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Error in satisfying the conduction equation after substituting
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Energy transferred from the fluid in a component to the
component wall (Btu) -

Base of the natural logarithms

Darcy-Weisbach friction factor

Gravitational constant (386.04 in. 1bm/(sec.2 lbf))

ix



,Pressure‘CIbf/in, )

Convection coefficient at the inside component wall surface
(Btu/ (sec. in.2°R))
Convection coefficient at the outside component wall surface
(Btu/ (sec. in12°R))
Integrals appearing in the approximate solution of the wall
conduction equation
Conversion constant (9336 in. lbf/Btu)
Thermal conductivity of the component wall (Btu/(sec. in.°R))
Thermal conductivity of the hydraulic fluid (Btu/(sec. in.°R))
Transmission line length (in.)
Mass flow rate (lbm/sec.)
Fluid mass within a component (lbm)
Numerator of the fluid temperature transfer function
Prandtl number
Reynold's number
Order of the numerator of an approximate fluid temperature
transfer function
Order of the denominator of an approximate fluid temperature
transfer function

2
A dependent variable at a component port (exclusive of

temperature variables)

-Dependent temperature at a component port (°R)

An independent variable at a component port (exclusive of
temperature variables)
Independent temperature at a component port (°R)

Volumetric fluid flow rate (in.s/sec,)



AT

At

e

Rate of heat transfer from the hydraulic fluid to a.component
wall (Btu/sec.)

Radial dimension of a transmission line (in.)

Inside radius of a transmission line (in.)

Outside radius of a transmission line (in.)

A discrete state vector

"The Laplace variable

Temperature (°R)

Environmental temperature (°R)

Hydraulic fluid temperature (°R)

Inside component wall surface temperature (°R)

Outside component wall surface temperature.(°R)

- Hydraulic fluid temperature at the inlet of a transmission

line (°R)

Temperature of the fluid at a port (°R)

Temperature difference (°R)

The independent variable, time (sec.)

The integration time step (sec.)

Overall heat transfer coefficient (Btu/(sec. in(2°R)
Hydraulic fluid internal energy as a function of pressure and
temperature (Btu/lbm)

Fluid velocity (in./sec.)

Volume of wall element‘(in.3)>

Unknown function of time in the assumed wall temperature
function (°R)

Derivative of w with respect to t

Continuous state vector

xi



AZ

Axial position along a transmission line (in.)

An algebraic vector of unknowns or Young's modulus (lbf/in.z)

- Component .wall coordinate normal to the outside wall surface

(in.)
Component wall thickness (in.)

Coefficient of thermal expansion (°R_1)

"Hydraulic fluid compressibility (lbf/in.z)

Normalized heat transfer coefficient
Component wall thermal diffusivity (in,z/sec.)
Mechanical input efficiency

Mechanical output efficiency

Density (lbm/in,s)

Normalized temperature

- Normalized line inlet temperature

Normalized time

.Shear stress normal to the r direction acting in .the x

direction (1bf/in.2)

Wall shear stress (lbf/in.z)

Normal stress in the x.direction (lbf/in.z)

Normalized axial coordinate in a transmission line

Radian frequency (sec,-l)

xii



CHAPTER I
INTRODUCTION

Digital simulation of continuous dynamic systems has developed in
conjunction with the modern digital computer.’<5uch simulation requires a
digital computer of sufficient size and computation speed, a mathematical
description of the dynamic system, and appropriate algorithms to allow
the solution of the system response to be calculated.) The size and com-
putation speed of the computer influence the practicality of simulating
the response of any particular dynamic system. (fhe physical character-
istics of the system. to be simulated iqdirectlf determine whether avail-

ho, hegd to

. . & gyl
able models and algorithms are approprlate) If current models ‘and j ise'sy ang o,
: ' algor: FroanSy

algorithms are not applicable, the investigator must either develop the /

missing portions or not perform the simulation.

This study is concerned with the simulation of the transient mechan-
ical and thermal response of hydraulic systems. The term mechanical
response is used to denote the pressure,;flow, velocity, and position
responses of the system components. Thermal response includes the tem-
perature of both the hydraulic fluid and the system components as well as
heat transfer effects. (?he study considers hydraulic systems to be con-
structed of interconnected components which are each modeled individually.
This approach allows component models to be developed without any assump-
tions which restrict the configuration of hydraulic systems which can be

simulated.>



<fhe results of this study are directly applicable to the simulation
of hydraulic power systems. This includes systems such.as those used on
aircraft, mobile equipment, and agricultural tractors;> The capability
developed in this study makes it possible to investigéte hydraulic system.
responses during warm-up, in the presence of extremely high temperatures,
or with part or -all of the system operating in a cold environment. The
above mentioned systems and operating conditions are only examples which
indicate the variety of conditions to .which this study applies. (It_is
the intention that any hydraulic power system should be able to be
analyzed using the model forms and algorithms developed herein.)

Systems other than hydraulic power systems can also be considered.
As an example, the fuel delivery and injection system on a diesel or
gasoline engine could be studied with the techniques that have been de-
veloped. Also, simulations of the transient pressure, temperature, and
flow response of pipe networks can be performed. Networks which can be
simulated include, for example, residential and commercial hot water
de}ivery systems and long-distance liquid transmission lines such as
those used to transport petroleum products. In general, the results are
applicable to non-power systems which are characterized by transient

liquid flow through transmission lines,
Objective and Scope of Study

The objective of this study was the development of mathematical
models and numerical algorithms for the digital simulation of the thermal
response of hydraulic systems which do not operate at constant tempera-
ture. It was assumed that electrical, mechanical, and pressure/flow

models were available and thus only thermal response models needed to be



developed for the hydraulic system components. <Mu1tiport component
models which could be inter-connected to form a system model were sought)
The equation forms which were allowed were sets of first-order, ordinary.
differential equations, sets of first-order difference equations,; and
sets of algebraid equations;'<Algorithms were developed to allow the.
component models to be used in a system simulation program which had the.
capability to predict combined mechanical, electrical, thermal, and.
pressure/flow transient responses.)

The study also included the development of.a prototype digital pro-
gram used to demonstrate the models and to verify the algorithms. The
program was designed in a manner that allowed the computer storage re-
quirements-to change with the number of components being modeled. A
sparse matrix approach was.investigated for use in solving the algebraic
equations.in a system model. The program structure used included the
capability to accept any new component models which could be expressed in
the above mentioned. forms,

The prototype routine was the second portion of a conceptual program
which utilizes a preprocessor to interpret user-supplied input data.

The investigation included the design and specifications for the pre-

processor but did not include the programming of the actual routine.
Major Results

The most significant result of this work is the development of the
capability to predict the combined thermal and mechanical response of
hydraulic systems. (The developments in this study which make the pre-
diction possible include contributions in both system modeling and simu-

lation algorithms The models and solutions which are attributable to



this study are a transmissioﬁ line model with both an operational mathe-
matics and method of Characteristics solution, a oneedimensiqnal thermal
wall model with a solution utilizing the heat balance integral, and a
thermal response model for general hydraulic components.

There are three algorithmic developments in this study which are
most significant. The first is the development of an algorithm for de-
fining temperature at a component port such that the flow direction is.
not defined a priori. The second development makes it possible to
utilize a sparse matrix solution for algebraic equations in a system
model. An important result of the sparse matrix approach is the ability
to use a very simple syntax within individual component model routines.
(?he third contribution is the specification of .a preprocessor and simu-
lator approach for the simulation of hydraulic systemsJ The approach
makes it possible to describe systems as coupled components and to de-
velop new component models which can be implemented with very little
effort. <A distinguishing feature of the preprocessor and simulator
approach developed herein is that it is component oriented as contrasted

to being equation orientedz)
Plan of Presentation

A summary of the literature reviewed for this study is .presented in
Chapter II., Thermal response models and solutions appear in Chapter III
with additional details in Appendices A and B, The inclusion of-thermal
response in a system simulation is considered in Chapter IV where an
approach is developed to allow fluid temperature at a component port to

be considered in a general manner. The response of the thermal models is

demonstrated by two examples\in Chapter V.? QEE_SEETEEE“EEPSiStSﬂEELE;/



szggulgpgg,ggmamtmansmmssxgn line and t wPe second is a small hydraullgé'j

g’system.~%Ihe conclusions and recommendatlons appear .in the final -chapter.
Appendices .C and D contain programming details with the first considering
the preprocessor and simulator approach to simulation and the second.

dealing with the use of a sparse matrix equation solver within a simula-

tion program.



CHAPTER II
LITERATURE SURVEY

Digital simulation of hydraulic systems requires an understanding of
both the physical system and the algorithms used by the computer program.
The literature survey presented in this chapter contains two sections
dealing with the phenomena of mechanical and thermal response and one
section concerned only with algebraic equation algorithms. Both'the
modeling and the solution of the physical responses are considered in the
review,

In brief, the following literature survey reveals that:

1)\/éhere is no existing hydraulic system simulation program de-
signed for or well-suited for the inclusion of dynamic thermal
response models;

2) transient heat transfer and temperature response investigations
have considered compénents similar to those found in hydraulic
systems (for example, transmission lines have .been studied ex-
tensively) but no method for investigating entire systems is
available; and

3) \@parse matrix methods are used in structural analyses but have
not been extensively applied in other types of dynamic.system

simulation.



Mechanical Response

The determination of the response of a hydraulic circuit is a prob-
lem in continuous system simulation.  Several programs have been devel-
oped which could be used to model or simulate a hydraulic system if one
wishes to work with the individual component equations., A review of the
various programs has been presented by Smith (1). These programs have.
been developed independent of any particular type of dynamic system, and
therefore contain no specialization for hydraulic systems. The most sig-
nificant programs are MIMIC, DSL/90, and CSMP/360 (2,3,4). Several elec-
trical circuit analysis programs which have been developed are reviewed
by Murali (5). The better known programs are CIRCUS, ECAP, NET, and
SCEPTRE. The programs aré specialized for electrical circuit analysis
and are not well suited for adaption to hydraulic circuits.

A major study of available hydraulic system simulation programs was
conducted by Boeing Commercial Aircraft (6) for thé Air Force in 1972-
1973, The investigation identified five transient mechanical response
programs including HYTRAN - (Boeing), HYTRAN (McDonnell), LQST1 (NASA-
University of Georgia) (7), TS7 (General Dynamics), and HYDSIM (Oklahoma
State University (1). Of the five, the only program with the capability
to handle algebraic sets crossing component boundaries is HYDSIM. An im-
proved version of the McDonnell HYTRAN is currently being developed under
contract for the Air Force (8). This program is very strongly dependent
on the method of characteristics line model (9,10,11,12), and uses the
properties of the model to avoid algebraic equation sets.

[?he general prbgrams MIMIC, DSL/90, and CSMP/360 utilize a pre-
processor and simulator execution structure. Ea;h program accepts input

in a specific format and creates computer code to be used by the
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simulator. <The MIMIC processor reads user input and creates a machine
language subprogram which is used during the actual simulation portion of
the execution. The CSMP/360 preprocessor translates the user input into
a Fortran subroutine which is then compiled and used by the CSMP/360
simulator, The approach used in DSL/90 is similar to CSMP/360 except
that the program also provides a portion of the job control statements

required for its own execution;)
Thermal Response

The Boeing investigation identified only one program, HEATEV (13,14),
designed for hydraulic system thermal analysis. The program performs
steady-state analysis using lumped parameter models. The same study also
identified several '"fluid system analyzers" a;d ""thermal analyzers', none
of which were concluded as being suited to hydraulic system thermal re-
sponse studies. The "fluid system analyzef;” are designed for use in
steady-state environmental control system aﬁalysis, and the ''thermal
analyzers' are intended for problems involving the temperature distribu-
tions in structures. McDonnell is currently under contract to develop a
hydraulic system thermal analysis program under the same contract as the
HYTRAN extensions (8). No results have been published, and it is ex-
pected that the program will have the‘same restrictions as HYTRAN and
will perform only quasi-transient analysis.

Heat transfer to fluid flowing in a pipe has been studied by many
investigators. Numerous papers deal with determining the Nusselt number
for steady laminar or turbulent pipe flow. Work in this area has been
reviewed by Fand (15), Hughmark (16), Kalinin (17), and Petukhov (18).

The most basic result is the determination of the Nusselt number as a



function of the Reynolds number, Prandtl number, and fluid temperature.
Steady-state pipe flow and heat transfer has also been investigated
analytically. Problems of this type are termed a Graetz problem due to
the fact that Graetz presented the first analytical solution for the
laminar case in 1885 (19). The works of Chung (20), Dunduchenko (21),
Gaertner (22), Siegel .(23), Thomas (24), and Tseng (25) are representa- .
tive. The works generally consider specified inside wall temperature or

heat flux, no axial conduction, and either steady solutions or approxi-
B — B B e i

mate transient solutions following step.inputs.

Analytical investigations involving heat transfer and pipe flow
which consider the wall conductivity have been reported by Forghieri
(26), Hayasi (27); and Mori (28). All of these studies considered a thin
wall, a steady parabolic or uniform velocity profile, and specified out-
side wall conditions.. Approximate analytical solutions are found for the
steady temperature profile (28) and for step inputs (26,27).

The earliest work applicable to transient pressure, flow, and tem-
perature was presented by Dussinberre (29). The approach consisted of a
difference equation model for lumped fluid elements in a line. A method
for calculating transient pressure, flow, and temperature was developed
by Benson (30). A method of characteristics solution was used and ap-
plied to the flow of gas through a superecharged,two—cycle engine.
Equivalent methods have been used by Wright. (31), Kot (32), Issa (33),
Jonsson (34),.and Kawahashi (35). All of the solutions consider a com-
pressible. fluid and use the equation of state for a gas. No equivalent
investigation for liquids has been located.

Heat transfer during pulsating or periodic flow has been considered

by several authors. Siegel (36,37) has reviewed the early work in the.
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area and presented an analytical study. The experimental work is often
in conflict with investigators reporting both an increase and decrease in
the Nusselt number for pulsating flow as compared to steady flow for the
same average velocities. The results by Siegel indicate that for pulsa-
tions not involving flow reversals, there is only a slight increase in-
the averagé,heat transfer due to pulsations. Jenkins (38) extended the
work of Siegel to the circular tube with the same general results. Ex-
perimental studies by Galitseyskiy (39) and Keil (40) show conflicting
results typical of those reviewed by Siegel. Thomas has considered the
problem from a turbulent flow point of view, and the results indicate an
increase in heat transfer due to pulsations (41). Flow reversals have
been considered by Niida with even larger predicted increases in total
heat transfer (42). The experimental studies have shown the pulsatile
Nusselt number to differ from the steady value by a factor of 0.7 to 2.0,
Theoretical predictions range from 1.0 to 10.0 depending on pipe location
and pulsation amplitude and frequency.

Heat transfer involving irregular geometries must be considered in
the analysis of such components as valves, pumps, orifices, etc. Several
authors have presented methods for determining equivalent heat transfer
coefficients . (43,44,45,46,47). Recent conduction heat transfer research
is largely oriented toward integral methods which are directly related to
the finite element method popular in structural analysis (48). A review
of the basic approaches has been presented by Goodman (49) and Weiss
(50). The three approaches used are the heat balance integral by
Goodman (50,51), a variational method by Biot (52,49), and the more

general method of weighted residuals - (53).
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Algebraic Equation Sets

The construction of the algebraic equation sets related to a par-
ticular fluid power circuit has-been accomplished by Smith (1). Smith's
HYDSIM program uses either a Newton-Raphson .or-a closed-form differential
solutien to solve the algebraic equations.  An alternate -applicable
method has been presented by Powell (54). All of the methods require the-
repeated solution of a set of linear equations which will often be
sparse, i.e., the coefficient matrix contains a relatively large number
of zero values. - Mondkar (55) and Wilson (56) have presented methods for
solving sparse equations when the coefficient matrix is banded, sym-
metric, and positive-dgfinite.‘ The more general method-of Key (57) is
more applicable to fluid power circuit analysis. Coefficient matrix.
storage algorithms are used by all of the mentioned methods. DeVilliers
has presented a discussion and evaluation of several hashing methods for
coefficient storage (58). The paper concludes that there is no signifi-
cant reason why the non-zero terms in the coefficient matrix must be
stored -in any‘sequential pattern but rather they need only be stored in a

deterministic manner.



