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Abstract 

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe chronic 

infections in the lungs of Cystic Fibrosis (CF) patients, where elevated levels of calcium (Ca2+) 

are commonly detected. Our group has discovered that elevated Ca2+ increases antibiotic 

resistance, enhances biofilm formation, and induces the production of several virulence factors in 

P. aeruginosa. We also identified several components of Ca2+ regulatory network, which 

included a novel putative Ca2+ sensor, which we designated EfhP based on the encoded Ca2+-

binding EF hand domains. We hypothesized that EfhP mediates Ca2+ regulation of the pathogen 

ability to cause disease in an animal host as we earlier showed in plants. To test this hypothesis 

and define the role of EfhP in Ca2+-dependent virulence of this pathogen, we used Galleria 

mellonella wax worm as an animal model. We injected the wax worms with the wild type and 

efhP deletion mutant that were grown either in the presence or absence of 5 mM Ca2+. The 

results showed that growth in the presence of Ca2+ enhanced the ability of P. aeruginosa to kill in 

the animal model. We also showed that efhP plays in role in virulence, in that upon removal of 

the gene less worms were killed compared to the wildtype.  In addition, we assessed the 

transcriptional regulation of efhP in response to Ca2+ and Fe2+ using efhP promoter construct. We 

determined that there is potential regulatory connection between Ca2+ and Fe2+ in the 

transcription of efhP. Additionally, we identified several proteins that have a role in regulating 

efhP transcription, specifically CarP, CarR and BfmS. These findings pertaining to 

transcriptional regulation of efhP will allow for a better understanding on how to inhibit EfhP 

functions.  This knowledge is essential for future development of strategies and approaches for 

preventing or controlling P. aeruginosa infections. 
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INTRODUCTION 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes severe 

acute and chronic infections in plants and animals. It is well known for infecting the lungs, 

urinary tract, open flesh or burn wounds, and surgical sites [15]. This pathogen can cause death 

in patients with Cystic Fibrosis (CF) by causing cellular damage in the lungs and airway 

blockage [10]. The airway blockage is attributed to the pathogen’s ability to form biofilms in the 

respiratory systems of CF patients, which are difficult to eradicate with available antibiotics [11]. 

In fact, P. aeruginosa was recognized by the World Health Organization as a critical priority and 

the Center for Disease Control (CDC) as a serious public health threat that requires immediate 

and urgent research for discovering new antibiotics or other means of control [3]. 

The severity and resistivity of P. aeruginosa infections can be attributed to the production 

of numerous virulence factors and resistance of the pathogen. These virulence factors promote 

host invasion and enhance the development of chronic and acute infections within the host [4]. P. 

aeruginosa has Type I, II, III, V, and VI secretion systems that secrete exotoxins and 

extracellular proteases which aid in the damage of host tissue damage and enable bacterial 

reproduction and survival within the host. [2,7]. Adhesins and pili aid in pathogen attachment to 

host tissues while pyoverdine and pyochelin helps chelate iron allowing for bacteria to thrive in 

iron deficient environments within a host [4]. Alginate and pyocyanin have been shown to 

promote P. aeruginosa biofilm formation and maturation [14].  These are just a few examples of 

virulence factors. Others include quorum sensing, swarming motility, and lipopolysaccharides 

[9,10]. Although a lot is known about virulence factors and mechanisms of resistance in P. 

aeruginosa, the host factors triggering pathogen virulence are not completely understood. Of 
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these factors, calcium ions (Ca2+) have been found to have a significant role in P. aeruginosa 

virulence. 

Ca2+ is a signaling ion that has a regulatory role in many essential cellular processes, 

including innate immunity and hyperinflammatory response and host defense strategies like ion 

transport and mucin secretion [6,9]. Although the role of Ca2+ signaling in eukaryotes is well 

established, Ca2+ signaling in prokaryotes is not studied as well. The Patrauchan group has 

shown that P. aeruginosa actively maintains the free intracellular Ca2+ levels, which temporarily 

increase in response to external environmental and physiological factors [9]. The Patrauchan lab 

has also discovered that elevated levels of extracellular Ca2+, that are commonly detected in CF 

lungs, enhance the virulence and the ability of P. aeruginosa to cause disease [9,13]. This was 

confirmed through a variety of experiments, specifically through the implementation of a leaf 

lettuce infection model and measuring the levels of pyocyanin, pyoverdine, biofilm and 

extracellular protease production [13,14]. Identifying the molecular mechanisms of such 

regulation is of high clinical significance. In attempts to identify the main components of Ca2+ 

signaling and regulation in P. aeruginosa, our lab has 

predicted several putative Ca2+-binding proteins. One of 

them is the EF-hand protein, EfhP [13]. 

