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PREFACE 

This study is concerned with the mechanisms of nucleation and 

growth of metal from a melt. Particular emphasis was placed on the 

effort to define the principles underlying the growth of a population 

of 8mall randomly oriented crystals in the center of alloy ingots. 

Enhancing the development of such a population would produce a final 

product with more desirable properties, and could lead to a better 

understanding of the processes which take place as a metal solidifies. 

Metal specimens were solidified under a variety of circumstances, 

and then examined microscopically to see the effects of each change. 

The author wishes to express his deep appreciation to Dr. c. E. 

Price, his technical adviser, for direction, insights, encouragement 

and help. The direction in the mechanics of the study by Dr. J. R. 

Norton; the assistance of Dr. John B. West; and the lining of copper 

molds with glass by Professor John H. O'Toole, were also greatly 

appreciated. 

A note of thanks is given to George Cooper, Preston Wilson, anq 

the Mechanical Engineering staff for help. in the preparation of molds 

and fixtures, and to Velda Davis for her help in preparing the final 

copy. 

Finally, a special thank you is due to my wife, Dottie, and our 

children, Duane and Kathie, for their sacrifice and patience when the 

work competed with them for my time. 
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CHAPTER I 

INTRODUCTION 

The properties of a metal depend on the strength and direction of 

the metallic bohds, on the size and shape of the crystals (grains) 

which make it up, on dislocations within the grains, and on voids, 

inclusions and other large scale defects. The control of the grain size 

of a metal is important because dislocations do not move across grain 

boundries, and the principle mechanism for metal deformation is via 

the motion of dislocations. Therefore, fine uniform grains, which 

limit this motion, give the metal added tensile and yield strength, 

toughness, and hardness. 

Experimentatio:n with metals has uncovered many alloying or heat 

treating techniques' which give desired grain sizes and, therefore, these 

desired properties. Partial grain size control has been achieved in 

various metal forming fields. In powder metallurgy control is achieved 

through the selection of a powder of the proper size and the choice of 

optimum sintering conditions. During electrodeposition grain size con-

trol is achieved through variations in current density and agitation. 

Grain sizes in castings are usually controlled by selecting a special 

cooling rate or by the addition of materials (grain refiners) which 

alter the grain si~e. 
l 

' 

The primary emphasis of this work is in the development of a basic 

understanding of the processes which determine the microstructure of 

1 
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castings. Significant reductions in grain size have been achieved 

through enhancing the formation of a fine-grained zone often found in 

the center of ingets, through nucleation in undercooled melts, and in 

response to ~xternal influences during solidification, such as vibration 

or stirring. However, the events which favor the nucleation of greater 

numbers of crystals are not well defined. Many mechanisms have been 

suggested, each with a measure of experimental evidence. These include 

showering, chill crystal migration, fragmentation of existing crystals, 

cavitation in the liquid, homogeneous nucleation, pressure pulses in 

the solid, constitutional supercooling, and recrystallization. 

The purposes of this study were twofold. The first was to review 

the literature dealing with the mechanisms for solidification and 

nucleation, and the structural variations which can result. Then an 

experimental program was carried out based on questions revealed in the 

literature survey, and issues which remained unresolved. This program 

was to investigate the mechanisms for forming crystal nuclei that were 

responsible for the significant grain size reductions observed 

experimentally. 

A better definition of the active mechanisms and the conditions 

where each is dominant will allow for better selection of the casting 

process variables and, therefore, better as-cast properties. In addi

tion, in the many cases where casting is followed by processes like 

annealing and cold working, better as-cast properties mean that fewer 

additional steps are needed. Costs would be reduced and energy would 

be saved. 



CHAPTER II 

SOLIDIFICATION OF A PURE METAL 

A liquid solidifies as the temperature is decreased because the 

free energy of the solid phase becomes less than that of the liquid 

phase. The free energy may be given by the following expression: 

G H- TS (1) 

H is the enthalpy, T is the absolute temperature, and S is the entropy. 

The temperature dependence of the free energy G is found by differentia-

t ion of Equation ( 1) (Hamill and Williams, 1959). 

dG = -vdp -SdT (2) 

Since vdp is negligible for condensed systems, the temperature normalized 

change in free energy is proportional to -S. 

dG/dT -S (J) 

Now S for liquids is larger than S for the corresponding solid because 

there are more statistically independent ways of distributing particles 

among the available quantum states in the liquid. This dependence of 

the free energy upon temperature is displayed diagrammatically in Figure 

1. Each expression for free energy is shown as a straight line of 

negative slope, with the slope of the line representing the free energy 

of the liquid being steeper. At one temperature, T = T , the free 
e 

energy of the solid and the liquid are identical. At this equilibrium 

J 



temperature both a solid and its melt can coexist. Above this tempera-

ture the liquid is stable and any solid present will melt. The opposite 

is true for T < T • The solid is stable and any liquid present will 
e 

freeze. 

Gibbs 
free 
energy 

Temperature 

solid 

Figure 1. Temperature Dependence of the 
Gibbs Free Energy for the 
Solid and Liquid Phase of a 
Single Substance 

When a pure substance in the liquid state is cooled to T < T 
e 

there is a barrier that must be overcome before the first solid can 

form. This barrier exists because the formation of a solid-liquid 

interface deprives atoms along that surface of some of their former 

nearest neighbors. Just as a box packed randomly with spheres has a 

high void volume along the sides and bottom, there are more spaces 

between the atoms of liquid at the interface than there are in the bulk 

liquid. The energy that must be supplied to move atoms from the bulk 

liquid to form the surface is termed the interfacial energy. It is 

. . 1 I 2 abbreviated by cr and has the un1 ts of JOU es;cm • The total energy 
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required to form a surface is the product of the interfacial energy and 

the surface area. Energy which could be used to form the surface is 

released whenever a solid is formed. This occurs because there is a 

difference between the potential energy of the solid and the precursor 

liquid which is released during solidification. The amount of this 

release varies with the amount of material solidified. The net free 

energy change, including the energy required to form the surface and 

the energy released by freezing is given for the ideal case when the 

solid formed is spherical. 

(~) 

Here L~T/T is the change in free energy for solidification at T, 

&T = T - T, and L is the latent heat of fusion in compatible units. 
e 

It can be shown from Equation (~) that ~G will be positive for small 

8T and small r. In this case crystals of solid will not form unless 

(1) the amount of undercooling is increased, or (2) the radius of the 

solid crystal formed is large. 

Homogeneous Nucleation 

Homogeneous nucleation occurs when the undercooling is so great 

that crystallites already existing in the liquid are big enough to form 

a stable nucleus. The required size can be defined by differentiation 

of Equation (~). d(8G)/dT has an extremum 

r* 2crT/L6T (5) 

defined by 6T and r. The r* in Equation (5) is the critical radius. 

Crystallites with radii greater than r* will grow as rapidly as the 



latent heat of fusion can be removed. If in a liquid at T < T all the 
e 

crystallites are small (r < r*) solidification will be postponed. Then 

as the amount of supercooling is increased r* will decrease until it is 

6 

less than the radius of some of the crystallites present. The solidifi-

cation that follows is extremely rapid, and it produces a sample with a 

very fine grain size. 

Experience with many high purity metals shows that undercoolings on 

the order of 0.2T can be obtained before homogeneous nucleation takes 
e 

place. Much of the early work was done by Turnbull and Cech (1950) and 

Turnbull (1950). Table I shows some of the maximum undercoolings he 

reported and their relation to the equilibrium temperatures of the 

metals tested. 

TABLE I 

MAXIMUM SUPERCOOLING$ FOR VARIOUS METALS* 

Metal 

Tin 
Bismuth 
Lead 
Antimony 
Silver 

Copper 

Nickel 
Iron 

Supercooling 
oc 

118 
90 
80 

135 
227 
292** 
236 
277** 
319 
295 

Equilibrium 
Temperature 

OK 

505 
5'*'* 
601 
90'* 

123'* 
123'* 
1356 
1356 
1725 
1808 

*Turnbull, 1950; Holloman and Turnbull, 1953. 

**Scripov, Koverda, and Butorin, 1972. 

Relative Undercooling 
(%T ) 

e 

23 
17 
13 
15 
18 

2'* 
17 
20 
18 
16 
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Heterogeneous Nucleation 

Nuclei can be formed from small crystallites if impurities are 

present. The atoms in the crystallite may form .a "cap" on the surface 

of an impurity particle. The apparent radius of this cap may be greater 

than the critical radius (Equation (5)) even though the volume of the 

cap is much smaller than the volume of a sphere having the critical 

radius. If so, the impurity-plus-cap will serve as a nucleus for 

crystal growth. In forming a cap such as the one shown in Figure 2 a 

surface of area x between the liquid and the impurity is replaced by 

the same area of cap-impurity surface plus a cap-liquid surface of area 

y. The net change in surface energy is given in Equation (6). 

effective 
liquid 

impurity 

Figure 2. The Creation of a Heterogeneous 
Nucleus by the Condensation 
of a Crystallite to Form a Cap 

b.G 
s 

(6) 

If the interfacial energies for tin and lead that are quoted by Crosley 

and Mondolfo (1951) are used in Equation (6) and areas x and y are 

assumed to be practically equal, b.G , the change in the free energy of 
s 
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the surface for cap formation, is negative. Hence, the 

6G = x(33 + 25 - 62) = -4x s (7) 

cap will form spontaneously for any tin crystallite, no m~tter what its 

size. Then if the effective radius is sufficiently larg~~this capped 

impurity serves as a nucleus for the growth of a crystal of tin. The 

effectiveness of an impurity, in this case metallic lead, in catalyzing 

nucleation in a pure metal (tin) is demonstrated in Table II. 

TABLE II 

UNDERCOOLING RESULTS REPORTED FOR TIN 

Maximum Undercooling 
oc 

36 
37 
33 
39* 

105 
118 

0 

*rapid cooling 

Purity 

.999 and .99999 
-999 
-99999 
-99999 
not specified 
not specified 
lead present 

Authors 

This paper 
Glicksman and Childs (1962) 
Iyer and Youdelis (1972) 
Iyer and Youdelis (1972) 
Turnbull (1950) 
Holloman and Turnbull (1953) 
Crosley and Mondolfo (1971) 

Crosley, Douglas and Mondolfo (1968) and Crosley and Mondolfo 

(1971) concur in emphasizing the importance of the relative interfacial 

energies on the formation of a stable heterogeneous nucleus. They were 

able to demonstrate that nucleation catalysis could not be explained by 

the relative compatibility of the crystal structures of nucleant and 



rtucleus. Their work, and subsequent work by Powell and Colligan (1969) 

showed that nucleation in a binary system is a one-way process; i.e., 

it one of the components will serve as a nucleant for the other, the 

second will not nucleate the first. The following empirical expression 

is reported for predicting the efficiency of a nucleation catalyst: 

9 

(6T /6T ) 2 / 3 
R H (uv) 1/ 3 (1-W(o + o - o )/o )) 

aL ~L Q~ aL 
(8) 

U, V, and Ware energy, shape, and contact factors. 6T~6TH is the 

ratio of undercoolings for heterogeneous nucleation to homogeneous 

nucleation. 

The interfacial energy term in Equation (8) is different from the 

one developed through Equation (6) because the initial conditions are 

not the same. This term is consistent with the development of a 

heterogeneous nucleus from a solid embryo and a particle of impurity 

surrounded by liquid instead of the liquid and impurity alone (Equation 

(6)). The proper choice is not clear. Chernov (1973) draws a distinc-

tion between the structures of crystallites in liquids (clusters) and 

the structure of the solid (Chernov, 1973). In addition, Leychkis and 

Mikhaylov (1970) suggest that nucleation occurs in two stages, embryo 

formation and then deformation to a crystal structure that has long 

range stability. On the other hand, calculations using Equation (8) 

predict the undercooling for heterogeneous nucleation reasonably well. 

This is shown in Table III. 



System 

TABLE III 

UNDERCOOLINGS FOR HETEROGENEOUS NUCLEATION IN 
BINARY SYSTEMS -- OBSERVED AND CALCULATED* 

Undercooling (°C) 

10 

Solid Crystals 
Present Experimental Calculated 

Pb-Sn 
Pb-Sn 

Ag-Cu 
Ag-Cu 

Pb 
Sn 

Ag 
Cu 

*Crosley and Mondolfo, 1971. 

Undercooling 

>4:o 
0 

>53 
29 

35 
0 

225 
29 

Several methods have been tried to achieve large undercoolings in 

pure metals. All of the methods were designed to control or eliminate 

the impurity content, either in the bulk sample or on its surface. One 

or more of the following experimental techniques were invariably used: 

the use of high purity metals, the use of samples broken from large 

pieces of stock, the cleaning of the sample surface by etching, the use 

of inert atmospheres or vacuum, the use of non-crystalline substrates, 

immersion in high boiling liquids, or subdivision of the sample into 

very small pieces. 

Turnbull and Cech (1950) were the earliest to systematically achieve 

supercoolings which correspond to homogeneous nucleation. They used small 

particles (10 to 100 microns in diameter) and observed their solidifica-

tion microscopically. They were melted on flakes of freshly blown 

quartz or pyrex glass in a controlled atmosphere (H2 , He or in vacuum). 
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Efforts to supercool bulk samples more than 0.1T have not been so 
e 

successful. Turnbull attributes this to the increased probability of 

finding a suitable impurity when the sample is large. 

Much work has been done toward identification of the impurities 

which prevent homogeneous nucleation and the quantification of their 

effects. Turnbull (1952) used dilatometric techniques to follow the 

solidification of small mercury droplets, first coated and then dis-

-.persed in a fluid. The temperature of isothermal solidification and the 

particle size distribution were varied and the volume fraction of the 

mercury that was solidified was determined. Nucleation of mercury 

coated with mercury laurate was found to be homogeneous. However, 

droplets coated with mercury acetate solidified at a rate proportional 

to their surface area. The acetate was concluded to be effective in 

catalyzing the heterogeneous nucleation of mercury. In addition, 

Turnbull calculated values for I , the frequency of crystal nuclei 
s 

formation per unit area of catalyst. The behavior of acetate coated 

droplets was consistent with a constant, Is; but Is was variable for 

drops coated with mercury stearate. Nucleation was heterogeneous since 

the stearate coated drops solidified about 19° above the temperature 

for homogeneous nucleation, so the variation in Is was attributed to 

the presence of more than one kind of effective catalyst. Vonnegut 

(1948) had a similar finding. He was unable to explain the solidifica-

tion rate of oxide coated tin droplets on the basis that a single 

catalyst was present. 

Glicksman and Childs (1962) were able to show that substantial 

reductions in the amount of supercooling for tin samples could be 

achieved by the introduction of six substances (Pt, Y, Ag, TiC, MoS, and 
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A1). Five other substances (SiC, A12o3 , CeS, MgO, and C) had no effect. 

They attributed this to catalysis of heterogeneous nucleation when the 

equilibrium contact angle between the embryo and the impurity is small 

(a small contact angle corresponds to a well wetted surface) and/or when 

(craL - cra~) is large. 