CHAPTER III -
DEVELOPMENT OF THERMAL RESPONSE MODELS

The total response of a hydraulic system component includes both the
mechanical and thermal response. Mechanical responée implies the posi-
tion, velocity, force, torque, pressure, or flow response -of the compo-
nent.  Thermal response, as used in this. study, describes the change-in
temperature of the hyraulic fluid and the component mass which occurs
simultaneously with the mechanical response. An alternate definition of
thermal response could be stated in terms of the change in internal
energy which occurs.in the hyraulic fluid and in the material of the
component walls. If one assumes that internal energy depends only on
temperature, then either internal energy or temperature can be used in
describing thermal response. This assumption is made in this study, and,
in general, thermal response is expressed in terms of the more convenient
temperature rather than internal energy.

This chapter defines the type .of block-oriented thermal response
models sought in the study. Requirements.of the block-orientation are
considered to ensure the applicability of the models to a system simula-
tion. Thermal models are then developed for the fluid mass both in gen-
eral hydraulic system components and for fluid transmission lines. The
mathematical model for the component mass is developed in the last

section of the chapter.

12
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Multiport Component Model Considerations,

The thermal response models developed in this study are intended for
implementation in a block-oriented simulation program, This requires.
that components.be modeled in terms of the physical variablés_which are
defined at the component ports (1,59,60,61).'<These variables are called
port variables where "port" refers to the points at which components are
interconnected>v

A multiport representation of a system from the thesis by Smith (1)
is shown in Figure 1. The figure contains three components with two-
ports each, and one.component, the valve, which contains three ports. '
The port variables for classical multiport. component models are chosen in
one of two ways. One method defines port variables such. that the product
of the two variables at a port equals the rate at which energy passes
through ‘the port. This -convention is followed for each of the six pairs
of port variables in Figure 1 except the force/stroke port for the valve.
The product of these.two variables is the net energy which has crossed
the port and is an example of the second method for selecting port
variables.

The arrows in Figure 1 define the causality of the port variables.
At each port there is one arrow pointing toward the component with an
associated independent port variable. (When the component model is de-
veloped, the independent port variables are treated as inputs which will
be defined "independent'" of the component being modeled. The arrow
pointing away from each port has an associated dependent port variable.
which must be defined by the component model. These variables are the
outputs of the component model and can be thought of as being ''dependent"

on thezmodel.;>
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The coupling of component models to form a system model -causes the
independent and dependent variables at connected ports to be interre-
lated. In Figure 1,‘Q1 is dependent with respect to the pump and inde-

pendent with respect -to the pipe. Similarly, P, is dependent and

1

independent contingent on the reference component. The variables are, in

general, functionally related due to port coupling. For example, if the

pipe moge} 1n Figure 1 deflnes Pl f(Ql) and the pump model deflnes

R

Q1 g(P ), then (Pl, Ql) must be determlned 51mu1taneeusly ThlS ex-

S i TN i -

ample demonstrates that a port varlable can be- 1ndependent w1th resPect

unknggg“glthwrespect to the systegugggel The,algoritth»and equation
forms necessary to allow a correct simultaneous prediction of the system
model{resPQnse.for’nonlinear<models were defined by Smith (1,59).
Rosenberg has defined the requirements for linear models described in
terms of basic elements and sources (60,61).

Hydromechanical systems can ‘be modeled in terms of five port vari-
" From S*AJVO»

able pairs which are (pressure, flow), (force, position), (force, velocy( &n%wﬂa

ity), (torque, -angular position), and (torque, angular velocity?;) (Thegwnﬂhy;@“
m«‘} P-F Fv

addition of electrical components requires defining (voltage, current) - v

ports,) If thermal effects are considered, two additional port. types
must be defined to include the effect of heat transfer and to include the

internal energy in a fluid stream and a wall mass.

Heat Transfer Ports

A heat transfer port can be described with entropy rate and tempera-
ture as the port variables (62). The product of the two variables will

then be the heat transfer rate which is the rate -at which thermal energy
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passes through the port. Entropy rate is analogous to flow rate, force,
and current, and temperature can be compared to pressure, velocity, and
voltage.

Even though the variables constitute a port description which is
conceptually acceptable, entropy rate and temperature are not attractive
for use in component modeling. It is desirable to select a pair of
variables which are in common engineering usage and which are readily
useful. A port assigned the variables heat transfer rate and temperature
would be convenient from an applications viewpoint. Each port variable
would represent a quantity which is of interest in the determination of
the thermal response of a hydraulic system. In practice these variables
describe the heat rejected (or gained) by the component and the port
temperature.

A conceptual difficulty with using temperature and heat transfer
rate -is that the product of the two is not an energy or power term. How-
ever, this-does not impair the usage of such ports in block-oriented
simulation programs unless.the program requires the product be energy or-.
power. The prototype program discussed in Chapter IV .as well as those
developed by Smith (59) and McDonnell Aircraft (8) have no such require-
ment. - Therefore, heat transfer ports appearing in.the models developed
herein will use heat transfer rate and temperature as the port variables
even though these variables are not analogous to other port

designations.!

1This exception for energy due to heat transfer also exists in sys-.
tem models as presented by Shearer, et al. (62).
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Internal Energx{Ports

The internal energy of fluid flowing through the hyraulic fluid
ports of a component must be included in thermal response models. An
acceptable internal energy port can be defined by selecting the mass flow
rate and the internal energy of the fluid per unit mass as the port vari-
ables. The product of these two quaﬁtities yields the energy rate, and
the port is analagous to mechanical or electrical ports.

Fluid temperature and mass flow rate would be more practical -for use.
as port variables. The fluid temperature is of primary interest in
analysis of the thermal.response of -the fluid and is equivalent to inter-
nal energy given the specific heat. Therefore, all internal energy ports
appearing in this study will use temperature and mass flow rate as the
port variables.

Internal energy is a property of the fluid entering and leaving a
hydraulic component, and an internal energy port exists if and only if.
there is a corresponding pressure and flow port. These two facts imply
that internal energy ports cannot be modeled independent of a pressure
and flow port. It is also implied, although not obvious, that the selec-
tion of independent and dependent port variables cannot be done arbi-
trarily. The following example indicates the requirements of internal
energy port modeling.

Consider three components as shown in, Figure 2. Component 2 .is a
rigid, adiabatic line with no thermal capacitance in the line wall. Com-
ponents 1 and 3 can be thought of as any components having a pressure and
flow port with the flow specified as mass rate. The-variables-P1 and P,

have been specified as being independent for the line model requiring

P

that ml

and ﬁg be dependent at the. pressure and flow ports. This
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selection is arbitrary, and either P or m could be dependent at either
port.

Mass flow rates used to model the pressure and flow response of a
line are the same as the mass flow rates used to determine the internal
energy at the ports. That is, ﬁi = ﬁz and ﬁg = ﬁg in Figure 2. Also, it
is implied that the causality of mass flow réte at an internal energy
port is determined by the causality of pressure. If one then considers
that each port will have a dependent and independent variable, it would
seem that the causality of temperature should be the same as that of
pressure. Thus Figure 2 might appear to be a properly represented dia-
gram, in which the mass rates could simply be represented as ﬁl and ﬁz
with no superscripts to indicate the associated pressure or temperature.

The causality specified in Figure 2 does not indicate either the
sign convention for mass flow rate at a port or the instantaneous direc-
tion of mass flow rate. As a first case, one can assume that mass is
flowing from component 1 to component 3. The line receives the flow m

1

at temperature T, and discharges fluid at T2. The line exit temperature

1
T2 depends on the line inlet temperature Tl plus an increase due to fric-
tional losses in the adiabatic line. Component 3 receives fluid at -tem-

perature T, and cannot influence this temperature except indirectly

2

through P2 and the associated frictional losses in the line. It must be.
realized that a component receives fluid mass and its associated internal
energy by virtue of the direction of flow. The fluid property internal
energy cannot be specified by the component physically receiving the
flow. It follows that a component model can only specify the temperature

of mass leaving the component; and thus, temperature can only be depend-

ent at.-a port if fluid is leaving the port.
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The dependence of T, as shown in Figure 2 contradicts the require-

2
ment that T2 be dependent on the line model if flow is into component 3.
The dependence would be correct as shown if fluid was entering both ends.
of the line, which is possible for a compressible fluid or elastic line.
It is also quite possible for flow to be leaving both line ports sipul-
taneously or for flow to be from component 3 to component 1. Since all
of these conditions may occur within a single simulation, it is not pes-
sible, in general, to specify the causality of port emperatures a priori.
It must rather be realized that port temperature causality changes with
the direction of flow and models and programs must be developed in such a
way that the dependence of port temperature can change -accordingly. The
models and program developed in this study satisfy this requirement.
Pressure and flow ports which have an associated temperature can be
compactly represented as in Figure 3. The suggested notation indicates
the causality of pressure and flow in the conventienal manner. Tempera-
ture causality is shown with the double arrow, indicating both possible
dependencies. The presence.of only one mass flow is consistent with the.
physical phenomena being represented. The notation in Figure 3 is used

in the remainder of this study.
Hydraulic Fluid Model for General Components

Thermal response models developed in this work are based on an un-
steady energy balance. An energy balance is performed on the fluid mass-
within a component and on the mass-of .the component itself, with the
allowance for heat transfer between the two masses. The physical quan-
tity being modeled is the internal energy of the masses which is repre-

sented in the models by '"bulk' temperature. This subsection develops
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the fluid model for hydraulic system components other than:transmission .
lines. Lines are considered separately due to the axial variation in-
temperature which may exist.

A hydraulic fluid model which includes .the known effects should con-
sider internal -energy as.a function of three spatial variables and one.
temporal variable .and should also. contain a detailed description of all
geometries and'associated boundary conditions.  Such a model would not be
suitable for use in a hydraulic system simulation for two major reasons.
The first .is -that an accurate, detailed description of fluid cavities in
a component is not apractical model requirement. Secondly, the task of
solving the model equations would be too complex and time consuming to be
included within a system simulation. An alternate approach must be used.
to develop a practical model for the thermal response of the fluid in a
hydraulic component,

A general component is represented by Figure 4 which depicts the
types .of energy which may exist Within a fluid power component model.
Figure 4 is appropriate for use in defining a control volume for an un-
steady energy balance. The assumptions to be made for the energy balance
are:

1) the fluid within.the component can be described by a bulk fluid-

temperature, Tf;
2) heat transfer bétween«thé fluid and the .component wall is due to
convection;
3) fluid propreties are dependent on temperature; the rate of
change of these properties is negligible;
4) the inside and outside‘wall,,temperatures,..Ti and To’ can be-

evaluated by applying fhe\models developed in the last section
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of this-chapter;

5) internal energy is a function of temperature and is independent

of -.pressure;

6) changes in kinetic and potential energy are negligible; and

7) energy dissipated due to mechanical inefficiency is transferred

directly to the fluid to increase the fluid internal-energy.

The first two assumptions above can be justified for components such
as a reservoir, a small linear actuator, or fittings where thorough
mixing of the fluid can be expected.. For components having very irregu-
lar internal fluid cavities such as pumps, motors, and valves, the
assumption allows a tractable description of the fluid mass without . the
detail required by a.distributed model. A practical model probably could
not be developed for components.of irregular geometry without such an
assumption. |

Assumption 3 is concerned mainly with the dependence of specific
heat on temperature. Specific heat is-not a strong function of tempera-
ture for practical hydraulic fluids, thus allowing one to assume that the
rate of change-is negligible. Assumptions 5 and 6 are justified due to.
the relatively small amounts of energy which are associated with the
compression, velocity, and poéition of hydraulic oils.

The last assumption must be evaluated based on experimental results.
There are no known results in the literature to support or disprove the.
assumption. If the assumption is disproved by future studies, the models
which follow will need to be modified to account for the direct transfer
of a portion of the dissipated energy to the component wall, The dis-
sipated-energy may have to be distributed between the fluid mass and the

wall mass and an . energy flux term may need to be added to the component

¥
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wall model,
An energy balance for the fluid in a component such as that shown in

Figure 4 requires the following differential terms:

1) internal energy.
dEI =\I;10 T dt ;
p
2) flow energy
m

3) mechanical energy (in terms of efficiency)

%E-dt (work done on the component
i .

dE_ = ‘-}5
-mn
= Jpo AP dt (work done by the component) 3
4) energy transfer to the wall
dE = h, Ai(Tf - Ti) dt R
5) stored internal energy .

dEé = mg cp de

An energy balance including on .the above terms yields
dE_ = dEw + dEM + dEF + dEI

Hydraulic system components may possess more than one.pressure and
This -requires -that terms 1 and 2 above simply be applied for

flow port.
If fluid is leaving a port, then_Tp for that port equals the

each port.
fluid temperature T.. The temperature of fluid entering a port is
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assumed to be defined by the component.connected to that port.
The unsteady energy equation for the bulk fluid temperature can be.

expressed as

dT, ﬁlkAP ) n .Iii.
mehp I - MMMy T e G mm) jzl "Gt CpTps)
(3.1)
where

m is the mass flow at the high pressure -port of a pump or motor;
AP is-inlet pressure minus exit pressure;

n.  is the number of pressure and flow ports including the ﬁk port;
ij is equal to Tf if mj is negative (flow out of port j) and is
defined by the connected component if mj is positive (flow into

port j).

Equation 3.1 contains more terms than are applicable to all hydrau-
lic system components: The mechanical energy terms will be present if
the component is a pump or an actu§torJ For pumps, the ns term will be
included, and the -n, term is appyicable to motors or actuators.

If significant mechanical work is present and is not expressible as -a
function of efficiency and pressure difference, the product of force and
velocity or torque and angular velocity at a port may be more appropriate:
and would implicitly include the inefficiency effect.

Valves and other throttling device models will generally have no .
mechanical terms, and one may also ignore heat transfer if a small sur-
face area is involved. Components such as-lossless manifolds or tees may.
contain only the internal energy term if the heat transfer area is again.
small. If a component contains a small fluid mass, Mgy the -assumption

that the response of Te is instantaneous, can be used to reduce Equation
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3.1 to a steady energy equation. This assumption would be appropriate,
for example, in the modeling of.a tee which would contain negligible
fluid mass compared to the fluid mass in the total system.

A reservoir model requires all of the terms .in Equation 3.1 except
the mechanical energy terms. If m. cannot be considered constant, then
the previous assumption that the;rate.of~change_of‘cp is negligible.
allows -one to write |

dE dT dm
S _ " f £
EEa S X N - : (3.2)

The equivalent to Equation 3.1 is then

dT

me.c_ === - ¢ T dmf
f'p. dt pf T hiAi(Ti - Tf)
+..nlk£(_].'__-n)
Jp ni o
n P,
+ Jom(=k+cT ) (3.3)

where certain terms may be.eliminated for individual components. If-

Equation 3.3 is required, conservation of mass also requires that

3
:-_;‘i-

H
Ine~—s

(3.4)

o
ct

j=1

be satisfied simultaneously.
Equation 3.1 or Equations 3.3 and 3.4 constitute a lumped-parameter .

thermal model for the fluid within a component. The model is applicable

when the assumptions on page 22 are valid for the component being
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analyzed. The inside wall temperature, Ti’ is defined by the wall tem-

perature model derived in the last section of this chapter. The one type
of component which should not be described by a lumped-parameter model is
a "long'" transmission line. Distributed line models are developed in the

following section. :
Hydraulic Fluid Model for Transmission Lines

The transient pressure and flow response-of fluid power. transmission
lines has been studied extensively in recent years as indicated by.the
available literature (10,11,12,63). The analytical models for liquid
transmission lines are based on a .one-dimensional distributed parameter
line model with the assumption that temperature is held constant. The
resulting set of partial differential equations has been solved by the
various investigators with two distinctly separate approaches. One. ap-
proach involves using operational mathematics to develop a transfer
matrix which relates the pressure and flow at opposite ends of a. line.
Models of this type have been discussed by Goodson (63). The second ap-
proach to determining transient line response employs a numerical method
of characteristics to determine pressure and flow distributed along a
line (10,11,12). This-latter approach has the advantages of being able
to include frequency dependent friction (acceleration) effects in the-
predicted response.

