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CHAPTER I 

INTRODUCTION 

Perspectives 

The problem of finding the "best" procedure for classifying m 

individuals (generic) into k homogeneous populations on the basis of 

n observable characteristics has perplexed man through the ages .. If 

the classification categories are known~ priori, then discriminant 

analysis provides a solution to the general classification problem. 

However, if the classification categories must be generated from the 

data, then cluster analysis is the multivariate, descriptive method 

necessary to make sense out of the data. 

The general classification problem has a very long and rich his­

tory, being dated at least to the time of Aristotle for its philosophi­

cal foundations. In essence, there is a "need to classify" in man (ge­

neric) which pervades his perpetual compulsion to organize and reorgan­

ize his world in search of a "perfect" organizational structure for 

each segment of his world and, ultimately, the universe. Man feels 

compelled to organize everything around him, and most conflicts among 

men are derived from different perceptions of what constitutes the 

"best" organizational structure for some segment of the world. The 

concepts of "necessary property," "natural grouping," and "natural 

kind" are all attributable to Aristotle, andthey symbolize the origin 
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of man's belief in the existence of "natural" structure in the universe 

and in the existence of a "best" classification for any set of objects. 

Ideally, everything in the universe has a unique position in the 

"natural" grouping. 

On the other hand, cluster analysis is still in a relatively em-

bryonic state being dated in a sense with the publication in 1963 of 

The Principles of Numerical Taxonomy by Sakal and Sneath; for initially, 

it was in the context of applying quantitative methods to taxonomical 

data that clustering methods evolved to provide solutions for the gen-

eral classification problem. Cluster analysis has developed in a rela-

tively isolated state in many diverse fields of application including 

biology, psychiatry, criminology, ecology, psychology, sociology, engi-

neering, soil science, economics, and marketing research to mention only 

a few. A more complete and organized listing with discussion appears in 

Anderberg (1973). In addition, some of the relevant cluster analysis 

research is being published in computer science and statistical jour-

nals. 

The result of all of this diversity in the evolution of cluster 

analysis is a lack of any standard notation or terminology for the con-

cepts of cluster analysis, a duplication of research, and the develop-

ment of fringe areas to satisfy a more manageable and well-defined set 

of objectives. Anderberg (1973, p. 7) offers some causes for and some 

criticisms of the diversity in cluster analysis. 

The cause [of diversity] is probably a mixture of pro­
fessional jealousy, a relative isolation among the fields, 
and genuine differences of viewpoint. For the novice, 
the disarray is bewildering and confusing; ultimately 
it is highly duplicative since the same idea is discov­
ered repeatedly and published in a variety of journals. 
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On the fringes of cluster analysis are such diverse fields as pattern 

recognition, information theory, mixtures of probability distributions, 

graph theory, multidimensional scaling, and artificial intelligence. 

In spite of the shades of gray and the diversity of evolution in 

cluster analysis, a unifying framework for the development of the 

theoretical aspects of cluster analysis can be found among the statis­

tical methods. Since statistics is a body of methods purporting to aid 

in making sense out of data, cluster analysis belongs among the descrip­

tive, statistical methods; and as a descriptive method, cluster analysis 

possesses the following noteworthy characteristics: 

1. It is an exploratory technique to be used in the 

initial stages of research which, hopefully, will 

precipitate hypotheses for further research; 

2. It has as its goal simplification through organi­

zation. 

Within the body of statistical methods presently available for 

data analysis, there exists a hierarchy of descriptive methods based on 

the dimensionality of the data to be analyzed, This hierarchy of des­

criptive methods is briefly outlined below: 

1. Ordering (ranking) --univariate, 

2. Graphing (scatter plots) -- bivariate, 

3. Response surfaces (models) -~ trivariate, 

4. Factor analysis (Principal Components) -- multivar­

iate, 

5. Cluster analysis (Numerical Taxonomy) -- multivar­

iate. 
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As Warde (1975) indicates, cluster analysis may also be viewed as the 

multivariate analogue to multiple comparisons. 

In viewing cluster analysis from its philosophical, historical, 

and statistical perspectives, the inherent difficulties of research 

within this area imposed by its voluminous and diverse literature have 

become apparent. Consequently, any meaningful research within the 

realm of cluster analysis must be limited to a well-defined facet of 

cluster analysis, and a consistent set of terms, definitions, and sym-

bols must be imposed for the exposition of this research. Thus, before 

defining the limits of this study, some definitions will be tendered. 

A Discussion of Fundamental Concepts with 

Some General Definitions 

The central concept in cluster analysis is that of cluster, but its 

definition is as diverse as the many applications of cluster analysis. 

In fact, as Kendall (197.3, p. 181) states, "The fundamental problem in 

cluster analysis is to define what we mean by 'cluster'," Intuitively, 

the concept of cluster encompasses the duality of homogeneity within 

clusters and heterogeneity between clusters. Thus, there must also be 

some concept of "closeness." However,,Rand (1971, p. 846) believep, 

"that every definition of 'closer' is natural for some situation." In 

the following passage, Kendall (197.3, p. 181) further exemplifies the 

contextual variation which occurs in the concept of a cluster: 

But what are we to say of the particles which compose one 
of Saturn's rings, which are certainly a grouping, but a 
hollow one;: or the tracks of a particle in a Wilson cloud 
chamber, which is an organized series of droplets but a 
linear one? And if we allow a scatter of points inside 
an ellipse to constitute a cluster, what are we to say of 
two such·shapes with commort centre and major axes at right­
angles - are they one cluster or two overlapping clusters? 
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Hence, the difficulty ascribed to defining a cluster is one of 

specificity rather than generality. Ideally, the definition of a clus-

ter defines very special clusters for each specific application of 

cluster analysis; and at the same time, it must be completely general, 

defining a cluster for every possible application of cluster analysis. 

This ideal, of course, is a logical impossibility. With an example, 

Norton (1975) also cites the inherent difficulty involved in any attempt 

to find a single all purpose definition of cluster. Through the liter-

ature, there are a multitude of different, idealistic definitions of a 

cluster. Practically, however, most definitions of cluster are 

operational in the sense that a clustering method is chosen which then 

determines the kind of cluster generated, Unfortunately, very little 

information is available concerning the association between clustering 

method and type of cluster generqted, 

The definitional problems associateu with cluster analysis can be 

at least partia-lly resolved by a mathematical approach to the problem. 

Using some of Rand's (1969) notation to formalize the presentation, a 

general, set theoretic framework will be established for cluster 

analysis. 

Noting that the primitive components of set theory are element and 

set, parallel concepts in cluster analysis are the elements to be clus-

tered and the set consisting of these elements. In general terms, the 

elements to be clustered have been called objects, individuals, 

patterns, and by S?kal and Sneath (~·96Jfoperational taxonomic units 

(OTUs). The elements to be clustered shall be referred to as data 

points in this paper, and each data point shal;L be represented by a 

p X 1 vector, X., where 
J_ 



The components, 

X. = 
l 

x .. , of X. will be termed variables. The set of 
lJ l 

all elements to be clustered shall be called the object space and 

symbolized by X. Letting N be the number of data points, then 

6 

Obviously, the object space is embedded in Euclidean p-space. Thus, if 

E 
p represents Euclidean p-space, then X c: E. 

- p 0 

A popular conceptualization of the object space is the data matrix 

which is formed by stacking the data points as rows of a matrix. Let-

ting XN represent the data matrix, where N is the number of data ,p 

points and p is the number of variables, then 

X N,p 

0 0 • 

Having laid a set-theoretic foundation for discussing cluster 

analysis concepts, mathematical aefinitions for cluster and clustering 

can be given. 

Definition 1. A cluster, Yk, is any nonempty subset of the object 

space. Symbolically, Yk ~X which means that if Xi e Yk , then 



X. € X. 
l 

Thus, a cluster is simply a collection of data points. 
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Definition 2. A clustering, Y , is any partition of the object space. 

Symbolically, Y = { Y1 , Y2 , .. , , YK} is a partition of X , if the 

following three conditions hold: 

(i) For every yk £ y, yk I= $ . 

(ii) If Yk£ y ' y £ y and yk I= y then yk n y = ~ . m m m 
K 

(iii) u yk X. 
k=1 

Hence, a clustering is simply a special kind of collection of clusters. 

A clustering of N data points can consist of K = 1, 2, ; .. , N 

clusters. The number of clusters contained in a clustering shall be 

termed the size of the clustering, and this designation will be incor-

porated into the general notation for a clustering by the use of a super­

script. For example, if clustering Y ~ontains K clusters, then YK 

denotes a clustering of size K. The set of all possible clusterings 

of the object space shall be denoted by y. The fact that even for 

small values of N , the cardinality of Y is quite large has motivated 

the development of a multitude of clustering methods, not all of which 

are distinct. 

In very general terms, a clustering method consists of a criterion 

and a technique in which case the criterion assigns a numerical value to 

each clustering and the technique selects a subset of the set of all pos-

sible clusterings over which the criterion is optimized (providing only 

a local optimum) . A problem of inajor proportions 'is to classify the 

many clustering methods into a small number of different types. Note-

worthy attempts at classifying and reviewing clustering methods appear 
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in Sneath and Sakal (1973), Norton (1975), Cormack (1971), Anderberg 

(1973), and Everitt (1974). However, no standard terminology has 

emerged to clarify the confused nomenclature that exists for designating 

an entire family of similar clustering methods. Apparently, "agglomera­

tive hierarchical" given by Anderberg (1973) and Everitt (1974), 

"sequential, agglomerative, hierarchal" given by Norton (1975), and 

"sequential, agglomerative, hierarchic, nonoverlapping (SAHN)" given 

by Sneath and Sakal (1973) are all descriptors for the same class of 

clustering methods which was also defined as a "hierarchical clustering 

scheme (HCS)" by Johnson (1967). The previously described class of 

clustering methods will be of primary importance in this paper, and these 

clustering methods shall be referred to simply as agglomerative 

clustering methods. 

Agglomerative clustering methods are some of the oldest and most 

frequently used clustering methods~ An agglomerative clustering method 

may be characterized as proceeding sequentially by joining pairs of 

clusters from the partition which consists of each data point grouped as 

a single cluster to the partition which consists of all data points 

grouped together in a single cluster (if no stopping rule is provided). 

An important concept in the definition of an agglomerative clustering 

method is an hierarchy. 

Assuming that there are N data points, formal definitions for 

hierarchy and agglomerative clustering method are given as Definitions 

3 and 4, respectively. 

Definition 3. A hierarchy, H , on the object space is an ordered 

sequence of nested clusterings. Symbolically, 
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H: N-1 
y , I I I ' 

One useful visualization of a hierarchy is a tree diagram which is 

often called a dendrogram in cluster analysis applications. Summarizing, 

a hierarchy on the object space is a nested collection of clusterings 

(each consisting of a set of clusters) which may be aptly depicted by 

a dendrogram. 

Definition 4. An agglomerative clustering method is any clustering 

method, m , which produces a hierarchy on the object space subject to 

the following constraints: 

(i) YN is the initial clustering; 

(ii) Clustering K-1 
Y , K.$N, is obtained from clustering 

YK by joining the two "closest" clusters in clustering 

YK., . if y y yK 1.e.,. . , . e: 
l J 

and they are deemed "closestu, 

U K-1 then Y. Y. e: Y . 
l J 

Thus, the application of an agglomerative clustering method to the N 

data points results in a special kind of hierarchy, thereby imposing an 

hierarchical structure on the object space. 

The resolution of a clustering problem by the application of an 

agglomerative clustering method to a data set can be described by the 

triple (X, H, m); for future reference; the components of this triple 

have been carefully defined in this section. Recalling that, in general, 

a clustering method consists of a criterion and a technique, an agglom-

erative clustering method may be more 9pecifically .viewed as consisting 

of a measure of similarity or di?similarity (usually a metric) and an 

algorithm (usually a form of linkage). The measure of similarity or 
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dissimilarity explicates "close", initially; and the algorithm reevalu­

ates the "closeness" of clusters after each join. As a further limita­

tion, the agglomerative clustering methods of particular interest in 

this paper may be denoted by the pair (metric, algorithm). 

Further delineation of the particular agglomerative clustering 

methods of interest will be given in Chapter III. However, sufficient 

terminology and notation have been developed to define the scope of the 

study being presented in this paper. 

The Rationale and Scope of This Study 

Having placed cluster analysis among the descriptive, statistical 

methods, the problem of actually implementing a clustering method, given 

a "real" set·of data, is a bewildering one. The data analyst must make 

many choices before a data set can be cluster analyzed such as the fol­

lowing questions exemplify: 

1 . Should he standardize the variables? 

2. Should he factor analyze the variables before clustering 

the data points? 

3. What value of K, the number of clusters to be found in the 

data set, should he specify? 

4. What clustering method should he use? 

Although this study primarily addresses itself to the fourth question, 

a brief discussion of the first three questions is relevant. 

The first two questions make reference to often advocated solutions 

for frequently encountered problems concerning the variables observed 

on each data point. Typically, a data point consists of measurements 

on a myriad of related variables with divergent ranges, and often these 



measurements are made in many different incompatible units. Since, 

inevitably, the variables are combined in a measure of similarity or 

dissimilarity or in a criterion, the incompatibility of units problem 

cannot be entirely ignored, and standardization of the variables does 

11 

at least result in unitless quantities (making at least the mathemati­

cians happy). However, from a statistical point of view, standardiza­

tion is not the panacea its advocates would lead one to believe, espe­

cially since only sample moments are available for use in this process. 

It is worth noting that Kendall (1973) favors standardization of the 

variables as the lesser of several evils, but for the most part, stan­

dardization is opposed by Anderberg (1973). \Hthin the numerical 

taxonomy literature, there exist many philosophical discussions concern­

ing the importance of weighting certain characteristics and the hazards 

of forcing all characteristics to have the same relative weights. Sneath 

and Sokal (1973) provide a good reference to the numerical taxonomy 

literature and to the biological viewpoint on philosophical questions. 

Anderberg (1973) provides an extensive discussion of alternatives to 

standardization based on the scale of measurement of the variables. 

Applying factor analysis or even principle components to a set of vari­

ables before cluster analyzing the data points may reduce the number of 

variables, but research on the invariance of clustering methods to these 

transformations is lacking. It should also be noted that there is no 

reason to believe that simple correlation is the only relationship 

between pairs of variables. In this study, p~oblems concerning vari­

ables will be ignored, However, additional research on this subject 

would be valuable. 
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The third question is relatively unimportant when agglomerative 

clustering methods are being used. If feasible, the complete hierarchy 

should be examined as the output from the application of an agglomera-

tive clustering method to the data set. Often valuable additional 

information about the data points can be gained from the sequence of 

clusterings, which would be totally lost if only one clustering was 

examined. 

The purpose of this study is to provide a "dynamic" comparison of 

agglomerative clustering methods, which will guide the matching of 

clustering method with type of cluster generated. Ideally, the compara-

tive study would follow the suggestions made by Anderberg (1973, p. 201) 

in the following passage: 

What seems to be needed is an approach to evaluation 
which systematically can relate the key characteristics 
of cluster analysis problems to the capacities of various 
cluster analysis methods; in other words, find the ele­
ments which make problems difficult and match them with 

·the strengths of powerful methods. If there could be 
found a set of significant concept dimensions which des­
cribes problems and another such set which describes 
methods, then a variety of important ,capabilities might 
be within reach. 

Through the literature, there have been both analytical and empirical 

attempts to compare some clustering methods, but because of the large 

number of clustering methods now in existence and because of the number 

of factors requiring controlled change to make the comparisons relevant, 

a useable comparative summary of clustering methods is non-existent. 

Consequently, the comparative study presented in this paper is lim:.. 

ited to agglomerative cl~stering methods of the form (metric, algorithm), 

but a comprehensive study of these clustering methods is attempted in 

this paper. Chapter III contains an algebraic analysis of agglomerative 
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clustering method algorithms, which results in a graphic portrayal of 

these algorithms and a classification scheme for these algorithms based 

on the degree of distortion perpetrated on the object space qy the algo­

rithms in each group. Chapter IV presents a statistical analysis of the 

comparative statistic employed in Chapter V, which provides a distribu­

tion for the statistic under the specific model assumptions considered. 

Chapter V delineates the important considerations in any extensive, 

systematic comparison of clustering methods, and then it presents an 

empirical investigation of the effect of correlated variables on the 

"retrieval" ability of agglomerative clustering methods. First, however, 

a review of cluster analysis literature will be given for perspective. 



CHA.PI'ER II 

A REVIEW OF CLUSTER ANALYSIS LITERATURE 

A Classification of Cluster Analysis Literature 

The voluminous and diversified nature of the cluster analysis liter­

ature has already been alluded to as a major impasse to research in clus­

ter analysis. Considering the present state of knowledge in the realm 

of cluster analysis, making sense out of the cluster analysis literature 

would represent a major advance in cluster analysis research. Initially, 

a classification of the cluster analysis literature into representative 

categories would be a valuable implement. 

In the preparation of this thesis, a sizeable sample of the cluster 

analysis literature was perused. Thus, the problem at hand is how to 

efficiently summarize a set of publications all purported to discuss 

subject matter related to cluster analysis. Rhetorically, the solution 

would be to write a "comparison and contrast" of the publications, 

Essentially, this means to extract those things which are similar and 

those things which make each publication unique, which in essence is the 

goal in the general classification problem. Thus, a particular instance 

of the general classification problem is to be solved as an efficient 

means to summarizing a sample of the cluster analysis literature. 

In this chapter, a subjective class:],fication of the publications 

into representative categories based on what~is perceived to be their 

primary purpose is tendered, First, however, it should be noted that 

14 



most journal articles in the realm of cluster analysis either propose 

a new clustering method or as Cormack (1971, p. 323) comments: 

Unfortunately the current swell of classificatory publica­
tions (estimated at more than 1.,000 a year) is mainly de­
voted to 'testing' published techniques on data for which 
'standard' classifications exist. When the technique fails 
the author's response is to modify the technique instead 
of thinking about the 'standard' classification or ques­
tioning the value of the whole process. 

