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Abstract: The most commonly reported bacterial sexually transmitted infection in the United 
States is Chlamydia trachomatis which can lead to pelvic inflammatory disease, tubal infertility 
and even increased risk of cervical cancer. C. trachomatis can only survive inside of the cell and 
lives in a parasitophorous vacuole. During infection, manipulation of different protein kinases 
aid in its replication and survival processes. One such enzyme is Protein Kinase A, PKA, which 
is an essential kinase in the host cell that phosphorylates other proteins for activation. 
Misregulation of PKA signaling has been identified in the development of many cancers. Not 
much is known about the intracellular Chlamydial manipulation of host cellular kinases, such as 
PKA during the infection process. The goal of this study was to determine the extent to which C. 
trachomatis manipulates PKA during the infection process. We hypothesize that C. trachomatis 
actively manipulates PKA signaling to regulate intracellular development and survival inside the 
host. We utilized western blot analysis of whole cell lysates (HeLa cells infected with C. 
trachomatis) collected at various time points to monitor phosphorylation changes of PKA 
kinases and substrates. Protein samples collected at various times of the infection process were 
separated by SDS-PAGE and transferred to nitrocellulose membranes. These membranes were 
probed by various phosphospecific antibodies to specific host PKA kinases, specific kinase 
substrates and total PKA substrates. The use of horse-radish peroxidase conjugated secondary 
antibodies allowed for visualization via the use of chemiluminescence. The results obtained 
confirmed that PKA and PKA substrates were indeed manipulated by C. trachomatis during 
infection and specifically that PKA activity was upregulated in the latter times of infection. 
These findings conclude that PKA enzymes serve an important role for the intracellular growth 
and development of C. trachomatis. Additional studies will help to determine if expression of 
specific PKA substrates is altered during C. trachomatis infection and if misregulation of these 
specific substrates is linked with cancer development. This can have a significant impact on 
human health and may identify certain factors that increase the risk of cervical cancer after C. 
trachomatis infection.  
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Chlamydia trachomatis Manipulation of Protein Kinase A 

 

Chapter 1: Introduction 

1.1 Background on C𝒉𝒉lamydia trachomatis infections 

Chlamydia trachomatis is the most commonly reported sexually transmitted disease in the 

United States with 1.75 million cases reported in 2018 alone (Centers for Disease Control and 

Prevention, 2018). An estimated 2.86 million infections occur annually in the United States of 

America with a large number of those cases going unreported due to a majority of people with C. 

trachomatis infections being asymptomatic. This is why it is commonly known as ‘silent’ 

infection with only about 10% of men and 5-30% of women with laboratory-confirmed 

chlamydial infections developing symptoms. Symptoms of chlamydial infections include penile 

and vaginal discharge and bleeding, as well as painful urination and intercourse. It infects both 

men and women and can cause serious damage to women’s reproductive systems if left 

untreated. This can increase the difficulty for a pregnancy to occur and can even lead to 

permanent infertility. C. trachomatis is known to cause ectopic pregnancies (pregnancy that 

occurs outside the womb), pelvic inflammatory disease, and even increases the risk of cervical 

cancer (Josefson, 2001; Planned Parenthood, 2020). C. trachomatis infections are caused by 

vaginal, anal, and oral sex with someone who is already infected with C. trachomatis. Infections 

can also spread to babies during childbirth. Infections in both men and women can lead to 

urethritis and proctitis and may increase a person’s chances of acquiring or transmitting HIV 

(Nusbaum, Wallace, Slatt, & Kondrad, 2004). Individuals who have has C. trachomatis 

infections in the past and been treated can get infected again by having sexual contact with 

another person infected with C. trachomatis. Chlamydial infections can be easily treated with 
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antibiotics, however with many patients being asymptomatic, many cases go untreated and can 

lead to serious medical complications later. Prevention of spreading sexually transmitted diseases 

like Chlamydia can be reduced by the use of latex condoms, abstaining from sexual intercourse, 

or to be in a long-term, monogamous relationship with a partner who has been tested and known 

to be uninfected. 

 

1.2 Intracellular growth 

C. trachomatis is a Gram-negative, obligate intracellular pathogen. It infects a host cell with 

elementary bodies (EBs), which are the infectious forms of Chlamydia that are metabolically 

inactive but highly infectious. This inactive state strictly means that it cannot grow or further 

develop its lifecycle to replicate, but rather can only infect other cells. After EBs are 

endocytosed, C. trachomatis prevents lysosomal fusion and forms a parasitophorous vacuole 

called an inclusion body which is the membrane-bound compartment that houses C. trachomatis. 