Earlier, our laboratory studied the role of EfhP in 

Ca2+-regulation of P. aeruginosa virulence and resistance 

to various stresses. Based on sequence analysis and 

structure prediction (Figure 1), EfhP has two EF- hand 

domains, likely facing the periplasm [11]. These EF- hand 

domains are known to bind Ca2+ and are commonly present 

Figure 1: Predicted EfhP structure 

(B. Kayastha) 

EF-Hand domain  
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in eukaryotic calcium sensors, such as calmodulin [13]. The role of calmodulin is to bind Ca2+, 

which allows for structural conformation changes in this protein, leading to surface exposure of 

hydrophobic patches, allowing for binding to target proteins [13].  This binding alters the 

activities of the target proteins and defines the overall cellular response to Ca2+. Based on 

similarity to calmodulin, we have predicted that EfhP also serves as a Ca2+ sensor and transduces 

Ca2+ signal towards regulation of P. aeruginosa virulence.  Earlier, we deleted efhP from P. 

aeruginosa genome, and discovered that the mutant reduced production of pyocyanin and 

alginate. The mutant also showed decreased biofilms formation and resistance to oxidative stress 

[13]. However, further studies are needed to define the role of this protein in Ca2+ signaling and 

Ca2+-regulated virulence of P. aeruginosa.  

The main goal of this research was to generate new and more detailed knowledge about 

the regulation of efhP and its role in P. aeruginosa virulence.  To achieve this goal, I 1) tested 

the role of EfhP in the ability of P. aeruginosa to cause a lethal infection using the Galleria 

mellonella animal model, 2) determined the transcriptional regulation of EfhP in response to 

Ca2+ and iron, and 3) determined the role of several proteins in regulation of efhP transcription 

by monitoring efhP promoter activity.  

This research provides insight into the host factors modulating the pathogen’s ability to 

cause a disease and the role of Ca2+ regulation in P. aeruginosa pathogenic interactions within a 

host. This knowledge is imperative for a better understanding of the regulatory systems 

controlling virulence and therefore is essential for future developments of novel medicinal 

approaches for preventing or controlling P. aeruginosa infections and reducing the number of 

fatalities caused by the pathogen.  
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METHODS AND MATERIALS 

Virulence assay using Galleria mellonella. 

Bacterial Culture Preparation. Two to three precultures were inoculated from a plate of the efhP 

deletion mutant, the quadruple mutant, complementation strain or wild type strains of P. 

aeruginosa in 5 mL of Luria Bertani (LB) or Biofilm minimal medium (BMM) [13]. The 

BMM contained (per liter): 9.0 mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 0.15 

mM NaH2PO4, 0.34 mM K2HPO4, and 145 mM NaCl, 20 µl trace metals, 1 ml vitamin solution. 

Trace metal solution (per liter of 0.83 M HCl) contained 5.0 g CuSO4·5H2O, 5.0 g ZnSO4·7H2O, 

5.0 g FeSO4·7H2O, 2.0 g MnCl2·4H2O. Vitamins solution (per liter) contained 0.5 g thiamine, 1 

mg biotin. The pH of the medium was adjusted to 7.0. The level of Ca2+ in BMM was below the 

detection level when measured by QuantiChrom™ calcium assay kit. The precultures were 

grown for 12 h at 37°C then normalized to an Optical Density (OD600) of 0.3 by using a 

spectrophotometer. From the normalized culture, 500 µL was added into 125 mL Erlenmeyer 

flasks containing 50 mL of BMM or LB no added Ca2+ or with added 5 mM Ca2+. In order to 

achieve 5 mM final level of Ca2+, we first measured the concentration of Ca2+ in freshly made LB 

or BMM by using a QuantiChrom™ calcium assay kit. Then, CaCl2·2H2O was added to the final 

to solutions to obtain a concentration of 5 mM.  The cultures were grown for 16 h at 37°C. After 

16 h, thus prepared main cultures were normalized to an OD600 of 0.1 and serial dilutions were 

performed by using sterile PBS containing 0 or 5 mM Ca2+ in a 96 well plate. These diluted 

cultures were used to inject the wax worms.  