With this in mind, the four primary purposes discerned from the 

cluster analysis publications sampled are as follows: 

1. To survey classification procedures; 

2. To propose or modify a clustering method; 

3. To present statistical aspects of cluster analysis; 

4. To compare aspects of clustering methods. 
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Since this classification is monothetic, the four primary purposes define 

a partition of the sample of cluster analysis publications into four 

clusters. However, the unavoidable overlapping of related publications 

becomes apparent when their secondary purposes are examined. Although 

significant secondary purposes could be used to refine the classifica-

tion by defining sub-clusters, in the present review of cluster analysis 

literature, the initial four clusters are deemed adequate, and all rele-

vant secondary purposes are revealed within the defined clusters as 

significant contributions to cluster analysis research. 

Since to compare clustering methods is of principal interest in this 

thesis, an extensive critical review of publications falling in the clus-

ter defined by a primary purpose "to compare" will be given. First, 

however, some of the publications falling in the other three clusters 

will be briefly discussed with partictllar emphasis being given to their 

significant contributions within the realm of cluster analysis. 



Publications Having the Primary Purpose to 

Survey Classification Procedures 
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The first cluster of publications defined by a primary purpose "to 

survey classification procedures" or. simply "to survey" contains several 

journal articles, two monographs, and two books. Since cluster analysis 

has been developing separately in a multitude of different applied 

fields, an interesting overview of the publications falling in this 

cluster is obtained by considering the viewpoint of the author. The im­

portant question is: For whom is the publication being written? The 

following listing of publication by perspective is enlightening: 

1. From a biological sciences perspective Sneath and Sokal 

(1973) 

2, From a social sciences perspective-- Everitt (1974), Ball 

(1965), and Fleiss and Zubin (1969) 

3. From the viewpoint of the data analyst --Anderberg (1973) 

4. From the viewpoint of the econometrician -- Duran and Odell 

(1974) 

), From a statistical perspective -- Cormack (1971) 

6. From a philosophical perspective-- Sneath (1969), Sokal (1974), 

and Kendall (1973). 

The book by Sneath and Sakal (1973) i.s certainly a landmark in 

numerical taxonomy, but the biological nomenclature and the extensive 

discussion of special problems associated with taxonomy make it less 

valuable as a general reference in the realm of cluster analysis than 

the book by Anderberg (1973) or the monographs by Everitt (1974) and by 

Duran and Odell (1974). These other three publications are presented in 

an essentially context free manner, and each of these publications 
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provides a comprehensive general review of clustering methods, including 

a classification of the clustering methods into broad general categories 

and discussions of measures of similarity, measures of dissimilarity, 

measures of association, clustering algorithms, clustering criteria, and 

clustering techniques. Of special significance, however, are the note-

worthy original contributions to cluster analysis research that each of 

these three publications makes. 

Anderberg (1973) provides a self-contained presentation of cluster 

analysis which .is organized to guide the data analyst sequentially from 

the raw data to the finished cluster analysis, including an extensive 

collection of well-documented computer programs to implement the com-

plete sequence from raw data to finished analysis. His comprehensive 

analysis of problems pertaining to variables, scales of measurement, and 

measures of association includes commentary on strategies for mixed vari-

able data sets, conversion of variables from scale to scale, compatibil-

ity of measures of association across variables, and weighting of vari-

ables, both explicitly and implicitly. The chapter entitled "Compara.., 

tive Evaluation of Cluster Analysis Methods" provides the framework for 

a "dynamic" comparison of clustering methods, which includes a sugges-

tion for making sense out of the resultant clusterings, namely, cluster 

the clustering methods. Anderberg (1973, p. 201) states: 

A possible approach for discovering these concept dimen­
sions is to turn cluster analysis on itself and cluster 
the results obtained by applying available methods to 
specially constructed data sets. The similarities and 
differences among various clustering methods may be iden­
tified through comparison of the results obtained by clus­
tering data sets of known characteristics, and the char­
acteristics of various data sets may be discovered through 
clustering them with methods having known properties. 

Thus, Anderberg (1973) gives some philosophical perspectives on 
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comparative studies, which should be considered in any attempt to com-

pare clustering methods. 

The monograph by Everitt (1974) presents an incisive discussion of 

the problems encountered when applying cluster analysis to "real" data, 

which includes enlightening commentary on defining a cluster, choosing 

the variables, choosing a measure of similarity or distance, choosing 

the number of clusters present in the data, and special problems asso-

ciated with each type of clustering method, Everitt (1974) then aptly 

demonstrates the problems associated with various clustering methods by 

applying representatives from different types of clustering methods to 

data sets generated from bivariate normal distributions, having various 

degrees and kinds of structure. He also includes scatter plots for each 

generated data set to give an elucidative illustration of the structure 

and irregularities within the data sets which lead to the anomalous 

clusterings. The main purpose of the empirical investigation of differ-

ent classes of clustering methods is not to compare the clustering 

methods, but to discover how a wide variety of supposedly different 

clustering methods perform on a few well-defined types of data structure. 

In fact, Everitt (1974) deliberately constructs his empirical investiga­

tion to test the strength (without a quantitative measure of it) of the 

underlying assumptions of various clus~ering methods to impose a struc-

ture on the data rather than find the structure existing in the data 

set. Everitt (1974, p. 87) concludes: 

All the methods make implicit assumptions about the 
type of structure present: when these assumptions 
fail to be met spurious so~utions are likely to be 
obtained, 

Duran and Odell (1974) attempt to unify the various. results of 

research in the realm of clu~ter analysis and present them in a coherent · 
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fashion, establishing mathematical notation for many of the concepts of 

cluster analysis. The resultant monograph consists primarily of a 

classification of clustering methods into broad, general categories with 

in depth and mathematically rigorous (extensively employing graph theory 

in the case of agglomerative clustering methods) discussions of the clus­

tering methods contained in each group, emphasizing their common charac­

teristics. A valuable contribution of this monograph is the chapter on 

clustering by complete enumeration and the subsequent chapter on dynamic 

programming techniques as "good" approximations to clustering by complete 

enumeration. 

The journal articles by Ball (1965) and by Fleiss and Zubin (1969) 

are both written for the social scientist. Ball (1965) gives a compre­

hensive discussion of the seven major classifications of cluster seeking 

techniques with summaries of known measures of similarity, criteria for 

clustering, and techniques for clustering. He essentially provides a 

case against the normal assumption and a case for iterative clustering 

methods. On the other hand, Fleiss and Zubin (1969) present a brief 

critical review of factor analysis, cluster analysis, and mixtures of 

distributions as procedures for clustering individuals into homogeneous 

groups with specific emphasis on the logical and technical problems 

which arise in cluster analysis. 

Each of the last four journal articles offers a measure of philo­

sophical insight into the concept dimension of cluster analysis. The 

article by Cormack (1971) represents an in depth survey of all aspects 

of the general classification. problem along with many amusing philosoph­

ical comments to amplify his scintillating style. In contrast, the 

article by Sneath (1969) represents a more limited survey of some aspects 
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of cluster analysis with particular emphasis on the unsolved problems in 

this relatively new branch of multivariate statistical analysis. Sakal 

(1974) presents an enlightening discussion of the purposes, principles, 

progress, prospects, and problems of classification from a ph~losophical 

perspective, Finally, Kendall (1973) discusses from a non-technical, 

but philosophical, perspective the nature of the problems of cluster 

analysis. 

Publications Having the Primary Purpose to 

Propose or Modify a Clustering Method 

The second cluster of publications defined by a primary purpose "to 

propose or modify a clustering method" consists of numerous journal 

articles. However, some of these journal articles also provide valuable, 

theoretical and practical discussions. 

The journal articles by Fisher (1958), Edwards and Cavalli-Sforza 

(1965), Mayer (1971), and Scott and Knott (1974) present clustering 

methods which are essentially univariate. The divisive clustering 

method devised by Edwards and Cavalli-Sforza (1965) is used by Scott and 

Knott (1974) to group treatment means. The clustering method proposed 

by Mayer (1971) involves the choice of a primary variable to make the 

initial monothetic clustering, and then the secondary variables are used 

to refine the initial clustering. 

Some specialized clustering methods are given by Fortier and Solo­

mon (1966), King (1967), and Hartigan (1970). King (1967) proposes a 

step-wise, "quick and dirty",cll+stering method for separating a large 

number of variables into a group of clusters so that the variables with­

in a cluster are highly intercorrelated and variables from different 



21 

clusters are not so highly intercorrelated. Hartigan (1970) presents 

an extensive review of cluster analysis by emphasizing six problem areas 

of cluster analysis; however, his primary purpose is to present a new 

clustering technique which simultaneously clusters variables and cases 

of a data matrix. He gives the following two justifications for this 

"better" clustering method: 

The principle justification for this technique is that 
the clusters obtained may be interpreted directly on 
the data matrix, rather than on the distance function 
usually necessary in other techniques. A second justi­
fication is that this direct clustering technique seems 
more in accord with the practice of biological taxono­
mists, who associate with each cluster (taxon) of ani­
mals, the cluster properties the animals have in 
common (Hartigan, 1970, p. 1.2). 

Two of the journal articles in this cluster tender generalizations 

of the single linkage clustering method. Jardine and Sibson (1968) pro-

pose a sequence of overlapping clu?tering methods as an extension of the 

single-link method to reduce chaining after claiming that the single-

link method is the "best" of th~ well-known agglomerative clustering 

methods with respect to their seven properties of a hierarchic classifi-

catory scheme. Wishart (1969b) devises mode analysis to reduce the 

chaining effect associated with the single linkage clustering method. 

Two journal articles by Lance and Williams (1966, 1967) form the 

basis for Chapter III of this paper. Lance and Williams (1966) tender 

a general linear combinatorial strategy based on fo~ parameters, which 

yields an agglomerative clustering method algorithm for each choice of 

parameter values. The parameter values for five of the well-known 

agglomerative clustering methods are also given. The parameter values 

of this general linear combinatorial strategy for Ward's (1963) sum of 

squares clustering method are derived by Wishart (1969a). The second 



journal article by Lance and Williams (1967) presents some properties 

associated with the general linear combinatorial strategy and a new 

agglomerative clustering method called the flexible strategy. 
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The journal articles by Hartigan (1967) and by Gower and Ross 

(1969) provide graph-theoretic approaches to clustering. Hartigan 

(1967) creates a measure of distance between a similarity matrix and a 

tree. Gower and Ross (1969) introduce the minimum spanning tree as a 

useful ancillary technique. 

In addition to their primary purpose "to propose or modify a 

clustering method," three of the journal articles make noteworthy mathe­

matical and statistical contributions to cluster analysis research. 

Johnson (1967) introduces the ultrametric inequality to define a 

hierarchical clustering scheme. Rubin (1967) presents a general frame­

work for cluster analysis through mathematical definitions, properties, 

and proofs; he also creates a measure of object stability. Besides a 

local optimization program with single point reassignment and amalgama­

tion of clusters criteria, Beale (1969) gives a reasonable criterion for 

the number of clusters based on a one-way classification MANOVA and an 

F-test. 

Publications Having the Primary Purpose 

to Present Statistical Aspects 

of Cluster Analysis 

The third cluster of publications defined by a primary purpose "to 

present statistical aspects of cluster analysis" contains two theses and 

five journal articles of a thoeretical nature. The jo~rnal articles by 

Marriott (1971) and by Scott and Symons (1971) are grouped in this 
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cluster because they contain numerous applications of statistical tools 

to cluster analysis problems. Marriott (1971) uses MANOVA criteria and 

the distribution theory associated with a multivariate analysis of vari­

ance. Scott and Symons (1971) employ likelihood ratio criteria in their 

investigation of cluster analysis. 

The journal articles by Goodall (1967), Engelman and Hartigan 

(1969), and Bolshev (1969) represent attempts to develop theoretical 

aspects of cluster analysis. Goodall (1967) gives a distribution for 

the matching coefficient under certain sets of assumptions. Engelman 

and Hartigan (1969) empirically derive a table of percentage points of 

a test for the presence of clusters i~ data, but their test for the 

presence of structure is limited to the univariate case. Bolshev (1969) 

makes an initial attempt at constructing a general probabilistic theory 

of cluster analysis. 

The thesis by Mrachek (1972) and the thesis by Norton (1975) neces­

sarily make valuable contributions to the theoretical development of 

cluster analysis, and both of these theses are at least partially con­

cerned with the problem of testing for the presence of structure in data. 

Mrachek (1972) develops a distribution theory for his metric of Euclid­

ean distance so that he can apply inferential theory to the two approxi­

mate tests for structure which he suggests. He also considers the effect 

of uninformative variables on the ability of the single linkage and the 

complete linkage clustering algorithms to provide the correct clustering 

of a structured data set. Norton (1975) discerns two types of cluster 

analysis, which he refers to as mathematical clustering and inferential 

clustering, based on the type of "evidence" provided by the cluster 

analysis with respect to the data. Norton (1975) demonstrates the 
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difficulties encountered in attempts to construct "good" tests for the 

presence of structure based on closed form sampling distributions, and 

then he proposes several approximate tests for the presence of clusters 

based on agglomerative clustering methods. Specifically, he presents 

tests to detect the presence of more than one univariate normal popula­

tion along with tabulated percentage points of their null distributions 

for selected sample sizes. 

A Critical Review of Publications Having 

a Primary Purpose to Compare Aspects 

of Clustering Methods 

The fourth cluster of.publications defined by a primary purpose "to 

comrare aspects of clustering methods" or simply "to compare" is of 

principal importance to the research being reported in this paper. The 

comparative studies of this cluster are either primarily theoretical, 

both analytical and empirical, or primarily empirical in nature. It 

should be noted that most of the development within this cluster is of 

fairly recent vintage. 

Until recently, the cophenetic correlation coefficient, originated 

by Sakal and Rohlf (1962), was the only comparative statistic available 

for use in cluster analysis. Essentially, the cophenetic correlation 

coefficient is the ordinary product moment. correlation coefficient com­

puted from the corresponding elements. of the original similarity (dis­

similarity) matrix and the elements of a similarity (dissimilarity) 

matrix derived from a dendrogram; it may be computed on any two similar­

ity (dissimilarity) matrices derived from dendrograms representing the 

same set of data (the matrices, of course, must have the same 
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dimensions). By the method of cophenetic correlation, different hierar­

chical clustering methods can be indirectly compared with each other 

through their derived dendrograms, and their derived dendrograms can be 

compared with the original similarity (dissimilarity) matrix to provide 

a measure of distortion for each clustering method with respect to the 

data set. 

The method of cophenetic correlation has come under heavy criticism 

since its inception with impetus for this criticism being provided in 

a journal article by Farris (1969). Farris (1969) derives some algebraic 

properties of the cophenetic correlation coefficient, and he discovers 

the conditions under which the cophenetic correlation coefficient is 

maximized for a dendrogram. His analysis implies that agglomerative 

clustering methods based on an average linkage clustering algorithm 

should produce the highest cophenetic correlation coefficients among 

existing agglomerative clustering methods, when these clustering methods 

are compared against the original similarity (dissimilarity) matrix by 

the method of cophenetic correlation; and this implication is not tied 

to any underlying data structure. In theory, at least, a "best" cluster­

ing method with respect to the cophenetic correlation coefficient can be 

constructed. 

The journal articles by Gower (1967) and by Fisher and Van Ness 

(1971) present comparative studies which are primarily theoretical in 

nature. Gower (1967) compares three well-known clustering methods from 

.a geometrical point of view in order to expose the underlying cluster 

structure being assumed by these clustering methods. Fisher and Van 

Ness (1971), along with the ex~ension, of their work by Van Ness (1973), 

list eleven admissibility criteria which any "good" clustering method 
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should possess. They then compare nine different clustering methods with 

respect to these admissibility criteria, but their comparison is entire­

ly theoretical employing mathematical proof to construct an admissibil­

ity table. 

The journal articles by Friedman and Rubin (1967), Chaddha and Mar­

cus (1968), and Maronna and Jacovkis (1974) represent extensive compara­

tive studies containing both analytical and empirical comparisons. The 

journal article by Friedman and Rubin (1967) contains both an analytical 

and an empirical comparison of three generalized variance criteria along 

with many other theoretical and practical considerations relevant to 

clustering methods. Chaddha and Marcus (1968) compare three generalized 

distance statistics both analytically and empirically. Maronna and 

Jacovkis (1974) compare five diverse metrics with only Euclidean distance 

coming from the family of Minkowski metrics. Initially, their compari­

son of these metrics is analytical exhibiting the relationships between 

the five metrics and generalized variance criteria. Then the three 

"best" metrics based on the theoretical analysis are combined with an 

iterative technique and compared empirically on both "real" data and data 

generated from bivariate normal populations. 

Several of the publications in this cluster present comparative 

studies which are primarily empirical in nature. Two of the earlier 

empirical, comparative studies are given by Williams, Lambert, and 

Lance (1965) and by Boyce (1969). Williams, Lambert, and Lance (1965) 

prov'ide an empirical comparison of ten different clustering methods 

formed by using the single linkage and the centroid clustering algo­

rithms in combination with each of five different measures of similarity 

or dissimilarity; these clustering methods were compared using "real" 
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data sets from ecology and with respect to the amount of chaining ob-

served as measured by a coefficient of chaining which was also developed 

in the article. One interesting conclusion drawn from this comparative 

study by the authors is that there exists interaction between measures 

of similarity or dissimilarity and clustering algorithms. The journal 

article by Boyce (1'969) represents an extensive empirical, comparative 

study, using cophenetic correlation techniques and graphic techniques to 

compare three agglomerative, pair-group clustering methods amongst them-

selves and against a principal components analysis of the data. This 

journal article also includes a comparison of five measures .of similar-

ity or dissimilarity from a theoretical point of view and from an empir-

ical study using the unweighted pair-group algorithm based on averages. 

For the anthropological data employed in this study, the overall pattern 

of relationships was unaffected by the measure of similarity or dis­
-: 

similarity used. 