This section utilizes the energy equation from Appendix A as a model
for the transient thermal response. of the fluid within a transmission
line. The equation is solved by two methods which parallel the pressure
and flow solutions discussed above. The two solutions are consistent

with the available mechanical response solutions and can be combined with
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them-to predict the combined pressure, flow, and fluid temperature

response in a transmission line.

The Model for Fluid Within a Transmission Line

A fluid transmission line can be modeled by three .partial differ-
ential equations which are the momentum equation, the continuity equa-
tion, and the thermal energy equation. The development of the momentum
and continuity equations has been presented in detail by Krane (64) and
Streeter (9) in a form equivalent to that used in typical transmission
line studies such as those reviewed by Goodson (63) or in characteristic.
solutions (10,11,12). The momentum equation is

2T

P . p AV BV, w
et g (31: +V Bx) B o (3.5)
c i
and the continuity equation is
9P 5P a’p BV
-3.£-+V§-)?+E:§-}-(-=O . (3.6) -

The assumptions for the above equations are that the flow is.one-.
dimensional with fluid properties varying in the axial direction only.

The fluid pressure is above vapor pressure at all times, and the fluid
fills the line.. The frictional losses are modeled by a shear stress T
concentrated at the wall. For method of characteristics solutions this
stress can depend on fluid acceleration and can also be a nonlinear func-
tion of velocity (10,11,12). It is assumed that the wall elasticity can
be modeled by modifying the velocity of sound in the fluid as shown in
detail by Krane (64). The line is.assumed to be circular, and no energy
dissipation occurs.due to expansion or compression in the line wall or in-

the fluid.
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The thermal energy equation in cylindrical coordinates appears com-
monly in texts on .heat and mass transfer (65). For axial flow with only
axial and radial temperature dependence the thermal energy equation for a

fluid of constant conductivity can be stated as

o of, v g T 2R A
eyt 5X T B3Tp 3x
32T oT
£f 129 £ 1 oV 1 oV
M B PR R S AN (8.7

If one assumes that that temperature is uniform across the diameter of a
fluid line and that friction exists only at the wall, the equation can be

written as

3T 5T oT
£ £ £ op 5P
e, Gt V) = -7 G+ V)
asz 2 2
+ ke R S0 (T - T + 50— |7Vl - (3.8)
X 1 “ 1

The development of the above equation and the required assumptions are
shown in Appendix-A. The terms in Equations 3.7 and 3.8 have.been,
written in a corresponding order. The basic differences are attributable
to the expression of the radial heat transfer in terms of a convection
term, the determination of the partial dexrivative of pressure with re-
spect to temperature at constant density in terms of the fluid proper-
ties, and the assumption that friction (represented by Tw) exists onlfvat
the wall.

Appendix A contains an order of magnitude analysis of the terms in .

Equation 3.8 with the conclusion that the equation can be written as
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T, T,
peyGe * V) T M - T : (3.9)

The assumptions required for this simplification basically depend on the
properties of common hydraulic fluids and do not restrict the use of

Equation 3.9 for many applications.  Appendix A discusses the assumptions
which allow the,simplification.' The most significant assumption is that
losses due to.friction are included in the momentum equation but are ﬁotA
significant in the energy equation unless the resulting pressure drop is

relatively large.

Operational Solution

The simplified fluid thermal energy Equation 3.9°'is a nonlinear_
hyperbolic partial differential which together with Equations 3.5 and 3.6
form a complete model for the fluid in a line. The thermal energy equa-
tion is coupled to the momentum and continuity equations by the velocity,
V, and could also be coupled through the convection coefficient if one
utilizes a model of the form hi = hi(V,Tw).- The coupling of the conti--
nuity and momentum equations to the. thermal energy equation is through
the dependence of the fluid properties, i.e., viscosity and density, on
temperature. If~hi depends only on V and V is-known, Equation 3.9 -can be
solved independent df Equations 3.5 and 3.6,

The operational solutions—gzgilgblg inwthgwliterature;fqr the momen-
tum and continuity equations generally assume.that a nominal fluid

velocity, V., and density, I exist in the transmission line (62,66,

O’
67). A steady pressure drop exists .due to the nominal through flow, and
the solution is used to predict a transient perturbation from the nominal.

If the terms which appear as coefficients.in Equations 3.5, 3.6 and 3.9
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are replaced by nominal values,'VO, Pp> cvo,.then the following set of

linear hyperbolic partial differential equations results:

P 27
2P0 v v, _ 2% .
wE et Vow T P (340
C 1
azp
3P 2P 03V _ ,
3t VO <. . > 0 H (3.11)
aT T
¢ £ 2
PoSvolsE * Vo 3x ) = 7 Py - Tg) : (3.12)

It is now.possible to solve Equation 3.12 as discussed below. .

The methods employed in the literature for solving Equations 3.10
and 3.1l can be summarized in four basic steps. These consists of trans- .
forming the equations from the time and space ‘domain to.the Laplace and
space domain. The transformed equations are then solved to determine
pressure and velocity at thé ends of a line in terms .of the Laplace .
variable, s. Since the original equations are partial and not ordinary
differential equations, the solutions‘in s contain hyperbolic sine and
cosine functions and cannot conveniently be inverse transformed. If the
hyperbolic functions ‘are expressed in terms of truncated product expan-
sions; one can develop rational polynomial transfer functions which re-
late the pressure-and velocity at the two ends of a transmission .line.
These transfer fUnctioné can be»tranéformed to the time domain to com-
plete the solution which‘consists of a set of ordinary differential equa-
tions. This approach will be used to solve Equation 3.12.

The solution to be derived for Equation 3.12 is intended for appli-
cation to hydraulic lines. If one can assume that the thermal capaci-

tance of the line wall is negligible, the equation becomes
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£,y f___2 o, - T

pocvoriv

f) (3.13)

where‘Te is the environmental temperature and

U= : .

_°f e
T.". T
e
and a parameter can be defined as
r = 208
 Po%v0V0 s

The spatial variable can be-scaled by
X
x:-i'-,

and the temporal variable can be non-dimensionalized by the use of

Vot

T:-—-—-—

2‘ L
The above four definitions allow Equation 3.13 to be written in a
non-dimensional form as-

3T . 9T

T rac =0 (3.14)

which is linear and homogeneous.  The boundary conditions for Equation

3.14 are:

‘ ™
T = T(x,T) H
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T(0,t) =T (1) 5

inlet
T(x,o) = 0 .
The initial condition is-selected for convenience.and can be:changed

in the final solution.  Thus; the Laplace transform of Equation 3.14 with

respect to 1 is:

9T _ OT _ _
Lz + 5 * I =20 ; (3.15)
d
sT(x,s) + ai'T(X»S) + IT(x,s) = 0 ; (3.16)
d
a‘)'(" T(x,s) +:(5 + T)T(x,s) = 0 (3.17)
The solution of Equation 3.17 subject to T(0,s) = Tinlet(s) is:
- -(s+T)x
T(6S) = Ty op(s)e (3.18)
=T, (s)e—sxe_rX (3.19)
inlet : ¢
Equation 3.19 can be-inverse transformed to.
T(x,1) = T, (1 -x)e X (3.20)
’ “inlet™ °
and unnormalized for x = 1 to
o __2up
V. r.
% Po%v0 0% 2
Tf(t) = Te +'(Tin1et(t - v;a - Te)e , t i_va

which is a solution for Equation 3.14.

This solution consists of a time delay of R/VO plus the exponentigl
term due to heat transfer. Since Equation 359_does;not contain the
friction, conduction, or pressure effects, one would expect the solution .

to depend only on heat transfer and the history of the input temperature.
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A transfer function for the response of Tf to T. can be derived
inlet e
by expanding Equation 3.18 and truncating the expansion at the desired
order. This type of solution has.been presented for the momentum and
continuity equations by Goodson (66) and Oldenberger.(67), for example,

and is a type.of solution most useful for digital.simulation.-

The desired transfer function for x equal to one is of the form

- TgS)(s) - o (D) “Ei% (3.21)

inlet

(=)

where N(s) and D(s) are rational polynomials and the order of N(s) is no
greater than the order of D(s). The expansion of the exponential func-
tion into a ratio of polynomials is thus required to develop the desired
transfer function.

The exponential function need not be expanded as in infinite product
as done by Goodson (66) and Oldenberger (67) for hyperbolic functions.-
The result one seeks.in expanding the exponential function is a transfer
function with constant magnitude independent of frequency and with an
acceptable accuracy in phase. This-can be accomplished by expanding the
exponential using ratios of rational polynomials as described by Pade
(68). The expansions for e > are shown in Table I.

It is sufficient to expand the exponential if Equation 3.2l is re-

written as-

- 7 (3.22)
Tinlet(s)

e

since efrx is a constant. Figure 5 shows the phase response for

I;J:-(z%- poe ® (3.23)
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SELECTED PADE EXPANSIONS FOR THE EXPONENTIAL FUNCTION e >

ON = 0D -2 ON = 0D -1 0N = 0D
2
2 -25+6 S -6s+12
2 2 2
S +2s5+2 s +4s+6 s"+6s+12
2 ) 3 2
~6s+24 357 -24s+60 -5 +12s7-60s+120
32 o 3 2 3 2 »
s +6s”+18s+24 ST+9s +365+60 s +12s"+60s+120

1252-1205+360

_453+60s%-3605+840

54-2053+18052-8405+1680

1253+7252+2405+360

st +1653+12052+480s+840

s*4205°+1805%+840s+1680
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for the expansions in the last column of Table I as well as for the ex-
ponential. As can be seen each additional term adds only a small amount
of phase bandwidth, and below the normalized frequency of 1, the approxi-
mations are essentially equivalent in phase. It should be noted that the
magnitude response is exact for all the Pade expansions in the last
column of Table I,  The notation QON,OD) used in these figures indicates
the order of the numerator and denominator for each response. -

The amplitude responses for the remaining functions from Table I
appear .in Figure 6 with the corresponding phase responses in Figure 7.
Since the order of the numerator is less than that of the denominator,
the approximations have a finite magnitude response bandwidth as shown in
Figure 6. This implies a limit on the normalized frequency for which the.
approximations -are useful, but it does not necessarily mean that one:

should use the approximations withAON_= 0 An example step response in

DI
Chapter V shows ‘that the time response achieved for ON < 0D is more rep- .

resentative of the actual phenomena than the response for O, = 0,. Addi-.

N~ D
tionally, the phase responses in Figures 5 and 7 do not improve greatly
with an increase in model order which implies that the low order approxi-
mations may be .sufficient for many investigations..

The solution developed in the preceding discussion eliminated .
spatial dependence and involved a transfer function in terms .of the end
conditions for a transmission line. The applicability of the transfer
function presented in Equation 3.22 is discussed in Chapter V., An alter-

nate approach which retains spatial dependence and requires fewer assump-.

tions follows.,
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Method of Characteristics Solution

The line model equations presented earlier as Equations 3.5, 3.6,
and 3.8 are a set of simultaneous hyperbolic partial differential equa-
tions. As such, they could be solved by the method of characteristics if
the equations were linear. Even though thelequations=are not linear,
acceptable solutions .can be determined by the method of characteristics
if the fluid velocity, V, in Equations 3.5 and 3.6, is small compared to
the acoustic velocity. The solution of Equation 3.9 by the characteristic
method also requires that terms other than the heat transfer to the wall
be relatively small, This requirement is met as discussed in Appendix A
and allows.the small terms to be treated as additional forcing functions
functions in .a manner analogous to that presented by Zielke (10).

A method of characteristics solution requires determining charac-
teristic curves in the (x,t) plane along which the partial differential
equations reduce to ordinary differential equations. If this can be ac-
complished, the ordinary differeﬁtial equations -can be integrated numeri-
cally, and a solution can be found which propagates through space and
time. It is desirable to determine the solution at a set of fixed grid
points as shown in Figure 8. It is assumed that initial conditions -are
available and that it is desired to propagate the solution one increment,-
At, in time.

The characteristic of Equation 3.8 can be determined by applying the

identities
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and

| dx

| & -V

With the above.identities, the equation can be written as.

2

dT aT 9T ‘ |z V]
T ew £ 2 r .
Pe, g =TT @t ke - ri(hi(TiA T+ =) (3.24)

which is applicable along the curves defined by

- L
Y

gl&

A characteristic along which Equation 3.24 is applicable is‘sHown in
Figure 9. Velocity, pressure; and temperature are available at points A,
B, and C, and the same.quantities are to be determined at point D.. Equa-
tion 3.24 is applicable along the line from point H to point D, thus-
implying that the temperature.and pressure must be known at H. If the
quantities at H are determined by interpolation, Equation 3.24 can be
used to calculate temperature at point D in a manner consistent with
existing pressure and flow solutions (8,9,10,11,12,65).

A first-order approximation of the integral of Equation 3.24 from H-

to D is
(T. - T,) = -%T_ (P - P)
Peylip = 'y = =T uV¥p T 'H
2 | V|
o T 2 W
+ kf(axz)HAt +I‘1(h1(Tl - Tf) + J )H At . (3.25)

Solving for the unknown temperature yields
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@ ke asz
T, = T, - === T, (P - P ) + === (—s=) At
D H. JpcV HY D H pcV axz H
.IT V[.
b =2 (T, - T,) + —% At 3.26
pc,Ts iv'i f J. ‘H : (3.26)

The quantities Py, T, and the second derivative of temperature are ob-

tained from the known values at points A, B, and C. The pressure and
temperature can be determined by linear or quadratic interpolation, and. |
the second derivative of temperature can be determined by quadratic

A TB, and TC'

A higher order of integration could be used to integrate Equation
!

3.24 if the gradient of P was known. The gradient of -P can be considered

interpolation using T

to be known along the curve from H to D if one assumes-that P is a linear
function of time. The error introduced by this assumption should be
tolerable since it has-been shown iﬁ Appendix A that the pressure gradi-
ent.is part of a relatively small term. The pressure and flow equations
which must be solved along with Equation 3.24 to predict Pps and thus the

gradient can be replaced by

@ D" H

dt At

in Equation 3.24. In this form Equation 3.24 can be numerically intef
grated with a higher-order numerical algorithm.' However, the examples
and discussion in Chapter V demonstrate that the effect of grid size is
dominant in the prediction of thermal response and imply that high-order
integration would not greatly improve the predicted response.

Equation 3.26 and Equations B.9 and B.10 can be used to propagate
the pressure, velocity, and temperature in a grid such as that shown in.

Figure 8. The inclusion of -the température propagation is due to this-
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study, whereas the pressure and flow propagation has only-been modified
within this investigation.  The modifications allow fluid properties to
vary with temperature, thus coupling pressure and flow response to
thermal response. Considerations in programming the coembined responses
are discussed in Chapter IV, and exémples appear in Chapter V. The wall
tempera.t_;ure\Ti is determined by the model developed in the following

section.
Wall Model for Hydraulic Components

The models developed . in the preceding sections describe the thermal
response of the fluid within a component.  Each of the models hasﬂin-
cluded an inside wall temperature, Ti’ which appears in the convective
heat transfer terms. This section develops the component wall model
which is required to predict the wall temperature. The model to be de-
veloped is based on a simplified conduction equation in.order to avoid.
the complexity of a complete distributed temperature prediction. The
simplification is done in part to obtain a model which is practical to
implement within a hydraulic system simulation.