This inclusion body is usually found near the nucleus of the host cell. EBs are then converted to 

reticulate bodies (RBs), which are the metabolically active and replicative form of Chlamydia 

where the inclusion grows and develops further to multiply and replicate. RBs actively make 

proteins which are required for Chlamydial growth with additional proteins also secreted via a 

Type III Secretion system. C. trachomatis redirects exocytic vesicles that are in transit from the 

Golgi apparatus to the plasma membrane for nutritional sustainability for its own growth and 

survival in the cell. These processes are aided by the help of Chlamydial inclusion membrane 

proteins (Incs) which induce the formation of different membranous vesicular compartments and 

are localized at the inclusion membrane (Mital, Miller, Dorward, Dooley, & Hackstadt, 2013). 

The RBs begin to replicate exponentially in the inclusion and secrete additional effectors to 
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control other processes in the host cell. Some examples include Translocated Actin Recruiting 

Protein (Tarp)(Clifton et al., 2004), which localizes at the plasma membrane just below 

Chlamydial attachment, and CT847, which interacts with human Grap2 cyclin D-interacting 

protein (Kleba & Stephens, 2008). Upon stress, RBs can go into a dormant persistent stage and 

transition to enlarged aberrant bodies (Wyrick, 2010). Protein synthesis is halted in this stage and 

the removal of the stress reactivates the RBs. This stress stage is not always apparent in the 

Chlamydial life cycle. Eventually the cell will begin to die as C. trachomatis takes up all the 

nutrients for itself as RBs are naturally converted back to EBs in an asynchronous fashion. These 

EBs are secreted from the host cell to infect other cells through lysis of the host cell or by 

extrusion (Hybiske & Stephens, 2007). The life cycle of Chlamydia is depicted in Figure 1. 
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Figure 1. The life cycle of C. trachomatis. Shown are mechanisms of entry and exit as well as 
the EBs, RBs, and the persistent form (Potroz & Cho, 2015). 
 

1.3 Host kinase manipulation by C. trachomatis 

C. trachomatis manipulates multiple different signaling pathways and recruits many different 

host proteins to the inclusion membrane including host kinases. These kinases are responsible for 

activating other proteins through phosphorylation. Phosphorylation is a process where one 

protein activates another protein by transferring a phosphate group to it. Protein phosphorylation 

can control processes ranging from development, virulence, adaptive responses through enzyme 

activity, protein localization, signal transduction, and protein oligomerization (Grangeasse, 

Nessler, & Mijakovic, 2012; Pereira, Goss, & Dworkin, 2011). Upon C. trachomatis infection, 

several host-tyrosine kinases (platelet-derived growth factor receptor (PDGFR), and Abl kinase 

are phosphorylated and recruited to the site of bacterial attachment and may function redundantly 
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in entry (Elwell, Ceesay, Kim, Kalman, & Engel, 2008; Kim, Jiang, Elwell, & Engel, 2011). Src 

family kinases are host kinases that are abundant in these kinase rich microdomains and help to 

identify where these microdomains are located on the surfaces of the of inclusions (Mital et al., 

2013). Protein Kinase C, a host cellular protein responsible for controlling phosphorylation of 

other proteins is found to be located in these Src domains (Sah, Nelson, Shaw, & Lutter, 2019). 

Interestingly, PKC phosphorylated substrates are also recruited to the Chlamydial inclusion but 

show a circumferential recruitment; not just at the Src kinase microdomains. Other host kinases 

include myosin light chain kinase and myosin phosphatase which are believed to play a part in 

Chlamydial host-cell exit mechanisms. These proteins phosphorylate and dephosphorylate 

myosin light chain respectively and are also found to be colocalized in Src domains (Lutter, 

Barger, Nair, & Hackstadt, 2013). Some host kinases thought to be responsible for the binding of 

C. trachomatis are Pkn1 and PknD (Claywell, Matschke, & Fisher, 2016). Pkn1 is predicted to 

reside in the cytoplasm and interacts with an inclusion membrane protein and PknD is an integral 

protein thought to bind to an unidentified ligand. After infection, the Chlamydial inclusion 

manipulates multiple host-cell trafficking pathways to redirect essential host-derived nutrients 

like amino acids, lipids and iron, while limiting detection by the innate immune system. These 

studies suggest that host kinase manipulation is integral to C. trachomatis infection and opens 

the door to the role of other host kinases during the infection cycle. 

 

1.4 Implication of Protein Kinase A in C. trachomatis Infection 

Kinase rich microdomains on the surface of these inclusions are where the inclusion recruits 

most of its host cell proteins/kinases. Given that multiple host kinases are known to be recruited 

to the inclusion microdomains, we predicted that C. trachomatis kinase utilization would also 
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include Protein Kinase A (PKA) similar to that of another obligate intracellular pathogen, 

Coxiella burnetii (Macdonald, Graham, Kurten, & Voth, 2014). C. burnetii has also been shown 

to utilize myosin light chain kinases similar to C. trachomatis (Hussain, Broederdorf, Sharma, & 

Voth, 2010). Which gives reason to believe that C. trachomatis might also utilize PKA similar to 

C. burnetii. PKA is a cellular protein that is involved in multiple different signaling cascade 

events ranging from cellular growth and proliferation to apoptosis, and it has even been shown to 

play a significant role in the development of different variants of cancers (Caretta & Mucignat-

Caretta, 2011; Hedrick et al., 2013). Currently, very little is known about how Chlamydia 

manipulates oncogenic signaling. 