The recent journal article by Kuiper and Fisher (1975) is a prime 

example of a very poorly reported empirical, compg.rative study. The 

journal article by Kuiper and Fisher (1975) suffers more from what they 

did not say than it benefits from what they did say. Just to exemplify 

the absurdity of their style of reporting, the following quote is offer-

ed as evidence of their attempt to conceal any potentially enlightening 

details of tl)eir empirical study: 

It is neither feasible nor desirable to present most of 
the outp~t. The percentages given below are averages of 
average values across various configurations (or proba­
bility distributions) (Kuiper and Fisher, 1975, p. 778). 

'l'he journal article by Kuiper and Fisher (1975) suffers from the follow-

ing major defects and omissions: 
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1. It does not indicate which measure of similarity or dissimilar­

ity was used with the six agglomerative clustering algorithms 

employed in the study; 

2. Although the authors indicate that the Monte carlo runs were 

made on a CDC 6400 computer, they give absolutely no indication 

of the procedure or computer package used to generate the multi­

variate normal data sets; 

3. Even the configuration of·the mean vectors is omitted for the 

cases where there are more than two multivariate normal popu­

lations being generated; 

4. For the case of two bivariate normal populations, the config­

uration of mean vectors implies that one variable is completely 

uninformative, and thus the supposedly bivariate clustering 

problem is really reduced to a univariate clustering problem 

with "noise"; 

5. Averaging all results over configurations as well as the small 

number of replications (30) of each configuration makes the 

reported results totally uninterpretable. 

In all fairness, the journal article by Kuiper and Fisher (1975) is 

a relatively short article that might have been substantially chopped 

before publication. Unfortunately, however, the conclusions and com­

ments (based on all of the research done, not just the reported results) 

made in this journal article could have been completely anticipated 

based on previpus comparative studi.es and theoretical knowledge of the 

clustering algorithms used. 

In contrast, the technical report by Dubes and Jain (1975) is an 

outstanding example of a well reported and well conducted empirical, 
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comparative study with many new insights to offer the potential cluster 

analysis user. Dubes and Jain (1.97.5) produce a comprehensive data 

analysis of a 192 X 8 dimensional subset of the Munson handprinted For­

tran character set referred to as IMOX, which does not cluster in a 

trivial manner. Their objective is not to find a "best" clustering 

method, but to explore the strengths and peculiarities of several 

diverse clustering methods on a challenging data set for which a 

"natural" classification exists. 

Comparisons of clustering methods which are from different classes 

such as the hierarchical and non-hierarchical classes of clustering 

methods are practically nonexistent because the outputs from clustering 

methods which are from different classes are, in general, noncomparable. 

However, Dubes and Jain (197.5) successfully compare the performance of 

eight clustering methods representing three diverse classes (squared­

error, hierarchical, and graph-theoretic) of clustering methods on the 

IMOX data set by utilizing the suggestion of Anderberg (1973) to cluster 

the clustering methods. Noteworthy features of their comparative study 

are delineated below: 

1. Various types of evidence concerning the nature of the IMOX 

data set are presented, such as selected scatter plots; 

2. A complete description of each clustering method employed in 

the empirical study is given, including practical considera­

tions r~levant to its computer implementation; 

J, A complete summary of all results from the application of each 

clustering method to the IMOX data set is given, including the 

CPU time used, the number of clusters found, the number of 

patterns misclassified, and a cluster by· category table; 
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4. Using Rand's (1971) statistic as a measure of similarity be­

tween clustering methods, a similarity matrix is derived to 

summarize the degree of similarity among the eight clustering 

.. methods with respect to the IMOX data set; 

5. Two dendrograms are derived from the similarity (between clus­

tering methods) matrix to determine which clustering methods 

really produced different results when applied to the IMOX 

data set; 

6. Using one of the multidimensional scaling techniques, a one­

dimensional comparison of the eight clustering methods is also 

provided. 

The conclusions drawn by Dubes and Jain (1975) from their compar­

ison of eight clustering methods are enlightening. For the IMOX data 

set, the complete linkage clustering represented the average of four 

different squared-error clusterings. The two clustering methods which 

are most dissimilar are both from the graph-theoretic class of cluster­

ing methods. Choosing a single clustering method from each of the 

three classes of clustering methods would not cover the gamut of pos­

sible clusterings for the IMOX data set, Finally, the two graph­

theoretic clustering methods plus the complete linkage clustering method 

are sufficient to provide several a,lte:r;native hypotheses about the 

structure of the IMOX data base. 

Unfortunately, one recent trend in empirical, comparative studies 

involves the revival of the method of cophenetic correlation with non­

parametric measures of correlation being substituted for the ordinary 

product moment correlation coefficient. 'The proponents of this "new" 

comparative method are, apparently, 'aware of the criticisms of the 
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cophenetic correlation coefficient as a measure of similarity between 

dendrograms given by Farris (1969), However, they also, apparently, 

missed, or at least ignored, Farris's (1969) overall skepticism concern-

ing the method of cophenetic correlation itself. Some of the deficien-

cies attributable to the method of cophenetic correlation are functions 

of the methodology itself, which cannot be completely overcome by 

merely changing the measure of correlation. The method of cophenetic 

correlation is applicable only to hierarchical clustering methods; and 

more specifically, this method is used to compare agglomerative cluster-

ing method algorithms amongst themselves and with respect to the origin-

al similarity or dissimilarity matrix. 

It should be recalled that for the purposes of this thesis, a clus-

tering method was very carefully defined as consisting of two parts; and 

specifically, an agglomerative clustering method was characterized as 

consisting of some measureof distance, uetermining the original dis-

similarity matrix, and an algorithm for recomputing distances after 

each join. The application of an agglomerative clustering method algo-

rithm to a distance matrix imposes a hierarchy on the data set which may 

be conveniently visualized by means of a dendrogram. Typically, a den-

drogram consists of a tree and a vertical scale of measurement which af-

fords information on the distance at which the two clusters in cluster­

ing YK joined to form clustering YK-1 ; this distance will be called 

the joining distance for clustering K-1 y • Initially, there are 

N(N-1)/2 distances associated with N data points, and these are reduc-

ed to N - 1 joining distances by the application of an agglomerative 

clustering method algorithm to the original distance matrix. Thus, sum-

marizing a distance matrix by means of a dendrogram necessitates a loss 
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of information with respect to distances, but the purpose of cluster 

analyzing a set of data is to provide a summary of the data set which 

substantially reduces its proportions. A distance matrix is itself a 

summary of the data set; but even for small values of N , a distance 

matrix is difficult to assimilate. An agglomerative clustering method 

algorithm provides an interpretation for the distance matrix, which can 

be more easily assimilated. 

From a philosophical point of view, it is important to consider the 

primary purpose for cluster analyzing a data set. The relevant question 

appears to be: Is the primary purpose of cluster analysis to describe 

the data points or to describe the distance matrix, which is assumed to 

be a "good" representation of the relationship between data points. The 

method of cophenetic correlation implicitly assumes that the initial 

distance matrix is the "best" summary of the relationships which exist 

among the data points. As a consequence, the comparison of clustering 

algorithms by means of the method of cophenetic correlation is not direct­

ly related to the data points or the sequence of clusterings; this com­

parative technique only considers how well a clustering algorithm repre­

sents the original distance matrix as depicted by the set of joining dis­

tances. For example, the cophenetic correlation coefficient for compar­

ing a dendrogram resulting from the application of the single linkage. 

algorithm with a dendrogram resulting from the application of the com­

plete linkage algorithm qan not be equal to one, (except in specially 

contrived cases) even when all clusterings in the hierarchy are exactly 

the same. Farris (1969, p. 284) comments on the cophenetic correlation 

coefficient (CPCC) as an optimality criterion as follows: 



The CPCC is a true measure of optimality of a classi­
fication only for a particular definition of taxonomic 
'information.' Under the usual criterion that similar 
OTUs should be clustered together in a 'good' classifica­
tion, the CPCC is not a direct measure of optimality of 
classifications. Further, the problem of finding the 
most appropriate optimality criterion for classifications 
will have to be considered jointly with the question of 
what is the most appropriate measure of 'similarity' 
between orus. 
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Thus, the practice of beginning a comparison of agglomerative clustering 

methods a step beyond the choice of a measure of similarity or dissimil-

arity is at best questionable. 

Apparently, Cunningham and Ogilvie (1972) initiated the trend of 

comparing agglomerative clustering method algorithms by means of the 

method of cophenetic correlation in conjunction with a measure of rank 

correlation; for simplicity, this method will be referred to as the 

rank method of comparison. Theoretically, substituting a measure of 

rank correlation for the ordinary product moment correlation coeffi-

cient in the method of cophenetic correlation will alleviate the prob-

lem of the coefficient not accurately portraying the similarity in the 

sequence of clusterings. Now, supposedly, when the sequence of cluster-

ings are the same in two different dendrograms (joining distances dif­

fer), the rank method will yield a coefficient of one. However, there-

duction of the initial distance matrix to a set of joining distances 

gives rise to the mechanical problem of tied ranks, which represents a 

serious encumbrance to the rank method of comparison regardless of the 

rank correlation coefficient chosen. 

As a justification for their methodology, Cunningham and Ogilvie 

(1972) define a perfect grouping as one which retains the information 

contained in the initial distance matrix, but this definition implicitly 

assumes that the initial distance matrix is a "correct" representation 
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of the structure present in the data set. They choose two goodness of 

fit measures, Kendall's (1948) tau (T) which measures concordance in 

order relationship and a stress type measure which assesses agreement in 

absolute value, to quantify the amount of distortion imposed on the 

initial distance matrix by each of seven well-known agglomerative clus­

tering method algorithms. U~fortunately, Cunningham and Ogilvie (1972) 

give no indication of the formula being used to compute T 1 nor do they 

indicate that a correction has been made in the usual expression for 

T to handle the mechanical problems associated with tied ranks. In fact, 

they make no reference to the existence of tied ranks. Both Baker (1974) 

and Hubert (1974) indicate that T is not an appropriate measure of rank 

correlation in the presence of tied ranks because it does not have a 

probabilistic interpretation when tied ranks occur. It should be noted 

that if Cunningham and Ogilvie (1972) used Kendall's (1938) tau as 

originally defined with no correction for tied ranks to compare the 

clustering algorithms to the initial distance matrix, then many of the 

values of T appearing in their tabled results can be shown to be un-

attainable. Further, Cunningham and Ogilvie (1972, p. 213) allude to a 

possible deficiency in the rank method of comparison when their measure 

of stress is chosen as the goodness of fit criterion in the following 

statement: 

Computed distances, unlike average distances, are 
not necessarily in the same range as the input dis­
tances, and therefore can inflate the value of 
stress. 

Cunningham and Ogilvie (1972) may also be credited with initiating 

another trend in recent empirical, comparative studies. The construe-

tion of test data sets that are artificially contrived to represent 
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certain types of ideal structure in an attempt to reveal fundamental 

differences between clustering methods appears to be a new approach 

to comparing clustering methods. Cunningham and Ogilvie (1972, p. 210) 

give the following rationale for basing a comparative study on artifi-

cially contrived distance matrices: 

Several sets of data were tried out in an attempt to 
find if there are distinguishable 'types' of data which 
fit into a hierarchical structure in a characteristic 
way. 

The ideal data set. concept provides an interesting approach to comparing 

clustering methods, which is continued by Baker (1974) and by Hubert 

(1974). However, artificially contrived data sets necessitate a corn-

parative study of a more limited scope than the usual Monte Carlo 

approach to generating data sets wquld permit. There are no replica-

tions in the empirical, comparative study reported by Cunningham and 

Ogilvie (1972). Finally, they also used their overall framework (ideal 

data sets and rank method of comparison) to explore robustness against 

random permutation and robustness against random perturbation of the 

chosen agglomerative clustering method algorithms. 

Baker (1974) presents an "improved" version of the "robustnes_s 

against random perturbation" investigation originated by Cunningham and 

Ogilvie (1972). Baker's (1974) e~pirical, comparative study suffers 

from an artificial quality which makes it difficult to relate his 

results to the data analyst's problem of choosing a clustering method. 

For example, there is no data in his comparative study, only basal tax-

anomies representing ideal data structures (such as a completely chained 

structure), An "error-free" matrix of ranks, the initial rank matrix, 

is derived from each of three basal taxonomies such that the application 

of either the single linkage or the complete linkage clustering 



algorithm to the initial rank matrix recreates the original basal taxon­

omy. It should be noted that both the single linkage and the complete 

linkage clustering algorithms require only an ordinal scale of measure­

ment for their application. However, since the ordinal scale of 

measurement is fundamental to Baker's (1974) comparative study, it is 

not generalizable to other agglomerative clustering method algorithms. 

Baker's (1974) objective is to compare the single linkage and the 

complete linkage clustering algoirthms with respect to their sensitivity 

to random perturbation of the data. However, there is no data to which 

random error may be added. Instead, Baker (1974) adds random perturba­

tions (by a seemingly complex scheme) to each entry of the initial rank 

matrix. Although he has three different levels of random error, it is 

very difficult to visualize the different levels of perturbation of the 

ranks as relating to different degrees of perturbation at the variable 

level. Instead, a higher level of perturbation of ranks may be merely 

an indication of additional variables being used to describe each data 

point. 

In Baker's (1974) empirical, comparative investigation, each of the 

perturbed rank matrices is clustered by the single linkage and the com­

plete linkage clustering algorithms. The resultant hierarchies are com­

pared to the basal taxonomy by means of the rank method of comparison in 

conjunction with the Goodman and Kruskal (1954) gamma coefficient as an 

alternative goodness of fit measure to Kendall's (1938) tau coefficient. 

Although, the gamma coefficient retains a probabilistic interpretation 

even in the presence of tied ranks, there is still a considerable loss 

of information resulting from the tied ranks. Paradoxically, the gamma 

coefficient probably attains its highest values, when the greatest 
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amount of information is lost due to tied ranks. This observation might 

partially account for the following conclusions alluded to by Baker 

(1974): 

1. The single linkage clustering algorithm is more sensitive to 

random perturbation of the ranks than is the complete linkage 

clustering algorithm; 

2. A completely chained data structure is more easily obscured by 

a fixed level of random perturbation of the ranks than are 

the other two types of data structure employed in this compara­

tive study. 

Hubert (1974), like Baker (1974), is concerned with the single 

linkage and the complete linkage clustering algorithms and the concept 

of "noise." Hubert (1974) also employs the basic framework developed 

by Baker (1974), i.e., initial rank matrix and gamma coefficient as a 

measure of goodness of fit. However, Hu-bert ( 1974) explicitly bases 

his empirical comparative study on Ling's (1973) assumption that every 

permutation of the object pairs has an equal chance of occurring; and 

thus, he proceeds to randomly select with replacement from the set of 

all possible permutations of the object pairs from an initial rank 

matrix. This assumption appears to be a very poor basis for an empir­

ical study because for a fixed p-dimensional Euclidean space, a large 

proportion of the set of all possible permutations may be geometrically 

impossible. It is analogous to assuming that the data points come. from 

an infinite dimensional space. 

A simple example will aptly depict the inappropriateness of assum­

ing that every possible permutation of the object pairs is equally 

likely to occur at least from a geometric point of view. For N = 4 
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(distinct) data points, there are N(N-1)/2 = 6 ranks in the initial 

rank matrix. For these six ranks, there exist 720 possible permutations 

of the ranks. It can be easily shown that in one-dimensional Euclidean 

space (i.e., on a line) 5/6 or 600 of the 720 possible permutations are 

geometrically impossible. Let it suffice to pose the question: Would 

these 600 impossible cases produce high values of the gamma coefficient? 

The main difficulty, however, lies in trying to interpret Hubert's (1974) 

comparative study in an applied sense wi·i:.hout a "real" world context. 

For the purposes of this thesis, the empirical, comparative study 

reported by Rand (1969, 1971) is of primary importance. Chapter V of 

this thesis represents an extension of one aspect of the empirical 

studies reported in a thesis by Rand (1969) and in a subsequent journal 

article by Rand (1971), which summarized and supplemented the original 

thesis. ·Consequently, an extensive critical review of Rand's (1969, 

1971) comparative studies will be given with additions and possible 

extensions being noted. Rand's major contribution to the problem of 

comparing clustering methods is a statistic, c, which measures the 

similarity between. pairs of clusterings; the c statistic is the sub­

ject of Chapter IV of this thesis. 

Rand (1969, 1971) uses the measure of similarity between cluster­

ings, c, to investigate four relevant questions in a series of Monte 

Carlo studies, reporting the sample mean of c, the sample standard 

deviation of c, and the percentage of complete agreement for each case 

considered. The four fundamental aspects of clustering methods proposed 

by Rand (1971, p. 848) are exemplified by the following questions: 

1. "How well does a method retrieve 'natural' clusters?" 

2. "How sensitive is a method to perturbation of the data?" 



J. "How sensitive is a method to missing individuals?" 

4. "Given two methods, do they produce different results when 

applied to the same data?" 

Chapter V of this thesis is primarily concerned with the "retrieval" 

ability of agglomerative clustering methods for particular types of 

structure. 
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Without intending to be critical of Rand's empirical studies, the 

following criticisms and comments should be noted as indications of 

possible extensions and as indications of factors not c.onsidered, which 

could make a comparative study of clustering methods more "dynamic" 

and more meaningful to the data analyst: 

1. The clustering methods compared by Rand are not well-known 

clustering methods, and they appear to be poor for the purpose 

of "retrieval" and computationally. inefficient. 

2. For all of the Monte Carlo studies except that of "retrieval," 

he generated all of the data points from a single distribution. 

J, For the "retrieval" study, he generated the same number of 

points from each population. 

4. Rand did not attempt to relate the distance between popula­

tions to the "retrieval" ability of the clustering methods. 

5. The only measures of similarity or dissimilarity considered 

by Rand were forms of Euclidean distance. 

6. All of the multivariate normal data was generated from popula­

tions having an identity variance-covariance matrix. 