Takahashi and Tiller (1969) examined small droplets of lead, tin, 

and bismuth microscopically. High purity metals (99.9999) and a puri-

fied hydrogen atmosphere were used. They observed a marked variation in 

the undercooling when the droplet size was changed. This variation in 

the log-diameter was better described by D.T/T than by D.T alone so sur
s 

face patches, either the result of the inevitable oxides present, or 

existing purely for molecular reasons were believed to be the sites 

where nucleation occurred. The difficulty in achieving a large enough 

flat patch on a small droplet would then account for the larger super-

cooling observed. 

Powell and Hogan (1968) report recent successes in supercooling 

bulk samples of several metals (Fe, Ni, and Co) when the samples were 

solidified under a glass slag. They were able to use a similar tech-

0 
nique to undercool ~00 gram samples of copper 208 C when others had only 

been able to achieve a D.T of 60°. The impurities were believed to be 

oxidized and then dissolved by the glass slag. Cu2o was eliminated as 

the impurity of record when planned Cu2o additions failed to prevent 

substantial undercooling of copper; i.e., the copper had undercooled 

82°C with solid Cu2o present. Other papers by Bradshaw et al. (1958) 

and Powell (1965) also show that nucleation of a metal by its oxide does 

not occur for small amounts of undercooling. 

The undercooling of a pure metal is seen to be dependent on the 



most effective catalyst present. While some of these catalysts are 

removed by routine measures, others have only been eliminated by sub

division or by dissolution in a flux. With all of the catalysts 

removed, supercooling can be increased to the point where homogeneous 

nucleation occurs. 

External Effects on Undercooling 
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The effects of superheating on the crystal structure of an ingot 

are well known. Chalmers (1964) explained that increased superheating 

caused remelting of the chill crystals formed when hot metal is poured 

into a cold mold. However, Glicksman and Childs (1962) observed a simi

lar effect when the mold and melt were heated and cooled together. They 

found a step increase in the supercooling of 8°C (from 1 to 9°C) when 

the superheating was increased beyond 12°C. Clearly the nucleation 

events were heterogeneous. The change was ascribed to the deactivation 

or removal of the most potent catalyst. 

According to Crosley and Mondolfo (1971), this effect is now well 

known. What remains to be determined is the cause. Evidence demon

strating local nucleation and inefficient use of available nucleants 

suggests that only one part of the nucleant is active. Mascre (1971) 

explains that size, orientation and a cluster-nucleant coincidence are 

needed before a nucleant can effect a nucleation event. Crosley and 

Mondolfo (1971) say that a good nucleant-crystal atomic fit may be 

needed that can only be achieved if a rarely present high-order crystal 

plane on the nucleant is available or if vacancies or faults are present. 

However, experiments showing the deactivation of nucleants by super

heating could not be used to select the proper mechanism because 



superheating would (1) equilibrate the nucleant surfaces probably 

destroying any high-order planes, (2) anneal out faults and vacancies, 

or (J) cause the nucleant to dissolve. 

14 

Takahashi and Tiller (1969) reported that there was no evidence 

that the amount of superheating or the time at superheat had any effect 

on supercooling. Yet, heterogeneous nucleation did occur, at a super

cooling of about 36°C for tin, about 16° for lead, and 42° for bismuth. 

A variety of potential nucleants could be present in technical 

grade metals. Then if the more effective ones had a lower deactivation 

energy (or a higher solubility) they could be removed easily to achieve 

moderate undercoolings. Less effective but stable ones, perhaps oxides 

(Powell and Hogan, 1968 and Bradshaw, Gasper, and Pearson, 1958) would 

prevent cooling to homogeneous nucleation and resist removal. The high 

purity metals used by Takahashi and Tiller (1969) could very well be 

free of the more effective nucleants, and not be free of oxygen. 

Crystal Microstructure 

The structure formed by the solidification of a pure metal reflects 

its thermal history. The shape of the crystals formed during solidifi

cation depend on the temperature gradient across the solid-liquid 

interface and the amount of undercooling. The various temperature 

gradients may be resolved topologically into the two forms shown in 

Figure J. In the first case, the heat of fusion is removed by conduc

tion through the solid and the stable interface geometry is a plane. 

In the second case, the heat is removed in part by conduction into the 

liquid. Here a planar interface is unstable because the plane is 

located at the point in the liquid least favorable to growth. Any 
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perturbation in the plane results in the insertion of part of the solid 

into a region where growth is faster. Then the growth rate of this 

part exceeds that of the remainder of the plane. The planar interface 

is modified by a pencil shaped grain or several such grains protruding 

from the surface. This kind of growth form, a dendritic crystal struc-

ture, is typical of solidification which occurs in a supercooled melt. 

' T 
t olid 

T 

Interface Cas.e I Interface 

Posit ion Position 

Figure J. Generalized Temperature Profiles for the Two 
Mechanisms Applicable to Solidification of 
Pure Metals 

Planar solidification is important in growing single crystals and 

in zone refining where ~he controlled addition of heat to the liquid is 

essential. The dendritic growth mechanism, is the predominant form in 

the initial solidification of castings, as some supercooling nearly 

always occurs. 

Dendritic growth is rapid because the heat sink for the dissipation 

of the latent heat is the supercooled liquid adjacent to the dendrite 

itself. Several authors (Rosenberg and Winegard, 1954; Orrok, 1958; and 

Yesin, Pankin, and Nasyroo, 1971) have reported values for the linear 
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growth rate of tin dendrites. However, Table IV shows that substantial 

disagreement exists between them. 

TABLE IV 

COMPARISON OF DENDRITIC GROWTH RATES IN 
TIN SUPERCOOLED 11°C 

Dendrite Growth Rate 
em/sec 

22 

).8 

76 

Reference 

Rosenberg and 
Winegard (1954:) 

Orrok ( 1958) 

Yesin, Pankin, and 
Nasyroo (1971) 

Whatever the value, there is general agreement that the rate 

varies as the square of the amount of supercooling. A comparison 

between the dendrite growth rate and the transfer of heat between 

a melt and its surroundings shows that this kind of solidification 

occurs adiabatically. The portion of the liquid that is solidified 

this way is given by Equation (9). 

Fraction solidified adiabatically = (1/L) lfe C dT (9) JT p 
0 

T is the temperature at which solidification begins. For tin, this 
0 

fraction increases from zero to about 4:8 percent. The latter value is 

for solidification at a supercooling at 118°C~ the largest supercooling 

reported. 



The stable form for dendrite growth was determined mathematically 

to be a paraboloid of revolution by Trivedi (1970). Chernov (1973) 

disagrees, but uses the paraboloid as the first approximation to the 

truly stable form. 

Unlike planar solidification, dendritic growth direction is 

determined by the orientation of the planes in the growing crystal. 

For example, dendrites of metals with face centered cubic structures 

are known to grow in the [1,0,0] direction. Powell's (1969) 

observation of this growth direction experimentally in a sample of 

silver supercooled 127°C helps confirm this belief. 

Side arms form on dendrites when the amount of supercooling is 

small. Tarshis, Walker and Rutter (1971) attribute this to spatial 

restriction, as dendrites growing in a highly supercooled melt are 

reported to be longer and closer together. Powell and Hogan (1965) 

shows columnar growth (dendrites without side arms) in a silver ingot 

supercooled 175°C. Powell and Hogan (1968) show the same thing in a 

copper ingot nucleated at a supercooling of 208°C. Faint sidearms are 

seen in copper formed with an undercooling at 11J°C and distinct ones 

are seen in Cu undercooled 80°C and in Cu2o undercooled 82°C. 

The Number of Crystals 
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The number of crystals formed during the solidification of a pure 

metal can be predicted by defining the cooling rate, and the impurity 

characteristics of the liquid. One model is proposed by the author 

which relies on the definition of impurities in terms of the super

cooling required before they can cause nucleation. Then a distribution 
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of these potential nucleants can be described for any liquid. Figure 4 

shows three such postulated nucleant distributions. 

N(6.T) 

0 6.T 
Supercooling Required to Cause Nucleation 

Figure 4. Suggested Distribution of Potential Nucleants 
in a Sample According to the Temperature at 
Which They Cause Nucleation 

In Case I nucleants_are effective at any supercooling. Nucleants 

in Case II are only effective after some intermediate undercooling. 

This might correspond to the distribution expected for a oxide coated 

metal. Nucleants in Case III are the embryos existing in the liquid. 

Homogeneous nucleation would result. 

The use of a model like this to explain the formation of various 

numbers of crystals can best be understood by considering a cooling 

liquid. If the cooling rate were very slow the temperature would 

decrease until the first nucleant became effective. Then all solidifica-

tion would proceed from that point. For faster cooling rates, the 

formation of the.first crystal would not release enough heat to stop 

the decrease in temperature immediately. Further supercooling would 



occur for a short time allowing some of the slightly less effective 

nucleants to cause nucleation as well. A polycrystalline ingot would 

result. 
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The expected number of crystals predicted by this model would vary 

in the following way: 

0 increase for a steeper nucleant distribution 

0 increase for more rapid cooling, and 

0 increase when the initial nucleation occurs with less 

undercooling. 

The idea that supercooling can continue even after initial nucleation 

occurs is consistent with the works of Iyer and Youdelis (1972) and 

Miroshnickenko and Brekharya (1970). Iyer showed that the cooling rate 

affects the reversal point in the cooling curve and argued that this 

point cannot automatically be interpreted as the temperature at which 

nucleation occurred. Table V summarizes the results. Miroshnickenko 

cooled samples fast enough to suppress recalsecense. He found that 

an Al-6.9%Mn alloy would supercool 150°C more when cooled at a rate of 

3x105°C/sec than at a ten times slower rate. Metals of high purity 

were found to cool less than their technical grade counterparts in the 

same work. Neither pair of authors reported any crystal size 

information. 
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TABLE V 

THE EFFECT OF COOLING RATE ON SUPERCOOLING 

Metal Ratio of Cooling Rates Increase in 
°C/min Supercooling at 

the Faster Rate 

Sb 238/30 4:7 
Pb 65/55 8 
Ag 215/82 8 
Bi 4:0/5 16 
Sn 34:/30 6 

Sb-4:0%Pb 14:0/25 20 
Sb-70%Pb 14:0/25 23 
Bi-10%Sn 30/5 8 
Bi-30%Sn 30/5 35 

The experimental works of Powell and Hogan (1968, 1969) are con-

sistent with the predicted increase in the number of crystals with 

reduced undercooling. Copper samples that had been solidified at 

supercoolings from 25 to 50°C were examined metallo-graphically and 

found to have many nucleation sites. In contrast, samples which 

undercooled more than 50°C (up to 150°C) showed only a single nucleation 

site. Large columnar crystals were observed to radiate from that site. 

0 
When silver was undercooled 175 C and nucleated by proding, all the 

crystals formed were observed to originate at a single site. No samples 

solidified with smaller undercoolings were examined. 

Tarshis, Walker, and Rutter (1971) used vibration to initiate 

nucleation at various degrees of undercooling. They found fine grained 

structures in copper-nickel alloys when the undercooling was less than 

about 60°C. Very coarse grains were observed at supercoolings from 80 

to 160°C with mixed grain sizes appearing for intermediate undercoolings. 
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Although this experiment did not involve nucleation by the cooling of a 

liquid to the temperature where inherent nucleation catalysts became 

effective, it still substantiates the model. A constant externally 

stimulated nucleation rate will produce fewer nuclei in a highly 

supercooled melt because growth would become dominant sooner. Very fine 

grain sizes reported from stimulation of melts undercooled more than 

160°C can be explained by the following mechanism. 

Powell (1965) and Powell and Hogan (1969) establish·the proposal 

that spontaneous recrystallization occurs following solidification if 

the undercooling is sufficiently large. Metallographic evidence of the 

recrystallization consisted of (1) small grains inside much larger ones, 

(2) large angle boundaries separating grains, and (J) the presence of 

twinned polygonal grains. Factors affecting recrystallization were sug

gested to be a high dislocation density grown into the solid solution 

during high-velocity freezing--that would be sensitive to the content of 

oxygen or other impurity or alloy, cavitation caused by the rapid change 

in .density, or deformation or fracture of dendritic arms from moving 

liquid or from pressure pulses in the solid (Glicksman, 1965). 

The number of grains found in a solidified sample is seen to depend 

first on the number of nucleation sites which become effective through 

undercooling, and then on the amount of recrystallization which occurs 

immediately after solidification is complete. 



CHAPTER III 

SOLIDIFICATION OF ALLOYS 

Single Phase Alloys 

The solidification of a metal containing a completely soluble 

alloying element differs from that of a pure metal in two major ways. 

First, the alloying element alters the surface energy of the melt and, 

therefore, affects the temperature at which homogeneous or heterogeneous 

nucleation occurs. In the second case, solidification of an alloy 

results in segregation of the solute and constitutional undercooling. 

In general, the surface energy of a single component liquid is 

reduced by the addition of a solute. This can affect nucleation by 

reducing cr~L' and/or creL (Equation (6)). Youdelis and Iyer (1973) 

reported that the amount of undercooling observed depended on alloy 

composition for all five systems examined. Consideration of either 

binary component as the solvent permits effects to be noted for ten 

independent dilute alloys. Of these, five systems showed a decrease in 

supercooling with an increase in solute concentration. In three cases 

the opposite was true. There was not enough data for evaluation of the 

other two cases. Table VI is a tabulation of their results. All of 

the values of supercoolings for these dilute alloys were small, ranging 

from 8 to JJ°C. Therefore, nucleation was heterogeneous. 

22 
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TABLE VI 

THE EFFECT OF THE ADDITION OF A SOLUTE ON SUPERCOOLING 

Solute Solvent Change in Supercooling d(b.T)dc* 

Bi Sn 36 
Sn Bi 80 
Sn Al 83 
Pb Sn 254: 
Pb Sb 239 
Sb Pb -762 
Sn Pb - 12 
Cu Ag - 4:3 

*Supercooling (solvent-alloy)°C/£raction minor constituent. 

Cech and Turnbull (1951) reported supercoolings corresponding to 

homogeneous nucleation £or the whole range o£ Ni-Cu alloys. 

A possible explanation £or the aforementioned data comes by re£er-

ence to Equation (6)). The value o£ t.Gs changes as craL and cr~L 

decrease depending on the comparative rates o£ decrease. I£ the 

decrease in cr L dominates, 6G will decrease and the £ormation o£ a a s 

nucleus with less undercooling will be favored. This would account £or 

the £irst £ive solute-solvent systems listed in Table VI. cr~L would be 

dominant, and 6G increase i£ cr L were low. Since lead and silver have s (l 

lower surface energies ·(cra.L) than tin and copper, respectively (Crosley 

and Mondol£o, 1971), one could predict the behavior o£ the £inal three 

systems in Table VI. For an alloy nucleating homogeneously, there is no 

~ and the nucleation temperature should vary inversely as craL" Cech 

and Turnbull (1951) did not observe any e££ect, but the change in sur

face energy £rom 2.55 x 1o-5 to 2 x 10-5 joules/cm2 corresponds closely to 
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the change in the absolute supercooling of 319°C for nickel to 236°C 

for copper. 