 

1.5 Hypothesis 

We hypothesized that PKA is recruited during infection and that C. trachomatis actively 

manipulates the PKA signaling network. 

 

Chapter 2: Materials and Methods 

2.1 Cell Line and Bacterial Strain 

HeLa cells are regularly used as a model for C. trachomatis infection and were utilized for 

infection and protein collection. HeLa cells were derived from a patient with a cervical cancer on 

February 8, 1951 (Scherer, Syverton, & Gey, 1953) and grown at 37oC with 5% CO2. Chlamydia 

infections: Chlamydia trachomatis L2/434/Bu was used in all experiments. 
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2.2 Aseptic Technique in Cell Culture 

Cell culture preparation was performed in a tissue culture room following all protocols of BSL2+ 

safety precautions. Tyvex gowns with gloves were sprayed with 70% ethanol and worn at all 

times in the tissue culture room. A microscope was initially used to verify cell confluence prior 

to passaging cells and prior to infection. For cell passaging and infections the media Roswell 

Park Memorial Institute (RPMI) was used. Fetal Bovine Serum (FBS) was added to new RPMI 

to a final concentration of 5% v/v (25mL of FBS was added to 500mL of RPMI). An electronic 

serological pipettor and sterilize serological pipettes were used to transfer liquids. Warmed 1X 

Phosphate-Buffered Saline (PBS; 37oC) was used to rinse cells and remove loosely adhered or 

dead cells prior to passaging and use. T25 tissue culture flasks were used to grow HeLa cells. 

Warmed trypsin (37 oC) was used to disassociate adherent cells from the surface of the flask 

while in an incubator. Roccal-D was used as a disinfectant for all solid and liquid waste prior to 

autoclaving. Sharpies were used for labeling. A biohazard waste container was used to dispose of 

other solid materials. Ethanol (70%) was used as a disinfectant on all surfaces.  

 

2.3 Cell Maintenance in Tissue Culture 

RPMI, trypsin and 1X PBS were taken from a 4oC fridge, -20°C freezer, and a room temperature 

shelf respectively, and placed in a 37°C water bath for 10-15 minutes to warm up and then dried 

off and sprayed with 70% ethanol before being placed in a Class II Type A2 Biosafety Cabinet. 

One unused, clean T-25 tissue culture flask was placed in the Class II Type A2 Biosafety 

Cabinet after being sprayed with 70% ethanol. The T12.5 flask in which HeLa cells were grown 

was taken from the incubator and checked for confluency. If cells were at 85-95% confluency, 

they would be split into new flasks or used for experiments. 



 13 

Splitting of cells: The liquid in the T12.5 flask was poured off into the Roccal-D removing the 

dead floating cells, while leaving the live adherent cells stuck on the bottom of the flask. The 

flask was rinsed with 2-3 mLs of 1X PBS which was also poured off into the Roccal-D. Using a 

pipette gun and a 2mL pipette, .7-.8mL of trypsin was added to the T12.5 flask and then placed 

in the 37 oC incubator for five minutes. During the five minutes, the new T-25 tissue culture flask 

was labeled with “HeLa”, the passage number (in this case “P2”), the initials of the researcher, 

and the date. Twenty milliliters of RPMI was added to the new flask via a 10mL pipette. After 

five minutes, the T12.5 flask was taken out of the incubator and smacked two times, one on each 

side of the flask to thoroughly knock off all of the cells from the bottom of the flask. The exterior 

of the flask was sprayed with 70% ethanol before being put back into the Class II Type A2 

Biosafety Cabinet. Three milliliters of RPMI was added to the T12.5 flask and thoroughly 

mixed. The entirety of the T12.5 flask was poured into the new T-25 flask and the T-25 flask was 

placed in the incubator. The T12.5 flask was discarded into a biohazard waste bin, and all used 

pipettes were placed in the Roccal-D container. The surface of the hood was then thoroughly 

wiped down with 70% ethanol.  

 

For all succeeding passages, 6-8mL of 1X PBS wash was used, and 2mL of trypsin was used 

instead. After the five-minute trypsin incubation period, 8mL of RPMI was added to the trypsin 

flask and thoroughly mixed. A new T-25 flask can then receive 1-3mLs of the mixed solution. 

Less volume was passaged for longer growth times, and more volume was passaged for faster 

growth times. All remaining media in the old flask was then poured into the Roccal-D container. 