?. More use could be made of the fact that c is a valid 

statistic for comparing clusterings even when the clust·erings 

contain different numbers of clusters. 
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The main point of the observations given above is that Rand's empirical, 

comparative studies could be naturally extended by the controlled change 

of a wider range of contextual variables. However, the concept of com­

paring clustering methods based on the clusterings produced rather than 

the joining distances seems more relevant to the objectives of cluster 

analysis from a practical point of view. 

Some Reflections 

The literature of cluster analysis, obviously, suffers from frag­

mentation due to its diverse evolution. Consequently, the lack of a 

standard nomenclature for cluster analysis concepts, even, resists at­

tempts to edit the discussion of cluster analysis research to provide a 

consistent exposition of the literature. Very simply, with respect to 

the same concept, subtle differences of meaning, as reflected by the 

diverse terminology, exist across fields of application. In summary, 

since the primary purpose of this thesis is "to compare," some reflec­

tions on the philosophical basis for comparing clustering methods ap­

pear to be necessary before proceeding to a discussion of the present 

research effort. 

The conclusions from an empirical study are necessarily embedded 

in some context (initial specifications and underlying assumptions) or 

parameter space, whether this fact is explicitly acknowledged or not. 

The infelicitous aspect of empirical, comparative studies which begin 

with an initial distance or rank matrix rather than an initial set of 

data points is that the aforementioned procedure effectively causes the 

context to be unknown; i.e., certain, important control parameters are 

inestimable. Regardless of the level at which an empirical, comparative 
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investigation is begun, it is not independent of contextual variables 

or control parameters as they will be referred to in this discussion. 

Instead, failure to specify the necessary control parameters renders 

the results uninterpretable in an applied sense. The consequences of 

this general discussion for the comparison of agglomerative clustering 

methods is worth considering. 

From Chapter I, it should be recalled that the resolution of a 

clustering problem by the application of an agglomerative clustering 

method to a data set can be described by the triple (X, H, m). The 

object space, X, and the clustering method, m, are elements of the 

parameter space which require specification, initially, and the hier­

archy, H·, is the resultant sequence of clusterings for the specified 

pair (X, m). Since X is essentially specified by N, the number of 

data points, and p, the dimension of the Euclidean space in which the 

object space is embedded, and since m is specified by the pair 

(measure of distance, clustering algorithm), the parameter space may be 

completely specified by the quadruple (N, p, measure of distance, 

clustering algorithm). The specification of all four of these param~ 

eters is required for the application of an agglomerative clustering 

method to a set of data points, and all conclusions concerning the 

resultant hierarchy are dependent on these initial specifications. 

When agglomerative clustering algorithms are compared based only on 

an initial distance or rank matrix being generated without the existence 

of data points per se, then only ~he pair (N, clustering algorithm) is 

fpecified to obtain the sequence of clusterings. The parameter pair 

(p, measure of distance) is left gndefined, and these control parameters 

are, essential~y, inestimable or unrecoverable. However, conclusions 
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concerning H are not independent of the parameters p and measure of 

distance. Instead, conclusions concerning H are based on one pair of 

unknown control parameters and one pair of known control parameters. H 

exists only for some unknown subset of the set of all possible choices 

of the pair (p, measure of distance), and the possibility of this subset 

being empty cannot be theoretically eliminated. If this subset is 

nonempty, recovery of a parameter pair (p, measure of distance) may be 

accomplished by showing that the initial distance or rank matrix is 

obtainable from the parameter triple (N, p, measure of distance). Thus, 

the validity of any conclusions concerning the relative merits of the 

agglomerative clustering algorithms being compared is difficult to 

assess when the empirical, comparative study is based on an initial 

distance or rank matrix without reference to a set of data points. 

The necessity to specify all four members of the quadruple (N, p, 

measure of distance, clustering algorithm) places a serious restriction 

on the generalizations which may be made from_an empirical, comparative 

investigation of agglomerative clustering methods. It should be noted 

that generalizations of empirical, comparative studies conducted in 

p-space, are not necessarily valid for any other choice of p; i.e., 

generalization to either a higher or a lower dimensional Euclidean space 

is usually not possible. It is also quite possible that there is an 

interaction between the measure of distance and the clustering algorithm. 

At least, both members of the pair defining the agglomerative clustering 

method contribute to the process which produces the dendrogram, and 

" 
varying either member of this ~ir may produ?e a different sequence of 

clusterings for a particular data set. In conclusion, the further 

removed an empirical study, within the realm of cluster analysis, is 



from the data analyst's problems alluded to in Chapter I, the less 

viable is the research. 
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CHAPI'ER III 

THE PROPERTIES OF AN INFINITE SET OF AGGLOMERATIVE 

CLUSTERING AlGORITHMS 

A General Formulation for Agglomerative 

Clustering Algorithms 

For the purposes of this chapter, the application of an agglomera-

tive clustering method to a set of data requires that a measure of dis-

tance, d, be imposed on the object space, X. Thus, the properties and 

some examples of distance measures will. be established before giving a 

general formulation for agglomerative clustering algorithms. 

In very general terms, a measure of distance, d, on some arbitrary 

set, S, is a :teal-valued function on S x S. In particular, some of the 

relevant properties which a measure of distance may possess will be 

given with respect to the object space, X. However, these properties 

may apply to an arbitrarily defined measure of distance on any set. 

point 

Letting dij denote the distance between data point Xi and data 

X. , the hierarchy of properties for a measure of distance is 
J 

aptly depicted in Definitions 5, 6, and?. 

Definition 5. A semi-metric on the object space, X , is a function, 

d: X ~ X .~ R , 

such that the following two properties hold for every pair of data 

points, xi and X. , in X: 
J 
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(i) d is a strictly positive function, i.e., 

'if X. ' X. E: X, d .. ~0 l J lJ 

and d .. = 0 iff X. X. 
lJ l J 

(ii) d is a symmetric function, i.e., 

d .• = d .. 
lJ Jl 

Definition 6. A metric on the object space, X, is a semi-metric d 

such that the following third property also holds for every X., X., 
l J 

and Xk in X: 

(iii) d satisfies the triangle inequality, i.e., 

'if xi' X., xk E: X, 
J 

dik ~ dij + djk 

Definition?. An ultrametric (Johnson, 1967) on the object space, x, 
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is a metric d such that the following fourth property also·holds for 

every xi' X.' and xk in X: 
J 

(iv) d satisfies the ultrametric inequality, i.e., 

'if xi' X., xk e: X, 
J 

dik:::; max· {dij' djk} 

The ultrametric inequality is a stronger property than the triangle in-

equality. Thus, if the ultrametric inequality holds for a measure of 

distance on X , then the triangle inequality necessarily holds for that 

measure of distance on X . It is also worth noting that an ultrametric 

measure of distance is invariant to all monotonic transformations of d 

A metric measure of distance, however, is not, in general, invariant to 

monotonic transformations of the measure of distance because the triangle 

inequality is rtot preserved under all monotonic transformations of d • 
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It should be noted that for the derivations presented in this chapter, 

only a semi-metric measure of distance is required as a basis for the 

initial distance matrix. 

A well-known family of distance measures for which the metric pro-

perties hold is the family of Minkowski metrics. th The m-- member of the 

family of Minkowski metrics will be designated by l . Recalling that m 
is a p-component vector, if x. 

lV 
denotes the ~ component of data 

point X. and x. 
l JV 

th denotes the v-- component of data point X . , then 
J 

th . 
the m-- Minkowski metric between data points X. 

l 
and X. 

J 
is computed 

by the following formula: 

l (X. , X.) 
m 1 J 

p 

[ ~ 
v=1 

I _ lml1/m x. x. 
lV JV 

where m ~ 1 

Euclidean distance is a member of the family of Minkowski metrics, 

namely, t 2 . However, squared Euclidean distance (in common use with 

some agglomerative clustering a~goirthms) is only a semi-metric measure 

of distance, since the triangle inequality is not preserved under the 

operation of squaring distances, 

From this brief background on measures of distance, the general 

formulation for agglomerative clustering algorithms given by Lance and 

Williams (1966) can be presented in a notation consistent with the pres-

ent development. First, however, with respect to an agglomerative clus-

tering method, some subtle distinctions, concerning the set on which d 

is a measure of distance, are necessitated, 

In the application of an agglomerative clustering method to a set 

of data, initially, the distance between each pair of data points, Xi 

and X. , is computed using some measure of distance, d, which is at 
J . 
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least semi-metric. Since d is at least semi-metric, the resultant set 

of distances may be denoted by 

D . {d. . I i < j ' i = 1 ' 2 ' ••• 'N -1 ' j = 2 ' 3 ' ... 'N} 
~J 

A convenient device for displaying D is the distance matrix DN,N 

where only the N(N-1)/2 upper triangular elements of ~,N are 

necessary. 

Therefore, d is a measure of distance on X . However, the set of 

N single-point clusters, Y , corresponds to X . Consequently, d is also 

a measure of distance on YN , where an element of YN is a cluster, 

Y. , corresponding to data point X. . Hence, the process of clustering 
1 ~ 

a set of data by means of an agglomerative clustering method is initiat-

ed by viewing the measure of distance on X as a measure of distance on 

N Y ; and thereby, D becomes the set of all distances between pairs of 

clusters in YN. 

The role of the agglomerative clustering algorithm is to sequen­

tially impose a measure of distance on each clustering, YK , K = 1, 2, 

... , N-1., in the hierarchy such that the measure of distance imposed on 

YK is functionally related to the measure of distance imposed on yK+1 . 

In a sense, d is not the same measure of distance on YK and on yK+1 

I 

(i.e., on two clusterings of different sizes). In fact, even when d 

is initially a metric, for some clustering in the hierarchy, d may not 

even be semi-metric, and this anomalous situation will be illustrated 

in the next section. 

To clarify the notation, since YK, K = 1, 2, ... , N, is a set of 

clusters, a measure of distance may be imposed on YK , and d .. 
~J 

shall 

now be used to denote the distance between cluster Y. and cluster Y ., 
~ J 
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K where Y., Y. s Y, K = 1, 2, ... , N. This is not inconsistent since in 
l J 

N the case of Y , X. and Y. correspond. Thus, the distance between 
l l 

data points is a special case of the distance between clusters, and this 

distance between data points will be used to initiate a recursive algo-

rithm for the recomputation of distance between clusters after each 

joining of two clusters. As a further simplification of the notation, 

K ~1 
if Yi, Yj s Y join at distance dij to form Y , then Y(ij) will 

denote the new cluster, i.e., 

and d .. 
lJ 

K-1 shall be termed the joining distance for clustering Y • 

Using the notation of this section, the general linear combinator-

ial strategy originally presented by Lance and Williams (1966) is given 

as Equation (3.1), and it represents a family of agglomerative cluster­

ing algorithms. For any clustering YK in the hierarchy, if the dis-

tances between pairs of clusters are obtained from 

some source (recur;ively from clustering yK+1 , KIN), then the dis-

tance between the new cluster Y(ij) 
K 

and any other cluster Yk £ Y 

can be computed from the following formul_a: 

where: a., a.,~' and y are specified parameters, 
l J 

defining the particular member of the family 

of agglomerative clustering algorithms. 

(3 .1) 

Beginning with the initial distance matrix obtained by imposing d on 

X , Equation (3.1) is applied recUrsively to obtain each clustering in 

the hierarchy. 
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The objective of this chapter is to explore the properties of 

d(ij)k under a particular set of constraints. To motivate the choice 

of "interesting" properties, a brief discussion of the consequences of 

particular choices of the parameter values in Equation (3.1) will be 

given in the next section. 

Some Examples of the Consequences of Arbitrary 

'Parameter Choices 

Equation (3.1) characterizes a family of agglomerative clustering 

algorithms so that for each choice of the parameter quadruple 

(a., a.,~. y), a particular member of this family of agglomerative 
]. J 

clustering algorithms is specified, In this section, two parameter 

quadruples will be specified, and the resultant algorithms will be 

applied to a set of Euclidean distances, D , derived from a small set of 

generated data points. Since, initially, the measure of distance being 

used is Euclidean distance, d is a metric on X . However, the tri-

angle inequality is not necessarily preserved under the application of 

an agglomerative clustering algorithm to D . 

Figure 1 gives the six bivariate normal data points and the Eucli-

dean distance between each pair of data points, conveniently displayed 

in a two-way table. The first three data points, x1 , x2 , and x3 , were 

generated to simulate a random sample from a bivariate normal population 

with a mean vector given by f.!"' = ( 0 ,, 5) and a variance-covariance 

matrix given by the identity matrix. rhe last three data points, x4' 

x5, and x6, were generated to simulaye a random sample from a bivariate 

normal population with a mean ve.ctor given by · f.!"' = ( 0 , 0) and a 

variance-covariance matrix given by the ~dentity matrix. It should be 



X' 
1 (-.333, 4.634) 

X' 2 (- • 728 1 3 • 92 9) 

X' 
3 

( .664, 5.800) 

X' 4 (-.342, -.98.5) 

X' 
.5 

(1 .491, 1 .078) 

X' 6 = ( .222' .4.53) 

a) Six Bivariate 
Normal Data 
Points 

1 2 3 4 5 6 

1 0.0 @ 1.535 _5.619 3.997 4.217 

2 0.0 2.332 4.929 3.613 3.603 

3 0.0 6.8_50 4.794 .5.36.5 

4 0.0 2.?59 1 . .545 

.5 0.0 1 .41.5 

6 0.0 

. , b) The Euclidean DistarJ.Ce Between Each Pair of 
Single-point Clusters or between Each 
Pair of Data Points 

Figure 1. The Generated Data and an Initial 
Distance Matrix for the Examples 
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noted from Figure 1b that data points x1 and x2 are "closest" since 

d1 ,2 = .808 is the smallest distance in D. As a consequence, clusters 

Y1 and Y2 will join first, regardless of the choice of algorithm, and 
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their joining distance will be di,Z = .808 (it is circled in Figure ib 

because it is the first joining distance) •· Hence, clu~teririg y5- is 

obtained from clustering Y6 by replacing clusters Y1 and Y2 by 

4 cluster Y(iZ) = Y1 LJ Y2 . Before proceeding to clustering Y , 

distances from cluster Y(iZ) to each of the other clusters must be 

obtained, but this requires the specification of a particular member of 

the family of agglomerative clustering algorithms. 

Choosing a. = 1/2, a.= 1/2, ~ = -1/2, and y = -1 , then 
~ J 

= 

(t/z)dik + (t/2)djk - Ct/2)dij - 1 dik - d.jkl 

(1/2)dik + (1/2)djk - (1/2)dij ~ max{dik' djk} 

+ min{dik' djk} 

(3/2)min{dik' djk} - (1/2)max{dik' djk} - (1/2)dij 

(3.2) 

Derived from the recursive application of Equation (3.2) to the sets of 

distances, Figure 2 depicts the sequence of clusterings and their asso-

ciated sets of distances, conveniently displayed in two-way tables. 

The joining distance for each successive clustering is circled in each 

set of distances. It should be observed that the sequence of joining 

distances is not monotone increasing, which is a somewhat undesirable 

situation, especially when a dendrogram is to be used to portray the 

hierarchy. It is also interesting to observe that :£'or the set of dis­

tances obtained after the first join (in Figure 2a), the triangle 

inequality no longer holds for all choices of three clusters. For 

example, 



d(ij)k (3/2)min{dik' djk} - (1/2)max{dik' d 'k} - (1/2)d .. 
J lJ 

1,2 3 4 5 6 

1,2 0.0 02:2.5) 4.180 3.017 2.892 

3 0.0 6.859 4.794 5.365 

4 0.0 2.759 1.545 

5 o.o 1.415 

6 0.0 

a) Distances after First Join 

1,2,3 

1,2,3 0.0 

4 

5 

6 

4 

2.474 

0.0 

5 6 

1. 762 @ 
2.759 1.545 

0.0 1.415 

0.0 

b) Distances after Seconu Join 

1,2,3,6: 4 5 

1,2,3,6 0.0 @ .597 

4 0.0 2.759 

5 0.0 

c) Distances after Third Join 

1,2,3,6,4 5 

1,2,3,6,4 0.0 @ 
5 0.0 

d) Distance at 'Vlhich Last Join Is Made 
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Figure 2. Example 1 Concerning the Consequences of the Parameter 
Quadruple (1/2, 1/2, -1/2, -1) 



but 

d(12)3 

d(12)4 

d3,4 

.?325 

4.18 

6.859 
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The ultimate consequence of choosing the parameter quadruple (1/2, 1/2, 

-1/2, -1), however, is that the final joining distance (Figure 2d) is 

negative, which is.a highly undesirable characteristic for a distance 

between two clusters to have; 

A second example using the same generated data set and the same 

resultant set of Euclidean distances, which are given in Figure 1, as 

used for the first example will demonstrate some of the consequences 

which may occur when the sequence of joining distances is monotone 

increasing. Choosing the parameter quadruple (3/4, 3/4, -1/2, 1/2), 

then 

(3/4)dik + (3/4)djk 

(3/4)dik + (J/4)djk 

(1/2)dij + (1/2) 1 dik - djkl 

(1/2)d .. + (1/2)ma~(d.k' d .k} lJ l J 

- (1/2)min{dik' djk} 

(5/4)ma:ic{d,k' d.k} + (1/4)min{d.k, d.k}- (1/2)d .. l J l J lJ 
(3.3) 

Derived from the recursive application of Equation (3.3) to the sets of 

distances, Figure 3 depicts the sequence of clusterings and their asso-

ciated sets of distances, conveniently displayed in two-way tables. As 

in Figure 2, the joining distance for each, successive clustering is 

circled in each set of distances. It should. be noted that the sequence 

of joining distances is monotone increasing, which is a desirable 



1,2 

3 

4 

5 

6 

1,2 

o.o 

3 4 5 6 

2.895 7.852 5.496 5.768 

0.0 6.859 4.794 5.365 

o.o 2.759 1.545 

0.0 0 
- 0 .o 

a) Distances after First Join 

1,2 5,6 3 4 

1,2 0.0 7.876 ~ 7.852 

5,6 

3 

4 

1,2,3 

5,6 

4 

1,2,3 

4,5,6 

0.0 7.197 3.128 

0.0 6.859 

0.0 

b) Distances after Second Join 

1,2,3 5,6 4 

0.0 10.197 10.082 

0.0 

0.0 

c) Distances after Third Join 

1,2,3 4,5,6 

0.0 (i}0ili) 
0.0 

d) Distance at Which Last Join Is Made 

Figure 3. Example 2 Concerning the Consequences of the. 
Parameter Quadruple (3/4, 3/4, -1/2, 1/2) 
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characteristic for a sequence of joining distances to possess. However, 

as in Example 1, even for the set of distances obtained after the first 

join (in Figure 3a), the triangle inequality does not hold for every 

possible choice of three clusters. For example, 

d(12)4 7.852 

d(12)6 5.768 

d4,6 = 1 .545 

but 

?.313 t 7.852 

The ultimate consequence of choosing the parameter quadruple 
' 

(3/4, 3/4, -1/2, 1/2), however, is that the final joining distance is 

approximately twice as large as the largest initial distance, which 

surely indicates that some type of distortion is being perpetrated on 

the initial set of distances by the application of this member of the 

family of agglomeratj,ve clustering algorithms to the sets of distances. 