Preliminary to developing a. component wall model the purpose of the
model should be considered. A component wall performs two functions
which are the most pertinent to system simulation. It stores energy due
to thermal capacitance and it transmits energy between the hydraulic
fluid and the environment. A wall model should not be included to allow
one to perform a detailed study of the temperature distribution within a
single component. The wall model should be included in a manner which
depicts the effect which the walls have on the total system response.

From the system response viewpoint, component walls allow heat transfer
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between the environment and the hydraulic fluid, The energy transferred
effects.the fluid temperature which in turn influencesisystem response.
Thus the purpose of a wall model should be to p:ovide a means for deter-
mining the amount of energy exchanged between tﬁe wall and the fluid due
to heat transfer. .

The geometries of hydraulicAcomponents-mustwalso be\considered be-
fore a wall model can be developed. A hydraulic line is a most ideal
geometry to model, and can be described with a relatively simple model.
Components with irregular wall geometry present a much more difficult.
problem both in defining the component geometry and in determining the.
temperature response. It would seem difficult to justify a detailed wall
model for a component such .as-a valve if one contrasts the complexity of
the geometry with the effect that the.component has on system response
due to heat transfer. The wall model developed below assumes that com-
ponents can be described in an.idealized manner which does not include-
geometrical details. The above discussion is the basis for the simpli-
fied modeling.

Figure 10 contains three geometries which will be considered in the
development of a wall model. It is assumed that‘hydraulic components can
be represented by one of the selected shapes. Some of the more direct
selections would be . to model a line with shape (a), a rectangular reser-
voir with (c¢), or an accumulator as-(b). Greater simpliciation would
allow describing a pump with (¢), a contrel valve as (b) or (¢), or a,
relief valve as (c).

Each of the selected wall geometries are essentially a structure
which entraps fluid in an internal cavity. The fluid in the cavity is at

temperature\Tf, and  the environment is at Te? Any effect of . the fluid
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(a) CYLINDER (b) CAPPED CYLINDER

o

(c) HOLLOW RECTANGULAR BODY

Figure 10. Selected Wall Model Geometries

48



49

flowing through wall passages . .to entef or leave the internal cavity is
ignored in the model development. - Ié?is assumed that the-internal

cavity is.the same shape as the outside wall and that all the thermal.
capacitance of a component exists in the wall. Heat transfer to the wall
is by convection from the fluid and the environment, and it will be
assumed that no energy is transferred between the walls of connected
components.

Additional assumptions will be made concerning conduction through
component walls., The first assumption is that temperature depends on
only one spatial dimension. It is assumed that energy is transferred by
conduction only between the two parallel faces of any wall shown in
Figure 10. For shape (c) this implies that the body is made up of six
walls and that energy can be transferred through any wall by conduction,
but that no energy is transferred between the walls. For shape (a) the
implication is that there is radial conduction but no axial conduction
exists. In composite shape (b) energy can be transferred through each
wall, but each cap is essentially insulated from the cylinder. It is
also assumed that the temperature of each inside and outside wall face is
uniform over the face. These assumptions allow the development of the
actual wall model.

A wall model can be developed by considering a differential element
as shown in Figure 11. At side 1 the face area is Al’ and at side 2, the

area A2 is

3A
Az‘A1+'a‘2'1

dz . (3.27)

The temperature at side 1 is T1 and at side 2 is



Figure 11. Example of Tapered,
Parallel-Face Wall
Element
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T, =T, + =| dZ . (3.28)
An energy balance on theé element yields

pcv 2L = A q. - A (3.29)

5t 1% 29

where‘q‘1 and q, are the energy rate at the two faces. The energy rates.

are-
_ T
q = - k BZ) (3.30)
1
and
oT
qQ, = - k —-4
2 9Z 2
9 oT
= -k 57—(T1 + 57’1 dz) . (3.31)
The storage rate can be expressed as
A+ A
9T _ 1" 2 T
pev = = pe((=—=-—=)d2) =%
=7 (A A 57 ) dz)dz 3¢

The substitution of Equations 3.27 through 3.31 into the above equation

yields
3T 1 3A 9T . 3°T
T Y(-AT-Z—)--B-—--B—-+ -a—;—) (3.32)
where
y ok
pC

and all terms multiplied by de have been eliminated.
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Equation 3.32 described the transient temperature distribution in a
body under the assumption of one-dimensional temperature variation. If
the cross-section is.constant then the equation reduces to

oT 32T

=Y e

t 57
which is the Fourier conduction equation  in one dimension.  For a cylin

der (where Z becomes the radial direction), the area function is

A(r) = 2mrp H
DA .
-é-f—Z'n,Q, R
T -1 3T | 8°T
- Gt .
or

which is the Fourier equation in cylindrical coordinates with angular and
axial effects neglected. Thus Equation 3.32 is actually a general one-.
dimension conduction equation for heat transfer in the direction normal.
to two parallel faces of a slab. The equation describes each wall
present in Figure 10, and will be used to develop a solution for wall
temperature.

Assumptions stated earlier require that the wall temperature distri-

bution must satisfy boundary conditions which are

T _
ksﬂz-l _‘hi(T - Tf) (3.33)
and
T _
-k 37 . = ho(T - Te) . (3.34)

An approximate solution to Equation 3.32 which satisfies the above

conditions can be developed using the heat balance integral approach.(51).



53

The approach consists of assuming a solution which matches the boundary
conditions and satisfies Equation 3.32 in an average sense. Such a.

solution can be developed by.assuming

T(Z,t) = w(t) (1 + a2 + a,2°) (3.35)

1

where w(t) is unknown and (ai,az) must be selected to satisfy the condi-

tions -of Equations 3.33 and 3.34. If the inside wall face is defined to

be Z = 0 and the wall thickness is AZ, the determination of ay and'a2
yields
='w,'(t)hi - hin (5. 36)
! KW (t) °
and

C By (T - W)k + B AZ) + Kh (T - w(t))
a, = S — . (3.37)
kw(t) (2kAZ + hoAZ )

The substitution of the above expressions into the assumed temperature
expression results in.

h

T(Z,8) = w(t) + = (W(t) - T2

£

h, (T, - w(t))(k + h AZ) + kh (T - w(t)) .,
o (2L : — — yz22.  (3.38)
k(2kAZ + h_AZ°)

The definition of

h (k + h AZ)

c =
? x(2kaz + h az%)

and
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h
C, = 2
5 okAz + hoAz2

simplifies this to
T(Z,t) = w(t) + (c,Z + ¢ Z2) (T, - w(t)) + c Z°(T_ - w(t)) .(3.39)
1 2 f 3 e
Equation 3.39 can be substituted into the conduction Equation 3,32, but

the equality will not be retained. If the resulting error is defined as.

aT |l _2A

E(Z,t) = 5t - Y@y 32

i

.il + ézzé
9Z 5 2

Z

W) - (e,Z + c222 . cszz)&(t)

§ Y(K%iT'%%'((cl + 26,2) (T - w(t))

+ 2¢,Z(T, - w(t)))
+ 2c2(Tf -w(t)) + 2c3(Te -w(t))) , (3.40)

then the heat balance integral can be satisfied by requiring
AZ
0=/ E(Z,t)dz
0

The result of the above integration is-

WA - %—clAZZ - %-(cz " cB)Az3) = 2yAZ(e, (T, - W(t)) + cg(T, - w(t)))
A2 A ‘
-y jo (Kfij'afl((cl + 2c22)(Tf - w(t)) + ZCSZ(Te_' w(t))))dz .

(3.41)

If one defines

n
=
=]
r—

>
NN
~
| —
~—

o >

N
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and

_ Z__ dA
Il“fo D ¢ ’

>

the -above equation can be written as

w(t) (1 % clAZZ - -15 (c, * cS)AZS) = 2y02(c, (T, - W(8)) + cg(T_ - w(t)))

- Ycl(Tf - w(t))I0 - 2y(cz(Tf -w(t)) + cS(Te - w(t)))I1 .

(3.42)

This is a first-order ordinary differential equation which together with
Equation 3.39 describes the thermal response of a hydraulic component
wall. In the above form the equation is applicable to a single wall of a
component. As such it is applicable as a hydraulic line wall model or as
a wall model for a component assumed to be a cube with a cubic internal-
cavity. If a component consists of several different wall sections, the
error in Equation 3.32 can be averaged over all the walls to derive

n

() izl (1-%cpzl -1 (e, + cazd)
n.
= izl (282, (¢, (Tg = W(t)) + c4 (T, - w(t)))

- ve, (Tp - w(t))
- 2v(e,y (Tp - w(t)) + CS(Te_' w(t)))) (3.43)
where n is.the number of wall sections and Az, is the thickness of each

section. In this form the model describes the thermal response of a.

total component which is the desired result.
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The initial condition for w(t) follows directly from Equation 3.39.
If at the initial time the component is at the environmental temperature
then T = Té = Tf, and it follows that w(0) = Te.- If the initial tempera-
ture is not the environmental temperature, then an-initial condition can
be derived by approximately satisfying an initial known temperature T(0)
by requiring
AZ

{f . (T(0) - T(Z,0))dz}
1 0

=]
i
I ~8

i

which results in a w(0) with zero average error. An initial steady state
condition could also be used., This follows from Equation 3.43 with

w(t) = 0. " The selection of a particular initial condition must be made
when a particular component is -being modeled, but the above three possi-
bilities should include the realistic situations.

The integrals I, and Ii depend on the geometry of a single‘wallq If

0
a wall is of constant cross-section such as the flat end cap in Figure
8(b), then the derivative of the area is zero and I0 = Il = 0. For a.
cylinder wall of inside radius T, and outside radius T the functions

are:

A(r)

i
N
3
=
=
2]

EA
2]
A
=

i o ’
oA .

i 278 s

o
IO = 2n(-;:—)» s

i

T,
I. =r -1, -1 zn(-ﬂa

1 0 i i r, °

The rectangular shape in Figure 10(c) is composed of six tapered

walls., If each wall is considered as shown in Figure 12, then the
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Figure 12,

Representation of a Hollow Rectangular Body as a
Composite of Six Tapered Walls
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functions are:

A(Z)

I
)

+
(ond
N
+
Q
N

-

e
[
—~
tad
1

’ AZ g

_ (YO s Yl) (XO - xl)

c = , s
az?
I = Qh(a'+‘bAZ'+ cAZz)
0 a ' 2
Yoxo
= n(yYo) g
i™i

‘b .a + bAZ + cAZ2 v b2 - dac 2a + (b + V,bz - 4ac)AZ)

I, = 202 - > in( = ) + 5 an( -

2a + (b - VY b” - dac)AZ
where (Xi,Yi) are the dimensions of an inside face and (XO,YO)'are the
dimensions of an 6utside face,

The above integrals complete the thermal response model. The appli-
cation of Equations 3.39 and 3.42 with the appropriate initial condition
and integrals (IO,Il) will result in a model for each of the geometries
in Figure 10. The model satisfies the boundary conditions of Equations.
3,33 and 3.34, and satisfies the heat balance integral which requires
zero average error in Equation 3.32. The model involves the environ-
mental temperature Te.and the internal fluid temperature Te. The wall
model combined with one.of the fluid models developed earlier .in the
chapter results in a complete hydraulic component thermal response mddel,

The total model predicts the température‘résponse of both a component and
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the entrapped fluid.,

The thermal models which interact with mechanical models to describe
the total response of hydraulic components have been developed in this
chapter.  The total model for a system can be developed by coupling
.component models in an appropriate manner.  The next chapter considers
the coupling of components to form such systems.  The algorithms required
to solve the resulting system of equations in a general form are

developed. -



CHAPTER IV

ALGORITHMS FOR INCLUDING THERMAL RESPONSE

IN HYDRAULIC SYSTEM SIMULATION

The simulation of hydraulic systems can be considered as a type of
network analysis, 6ne;characteristic which distinguishes hydraulic sys-
tem-simulation from other network analyses is .the inherent nonlinear.
response exhibited by many hydraulic componentsé§ A second distinction is
the need to represent hydraulic components as multiport models in which
the port variables can seldom be decoupled.) Both of these characteris-
tics contrast.electrical network simulation in which components are often
characterized as being linear and in which components with high input
impedance isolate segments.of a circuiti>

The algorithms necessary to simulate hydraulic systems have been
developed in a general manner by Smith (1). (A less general formulation
has been made by Zielke (69) and is being applied in HYTRAN in the cur-
rent contract effort by McDonnell Aircraft (8).. As stated earlier, the
HYTRAN program is-dependent on the method of ghgzgggggig;ipsigglggign for
line models. The use of this method results in a system model in which
the response of each component can be calculated almost independently.
However, this requires that .a line must be used to couple any two com-
ponents to form a system and that only pressure and flow ports are

allowable. The algorithms used do not allow the definition of any ports

which cannot.be coupled through a transmissien line. Since the HYTRAN

60
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approach can be included within a more éeneral development, it will not.
be used as a basis for the inclusion of thermal effects. >

(?he algorithms developed by Smith and implemented in HYDSIM (59)
assumé.that‘i system ¢an*beirepresented as a set of coupled components.
Each component is-described by differential and algebraic equations; and.
port variables provide the inputs and outpﬁts,for éach‘component,‘ There
are no restrictions concerning acceptable ports as long as two variables
exist at each port with one being independent and the other.dependent
with respect to a reference~compoﬁent,- Smith hasvnot considered that
difference equations ‘may appear in é system model, and it follows that -
the HYDSIM program‘is:not readily amenable to the inclusion of the method
of~shgggggg£i§£;g§miigqwmgﬁgl, The two major requirements which must be
met in order to include thermal effects involve a capability to implement
difference. equation models ‘and a capability to include preﬁsure, mass
flow rate; and temperature ports as discussed in Chapter III. These re-
quirements.can be met.by the following extensions of the work done by
Smith.

A statement of the assumed form for each component model .is required
before .the appropriate algorithms-can be presented. It is assumed for
this work that each component may be modeled by a coupled set of ordinary

differential, algebraic, and difference equations of the form

X(t) = £(X,Y,5,P ,t) , 4.1)
0= g(x\:Y:s:‘PIat) » (4°2)
S(t + At) = L(X,Y,5,P ,t) , (4.3)

with initial conditions
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n
<

[{
(72}

known. The continuous state vector X is of dimension n, the algebraic
vector Y is  of dimensien m, and the discrete state S is of dimension k.-
The functions (f,g,h) are of dimension (n;m,k), respectively, Each de-.

pendent port variable may be defined either as

P, = Pp; (X,5,1) (4.4)

or
Pp; = Y. (4.5)

whereYj is any element in the algebraic variable vector Y. The range of
i is one to the total number of port variables present. If thermal ef-
fects are modeled, each pressure and flow port has a dependent tempera-
ture.and an independent temperature variable in addition to the port:
variables pressure and flow, Other ports will have one dependent vari-

is of the same dimension as P.. The

able. The independent vector P D

I

dimensioning of PI and PD is discussed further in the next section which

considers the inclusion of temperature as a port variable.