Everything else was held constant from the first passage.  
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Splitting cells for seeding into 24 well plates: Cells were seeded in 24 well-plates in a Class II 

Type A2 Biosafety Cabinet in the tissue culture room. Instead of pouring out the rest of the 

culture left in the old flask after passaging, it was saved for seeding well-plates. First, 24 well-

plates and a 50mL conical tube were sprayed with 70% ethanol before being placed in the Class 

II Type A2 Biosafety Cabinet. RPMI was added first to the conical tube at a ratio of 10:1 when 

mixed with the culture in the old flask respectively and inverted 4-5 times to mix. One milliliter 

was then transferred to each well in the 24 well-plate. Next, the 24 well-plate was let alone for 

ten minutes before being placed in the 37 oC incubator. The Class II Type A2 Biosafety Cabinet 

surface, was then wiped down with 70% ethanol and the remaining solution was poured into the 

Roccal-D container along with the pipette tips while disposing the empty flask into a biohazard 

waste bin. 

 

2.4 Protein Sample Preparation 

HeLa cells grown in 24 well plates to a confluency of 90%, were infected with C. trachomatis 

L2/434/Bu EBs at a multiplicity of infection (MOI) of 1. Infected cells were grown in RPMI 

containing chloramphenicol (200μg/mL) or vehicle (Ethanol 1% v/v), add at 1-hour post 

infection (hpi). Infected cells were lysed at different time points during infection (4, 12, 24, 36, 

48 hpi). Mock infected HeLa cells were used as controls. Cells were washed with 1X phosphate 

buffered saline (PBS) before lysis. One hundred μL of 8M Urea supplemented with 325 

units/mL Benzoase nuclease (EMD Millipore) and 1X protease inhibitor cocktail (Thermo 

Scientific) was added per well of 24 well plates, and incubated on ice for 10 minutes. Lysate was 

collected, and 100μL of 2X Laemmli buffer was added and stored at -20°C 
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2.5 Reagents Used in Sodium Dodecyl (Lauryl) Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) Gel Preparation 

Tris-glycine SDS-Polyacrylamide gels were made in the laboratory. The materials and recipes 

for the resolving gel solutions of 6%, 8%, 10%, 12%, and 15% are described in Table 1 and the 

5% stacking gels are described in Table 2. 

 

Table 1. Solutions for preparing resolving gels for tris-glycine SDS-polyacrylamide gel 
electrophoresis. 
Solution 

Components 

Per Gel 

(5 mL) 

 Solution 

Components 

Per Gel 

6%   12%  

- H2O 2.6mL  - H2O 1.6mL 

-30% acrylamide 

mix 

1.0mL  -30% acrylamide 

mix 

2.0mL 

-1.5 M Tris (pH 

8.8) 

1.3mL  -1.5 M Tris (pH 

8.8) 

1.3mL 

-10% SDS 0.05mL  -10% SDS 0.05mL 

-10% 

ammonium 

persulfate 

0.05mL  -10% 

ammonium 

persulfate 

0.05mL 

-TEMED 0.004mL  -TEMED 0.002mL 

     

8%   15%  

- H2O 2.3mL  - H2O 1.1mL 
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-30% acrylamide 

mix 

1.3mL  -30% acrylamide 

mix 

2.5mL 

-1.5 M Tris (pH 

8.8) 

1.3mL  -1.5 M Tris (pH 

8.8) 

1.3mL 

-10% SDS 0.05mL  -10% SDS 0.05mL 

-10% 

ammonium 

persulfate 

0.05mL  -10% 

ammonium 

persulfate 

0.05mL 

-TEMED 0.003mL  -TEMED 0.002mL 

     

10%     

- H2O 1.9mL    

-30% acrylamide 

mix 

1.7mL    

-1.5 M Tris (pH 

8.8) 

1.3mL    

-10% SDS 0.05mL    

-10% 

ammonium 

persulfate 

0.05mL    

-TEMED 0.002mL    
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Table 2. Solutions for preparing 5% stacking gels for tris-glycine SDS-polyacrylamide gel 
electrophoresis. 
Solution Components Per 5mL (1mL per Gel) 

H2O 2.77mL 

30% acrylamide mix 0.83mL 

0.5 M Tris-HCl (pH 6.8) 1.26mL 

10% SDS 0.05mL 

10% ammonium persulfate 0.05mL 

TEMED 0.005mL 

 

Ninety-five percent ethanol and Kimwipes were used to get the glass spacers and plates squeaky 

clean. They were then washed with distilled H2O, wiped clean and air dried. The stacking and 

resolving gels solutions were prepared in 50mL conical tubes based on appropriate recipes in 

Tables 1 and 2. For brevity, the making of the 10% SDS is described. Per gel, 1.9 mL of H2O 

and 1.7 mL of 30% acrylamide solution were mixed. Next, the gel spacers and holders were 

assembled in a gel casting apparatus. Then 10% APS and TEMED were added to the resolving 

gel solution and mixed by slowly rotating the conical tube. Using a P1000 pipette, 1mL solutions 

were added to the top of the spacer/plate totaling 5mL per spacer/plate. One milliliter of H2O 

was immediately placed on top of the apparatus-gel mix. After the extra solution left in the 50mL 

conical tube solidified, the H2O on top of each gel was poured off. The corners of sterile paper 

towels were used to remove excess H2O from the gels. 10% APS and TEMED were added to the 

stacking gel solution and slowly mixed 4-5 times. One milliliter was added to each gel, being 

careful to avoid bubbles. Gel combs were added immediately following the stacking gel solution 

to make 10 wells per gel. After checking for polymerization by looking at the extra solution left 
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in the conical tube, the gels were placed in a clean, damp glass container. The glass container had 

damp, sterile paper towels to keep the gels from drying out. The gels were then stored in a 4°C 

fridge. 