In Figure2, the sequence of clusterings provides an example of 

complete chaining as each single-point cluster in turn joins Y( 12 ) . 

In Figure 3, however, the sequence of clusterings provides an example of 

' 
the direct opposite to complete chaining, i.e., the case where at each 

join the tendency is to form equal-sized clusters. Thus, two quite 

different hierarchies are derived from the same set of data by speci-

fying two different members of the family of agglomerative clustering 

algorithms. Lance and Williams (1966) made the following similar obser-

vation concerning the consequences of arbitrarily choosing parameter 

quadruples for Equation (3.1): 



The extent of clustering is thus not an inherent property 
of data; a given set of data may now, by varying the param­
eters, be made to appear as sharply clustered as a user 
may desire. 
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Therefore, it seems relevant to study the properties of the sequence of 

distances, d(ij)k , as a means to exploring the amount of distortion 

which might result from the application of an agglomerative clustering 

method to a set of data. 

A Two Parameter Sub-Family of Agglomerative 

Clustering Algorithms 

A two parameter sub-family .of agglomerative clustering algorithms 

may be derived from the four parameter family by placing a suitable set 

of constraints on the parameters given in Equation (3.1). If the con-

straints are given by 

= a.. a. 
J 

then a member of the four parameter family of agglomerative clustering 

algorithms that has parameter values which satisfy the constraints can 

be represented by the ordered pair (~, y). 

Without loss of generality, it will be assumed that 

Noting that the two constraints imply that 

a.. 
J 

then Equation (3.1) becomes 

1 - ~ 
2 

1 -fj 1 - B I 
2 dik + 2 dJ.k + ~d .. + y d. k 

lJ. l 
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Since 

then 

d 1 - 13 + 2y d + 1 - 13 ..,2X d R d 
(ij)k = 2 jk 2 ik + ~ ij (3 .4) 

Thus, Eq_uation (3.4) characterizes a sub-family of agglomerative clus-

tering algorithms which shall be referred to as the (13, x) family, and 

each member of this sub-family shall be referred to as a (13, x) alga-

rithm. Consequently, it is possible to represent each member of the 

(13, x) family of agglomerative clustering algorithms as a point in the 

(13, x) Cartesian coordinate plane. It is also worth noting that single 

linkage, complete linkage, unweighted average linkage, and the flexible 

strategy given by Lance and Williams (1967) are members of the (13, x) 

family of agglomerative clustering algorithms. 

If 

D* 
(13 I X) 

then the essential properties to consider for (13, X) algorithms are 

given by Definitions 8, 9, 10, and 11. 

Definition 8. A (f3, x) algorithm is monotone increasing iff for each 

d(ij)k E: D(f3, x) d,. ")k > d .. lJ lJ 

Definition 9. A (13, x) algorithm is space-conserving iff for each 

* d(ij)k e: D(l3 I x) !di~ < d(ij)k < djk 

Definition 10. A (13, x) algorithm is space-contracting iff 

Definition 11. A (13, x) algorithm is space-:-dilating iff 

.e.. u. b. c n(13 , v)) ~ d jk 
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It is of interest to explore the properties of over various 

regions of the (~, y) plane, and this investigation will be presented 

in its entirety in the next section. 

A Study of the Properties of the(~, Y) Family 

of Agglomerative Clustering Algorithms 

The regions of the (~, Y) plane investigated in this study origi-

nate in a natural way as a part of the overall development. The three 

primary boundary lines result from considering the values of the param-

eters for which each coefficient in Equation (3.4) is equal to zero. 

Hence, the following points are relevant: 

(i) 1 - ~ + 2y· 
0 if y 13 - 1 

2 = , = 2 

(ii) 1 - 13 - 2y 
0 ' ;i.f y 1 - ~ 

2 2 

(iii) 13 = 0 on the Y-axis 

The seven regions to be investigated in this study are shown in Figure 4. 

ties: 

Region I is defined by the intersection of the following inequali-

(i) 0 < 13 < 1 

(ii) 13 - 1 
2 

The boundary lines for Region I shall be labeled as follows: 

A. f3 0 & (13 - 1) /2 < y < ( 1 - 13) /2: 

B . y ( 1 i3) /2 & 0 < 13 < 1 

c. y (13 1)/2 & 0 < 13 < 1 

The three vertices of the triangular Regia~ I are worthy of separate 
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VI 
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-1.0 

III 
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VII 

Figure .4. The Seven Regions of the (~ , y) Plane 
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consideration before exploring the properties of Region I and its 

boundary lines. 

The point (0.0, .5) represents the complete linkage algorithm; and 

for this algorithm, 

The point (0.0, -.5) represents the single linkage algorithm; and for 

this algorithm, 

The point (1.0, 0.0) designates an algorithm for which 

d .. 
lJ 

The properties of the algorithms lying along the boundary lines for 

Region I will be considered before the properties of the algorithms 

lying inside Region I are considered. Since a = 0 along Boundary A, 

1 + 2x d.k + 1 - 2y d 
2 J - 2 ik (3.5) 

An upper bound for n* 
(~' X) 

along Boundary A results from adding the 

positive number, 

1 - 2y ( ) 
2 djk - dik 

to the right side of Equation (3.5). Therefore, 

1 + 2y 1 - 2y 
d(ij)k < 2 djk + 2 djk djk 

A lower bound for n* 
(f3 ' X) 

along Boundary A results from adding the 

negative number, 

1 + 2y ( ) 
2 dik - djk 

to the right side of Equation (3.5). Therefore, 
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* Consequently, for each d(ij)k t D(~, y) , where ~ ~ 0 and 

(~ - 1)/2 < y < (1 - ~)/2, 

and therefore the set of agglomerative clustering algorithms defined by 

Boundary A is a set of space-conserving algorithms. 

Since y = (1 - ~)/2 along Boundary B, 

(3.6) 

An upper bound for along Boundary B may be derived by adding 

the positive number, 

13 ( d 'k - d .. ) 
J ~J 

to the right side of Equation (3.6). Thus, 

d.k ' J 

A lower bound for D*( v) along Boundary B results from adding the 13 , 6 

negative number, 

to the right side of Equation (3.6). Therefore, 

d .. 
~J 

Consequently, for each d(ij)k E DC!3, y) , where y = (1 - 13)/2 and 

0<13<1' 



Since the only other potentially interesting lower bound for uc~, y) 

along Boundary B is given by 

and since for each 0 < f3 < 1 , there exists such that 

then along Boundary B, 

Hence, the set of agglomerative clustering algorithms defined by 

Boundary B is a set of space-contracting algorithms. 

Since y = (13 - 1.)/2 along Boundary C, 
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(1 - f3 )d. k + f3d .. 
l lJ 

(J.?) 

* An upper bound for D(f3, y) along Boundary C may be derived by adding 

the positive number, 

f3(d.k - d .. ). 
l lJ 

to the right side of Equation (J.?). As a result, 

* A lower bound for D(f3, y) along Boundary C may be derived by adding 

the negative number, 

(1 -S)(d .. - d.k) 
lJ l 

to the right side of Equation (3.7)', Hence, 

(1 - f3 )d .. + f3d, . 
. lJ lJ 

d .. 
lJ 



Therefore, for each d(ij)k c; DCl3, y) , where y = ([3 - 1) /2 and 

0 <13 < 1, 

Since the only other potentially interesting lower bound for 

alo~ Boundary C is given by 
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and since for each 0 < i3 < 1 , (1 - i3 )dik < dik , then along Boundary 

c 1 

Thus, the set of agglomerative clustering algorithms defined by Boundary 

C is a set of space-contracting algorithms. 

To derive the properties for the algorithms lying inside Region I, 

Equation (3.4) must be considered, An upper bound for 

Region I may be derived by adding the positive number, 

1 - @ - 2y ( ) ( ) 
2 d.k- d.k + 13 d.k - d .. J . 1 . J 1J 

to the right side of Equation (3.4). Therefore, 

n* (13 I · '() 
inside 

A lower bound for. DCi3, y) inside Region I results from adding the 

negative number, 

1 - ~ + 2-y (d .. - d 'k) + 1 - ·~ - 2y (d .. - d. k) 
lJ J 1J 1 

to the right side of Equation (3.4). Hence, 

d > 1 - 13 + 2y 1 - s - 2y 
(ij)k 2 dij + 2 dij + i3dij dij 



Consequently, for e.ach d(ij)k e: D(a, y) , where 0 < ~ < 1 and 

(13 - 1) /2 < y < (1 - 13) /2 ' 

Although there are other possible lower bounds for inside 

Region I, in a manner similar to that used for Boundary A, it can be 

shown that inside Region I 
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Consequently, the set of agglomerative clustering algorithms defined by 

Region I is a set of space-contracting algorithms. 

Region II is defined by the intersection of the following inequali-

ties: 

(i) 

(ii) 

0<[3<1 

1 - 13 < 
2 

Y < ~ + 1 ---y-

The boundary lines for Region II shall be labeled as follows: 

B. Y = (1 - i3) /2 & 0 < 13 < 1 

D. Y = ([3 + 1)/2 & 0 < 13 < 1 

E. 13 = 1 & (1 - [3) /2 < y :;;; (13 + 1 )/2 

The properties of the algorithms lying along the boundary lines for 

Region II will be considered before the properties of the algorithms ly-

ing inside Region II are considered; and since Boundary B was discussed 

in conjunction with Region I, the discussion of the properties of the 

algorithms lying along the boundary lines of Region II will begin with 

Boundary D. 

Since y = (13 + 1)/2 along Boundary D, 

(3 .8) 



* An upper bound for D(l3 
1 

y) along Boundary D may be derived by adding 

the positive number, 

13(d.k- d .. ), 1 1J 

to the right side of Equation (3.8). Thus, 

d(. ')k < d 'k - [3d .. + !3d. . = d 'k 1J J 1J 1J ' J 

A lower bound for D(f3, y) along Boundary D may be derived by adding 

the negative number, 

(d .. - d 'k) + 13 (d. k - d .. ) 1J J 1 1J 

to the right side of Equation (3.8). Hence, 

(1 - 13)d •. +!3d .. = d .. 1J 1J 1J 

Consequently, for each d(ij)k e: n(13 , y) , where y = (~ + 1)/2 and 

o<s<t, 

d. . < d(. ')k. < d 'k 1J 1J J 

* Since the only other potentially interesting lower bounds for D(S, Y) 

along Boundary D are given by 

and since for each 0 < 13 < 1 there eXists dik < djk such that 

then along Boundary D, 

Therefore, the set of agglomerative clustering algorithms defined by 

Boundary Dis a set of space-contracting algorithms. 
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Since ~· = 1 along Boundary E, 

(3.9) 

An upper bound for along Boundary E may be derived by adding 

the positive number, 

(d.k- d .. )+ (1- y)(d.k- d.k') l lJ J l 

to the right side of Equation (3.9). As a consequence, 

d(ij)k < ydjk + (1 - y)djk = djk 

A lower bound for D(a, y) along Boundary E may be derived by adding 

the negative number, 

to the right side of Equation (3.9). Thus, 

d(, ')k > yd.k- yd.k +d .. lJ J . J lJ 
= d .. 

lJ 

Consequently, for each d(ij)k E n(s, y) , where ~ 1 and 

( 1 - [3) /2 < y ~ ( s + 1 ) /2 

d .. 
lJ 

Since the only other possible lower bounds for along Boundary 

E are smaller than dij and since dij , < dik , then along Boundary E, 

Therefore, the set of agglomerative clustering algorithms· defined by 

Boundary E is a. set of space-contracting algorithms. 

To derive the properties for the algo~ithms lying inside Region II, 

Equation (3.4) must be considered. An upper bound for n(~, y) inside 

Region II may be derived by adding the positive number, 



to the right side of Equation (J.4). Hence, 

1 - 13 + 2y 1 + @ - 2y 
d(ij)k < 2 djk + 2 djk djk 

A lower bound for D(i3, y) inside Region II may be derived by adding 

the negative number, 

1 - 13 + 2y ( ) ( ) ( ) 2 dik - d jk + 1 - 13 dij - dik 

to the right side of Equation (J.4). Hence, 

d(ij)k > (1 - S)d .. + [3d .. 
l.J l.J 

d .. 
l.J 

Consequently, for each d(ij)k e: D(i3, y) , where 0 < 13 < 1 and 

(1 - 13)/2 < y < (i3 + 1)/2, 

d. . < d(. ')k < d 'k l.J l.J J 

* The other potentially interesting lower bounds for D(i3, y) inside 

* 
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Region II are the same as the ones given for D(i3, y) along Boundary D. 

Therefore, it can be shown that inside Region II 

Consequently, the set of agglomerative clustering algorithms defined by 

Region II is a set of space-contracting algorithms. 

Region III is defined by the intersection of the following inequal-

ities: 

(i) 0 < i3 < 1 , 

(ii) y > 6 ~ 1 

The boundary lines for Region III shall be labeled as follows: 

D. y 

F. i3 

(13 + 1 ) /2 & 0 < i3 < 1 

0 & y > (13 + 1)/2 
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G. ~ = 1 & y > (~ + 1)/2 

The properties of the algorithms lying along the boundary lines for 

Region.III will be considered before the properties of the algorithms 

lying inside Region III are considered; and since Boundary D was dis-

cussed in conjunction with Region II, the discussion of the properties 

of the algorithms lying along the.boundary lines of Region III will 

begin with Boundary F. 

Since ~ = 0 along Boundary F, 

1 + 2y 1 - 2y 
2 djk + 2 . dik (3 .10) 

* An upper bound forD(~, y) along Boundary F may be derived by adding 

the positive number, 

2y - 1 
2 dik 

to the right side of Eq ua ti on (3 .1 0) . Thus , 

d 1 + 2y d 
(ij)k < 2 jk 

A iower bound for D(~·, y) along Boundary F may be derived by adding 

the negative number, 

to the right side of Equation (3.10). Hence, 

Consequently, for each where ~ 0 and 

y > (~ + 1 )/2 J 

d ' < d < 1 + 2y d 
jk (ij)k 2 jk 

Since any other upper bounds for D(~, y) .along Boundary F are larger 

than ( (1 + 2y) /2)djk and since for each y > .5 , 
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i + 2y d > 'd 
2 jk jk 

then along Boundary F., 

Therefore, the set of agglomerative clustering algorithms defined by 

Boundary F is a set of space-dilating algorithms. 

Since 13 = 1 along Boundary G, 

d(ij)k 

n* 

(3.11) 

An ~pper bound for 
(13' y) 

along Boundary G results from adding the 

positive number, 

yd.k - d,. 
1 l.J 

to the right side of Equation (3.11). Thus, 

A. lower bound for n* 
(13' y) 

along Boundary G results from adding the 

negative number, 

to the right side of Equation (3.11). Thus, 

d(ij)k > dij ,. 

Consequently, for each d(ij)k £ n(13 , y) , where 13 1 and y > 1.0 , 

To derive the properties for the algorithms lying inside Region III, 

Equation (3 .4) must be considered, An upper bound for inside 

Region III may be derived by adding the positive number, 

a + 2y - 1 
2 dik - 13dij ' 

to the right side of Equation (3.4). Hence, 
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1 - ~ + 2y : 
d(ij)k < 2 djk 

A lower bound for D([3, y) inside Region III may be derived by adding 

the negative number, 

[3 - 2y - 1 [3 + 2y - 1 ( ) 
2 djk + 2 . dik + 1 - [3 dij 

to the right side of Equation (3.4). Hence, 

(1 - [3 )d .. + [3d .. 
lJ lJ 

d .. 
lJ 

* Consequently, for each d(ij)k E D([3, y) , where 0 < [3 < 1 

> [3 + 1 
y 2 

d d 1 - [3 + 2y d 
ij < (ij)k < 2 jk 

and 

It can be shown that bounds for inside Region III are such 

that an agglomerative clustering algorithm represented by a point inside 

Region III might be space-conserving, s:race-contracting, or space-

dilating depending upon the relative magnitudes of dij' dik' and djk' 

Region IV is defined by the intersection of the following 

inequalities: 

(i) 13 < 0 

(ii) y > 1 - @ 
2 

The boundary lines for Region IV shall be labeled as follows: 

F, [3 

G. y 

0 & y > (13 + 1)/2 

( 1 - [3 ) /2 & [3 < 0 

The properties of the algorithms lying along the boundary lines for 

Region IV will be considered before the properties of the algorithms 

lying inside Region IV are considered; and since Boundary F was dis-

cussed in conjunction with Region III, the discussion of the properties 
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of the algorithms lying along the boundary lines of Region IV will 

consist of Boundary H. 