Determination of colony-forming units (CFU). To determine the CFU of the bacterial cultures 

injected into the worms, the prepared dilutions were plated on LB agar plates, followed by 
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incubation for 24 h at 37°C. After 24 h, colonies were counted and recorded. After the 

conclusion of the experiment, all solutions that the worms come in contact, such as 0 and 5mM 

Ca2+PBS, and 10 mM MgSO4, were plated on LB agar plates and incubate for 24 h at 37°C.  This 

also allowed to ensure that contamination did not occur during preparation of cultures or during 

injections. 

Worm Preparation and Injection. Worms were purchased from American Cricket Ranch and kept 

in at 4 0C for not longer than 24 h. Prior to injections, the worms were removed from the 

refrigerator and selected based on size and color, ensuring that they were in between 0.75-1 in in 

length for injection and free of dark pigmentation. All selected worms were placed in a foil-

wrapped Tupperware container, which was then placed on ice to keep the worms inactive during 

the injection process.  In groups of five, the selected worms were placed on filter paper and 

washed, first with ethanol then with rifampicin (1 mg/mL), excess of the solutions was removed 

with a Kimwipe. This was done by using a sterile syringe to drop a couple drops of each solution 

on each worm’s right hind leg, to refrain from drowning the worm. Injections began after the 

completion of washing.  

PBS was injected as a control first. For this, five worms were injected with 5 µL of PBS (no 

Ca2+ added), and then the other five worms with 5 µL of 5 mM Ca2+ PBS. After each worm 

injection, the syringe was sterilized by aspirating up and down in 70% ethanol, and then rinsed 

with 1mM MgSO4. Following control injections, groups of ten worms were injected in the 

following order for each tested bacterial strain: 0mM Ca2+ 2.5 CFU; 0mM Ca2+ 10 CFU; 5mM 

Ca2+ 2.5 CFU; 5mM Ca2+ 10 CFU. As before, the needle was cleaned after each injection. 

Worm Observation. All worms were incubated at 37º for 24 h. The worms were checked every 2 

h for death, and time of death (TODs) was recorded. A pigmentation chart was created on the 
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scale from 1 to 5, and the amount of melanization was recorded at TOD, and averaged among 

worms for each condition (Figure 2). All worms selected at the start of the experiment were the 

same level of pigmentation. 

                                                                              

 

Dead worms were placed in -20oC, for further analysis. At the 24th h of incubation, all worms 

were removed and placed in -20oC. This time interval was selected to prevent the larvae from 

cocooning. The TODs were considered to assess the median lethal dose (LD50) and pathogenic 

potential of the different mutant strains at different Ca2+ levels. The pathogenic potential was 

calculated using: PP= (Fs/I)(10M) where PP is the pathogenic potential, Fs is the fraction of 

symptomatic larvae, I is the amount of infecting inoculum and M is the mortality faction [1]. 

This was compared to the LD50 and pathogenic potential of the wildtype P. aeruginosa. To 

calculate the LD50, two infection doses were required: one to achieve below 50% death and the 

other to achieve above 50% death.  LD50 was calculated using the following formulas (Mariette 

Barbier, personal communication): 

1. % 𝑴𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚 =
# 𝒅𝒆𝒂𝒅 𝒘𝒐𝒓𝒎𝒔 𝒙 𝟏𝟎𝟎

# 𝒕𝒐𝒕𝒂𝒍 𝒘𝒐𝒓𝒎𝒔
 

2. 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒕𝒊𝒕𝒆𝒓 (𝒇. 𝒕. ) =  
𝟓𝟎−(% 𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚<𝟓𝟎%)

(% 𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚>𝟓𝟎%)−(%𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚<𝟓𝟎%)
 

3. 𝑳𝑫𝟓𝟎 𝒕𝒊𝒕𝒆𝒓 =  𝐥𝐨𝐠𝟏𝟎(𝒅𝒐𝒔𝒆 𝒄𝒂𝒖𝒔𝒊𝒏𝒈 < 𝟓𝟎% 𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚) +  𝒇. 𝒕 × 𝒍𝒐𝒈𝟏𝟎 ( 
𝒅𝒐𝒔𝒆 𝒄𝒂𝒖𝒔𝒊𝒏𝒈>𝟓𝟎% 𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚

𝒅𝒐𝒔𝒆 𝒄𝒂𝒖𝒔𝒊𝒏𝒈<𝟓𝟎% 𝒎𝒐𝒓𝒕𝒂𝒍𝒊𝒕𝒚
 )  

4. 𝑳𝑫𝟓𝟎 =  𝟏𝟎𝑳𝑫𝟓𝟎 𝒕𝒊𝒕𝒆𝒓 

 

Figure 2: Worm Pigmentation  

1 
5 3 
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Promoter Activity Assay. 