 

2.6 SDS-PAGE 

SDS-PAGE was performed to separate the proteins of interest. Frozen protein samples were 

heated in a heat block set to 100°C. The protein samples were placed in the heat block for five 

minutes, and immediately placed on ice to cool for five minutes. After cooling, samples were 

centrifuged briefly for 10-15 seconds. Two SDS-PAGE gels were acquired from a 4°C fridge, 

assembled into the running modules and put inside an SDS-PAGE container apparatus. When 

running samples, the samples treated with chloramphenicol were run on a separate gel from 

those that were not treated. The SDS-PAGE container was filled with 1X SDS running buffer 

made from diluting 10X SDS running buffer (30g of Tris base, 144g of glycine, 10g of SDS and 

1000mL of H2O). When dealing with SDS, a mask was worn until it was dissolved in solution. 

Combs were then taken out of the gels. Five microliters of Super Signal Molecular Weight 

Ladder (ThermoFisher Scientific) and 5𝜇𝜇L of Kaleidoscope Protein Ladder (Biorad) were mixed 

and placed into the first well on each gel. Next to the ladder, 20𝜇𝜇L of each protein sample was 

added. SDS-PAGE was run at 125V for 1.5 hours. After 1.5 hours, a blue color at the bottom of 

the gels was verified to ensure that the proteins had been separated. The SDS-PAGE apparatus 

was then turned off and unplugged. 
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2.7 Western Blot 

Electroblotting was the first step in western blotting. The electroblotting container was filled 

with 1X transfer buffer which was diluted from 10X transfer buffer (30g of Tris base, and 144g 

glycine with 1000mL of H2O). Specifically, 1X transfer buffer was then made by adding 100mL 

of 10X transfer buffer to 200mL of methanol and 700mL of H2O and mixed thoroughly with a 

magnetic stir bar. Next, four filter papers, four sponges, forceps, a gel extractor, a roller, and two 

nitrocellulose membranes were soaked in 1X transfer buffer for approximately ten minutes. The 

apparatus used for electroblotting was made by placing the sponge first on the back black part of 

the apparatus, followed by filter paper. Then the gel extractor was used to cut the well tops off of 

the gels before placing it next. Forceps were then used to carefully place the nitrocellulose 

membrane on top of the gel. Filter paper went next, followed by another sponge. The roller was 

used to make sure there were no air bubbles in the sandwich. The sandwich was then fully made 

by closing and locking the apparatus. The process was repeated for the other gel as well. The 

bottom side of the sandwich faced the back of the container. An ice pack was then acquired from 

a -20°C freezer and placed in the front part of the container to ensure that the container did not 

heat up too much. The top was closed and hooked into a power supply unit and electroblotting 

was run at 100V for one hour. The apparatus was then turned off and unplugged. The ice pack 

was cleaned and placed back in the -20°C freezer. 

 

Blocking was the next step in western blotting. For blocking, two plastic containers were cleaned 

with 1X TBST (1mL of Tween 20 and 50mL of 20X TBST to 950mL of H2O). Twenty X TBST 

was made by adding 160.13g NaCl, 4.025g KCl, and 46.03g of Tris base to 1000mL H2O. The 

20X TBST mixture was then autoclaved and stored at room temperature.  The nitrocellulose 
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membranes were then placed in clean containers respectively with forceps while checking for 

protein transfer by displaying the colored protein ladder facing up. Blots were then blocked with 

10mL 5% BSA or 5% milk depending on the primary antibody used. For phosphorylated 

proteins we used 5% BSA while for non-phosphorylated proteins we used 5% milk. Five percent 

BSA and 5% milk were made by adding 2.5g BSA or 2.5g of milk respectively to 50mL of 1X 

TBST. Five percent BSA and 5% milk were stored in a 4°C fridge. Blots were then placed in a 

4°C fridge overnight. 

 

Washes and adding primary antibodies were the next steps in western blotting. After attaining 

the nitrocellulose membranes from the 4°C fridge, milk was poured out and 15mL 1X TBST was 

added. The blots were then placed on a rocker for five minutes to complete the first wash. Two 

more washes followed. Primary antibodies were then acquired based on the protein of interest. 