Algorithm for Inciuding Temperature

as a Port Variable

The representation of a pressure and flow port with temperature was
discussed in Chapter III. It was stated that the dependence.of port:
temperature could not, in general, be specified a. priori, which results

in a special algorithmic,requirement for temperature at a fluid flow port.
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Consider defining an algebraic variable Yi as the temperature of the
fluid at port j of a component. Such a quantity can, from physical con-
sideratiqns,‘be determined in either.of two ways which are:

1) the temperature-is equal to that of the fluid beiqg discharged

by the adjacent component at the port; or

2) the temperature is dependent on the fluid temperature within the

component itself.
The first case implies flow is.into the port; Yi is thus .specified by the
adjacent component; and the port temperature is independent. In the.
second situation, flow is out of the port, and the temperature is depend-
ent with respect to the component. Thus'Yivmust\have two definitions -

which are
Y. = P.. 4.6)

for flow into a port where pl

Ij~is the port temperature calculated by the.

coupled component and:

Y, = g; (X,Y,8,t) (4.7)

for flow out of a port. The corresponding algebraic.equations are

T
- gi(Yi’PIj)

o
|

=Y, - P.. (4.8)

for flow into a port and

o
1

gi(X,Y,S,PI{t)

Y, - g (X,Y,5,P 1) (4.9)
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for flow out of a port. At any time only one of the abqve equations is
applicable depending on the direction of flow. Functionally, g; must be
defined as depending on the arguments of éi and ng,‘

Equations 4.8 and 4.9 must be included for eaéh flow port of a
~component model. The solution of the appropriate form for g; results in
Yi being equal to the port temperature. If flow is out.of a port, the
connected component must use an equatioen similar to Equation 4.8 to cal-.

culate port temperature. This implies that port variable
P . =Y. (4.10)

so that the independent temperature of fluid entering the connected com-,

ponent can be defined as.
P." = P, (4.11)

where the superscript ¢ denotes the coupled component. -

The fluid thermal response models developed in Chapter III include-
port temperature variables.. In order to implement the models it is.
necessary to first define an algebraic temperature variable.for every.
flow port.and then to substitute the resulting variables into the model
equations. This assures that the model equations are expressed in terms
of specified quantities since each of the temperature variables are de-
termined by Equations 4.8 and 4.9. It should be noted that in many cases
the necessary definition will reduce to Yi = Tfo

The requirements-of including temperature at a flow port can be-
summarized as:

1) define an algebraic variable for each flow port to be the-

temperature at the port;
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2) substitute,the algebraic variables into the model Equations:
4.1 through 4.3;

3) determine the form of Equation 4.9 for each port temperature
algebraic variable .and add Equations 4.8 and 4.9 to the alge-.
braic ‘equation set for the component. (One equation will be
added for each flow port;) and

4) define the independent temperature at each port according to.
Equation 4.10,

The impact of including thermal response on the number of equations:
can be assessed by considering a component with N ports of which M are
pressure and flow ports. The total component model, in terms of Equaf
tions ‘4.1 through 4.3, will then contain N + M independent and dependent
variables and m + M algebraic variables and equations.  Thus the inclu-
sion of.fluid temperature adds.one dependent .variable, one.independent
variable, and one algebraic variable per flow port in-.addition to . the

requirements of the models as developed in Chapter -III.

Including Difference Equations in a

Component Model

The method of characteristics transmission line model definesvthe
transient response of ‘a line with a set of difference equations. These-
equations result from the integration of a set of simultaneous differ-
ential equations which are defined along the pressure wave -and particle
pathline characteristics., Since the difference equations are related to
a set of ordinary differential equations, it should be determined whether
Equation 4.3 should be included in a model -or whether the differential

equations should be added to the vector Equation 4.1. Another-
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possibility is to consider the difference equations to be a special set.
of algebraic equations which could be. appended to the vector Equation
4.2,

The manner.in which a method of characteristics line modellshouldkbe‘
implemented in a general program can be determined by considering the.
form of the -model equations.‘ Figure 9 in Chapter III illustrates that in
a method-of characteristics solution the propagation of all quantities
along interior spatial grid lines depends only on.the values along.the
current time grid line.  Thus all interior point quantities can be propa-
gated one. time increment independent of the boundary conditions which are
imposed by components-coupled to each end of a line. This implies that
the propagation of the solution at interior points.can be performed inde-
pendently within a component model. It is advantageous to include the
method .of characteristics solution in this manner because.it allows .the
component model to interact with other components-at the line ends only.
There is no need to propagate the interior point solutions simultaneously
with other differential equations or to include.the difference equations:
as algebraic equations. -

The grid points-on the boundaries of a line cannot be propagated
independent of the connected component. As shown in Appendix B, the
pressure and flow at the line ends are indeterminate because one wave.
characteristic is.not present. Thus the propagation of the solution for
the line end grid points can only be achieved correctly by defining an
algebraic equation in terms of the wave characteristic which is present
plus the independent variable at the port. This algebraic equation is
B.9.or B.10 depending on the line end and must be included in vector

Equation 4.2, -
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Temperature must also be defined by an algebraic equation.  If flow
is into a port, then Equation 4.8 is appropriate; if the opposite is .
true, Equation 3.26 applies as the form for 4.9. This is consistent with
the.concept of defining algebraic port temperatures as discussed in the
preceding section.' Again, each of the ports adds one equation to the

vector set 4.2,



CHAPTER V
APPLICATION EXAMPLES

This chapter contains three examples which demonstrate the model
forms developed in Chapter III., The first example involves the step re-
sponse of the operational line model -followed by an example of the step
response -of .the method of characteristics model. The final example con-
sists of a hydraulic circuit simulated under two.sets of initial and,
environmental conditions. The chapter also contains a discussion of

results for each example.
Transmission Line Step Response

Line Configuration

The first two examples consist of simulating the_preséure, velocity,
and temperature response of a transmission line following a step change
in the inlet temperature. The system is.shown in Figure 13 and consists
of two constant pressure sources which produce a pressure differential of
oné hundred pounds per square inch (psi). The fluid properties are those.
given in reference (8) for MIL-H-5606.

The line friction model used is the Darcy-Weisbach equation avail-
able in standard texts and used in (8). The convection coefficient

models used for the method of characteristics model are.
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SOURCE

P=1100PSI

TRANSMISSION m

Figure 13.

LINE
L =120in.
r, = 01525in.
o = 0.1875in.
Y = 1x10psi
P = 0.281 Ibm/in3
K = 20 Btu/(hr.ft.°F)

C = 0.1l Btu/(Ib,°F)

Transmission Line Step Response System

SOURCE

P =1000PSI
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for the method of characteristics solution and

AT =«Tf - Te

for the operational solution. For the operational solution the overall:

heat transfer coefficient model was chosen to be

with ho defined above since-holdominates in the calculation of the over-
all -heat transfer coefficient U. Additional parameter values.for the
line wall are shown in Figure 13,

The simulation consisted of initializing the-line model in steady

state with all temperatures at zero degrees Fahrenheit; at time zero plus
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the temperature at the 1100 psi source was increased to 100 degrees. The

resulting responses are considered in the next two sections.

Operational Model

The operational temperature response model developed in Chapter III
was used together with the pressure and flow model from Oldenburger (67).
The pressure and flow model used was the '"n = 1" model for the response
of the output flow to constant pressure inputs with time varying fluid
properties. For this case the '"n = 1" solution reduced to a third-order
transfer function. Fluid properties were evaluated at the average of the
inlet and outlet temperatures and pressures. Since the operational solu-
tion is only valid at the ends of the transmission lines, no prediction
of pressure, temperature, or flow at interior points could be made.

The outlet temperature and velocity responses for six of the models
from Table I are shown in Figures 14, 15, 16, and 17. As -can be seen
from Figures 14 and 16, the temperature response models with ON = 0D pre-
dict an instantaneous change in outlet temperature followed by an oscil-
latory response which undershoots the initial value. For 0N = 0D -1
there is no instantaneous change, but the response again goes below the
initial fluid temperature and thus contradicts what must physically
occur. For ON = OD - 2 the undershoot is eliminated for the second-order
model and decreased for the fourth-order model. The implication is that
although the Pade approximations with high-order numerators have more
desirable frequency responses, the time response is less desirable.

The integral of the velocity responses from Figures 15 and 17 were

calculated as part of the step response simulation. For each of the

curves the integral equals the line length of 120 inches at a time of
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approximately 0.35 seconds. This corresponds to the approximate time at
which the temperature responses in Figures 14 and 16 indicate an outlet
temperature of 50 degrees. It can be seen that independent of the tem-
perature model, the predicted outlet temperature is .approximately midway
between the initial and final value when the integral .of the velocity
predicts that the -temperature front reaches the outlet.

Two distinct problems arise in attempting to utilize the operational
solution for transmission line temperature predictions. One problem is
the need to define fluid properties which depend on pressure and tempera-
ture and thus vary spatially as well as temporally. Since only line end
conditions are available, it does not seem possible to accurately deter-
mine an effective bulk temperature and pressure. Averaging the end
values -as done in the above example is a first approximation to the bulk
quantities, but it is obviously a poor approximation. Considering the
above example, one can readily recognize that immediately after the step
in inlet temperature the bulk temperature is not the average of the end
conditions but is rather the bulk temperature prior to the step change.
However, since spatial dependence was eliminated in the development of
the solution, there does not appear to be an alternative to calculating
bulk temperature and pressure based on the instantaneous end conditions.

The second problem in utilizing the operational model -is implicit in
the specification of.an inlet and outlet for the transmission line. When
the model is implemented, the inlet and outlet must be selected, and if
the flow direction changes, the thermal response model is no longer
valid, Ideally, one could switch between two models each of which are
valid for one flow direction, but this results in having to reinitialize

the alternate model at each flow reversal. The reinitialization cannot,
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in general, be done so as to maintain a continuously correct solution
making the whole concept of allowing flow reversals very undesirable. In
contrast, flow reversals occur in physical transmission lines.and should
not be ignored if one is to have -a realistic-transmission -line model.

One alternative to reduce the above problems is to model each line
as a series of short lines. This does not eliminate either problem, but
it does localize errors in determining bulk properties and temperature
dependence due to flow direction. However, such segmenting actually is.
self-defeating since the effect is to reintroduce the spatial dependence
which the operational solution eliminates. It seems that rather than
segment lines, one .should conclude that the operational solution derived
in Chapter -III is not a practical model for use in general hydraulic sys-
tem simulation applications. A model which does appear practical is the.
method of characteristics model which is considered in the following

example.

Method of Characteristics Model

This section parallels the preceding section in presenting and dis-
cussing the results of simulated pressure, velocity, and temperature
response -following a step change in inlet temperature. The system is.
depicted in Figure 13 with all conditions as discussed earlier. The
thermal response model used for this:.example is the method of character-
istics model from Chapter-III, and the pressure-and velocity model is
from Appendix B, Four sets of results are compared in this:section with
each set resulting from using a different number of grid points along the
transmission line while keeping the total length constant.

As discussed in Appendix B, the points R and S in Figure 31 must lie
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between A and B for the method of characteristics solution to be stable.
This implies that for the maximum magnitude of (V + a), one must assure

that

Ax

s <

and thus the grid size AX implicitly determines the allowable step size,
At, or conversely., For this-example with a line 120 inches long the time
steps used were 0.0001, 0.00025, 0,005, and 0.001 seconds -which corres-
pond to grid increments of 5.45, 13,33, 30.0,'and,60.0 inches,
respectively.

The outlet temperature. and velocity responses for the method of
characteristics model with the above,time_stebs are shown in Figures 18
and 19. As expected, the smaller grid sizes produce a sharper rise in
outlet temperature, and one would expect the response to approach a step
change with even smaller time steps and grid increments. For the
largest step, which corresponds-to only two grids for the entire line,
the response.reflects the reduction in- the 6rder of the resulting model,
and one.cannot expect a sharp temperature rise to occur. Unlike the
operational solution, there is no oscillation in?any of the responses
which is a result that is consistent with the actual results one would
expect to observe in the laboratory.

Figure 20 is the simulated pressure résponse-at the midpoint of fhe
transmission line.  The results are consistent with Figures 18 and 19,
and again, the larger grid Sizes produce faster responses. The pressure
rise which accompanies the:mOVement of the temperature front through ﬁhe;
line is an interesting phenomena which thé operational model . could not

demonstrate. The interaction of pressure and temperature mainly through
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viscosity is -clearly shown by Figure 20,

The one-dimensional wall model developed in Chapter III was.used for
the method of characteristics line simulation. Figure 21 shows the re-
sulting responses for the inside and outside wall temperature at the line
inlet, at the center, and at the outlet. The results shown are for a
time step of 0.0001 seconds, and the responses for the other time steps
are very similar. At the final time, the predicted wall temperatures are
increasing at approximately 30 degrees Fahrenheit per second.: Since the
inside convection coefficient is much higher than the outside value, one.
would expect that if the simulation had continued, the wall temperature
would approach that of the fluid in an additional. four to five seconds.

The method of characteristics line model can. accommodate flow re-
versals with no difficulty. The inlet and outlet are not specified
a priori for the method of characteristics, and all of the instantaneous
line end combinations of inlet-outlet, outlet-inlet, inlet-inlet, and
outlet-outlet are valid. Since.for this example the constant pressure
sources were used, the terms inlet and outlet have been utilized for dis-
cussion purposes only,

The problem which exists with the operational model of determining
fluid properties also exists in the method of characteristics. The dif-
ference in velocity and pressure responses due to grid size variation is
shown by Figures 19 and 20. These differences are caused by the varia-
tion in the predicted temperature responses in Figure 18. As the model
for the larger grid sizes predicts a faster temperature rise, there is a
corresponding decrease in the most significant fluid property, viscosity.
The decreased viscosity leads to higher accelerations and thus the in-

creased velocity response as shown in Figure 19. The increased rate .of
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temperature response results from interpolating the state of the fluid
between grid points.

Figure 22 depicts four grid points.from a general grid as shown in
Figure 8. In order to achieve an accurate pressure and velocity solu-
tion, Ax and At are chosen such that points R and S are near A and B,
respectively., Since the magnitude of the acoustic velocity, a, is much
greater than the fluid velocity, V, one can, for discussion purposes,
consider R approaching A, S approaching B, and H relatively close to C,
Calculating the pressure and velocity at D based on interpelated values
at R and S (basically A and B) is a good approximation which is accepted
to be of reasonable accuracy (8,9,10). However, point H must not be
taken as C or the effect of fluid velocity on temperature response will
be negated. Defining the temperature at point H by interpolating from A
to C (or from C to B) gives a poor estimate when a temperature front,
exists as in the example, There appear to be two alternatives one can
employ in simulations which will involve large temperature variationms.,

The most simple approach to achieve more accurate results is simply.
to use a small time step and grid size as demonstrated by Figures 18 and
19. The second alternative whiqh‘aﬁpears to merit investigation consists
of utilizing a smaller spatial grid for propagating temperature.than that
used for propagating pressure and velocity. The smaller grid‘with the
corresponding temperatures could be used to predict fluid properties
needed for the pressure and velocity calculations, and interpolated
pressure and velocity values could be used for temperature propagations.
This dual grid approach would require more calculation per time incre-
ment, implying a need to investigate both the accuracy and computational

load as compared to using a small step size with only one grid size. The
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author has not investigated the dual grid approach.

Variable and moving grids have been used by investigators in flow
field studies. The study which utilized a variable grid and most nearly .
parallels transmission line response was reported by Benson. (30). While
the variable grid method used by Benson could be implemented for the re-
ported study involving one component, it appears that such a method would:
be extremely difficult to implement effectively in a general hydraulic
system simulation program.

The first two example responses have demonstrated the response of
the transmission line models subject to a severe input, i,e,,‘a step
change. The following example demonstrates the response of a small
hydraulic system with parts of the system subjected to different tempera-

ture conditions.
Simulation of a Position Control Circuit

This section discusses . the simulation of the position control cir-
cuit shown in Figure 23. The system consists of -a closed-center position
system made up of the valve, actuator, linkage, and load with a pressure-
compensated variable-displacement pump for the hydraulic power source.
The line between the pump and valve is represented by a method of charac-
teristics model with the same parameters used for the preceding examples.,

The full details of each component model will not be presented here,
but the most important points will be summarized. The pump is modeled as
a nine piston pump with a maximum flow rate of approximately 33 gallons
per minute at 3750 revolutions per minute. Initially the pump is assumed
to be delivering maximum flow at: the set pressure of 3000 pounds per

square inch. The pump is modeled by a set of -five first-order
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differential equations. -

The valve is modeled as being closed-centered with an overlap of
10_10 inches., It is assumed that the discharge coefficient for the
metering orifices is 0.65 with a spool diameter of 0.375 inches. The
linkage which connects the valve, actuator, and external input is de-
signed to have a position gain of 10,

The actuator load consists of a 1000 pound weight plus a spring with
a spring rate of 2000 pounds per inch. The damping is assumed to be 105
pound seconds per inch at a temperature of 100 degrees Fahrenheit and 150
pound seconds per inch at 0 degrees. These damping values assume that 5
percent of the damping at 100 degrees is due to internal damping in-the
actuator and that 95 percent is external to the actuator and independent
of actuator temperature. The increase in damping results from the in-
creased viscosity of the fluid in the actuator as the temperature is de-
creased. The piston diameter for the actuator is 2.75 inches with a
total stroke of 10 inches. The original null position is chosen with the
actuator extended 5 inches.