Promoter activity assays were used to study the regulation of efhP transcription in wild 

type PAO1, and several deletion strains lacking one of each of the following genes: carR, carP, 

calC, and bfmS. We also tested the effects of extracellular Ca2+ and iron (Fe2+) on the 

transcription of efhP. For this, we cloned the native promoter of efhP upstream of the lux operon. 

The construct was named pREN and allowed monitoring the activity of efhP promoter by 

measuring luminescence produced by the lux system upon activation.  

To introduce the construct into P. aeruginosa mutant strains, these strains and the SM10 

E. coli donor strain containing the pREN construct were first grown on an LB plate for 24 h. 

From the inoculated plate, the bacteria were inoculated in a culture of 5 mL of LB media and 

grown at 37°C at 200 rotations per minute (rpm) for 16 h. Afterwards, 1 mL of this culture was 

heated at 42°C for 2 h.  While this culture was heating, 50 µL of the donor SM10 E. coli 

containing pREN was placed on the center of an LB plate. The plate was placed close to a flame 

and the lid was left half in to ensure a quick drying. After two hours, 50 µL of the heated 

recipient stain was added on top of the dried donor SM10 strain and dried next to the flame, on 

the LB plate. After the plate completely dried, the LB plate was placed in an incubator for 24 h at 

37°C. Subsequently, the mating mixture was scraped with a sterile inoculating loop and mixed 

with 1 mL of PBS in a sterile test tube. From this solution, 10 µL was spread on a Pseudomonas 

Isolation Agar plate (IA) supplemented with 60 µg/mL of Tetracycline and allowed to grow at 

37°C, until colonies appeared. Colonies from this plate were replicated on a LB plate 

supplemented with 60 µg/mL of Tetracycline and grown at 37°C until colonies appeared. These 

colonies were tested for luminesce to verify transformation. Once verified, the strains were 

grown to make a frozen stock.  
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For promoter activity assays, five 3 mL pre-cultures of wild type PAO1 or the previously 

mated mutant strains carrying pREN construct were grown in BMM until mid-Log phase (for 12 

h). The collected cultures were normalized to an OD of 0.3 by using sterile BMM. Ten µL of the 

normalized culture from each sample was added into 990 µL of BMM with the corresponding 

level of Fe2+ or Ca2+. After this addition, each of the 5 cultures were thoroughly mixed to ensure 

that the culture is evenly distributed in the medium.  200 µL of each culture was added into a 

well on a 96-well plate, to achieve five replicates for each condition to be analyzed. Additionally, 

two wells were filled with 200 µL of BMM with control medium to serve as a non-inoculated 

control.  

These assays were conducted using a Biotek 96-well plate reader that enabled both 

incubation, shaking, and monitoring optical density and luminescence every 1 h. The plate was 

incubated in the Biotek at 37°C, shaking on the fast setting. Luminescence and absorbance at 600 

nm were measured every hour for 12 h. Luminescence measurements were normalized by Ab600 

measurements for the corresponding cultures following the subtraction of the corresponding non-

inoculated controls measurements (luminescence and Ab600). Lastly, averages of the normalized 

luminescence for at least 3 replicates were calculated and the ratios of promoter activities were 

determined. 
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RESULTS  

The effect of calcium and iron on the P. aeruginosa ability to cause lethal infection in 

Galleria mellonella. 

During the worm experiments, we observed that larvae injected with the P. aeruginosa 

cells grown in the presence of 5 mM Ca2+ died faster than those that were not (Figure 3). As 

hypothesized, worms that were injected with cells grown in 5mM Ca2+ had a threefold decrease in 

LD50 value than those that were not (Table 2). In other words, when cells were grown at elevated 

Ca2+, a smaller number of them were required to cause infection/death in worms compared to the 

injection of cells grown at no added Ca2+. These results showed that growth in the presence of Ca2+ 

enhances the ability of P. aeruginosa to kill larvae.  

Additionally, all the worms that died in either conditions underwent pigmentation, i.e. 

they produced melanin and therefore their color went from a tan color to dark brown or black. 

Pigmentation due to melanization is a known visual indicator for the occurrence of P. aeruginosa 

infections. Worms injected with cells grown in calcium exhibited a darker pigmentation 

compared to worms injected with no calcium (Table 1).  
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EfhP role in P. aeruginosa ability to cause lethal infection in Galleria mellonella. 