The first solid to form during the solidification of a dilute alloy 

is solute poor, and the liquid is enriched. The events that follow can 

be described by three processes, depending on the growth rate of the 

solid. First, the rate of solidification can be kept slow so that a 

uniform concentration is maintained in the liquid by diffusion. In the 

second way, solidification can proceed fast enough to maintain a concen-

tration gradient in the liquid, through rejection of solute, during the 

whole of the solidification process. Finally, solidification which 

occurs very rapidly would not result in segregation; rather, the solute 

would be trapped uniformly in the growing solid. 

When the rate of solidification is very slow it can be explained 

adequately by reference to the equilibrium diagram as shown diagrammati-

cally in Figure 5. 

l 
T 

Solidus Li uidus 

Solute Concentration (W%) 

Figure 5. Solidification of a Dilute Alloy 
Very Slowly 



A liquid of concentration X is cooled until it reaches the 
0 

liquidus. Then a solid with a composition corresponding to point B is 

formed and the liquid becomes richer in solute. As the temperature 
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continues to decrease, more solid is formed changing gradually in compo-

sition from B to C. The liquid, as it is consumed, increases in solute 

concentration from A to D. At the temperature corresponding to CD, 

solidification is complete. When solidification occurs this way there 

is a concentration gradient in the final sample. The first material to 

solidify is poor in solute, and the last is richer in solute than the 

mother liquor. It is equivalent to solidification when complete mixing 

of the liquid is achieved continuously. The change in solute concentra-

tion as solidification proceeds is shown in Figure 6. 

1 
Solute 

Concentration 

X 
0 

First Mat'l 
to Solidify 

complete 

rejection-diffusion 
equilibrium 

Solidification Sequence 

Last Mat'l 
to Solidify 

Figure 6. Concentration Gradient Arising From the Solidification 
of a Dilute Alloy 
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When the solidification rate is more rapid, rejected solute builds 

up at the interface until the rate of rejection equals the rate of dif-

fusion away from the interface. The next solid is formed from this 

neighboring liquid which is artificially rich in solute. The change in 

concentration of solute from B toward C occurs rapidly at first. Then 

the rejection diffusion equilibrium is established and solidification of 

a solid of nearly constant composition (intermediate between Band C) 

occurs. Finally the remaining liquid can no longer act as a diffusion 

sink and its solute concentration increases substantially. The solid 

and liquid compositions change systematically toward C and D again 

until solidification is complete. This result is also shown in Figure 

6 for comparison with the former case. The shape of the curve depends 

on the solidification rate. A faster rate causes the concentration in 

the solid to increase more rapidly at first, to reach a higher equilib-

rium concentration (closer to the original liquid concentration), and to 

have a smaller and shorter tail. The shape of the liquidus and the 

solidus curves and the initial concentration of the melt also affect the 

curve. 

The buildup of solute in the liquid in advance of the approaching 

interface results in a decreased equilibrium temperature (T ). Solidi
e 

fication is delayed until heat enough is removed to reduce the interface 

temperature to this value. The combination of the concentration gradi-

ent in front of the interface and the thermal gradient due to interface 

cooling cause some of the neighboring liquid to be cooled to a tempera-

ture below its Te. The interface becomes unstable and dendrites grow 

into the supercooled region. Figure 7 shows diagrammatically the con-

centration gradient, the corresponding Te gradient, and the expected 
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temperature profile.· The shaded region indicates the location of con-

stitutionally undercooled liquid. The dendrites that grow into this 

region create their own constitutionally undercooled region and branches 

will occur if solidification is fast enough. Otherwide, the remaining 

liquid solidifies by growing on the dendrites that are already present. 

r 
Solute 

Concentratio 

r 
Actual 

Temperature 

Solid Liquid 
Interface 

Distance 

f 
Equilibrium 
Temperature 

Figure 7. The Formation of a Constitutionally Under
cooled Liquid Next to the Solid-Liquid 
Interface 

When the alloy melt is substantially supercooled, the growth of a 

crystal from a single nucleation site is very rapid. Very little 

diffusion or external heat transfer is possible in the same time scale. 

The dendrites grow adiabatically with essentially the same constitution 

as that of the original bulk liquid. After sufficient dendritic growth 
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has occurred, the temperature of the half-solidified ingot increases to 

the equilibrium temperature. From there solidification proceeds 

according to one of the mechanisms discussed earlier with the existing 

dendrites serving as growth centerso The composition of the ingot would 

not be uniform. The original composition in the center would fade into 

a solute poor region, and the outside (last to solidify) portion would 

be solute rich. 

The number of crystals formed when a dilute alloy solidifies 

depends on the effect a change in surface energy has on the nucleation 

temperature. The crystals form in a dendritic pattern with long and 

arm-less dendrites occurring more often with high thermal and/or 

constitutional undercooling. Segregation results from the solidifica

tion. It is marked at slow cooling rates, but reduced when substantial 

undercooling proceeds solidification. 

Solidification of a Two Phase Alloy 

The solidification of a metal to form two identifiable phases has 

many similarities to the solidification of a single phase alloy. 

Nucleation and growth of the first phase proceeds in an exactly 

analogous manner. However, the nucleation of the first phase may be 

influenced heavily by the presence of the second component because of 

the wide range in melt composition which leads to two phase alloys. 

Table VII gives some of the values observed for first phase 

undercooling. 



TABLE VII 

THE EFFECT OF ALLOY COMPOSITION ON 
FIRST PHASE UNDERCOOLING* 

Alloy Composition First Phase Under cooling oc 
Weight % Alloy Pure Metal 

Cu-0.08~ Cu 218 208 
Ag-0.12~ Ag 250 
Pb-30%Sb Sb 51 32 
Pb-ltoO%Sb Sb 16 32 
Pb-60%Sn Pb 17 8 
Pb-70%Sn Pb 32 8 
Pb-80%Sn Sn 35 33 
Pb-88%Sn Sn 22 33 
Sn-82%Bi Bi 7 16 
Sn-lto5%Bi Bi 16 16 
Sn-36%Bi Sn 18 33 
Sn-20%Bi Sn 28 33 

*Youdelis and Iyer ( 1973); Powell and Hogan (1968); and 
Powell ( 1965). 
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Two kinds of behavior shown in Table VII are worth noting. First, 

undercooling for homogeneous nucleation is not apparently affected by 

variations in alloy composition. This implies that Oa~ and 0QL are of 

major importance in determining the effectiveness of a nucleation 

catalyst. Secondly, significant increases in first phase undercooling 

occur as the eutectic composition is approached in the Pb-Sb and Pb-Sn 

systems. This does not occur in the Sn-Bi and the Ag-Cu systems, 

however. No explanation is given for this effect. 

In two phase alloys nucleation of the second phase must be done 

independently from that of the first phase. Sundquist and Mondolfo 

(1961) and later authors (Crosley and Mondolfo (1971) and Powell and 
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Colligan (1969) have observed that the presence of first phase crystals 

effectively causes nucleation the second in half of the cases. However, 

when a hypereutectic alloy behaves this way, the hypoeutectic alloy 

does not. Table VIII, as an extension of Table III, gives some of the 

data reported to show the effect of first phase crystals on nucleation 

of the second phase. 

TABLE VIII 

THE EFFECTIVENESS OF THE FIRST PHASE CRYSTALS 
ON THE NUCLEATION OF THE SECOND PHASE* 

First Phase Second Phase Undercooling of Second Phase °C 

Cu Cu2o 19 
Cu2o Cu 82 
Sn Pb 1 
Pb Sn· >4:0 
Sb Pb 6 
Pb Sb >21 
Sn Bi ~17 
Bi Sn 6 
Cu Ag 29 
Ag Cu ~J 

*Powell and Hogan (1968) and Sundquist and Mondolfo 
( 1961). 

The growth of the first phase is similar to that in the solidifica-

tion of a dilute alloy as a dendritic structure and segregation are 

displayed. The growth of the second phase, usually eutectic, is differ-

ent. Ideal eutectic solidification leads to a laminar structure. The 

two components, A saturated with B and B saturated with A grow together 
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1n a way which minimizes the time needed to accommodate the diffusion 

away of solute rejected during freezing. The diagrams in Figure 8 

illustrate this principle. The ability of this growth mechanism to 

dominate the eutectic solidification process occurs because less inter-

face supercooling is required for growth if the rejected solute is 

effectively removed from the. liquid adjacent to the interface. When the 

rate of heat removal is increased the laminar spacing decreases. Less 

diffusion is required to deplete the rejected solute because the sinks 

and sources are closer together. Cline and Livingston (1969) showed 

that the laminar spacing varied inversely with the square root of the 

growth velocity. In addition, Cline (1967) showed that laminar growth 

is preferred over dendritic growth even in off-eutectic alloys if the 

solidification rate is high enough. 
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~Rejected b A B 
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Figure 8. Accommodation of Rejected Solute Through Coupled 
Growth of a Eutectic Alloy 

Anomalous eutectic structures are reported by Jones (1971) and 
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Kattamis and Flemings (1970). These eutectic structures are character

ized by apparent discontinuities in one phase. It was first thought 

that repeated nucleation o£ the discontinuous component must be occurring 

during solidification. But Kattamis and Flemings showed that the second 

phase was continuous. Jones (1971) attributes the anomaly to solidifi

cation o£ the eutectic £rom an undercooled melt, and unequal growth 

rates £or the two components. 

Bulk Movements in the Melt 

Convection in the molten alloy, and gravitational settling in it 

may cause segregation and/or an increase in the number and distribution 

o£ crystals. Convection is important when the density o£ the solute

rich or cool liquid at the solidification interface is different £rom 

that o£ the bulk liquid. Streat and Weinberg (1974) observed shrinkage 

trails and pipes in Pb-20%Sn ingots which they attributed to this cause. 

Convection also occurs when solidification is accompanied by substant'ial 

shrinkage. In this case the liquid £lows £rom the casting center toward 

the outside surfaces. Ja££ey (1975) found that this e££ect, called 

inverse segregation, is the more important o£ the two--except when the 

ingot is large and solidification is slow. 

Possible results o£ the convection are threefold. First, it can 

cause early homogenization o£ the melt, reducing the amount o£ constitu

tional supercooling and enhancing the growth rate. Secondly, the con

vection resulting £rom shrinkage can cause solute-rich liquid to £low 

into the inter-dendritic spaces and restore in part the overall uni

formity in composition originally present in the melt. Finally, 

convection in the sample can cause dendrite remelting. 
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Dendrite remelting occurs when a dendritic framework that has grown 

into a constitutionally supercooled region comes in contact with the 

bulk liquid. The liquid, which has a temperature higher than the 

dendrite melting point, caused some of the dendritic material to melt. 

Fragments removed from the parent structure this way but not completely 

dissolved are logical sites for the growth of new crystals in the melt. 

Streat and Weinberg (1972, 1973) have shown that dendritic frame

works can be dissolved away by the melt if the driving force for con

vection is sufficiently high. Thus, it is possible that significant 

grain refinement can be achieved in some systems through the creation 

of heterogeneous nucleation sites by the remelting of dendrites. 

If crystals formed by heterogeneous nucleation in the melt have a 

different enough density and the opportunity to grow large, settling can 

occur. Then there would be an increase in the number of small randomly 

oriented grains in the central part of an ingot, near the bottom if the 

crystals were heavy, and near the top if they are lighter than the melt. 

Strangmen and Kattamis (1973), for example, report the formation of a 

vertical composition gradient in a Pb-46%Sn alloy. It is attributed to 

the settling of lead dendrites that were the last to melt during 

reheating. 



CHAPTER IV 

FORMATION OF THE EQUIAXED ZONE 

The equiaxed zone is a volume in the center of an ingot which is 

comprised of small randomly oriented crystals. The structure is dis

tinct from the columnar zone which surrounds it. The columnar zone is 

composed of inward growing crystals which originate through nucleation 

at the surface and survive because a crystallographic direction for 

rapid growth is nearly antiparallel to the direction of heat removal. 

The transition from columnar growth to form the equiaxed zone is 

one that involves the formation of new crystals. However, the origin 

of these crystals has not been satisfactorally defined. Two points of 

view persist. In one, the crystals are understood to grow from pieces 

of solid previously formed but somehow separated from the bulk of the 

crystal. The second viewpoint holds that the crystals are nucleated 

independently in the liquid ahead of the growing columnar zone. 

A number of variables are known to affect the transition and the 

changes they cause help define the factors which alter grain sizes. One 

of these variables is vibration. Ultrasonic, aural and subaural vibra

tion when applied during solidification cause equiaxed regions to be 

larger and to have finer grains. A similar effect is observed if the 

free surface of the liquid is agitated or if the mold is rotated during 

solidification. The initial superheat and the cooling rate affect the 

zone. Higher superheats cause a reduction in the extent of the zone and 
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an increase in the size of the crystals in it. High cooling rates have 

the opposite effect. 

Investigations done to produce fine grained ingots and/or to deter

mine the appropriate mechanisms for grain refinement and the experimen

ters' interpretations are summarized. 

Rotation 

Grain refinement can be produced by the rotation of the solidifying 

liquid. Langenberg, Peste! and Honeycutt (1961) produced grain refine

ments in stainless steels by solidifying tne metal in a rotating mag

netic field. The refinement was attributed to fracturing of the solid 

caused by the relative motion between the solid and the liquid. The 

broken pieces of solid were deemed responsible for each of the fine 

grains that comprised the finished ingot. 

Crossley, Fisher and Metcalfe (1961) used both magnetic stirring 

and mechanical rotation to obtain grain refinement in aluminum. Mag

netic stirring was accomplished by passing current (DC) through the melt 

and through a stirring coil. When the stirring coil was shut off, grain 

coarsening occurred. But the mechanical motion in the liquid caused 

when both currents were induced caused grain refinement to result. 

Grain refinement was further enchanced when the stirrer polarity was 

reversed to make the liquid rotation stop and then proceed in the 

opposite direction. Mechanical rotation at constant speed was found to 

increase grain size, but when the rate of rotation was changed, the 

grain size was reduced. The authors did not propose a mechanism to 

explain their experimental results. Instead, they concluded that 

viscous shear in the liquid is important to the nucleation mechanism. 
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Cole and Bolling (1967) solidified Sn-Zn alloys in a rotating mold 

to study this effect. A typical ingot structure, having a columnar and 

an equiaxed zone resulted. The equiaxed zone was found to shrink during 

slow rotation or when initial superheating was higher. Rotational 

oscillations were the cause of an increase in the extent of the 

equiaxed zone. The experimenters observed that slow rotation hinders 

convection so that the temperature gradient in the liquid remains high. 

In comparison, convection was supposedly enhanced by the oscillation, 

and this caused the thermal gradient in the liquid to be small. This 

difference in the gradient from rotating, to stationary, to oscillating 

melts, is given as the major reason for the grain refinement observed. 

However, this effect was reduced when the amount of superheat was varied. 

Ingots made with less superheating all had extensive equiaxed zones and 

the effects of motion were comparatively small. A similar effect was 

observed for ingots made with very nigh superheats. The equiaxed zone 

was very small in this case, and did not appear to depend on rotation. 

Even then, with high superheat and slow rotation some central equiaxed 

crystals were found. The authors were unable to explain this effect in 

terms compatible with "breaking-off" theory because of the lack of 

convective motion in the liquid. 

