimal kurtosis for PB and intermediate kurtosis for DI. We can see that the number of exams meeting statistical significance criteria (p<0.05-indicated by items falling below the dashed blue line

To our knowledge, not many studies have investigated the ideal distribution characteristics for these parameters when designing exams. It is entirely possible that there are trade-offs between parameters even on the same item, especially when an exam seek oo measure mastery as opposed to seeking to discriminate students based on useful for course instructors and curriculum directors seeking to compare the performance of exams in different courses for the continual improvement of course content and structure

CONCLUSIONS

This study sought to investigate exam item performance parameter distributions using exam data from first- and second-year medical school courses. The item Difficulty Discrimination Index, and Point Biserial for 61 exams were recorded and assessed for
normality graphically and numerically using R. The analyses revealed that exam item Difficulty had the most deviations from normality, Point Biserial had the least, and Discrimination index had an intermediate value. These findings facilitate further investigation using inferential statistics that rely on knowing the normality of a distribution.
These results may also be useful to course instructors and curriculum directors at the These results may also be useful to course instructors and curriculum directors at the College of Osteopathic Medicine seeking to make data-driven curricular decisions.

REFERENCES

1. National council on Measurement in

Education http://www.hcme.ora/hcme/NCME/Resource Center/Glossary/NCME/Resource Center/Gloss
 the Wayback Machine 2. Allen, M.J. (2004). Assessing Academic Programs in Higher Education. San Francisco: Jossey-Bass. 3. Terry L..Price J. Metrics of OSUCOCOM Exam Question Statititics. Poster presented at OSU-CHS
3. Research Days 2021; TTlsa, OK
4. Journal of Statistical Computation and Simulationvol. 81, No. 12, December 2011, 2141-2155 5. Razaili, Nornadiant; Wah, Yap Boermality tests. B.W. Yapa and C.H. Sim Lilliefors and Anderson-Daring teests". Journal of Statistical Modeling and Analytics. 2 (1): 21-33. 6. Benjamini, Y., and Hochberg, Y. (1995). Controlling the fallse discovery rate: a practical and powertul 6. Benjamini, Y., and Hochberg. Y. (1995). Controlling the false discovery rate: a practicial and
approach to multiple testing. Journal of the Royal Statistical Society Series B, $57,289-300$.
hthto approach to multitle testing. Journal
7. Sajadian SN, Bixier KM, Price J. Medical Student Academic Performance is Not Normally Distributed
Poster presented at OSU -CHS Researd