When determining the role of efhP in P. aeruginosa virulence, we found that slightly fewer 

worms died if they were injected with the efhP gene deletion mutant (ΔefhP) compared to those 

injected with the wildtype (Figure 4). Additionally, worms injected with the efhP deletion mutant 

experienced less pigmentation than those injected with PAO1 (Table 1). 

         

To confirm the difference observed between the efhP mutant and wildtype was due to 

mutation, worms were injected with an efhP complemented strain (ΔefhP::efhP). We observed that 

Figure 4: Death curves for G. mellonella injected with PAO1 and ΔefhP grown in 0 mM and 5 mM Ca2+.  

 

Figure 3: Death curves for G. mellonella injected with PAO1 grown at 0 mM and 5 mM Ca2+.  

The infection doze was 16-17 CFU. 
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more worms died if they were injected with the complemented efhP strain (Figure 5). This may 

reflect a higher expression of the gene in the complemented strain than in the wild type. 

       

 

   
 

When calculating LD50 for each condition (Table 2), we found the value increased for worms 

injected with the efhP deletion mutant strain as expected. 

       

Overall, the mutant lacking efhP gene exhibited a lower virulence than the wild type when 

grown at elevated Ca2+. An additional finding revealed that magnitude of worm deaths was 

amplified when the bacteria were grown in LB versus grown in BMM (data not shown). This 

finding provides insight into the role of EfhP contributing to Ca2+ regulation when the pathogen 

was grown in a rich LB medium, but the effect was reduced for cells grown in mineral BMM 

medium. All of these findings allow for the conclusion that this research supports the mediatory 

role of EfhP in Ca2+ regulation of virulence in an important human pathogen, P. aeruginosa.  

Condition

Pigmentation 

Factor

Standard 

Deviation

0mM PBS 2.4 1.94

0mM PAO1 14 CFU 2.5 1.35

5mM PBS 1 0

5mM PAO1 10 CFU 3.4 1.34

Condition

Pigmentation 

Factor

Standard 

Deviation

0mM PBS 2.4 1.94

0mM EfhP 10 CFU 2.2 1.22

5mM PBS 1 0

5mM EfhP 12 CFU 1.3 1.31

Table 2: LD50 values for P. aeruginosa wildtype and mutant 

Table 1: Calculated Pigmentation Factors for injected worms per each P. aeruginosa strain 

Figure 5: Death curves for G. mellonella injected with PAO1, ΔefhP and ΔefhP:: efhP grown in 0 mM and 5 mM Ca2+.  
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Transcriptional regulation of efhP in response to iron and calcium 

The luminescence measured in the promoter assays shows the transcriptional expression 

of efhP in the presence Ca2+ and Fe2+ in P. aeruginosa. Upon the addition of 5 mM extracellular 

Ca2+, we saw am increase in efhP promoter activity in the wild type during log phase (Figure 6). 

In contrast, we observed a slight reduction in the response in the presence of 4 µM extracellular 

Fe2+ (Figure 7). 
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Figure 6: Normalized Luminescence of WT promoter construct in the presence and absence of Ca2+ 
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Figure 7: Normalized Luminescence of WT promoter constructs in the presence and absence of Fe2+ 
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The role of transcriptional regulators of efhP  

We selected four proteins potentially regulating the transcription of efhP and tested their 

effect by monitoring efhP promoter activity in the mutants individually lacking the corresponding 

genes.  The first protein we tested was calcium-regulated β-propeller protein CarP, which is a 

putative phytase that is involved in regulation of the intracellular calcium levels in P. aeruginosa 

[8]. Our lab has also found that CarP is required for P. aeruginosa growth at high calcium 

concentrations and moderates swarming motility and pyocyanin production which are two 

virulence factors of P. aeruginosa [8]. We hypothesized that since this protein has a significant 

role in the maintenance of the intracellular Ca2+, it may affect the transcriptional regulation of 

efhP. We found that in the absence of carP, the level of efhP promoter activity increased at both 

Ca2+ conditions (Fig.8). This suggest potential negative regulation of efhP transcription by CarP, 

likely due to its role in the maintenance of the intracellular Ca2+. 
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Regarding the effects of Fe2+ on the transcriptional regulation of efhP, when carP was 

removed, we found a similar effect (Figure 9). This suggest a potential regulatory connection 

between Ca2+ and Fe2+, but more testing will need to be done to confirm. 