Vibration 

Richards and Rostoker (1955) studied the effect of vibration on the 

solidification of aluminum ingots. Vibrational frequency and amplitude 

were varied and the change in grain size was observed. Results of their 

experiments showed refinement of grain size with an increase in vibra

tional amplitude--up to a point. After that, no further refinement 
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occurred. They showed, in addition, that the grain coarsening effect 

of increased superheat was completely eliminated by vibration, that 

vibration of the liquid before freezing had no effect, and that vibra

tion caused primary intermediate phases to become more coarse. Fragmen

tation was discounted as the responsible mechanism because broken 

crystals would be so small that they would be unstable and, therefore, 

dissolve. Instead, the authors proposed that the nucleation rate was 

increased because of microscopic pressure changes in the liquid. Then 

if the rate of nuclei formation was dependent upon the radius of the 

nucleus (not linearly) the average rate over the cycle would be differ

ent than the average rate without vibration. Refinement of metals like 

bismuth which expand during solidification, as well as the coarsening 

effect of vibration on intermediate phases could be understood using 

this idea. 

Frawley and Childs (1968, 1969) reported two series of results. 

The first experiments were done using bismuth and tin alloys. The alloy 

was undercooled and then solidified by vibration. They found that there 

was an amplitude effect that (1) had a threshold, (2) caused increased 

refinement when the amplitude was increased--up to a point, and (J) was 

ineffective thereafter. Pressure changes caused by cavitation were 

thought to be responsible for the effects. In the later work, also 

involving Sn and Bi, they came to adopt the alternate mechanism. Dif

ferences in the ability to refine Bi-rich and Sn-rich alloys were 

attributed to the greater breakability of tin dendrites during the 

early stages of growth. Cavitation combined with constitutional super

cooling was considered, as was dendrite remelting. However, neither 



mechanism was felt to be as likely responsible for the refinement as 

fragmentation. 

Southin (1966) studied vibration produced grain refinement and came 

to a similar conclusion. The effect he observed was interpreted as (1) 

the breaking of crystals when the growth was dendritic and (2) the 

erosion of columnar crystals by cavitation when the growth form did not 

result in thin sections. He worked with alloys of Al, Bi, Cd, Pb, Sn, 

and Zn. 

Russians Leychkis and Mikhaylev (1970) caused nucleation in tin at 

supercoolings which were too small to produce homogeneous nucleation. 

In some experiments a seed was used, and in others, vibration in order 

to initiate the solidificattion process. In both cases, finer crystal 

sizes corresponded to nucleation at greater undercooling. The effect 

was not strongly dependent on the temperature, however. Their account 

of the experiments regards nucleation to be a two step process, first 

the formation of an embryo and then its deformation to a crystal struc

ture with long range stability. Changes in crystal size caused by 

vibration or increasing alloy contentwere attributed to the removal 

(mechanically, or because of the chemical difference between embryo and 

substrate) of embryos during the second state of development. Then they 

serve as the substrate for conversion of a new nucleus from short to 

long range stability. Very pure metals were not refined this way. 



CHAPTER V 

EXPERIMENTAL RATIONALE 

One finds through a review of the literature on solidification as 

summarized in Chapters II, III, and IV that significant areas of dis

agreement still exist. For example, some authors argue that nucleation 

occurs because of impurities, while others credit planar surface patches. 

One field of thought says that nucleation is a single step process; 

another says that .there are two steps. Some authors maintain that a 

good atomic fit is the essential element in heterogeneous nucleation 

whereas others suggest that the right sized cluster must meet the right 

sized nucleant with the right orientation. And nearly everybody 

differs to some degree on the origin of the nuclei that grow in the 

liquid and eventually cause the columnar to equiaxed transition. Indeed, 

Fredriksson and Hillert (1972) were very careful to avoid this question 

in their study on the transition mechanism. 

This experimental work, in order to resolve some of these questions, 

was designed to investigate the underlying principles which have made 

certain grain refinement techniques successful. These techniques, for 

modification of the equiaxed zone, for the initiation of nucleation in 

an undercooled melt, and for vibrating the casting during solidification 

can be viewed in either of two general ways. 

In the first case, success in grain refinement can be described by 

the breaking-off theory. In it, numerous fragments are assumed to be 
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broken off from the first material to solidify. Each such fragment is 

expected to develop into a grain. 

4o 

In the second case, the grain size reduction results from super

cooling and then heterogeneous or homogeneous nucleation. The super

cooling is assumed to occur because of constitutional effects, the lack 

of effective nucleation sites, or modification of the phase diagram 

because of non-equilibrium conditions. 

The conditions required for breaking up of the solid during solidi

fication were to be studied by rotating the sample and mold together 

during the entire cooling process. In this way a predetermined buoyant 

force could be applied to the first dendrites to solidify. It could be 

varied systematically by changing the speed of rotation and/or the alloy 

composition. Any fragments formed as a result would float (or sink if 

they were heavier than the melt), and an evaluation of the process could 

be made by examining the radial distribution of the crystals and their 

size. 

Investigation of the second viewpoint was to be accomplished by 

the separate examination of several of the variables that influence 

nucleation and growth. To isolate the sample from external effects 

which might themselves cause nucleation, the samples were melted and 

solidifed in glass molds and under the cover of a high-boiling organic 

liquid. Similarly, the thermocouples were enclosed in thin glass 

sheaths to prevent the sample from coming in contact with any crystal-

line surface. 

By thus eliminating the opportunity for incidental nucleation, the 

temperatures of nucleation and recalescense, and the final crystal 

structure could be studied parametrically. Solidification parameters 
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which were to be examined included the time and temperature of super

heat, th~ effect of a prefreezing soak at temperatures slightly greater 

than Te, and the effect of different cooling rates. The impurity and 

alloying effects were also to be studied this way, by varying the 

grades of' material used, and the sample composition. LiqUid metal baths 

were chosen for heating and cooling purposes because of the potential 

for rapid temperature equalization and, hence, a better definition of 

the experimental conditions. In addition, copper molds with thin glass 

linings were to be made. This would further improve the heat transfer 

characteristics of the mold so near-isothermal conditions for solidifi

cation could be achieved. 

Grain sizes and shapes in the samples solidified as a part of these 

series would be related to the number of eff'ective nucleants present 

and the conditions of growth. 



CHAPTER VI 

EXPERIMENTAL PROCEDURE 

Materials 

Tin and lead were the major materials chosen for the experimental 

work. The selection was made because they are readily available in 

several different grades, and melt at easily obtainable temperatures. 

In addition, the lead-tin binary phase diagram consists of a simple 

eutectic and has been thoroughly investigated. Finally, lead and tin 

have significantly different densities (11.Jq and 7.30 g/cm3, 

respectively). 

Three grades of tin were used, two reagent grades ("Baker", and 

"Matheson, Coleman, and Bell" (MCB)) and a high purity grade from 

Materials Research Corporation (MRC). The chemical analyses listed for 

each grade is shown in Table IX. 

Only one grade of lead was used, Fisher No. 8 Lead Shot. Reagent 

grades of bismuth and cadmium were used. 
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TABLE IX 

ANALYSES OF TIN GRADES USED EXPERIMENTALLY 

Constituent Baker MCB MRC 

Sn 99.9 99-9 99-999 
Nonvolatile in 

HBr and Br2 .020 .02· 
Sb .01 .02 
As .00001 .0001 
Cu .001 
Fe .004: 
Pb .003 
Zn .0004 
Form Shot Shot Ingot 

Metallography 

Routine treatment of the cast samples consisted of sectioning, 

sanding, and finally rough and fine polishing. Conventional etching 

solutions were then used to reveal the microstructure. 

This treatment worked well for the whole range of lead-tin alloys, 

but was unsuccessful for tin-oniy samples. The structures of tin 

samples prepared this way consisted of fine equiaxed grains (5 to 25 

micrometers in diameter) which had no apparent relationship to the 

direction or rate of solidification. This structure was attributed to 

the recrystallization of a surface layer of the tin during the cutting 

and sanding. Samuels (1971) reports this effect in zinc and gives 3 to 

45 micrometers as the thickness of the recrystallized zone. The varia-

tion in thickness was attributed to differences in the quality of the 

grinding. Figure 9 shows this artificial structure. 



Figure 9. Recrystallized Structure in Tin 
Caused by Sanding During Sample 
Preparation. X200 

Chemical removal of the recrystallized layer was attempted using 

concentrated HC1, as recommended by Kehl (1949), without success. 

However, the application of 5% silver nitrate followed by 2% nita! 

did remove this layer. 

A second kind of artifact, mechanical twins was uncovered. The 

twinned zone had to be eaten away, by repetition of the nitrate-nita! 

treatment. The twins are shown in Figure 10 for comparison of the 

authentic tin structure of Figure 11. 

A summary of the etchants used throughout the work is given in 

Table X. 

Often the mechanical twins were not eliminated, but this did not 

interfere with the interpretation of the structure. 
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Figure 10. Mechanical Twins Formed in Tin 
Samples During Preparation for 
Micro-examination. X50 

Figure 11. Authentic Tin Structure Obtained 
by Chemical Removal of the 
Layers Deformed During Sample 
Preparation. X50 



Sample Composition 

Tin only 

Tin-dilute lead 

TABLE X 

ETCHANTS USED FOR SAMPLE PREPARATION 

Etchant, and Technique 

5% AgNOJ followed by 2% Nita!. 
Repolished pieces etched in 
Nita! only. 

Alcoholic FeCl3 

Near eutectic Tin-Lead Mixed Acid (2% HC1 and 5% HNOJ 
in methanol) 

Tin-Bismuth 2% Nita! 

Bismuth Cadmium 2% Nita! 

Solidification in the Rotating Mold 

A cylindrical mold was made of stainless steel. It had a cavity 

1.75 inches in diameter and one inch deep. The mold was designed so 
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that it could be mounted for rotation around its major axis. The motor 

and apparatus for spinning the mold could be adjusted so that horizontal 

and vertical orientations of the axis of rotation were possible. The 

vertical position was used when the speed of rotation was less than 

18oO rpm. 

The temperature was controlled by installing a heating coil around 

the mold and insulating bricks around the coil. A Variac was used to 

vary the amount of resistance heating in the coil. Figure 12 shows a 

diagram of the mold and Figure 13 shows the mode of operation. 



Mounting 
Shaft 

Figure 12. Cross-Section of the Mold Assembled 
Prior to Rotation 

Thermocuple 

-~-- Mold 

Major 
axis 

Chuck [t.~~~=========7;;~~~~------Power lead from 

Insulation 

Figure 13. The Apparatus for Turning and 
Heating the Mold 

Variac 

Before each use the mold was cleaned. A commercial caulking 

compound (rope caulk) was then used to seal the threads and the other 

mating surfaces. A sample was prepared by weighing the components (to 

the nearest 0.5 gram) and melting them together with mixing in a 
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separate furnace. The molten alloy was then poured into the mold 

through the opening made when the plug is removed. The plug was 

replaced, the mold was mounted in the chuck, and the heating coil and 

insulators were assembled. Then the current to the heating coil was 

adjusted to achieve a mold skin temperature 100°C above the liquidus of 

the alloy. The mold and assembly were maintained this way for two 

hours. 

The solidification of the sample was accomplished by selecting the 

speed of rotation, shutting off the power to the heating coil, and 

removing the coil and insulators. Cooling proceeded by the forced con

vection of the mold rotating in room air and through conduction of the 

heat around the insulators to the turning mechanism. When the sample 

had cooled to about 50°C the mold was removed and quenched to room 

temperature in water. Samples formed this way were removed by pressing 

them out of the mold's cylindrical shell after the mold had been taken 

apart. The samples were sectioned longitudinally and vertically for 

polishing, etching, and subsequent microexamination. 

Solidification in Glass and Glass Lined Molds 

The system for controlling and measuring the thermal cycle of the 

glass and glass lined molds is shown in Figure 14. Variacs were used to 

control the temperature in both the heater, a vertical tube furnace, and 

the stop-bath. The stop-bath was filled with lead-tin eutectic and sur

rounded by an insulated heating coil. The cooling bath was filled with 

woods-metal and placed in a cooling-curve furnace. Control of the bath 

temperature was accomplished by using the Dubuque III Controller in 

conjunction with the furnace. 
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In -

#1 Variac 

Vertical 
Tube 

Furnace 

~ 

#2 Variac 
Dubuque II 
Controller 

~ 

Soaking Cooling 
Bath Bath 

~ . r 
Thermocouple 

Junctions Thermometer 

#1 Recorder Water 
Bath 

#2 Recorder 

Figure 14. A Block Diagram of the Apparatus Used With the 
Glass-Lined Copper Mold 

Bath temperatures were measured when desired, or recorded. Iron-

constantin thermocouples were. used with Leeds-Northrup recorders. The 

thermocouples were encased in a thin pyrex shroud formed by drawing a 

glass tube out over the junction. The cold junction was placed in a 

s 

stoppered tube and immersed .in a water bath held constant at room temp-

erature or below. This temperature was measured with a conventional 

mercury thermometer and was not observed to change during the course of 

an experimental unit. 

The thermocouples were calibrated using a melting point technique. 

The recorders were first calibrated to give a full scale reading for a 

voltage of 30 mV. The variable zero supression was not used because of 

a desire to have the thermocouple calibrated over the full range of 

useful temperatures. Compounds were selected which have melting points 

ample 
Out 
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ranging from 70°C to 398°C. These were melted, and the hot junction of 

the thermocouple inserted. A cooling curve was run until solidification 

was complete and the compound was reheated. The average of the output 

(mV) measured during freezing and melting. was used~ The points were 

plotted with the thermocouple output as the abscissa and the difference 

between the temperatures of the hot and cold junctions as the ordinate. 

A linear regression line was passed through the. data and the standard 

error of the estimate was determined. The accuracy of the temperature 

measurements was found to be !2.5°C over the range from 0 to 400°C. 

Both the calibration curve and the s.tatistical work can be seen in the 

appendices. 

First preparation of a single metal sample for an experimental unit 

was done by weighing out the desired amount of metal to 0.1 grams. The 

metal was then cleaned by agitating it in a solution of 6N HC1 for 

several minutes and then washing it twice in tap water and twice in 

denatured alcohol. This was followed by a forced air drying step, 

before the sample was placed into the mold and covered with molten 

paraffin or dibutyl phthalate. 

Alloy samples were prepared in an identical manner. However, it 

took twice as long. The autectic mixture of the two components was 

prepared first using the previous procedure. The alloy was melted and 

mixed before it was poured into cold water. Then the cold eutectic 

alloy was weighed and mixed with the appropriate amount of primary com

ponent to achieve the desired final composition. The mixture was 

cleaned as before, covered, and then passed once through the specified 

thermal cycle. 

When pyrex test tubes were used for molds, an abbreviated procedure 
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was used. The mold and sample were heated directly in the soaking bath 

and cooled by (1) natural convection in air or (2) by quenching in oil 

or water. Cooling curves for tin samples solidified at each rate are 

shown in Figure 15. 