The model for the-pump, line, actuator, and reservoir includes
thermal response for both the fluid and the component wall, In each case
the wall model is from Chapter III with the reservoir, line, and.actuator
modeled as cylindrical walls with the pump modgled as a cube, The
thermal model for the valve assumes.the valve to be adiabatic with
negligible fluid and wall mass.

The multiport representation for the system model is shown in.Figure
24, Each pressure and flow port contains a temperature variable which is
represented as discussed in Chapter III. The models for all pressure

flow ports were derived according to Chapter IV and assume that flow can
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be in either direction at any port. The algebraic equations for the
total system model were solved using a-sparse matrix method as discussed
in Appendix D with a prototype simulator as presented in Appendix C,

The system represented by Figures 23 and 24 was simulated using a
truncated ramp input, to the linkage. The ramp was chosen to produce an
input of 0.1 inches in 5 milliseconds which implies an actuator position
change of 1 inch, For one simulation all initial temperatures were as-
sumed to be 100 degrees Fahrenheit and the environmental.temperature was
chosen to be a constant 100 degrees. For a.second simulation the initial
temperature of the line and the actuator were reduced to zero degrees
with the environment also at zero. The following discussion considers.
the results of the two simulations.

The position response of the actuator to the ramp input is shown in
Figure 25, The two responses show very little difference and may lead
one to conclude either that temperature has no effect or that the model-
is not predicting any appreciable differences in response due to changes
in temperature. However, the corresponding actuator velocity shown in
Figure 26 shows that temperature is indeed having an effect on the pre-
dicted response. For the high temperature case, there is. less damping in
the -actuator with a resulting resonant response as the actuator reaches
the new null position. The lower temperature with the corresponding high
damping is less oscillatorylasvthe valve closes and the fluid entrapped.
in the actuator increases the effective spring rate for the actuator and
load. Figure 26 also shows, as expected, that the initial velocity is.
higher for the warmer system.

The differential pressure across the actuator is shown in Figure 27.

The responses are consistent with Figure 26, and again the warmer system
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is more oscillatory as the control valve closes. The final differential
pressure corresponds to that required to offset the 2000 pound spring
force with the actuator area of 6 square inches. The initial pressure
differential is -zero due to the assumed initial steady-state conditions.

The pressure and temperature responses at the connections of the
actuator and valve and the line and valve are shown. in Figures 28 and 29.
The initial conditions for the line were 3000 pounds per .square inch with
the fluid at zero velocity. Both the pressure and temperature responses
show a relatively smooth.response-until the valve begins to close after
which the effects of the mechanical oscillation are seen. The initial
temperature drops shown in Figure 29 are not what the author expected,
although a temperature drop could occur since fluid expansion is included
in the line model. The temperature for the low temperature simulation
does not appear to approach the pump outlet temperature of approximately
100 degrees .Fahrenheit since the through flow is not sufficient for the
temperature front to have reached the valve. A larger input should re-
sult in a temperature profile at the downstream end of the line which is
similar to the response shown in Figure 18 with a time step of 0.0001
seconds.

The routines developed for the examples in this chapter were written.
to demonstrate the models and algorithms. As a result, the coding was
not particularly clean and many direct but slow computational approaches
were used, For example, the‘acoustic,velocity was recalculated for every
grid point in the method of characteristics line model based on.the cur-
rent interpolated fluid properties. Calculations such as this can be-
simplified or -eliminated in a finai program and thus make it possible to

then evaluate the cost of a simulation in.a realistic manner. Due to
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reasons such as this an evaluation of the computation time for the
example simulations would be of little value.

This example has demonstrated the application of models and algo-
rithms developed in this work to a small system simulation. The programs
used for the simulation were based on the algorithms and concepts from
Chapter IV and Appendices C and D with the models from Chapter III and
Appendices A and B. ' The work of the preprocessor from Appendix C was
done manually to construct the system model for the prototype simulation
program. Each component as shown in Figure 24 was modeled by a separate
Fortran subroutine using the storage concepts from Appendix C. There did
not appear to be any obstacles which would prevent the full implementa-
tion of. a hydraulic system simulation program based on the preprocessor

and simulator approach.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Thermal response can be predicted simultaneously with mechanical
response for general hydraulic circuits. The models of Chapter III
demonstrate that transient thermal effects can be included in a system
model in a direct manner and that the equations for thermal response are
of the same forms .as for mechanical response. Except for the operational
line model, thermal mo&els can be implemented with no a priori flow
direction assumptions, which enhances the consistency between thermal and
mechanical models. The component wall thermal response model in Chapter
III allows .wall temperature to depend on one spatial dimension with the
same order differential equation which is required for a lumped tempera-
ture model.

A Fortran program can be written based on the design in Appendix C
and the sparse matrix implementation concepts from Appendix D. - The com-
ponent orientation throughout the program design assures that the program
will be readily expandable to any system and that new component routines
can be added easily. Component routine syntax can be very simple due . to
both the use of Fortran argument lists and the use of the sparse matrix

solution technique. -
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Recommendations for Further Study.

The simulation of hydraulic systems is an area in which much work is
still required. Thisrstudy in thermal.response must also be followed by.
other investigations. Some recommendations: which apply in part to
‘thermal response studies and in.part to the general area of system
simulation are the following.

~1) Develop the preprocessor and simulator in Fortran for execution
on at least IBM and CDC computers., Also develop a component
library which can be expanded continually.

2) Design and perform experimental studies to allow the verifica-
tion of the thermal models developed in. this study and to
identify appropriate heat transfer coefficients.

3) Develop alternate operational thermal line models which will
allow flow reversals to occur.

<§3) Develop an'algorithm for calculating the steady state response
ﬂ of a general dynamic system both for initial conditions and for
steady state analysis,

5) Investigate the possibility of combining the algorithms by.
Smith (1), the integration algorithms by Gear (70) and Iyengar
(71), and this work within a component-oriented simulation
program,

The first .recommendation should be able to be accomplished with
little difficulty. The experimental work‘must be done . in order to verify
thermal models which can then .be used with confidence.in system.simu1a7;
tions. The additional thermal line modgling work is important for the
reasons discussed in Chapter V. The last two recommendations are appli-

cable to simulation in-general and are important studies independent of.
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the particular systems considered. It seems possible that 4 and 5 may be
achieved if Gear's integration method can be implemented successfully in.
a component oriented program. No matter what.approach is successful, the.
final result must be user-oriented since any of these efforts can expect

to be applied only if they are available in a highly usable form.
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APPENDIX A

DEVELOPMENT OF THE THERMAL ENERGY EQUATION

FOR A HYDRAULIC TRANSMISSION LINE

The momentum and continuity equations generally used to model fluid
transmission lines constitute a one-dimensional line model with friction
assumed to be concentrated at the line wall. A thermal energy model
which is consistent with the pressure-and flow model is developed in this
appendix. This energy model is used in Chapter III to develop the solu-
tions for the thermal response of -the fluid in a transmission line. -

A cylindrical fluid element is - shown in Figure 30. An energy

balance on the element can be expressed as

" rate of accumulation | rate of internal and |
of internal and. = | kinetic energy in
kinetic energy | by convection
“rate of internal and | [ net rate of energy |
- kinetic energy out + added by
| by convenction _| | heat transfer
net rate of work | [increase in internal” ]
- done by element + energy -due to
on surrounding  _| __viscous dissipation _|

This statement of the unsteady energy balance on the element is similar
to that presented by Bird, et al. (64). If one assumes that gravita-
tional effects are negligible and that the last term is-exactly the

frictional losses from the flow model, then each of the terms can be
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dx

-

Figure 30. Representation
of a Cylindri-
cal Fluid
Element
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evaluated as . follows:

. 2
rate of accumulation 5 T, 2
of internal. and =37 (wripudx + 535—-pv dx) s
- kinetic energy - gc.

rate of internal and V2‘
kinetic energy in = wripV(u\+ =% ) ,
by convection ¢
rate of internal and 2
) . ' 2 Vv
kinetic energy out = ﬂripV(u + Ej—ua
by convection &
2
9 2 V
* sz (ﬂripV(u +_2ch))dx R

net rate of energy 53 3Tf
added by = 7mr, x= (k ===)dx + 2mr,q dx ,
heat transfer i -ox ox LW

net rate of work
done by element = - nr?(gz - dﬂLﬁ-l-E—-(PV)dX))
: i™d J J ox
on surrounding
Zwri
- -7 erdx R
and
increase in internal ZTrri
energy due to = - ITWVI dx

viscous dissipation

The term q, is defined as the heat transfer from the wall to the fluid
element and will later be expressed as convective heat transfer,
If the algebraic terms are substituted into the above equality with

the terms of order dx retained, an energy equation can be written as.
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o' T
5 1 .2, 3 1 2 £
P+ 55—V = - g5 VU + 55=V)) + k —
c 9x
L2 13 2 2
+ ;;'qw - jﬁs; (PV)-- 3;; TWV + Jri ITWV . (Aol)

The corresponding momentum, continuity, and state equations used to model

transmissionsas presented in references (10), (11), and (62) are:

2T
oP e aV oV ’
W GerVwd C ’ (A-2)
oP aP a2p oV
-é-E-+V-3—)-C-+-é-;—-J-€-=,O , (A.3)
and
] 3
AN -
T T
£ £
where

and the .concentrated wall shear stress T, creates a steady loss which can

be expressed in terms of the widely used friction factor, f, as

An unsteady, frequency-dependent shear effect may also be included as
discussed by Zielke (10), Brown (11), and Trikha (12).

Equation A.,1 is the total energy and can be simplified by sub-
tracting the mechanical energy equation which is the velocity, V, times
Equation A.2. If one multiplies V/J times A.2 and subtracts the result

from A.1, the final result is



111

3T
o ~ 1 2.9p op oV o ou f 2
5 PW = - gy Vgt Vot pgg) - ugx (BV) - oV 5+ k'axz A
P V- 2 "
J ox  Jr, lTle . (A.5)
The term
B, vy, 3V
5t © VxR ok
is the continuity equation in terms of density and velocity and is.
identically zero. This reduces Equation A.5, after rearranging, to
32T
du % 3 _ du £ 2 POV 2
P’ u(at * 39X (bV)) = - oV 5% k S 2 % T T 5% T TT lTwvl
X i i
(A.6)

where the term in parenthesis is again identically the continuity equa-
tion and is thus zero. The thermal energy equation in terms of internal

energy can then be stated as

3°T
u ou P oV f 2 2
p(at *V ax) =T J ox *k 5 2 +‘r° qw * Jr. !val ¢ (A.7)
‘ X i i v

This equation can.be stated in terms of pressure and temperature if
one assumes u = u(P,Tf) as done by Bird, et al. (64). An identity then
is

ou ou
(gsﬂTf dp + (gﬁzﬂp dT,

du

- 8y yde_ ., ¢,
= - (<P + Tf(an)p) o + ¢ dT; (A.8)

where cy is the specific heat at constant volume. If identity A.8 is.
substituted into A.7 and the continuity equation is substituted twice,

the result is-
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2
oT 3T 3°T
£ ) f 3P . BV s 2 2
pe, (g * ) (an)p >tk ;;5— + ;I-qw + 3;; |rWV| . (A.9)

The partial derivative of pressure with respect to temperature at
constant density must be evaluated in order to apply Equation A.9.

This can be accomplished as follows.. In general, p = p(P,Tf), and

constant density implies dp = 0. Thus

1}

do = 0= (289, dr_ + c ) dP
oT f P f T

f

( )
T P

(7)) = (A.10)
de‘p (aP)Tf

The state Equation A.4 for constant temperature can be rearranged to

oT oT oT o-T 2h
f £ 9P P " f i 2
pcv(at *V X - (52'+ 3?9 *k axz * T (Ti - Tf) K Jri lTwyl
(A.11)

where Ti is the inside line wall temperature and the convective heat

transfer expression

q, = by (T; - Ty
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has been substituted. This is the form of the energy used for the method
of characteristics solutien in. Chapter III.  The operational solution,
also in Chapter .III, is based on a simplified form of Equation A.1ll.

Reference  (8) contains fluid property data for three hydraulic
fluids which are MIL-H-5606, MIL-H-83282, and Skydrol 500B. Based én the
data for these fluids, the maximum value of (de/J) can be calculated to
be 3.6 X 10_5° Thus, the term containing this coefficient is insignifi-
cant, The thermal conductivity of hydraulic fluids is of the order.of
10—6 Btu/ (sec-in-°F) which makes the thermal conductivity term negligible.
unless a large second derivative of temperature exists; however, the con-
ductivity term can be neglected if the length to radius ratio for a line
is large which implies that heat transfer to the wall will dominate.

The friction term can be eliminated by realizing that the pressure
drop due to friction can be expressed in terms of Ty and then performing
a simple order of magnitude analysis. If T, and fluid properties are
constant, one can express the steady-state temperature increase due. to

friction for a line of .length % as follows:

AP
pchTf =5 s
Ty ap
r. % *
i
ZTWZ
AT = >
£ pcvriJ
- AP
pcVJ

If one uses nominal values for p and c, of 0.03 1bm/in3 and

0.5 Btu/(lbm°F) and uses the (in-1b-sec) units, then the result is
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AT, = 7.1 X 1073 ap

where ATf is the total temperature increase in steady-state.due to the.
pressure drop AP, Obviously a large pressure drop must be considered be-
fore the pressure drop (frictional effect) will be significant.

If all of the terms on the right of Equation A.l1ll are eliminated

except the heat transfer term, then a simplified equation can be written

as
8T 3T 2h
£ £ 74
e, GGt Vo) = N (Ti‘- Te) . (A.12)

This is the equation used for the operational solution in Chapter III.



APPENDIX B

SOLUTION OF THE MOMENTUM AND CONTINUITY EQUATIONS

BY THE METHOD OF CHARACTERISTICS

The method of characteristics solution for the thermal response of
fluid in a line has been developed in Chapter .III. This appendix pre-
sents a brief summary of the corresponding selution for pressure and flow
which must be performed simultaneously. Details of the solution pre-
sented here can be found in references (8,9,10,11,12, and 65).

If one multiplies the momentum Equation A.2 by gc/p and the

continuity Equation A.3 by g /(pa), the respective results are
Yy Eq 8, %

-E-‘f';%i-*f Gr+ V5 *%‘}“0 (B.1)
and
‘f‘%%*%"%&*a%” : (8.2)
The sum and difference of Equation B.l and B.2 are
EEEE"* (a+V)-B-—Ij+\Ey-;+ (a+V)§-§+.2_g_9.T_Vl=o (B.3)
pa [3t 7o ot ox pT, \

and

g ; 2g T
c |oP oP oV oP C W _
- 5—3-: E—E + (~a + V) 8; + I;t + (-a + V) X + ‘—p}T =0 . CB=4)

Each of the bracketed terms define a total time derivative according to
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the identity

g——:-@.—’.+§——i¥-~
dt ot ox dt
along the-curve
dx
Fr V+a (B.5)
or
dx _
a—t-—v-a . (B.6)

Equations B.5 and B.6 define the pressure wave characteristics
in the (x,t) plane as shown in Figure 31. With the appropriate substitu-

tions, Equations B.3 and B.4 can be written as

Ec dP'+ dav _ chTw

-5-;-d—t— dt—-'— pri (Ba7)
along the curves
dx _
'a-E-—V-Fa
and
. dp  dv 2gcTw
- e s o —— - (Bu8)
pa.dt: dt pr.
along the curves
dx  _
aﬁE—V-.a

The pressure, velocity, and fluid properties at the points-R and S
in Figure 31 can be evaluated by interpolation since all of the quanti-.
ties .are known at points A, B, and C. If one assumes that the wave

characteristics are straight lines from R to D and S to D, a first-order
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lTA PRn ¢ R
e Ax > Ax——l

Figure 31. Illustration of the Pressure Wave
and Thermal Energy Character-
istics
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integration of Equations B.7 and B.8 and simultaneous solution for

the pressure and velocity at point D results in

_ 1
PD = -5 (QR + CL) , (B.9)
and
V. = =i (C. - C.) (B.10)
D sz “"R L ¢
where
‘ Zarw
CR = ~’PS + Z VS - = At ,
i |S
2aTw
CL - PR ¥ chR,+ T, At ’
i |[R
and
Z:?—'-e.
c
c

It is shown in reference.(3l) that the solution is stable if points
R and S lie between A and B. This .implies that the thermal energy solu-
tion developed in Chapter III is stable whenever the solution given by
Equations B.9 and B.10 is stable. This can be verified by observing
the pathline or thermal characteristic shown passing through point H in
Figure 31. For all values of acoustic velocity, a, point H-.must lie be-
tween R and S, and since, in general, |V| << a, Ax and At can be chosen
such that R isfvery‘nearzA, S is very near B, and H is relatively near C,

This is considered further in Chapter V.