Primary antibody proteins used in this experiment include PKA, phosphor-PKA (p-PKA), p-

PKA substrates, GAPDH, HSP60, GSK-3𝛽𝛽, phospho-GSK-3𝛽𝛽 (p-GSK-3𝛽𝛽), CREB, and 

phospho-CREB (p-CREB) were used. PKA is the protein of interest, and upon phosphorylation, 

becomes active and thus creating p-PKA. P-PKA substrates were looked at to determine the 

activity of possible phosphorylation of subsequent proteins by PKA. GAPDH was used as a 

standard control as all HeLa cells have GAPDH. HPS60 is used as a control for cells infected 

with C. trachomatis. GSK-3𝛽𝛽 is a protein directly phosphorylated by PKA at the Serine 9 

position. CREB is another protein that is phosphorylated by PKA. It was important to note 

whether the antibodies used were rabbit or mouse antibodies. Primary antibodies were mixed 

into blocking buffer in 10mL volumes in 15mL conical tubes. Solutions were thoroughly mixed 

by slowly inverting the conical tubes 9-10 times. After the last wash was poured out, 5mL of the 
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antibody solution was placed on each blot, and blots were either placed on a rocker to evenly 

distribute the antibodies on the blot for one hour or put in a 4°C fridge overnight.  

 

Secondary antibody addition was the next step. After acquiring the blots from the fridge, the 

primary antibody solutions were poured out and followed by three washes with 1X TBST. 

Secondary anti-antibodies made from Cell Signaling Technologies (Anti-rabbit IgG, HRP-linked 

Antibody or Anti-Mouse IgG, HRP linked Antibody) were attained from a -20°C freezer to 

match the primary antibodies. Secondary anti-antibody solutions were all made in a 15mL 

conical tube with 10mL of 5% milk and 10𝜇𝜇L of the appropriate secondary anti-antibody. After 

mixing by inversion, and pouring out the last wash of 1X TBST, 5mL of the secondary anti-

antibody solution was added to the blots. Blots were placed on a rocker at the same speed as 

before for one hour or put in a 4°C fridge overnight.  

 

The final step in western blotting is developing the blot. Three more washes with 1X TBST were 

applied to each blot followed by adding fresh 1X TBST after the last wash. Blots were developed 

with Thermo Scientific (SuperSignal West Pico PLUS Chemiluminescent Substrate and 

SuperSignal West Femto). Femto was used with phosphorylated proteins as they were generally 

harder to visualize with chemiluminescence while Pico was used with non-phosphorylated 

proteins. Gloves were worn while adding 2mL of substrate via a P1000 pipette and pipette tips to 

each blot after pouring out the 1X TBST into a waste container. Substrate sat on blots for one 

minute (Pico) or five minutes (Femto) before being placed in a clean, laminated cover paper to 

keep the blot clean when placed in the imager. The imager used in this experiment was the 
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Fluorchem E FE0622 system (ProteinSimple). Exposure time varied for imaging each protein of 

interest form ten seconds to five minutes.  

 

Chapter 3: Results 

3.1 PKA substrates are altered during C. trachomatis infection 

As PKA is a kinase known to phosphorylate many host proteins (Brandt, Kenny, Rohde, 

Martinez-Quiles, & Backert, 2009; Erazo, Yee, Banfield, & Kinchington, 2011), the first round 

of experiments were aimed to see if PKA substrate phosphorylation was altered during infection 

by C. trachomatis. Phopspho-PKA substrates were looked at to determine the activity of possible 

phosphorylation of subsequent proteins by PKA. Two conditions were assessed: one where 

chloramphenicol was added to inhibit bacterial protein synthesis and another where no 

chloramphenicol was added. Chloramphenicol is a bacteriostatic antibiotic which does not kill 

the pathogen, but only inhibits growth.  Each experiment contained two controls: GAPDH and 

HSP60. GAPDH was used as a loading control to ensure that the same amount of protein sample 

was loaded into each well. GAPDH is a housekeeping gene that is found in HeLa cells and the 

presence of GAPDH verifies that each well had sample and the same amount of total protein. 

HSP60 is a heat shock protein found in C. trachomatis and is therefore used to detect the 

presence and abundance of C. trachomatis during infection. As the post infection time increased, 

so did the amount of HSP60 corresponding to increased growth of C. trachomatis. HSP60 was 

not found in any samples with chloramphenicol, verifying that C. trachomatis protein production 

and growth were impaired.  
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Assessment of PKA substrate phosphorylation along with the controls of GAPDH and HSP60 

are shown in Figure 2.  The first observation to note is that in the conditions lacking 

chloramphenicol, a trend of increased phosphorylation of PKA substrates is seen by the gradual 

increase of intensity of the dark bands on the blots. The second observation to note is that this 

increase is phosphorylation was only seen in the samples where chloramphenicol was not 

present, allowing for C. trachomatis infection to occur. This suggests that the altered PKA 

substrate phosphorylation was due to active Chlamydia infection. This is in contrast to when 

chloramphenicol was present, C. trachomatis protein synthesis is inhibited and the Chlamydia 

are unable to grow, and there is no increase in PKA substrate phosphorylation over 48 hours. 