A glass lined copper mold was constructed to permit the rapid 

removal of heat from the molten sample and to prevent any contact between 

the sample and external sites for heterogeneous nucleation. The mold 

was made from a three inch piece of J/4" diameter copper stock. The 

cavity was machined to specification as shown in Figure 16 and lined 

with glass. (Cleaned copper surfaces were coated with a glass disper-

sion and fired at 1600°F.) The integrity of the surface was tested by 

measuring the resistance between a salt solution in the cavity and the 

mold wall. Commonly, the resistance of the mold wall varied from 104 

6 
to 5x10 ohms. Occasionally, when the wall was mechanically damaged, 

the resistance dropped to a fraction of an ohm. The surfaces of these 

molds were redone or the molds were discarded. The variation in 

acceptable resistivities is attributed to the presence of pinholes 

formed by oxygen released from the copper during firing. While these 

permitted limited access of salt ions to the copper surface they do not 

permit the sample and the copper to touch. 

The top surface of the sample was protected from oxidation by a 

covering of paraffin. The paraffin was melted and poured over the solid 

sample before the heating cycle was to begin. During the melting and 

solidification of the sample, the paraffin formed a liquid cover. It in 

turn was protected from oxidation by sealing the mold top with a copper 

lid and silicone grease. Samples made under paraffin this way showed 

the absence of any observable surface oxide. 
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Figure 15. Cooling Curves for Tin-2% Lead Samples in Pyrex Molds 
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Figure 16. Full Scale Cross-Section of the 
Glass-Lined Copper Mold 

The thermal properties of the mold were determined by running a 
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series of cooling curves for tin. A family of these curves is shown in 

Figure 17. 



Time (12 units/minute) 

Figure 17. Cooling Curves for the Glass-Lined Copper 
Molds Resulting From Immersion in a 
Constant Temperature Liquid Metal Bath 



CHAPTER VII 

RESULTS OF THE SOLIDIFICATION OF ALLOYS FROM 

EUTECTIC SYSTEMS IN ROTATING MOLDS 

The role of dendrite breakage in promoting the growth of new 

crystals in the melt ahead of the interface was examined. A two phase 

alloy was prepared, homogenized and loaded into the mold. It was 

remelted and then allowed to cool while the mold was rotated at a 

constant speed, up to 6800 rpm. The basic data for samples solidified 

this way is given in Table XI and the phase diagram for each alloy sys-

tem is shown in Appendix B. 

Alloy 
Composition 

(w%) 

Bi-20%Pb 
Bi-15%Sn 
Bi-15%Cd 
Pb-35%Sn 
Sn-15%Pb 
Sn-15%Pb 
Sn-15%Pb 
Sn-15%Pb 
Sn-32%Pb 

TABLE XI 

SPEED OF ROTATION FOR SAMPLES SOLIDIFIED 
WHILE SPINNING 

Eutectic Speed of 
Composition Rotation 

(w%) (rpm) 

3it:.5%Pb 6750 
lt:3 %Sn 3600 
Lt:o %Cd 3550 
61.9%Sn lt:150 
38.1%Pb 200 
38.1%Pb 600 
38.1%Pb 1800 
38.1%Pb 3700 
38.1%Pb lt:550 
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Density 
Difference 

Liquid- Fir~t 
Solid (g/cm ) 

0.31 
- .38 
- .17 
- .89 
0.57 
0.57 
0.57 
0.57 
0.57 
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Bismuth - Pb2 Bi 

The results of solidification of the bismuth rich bismuth-lead 

alloy is considered here first because bismuth forms a faceted phase 

that can be studied easily. The macrostructure of the sample formed 

from this alloy is shown in Figure 18 and the microstructure in the 

following five figures. It consists of a random collection of bismuth 

crystals near the hollow center of the sample, with closely spaced 

cellular dendrites of bismuth growing outward. These terminate to form 

the eutectic structure. Lead dendrites and a few bismuth crystals are 

found on the very outer edge of the sample. 

Bismuth 
Crystals 

Bismuth Crystals 

Void 

Lead dendrites 

Eutectic 

Figure 18. Diagram of the Bismuth- Pb2Bi 
Sample Showing Elements of the 
Macrostructure 



Figure 19. Randomly Packed Bismuth Crystals Found 
at the Center Surface of the Lead
Bismuth Sample. X60 

Figure 20. Outward Growing Bismuth Crystals in the 
Lead-Bismuth Sample. X60 
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Figure 21. Bismuth-Eutectic Interface Showing an 
Independent Bismuth Crystal. X60 

Apparently the lighter bismuth was nucleated on the outer surface 

of the sample and the crystals grew to an appreciable size (0.1 to 

0.5 mm). At this point the buoyant force created by the rotation was 

sufficient to separate them from the mold wall and float them to the 
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center. Once there they were packed together randomly. The many sharp 

corners of these faceted particles and the general lack of cusps on 

their sides show that only limited remelting occurred. On the contrary, 

these crystals may have acted as heat sinks as they traveled to the 

center. They had been cooled physically and by constitutional effects 

at the perimeter so that their temperature was substantially below the 

equilibrium temperature of the center liquid. This liquid had remained 

at its initial composition because Pb2Bi-rich liquor rejected during 

the formation of the peripheral bismuth crystals was kept away from 

the center by the rotational forces. 
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The movement of the cool crystals to the center causes the radial 

temperature distribution to be flattened and alters the composition 

gradient. Cellular dendrites of bismuth grow outward from these first 

crystals through the adjacent liquid. The heat of fusion is dissipated 

outward, in the same direction as the growth. At the same time 

nucleation of more bismuth at the outer surface was being limited by 

the layer of solute-rich solution there, and only a few more bismuth 

crystals were formed. One is shown in Figure 21 as it is centrifuged 

to the center to meet the outward growing dendrites there. 

Finally Pb2Bi was nucleated, both at the bismuth-melt interface 

where bismuth could serve as a nucleant, and at the outside edge where 

it was coolest. The Pb2 Bi nucleated at the interface grew along with 

the bismuth, outward, to form the eutectic. The Pb2Bi nucleated at the 

outside edge formed dendrites and began growing inward. This appears 

to have caused the re-nucleation, or at least renewed growth, of bismuth 

there. This resulted in the inward growth of eutectic. A shrinkage 

cavity was formed when the inward and outward growing eutectics came 

together. The presence of bismuth crystals at the outer surface, Figure 

23, and its implications will be discussed later. 

Bismuth-Cadmium 

In the bismuth-cadmium sample bismuth formed initially on the out

side, and being heavier, stayed there. The resultant micro-structure 

consisted first of columnar dendrites of bismuth growing inward from the 

mold wall; secondly, of separate bismuth crystals a bit further inside 

and at the inner surface; and thirdly, of cadmium needles along the 

bismuth-eutectic interfaces and at the inner surface. Figure 24 is a 



Figure 22. Pb2Bi Dendrites at the Outer Edge of the 

Lead-Bismuth Sample. X60 

Figure 23. Bismuth Crystals and Pb2 Bi Dendrites at the 
Outer Edge of the Lead-Bismuth Sample. 
X60 
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drawing of thf~ macrostructure of this sample. Micrographs of the 

structures are shown in Figures 25 through 30. 

Cadmium 

Bismuth 

Bismuth crys 

Figure 24. Diagram of the Bismuth-Cadmium Sample 
Showing Elements of the Macro
structure 
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During the solidification of this sample cooi cadmium-rich liquid, 

rejected as the bismuth crystals grew inward, was centrifuged to the 

center. This resulted in the reduction in both the thermal and consti-

tutional gradients, and the nucleation of bismuth in the melt. A few 

of these bismuth crystals stayed on the inner surface, while others 

settled outward and were packed up against the columnar crystals. 

Figure 28 shows two bismuth crystals trapped on their way to the inter-

face by the solidification of the eutectic. Cadmium was eventually 

nucleated as cooling continued with the bismuth rhombohedrons apparently 

acting as nucleants. Cadmium grew dendritically for a time and then the 

growth form changed to the coupled form of the eutectic. As in the 



Figure 25. Inward Growing Bismuth Crystals and the 
Bismuth-Cadmium Eutectic. X60 

Figure 26. The Bismuth-Eutectic Interface in the 
Bismuth-Cadmium Sample. X60 
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Figure 27. Inward Cellular Growth of the Bismuth
Cadmium Eutectic. X60 

Figure 28. Independent Bismuth Crystals Frozen in the 
Bismuth-Cadmium Eutectic. X6o 

6J 



Figure 29. Bismuth and Cadmium Crystals at the Inner 
Edge Showing a Shrinkage Void. X60 

Figure )0. Cadmium Needles at the Inner Edge 
of the Bismuth-Cadmium Sample. 
X100 

64 



Pb2 Bi-Bi case, eutectic grew both inward and outward forming a void at 

an intermediate radius. 

Bismuth-Tin 

Bismuth also formed first in the bismuth-rich Bi-Sn alloy. As it 

is more dense it stayed along the outside edge. Figure 31 is a 

schematic of the resultant macrostructure, and Figures 32 through 3~ 

show the sample microstructure. It consists of columnar bismuth 

crystals at the outside, a few individual bismuth crystals at or near 

the inner surface, and tin dendrites growing outward from the inner 

surface. 
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The formation of this sample was similar to that of the bismuth

cadmium sample. Relatively tin-rich liquid was rejected during the 

growth of the bismuth dendrites, and centrifuged to the center. The 

same reduction in the thermal and concentration gradient occurred and 

bismuth was nucleated in the melt. Then tin was nucleated at the inner 

surface and independently at the bismuth melt interface. The tin formed 

at the inside surface grew dendritically at first, and then with 

bismuth as the eutectic. The tin nucleated at the interface grew 

immediately as eutectic, coupled with bismuth. No void was seen in this 

sample. However, a substantial portion of the sample leaked before 

solidification began and the thiCkness of the sample was reduced -- so 

this might be expected. 

Lead-Tin 

A lead-rich lead-tin alloy was also prepared and solidified in the 

rotating mold. The lead has a non-faceted structure and offers a 



Bismuth crystal 

Tin dendrites 

Figure J1. 

Bismuth 

Diagram of the Bismuth-Tin Sample 
Showing Elements of the Macro
structure 

Figure 32. Inward Growing Bismuth Crystals and the 
Bismuth-Tin Eutectic. X60 
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Figure JJ. Tin Dendrites at the Inner Surface 
of the Bismuth-Tin Sample. 
X100 

Figure J4. Bismuth Crystal and Tin Dendrites 
at the Inner Surface of the 
Bismuth-Tin Sample. X100 
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contrast for comparison with the alloys of bismuth and cadmium. Figure 

35 shows the macrostructure of the lead tin sample, and FiQures 36 

through 40 show its microstructure. 

Lead formed first and presumably grew inward to form a coarse 

dendritic structure. This is not apparent from the micrograph shown 

in Figure J6 however. Extensive precipitation of tin occurred in the 

lead crystals, and deformation of the soft lead dendrites may have 

destroyed the order characteristic of the dendritic structure. 

Lead 

Figure 35. Diagram of the Lead-Tin Sample 
Showing Elements of Its 
Macrostructure 



Figure J6. Primary Lead "Dendrites" Formed Near 
the Outer Edge of the Lead-Tin 
Sample. X60 

Figure 37. Interface Between the Primary Lead and 
the Random Lead Dendrites. X60 
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Figure 38. Interface Between the Random Lead Dendrites 
and the Lead-Tin Eutectic. X60 

Figure 39. An Independent Lead Dendrite Frozen in 
the Lead-Tin Eutectic. X60 
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Figure qQ. Lead Dendrites Formed at the Inner Surface 
of the Lead-Tin Sample. X60 

Solute rich liquid rejected during the formation of this lead is 

lighter than the original liquid and was centrifuged rapidly to the 

center. This motion was reflected in some macrosegregation along the 

lines of flow; and these were curved because of coriolis acceleration. 

The inward motion in the liquid caused a flattening of the temperature 
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distribution so that lead crystals were nucleated heterogeneously in it. 

Figure qQ shows lead dendrites formed this way at the inner surface. 

As cooling continued these crystals grew until they were about 0.2 to 

O.J mm long. At this point the force from the volume of the liquid they 

displaced became great enough to separate them from the surface. They 

floated outward and were packed randomly against the original lead 

dendrites. This process continued, causing the liquid to become 



increasingly tin-rich until tin was finally nucleated. It then grew 

together with lead as eutectic until solidification was complete. No 

tin dendrites were found along the inner surface and no voids were 

observed. 

Tin-Lead 

The fifth alloy studied, tin-rich tin-lead also has a non-faceted 

structure. Tin dendrites formed initially, and after reaching lengths 

of about 0.2mm they were spun to the center. The resultant micro

structure consisted of the random packing of these tin dendrites in 

the center, faint evidences of the outward growth of tin from this 

area, lead dendrites along the outside surface, and eutectic. Again 

the eutectic grew both inwards and outwards, leaving a void in the 

middle. Figure 41 shows the macrostructure typical of the tin-rich 

samples. Figures 42 through 45 show the resulting microstructures. 
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The cool tin dendrites that were floated to the center reduced the 

amount of superheat in the liquid there and served first as the basis 

for the further growth of tin. Later, lead was nucleated here, too, and 

the eutectic structure was formed. Lead was also nucleated at the mold 

wall. This material, in contrast, grew dendritically at first -- until 

tin was re-nucleated there to form the eutectic. As in two of the 

previous cases an intermediate void was formed when the two eutectic 

solid-liquid interfaces approached each other. 



Some voids and 
eutectic between 

Figure 41. Drawing of a Tin-Lead Sample 
Showing the Elements of Its 
Macrostructure 

Figure 42. Tin Dendrites Randomly Packed at the Center 
Showing Shrinkage Voids and Trapped Lead
Tin Eutectic. (3700 rpm) X60 
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Figure 4J. The Tin-Eutectic Interface Showing Outward 
Growing Tin Dendrites. (4550 rpm) X60 

Figure 44. Shrinkage Void in the Lead-Tin Eutectic Near 
the Outer Edge of the Sample. (J700 rpm) 
X60 



Figure ~5. Lead Dendrites at the Outer Edge of a 
Tin-Lead Sample. (~550 rpm) X50 

Variations in Spin Speed 

Several ~amples of tin-rich tin-lead alloy were solidified with 
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different speeds of rotation. The one sample that was solidified with-

out rotation had a uniform structure composed of tin dendrites that were 

surrounded by eutectic. No differences could be found between this and 

a sample rotated at 200 rpm. At 650 rpm, however, one could detect some 

inward motion of dendrites through the appearance of dendrite free areas 

filled with eutectic. For samples spun at speeds of 1900 rpm and above 

the tin was completely removed from the outer wall and packed in the 

center. Lead dendrites were also found, on the outer surface, growing 

inward in all of these samples. The number of these dendrites was 

roughly proportional to the speed of rotation. 
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These effects can be explained in a straightforward way. Without 

rotation, crystals of tin were nucleated along the outer edge of the 

sample. Then they grew dendritically inward in a way controlled by the 

rejection of solute and the resulting constitutional undercooling. The 

remaining liquid became richer in lead until the eutectic composition 

was reached. Then the eutectic mixture solidified in the interdendritic 

spaces. 

Rotation only affected this process at moderate or high speeds. 