APPENDIX C

PREPROCESSOR AND SIMULATOR APPROACH

TO HYDRAULIC SYSTEM SIMULATION

This appendix considers the conceptual design of a hydraulic system
simulation package which is based on a preprocessor and simulator ap-
proach, The concepts presented are valid whether or not thermal effects,
are to be simulated; and in fact, any type. of system which can be repre- -
sented -as ‘a set of -coupled components could be considered. The contents:
of this-appendix are a result of the author's analysis of existing hy-
draulic system simulation programs and particular general programs for
continuous systems. The purpose of the appendix is to document a pro-.
gramming approach which can be-used to develop a more versatile hydraulic
system simulation program than is presently available.

The two most significant hydraulic system simulation programs which
are .currently available are the-McDonnell Aircraft HYTRAN (8) and HYDSIM
by C. K. Smith (59,1). The HYDSIM program structure is more general and
has the capability to accept more’ types of component models than the
HYTRAN program. HYTﬁAN/ls designed to use the method of characteristics
line model only, which is one model type which cannot.be easily imple-
mented in HYDSIM.. Both of the routines have .two characteristics which
are undesirable from the viewpoint of a user. These are as follow.

1) \T?é programs depend on a component modél.routine library. The

addition of new components to library is, at best, very
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difficult. In HYDSIM, the difficulties arise from a very
complex model routine structure, and in HYTRAN, the lack of port.
variables other than pressure and flow causes the difficulty.

The amount .,0of computer core storage is nearly independent of the
complexity of the-systgﬁ.being simulated. This independence
derives from the use of Fgrtran¢common~blocks for component
variable storage and from the concept of loading the entire
component library for all simulations. This makes small system
simulations unnecessarily costly, makes the expansion to very.

large systems difficult, and implicitly penalizes having both

simple and complex component models in the component library.!

It is the author's opinion that desirable characteristics for a

simulation program include the following. -

1)

2)

3)

Component orientation must allow a system to be described in
terms of coupled components. Permissible port variables at the
component interfaces should include all those variables of
interest which occur in fhe physical systems to be simulated.
User-supplied data to specify a system configuration and the
parameters .for a simulation should be in a free format which is
convenient for the user.

The inclusion of new models should be possible both temporarily
and permanently with as little effort as possible. Model rou-
tines should have a simple syntax; the specification of new

models to the simulation program should be straightforward; and

11t is understood by the author that a HYTRAN version not yet.re-
leased will not use Fortran common-blocks .for component routine variable

storage.
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the interfacing of component ports should be generalized.

4) The computer memory storage requirements of a simulation program

should -reflect the complexity of the system being simulated.

5) The program should.be designed and coded in an-efficient manner

but not in such a way that user-orientation is reduced.

It is not possible to achieve all of the.above objectives with a
simulation routine written. as one Fortran program. A single Fortran pro-
gram cannot expand as required by 4) above, and item 3) requires coding
changes .if one is to permanently .add routines to a program such as HYDSIM
or HYTRAN, - Also, if item 2) is to be achieved the result will be a
rather large input processor which will be used during the initialization
of a simulation and will not be needed while the simulated response is
being calculated. Characteristics 1) and 5) are matters of program
design and can be achieved if the overall simulation package is correctly

structured.
Preprocessor and Simulator Concept

Several of the general purpose simulation programs such as CSMP/360
(4), DSL/90 (3), and MIMIC (2) utilize a preprocessor and simulator ap-
proach to system simulation.  The preprocessor portion of-each program
reads the user data and produces output to be used by the simulator. As
examples, the model description which a user supplies for CSMP/360 is
sorted and processed into a Fortran subroutine. This routine is coempiled
by the regular Fortran compiler and is used by the simulator for the
total description of the system model. Similarly, MIMIC translates the
user input data directly to a machine language routine which is used by

the simulator. In each case the user input is read by a preprocessor
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whose function is complete once the input data has been translated to a
second form. The preprocessor is then replaced by a simulator that cal-
culates -and reports the system response. A similar approach can be used
to develop a Fortran based hydraulic‘system simulation which will have
the characteristics listed above.

The conceptual operation of a block-orientated preprocessor and
simulator can be represented as in Figure 32, In this figure the input.
to be supplied by the user is illustrated by the card images. The pri-
mary user input .to the preprocessor is used in setting up the simulation
to be done by the simulator.  The preprocessor should produce three.
Fortran routines which are specific for the hydarulic system defined by
the user. These are a main program to allocate array storage via Fortran
dimension statements.and call the simulator, a routine to direct the
calling of model routines, and a routine.tb direct the selution of alge-
braic equation sets within the.system model. The advantages of this
approach are as follow. -

1) The preprocessor can be large since it is not part.of the

simulator.

2) Array storage can be allocated to match the size of the system
being simulated since a small main program is always written and
compiled.

3) Only the component routines which are actually needed from the-
component library need be loaded thus reducing the simulation
program size.

4) The optional new model routines can be permanently added to the.
simulation package by adding them to the data file which des-_

L

cribes model routines and to the component library. No
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modifications of the preprocessor or simulator should be
required.

The preprocessor approach to simulation can .be-contrasted to that.
shown in Figure 33. The programs HYDSIM and HYTRAN both follow Figure 33
in which the primary user input is not used until the simulation package
is all loaded and is executing. This.results in a fixed program size and
in little possibility for adding new models without changing the simula-
tion program coding. The optional new model routines shown in Figure 33
are temporary additions‘which at most replace dummy routines in the.
component library. The only apparent advantage to the approach in Figure
33 is that it parallels the regular execution of a Fortran program thus
requiring no special job control requirements.

The details needed to complete.Figure 32 can be outlined to complete
the conceptual design of.a preprocessor and simulator for block-oriented
hydraulic system simulation. The following section contains this part of

the design.

Program Design Requirements .

User Input Data

The user input data for a hydraulic system simulation must specify
four types of information which are a description of new model routines,
a description of the system topology, the parameters for component
models, and simulation control variables which set quantities such as the
simulation time, variables to be tabulated and plotted, integration step
size, etc. The topology and other data can be specified in a manner
similar to that used in HYDSIM. Component port connections can be

specified on data cards as .
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3(1) = 4(6)PG

to indicate that port 1 .of component 3 is connected to port 6 of com-
ponent 4.  The "P'" and "G'" are optional and indicate that the port vari- .
ables at this connection are to be.printed and graphed. The parameters

for a component can be specified as.
4/2.1, 1.0E4, -6, 5.1/

to indicate that the.five parameters for component 4 are the values be-
tween the slashes. The type of component can be given by an.expression

such as-
PUMP/ 3/

to indicate that component 3 is the model routine PUMP from the component
library. The simulation control variables can simply be specified such

as
DELT =-0.001

for each -of the contrel variables.

This-completes a model format for each.type of information except
the definition of a new model routine. It is intended that each of the.
above types of data can be punched anywhere on a card and that one card
may contain several data items in any order. In general, one should not.
expect the user to adhere to a set of strict input rules which can be
avoided by.allowing the preprocessor to accept data liberally.

The data needed to define a new component model consists of three
parts which are the specification of the number of variables used by the

model, a specification of each dependent port.variable, and a
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specification of the algebraic equation sets within the model. Assume
that a variable notation such as that shown in Table II is used and that
a new routine by the name of SAMPL is to be described. If the charac-
teristics' of the model are as shown in.Table III and one requires that
all model routines are subroutines with the argument list (X, DX, S, Y,
P, A, G, PVIND, PVDEP), then all of the user data required to define
SAMPL can .be presented as shown in Table IV.

Table IV is a set of data cards which specify all of the information
in Table III. These cards can be read by the preprocessor along with the
data described earlier and again no specific placement of the data is
assumed. The information is sufficient to define a new model routine
and is, in fact, the same type of data which the component data file in
Figure 32 must contain for each component model routine. .

For some model routines the array storage requirements depend on
parameters. For example, a method of characteristics line model storage.
requirements .depends on the line length, fluid properties, and the inte-
gration step size. Such models can be implemented by having the user
write a Fortran subprogram which is passed the component routine name or.
a code number, the parameters for the component, and the integration
step. The routine must calculate the amount of X and S storage required
and return the same. Actually, two such storage definition routines are
required with one to define new model requirements and one to define

storage requirements-for model routines in the component library.

Library Component Data File

A component data file is .necessary to define the characteristics of

the model routines in the component library. The data file must contain
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TABLE II

VARIABLE NOTATION FOR COMPONENT ROUTINE MODELS

Variable Definition
Ad, I) The derivative of the Ith algebraic equation with
respect to the Jth variable in the equation.
DELT - The integration time step.
DX (I) The Ith state derivative.
G(ID) The value .of algebraic equation I.
NP The number of parameters, P(i), used in-a component

model. NP > 0.
NPORTS The number of ports defined for a component. .

NS The number of storage variables, S(i), used in a
component model. NS > 0.

NX The number of state variables, X(i), used in‘a
component model. NX > 0.

NY The number of algebraic variables, Y(i), used in a
component, NY > 0,

P(I) The parameters needed to describe a component.

PVDEP (1, I) The dependent variable at port I.

PVDEP (Z, I) The dependent temperature at port I.

PVIND(1, I) The -independent variable at port I.

PVIND(2, I) The independent temperature at port I.

S(I) A storage array which can be used within a component

model routine for storing model information, solving
internal algebraic equations, or propagating
difference equations. -

X(I) The Ith state variable,

Y(I) The Ith algebraic variable.




TABLE III

SPECIFICATIONS FOR EXAMPLE MODEL -ROUTINE SAMPL.

Continuous State Variables

Discrete State Variables or
Internal Storage

Algebraic Equations

Parameters Required

Ports

Port Variables Defined by
Algebraic Variables

1° 72
S1’ SZ’ SS’ S4
Set 1

gy (Y}, Yg, PVIND, )
Set 2

g;(Y,, Y,, PVIND
g,(Y,, Y, PVIND

1,2)
2,3

Pl’ P2, caey P6

Ports 2 and 3 are pressure and
flow ports with pressure inde-

pendent.

Port 1 is a force and velocity
port with force independent.

PVDEP, | = Y,
PVDER) ;= Y,
PVDEP, , = ¥,3
PVDEP, . = Y,

All other independent port

variables are defined in terms .

of X, S, and time..
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TABLE IV

SAMPLE DATA TO DEFINE NEW MODEL ROUTINE SAMPL:

SUBROUTINE SAMPL- (X(2), DX(2), S(4), Y(4), P(6),
PVIND(3), PVDEP (3))

SET = 1
GL(Y(1), Y(3), PVIND(1,1))
G2(Y(1), Y(3))

SET = 2
- G1(Y(2), Y(4), PVIND(1,2))
G2(Y(2), Y(4), PVIND(2,3))

PVIND(1,1) = PRES, PVIND(1,3) = PRES,
PVIND(1,2) = FORCE

PVDEP(1,1) = Y(1), PVDEP(1,3) = Y(2)
PVDEP(2,2) = Y(4), PVDEP(2,3) =.Y(4)
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one set of information for each component to allow the processor to in-
clude that component in a simulation.  The information which must be-
stored in the file is identical to that shown for the 'new model" in
Table IV. The data can be stored more efficiently than actually storing
card images in the file at .the discretion of the programmefé It is as-
sumed that a special program must be written to create the data file and
that the input for the creation program will be similar to that in Table
IV. This program would be rerun each time a model routine was.to be.

permanently added to the component library.

Component Model Routine Structure

Component model routines,should be .structured in a manner which en-
courages the user to add new'modélsras opposed to being overwhelmingly
complex. This can be achieved if the routines.all follow one skeleton .
form and use a simple variable set such as shown in Table II. All array
variables should be passed to a model routine via an argument list which

implies that all routines-should begin in a manner similar to

SUBROUTINE SAMPL (X, DX, S, Y, P, A, G, PVIND, PVDEP)

DIMENSION X(1), DX(1), S(1), Y(1), P(1), A(NG,1), G(1),
PVIND(2,1), PVDEP(2,1)

COMMON . . . scalar variables . . .

GO TO (100, 200, 300, . . .), MODE-

where NG could be specified through common: The variable MODE:would
specify whether the routine is to perform initialization, evaluate state
derivatives, evaluate port variables, etc. MODE would be defined by the

simulation routine, and a user wouldlonly_have to code the operations
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required by each MODE value.

Each array used by each routine would begin at the first element
such as X(1), Y(1), A(1,1), etc., and would proceed to the maximum ele-
ment to be.used in the routine. The preprocessor must allocate individ-
ual routine storage space in.a large array, but the user need not be
concerned with this.except to.the extent required by Table IV. The
variables from the list in Table II which must be defined by a . routine
include DX, S, A, G, and PVDEP., Each must be defined as discussed in
Chapter IV or as done in the HYDSIM (59) program, although HYDSIM uses a

much more complex variable syntax.

Preprocessor Program

The preprocessor program must interpret the user input.data and con-
struct a system model which corresponds to the user's hydraulic circuit.
It should write a main program which dimensions an array large enough for
all the storage required by the component routines.that are to be used.
The main program must call the simulator and pass the storage array as an
argument. The simulator must control the calculation of the simulated
response -and must have available a model description routine also written
by the preprocessor.

The simultor needs to call only one routine and pass the storage
array as an argument. The routine must be written by the preprocessor
and must call the component model routines for the user's system. When
the calls to model routines are made, the arguments must be elements.of
the storage array. For example, assume the main program contains
DIMENSION B(500) and that B is passed to the major simulation routine

which in turn passes it to.the model routine. If the routine SAMPL from
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the earlier discussion is allocated the storage from B(9) to B(37), then

a call to SAMPL could appear as

CALL SAMPL (B(9), B(11), B(13), B(16), B(20), A,F

B(26), B(32)).

Thus, X(1) and X(2) in SAMPL would correspond to B(9) and B(10), DX(1)
and DX(2) would correspond to B(1l) and B(12), etc. The bookkeeping
associated with allocating and using space in such a manner can be done
within the preprocessor and the simulator without being of concern to the
user, The user only need be concerned with developing and present&ng
models as discussed earlier.

A second,sﬁbroutine which must be written by the simulator must
control the calling of component model routines during the solution of
algebraic equation sets. This routine must supply the Jacobian matrix
and equation values to a solution method such as the block-oriented
Newton-Raphson algorithm defined by Smith (1) and can do so by appro-
priately calling component routines. The component routines in turn
evaluate the Jacobian elements for the equations within.the component.
When all of the component routines related to an equation have been.
called, the full Jacobian will be available as will the equation values.
If a sparse matrix .approach is used to eliminate the zeroes in the
Jacobian, the algebraic equation control routine written by the preproc-
essor must also define the sparse solution information discussed in
Appendix D.