 

Figure 8: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcarP in the presence and 

absence of Ca2+ 
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Figure 9: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcarP in the 

presence and absence of Fe2+ 
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The second protein we tested was CalC, a putative calcium channel that regulates uptake 

of Ca2+ in P. aeruginosa. Interestingly, the mutant showed no effect of Ca2+ on efhP transcription, 

supporting the idea that the intracellular Ca2+ is involved in regulating the transcription of efhP 

(Figure 10). We also observed a decrease in the efhP promoter activity in the mutant, suggesting 

that CalC has a positive impact on efhP promoter activity. 

 

In contrast, there was no significant difference in efhP promoter activity in the ΔcalC 

mutant at no added Fe2+ (Figure 11). However, in the presence of 4 µM Fe2+, the mutant showed 

slightly increased promoter activity, again suggesting a potential regulatory link between Ca2+ and 

Fe2+. Additionally, we found that iron has an inhibitory effect on both strains at log phase. 

Figure 11: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcalC in the 

presence and absence of Fe2+ 
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Figure 10: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcalC in the presence and 

absence of Ca2+ 
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The next selected protein was CarR, which a transcriptional regulator and a component of 

the CarSR two component system (TCS) in P. aeruginosa [8]. Earlier we showed that the TCS is 

positively regulated by elevated Ca2+. CarR plays a role in Ca2+ homeostasis by transcriptionally 

regulating carP [8]. With this, we predicted that carR may be involved in regulating transcription 

of efhP as well. In agreement, a slight increase in promoter activity was observed in the mutant, 

suggesting a negative impact on efhP transcription (Figure 12).  

 

Interestingly, we observed a significant increase in efhP promoter activity in the carR 

mutant at no added Fe2+, but not in the presence of 4 µM Fe2+ (Figure 13). This suggests that 

addition of Fe2+ may inhibit the negative impact of CarR on efhP expression.  
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Figure 12: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcarR in the presence and 

absence of Ca2+ 

 

 

Figure 13: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔcarR in the 

presence and absence Fe2+ 
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The last protein that we tested using the promoter activity assay is BfmS. BfmS is a sensor 

kinase and a component of the TCS called BfmRS in P. aeruginosa [12]. This TCS plays a role in 

P. aeruginosa biofilm formation and regulates biofilm progression and maturation [12]. 

Additionally, scientists have learned that BfmRS affects quorum sensing and is an activator and 

mediator in the developments of acute or chronic P. aeruginosa infections [12].  

We hypothesized that BfmRS and BfmS play a role not only in the virulence of this 

pathogen but the transcriptional regulation of efhP. We found that the mutant lacking bfmS, 

showed a significant increase in promoter activity at both Ca2+ conditions (Figure 14) and a slight 

increase in the absence or presence of Fe2+ (Figure 15). The data illustrates the regulatory role of 

BfmS in efhP transcription and once again suggests a regulatory connection between the two ions. 

Further studies are imperative to study such connection. 
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Figure 14: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔbfmS in the presence and 

absence of Ca2+ 
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Figure 15: Normalized Luminescence for efhP promoter construct in the wild type PAO1 and ΔbfmS in the 

presence and absence Fe2+ 
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DISCUSSION AND CONCLUSIONS 

 

EfhP was predicted to bind Ca2+ and shown to play a role in Ca2+-induced virulence in an 

important human pathogen P. aeruginosa. This study has been necessary in characterizing EfhP, 

and in obtaining a better understanding of Ca2+-signaling in bacteria. We have shown mediatory 

role of EfhP in Ca2+ regulation of virulence in P. aeruginosa. We determined that there is potential 

regulatory connection between Ca2+ and Fe2+ and confirmed that both ions are involved in the 

regulation of efhP transcription. Additionally, we identified several proteins that have a role in 

regulating efhP transcription, specifically CarP, CarR and BfmS. These findings pertaining to 

transcriptional regulation of efhP will allow for a better understanding on how to inhibit EfhP 

functions.  

Obtaining information about the signaling pathways involving EfhP will give insight into Ca2+ 

signaling mechanisms in prokaryotes, which are not well defined. With this knowledge, we will 

gain a better understanding into the mechanisms of the pathogenicity of bacteria. Considering the 

importance of Ca2+ signaling in a host, this understanding provides insight into the regulatory 

systems engineering virulence and pathogenic interactions with a host. This is essential for future 

development of scientific and medicinal approaches for preventing or controlling P. aeruginosa 

infections, reducing the number of fatalities caused by the pathogen and minimizing the threat 

posed by antibiotic resistance.  
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