Thus, these results show that C. trachomatis infection results in upregulation in the 

phosphorylation of PKA substrates in a time dependent manner. The results were consistent 

when two different PKA substrate antibodies were tested with both having the same outcome 

(Figure 2). Each of the two PKA substrate antibodies used detected different substrates that PKA 

phosphorylates with some overlap. P-PKA Substrate 9621 detects proteins containing a phospho-

serine/threonine residue with arginine at the -3 position which detects substrates of the ACG 

family kinases which include PKA and PKC. P-PKA Substrate 9624 is less specific and detects 

proteins containing a phospho-serine/threonine residue with arginine at both the -2 and -3 

position. Interestingly, even though most of the changes during the course of infection resulted in 

increased PKA substrate phosphorylation, there were a few proteins that appeared to decrease in 

phosphorylation as the infection progressed (Figure 2). Once again, this only occurred in 

conditions were C. trachomatis was actively growing (not treated with chloramphenicol).   
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Figure 2. Western blot analysis of phosphorylated PKA substrates during C. trachomatis 

infection. Top) Phospho-PKA substrate (9624), Bottom) Phospho-PKA Substrate (9621). 

GAPDH loading controls and HSP60 to detect C. trachomatis are shown. No chloramphenicol 
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addition shown in the left panels and chloramphenicol addition shown in the right panels. HSP60 

is not shown with the presence of chloramphenicol as there were no bands present. 

 

3.2 PKA and P-PKA levels are altered during C. trachomatis infection 

Given the substantial changes in PKA substrate phosphorylation we wanted to determine if this 

was due to overall changes in PKA protein or activated PKA (P-PKA) during infection. To do 

this, the same protein samples were analyzed by western blot using primary antibodies to PKA 

and P-PKA (an antibody detecting PKA phosphorylated at T197 which corresponds to activity 

(Cauthron, Carter, Liauw, & Steinberg, 1998)) and are shown in Figure 3.  The total amount of 

PKA seems to be uniform in both conditions (with and without the addition of chloramphenicol) 

and for the duration of experiment suggesting that C. trachomatis did not alter the total amount 

of PKA in the host cells. However, some differences can be observed with P-PKA in that the 

amount of phosphorylated PKA seems to increase in a time dependent manner when cells are 

infected with C. trachomatis. No such activity is observed when infected cells are treated with 

chloramphenicol. This shows that C. trachomatis is upregulating the phosphorylating PKA, 

albeit only moderately. 

 

  

Figure 3. Western blot analysis of Phospho-PKA (Thr197) & total PKA during C. 

trachomatis infection. Top) Phospho-PKA (Thr197), Bottom) Total PKA, Left) Lacking 

chloramphenicol, Right) Treated with chloramphenicol. 
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3.3 Phosphorylation of GSK-3𝛽𝛽 is altered during C. trachomatis infection 

There are many potential PKA substrates that can be detected using the phosphospecifc 

antibodies used in Figure 2. To verify these results, the amount of p-GSK-3𝛽𝛽 and GSK-3𝛽𝛽 were 

looked at. GSK-3𝛽𝛽 is a substrate of PKA that is phosphorylated by PKA at the site of serine 9 (Li 

et al., 2000). As the post infection time increased, the amount of p-GSK-3𝛽𝛽 increased for cells 

infected with C. trachomatis. There is no change in the infected cells treated with 

chloramphenicol. The total amount of GSK-3𝛽𝛽 is shown to be held constant in cells infected with 

C. trachomatis and mock infected cells. This shows that GSK-3𝛽𝛽 gets phosphorylated by PKA as 

the post infection time increases. 

 

 

Figure 4. Western blot analysis of Phospho-GSK-3𝛽𝛽 (Ser9) & total GSK-3𝛽𝛽 during C. 

trachomatis infection. Top) phospho-GSK-3𝛽𝛽 (Ser9), Bottom) Total GSK-3𝛽𝛽, Left) Lacking 

chloramphenicol, Right) Treated with chloramphenicol. 

 

3.4 Phosphorylation of CREB is not altered during C. trachomatis infection 

CREB is another protein that can be phosphorylated by PKA at the serine 133 position (Naqvi, 

Martin, & Arthur, 2014). The amount CREB that gets phosphorylated into P-CREB increases 

with post infection time. However, the same holds true for samples with chloramphenicol where 

C. trachomatis is not present. Therefore, one cannot deduce that the increase in P-CREB is 

caused by C. trachomatis and may simply be due to a gradual increase in cell confluency and 
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number. The amount of CREB is shown to slightly increase as post infection time increases for 

cells infected with C. trachomatis. However, no such distinction is evident in mock infected cells 

(condition with chloramphenicol). 

 

 

Figure 5. Western blot analysis Phospho-CREB (S133) & total CREB during C. 

trachomatis infection. Top) p-CREB (S133), Bottom) Total CREB, Left) Lacking 

chloramphenicol, Right) Treated with chloramphenicol. 

 

4.0 Discussion  

The results show that C. trachomatis is indeed manipulating host cellular PKA signaling. This is 

evidenced in the assessment of total PKA substrates and also a specific PKA substrate, GSK-3𝛽𝛽. 