Figure 32 also indicates that the preprocessor must write a tempo-
rary data file to be read by the simulator. This file must contain all

of the parameters from the user input data plus other control vectors
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needed to do the simulation. The control vectors will include quantities
such ‘as-the subscripts of variables :to be printed and plotted, pointers

to locate state variables in the large storage array, integration control
data, and the information required to solve the algebraic equation sets.
If a sparse matrix method is used, the algebraic equation set information
would be similar to that discussed in. Appendix D. The data from the file
must be read by the simulator during initialization. After the data is
read, the simulator should immediately be ready to begin the simulation
since no error-checking need be done except to assure. that .a preprocessor
data file was .read. It is conceivable that the data file could contain
information for multiple runs, and that at the end of each run the
simulator would attempt to read another set of data until an end of file
occurred.

A flowchart for the preprocessor is shown in Figure 34. The flow-
chart is intended to identify the major operations which must be per
formed in the preprocessing. The handling of user input data is further
detailed in Figure .35, An assumption in Figure 35 is that one data card
may only contain one entry of the types discussed earlier. This assump--
tion simplifies the understanding of the steps in processing the input
data, but is not a requirement for actual program implementation. The
details of determining storage requirements are shown in Figure 36. The
main feature of the storage specification algorithm is the option of -cal-
culating the requirements based on the parameters for a particular com-
ponent,  The equation sorting required in-Figure 34 is detailed in the

reference cited and can be implemented directly.
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Simulator Program

The simulator program shown in Figure 32 controls.the calculation of.
the simulated response. The major functions which the simulator must
perform are integration, printing tabular results, and plotting results.
The integration depends -on the routine to call model routines discussed
earlier and also on the solution of the algebraic equations‘which is con-
trolled external to the major simulator routine..

A convenient way to achieve control of algebraic equation solving
is to have the routine which the preprocessor prodﬁges call an equation
solver. The equation solver can.in turn call the algebraic equation
evaluation routine from the preprocessor to obtain the Jacobian and equa-
tion values. If this approach is used the routine which controls the
simulation need only call one routine and all derivative values can be
made available on return. If no algebraic equation sets exist in.a sys-
tem model, the call to the solver can be omitted with no change in the
flow of the central control routine..

It would be useful for the central .integrator to define a variable
which indicates the current status of the integration algorithm. For
example, if an integration algorithm requires four derivative evaluations
per time step, a variable could be set to 1, 2, 3, or 4, to indicate the
evaluation being done. Routines such as a method of characteristics line
model -could then propagate internal difference-equations based on the
integrator status. This would simplify the propagation of discrete
states along with continuous state variables.

A flowchart for the. simulator is shown in Figure 37. The figure
indicates the basic operations which must be performed for a simulation.

The basic functions of routine MODEL are shown'in Figure 38. The routine
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essentially consists of calls to component routines-along with a-call to
an equation solver if algebraic equation sets are present. The solution
of algebraic equation sets requires a routine as depicted in Figure 39 to.
evaluate the Jacobian and equations for each set. The individual steps .
in evaluating the Jacobian for one equation set when multiple.components -
are involved are shown in Figure 39.

This appendix has briefly considered design concepts which can be.
implemented to form a versatile, block-oriented simulation program. The
example simulations presented in Chapter V were performed with a program
based on the concepts presented here. The preprocessor portion of the.
simulation was done manually for expediency and to aid in.verifying the
concepts for this appendix. Aside from programming details there seems
to be no obstacles to prevent implementing a computer code which follows

Figure 32 and possesses the desirable characteristics stated earlier.
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APPENDIX D

USE OF A SPARSE MATRIX SOLUTION IN

BLOCK-ORIENTED SIMULATION

The discussion in Chapter IV and Appendix C assumes that algebraic.
equations can be used to describe a component model. Smith has detailed
an algorithm for solving the sets.of coupled algebraic equations which
result when components are coupled into systems as well as an algorithm.
for identifying independent equation sets (1). His effort was . directed
toward constructing the component models in such a way that equation sets.
could cross component boundaries .and could still be solved in a general
manner,

Implicit in the Newton-Raphson solution used by Smith is the need to

repeatedly solve a linear equation set of the form

3g - -
3Y Yi‘(Yi+l Yi) =8 Y;

(D.1)

where g is a vector of n functions, Y is a vector of n unknowns, and the.
partial derivative is the Jacobian of g. The Jacobians which appear in
hydraulic system models often contain many zero terms thus suggesting
that a sparse solution method may be applicable. This appendix develops
an approach which allows.a general sparse matrix.solution method to be
implemented within a block-oriented system simulation program.

The literature contains numerous discussions which consider the

solution of linear equation sets -of the form
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AY = G.

where Aisn xn, Yisn x 1, and G is n x 1. However, the majority of.
the discussions are specialized for cases such as A being symmetric, A
being banded or partitioned, or A being too large to store within com-
puter memory, Since none of these conditions exist, in general, in hy--
draulic system models, it appears that the only applicable method is that
presented by Key for general A matrices (57). The study presented by Key
shows the method to be both time and storage effective if the A matrix is
at least fifty percent sparse. The method can be readily adapted for
simulation applications with small changes.

The solution algorithm by Key requires the representation of the
coefficient matrix in a compressed form, The compressed form consists of .
a matrix A' and a pointer matrix ICOL defined such that A'(I,J) is the
coefficient of the ICOL(I,J) unknown in the J'th equation for J ranging
from one.to the number of non-zero terms of row I in A, For example, the

equation set

1 4 0 Y1 4
0 6 0 Y2 = 7
0 2 5 Y3 9

1 4 1 2
Al = 6 - , and ICOL = 2 0 .
2 5 2 3

Although Key required that the A matrix be compressed by simply moving
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row elements to the left without changing order, the above matrices could

also be represented ‘as .

SN
—
N
—

=
1}
()8
]

,and ICOL = | 2 0

N
(53]
N
(93]

where the first row has-been reordered. - This change required modifica-
tion in Key's implementation of the algorithm but in no way changes the
basic procedures. It should be noted that the end of a row or the
presence of a.zero in ICOL indicates the end of the coefficients -for one
equation in A',

It is useful to consider how the A' matrix, which is in fact a
Jacobian, must be evaluated and stored in a Fortran, block-oriented simu-
lation prégram. Each row in A' is associated with one equation defined.
by one component model routine. If a component model contains several
coupled equations, then successive rows can be aésociated with the equa-
tions for one.component.  However, successive row elements in a Fortran
matrix are not contiguous storage locations since Fortran matrices are
allocated by column. If one evaluates A' transpose then successive terms
defined by one equation will appear as column entries and will be stored
in successive locations in a Fortran matrix. The result.is that a com-
ponent routine can be passed the beginning location for.a column in A'T,
and one can proceed to define one column for each equation in -the com-
ponent model,

As an example consider that two component routines together form a
set of three equations in three unknowns. Suppose that a component i de-

fines-a function gi which is the first equation in the set, and that a
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component j defines-gi and g% which are the second and third equétions in

the set. A'" will be defined as shown below.

*~

1£ AT is a3 x 3 Fortran matrix, then the actual storage locations

relative to the (1,1) position will be

1 4 7
2 5 8
3 6 9 .

Thus gi will define elements 1, 2, and.3; gi will define 4, 5, and 6; and

g% will define elements 7, 8, and 9. If the A'T matrix is sparse and no
equation contains more than two terms, then only six elements will be re-

quired and can be represented as

1 3 5
DU
ineither case one column is associated with one equation and consists of
consecutive storage which can be addreésed relative to the first entry in
the colum.,
Each component model routine can contain the statement
DIMENSION A(NG,1) where NG is defined through a common block. The rou-

tine defining g can be called as CALL name, (..., A(1,1), G(1), ...) to

evaluate the first column in A. The second routine can be entered with
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CALL namej(.qa, A(1,2), G(2), ...) which will make A(1,1) within the

routine be the (1;2) element in the Jacobian transpose.

within-the routine will be A(1,3) in the Jacobian transpose.

Similarly A(1,2) -

Within a

component routine the elements in A must be .defined as A(K,L) as the:

derivative of the L'th equation in a set of coupled equations appearing

in the component with respect to the K'th variable in the equation. Thus

within the coding for the routine SAMPL from Appendix C one would

include:

SUBROUTINE SAMPL (. . ., A, G,

DIMENSION A(NG, 1), G(1)

COMMON

«s NG, . . .

. ° o

C FOR SET 1.

G(1)

G(2)

A(1,1)
A(2,1)
A(3,1)
A(1,2)

A(2,2)

g, (Y(1), Y(3), PVIND(,1))
g,(¥Y(1), Y(3))

9g,/3Y(1)

0g,/5Y(3)

3g,/OPVIND (1,1)

Bgz/BY(l)

agz/BYCS)

1]
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C FOR SET 2

G(1) = g;(Y(2), Y(4), PVIND(1,2))

G(2) = g,(Y(2), Y(4), PVIND(2,3))

A(1,1) = 3g;/3Y(2)

A(2,1) = dg /3Y(4)

A(3,1) = dg,/3PVIND(1,2)
A(1,2) = 3g,/3Y(2)

A(2,2) = 3g,/3Y(4)

A(3,2) = g,/dPVIND(2,3)

o

It should be noted that the above'skeleton coding uses only the
elements of A and G which one Would use if the equations for model SAMPL
were a complete set. The placing of the colums.of A defined within
SAMPL is done by the call to the routine as discussed above. Also, the
only derivatives which are required are those which can be-non-zero.

Thus for set one above-A(2,1) corresponds to a derivative with respect to
Y(3), but A(2,1) would Be the derivative with respect to PVIND(1,1l) if
G(2) did not involve Y(3).

Only non-zero derivatives need be included in the Fortran matrix A
since it is actually a compressed Jacobian transpose to be used in
solving D,1 for (Yi+l - Yi) by a sparse matrix method. However, it is
necessary to specify exactly which variables appear in each equation in-
order to construct the ICOL matrix which identifies the elements in the
compressed A matrix. This can be realized through the following example.

Routine SAMPL from Appendix.C is component j and is coupled to com-

ponent i at port G of each component. In terms of the local variables
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and equations, the equation to be solved is:

for component i (assumed):
G(1) = g; (Y"(1), PVIND"(1,1))

pvDEPI (1) = ¥J (1)

for component j (from SAMPL, set 1):

G(1)

"

gl (Y (), Y3, pviod (1,1
g (), Y3

PVDEP? (1,1) = Y? (1)

I

G(2)

and

due to port coupling:

PVIND? (1,1) = PVDEP'(1,1)

PVIND (1,1)

PVDEPY (1,1)
The complete equation set is.then
gi(yicl), PVINDi(1,1) =0
g{(chl), Yj(3), PVINDj(l,l) =0
dodw, Y=o

with unknowns Yi(l), Yj(l), YjCS), Assume as before that Y (1) and Y(3)
for component j, SAMPL, are. allocated storage B(16) and B(18) and further
that Yi(l),is in B(83). The unknowns in terms of storage locations ‘are
then B(16), B(18), and B(83) which are the actual quantities which must
be determined.

A Newton-Raphson solution as described by Smith (1) requires the
derivatives .of each equation with respect to each unknown. The non-zero

terms of the compressed Jacobian transpose for the entire set are
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agi
A(l,l) = i 3
3Y" (1)
i i
- Bgl‘ Bgl
A(2,1) = —— = -~ : ,
3Y7 (1)  9PVIND™ (1,1)
BgJ
A(1;23'= . s
3Y7 (1)
BgJ
A(Z,Z) = j' ’
3Y? (3)
og) og)
A(3,2) = —5=— = . ,
3Y' (1)  dPVINDJ (1,1)
BgJ
A(1,3) = — ’
5Y7 (1)
j
Bgz
A(2,3) = o o
aY? (3).

The A(2,1) and A(3,2) terms are obtained by the chain rule. The A(2,1)
term is. actually

i
Bgl'

A(2,1)

av? (1)

i . .

%8y spvIND®(1,1) BPVDEPJ(1,1)
3PVIND'(1,1) 8PVDEPJ(1,1) 5Y7 (1)
Bgi'
= i (1) (l)
5PVIND™ (1,1) -

i
agl

SPVIND' (1,1)

An ICOL matrix to accompany the above equation set would be
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83 16 16
ICOL = 16 18 18
0 83 0 .

The preceding discussion and example can be summarized as follows.

1)

2)

3)

4)

5)

Component model routines can be developed to define sets of
equations ‘G(1), G(2), ..., G(N) -as functions of algebraic vari-
ables Y(1), Y(2), ..., and independent port variables. It is
necessary to define A(I,J) as the derivativglof G(J) with re-
spect to-the I'th variable in G(J).

An algebraic equation and port variable description can be as
shown in Table IV. This information aleng with the port coup-
ling information for a given system is sufficient to identify
sets of algebraic equations which cross component boundaries as
described by Smith (1).

An ICOL matrix must.be constructed to identify the actual
storage locations for unknowns in V terms of a global array such
as G used in the examples. This matrix can best be defined by a
preprocessor such as that discussed in Appendix C.

Actual elements of the compressed Jacobian transpose'can be
evaluated‘by calls to component routines-to.overlay the A(1l,1)
element in a component routine onto the A(1l,J) element in the A
matrix for an entire equation set. The row dimension of A must
be made available to component routines through common. Com-
ponent routines. also evaluate each function G.

Given the ICOL from 3) above, which can be constructed by a pre-
pfocessor, and the total A from 4) above, whose columns are de-

fined by component routines, plus G from 4) above, Equation D.l
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can be solved for Yi - Yi by a modified Key method (57). The

+1
required modifications are:
a) coding the algorithm to accept A as the transpose of the
coefficient matrix; and
b) coding the algorithm to accept ICOL as a transposed matrix
with elements of A appearing in any order. -

6) Implicit in the above steps is the definition of dependent port
variables which are not functions of only state or time as
PVDEP(*,+) = Y(*). Also it is assumed that models are developed
in such a way that the port coupling equations are of the form
PVDEPj(-,e) =_,PVINDi(-,-)°

The method outlined in this appendix was. used in the programming of-

the examples in Chapter V. The advantages of the approach are that zero
~ terms are eliminated and, more importantly, that the Jacobian can be
formed in a very unrestrictive manner. This allows coﬁponent model
routines to be developed using the simple variable names A, G, Y, etc.,
without any complex subscripting as done. in HYDSIM (1,59). If a system.
model results in large sets.of algebraic equations, the approach is also
attractive .due to savings .in both execution time and storage require-

ments.



2
VITA 7

Lynn Royce Ebbesen
Candidate for the Degree of

Doctor of Philosophy

Thesis: DIGITAL COMPUTER SIMULATION OF THE MECHANICAL AND THERMAL:
'~ RESPONSE OF COMPLEX HYDRAULIC SYSTEMS

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in Rapid City, South Dakota, January 27, 1948,
the son of Mr. and Mrs. Neaph N. Ebbesen,

Educatlon Graduated from Hurley High School, Hurley, South Dakota
in May, 1966; received the Bachelor of Sc1ence degree, with a
major in Mechan1ca1 Engineering, from the South Daketa School
of Mines and Technology, Rapid Clty, in May, 1970; received the

"Master of Science degree, with a major in Mechanlcal Englneer-
ing, from Oklahoma State Unlver51ty, Stillwater, in May, 1972;
completed the requirements for the Degree of Doctor of
Philosophy in December, 1976,

Professional Experience: Plant Engineer, Caterpillar Tractor
Company, Summer, 1970; Project Assistant on research proJects
at Oklahoma State UnlverSLty, 1970 to 1974; Instructor in.
Mechanical Englneerlng at Oklahoma State Unlver51ty, 1974 to
date.

Professional Organizatiens: Member of American Society of Mechani-
cal Engineers; Pi Tau Sigma; Phi Kappa Phi; Pi Mu Epsilon.