With an increase in rotation rate an increased buoyant force is applied 

to the tin dendrites because of the difference in density between the 

solid and liquid. The force increases with the volume of the dendrite 

and toward the later stages of growth (when 8p is larger). The shear 

strength of the dendrites and the strength of the bond between the 

dendrites and the mold wall also increases, but only as the cross

sectional area. Thus, the buoyant force overtakes the bond or shear 

strength as the speed of rotation is increased. The weakest link, found 

to be the dendrite-mold bond, breaks and the dendrites float free in the 

melt. 

It is important to note that neither the alteration of the propor

tion of excess tin nor the speed of rotation resulted in a significant 

decrease in the final grain or dendrite size. Eutectic lead-tin struc

tures with and without rotation and inward and outward growing were all 

very similar too. The absence of any change of this kind indicates that 

the tin dendrites were not easily broken. Hence, the breaking of 

dendrites is not an important source of secondary nuclei under normal 

conditions of solidification, and does not figure prominently in the 

formation of an equiaxed zone in an alloy ingot. 
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Instead, rotation effects observed in this work point to two other 

factors as important in the formation of the equiaxed zone. The first 

is the reduction of the temperature gradient in the liquid by centrifug

ing cool crystals or rejected solution away from the interface. The 

second is heterogeneous nucleation in the liquid or at the far surface 

which results from the flattened temperature gradient. 

This is in agreement with a portion of the work of Cole and 

Bolling (1967, p. 1824) who determined that "the temperature gradient in 

the liquid is the vital factor •••• " Their experiments showed that 

slow rotation (about 100 rpm) suppressed motion in the liquid and that 

this caused the columnar to equiaxed transition to be delayed. This was 

attributed to a decrease in the convective heat transfer that kept the 

temperature gradient in the liquid from decreasing rapidly. The 

mechanism for nucleation, defined as intricate detail, was largely 

ignored in their work even though Tiller (1962, p. 457) had predicted 

mathematically a large increase in the frequency of nucleation with a 

"decrease in the temperature gradient at the interface." Finally, the 

recent work of Burden and Hunt (1975) substantiates the importance of 

the temperature gradient in the melt. They predicted that equiaxed 

crystals grow in the liquid as soon as the temperature gradient ahead of 

the interface becomes flat. Then the latent heat they release serves to 

retard the growth of the columnar interface. 

Hypoeutectic Dendrites 

In four of the systems examined dendrites of the minor phase were 

found, at one surface or at the interface between the other component 

and the eutectic. 
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A review of the procedures used to prepare the samples shows that 

there is no mechanism for the formation of inhomogeneities during this 

procedure that would otherwise account for the results. In each case 

eutectic alloy was mixed with the primary phase and melted. Heating 

0 
was continued to a temperature of 50 superheat. Then the sample was 

stirred and poured into the mold. Finally, the mold and sample both 

were reheated enough to remelt the primary component. This guaranteed 

the complete remelting of any solid of near eutectic composition. 

Sensitivity of the phase diagram to pressure developed during 

rotation was also dismissed as a possible explanation because (1) 

condensed systems do not often show such a sensitivity, and (2) the 

formation of second phase dendrites occurred twice at the inner surface 

where the pressure was only slightly greater than atmospheric pressure. 

Second phase dendrites can occur, according to one explanatiory, if 

the two components in a eutectic liquid supercool different amounts. 

Then, if the first to solidify does not readily nucleate the second it 

(the first) will grow dendritically until the undercooling becomes 

sufficient for nucleation of the second phase (Chalmers, 1964). This 

can account for the lone Pb2 Bi, lead, tin, and cadmium dendrites which 

formed from an eutectic solution at the surface opposite from the pri-

mary phase. 

The independent nucleation of the second phase has been suggested 

as an alternative explantion. Powell and Hogan (1968) studied both 

hypo- and hypereutectic alloys of the copper and cuprous oxide system. 

The solidification of the copper-rich alloy began with the undercooling 

and nucleation of copper. After recalescense and further undercooling 

the Cu2o was nucleated. Partial recalescense followed during the 



solidification of the eutectic. However, the oxide-rich alloy solidi

fied another way. The oxide undercooled and nucleated first, 

recalescense occurred, and the undercooling of copper followed. When 

copper was nucleated it grew dendritically and a second complete 

recalescense followed. Formation of the eutectic did not occur until 

after this second recalescense. This was attributed to different 
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effective nucleants and is summarized as follows: If the first phase 

nucleates the second the growth is of an eutectic type -- if the second 

is nucleated independently, growth is dendritic. 

In a later work Powell and Cooligan (1970) observed the dependent 

nucleation in tin-rich Sn-Bi and lead-rich Pb-Sb. Second phase 

dendrites existing alone in the four samples can be satisfactorily 

explained by independent nucleation. 

Neither unequal undercooling nor independent nucleation can explain 

adequately the related dendritic structures seen in Figures 23, 29, and 

3q. With one phase already present as a solid, the dependent nucleation 

of the second phase should be followed immediately by the onset of 

coupled growth. This is because coupled growth occurs with a smaller 

amount of supercooling than the growth of either component separately. 

Separation of the components of the eutectic liquid by the 

combined activity of rejection during solidification and centrifugation 

is an explanation that can account for the related dendritic structure. 

It has been shown that slightly superheateq eutectic liquids are 

probably composed of clusters of 103 to 10q atoms each (Lashko and 

Romanova, 1961). Furthermore, it is reasonable to assume that there are 

two kinds of clusters, one component dissolved in the other at the con

centration corresponding to that of a saturated solution at the melt 
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temperature, and vice versa. The growth would deplete the population o£ 

one kind o£ cluster in the immediate area, and centri£uging could 

remove the rejected material be£ore mixing by convection or di££usion 

could occur -- i£ it had a di££erent enough density. 

In each o£ the systems examined, one sur£ace would be expected to 

have a layer o£ hypereutectic liquid, the inside sur£ace £or 

Bi-rich Sn-Bi and Bi-rich Cd-Bi or the outer sur£ace £or tin-rich 

Sn-Pb and Bi-rich Bi-Pb. The second phase would be nucleated in this 

layer by any e££ective heterogeneous nucleant (including stray £irst 

phase crystals) and it would grow dendritically until the melt was 

returned to the eutectic composition. Unless the £irst phase was pres-

ent nearby it would then have to be nucleated locally be£ore the 

eutectic structure could form. 

Other evidence suggests that the eutectic liquid may be separated 

this way. Vertman, Samarin and Yakobson (1960) observed the £ormation 

o£ lead dendrites when eutectic mixtures were solidified in a centrifuge. 

Fisher and Phillips (195~) observed anomalies in the viscosities o£ 

slightly superheated eutectics, a~d Danilov and Radchento (1936) £ound 

that the x-ray photographs o£ eutectic liquids are like a superposition 

o£ photographs of the two components. Finally, G. M. Bartenev (1970, 

p. 16) observed the following: 

At present it is generally accepted that full atomic inter
mixing does not exist in liquid eutectic alloys and they 
consist of colonies in which a particular component is con
centrated. Such a structure o£ liquid eutectics is called 
quasi-eutectic. All methods of research into the proper
ties of liquid eutectics con£irm this view concerning their 
structure. 



CHAPTER VIII 

VARIATIONS IN UNDERCOOLING 

Tin and tin alloy samples were prepared and melted under liquid 

cover to study the effects of process variables on supercooling. The 

solidification was followed by recording the response of a thermocouple 

imbedded in the sample. This allowed observation of the sample's 

thermal behavior after each change of a variable. 

Cooling Curves 

The cooling curves for samples solidified in the pyrex molds were 

all very similar to those shown in Figure 15. The point of reversal in 

the curve was not found to vary for the range of cooling rates investi

gated, and recalescense to the equilibrium temperature was consistently 

observed. One sample was heated and cooled repeatedly, and the cooling 

rate was varied. The temperature of reversal when the cooling rate was 

fast (720°C/min) was 198 ± 2°C. This was noc significantly different 

from the reversal temperature of 199 ± J when the cooling rate was slow 

(42°C/min). 

Recalescense temperatures for a variety of samples, all cooled at 

the slow rate, are shown in Table Xll. In only one case was the 

recalescense temperature significantly lower than the equilibrium 

temperature. This sample was the only tin alloy with appreciable lead 

that was repeatedly cycled, and that displayed much undercooling. 
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TABLE XII 

RECALESCENSE TEMPERATURES OBSERVED 

Sample Number of Equilibrium Recalescense 
Samples Measured Temperature (o C) Temperature (oC) 

Tin 27 232 230 .± 3 
Tin-1.2% Lead 1 230 231 ± 3 
Tin-2.4% Lead 1 228 229 ± J 
Tin-4.8% Lead 7 224 224 ;;!; 2 

Tin-9.5% Lead 1 214 210 ± 3 
Tin-9.5% Lead 1 214 203 ±. 3 
Tin- 19% Lead 3 204 204 ± 3 
Tin- 38% Lead 1 183 184 ± 3 

Superheat Temperature 

A thermal cycle was chosen which consisted of heating to tempera-

ture in a liquid metal bath, a one-minute soak, and cooling in air. 

Only the superheat temperature was changed. The resultant changes in 

supercooling (defined by the point of reversal on the cooling curve) 

that were found are shown in Figure 46. 
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Grade Tin Caused by Different Superheat 
Temperatures 

Superheat Time and Tin Source 

Tin from three sources, Matheson Coleman and Bell, Baker, and 

Materials Research Corporation was used, and the time at different 

superheat temperatures was varied. The samples were heated to the 
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desired temperature, soaked for a measured time and then cooled slowly. 

After recalescense occurred, the samples were reheated to the superheat 

temperature and soaked for a second {longer) interval. This procedure 

was repeated until the total time at superheat temperature approximated 

330 minutes. Figure 47 shows the effect of superheat time and tin 

origin on supercooling that was observed. 

A sample of Baker tin-19% lead was treated in an identical manner. 

(The amount of superheating was 5J°C.) The supercooling was found to 

increase with time in much the same way as the supercooling for Baker 

tin increased for the same absolute superheat temperature. This is 

illustrated by Figure 48 which shows the two increases superimposed. 
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Discussion 

Variation is apparent in the amount of supercooling observed for 

different times and temperatures, and for different sources of tin. It 

is reasonable to attribute the sources of this variation to two factors, 

the presence of nucleants of different kinds, and the susceptibility of 

at least one type to deactivation by heating. 

The amount of supercooling observed for Baker and MRC samples 

increased systematically with increased superheating until a super

cooling of about J6°C was reached. The small supercoolings which 

occurred with little superheat show that very effective nucleants were 

initially present. These must have been deactivated or destroyed by 

the increased heating to account for the increases seen. 

Efforts to increase the amount of supercooling above J6°C all 

failed. Takahashi and Tiller (1969) predict such a limitation based on 

the sample size and the opportunity to form large surface "patches." It 

is their contention that tin samples would have to be less than 2mm in 

diameter before a supercooling of J6°C could be obtained. Since the 

samples studied in this work were 10mm in diameter another explanation 

is needed. One alternative can be found by assigning the cause for the 

barrier at J6°C to the presence of a second kind of nucleant, one which 

is only important when the more effective ones have been destroyed. A 

second alternative, homogeneous nucleation, is ruled out because that 

does not occur in tin with supercoolings less than 100°C. Nucleation 

on the mold wall, a third idea, cannot be ruled out. It is an unlikely 

candidate however, ceramic type materials are not generally effective 

nucleants for metals, and because a thin film of the liquid cover 

probably separated the sample from the pyrex mold wall. 



The frequency with which a maximum supercooling of about J6°C 

is found in the literature (see Table II) is a clue that the cause 

is common and suggests the first alternative. Oxidies of tin are 

almost universally present and are considered to be the most likely 

impurity responsible for the nucleation at 36° undercooling. Oxides 

were almost certainly present in this work. Samples cleaned in nitric 

acid exhibited an obvious oxide film, and washing first in water and 

then ethanol, both with vigorous agitation and shaking, may not have 

removed all the oxide. This is especially true of the MRC tin since 

the pieces were cut from an ingot as 1 em cubes, and the surfaces were 

more difficult to clean after etching. The oxide Sn3o~ is the first 

one formed with tin at ordinary temperatures, and it is stable above 

1000°C (Hansen, 1958). 

A second kind .of stable nucleant is apparently present in the MCB 

tin. Undercooling of about 18°C occurs regardless of the time or 
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range of superheat temperatures. The effective nucleant is active at 

smaller undercooling than the stable species in either the Baker or the 

MCR tin, and with less than that reported by the several authors cited. 

The difference is expected to stem from the differences in purity. 

The analysis of the Baker and MCR tin is given in Table IX for compari

son with that of the MCB product. Any of the impurities (or one of 

their compounds) likely present in MCB tin but not in the others could 

be the nucleant effective at 18°C undercooling. No further effort was 

made to identify this nucleant. 

The variation in undercooling of Baker tin from 0 to J6°C, depend

ing on superheating time and temperature, is attributed to the deactiva

tion of a nucleant. Glicksman and Childs (1962) report a similar 
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effect and Tarshis, Walker, and Rutter (1971) report that the amount of 

undercooling increased two to eight times from that of the initial trial 

when the samples were repeatedly reheated. This occurred in twelve 

separate alloys of nickel. 

Insight into a mechanism for the deactivation of heterogeneous 

nucleants can be derived from analysis of data displayed in Figure ~9. 

The half-times for the deactivation of the nucleants were determined 

for each temperature. This was done by finding the superheat time 

required to permit a supercooling of 18°C; i.e., the time required to 

reduce the effectiveness by half. Complete reduction of nucleant 

effectiveness was assumed to occur when the competing nucleant (effective 

at J6°C) became the dominant source of nuclei. The Arrhenius equation 

was chosen to establish the relationship between the several superheat 

temperatures and the corresponding half-times 

R.tn. k = -E /R( 1/T) + R.tn. A 
a 

since rate constants for chemical reactions conform to it without known 

exception (Hamill and Williams, 1959). The half times were taken to be 

equivalent to the reciprocal of the rate constant "k". Ea is the acti-

vation energy for the reaction. Figure 50 shows that the. experimental 

data displays the linear relationship predicted by Equation (9). 
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The activation energy for the deactivation reaction was found by 

passing a linear regression line through the data points in Figure 50 
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and determining its slope. Ea was found to be 36,200 cal/mole or 4.0eV. 

This value was surprisingly high, and corresponds in general to the 

activation energies for chemical reactions. Table XIJ.l gives the 

activation energies reported for various atomic events for comparison. 

This high value for the activation energy for the deactivation of the 

nucleant does not support any of the proposed mechanisms suggested by 

Crosley and Mondolfo (1971). Rather than the destruction of high order 



planes, the motion of lattice defects or vacancies, or the dissolution 

of the nucleant, the deactivation effect seems truly to be a chemical 

rrnction. One possible reaction which could account for this is the 

oxidation of an impurity metal as shown in Equation (10). All that this 

requires is that the metal be more chemically 

active than tin. 

Log half-time 
for Nucleant 
deactivation 

(min.) 