This suggests that PKA may be used or needed in the latter parts of the C. trachomatis life cycle, 

especially since phosphorylation was time dependent. The life cycle of C. trachomatis starts with 

EBs, then goes to RBs, then back to EBs to infect other cells. Once the host cell can no longer 

provide enough nutrients for Chlamydia, the RBs get converted back to EBs to infect other cells 

via lysis of the host cell or extrusion of the EBs. Lysis of cells releases EBs all at once while the 

extrusion process consists of a budding of the host cellular membrane filled with EBs that go on 

to infect other host cells. Multiple extrusions can come from a single infected host cell. PKA 

may play a role in the activation of EBs in the extrusion process. Additional evidence gathered 

by a graduate student in the lab shows that PKA is recruited to the Src rich domains of the 
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parasitophorous vacuole and that the recruitment is time dependent with the greatest amount of 

recruitment occurring late in infection. This shows more relevance as to why it may be involved 

in the extrusion process since it is on the membrane of the Chlamydial inclusion. However, the 

extrusion process for C. trachomatis occurs at 48 hours post infection while the upregulation of 

phosphorylated PKA starts before this. Other late stage events include turning RBs back to EBs 

or transitioning to enlarged aberrant bodies for a dormant persistent stage upon stress. PKA may 

also be used for regulating transcription factors to turn genes on and off in the later stages of the 

infection process. Overall, PKA phosphorylates many proteins, so its uses may not be limited to 

one purpose.  

 

Interestingly, PKA substrates were shown to become both dephosphorylated and phosphorylated 

during the course of infection with C. trachomatis with most substrates showing a general trend 

for the latter. This raises the potential that some PKA substrates may be only needed at certain 

times during the Chlamydia life cycle and not at others. Future experiments exploring the 

temporal need of PKA substrates may provide some valuable insights perhaps into the 

requirements for the growth and differentiation of EBS to RBs and then RBs back to EBs. 

 

In a different study on another strain, C. pneumonia, GSK-3𝛽𝛽 was found to be interacting with 

an Inc (Flores & Zhong, 2015). Another study shows that GSK-3𝛽𝛽 was identified as a potential 

interacting partner for TepP in C. trachomatis (Bugalhao & Mota, 2019). TepP is a type III 

secreted effector protein for C. trachomatis. This led to the belief that C. trachomatis might 

manipulate this protein as a potential target as well. This study showed GSK-3𝛽𝛽 to have 

increased phosphorylation during the late stages of the infection cycle as well. GSK-3𝛽𝛽, like 
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PKA, is also involved to phosphorylate many other proteins involved in nearly every process of 

the cell (Sutherland, 2011). This makes it hard to identify any specific reason over another as to 

what its manipulation might entail. One protein that is commonly manipulated by GSK-3𝛽𝛽 is 

glycogen synthase. After phosphorylating glycogen synthase, a reduction in glycogen synthesis 

occurs (Sutherland, 2011). This may be relevant to C. trachomatis so that it does not waste more 

energy on synthesis in order to spend it on cell exit mechanisms. Therefore, it is not surprising 

that we see an increase in GSK-3𝛽𝛽 as there are a few reasons as to why one could hypothesize C. 

trachomatis would want to manipulate GSK-3𝛽𝛽 as mentioned earlier, but we are not sure as to 

why. 

 

CREB is a protein that is also involved in many other processes in the cell as it a transcription 

factor (Wen, Sakamoto, & Miller, 2010). It is known to play key roles in cell proliferation, 

differentiation and survival. This protein was tested for upregulation in phosphorylation as post 

time infection increased because it has been shown to do so in other intracellular pathogens like 

Salmonella, Shigella, and Yersinia (Wen et al., 2010). By manipulating CREB, these pathogens 

have been able to evade the apoptotic mechanisms that macrophages use to kill abnormal cells. 

C. trachomatis is an intracellular pathogen that must evade apoptosis for its own survival, so 

CREB was measured to possibly show a reason as to how C. trachomatis evades host cellular 

apoptosis. CREB showed only a slight increase in phosphorylation in cells without 

chloramphenicol. This small increase is not substantial enough to conclude that C. trachomatis 

alters the phosphorylation of CREB. This observation falls in line with other studies. 

Specifically, Coxiella burnetii, another intracellular pathogen, has also been shown to upregulate 
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phosphorylation of PKA without altering phosphorylation of CREB (MacDonald, Kurten, & 

Voth, 2012).  

 

As mentioned earlier, altered PKA phosphorylation has been implicated in multiple variants of 

cancer, which is an uncontrolled growth of cells. Ultimately, we wanted to explore if Chlamydial 

manipulation of PKA could be a potential avenue that might link C. trachomatis to the increased 

risk of cervical cancer. This study suggests that PKA is somehow manipulated during infection, 

albeit to what end is still to be determined. More research is required to identify exact reasons for 

PKA manipulation in C. trachomatis infected cells.  
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