Since y = (1. - ~ )/2 along Boundary H, 

( 1 - ~ ) d 'k + ~ d. . 
J lJ 

(3.12) 

An upper bound for 

the positive number, 

along Boundary H may be derived by adding 

-~d .. 
lJ 

to the right side of Equation (3.12). As a consequence, 

* A lower bound for D(~, y) along Boundary H may be derived by adding 

the negative number, 

- 13 (d. . - d 'k) 
lJ J 

to the right side of Equation (3.12). As a consequence, 

d(ij)k > (1. - ~)djk + ~djk = djk 

Consequently, for each d(ij)k £ D(~, y) , where y = (1 - ~)/2 and 

~ < 0 1 

* Since any other upper bounds for D(~, y) along Boundary Hare larger 

than (1 - ~)djk and since for each ~ < 0 , 

(1. - ~)djk > djk 

then along Boundary H, 

Therefore, the set of agglomerative clustering algorithms defined by 

Boundary His a set of space-dilating algorithms. 
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To derive the properties for the algorithms lying inside Region IV, 

Equation (3.4) must be considered. An upper bound for n(s, y) inside 

Region IV may be derived by adding the positive number, 

2y + @ - 1 d - Qd 
2 ik tJ ij 

to the right side of Equation (3 .4). Thus., 

A lower bound for 

1 - ~ + 2y 
d(ij)k < 2 djk 

* D 
(~, y) inside Region IV may be derived by adding 

the negative number, 

2y + s - 1 ( ) ( ) 2 d. k .;. d 'k - s d .. - d 'k l J lJ J 

to the right side of Equation (3.4). Thus, 

d > 1 - s + 2y d 1 - s - 2y dJ.k + Qd d 
(ij)k 2 jk + 2 tJ jk = jk 

Consequently, for each 

1 - ~ 

* d(ij)k E D(S, y) , where S < 0 and 

)' > 2 
d d 1 - 13 + 2y d 

jk < (ij)k < 2 jk 

. * Since any other upper bounds for D(~, y) inside Region IV are larger 

than ((1 - S + 2y)/2)d.k and 9ince for each y > (1 - S)/2, 
J . 

1 - s + 2y d. > 
2 jk djk 

then inside Region IV, 

.e . u. b . ( n(s , Y) ) ~ d jk 

Therefore, the set of agglomerative clustering algorithms defined by 

Region +Vis a.set of space-dila.tin~ algorithms. 

Region V is defined by the intersection of the following 

inequalities: 



(i) ~ < 0 

(ii) s ; 1 < 1 - s y < 2 

The boundary lines for Region V shall be labeled as follows: 

A. [3 0 & (13 - 1) /2 < y < ( 1 - ~ ) /2 

H. y ( 1 - [3 ) /2 & [3 < 0 

J. y ([3 - 1 ) /2 & [3 < 0 

The properties of the algorithms lying along the boundary lines for 

Region V will be considered before the properties of the algorithms 

lying inside Region V are considered; and since Boundary A was dis-

cussed in conjunction with Region I and Boundary H was discussed in 

conjunction with Region IV, the discussion of the properties of the 
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algorithms lying along the boundary lines of Region V shall consist of 

a discussion of Boundary J, 

Since y = (f3 - 1)/2 along Boundary J, 

(1 - f3)d.k + [3d .. 
l lJ 

(J.1J) 

An upper bound for D(f3, y) along Boundary J may be derived by adding 

the positive number, 

-[3d .. 
lJ 

to the right side of Equation (J.1J,). Hen.ce, 

A lower bound for along Boundary J may be derived by adding 

the negative number, 

-R (d .. - d. k) 
t-' lJ l 

to the right side of Equation (J.1J). Hence, 



Consequently, for each d(ij)k € DC~, y) , where 13 < 0 and 

'¥ = (13 - 1 ) /2 , 
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* Since any other upper bounds for D(~, y) along Boundary J are larger 

than (1 - 13)dik and since for each 13 < 0 , there exists dik < djk 

such that 

then along Boundary J, 

Therefore, the set of agglomerative clustering algorithms· defined by 

Boundary J is a set of space-dilating algorithms. 

To derive the properties of the algorithms lying inside Region V, 

Equation (3.4) must be considered. An upper bound for D* 
(13 , '¥) 

inside 

Region V may be derj_ ved by adding._ :the positive number, 

1 - 13 - 2y ( ) 2 d.k- d.k -!3d .. . J l lJ 

to the right side of Equation (3.4). Thus, 

1 _- 13 + 2y 1 - @ - 2y 
d(ij)k < 2 djk + 2 djk 

A lower bound for inside Region V may be derived by adding the 

negative number, 

i 1 - [3 + 2y ( : ) ( ' ) 2 d. k - d 'k - 13 d. . - d. k l J lJ l 
' 

to the right side of Equation (J.4). Thus, 

1 - ~ + 2y d + 1 - 13 - 2y 
2 ik 2 dik + 13dik 

* Consequently, for each d(ij)k € D(i3, ')() , where i3 < 0 and 

(13 - 1) /2 < y < ( 1 - 13 ) /2 , 
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dik < d(ij)k < (1 - ~)djk 

* Since any other upper bounds for D(S, y) inside Hegion V are larger 

than (1 - 13 )djk and since for each 13 < 0 

then inside Region V, 

* l.u.b.(D(S, y)) -~ djk 

Therefore, the set of agglomerative clustering algorithms defined by 

Hegion Vis a. set of space-dilating algorithms. 

Hegion VI is defined by the intersection of the following inequal-

ities: 

(i) 13 < 0 

(ii) )" < s 2 1 

The boundary lines for Hegion VI shall be labeled as follows: 

J . )" (13 - 1 ) /2 & 13 < 0 

K. f3 0 & )" < (13 - 1 ) /2 

The properties of the algorithms lying along the boundary lines for 

Hegion VI will be considered before the properties of the algorithms 

lying inside Region VI are considered; and since Boundary J was discus-

sed in conjunction with Region V, the discussion of the properties of 

the algorithms lying along the boundary lines of Region VI shall consist 

of a discussion of Boundary K. 

Since i3 0 along Boundary K', 

1 + 2y d + 1 - 2y 
2 jk 2 dik (3.14) 

An upper bound for aiong Boundary K may be derived by adding 

the positive number, 



-1 - 2y ( ) 
2 djk - dik 

to the right side of Equatiorr (3.14). Hence, 

1 + 2y 1 - 2y 
d < 2 dl'k + 2 - dl'k (ij)k 

A lower bound for· D(rs, y) along Boundary K may be derived by adding 

the negative number, 

-2y.fl-..:::-~1 2 dik 

to the right side of Equation (3.14). Hence, 

1 + 2y 
2 djk 

Consequently, for each * d(ij)k £ D(F3, y) , where ~ 0 and 

y < (13 - 1 ) /2 ' 

1 + 2y d < 
2 jk 
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Since any other lower bounds for n* 
(13 ' y) 

along Boundary K are smaller 

than ((1 + 2y)/2)djk and since for each y < -.5 , 

1 + 2y 
2 < 0.0 

then along Boundary K, 3- d(ij)k £ DCI3, y) 3 

Therefore, the set of agglomerative clustering algorithms defined by 

Boundary K is a set of algorithms which are not monotone increasing. 

* It should also be noted that D(i3, y) along Boundary K can contain 

negative distances. 

To derive the properties of algorithms lying inside Region VI, 

Equation (3.4) must be considered. An upper bound for inside 

Region VI may be derived by adding the positive number, 
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to the right side of Equation (3 .4). As a consequence, 

1 - [3 + 2y 1 - s - 2y ( ) 
d(ij)k < 2 dik + 2 dik = 1 - [3 dik 

A lower bound for inside Region VI may be derived by adding 

the negative number, 

[3 + 2y - 1 
2 dik - 13dij 

to the right side of Equation (3.4). Thus, 

1 - 13 + 2y d 
2 ' jk 

Consequently, for each where 13 < 0 and 

)' < (13 - 1 ) /2 , 
1 - [3 + 2y' d < d 

2 jk (ij)k < 

Since any other lower bounds for D* (13 , )') inside Region VI are smaller 

than ((1 - [3 + 2y)/2)djk and since for each )' < (13 - 1)/2 , 

1 - [3 + 2y < 
2 0.0 

then inside Region VI, '} d(ij)k E n(13 1 
y) 3 

d(. ')k < d .. l.J l.J 

Therefore, the set of agglomerative clustering algorithms defined by 

Region VI is a set of algorithms which are not monotone increasing, and 

the application of anyone of these algorithms to a set of metric dis-

tances may result in negative joining distances for some of the joins 

in the formation of the hierarchy. 

Region VII is defined by the intersection of the following inequal-

ities: 
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(i) 0 < 13 < 1 

(ii) y < ~ - 1 
2 

The boundary lines for Region VII shall be labeled as follows: 

c. y (13 - 1) /2 & 0 < 13 < 1 

K. 13 0 & y < (13 - 1)/2 

L. 13 1 & y < ([3 - 1 )/2 

The properties of the algorithms lying along the boundary lines for 

Region VII will be considered before the properties of the algorithms 

lying inside Region VII are considered; and since Boundary C was discus-

s.ed in conjunction with Region I and Boundary K was discussed in con-

junction with Region VI, the discussion of the properties of the algo-

rithms lying along the boundary lines of Region VII shall consist of 

a discussion of Boundary L. · 

Since 13 = 1 along Boundary L , 

(3 .15) 

An upper bound for along Boundary L may be derived by adding 

the positive number, 

to the right side of Equation (3.15). Hence, 

A lower bound for along Boundary L may be derived by adding 

the negative number, 

to the right side of Equation (3.15). Hence, 

> yd.k 
'J 
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* Consequently, for each d(ij)k E D(~, y) , where S 1 and 

y < (S - 1)/2 , 

Yd jk < d(ij)k < dij 

Since any other lower bounds for D(S, y) along Boundary L are smaller 

than ydjk and since y < 0 , then along Boundary L, 

* 3 d(ij)k E D(S I y) 3 
< d .. 

lJ 

Therefore, the set .of agglomerative clustering algorithms defined by 

Boundary L is a set of algorithms .which are not monotone increasi~g. It 

should also be noted that along Boundary L can contain nega-

tive distances. 

To derive the properties of the algorithms lying inside Region VII, 

Equation (3.4) must be considered. An upper bound for DCS, y) inside 

Region VII may be derived by adding the pos~tive number, 

1 - ~ + 2y ( ) ( ) 2 d.k- d.k + s d.k -.d .. l J l lJ 

to the right side of Equation (3;4). Thus, 

* A lower bound for D(l3, y) inside Region VII may be derived by adding 

the negative number, 
s + 2y - 1 d Od 

2 ik ~ ij 

to the right side of Equation (3.4). Thus, 

d >. 1 - @ + 2y d 
(ij)k 2 jk 

Cons€1quently, for each d(ij)k E DCS, y) , where o < j3 < 1 and 

y < (13 - 1 ) /2 ' 

1 - 13 + 2y d < < 
2 jk d(ij)k dik 
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Since any other lower bounds for * D(~, y) inside Region VII are smaller 

than ((1 - ~ + 2y)/2)djk and since for each y < (S - 1)/2 , 

1 - ~ + 2y < 
2 0.0 

then inside Region VII, '3 d(ij)k E: D(~, y) 3 

d(. ")k < d .. lJ lJ 

Therefore, the set of agglomerative clustering algorithms defined by 

Region VII is a set of algorithms which are not necessarily mono-Lone 

increasing. It should also be noted that D* 
(~, y) inside Region VII 

can contain negative distances. 

The properties of the (~, y) family of agglomerative clustering 

algorithms are summarized in Figure 5 and Figure 6. In Figure 5, a 

of values for * inside each of the seven regions and along range D(~' y) 

their boundary lines is given. In Figura 6, each of the seven regions 

is labeled according to Definitions 8, 9, 10, and 11. 

Choosing the Agglomerative Clustering Algorithms 

for the Comparative Study 

Initially, the objective of investigating the properties of the 

(~, y) family of agglomerative clustering algorithms was to choose a 

"good" set of agglomerative clustering a~gorithms for the comparative 

study which is presented in Chapter V. , Since a (13, y) algorithm which 

is not monotone increasing also results in a D* 
(13 ' y) 

which may contain 

negative distances, then the (13, y) algorithms from Regions VI and VII 

and Boundaries K and L were immediately eliminated from consideration 

for the comparative study. :r:t remained to be determined whether 
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Figure 5. * A Range of Values for D(B y) over Various Regions of 
the (B, y) Pla~e ' 
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(~, y) Family of Agglomerative 
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space-conserving, space-contracting, or space-dilating algorithms pro­

duce "better" results when used in conjunction with the metric of 

Euclidean distance on multivariate normal data sets. 

To further limit the set of agglomerative clustering algorithms 

being considered for the comparative study, a preliminary investigation 

was devised using multivariate normal data sets, Euclidean distance, 

and representative (~, y) algorithms from each of the five remaining 

regions and from most of the remaining boundary lines. The following 

two important observations emanated from the preliminary investigation: 

1.. Algorithms which are close together in the (~, y) plane 

produce very similar results when applied to the same 

set of distances; 

2, Space-contracting algorithms produce relatively "poor" 

results with the metric of Euclidean distance on multi­

variate normal data sets. 

Thus, the set of agglomerative clustering algorithms being considered 

for the comparative study was reduced to Regions IV and V and Boundaries 

A, F, H, and J by the preliminary investigation. 

The final choice of the subset of the (~, y) family of agglomera­

tive clustering algorithms to be used in the comparative study was made 

by balancing the following objectives: 

(i) Include all of the well-known algorithms from the (~, y) 

family; 

(ii) Include some space-conserving algorithms (Boundary A); 

(iii) Include some space-dilating algorithms from both 

Region IV and Region V; 



(iv) Include only (~, y) algorithms which are relatively far 

apart in the (~, y) plane; 

(v) Include some (S, y) algorithms from each side of the 

Y-axis. 
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Single linkage at the point (0.0, -.5) is a space-contracting algo­

rithm, and complete linkage at the point (0.0, .5) is a space-dilating 

algorithm. It should be noted that the two points, (0.0, -.5) and 

(0.0, .5), are the endpoints of Boundary A which is the space-conserving 

region of the (S, y) plane. Thus, single linkage and complete linkage 

are sometimes referred to as boundary algorithms, since the space­

conserving algorithms lie between them along Boundary A. Average link­

age at the point (0.0, 0.0) is a space-conserving algorithm. Hence, 

single linkage, complete linkage, and average linkage formed a basis 

for choosing six equally spaced algorithms along the y-axis, which would 

satisfy all of the objectives except (iii). The six algorithms chosen 

are given in order from negative to positive along the Y-axis as follows: 

(1.1) Single linkage at (0.0, - .5)' 

(1.2) (0.0, -.25), 

(1.3) Average linkage at (0.0, 0.0), 

(1.4) (0.0, .25), 

(1.5) Complete linkage at (0.0, .5), 

(1 .6) (o.o, .?5). 

To determine a matching set of six algorithms in the space-dilating 

regions of the (S, y) plane and thereby satisfying objective (iii) 

also, it was noted that the flexible strategy (Lance and Williams, 196?)· 

is represented by the point (-.25, 0.0). Thus, it was decided to choose 

six equally spaced algorithms along the line ~ = -.25 such that this 



second set of six points 1wuld be paired horizontally with the first 

set of six points. The six algorithms chosen are given in order from 

negative to positive along the line ~ = -.25 as follows: 

(2 .1) (-.25, -.5). 

(2.2) (-.25, -.25), 

(2.3) Flexible strategy at (-.25, 0.0), 

(2.4) (-.25, .25)' 

(2.5) (-.25, • 5) ' 

(2.6) (-.25, . 75). 
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To satisfy the five previously stated objectives, a set of twelve 

agglomerative clustering algor~thms from the ·(~, y) family was chosen 

for the comparative investigation which is presented in Chapter V. 

Before the comparative study is presented, however, a discussion of the 

comparative statistic to be employed in the comparative study will be 

presented in Chapter IV. 



CHAPI'ER IV 

A COMPARATIVE STATISTIC 

Equivalent Forms of the Comparative Statistic 

Since the primary objective of this thesis is to compare clustering 

methods, a comparative statistic is required to quantify each comparison 

of clustering methods. Rand's (1969, 1971) c statistic is a very gen-

eral and versatile statistic which may be used to compare clustering 

methods based on how they partition the object space. Essentially, c 

measures the similarity between clusterings derived from any source. 

However, if two clusterings are produced by the application of two dif-

ferent clustering methods to the same object space, then c is a meas-

ure of the similarity between the two clustering methods through their 

resultant clusterings. As motivation for the comparisons presentEjld in 

Chapter V, discussion of Rand's development of the c statistic is pre-

sented in this section. 

Rand (1971, p. 847) makes the following three reasonable assump-

tions concerning the nature of a general clustering problem as a 

rationale for the development.of the c statistic: 

First, clustering ip discrete in the sense that every 
point is unequivocably assigned to a specific cluster. 
Seco~d, clusters are defined just as much by those points 
which they do not contain as by those points which they 
do contain. Third, all points are of equal importance 
in the determination of clusterings. 

l ' 

86 



87 

Thus, Rand (1971) points out that a basic unit of comparison between two 

clusterings is how pairs of points are clustered. 

To facilitate the definition of the c statistic, Definition 12 

concerning the similar assignment of point-pairs is tendered. 

Definition 12. Given an object space X consisting of N data points, 

x1 , x2 , ... , XN , and two clusterings of X , Y = {Y1 , Y2 , ... , YK} 
1 

and Y' = { Yl, Y2_, ••• , YK_ } , then a similar assignment in clusterings 
2 

Y and Y' of a pair of data points, X. and X. , results if and only 
l J 

if either of the following two conditions holds: 

(i) '3-k and k' 3 X.' xj E Yk and X.' X. E Yk, 
l l J 

(ii) J k and k' ) X. E yk 1 yk' ' and X. ~ yk ' Yk, l J 

Basically, if the elements of an individual point-pair are placed to-

gether in a cluster in each of two clusterings, or if they are assigned 

to different clusters in both clusterings, then a similar assignment of 

the point-pair has been made in the two clusterings. In essence, the 

c statistic gives a normalized count of the number of similar assign-

ments of point-pairs between two clusterings as designated in Definition 

13. 