2 

1 

0 

-1 0 
.0017 

metal oxide + Sn 

.0019 

Figure 50. The Relationship Between the Nucleant 
Deactivation Rate and the Superheat 
Temperature 

(10) 
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TABLE XIII 

ACTIVATION ENERGIES FOR VARIOUS REACTIONS 

Reaction 

Migration of interstitial in Ni 
(Melvor, Kronmiller, and Seeger, 1965) 

Migration of vacancies in Ni 
(Melvor, Kronmiller, and Seeger, 1965) 

Migration of interstitial in Cu 
(Manintveld, 1952) 

Migration of vacancies in Cu 
(Manintveld, 1952) 

Decomposition of Cl2 
(Shaw, 1968) 

CaO + A12o3 = CaA12o4 

CaO + Sn02 = CaO•Sn02 

PbO + PbSi03 = Pb2Si04 

Deactivation of nucleant in Baker tin 

Activation Energy 
eV cal/mole 

1.03 

1.46 

.20 

.88 

9,280 

13,200 

1,810 

7,960 

43,300 
85,000 

61,300 

36,200 



CHAPTER IX 

RESULTS OF THE SOLIDIFICATION OF TIN AND 

TIN ALLOYS IN GLASS LINED 

COPPER MOLDS 

Three series of alloys were solidified in glass lined copper molds, 

tin-only, tin-29% lead, and an unmixed combination of the two. This 

third combination provided for a gradual change through the sample from 

one composition to the other. 

Tin-Only 

The external appearance of the tin-only samples solidified in the 

glass lined copper molds (GLCM) was similar in many ways to the samples 

solidified in pyrex ones. The surfaces were smooth and shiny. A 

slightly darker shade was sometimes seen on the sample top, otherwise 

the samples were free of apparent oxidation. Numerous circular depres

sions were found on the sides adjacent to the mold must have resulted 

from general shrinkage throughout the sample. 

One important difference was apparent. There were parallel ridges 

in the tops of only those samples cooled in the glass lined copper molds. 

The ridges seemed to form first and become prominent when the freezing 

liquid contracted away from them. Some samples cooled in the pyrex 

molds did display porosity in their tops, but without a pattern. 

The number of ridges and the spacing between them depended on 

91 



92 

the temperature of the cooling bath. When low temperature baths were 

used the samples had no ridges. Warmer cooling baths produced samples 

first with raised spots, and then with a few ridges. As the temperature 

of the cooling baths were made still warmer the number of ridges seen 

increased. This variation can be seen in part in Table XIV. 

TABLE XIV 

RIDGES FOUND IN GLCM TIN SAMPLES 

Bath Temperature (Tb) T - T Number of Ridges 
(oC) e(oc)b 

217 15 15 
207 25 11 

205 27 8 
184 48 1 

The microstructures of the pyrex and GLCM samples were examined by 

sectioning and compared. It was found, through continued etching with 

2% nital, that a new structure was resolved. This structure occurred in 

several of the pyrex mold samples and in all but one of the GLCM samples. 

The most dramatic evidence of this is shown in Figure 51. 



Figure 51. Etched-up Impurities in Tin. A 
Pyrex Mold Was Used and the 
Sample Was Treated With AgN03• 
Nital Etch. X50 

The new structure is attributed to the etching-up of impurities 

that had collected at the cell boundaries during solidification. The 

difference between it and the typical structure, shown in Figure 11, 

9J 

occurs because of grain growth following solidification. The influence 

of impurities is apparent in the GLCM samples as the high purity sample 

(98% MRC and 2% Baker) was the only one free of this kind of structure. 

The occurrence of this in the pyrex mold samples was not as easily 

explained. 

A comparison was made of the histories of the pyrex mold samples 

having and not having the new structure. Many solidification parameters 

were found that were common to each group. Therefore, superheat, tin 

source, the type of liquid cover, the cooling rate, the amount of super-

cooling, and the number of thermal cycles were eliminated as major 
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factors. However, oxides present in varying amounts depending on the 

cleaning steps of each individual sample could have been responsible for 

the differences. 

Feest and Doharty (1973) over-etched their nickel-copper samples 

and were able to reveal the inter-arm dendrite spacing because of the 

impurity effects of the minor phase. The purer portions appeared 

bright in contrast to darker regions where impurities rejected during 

solidification were found. Similarly, the impurity outlines seen in 

tin were formed during freezing. Then, since there was neither time or 

temperature enough for them to be dissipated by diffusion, they remain 

and serve to define the as-cast structure. 

The long impurity-bounded dendrites seen in Figures 52 to 55 were 

typical of those found in the GLCM samples. They formed parallel arrays, 

and appeared to grow from one surface most of the way across the sample. 

The orientation of the arrays, diagrammed in Figure 56 seemed to be 

random, but they were directly related to the ripples on the sample top. 

Quite possibly the dendrites grew as "flat dendrites" (O•Hara, 1967), 

since the [1,1,0] direction (the direction of growth for tin (Iyer and 

Youdelis, 1972)) has no equivalent Z-dependent direction in the body 

centered tetragonal structure. Growth in the Z direction would be slow. 

Figure 57 shows the tin crystal structure along with some of the impor

tant planes and directions. 



Figure 52. GLCM Tin Sample Showing Long Dendrite
like Structure Outlined by Impurities. 
Tb = 203°C. X62.5 

Figure 53. GLCM Tin 
Linear 
Parts. 

Sample Showing a Single 
Dendrite With Segmented 

Tb = 118°C. X60 
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Figure 54:. GLCM Tin Sample Showing 
Segmented Dendrites. 
X60 

Parallel 
Tb = 167°C. 

Figure 55. GLCM Tin Sample Showing Continuous 
Parallel Dendrites. Tb = 205°C. 
X 50 
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Figure 56. Orientation of Parallel Dendrites 

z 

[1,1,0] 

Figure 57. Body Centered Tetragonal Structure for Tin 

A "flat dendrite" would form if a primary dendrite growing in the 

[1,1,0] direction would develop closely spaced side arms in the equiva

lent [1,1,o] and [1,1,0] directions. O•Hara (1967) observed primary 

dendrites 12° from the [1,1,0] direction and secondary ones also 12° 

from the expected [t,1,o] and [1,1,0] directions. These dendrite forms 

are consistent since the 12° deviation arises out of O'Hara's crystal 

pulling techniqu·e and the non-isotropic heat flow characteristics of 

tin. The practice of deliberately sectioning the samples perpendicular 



to the plane of the ridges could have caused proposed flat dendrites to 

appear to be linear. 

Differences between these dendrites and the ones found in the pyrex 

mold samples can be explained by considering the solidification condi

tions of the GLCM samples. Here the temperature gradient in the liquid 

was nearly flat at the time of nucleation. Normally an appreciable 

gradient exists across the liquid at first. The cooling curves (Figures 

15 and 17) point this out. For a pyrex mold the slope of the cooling 

curve is steep, even for the slowest cooling rates. Hence, there must 

have been a significant gradient in the liquid. The temperature of 

reversal was determined at various locations in a single sample to 

verify this and a slope of 25°C/cm was found for the slow cool case. 

In contrast, the cooling curves for the GLCM samples at the time 

of nucleation were almost flat. They remained this way, often for 

several minutes, while the sample cooled slowly (about 1°/min). Some 

temperature gradient must have been present in the GLCM samples which 

were cooled rapidly because the cooling curves are not all flat. 

Nevertheless, it is a much smaller gradient than in the pyrex mold 

samples because the rate of heat loss is greater. Only about 15 grams, 

pyrex mold and all, are being cooled in the first case. In the second 

the 100 gram glass lined copper mold must be cooled along with the 

sample. While the cooling curves look the same the solidification of 

the sample in the GLCM in several times faster. 

While growth in both kinds of samples is dendritic, the nature of 

the growth is quite different. A one dimensional approximation of the 

temperature gradient ahead of a growing dendrite was made using the 

method of finite differences. This appears in Appendix D and shows that 
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the temperature gradient ahead of the dendrite stays much higher if the 

initial temperature in the liquid is constant, rather than hotter the 

further in one goes. Heat, therefore, is better transferred away from 

the growing GLCM dendrite, and control of growth by this factor becomes 

of less importance. The rate of growth becomes more dependent on the 

accommodation factor for the competing growth planes, and those with 

favorable ones experience the more rapid growth. 

If one assumes that the accommodation factors vary from a maximum 

value for the [1,1,0], [1,1,o], and [1,1,0] to a low value for any 

growth having a Z component the high speed growth observed in this work 

would produce a flat crystal composed of a central primary dendrite with 

sets of side arms not unlike a feather. Of the three growth directions 

shown in O'Hara's work (1967), the type which grew 2~0 up from the pri

mary dendrite occurred less often than the secondary dendrites which 

grew 88° off to each side. 

The feather explanation is consistent with macroscopic observations 

of the sample tops. A transition was seen from a raised spot to a set 

of spots to a complete ridge as higher cooling bath temperatures were 

used. A small temperature gradient exists in the liquid when the cold 

baths are used and dendritic growth into the sample is slowed. At first 

only the primary dendrite reaches the surface. Then with warmer and 

warmer baths the gradient is less, and more of the side-arms reach the 

surface. Finally, a ridge is formed. 

The spacing and parallel character of the "flat dendrites" is the 

most difficult phenomena to identify and define. Since the spacing 

decreases when the cooling rate is lower (the bath is warmer), independ

ent nucleation of each dendrite plane cannot be a factor. Further 
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evidence that the planes must grow dependently is the parallelism 

observed. No independent or random process can account for it, and yet 

the planes are relatively far apart (0.5 to 2mm), and there is no 

apparent connection. 

Two mechanisms are suggested that could account for this growth. 

In one the planes are assumed to be connected by a primary "trunk" 

dendrite which heretofore has escaped detection. In the second, each 

additional plane is nucleated by cavitation in the liquid which occurs 

after the first plane grows. 

Factors supporting the first explanation are (1) that discovery of 

a trunk would not be automatic (see Figure 58), and (2) that the paral

lelism could readily be explained. In order to simply identify a trunk 

the section would have to intersect it in a plane coincident with its 

axis. This is especially unlikely since the trunk would not be expected 

to grow at right angles to the planes. For example, a growth direction 

having a Z component might be expected to occur in the [1,0,1] direction. 

The most likely intersection between an observation plane perpendicular 

to the dendrite planes would be an ellipse. It is conceivable that such 

an ellipse is seen in Figure 52. According to this explanation, the 

[1,0,1] growth direction would accommodate the slow growth of a trunk 

after the primary dendrite and its side arms had completed one plane. 

When the trunk extended beyond the area where recalescense had increased 

the local temperature a second primary dendrite would be formed. This 

would produce a second parallel plane as the secondary dendrites grew 

too. For warm baths the flat temperature distribution would enhance the 

growth of the oblique dendrite and a second plane could form sooner, at 

a point closer to the initial one. The weakness of this approach is the 



failure to establish so far the existence of a trunk. 

intersects 
trunk as 
ellipse 

Postulated 
trunk 

Figure 58. Intersections Between a Postulated Dendrite 
Trunk and Possible Observation Planes 
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The cavitation theory is appealing because it would explain how two 

unconnected planes could be formed in a dependent way. As postulated, 

the extremely rapid growth of the first plane would cause a large 

decrease in the pressure immediately adjacent to it. A planar cavity 

would form momentarily and then collapse causing a plane pressure wave 

to travel away from the first solid':. At the same time he.at released 

during solidification would be conducted away producing a temperature 

gradient perpendicular to the plane. Figure 59 depicts the suggested 

gradient and traveling wave. Nucleation would occur some distances 

away where the effect of the decrease in pressure would offset the local 

increase in temperature. This idea would explain adequately the differ-

ent spacings seen for different bath temperatures. The cold bath causes 
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rapid cooling and results in a temperature gradient in the liquid. The 

tail of the temperature distribution would be raised and nucleation of 

the second plane would occur at a greater distance, or not at all. The 

weakness of this approach is 1n its failure to provide a mechanism for 

the orientation of the second plane parallel to the first. 

T,p 

Pressure after cavitation 

First plane 

Figure 59. Suggested Temperature and Pressure Changes 

Caused by Growth of the First Plane 

The segmented structures seen in Fi;:Jures 53 and 54 are probably 

better representatives of the actual shape of the as-solidified den-

drites than the continuous ones. The segmented structures are seen in 

the samples cooled most rapidly. Where the .baths were warmer, annealing 

of the dendrites to form a platelet would more easily occur. Feest and 

Doherty (1973) reported such an effect. 
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The central line of impurities in the "continuous" dendrites may 

also be the result of the two hour anneal in the cooling bath. Iyer and 

Youdelis (1972), using an electron probe microanalyzer, have shown that 

solute content is highest in the center of dendrites solidified from an 

undercooled melt. Such an area may have acted as an impurity sink dur

ing annealing. This was then developed by the thorough etching 

technique. 

One especially curious feature seen best in Figure 54, portraying 

the most rapidly cooled sample, is the existence of the "rice-grain" 

structure in the space between the dendrites. This structure is 

definitely related to the surfaces of the dendrites because the rice 

grains are all lined up around the edges of them. Again, two possible 

explanations are apparent. One is that repeated nucleation occurs just 

ahead of the existing solid because of cavitation. The second, sug

gested by Leychkis and Mikhaylov (1970) is that nucleation occurs in 

chain-reaction fashion, each solid crystal serving as a model for the 

formation of the one next to it. A choice between the two models cannot 

be made based on this work alone. 

One other curiosity is the existence in one sample of unrelated 

dendrites. While this might have been due to an inadvertant mechanical 

disturbance, that cannot be established without further work. 

Tin - 29% Lead 

Five samples of tin- 29% lead alloy were prepared from a single 

original mixture and solidified in a glass lined copper mold. Two 

parameters were varied, the amount of time each sample was soaked 

slightly above its equilibrium temperature, and the temperature of the 
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liquid metal bath in which it was cooled. Table XV gives these solidi-

fication conditions and the results of some microhardness measurement 

averages. 

TABLE XV 

SOLIDIFICATION PARAMETERS FOR TIN - 29% LEAD 

Sample SuEerheat Soak Coolin!i! Indent Vickers 
Temp Time Temp Time Temp Time Diameter* Hardness oc min oc min oc min l-Im Kg/mm2 

127 290 120 212 0.5 115 5 50.4 11.0 
128 290 120 212 5 115 5 49.8 11.2 
129 290 120 212 50 115 5 50.0 11.1 
130 290 120 212 0.5 150 5 48.2 12.0 
131 290 120 212 50 150 5 48.0 12.1 

*A 50 gm load. 

The composition of the alloy was determined by measuring its 

density by an immersion technique. A check of this value was made by 

performing a random point count analysis of the resulting eutectic 

structure. This showed the eutectic composition to be 25.3 ± 4.3 

volume or 33.1 i 4.3 weight percent lead. These values do not disagree 

beyond the margin of error inherent in the analyses. 

Three significant characteristics were seen in the samples, indi-

vidual lead dendrites, an apparently discontinuous eutectic, and a 

dendrite free zone at the top of each sample. The microstructures are 



shown in Figures 60 and 61. Figure 62 is an enlargement which shows 

some of the unusual eutectic structure. 