Definition 13. Given an obje~t space X consisting of N data points, 

x1 , x2 , ..• , XN , and two clusterings of X, Y = {Y1 , Y2 , ... , YK} and 
1 

Y' = {yl' Y2_, ••• , YK} , then the c statistic ,between Y and Y' is 
2 

defined as follows: 

where 

n .. lJ 

c (Y, Y') 

{
1, if there is 

0, otherwise. 

.I: 

i<j nij 

(~) 

a similar assignment of 
in Y and Y' 

X. 
l 

(4.1) 

and X. 
J 
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Hence, c is a measure of similarity on :y, the set of all possible 

clusterings of X. 

Rand (1971) also gives a computational form for the c statistic, 

which is related to incidence matrix concepts. If the clusters within 

each clustering are arbitrarily numbered and if nij represents the n~m­

of data points which are simultaneously in the ith cluster of Y and 

· th 1 t of Y ' th 

ber 

the ~ c us er , en 

c (Y, Y') 

1 [I: (z :n .. ) 2 
2 i . lJ .. J ' 

+ l: (2:: n .. ) 2] . . lJ 
J l 

(~) 

.+ 2 
l: n .. 

lJ i,j 

(4.2) 

Another formulation of Rand's c statistic is worth noting. Accord-

ing to Anderberg (1973), the c statistic is eq_uivalent to the simple 

matching coefficient. The simple, matching coefficient, which was 

originally introduced to numerical taxonomy by Sakal and Michener (19.58), 

is a binary measure of association based on 2X2 contingency tables. To 

demonstrate the eq_uivalence relationship between Rand's c statistic and 

the simplematching coefficient, a particular form of the simple match-

ing coefficient will be developed. 

The simple matching coefficient may be used to assess the amount 

of agreement between any two binary vectors of the same length, where 

a binary vector is defined in Definition 14. 

Definition 14. A vector V ~ (v1 , v2 , ... , vn) is a binary vector if 

and only if for each i ~ 1, 2, ... , n, v. ~ 1 
l 

or v. = 0, 
l 

To compute the simple matching coefficient, it is necessary to define a 

match between two binary vectors as indicated in Definition 1.5. 

Definition 1.5. A match between the corresponding components of two 



binary vectors, U = (u1 , u2 , .•. , un) and V = (v1 , v2 , ... , vn) , 

occurs if and only if either of the following two conditions hold: 

(i) 

(ii) 

u. = 0 & v. = 0 
l l 

u. = 1 & v. = 1 
l l 

If the number of matches between two binary vectors of length n is 
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denoted by m , then a definition for the simple matching coefficient is 

given as Definition 16. 

Definition 16. ·The simple matching coefficient between two binary vee-

tors, U and V , of length n is given by the following formula: 

s(u, v) 

where m is the number of matches. 

m 
n 

(4.3) 

Thus, the simple matching coefficient represents a normalized count of 

the number of matches between two binary vectors. 

If a clustering can be represented as a binary vector, then a 

simple matching coefficient between clusterings can be computed. A 

binary representation of a clustering can be obtained by constructing 

a binary vector, U , consisting of n = (~) components, where each 

component of U indicates whether a pair.of dat~ points are together or 

apart in the clustering. Letting X be an object space consisting of 

N data points, then a more precise formulization of a binary representa-

tion of a clustering is given in Definition 17. 

Definition 17. The binary vector, 

u ... , uz ' ... , u 1 ) n n- ,n 

is a binary representation of clustering Y { y 1 ' y 2 ' ' ' ' ' y K} if 

and only if for each i < j , 



{
1, 

0, 

if 8- k 3 X. , X. E yk 
J_ J 

otherwise 

Therefore, if U is a binary representation of clustering Y and V 

is a binary representation of clustering Y' , then 

s(U, v) m 
n 

m m 
l: 11· • 

. <" 1J J_ J . 

(~) 
c(Y, Y') 

Consequently, Rand's (1969, 1971) c statistic is equivalent to the 

simple matching coefficient. 
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The c statistic has the following three fundamental properties as 

noted by Rand (1969, 1971): 

1. c is a measure of similarity with 0 ~ c ~ 1 

2. 1 - c is a metric on the set of all possible clusterings of X 

3. c is a random variable. 

It should be noted that Rand (1969) provides a proof of the fact that 

1 - c is a metric on ~ in his thesis. Fundamental property 3 is the 

subject of the remainder of Chapter IV. 

Since c is a random variable, under certain assumptions, c pos-

sesses a probability distribution. However, Rand (1969, p. 39) comments 

on the distribution of c as follows: "This is a complicated distri~ 

bution and analytic expression of it is not attempted here." Logically, 

part of the complication with respect to the distribution of c 

concerns the choice of the space on which initial distributional assump-

tions should be placed. Conceptually, X is a subset of Euclidean 

p-space with cardinality N ; a clustering method maps X into ~; and 

c: yxy ___,.. [o, q 
The present research effort includes some work on the distribution of 

the c statistic, and this effort is reported in the next section. 
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A Method for Deriving the Exact Distribution 

of the Comparative Statistic 

Since both the c statistic and the number of matches, m , are 

discrete random variables on !{X y and since m and c are propor-

tional by a proportionality factor of n = ( ~ ), , then m and c have 

the same probability distribution under a fixed set of assumptions per-

taining to ~. Theoretically, given a fixed value of N , if a proba­

bility distribution for ay and a sampling scheme on ·.:y are specified, 

then the probability distribution of c (or equivalently m) may be de-

rived by a procedure which shall be referred to as the method of complete 

enumeration. In this section, under a reasonable set of assumptions 

which simulate the hypothetical phenomenon of obtaining clusterings from 

two random clustering methods, the method of complete enumeration is dem-

onstrated for small values of N , and the exact probability distribution 

of the c statistic is given for N = 3, 4, and 5. 

Letting ~ denote the cardinality of the set tJ of all possible 

clusterings of object space X which consists of N data points, then 

the probability distributions of the c statistic are derived under the 

following two fundamental assumptions: 

1. The clusterings Y E y have a qiscrete uniform distribution; 

i.e., 

P(Y) 

2. The two clusterings, Y and Y' , are drawn at random from y 
with replacement. 

Therefore, if the ordered pair (Y, Y' ) represents an element of y X y, 
then 

I[ (Y' y')] 
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Case 1, N 3 

Figure 7 illustrates the method of complete enumeration for N = 3. 

Figure ?a presents the L3 = 5 clusterings in ~, which are arbitrari­

ly labeled with a small letter to facilitate the derivation of the dis-

tribution of the number of matches. Figure ?b provides the binary repre­

sentation of each clustering in !:J, where the vector length of e,ach 

binary representation is n = 3. In Figure ?c, the distribution of the 

number of matches (conveniently displayed in a two-way table) for each 

pair of clusterings in . ~X 1J is given , where each clustering is 

identified by its arbitrary label. 

K = 1 a. (X1 x2 x3) a, (1 1 1) 

b. (X1 x2) (X3) b. (1 0 0) 

K = 2 c. (X1 X) (x2) c. (0 1 o) 

d, (x2 x3) (X1) d. (0 0 1) 

K = 3 e. (x1) (x2) (x3) e. (0 0 o) 

a) Clusterings b) Binary Representations 

a b c d e 

a 3 1 1 1 0 
b 1 3 1 1 2 
c 1 1 3 1 2 
d 1 1 1 3 2 
e 0 2 2 2 3 

c) Number of Matches for Each Pair 
of Clusterings 

Figure?. For N = 3 , the Set of All Possible Clusterings 
and the Distribution of the Number of Matches 
for Pairs of Clusterings from 'Y 
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Recalling that 

c(Y, Y') m 
n 

(4.4) 

then the distribution of the values of the c statistic for N == 3 is 

derived from the distribution of m by dividing each element in the 

two-way table given in Figure ?c by 3. Consequently, for N = 3 , the 

probability mass function (p.m.f.) of the c statistic is given by 

the following expression: 

f(c; N 3~ n 

Therefore, when N 3 1 

Case 2, N 4 

31 13 

E(c) 

VAR(c) 

5) 

13 
25 

56 
625 

2/25 I· if c 0 

12/25 if c = 1/3 
6/25. if c 2/3 

5/25 if c 1 

0 otherwise. 

.0896 

Figures .8 and 9 Illustrate the method of complete enumeration for 

N = 4. Figure 8a presents the 14 = 15 clusterings in ~~ which are 

arbitrarily labeled with a small letter to facilitate the derivation of 

the distribution of the number of matcpes ., Figure 8b provides the bi-

nary representation of each clustering in~. where the vector length of 

each binary representation is n = 6. In Figure 91 the distribution of 

the number of matches (conveniently displayed in a two-way table) for 

each pair of clusterings in Y X '1:( is given 1 where each clustering is 

identified by its arbitrary label from Figure 8. 
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K = 1 a. (X1 x2 XJ x4) a. (1 1 1 1 1 1) 

b. (X1 x2 X) (X4) b. (1 1 0 1 0 o) 

c. (X1 x2 x4) (X:) c. (1 0 1 0 1 0) 
K == 2 

d. (X1 x3 x4) (X2) d. (0 1 1 0 0 1) 

e. (x2 x3 x4) (x1) e. (0 0 0 1 1 1) 

f. (X1 x2) (X3 x4) f. (1 0 0 0 0 1) 

K == 2 g. (x1 x3) (X2 X4) g. (d 1 0 0 1 o) 

h. (X1 X4) (X2 x3) h. (0 0 1 1 0 0) 

i. (x1 X2) (x3) . (x4) i. (1 0 0 0 0 o) 

j. (X1 x3) (X2) (X4) j. (o 1 0 0 0 o) 

k. (X1 X4) (x2) (X3) k. (o 0 1 0 0 0) 
K == 3 

l. (x2 x3) (x1) (x4) l. (0 0 0 1 0 o) 

m. (X2 x4) (X1) (x3) m. (o 0 0 0 1 o) 

n. (X3 x4) (X1) (X2) n. (0 0 0 0 0 1) 

K = 4 o. (x1) (x2) (x3) (x4) o. (o 0 0 0 0 o) 

a) Clusterings b) Binary Representa-
tions 

Figure 8. For N = 4 , the Set of All Possible Clusterings of X 

Thus, from Equation (4.4), it follows that the distribution of the 

values of the c statistic for N = 4 can be derived from the distri-

bution of m by dividing each element in the two-way table given in 

Figure 9 by six. Consequently, for N = 4 , the p.m.f. of the c 

statistic is given by the following expression: 



95 

a b c d e f g h i j k 1 m n 0 

a 6 3 3 3 3 2 2 2 1 1 1 1 1 1 0 
b 3 6 2 2 2 3 3 3 4 4 2 4 2 2 3 
c 3 2 6 2 2 3 3 J 4 2 4 2 4 2 J 
d 3 2 2 6 2 3 J 3 2 4 4 2 2 4 J 
e 3 2 2 2 6 3 3 3 2 2 2 4 4 4 3 
f 2 3 3 3 3 6 2 2 5 J J J 3 5 4 
g 2 3 3 3 3 2 6 2 J 5 J 3 5 3 4 
h 2 3 3 3 3 2 2 6 3 3 5 5 3 3 4 
i 1 4 4 2 2 5 3 3 6 4 4 4 4 4 5 
j 1 4 2 4 2 3 5 3 4 6 4 4 4 4 5 
k 1 2 4 4 2 3 3 5 4 4 6 4 4 4 5 
1 1 4 2 2 4 3 3 5 4 4 4 6 4 4 5 
m 1 2 4 2 4 3 5 3 4 4 4 4 6 4 5 
n 1 2 2 4 4 5 3 3 4 4 4 4 4 6 5 
0 0 3 3 3 3 4 4 4 5 5 5 5 5 5 6 

Figure 9. For N = 4 , the Distribution of the Number of Matches 
for Pairs of Clusterings from ~ 

2/225 if c = 0 

12/225 if c ;, 1/6 

48/225 if c == 2/6 

f(c; N == 4, n == 6, L4 == 15) 64/225 if c == 3/6 

60/225 if c = 4/6 

24/225 if c = 5/6 

15/225 if c = 1 

0 otherwise. 

Therefore, when N == 4 , 

E(c) _i_ .5556 9 

VAR(c) _12 .0469 405 
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Case 3, N 5 

For N = 5 , Figure 10 presents the binary representations for the 

L5 =52 clusterings in ~,where the vector length of each binary 

representation is n = 10. From these binary representations, the dis-

tribution of m and thus, of c can be derived by applying the method 

of complet~ enumeration and by considering certain patterns and short-

cuts learned from the previous cases. 

Thus, for N = 5 , the p.m.f. of the c statistic is given by the 

following expression: 

f(c; N 5, n - 10, L5 

Therefore, when N 5 , 

E(c) 

VAR(c) 

The Cardinality of ;£ 

52) 

1594 
2704 

.02897 

2/2704 

20/2704 

30/2704 

120/2704 

440/2704 

480/2704 

600/2704 

560/2704 

300/2704 

100/2704 

52/2:704 

0 

.5895 

if c 0 

if c 1/10 

if c 2/10 

if c 3/10 

if c 4/10 

if c 5/10 

if c 6/tO 

if c = 7/10 

if c 8/10 

if c = 9/10 

if c = 1 

otherwise. 

Theoretically, the method of complete enumeration could be applied 

for N = 3, 4, 5, 6, 7, 8, .•. ; an~ cumulative distribution function 

(C.D.F.) tables could be constructed, However, the cardinality of 1( 
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g 1 1 1 1 1 1 1 1 ~~ 1 1 0 1 1 0 1 0 
(1 1 0 1 1 0 1 0 1 o) 
(1 0 1 1 0 1 1 0 0 1) 
(o 1 1 1 0 0 0 1 1 1 
(o 0 0 0 1 1 1 1 1 1 
(1 1 0 0 1 0 0 0 0 1 
(1 0 1 0 0 1 0 0 1 0 
(0 1 1 o, 0 0 1 1 0 0 
(0 0 0 1 1 1 0 1 0 ~~ (0 0 1 0 1 0 1 0 1 

. ~~ 1 0 1 0 1 0 0 1 

~l 0 0 1 0 0 1 1 0 
(0 1 0 0 0 1 1 0 0 

~: 
0 1 1 1 0 0 0 0 

~l 0 0 0 0 0 0 1 1 
1 0 0 1 0 0 0 0 

(o 0 1 1 0 0 0 0 0 
(1 0 1 0 0 1 0 0 0 ~~ (1 0 0 1 0 0 1 0 0 
(o 1 1 0 0 0 0 1 0 0 
(0 1 0 1 0 0 0 0 1 0 
(o 0 0 0 1 1 0 1 0 0 

~~ 
0 0 0 1 0 1 0 1 0 
0 0 0 0 1 1 0 0 1 
0 0 0 0 0 0 1 1 1 

(1 0 '0 0 0 0 0 1 0 0 
(0 1 0 0 0 1 0 0 0 ~~ (0 0 . 1 0 1 0 0 0 0 
(1 0 0 0 0 0 0 0 1 o) 
(o 1 0 0 0 0 1 0 0 0 
(0 0 0 1 1 0 0 0 0 0 
(1 0 o· 0' 0 0 0 0 0 1 

~~ 0 1 0 0 0 1 0 0 0 
0 0 1 0 1 0 0 0 0 

~~ 1 0 0 0 0 0 0 0 ~~ 0 1 0 0 0 o. 0 1 

!~ 
0 0 1 0 0 0 1 0 o) 
0 0 0 1 0 ·o 0 0 ;~ 0 0 0 0 1 0 'o 1 
0 0 0 0 0 1 1 0 0) 

g 0 0 0 0 0 0 0 0 o) 
1 0 0 0 0 0 0 0 

~l ~~ 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

(0 0 0 0 1 0 0 0 0 0 
(0 0 0 0 0 1 0 0 0 0 

~~ 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 

~~ 0 0 0 0 0 0 0 1 0 
0 0 0 0 ·o 0 0 0 1 

(o 0 0 0 0 0 0 0 0 0 

Figure 10. For N = 5, the Binary 
Representations of 
-y 
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increases rapidly thereby making the construction of C.D.F. tables for 

the c statistic costly with respect to computer ~ime. As an indication 

of the counting problems related to deriving the probability distribu-

tion of the c statistic by the method of complete enumeration, a brief 

discussion of the cardinality of 'Y for specified values of N is 

relevant. 

It should first be noted that any problem related to cluster analy-

sis which requires the complete enumeration of all possible clusterings 

for a specified value of N as a part of its solution approaches practi-

cal impossibility in terms of numerical enormities for even relatively 

small values of N. In addition, for a specified value of N , the deri-

vation of the probability distribution of the c statistic by the method 

of complete enumeration requires (~) 2 pairwise comparisons of the 

clusterings from 1J. However, the number of pairwise comparisons neces-

sary to derive the probability distribution of the c statistic by the 

method of complete enumeration can be substantially reduced by noting 

that c is a symmetric function on '-y X y , i.e. , 

c(Y, Y') c(Y', Y) 

and that 

(y Y') c ' 1 if and only if Y Y' 

Therefore, only 

~(~- 1) 
2 

pairwise comparisons of clusterings from !J are required to derive the 

probability distribution of the c statistic for a specified value of N. 