Figure 60. Tin- 29% Lead Sample Showing Lead 
Dendrites and Anomalous Eutectic. 
X60 

105 



Figure 61. Tin- 29% Lead Sample Showing the 
Dendrite Free Region Found at 
the Top. X60 
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The formation of lead dendrites in a tin-rich alloy (the eutectic 

composition is J8.1 weight percent lead) can occur if the tin supercools 

substantially and the lead does not. The alloy would cool until it 

reached an extension of the lead liquidus. Then lead would be nucleated. 

The assumed undercoolings do apply in this case, as Baker tin under-

cooled J6°C after substantial superheating, and the lead did not super-

cool at all. 

Following this line of reasoning, shown in Figure 6J, the lead is 

nucleated at point A and grows dendritically as the composition of the 

melt changes to point B. The solution becomes even more rich in tin and 

the undercooling increases until tin is nucleated. Coupled eutectic 

growth follows as Powell and Hogan (1967) predicted it would if the 

first phase had acted as a nucleant. 
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Figure 62. Enlarged View of Tin- 29% Lead Sample. 
X60 enlarged 2.7 times 
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Figure 63. Mechanism for the Formation of the 
Tin- 29% Lead Samples 
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By taking repeated photographs of the same locality, identified by 

a microhardness indent, after polishing off 5 to 10 micrometers and 

re-etching with 2% nital, it was shown that the dendrites were con-

nected locally. No long range relationship could be seen this way 

however, and the lack of a consistent orientation is further evidence 

that the dendrites are independent. 

The complete dendrite size is estimated to range from 75 to 150 ~m 

3 and the number density was determined to vary from 20 to 80 per em • 

Since nucleation of lead was obviously heterogeneous, this latter number 

also corresponds to the number density of nucleants effective at the 

nucleation temperature. 

For comparison, three eutectic samples were solidified in a pyrex 

test tube inside of a copper mold. Three different cooling programs 
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were used, pouring the melt into a room temperature mold, pouring into 

a hot mold and then air cooling, and pouring into a hot mold and follow-

ing with a furnace cool. This variation in cooling rate had several 

effects. First, the size of the lead dendrites varied from 10 to 102 

to 2 x 10J 1Jm for the furnace cooled sample. Secondly, the number of 

nuclei varied in an opposite way, from about 1.5 x 102 to 9 x 107 to 

3000 per J em • Finally, there was a significant change in the structure 

across the first two samples, varying from coarse along the mold walls 

to fine in the center. In all three cases, the eutectic in the center 

formed a cellular structure. Figures 6~, 65, and 66 show the micro-

structure of these three samples. 

Figure 6~. Eutectic Lead-Tin Sample Poured Into 
a Cold Mold. X60 



Figure 65. Eutectic Lead-Tin Sample Poured Into a 
Hot Mold and Air Cooled. X60 

Figure 66. Eutectic Lead-Tin Sample Furnace Cooled. 
X60 
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These three samples reinforce the solidification model presented in 

Chapter II and show the effect of the temperature gradient in the liquid 

at the time of nucleation. In the furnace cooled sample the lead was 

nucleated at or near the surface. The slowness of the cooling permitted 

the lead to grow extensively with little supercooling so that compara

tively few nucleants became effective. Even though the temperature 

gradient was very small the inward growth of the first lead dendrites 

was limited by the rate of heat removal and the outward diffusion of 

lead. The continued growth of lead caused more undercooling of tin 

until it was nucleated too. 

At the intermediate cooling rate the growth of the first lead 

crystals was not fast enough to suppress further cooling and more 

nucleants became effective. Again, the lead grew dendritically until 

the tin was nucleated. However, this nucleation and growth was limited 

to the coolest areas in the sample. The center stayed hot and was 

completely free of lead crystals. A direct comparison between samples 

shown in Figures 60 and 65 show a much greater density of lead dendrites 

in the eutectic sample (while the dendrite sizes are comparable). This 

would be expected since the eutectic sample, 9% richer in lead would 

have to proceed farther along the extended lead liquidus before nuclea

tion of tin could occur. 

Large numbers of very fine lead crystals were formed in the sample 

poured into a cold mold, again because of the cooling rate over-ride. 

The initial dendrite growth had been too slow to reverse the cooling 

trend. Tin nucleation occurred early, before the center of the sample 

had cooled to the eutectic temperature, and as a result, no lead 

crystals are found there. 
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The existence of the dendrite free region at the top of the GLCM 

samples can be explained in a parallel way by referring to Figure 65. 

The hottest part of this sample had no lead dendrites so, by analogy 

no dendrites would be expected in the hottest part of the GLCM samples. 

Figure 67 which shows the macrostructure of a GLCM shows the direction 

of growth to be inward and upward, thus the hottest part and the last 

to solidify is the top. The variation in size of the dendrite free 

region from about 2 mm in depth for samples cooled quickly to 6 mm for 

the slowly cooled ones is consistent with this explanation. Heat trans-

ferred from the liquid cover, which acts as a heat source, is more 

effective in keeping the sample top hot when the cooling rate is slow. 

Figure 67. The Macrostructure of a Tin-
29% Lead Sample. X5 
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The eutectic in the GLCM samples is unusual. Its microstructure 

is coarse and anomalous, and no cellular growth pattern is evident. 

The taking of successive photographs after polishing gives evidence 

that the lead particles in the eutectic are not independent as they 

appear to be. Powell and Colligan (1969) reported this structure in 

SnBi and PbSb systems, and Kattamis and Flemings (1970) established the 

continuity of the minor phase. Successive sections shown in Figure 68 

show that the lead portion of the eutectic is continuous, as expected 

in anomalous eutectics. 

Figure 68. Successive Sections of Tin-29% Lead 
Sample Showing Local Continuity 
of the Minor Phase in the Eutectic. 
X60 enlarged 2.7 times 

The unusual structure is attributed to an inequality in the growth 
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rate of the two components. The slower growing phase is lead which is 

growing essentially at its liquidus, while tin is highly supercooled. 

This slow growth of lead cannot accommodate all the solute-rich liquid 

rejected by the fast growing tin. The growth of tin is slowed as a 

result so that lethargic diffusion processes can take up part of the 

slack caused by the slow growth of lead. 

The difference in eutectic structure between Figures 60 and 65 may 

be explained if the areas where the solution is tin-enriched are assumed 

to be local. Such areas, appearing in the second figure next to the 

lead dendrites are similar in structure to the GLCM eutectic and any 

differences may be accounted for by differences in the cooling rate. 

Apart from these areas however, the bulk of the GLCM sample is 9% tin 

enriched, and the eutectic sample is not enriched at all. Here the GLCM 

sample is much coarser, even though the cooling rate is faster, and no 

cellular structure is seen. 

The first effect arises from the need to have increased interface 

supercooling for eutectic solidification, mentioned earlier, and the 

second from different rates of solidification. The cellular structure 

seen in Figures 64 and 65 is attributed to a decrease in the local 

growth rate at the end of the solidification process. Such a decrease 

occurs when the balance between the release of the heat of fusion and 

the rate of heat removal is upset. In the pyrex-cooled samples where 

the heat loss was slower, the release of heat during the late stages 

of growth had a relatively large effect. In the GLCM on the other hand, 

the rate of heat removal was several times faster and the heat of fusion 

could be removed effectively without causing the growth rate to slow. 

In summary, large portions of the tin-29% lead samples cooled 
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31° to the extended lead liquidus, and lead was nucleated at about 

162°C. The lead grew dendritically until 1 local areas became enriched 

in tin and were effectively supercooled as a result (i.e., the liquidus 

is higher for richer tin solutions). Tin was eventually nucleated and 

grew with the lead to form an anomalous eutectic structure. The addi

tional diffusion required to accommodate the solubility of each compo

nent in the other caused the structure to be fairly coarse. Finally, 

the sample top, which had never cooled to the extended lead liquidus, 

solidified as eutectic only. 

Unmixed Combination 

Mixtures of tin and tin-29% lead were made by adding the former to 

the latter and melting in the GLCM. The two hour heating time was not 

sufficient to allow for diffusion to achieve complete mixing, and the 

heaviest liquid was on the bottom. As a result, the samples had a 

vertical composition gradient. Two initial mixes were made using 85% 

and 95% tin, the balance being Tin-29% Lead. Cooling was done at four 

temperatures. The results shown in Figures 69 through 71 show tin 

dendrites growing through a solute poor zone at the top, down through 

regions increasingly richer in lead. Solidification ended at the mold 

bottom where some interdendritic porosity was found. Although not 

apprent in these pictures, the dendritic structure continued to the top 

of the sample and could be revealed by continued etching. 

These samples were different on all points from both the tin-only 

and tin-29% lead series. The lack in these samples of any of the 

distinctive features found in the other alloys is attributed to two 

factors, the constitutional undercooling of the tin rich liquid, and 
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insufficient undercooling of tin to allow lead to nucleate first. 

Constitutional effects prevent the growing dendrites from seeing a flat 

temperature distribution ahead, and the presence of lead, according to 

0 1 Hara (1967), increases the chances for the formation of additional 

grains. 

Tin must have been nucleated first. The top of the sample was 

compose~ of almost lead-free tin (with a TJ of near 232°C), while the 

bottom was 29% or less lead. Nucleation of the lead here, which would 

be expected to occur near 162°C, should not be considered credible. It 

would require the top part of the sample to be cooled nearly 70°C or 

the temperature gradient in the sample to be steep. Neither of these 

cases were observed in this work. 

Figure 69. A Middle Section of a Sample of the 
Lead-tin Mixture. Tb = 18o°C. X60 
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Figure 70. Top Section of a Sample of the Lead-Tin Mixture 

Showing Reduced Lead Composition There. 
Tb = 180°C. X6o 

Figure 71. Middle Section of a Sample of the Lead-Tin 
Mixture Showing the Finer Structure 
Resulting From More Rapid Cooling. 
Tb = 128°C. X60 
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CHAPTER X 

CONCLUSIONS AN]) RECOMMENDATIONS 

The examination of samples solidified in the rotating mold led to 

the following conclusions: 

(1) Dendrite breakage was not observed in this study. Motion 

of crystals was only observed to occur after the crystals 

had grown to macroscopic sizes, and then only by virtue 

of overcoming the adherence between the crystal and the 

mold wall or the sample surface. Hence, it is doubtful 

that dendrite breakage pla.ys an important part in the 

formation of the equiaxed zone under normal conditions 

of solidification. 

(2) Flattening of the temperature gradient in the liquid by 

convection (enhanced by rotation in this work) increases 

the likelihood of heterogeneous nucleation away from the 

solid-liquid interface. 

(J) The growth of minor phase dendrites can occur through the 

combined effects of solute. rejection and centrifugation 

during solidification. 

Conclusions arising from the study of samples solidified in pyrex 

and glass-lined copper molds follow: 

(1) Etching-up of impurity outlines can be used. to determine 

the as-cast structure of samples when, as in the case of 
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tin, substantial grain growth occurs just after 

solidification. 

(2) Solidification in a uniformly undercooled melt begins 

with the rapid formation of a dendrite framework 

throughout the sample. The intermediate spaces are 

then filled in as cooling continues. 

(J) In eutectic alloy systems nucleation of the minor phase 

can occur first, on an extension of the liquidus. This 

happens if the major phase experiences substantial under

cooling and the minor phase does not. When the major 

phase is finally nucleated growth of an anomalous 

eutectic results. Its composition is significantly dif

ferent from that of eutectic formed under equilibrium 

conditions. 

Suggestions for Further Work 
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There are a number of areas where a follow-up of this work appears 

to have value. They are enumerated as follows: 

(1) The range of the rotating mold data could be expanded, 

by providing for intermediate quenching of the sample 

and by testing pairs of alloys on opposite sides of a 

eutectic. 

(2) The technique for driving off oxygen by heating the sample 

under a.glass slag could be applied to tin to try to 

achieve bulk undercoolings greater than 36°C and to 

identify the nucleation catalyst effective there. 

(J) A technique could be developed for measuring, and then 



controlling the effective nucleant distribution. An 

alloy similar to the tin-29% lead alloy used in this work 

could be employed since the first phase to solidify is the 

minor one. 

(4) The small uniform crystals found in the as-cast tin-only 

samples (described as rice grains) could be studied to 

determine the mechanism for their formation. Solidifica

tion parameters could be varied, and the change in size 

and orientation observed. 
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APPENDIX A 

THERMOCOUPLE CALIBRATION 

The melting points of five compounds were used to calibrate the 

thermocouple 

TABLE XVI 

LINEAR REGRESSION CALCULATION FOR THERMOCOUPLE CALIBRATION 

6.T 6.T 6.T-6.T 
2 

Material Thermocouple ( ,6T-6.Tp) 
Output 

p p 

K2G207 82.'* 375-2 378.0 -2.8 7-8'* 

Biphenyl 10.3 '*8.2 '*7-2 1.0 1.00 

NaNo3 62.1 28'*.0 28'*.8 -0.8 .6'* 

Cu(N03 )2 ·3H2o 19.2 91.3 87.0 '*·3 18.'*9 

NH'*No3 32.2 1'*6. 8 1'*7-8 1.0 1.00 

Total 206.2 9'*5-5 28.97 

The conversion from thermocouple output to temperature was found 

to be '*-59°C/mV; and the standard error of the estimate was 2.38°C. 
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Figure 72. Thermocouple Calibration Curve 



APPENDIX B 

PHASE DIAGRAMS FOR SYSTEMS STUDIED 

Pb-Sn 
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Figure 73. Pb-Sn Phase Diagram 
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Figure 74. Bi-Cd Phase Diagram 
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Figure 75. Bi-Sn Phase Diagram 
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Note: All bhase diagrams taken from Max Hansen, Constitution of 
Binary Alloys (New York), 1958. 



APPENDIX C 

COMPUTATION OF ACTIVATION ENERGY 

A linear regression equation was determined for the temperature 

and half-time data displayed in Figure 50. 

TABLE XVII 

DETERMINATION OF ACTIVATION ENERGY USING LINEAR REGRESSION 

K:1/T P=log t:l-2 K-K P-P K-K(P-P) (P-P) 2 

1.899E-3 2.15 1.65 8.8E-5 1l.t,.52E-5 ?.?l.t,E-9 
1.8l.t,2E-3 -95 .L.t,5 3.1E-5 1.39E-5 .96E-9 
1.777E-3 - .05 - -55 -3.l.t,E-5 1. 87E-5 1.16E-9 
1.725E-3 -1.1 -1.6 -8.6E-5 13. 76E-5 ?.l.t,oE-9 

31.5l.t,E-5 17.26E-9 

The slope of the equation was found to be 18,300; and the activation 

energy which resulted was 36,200 cal/gram-mole. 
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APPENDIX D 

MODEL FOR GRADIENT DEPENDENT 

DENDRITE GROWTH RATE 

Two one-dimensional solutions of the heat transfer equations were 

made using the method of finite differences. In one case the growth 

was assumed to be directed. into a uniformly supercooled melt. In the 

second the growth was assumed to be into a constant but increasing 

gradient. The interface temperature was assumed to stay constant at a 

T of 100 and the slope of the temperature distribution at T at each e e 

time was used to determine the amount of growth. 

Figures 78 and 79 show the temperatures profiles for the two cases 

for the odd iterations, and Figure 80 shows the temperature gradients 

at the interface for the two cases with time as the independent variable. 
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