From a practical point of view, it is the size of ~ which 

restricts the derivation of the probability distribution of the c sta-

tistic by the method of complete enumeration to "small" values of N 
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(e.g., N = 3, 4, and 5). Duran and Odell (1974) show that for each 

specification of N and K , the number of possible clusterings of size 

K ·, denoted by S(N, K) , is a Stirling number of thE;} second kind, As a 

consequence, 

~ = 

N 
2: S(N, K) 

K=1 

Hence, the cardinality of ~ for each specification of N is the sum 

of Stirling numbers of the second kind, 

Computing Stirling numbers of the second kind is tedious. Duran 

and Odell (1974) prove that Stirling numbers of the second kind may be 

computed by the following formula: 

== _1_. ~ ·(~) (-1)j(K- j)N 
Kl • O J · 

J== 
S(N, K) (4.5) 

By definition, 

S(N, 0) 0 

S(N, N + i) 0 if i > 0 

Obviously, 

S(N, 1) 1 

It can also be shown that 

S(N, N) 1 

In addition, Duran and Odell (1974) give the following recursive rela-

tionship between Stirling numbers of the second kind, which may be em-

ployed in deriving a table of Stirling numbers of the second kind: 

S(N + 1, K) K[S(N, K)] + S(N, K- 1) (4.6) 

Using the above properties of Stirling numbers of the second kind, Duran 

and Odell (1974) derive a two-way table of Stirling numbers of the sec­

ond kind from 8(1, 1) through 8(8, 8) , which aptly depicts the 

immensity of the num·erical problem of complete enumeration of ~. 
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In this section, the exact probability distributions of the c 

statistic for N = 3, 4, and 5 were derived by the method of complete 

enumeration. For N = 6 , 

~ 203 

which implies that 

20,503 

pairwise comparisons of clusterings from ~ are necessary to derive 

the probability distribution of the c statistic by the method of com-

plete enumeration. Thus, for large values of N , an alternative pro-

cedure for deriving or approximating the probability distribution of the 

c statistic is necessitated. 

The Relationship of the Distribution of the 

Simple Matching Coefficient to the 

Distribution of the Comparative 

Statistic 

An alternative to the method of complete enumeration for deriving 

the probability distributions of the c statistic for specified values 

of N is to construct, under a set of "reasonable" assumptions, a pop-

ulation model for the c statistic, which yields general formulas for 

the p.m.f. and the moments of the distribution. The set of "reasonable" 

assumptions should adequately and correctly characterize the population 

of interest, 

. Goodall (1967) derives a theoretical distribution for the simple 

matching coefficient under a set of assumptions which may be delineated 

as follows: 



1 . Each binary vector, U = ( u1 , u2, . , . , un) , is randomly 

selected from a population of binary vectors of length 

2. 

n , where the probabilities of the alternatives in the 

population for each component, u., j = 1, 2, ... , n, 
J 

of' U are given by the following formulation: 

The components, 

f1j P(u. 
J 

fOj = P(u. 
J 

fo.+f1. 
J J 

u. ' j = ·1' 2' 
J 

1) 

0) 

1 

I I I ' 

vector U are mutually independent. 

n , of each binary 

101. 

From the above assumptions, it follows that the probability, pj , that 

two randomly chosen binary, vectors, U and V , of length n match on 

th . .th t i d. i d f 11 e1r ~ componen s s er ve as o ows: 

p. = P(u. = v.) 
J J J 

= P(u. = 1)P(v. = 1) + P(u. = O)P(vJ. = 0) J . J J 

2 2 
fij + foj 

As a consequence, Goodall (1967) states that the probability dis-

tribution of the simple matching coefficient, s , is a special case of 

the Poisson binomial distribution. Therefore, 

E(s) 

VAR(s) 

= ..L. 
n 

n 
I: 

j=1 

= p(1 - p) 
n 

p. = p 
J 

It is also noted by Goodall (1967) that if f1j is constant for all 

u., j = 1, 2, •.. , n, then the Poisson binomial distribution 
·J 
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degenerates to the binomial distribution. Thus, under certain restric-

tion~, the simple matching coefficient has a binomial distribution. 

It was previously shown that the c statistic and the simple 

matching coefficient are equivalent. Since each component of a binary 

representation of clustering Y indicates whether a particular pair of 

data points occur together or apart in clustering Y and since each · 

pair of data points has the same likelihood of occurring together in a 

randomly chosen partition of X , then over the set of all possible 

clusterings of N data points, f 1 . must be a constant for all compo­
J 

nents of the binary representation of clustering Y Hence, according 

to Goodall's (1967) development of the distribution of the simple match-

ing coefficient, the probability distribution of the c statistic should 

be binomial. The relationship of the binomial distribution to the pre-

viously derived exact probability distributions of the c statistic for 

N = 3, 4, and 5 requires further exploration, 

Case 1, N 3 

When N = 3 n 3 

all j = 1, 2, 3 , 

Therefore, 

p. 
J 

Hence, if N 3 , then 

and from Figure ?b, it is obvious that for 

2 
5 

p 

E(c) 

. \ 

and 

D. 
25 

13 
25 

p 

j 

13 
25 

_]__ 
5 

1, 2' 3 
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and the population mean for the c statistic as obtained by the method 

of complete enumeration agrees with the mean of the binomial distribu-

tion. 

If the variance of the c statistic for the binomial formulation is 

denoted by VARb(c) , then 

(13) (12). 
25 25 

3 6~~ I 6~~ = VAR(c) 

It should be noted that for N = 3 , the variance of the binomial distri-

bution underestimates the exact variance of the c statistic as derived 

by the method of complete enumeration. It is also easily observed that 

for N = 3 , the probability distribution of the c statistic is not 

derivable from the binomial p.m.f. 

case 2, N 4 

When N = 4 , n = 6 and from Figure Bb, it is obvious that for 

all j = 1 , 2 , ... , 6 , 

ft. 
1 

. J 3. 

Therefore, 

p. ( ~) 2 + ( ~) 2 
J 

p 

Hence, if N 4 , then 

E(c) 

and fOj 

2 
9 

2 
9 

p 2 
9 

2 
3 

j 1, 2, ... , 6 

and the population mean for the c statistic as obtained by the method 

of complete enumeration agrees with the mean of the binomial distribu-

tion. 
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If the variance of the c statistic for the binomial formulation 

is denoted by VA~(c) , then 

( ~) ( ~) 
6 

10 _j _1..2 
243 I 405 VAR(c) 

It should be noted that fo~ N ~ 4 , the variance of the binomial dis-

tribution underestimates the exact variance of the c statistic as 

derived by the method of complete enumeration. It is also easily ob­

served that for N ""' 4 , the probability distribution of the c 

statistic is not derivable from the binomial p.m.f. 

Case 3, N 5 

When N ~ 5 , n ~ 10 and from Figure 10, it is obvious that for 

all j = 1 , 2, . , . , 10 , 

Therefore, 

p. 
J 

(~)2 

Hence, if N 5 , then 

12 
52 and 

+ ( ~~) 2 

p 1594 
2704 

E(c) = p 

37 
152 

~ 
2704 

.5895 

.5895 

j 1, 2, ... , 10 

and the population mean for the c statistic as obtained by the method 

of complete enumeration agrees with the mean of the binomial distribu-

tion. 

If the variance of the c statistic for the binomial formulation 

is denoted by VA~(c) , then 



( .)89.5) ( .410.5) 
10 . 0242 f . 02897 

10.5 

VAR(c) 

It should be noted that for N = .5 , the variance of the binomial dis-

tribution underestimates the exact variance of the c statistic as 

derived by the method of complete enumeration. It is also easily ob-

served that for N = .5 , the probability distribution of the c statis-

tic is not derivable from the binomial p.m.f. 

Reconciling the Disparity 

Although the c statistic and the simple matching coefficient are 

equivalent, the c statistic represents a restricted application of the 

simple matching coefficient. The assumption of mutual independence 

among the components, u. , j = 1, 2, ... , n , of each binary vector U 
J 

is fundamental to Goodall's (1967) 'derivation of the theoretical distri-

bution of the simple matching coefficient. However, the components of a 

binary representation of clustering Y are necessarily dependent because 

the classification of a particular subset of object space X into clus-

ters is sufficient to determine clustering Y . For example, in cluster-

ing Y 1 if data points x1 and X2 QCC~ together in cluster Yk and 

data points x1 and x3 occur together in cluster Yk' , then 

Yk = Yk' and data points x2 and x3 also occur together in cluster 

Yk ; this is a consequence of overlapping clusters being disallowed in 

a partition of the object space .. Thus, Go0dall 1 s (1967) second funda-

mental assumption is invalid for the restricted application of the · 

simple matching coefficient to the comparison of clusterings of the 

object space. Hence, the c statistic does not have a binomial 

probability distribution. 
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A partition of the object space represents a strong condition with 

respect to the composition of ~· However, the condition of being a 

partition is difficult to quantify in general terms. If, for the pur­

poses of this discussion, N and X are fixed and n = (~) , then the 

cardinality of the population of binary vectors of length n is 2n 

and the cardinality of the set of binary representations of ~ is 

N 
E S(N, K) < 2n 

K=1 

Consequently, the binary representations of ~ are only a subset of the 

population of binary vectors of length n ; and on this larger population 

of binary vectors, the c statistic would have a binomial probability 

distribution. However, 

of the members of the population of binary vectors are eliminated from 

the set of binary representations of 1J by the condition that a cluster­

ing must be a partition of object s,pace X • Therefore, the probability 

distribution of the c statistic on ~ must be derived by a condition-

al probability argument, but so far this approach has proven to be 

intractable in general terms. The special cases where N = 3, 4, and 5 

were given previously in this chapter. 

For the purposes of the comparative study presented in the.next 

chapter, three observations concerning the c statistic will suffice: 

1. .5 < E(c) < 1.0 

2, The closer c is to 1.0, the more similar are the two clus-

terings; 

J, If 
c (Y, y I) > c (Y, y") 

then Y and Y' are more similar than Y and Y'' are. 



CHAPI'ER V 

A COMPARATIVE STUDY OF TWELVE AGGLOMERATIVE 

CLUSTERING METHODS 

Rationale for the Comparative Study 

A clustering results from the interaction of the lineaments of the 

data with a clustering method, but distinct clustering methods often 

produce different clusterings when applied to the same data. One expla­

nation for this phenomenon is that different clustering methods are 

affected by different aspects of .the structure (or the lack of it) with­

in the data. Consequently, a comparative study of clustering methods 

should also provide for an investigation of the effect of controlled 

structural changes within the data on the resultant clusterings. Thus, 

a basis for comparing clustering methods is induced qy giving operation­

al interpretations to the fundamental concepts of "retrieval" and 

"noise". 

The philosophical genesis of the concept of "retrieval" may be 

traced to the Aristotelian postulation of the existence of "natural" 

structure in the universe. A clustering method is purported to be a 

functional mechanism for finding or "retrieving" "natural" structure 

within data. Hence, the degree to which a clustering method "retrieves" 

known structure within generated da;ta is an important characteristic of 

the clustering method. To quantify the '''retrieval" ability of a clus­

tering method, N data points are generated from K "well-separated" 

107 
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populations, and the clustering of size K which groups together data 

points which are generated from the same population is denoted by Y . 

Letting Y' denote the clustering which results from applying a 

specific clustering method to the N data points, then the value of 

c(Y, Y') is a measure of the "retrieval" ability of the clustering 

method (subject to random variation in the generated data). 

In engineering terms, the concept of "noise" is used to describe 

detectable interferences in a signal. Thus, "noise" in terms of the 

performance of a clustering method might be viewed as any anomaly in 

the data which interferes with the ability of the clustering method to 

"retrieve" the "natural" structure present in the data. The simulation 

of various types of "noise" has been an important aspect of many recent, 

empirical comparative studies as indicated in Chapter II. Empirical, 

comparative studies concerning the perturbation of data points as des-

cribed by Rand (1969, 1-971) or the perturbation of initial ranks as d.es­

cribed by Cunningham and Ogilvie (1972) or Baker (1974) represent 

attempts to investigate the effect of a particular type of "noise" on the 

performance of a clustering method. Rand (1971, p. 848) gives the fol-

lowing motivation for investigating the sensitivity of a clustering 

method to perturbation of the data: 

In many applications it is not known whether the data are 
good representations of their respective populations. The 
changes of clustering which result from slight movement of 
points are therefore of critical importance in both choice 
of methods and interpretations of results. 

Hence, these perturbation studies might be viewed as investigations of 

the sensitivity to measurement errors or the sensitivity to resampling 

of a clustering method. Another form of "noise" is simulated by the 

addition of uninformative variables to the set of p informative 



variables which locate the data points in p-space as described by 

Mrachek ( 1972) . 
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The simulation of different levels of "noise" by means of changing 

the correlation betwe~n variables embodies the essence of the ideas pre­

sented in each of the previously mentioned "noise" studies. For simpli­

city, ·only bivariate data will be considered in this discussion; i.e., 

all data points will consist of two variables and only two variables. 

If p represents the population correlation between the two variables 

within a single population of datapoints, then the level of "noise" 

existent in this population to obscure the clustering of data points from 

this population into the same cluster is quantified by the specification 

of a value of p • Thus, a specification of p -f 0 implies that each 

variable within the single population of data points is semi-informative 

rather than completely informative or completely uninformative, It 

should also be noted that increasing p , p ~ 0 , for an otherwise fixed 

population of data points causes the data points within this population 

to be systematically shifted from an approximately circular configuration 

to a more elliptical configuration. Since it has been demonstrated that 

some clustering methods opt for circular clusters, a relevant, compara­

tive characteristic of a clusteringmethod is its robustness to increas­

ing non-circularity in the population of data points. Hence, a study of 

the effect of increasing p, p ~ 0, on the "retrieval" ability of a 

clustering method provides a measure of the degree to which a clustering 

method imposes structure on the data rather than "retrieving" structure 

from the data, and it provides a measure of the effect of a particular 

type of "noise" on the resultant clusterings. 
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For convenience, the important considerations in any extensive, 

systematic comparison of clustering methods shall be termed structural 

parameters; a structural parameter is any variable which controls some 

aspect of the structure of the data. For the purposes of the comparative 

study presented in this chapter, the primary structural parameter of 

interest is p as discussed above. However, the set of structural para-

meters for a comparative study of clustering methods should consist of 

all variable features within the data which might affect the resultant 

clusterings. Some of the possible structural parameters which require 

controlled change to make a comparative study "dynamic" are delineated 

as follows: 

1 • N, the number of data points in X; 

2. p, the number of variables defining each data point; 

i.e., the dimensionality of the Euclidean p-space in 

which X is embedded; 

J. K, the number of populations from which the data points 

are generated; 

4. The type of population or the probability distribution 

from which each of the K populations of data points is 

generated; 

5. flk , k = 1, 2, ... , K, the mean vector for each population 

of data points; 

6. ;k, k = 1, 2, ... , K, the variance-covariance structure 

for each population of data points; 

7. o i , i = 1, 21 ••• , ( ~) , the distance between each pair 

of population mean vectors; 



8. The relative location of the population mean vectors or 

the spatial configuration of the population mean vectors; 

9. The split or nk, k = 1, 2, ..• , K, the number of data 

points generated from each population of data points. 
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In any comparative study of clustering methods, some of the struc­

tural parameters in the set of possible structural parameters must 

remain fixed, and a few of the structural parameters of special interest 

may be extensively studied over a range of meaningful settings for a 

fixed set of clustering methods, The primary objective of the compara­

tive study presented in the remainder of this chapter is to investigate 

the effect of increasing the correlation between variables within the 

populations of data points on.the "retrieval" ability of twelve agglom­

erative clustering methods, However, a limited investigation of the 

effect of changes in the settings of two other structural parameters is 

also presented. In the next section, the particular structural parame­

ters of interest for the comp:~.rative study of twelve agglomerative clus­

tering methods are specified, and the fixed and variable settings for 

these structural parameters are given. 

Design of the Comparative Study 

In terms of the design of the comparative study, initially, it is 

necessary to specify the setting for each of the fixed structural para­

meters and the range of settings for each of the variable structural 

parameters. For the purposes of the comparative study, the probability 

distribution from which each of the K populations of data points was 

generated was fixed to be multivariate normal (MVN). A brief discussion 

of the basic generating procedure used should suffice. For the purpose 
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of efficient discussion, MVN populations with the same variance­

covariance matrix will be termed "similar". MVN vectors may be generated 

from a population having a mean vector of zero and any specified positive 

definite, symmetric variance-covariance matrix by calling subroutine 

GGNRM from the IMSL catalogued programs. Generation from other similar 

MVN populations may be accomplished by adding a fixed constant vector to 

each vector generated from the GGNRM subroutine. This procedure simu­

lates the generation of vectors from a MVN population with a mean vector 

equal to the fixed constant vector which was added to each of the gener­

ated vectors and the same variance-covariance matrix as was originally 

specified, 

Because of the necessity to operate within certain cost constraints, 

the number of data points, the number of variables per data point, and 

the number of MVN populations of data points in X were fixed at the 

following values: 

(i) N = 21 

(ii) p = 2 

(iii) K = 3 . 

The choice of N = 21 was arbitrary subject to its divisibility by 

three. However, since the primary purpose of the comparative study was 

to investigate the effect ofincreasing the correlation between variables 

on the "retrieval" ability of twelve agglomerative clustering methods, 

the choice of p = 2 was necessary to simplify the design of the compar­

ative study and to enhance the interpretab~lity of the results from the 

comparative study, One rationale for choosing K = 3 is that to main­

tain the information content of the variables within a population of 

data points throughout X , it is important to choose K > p . The 
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choice of K = 3 was also related to the choice of a potentially 

interesting spatial configuration for the population mean vecton:;. 

To facilitate the controlled change of the structural parameters 

6 i , i = 1, 2, ... , ( ~) , it was apropos to quantify the distance 

between population mean vectors by a single structural parameter, 6 

i.e., 

v i 1, 2, ... , (~) , 6. = 6 
l 

Consequently, since K was fixed at three and since the representation 
• 

of the distance between the population mean vectors by a single struc-

tural parameter implies that the population mean vectors are equally 

spaced in the plane, the spatial configuration for the population mean 

vectors was automatically fixed so that the three population mean vee-

tors were always placed at the vertices'of an equilateral triangle. It 

should be noted that the specification of a value for 6 in conjunction 

with the equilateral triangle configuration for the population mean 

vectors is sufficient with respect to locating the population mean vee-

tors in Euclidean two-space since the actual location of the equilateral 

triangle in the plane does not affect the performance of an agglomera-

tive clustering method, Thus, N, p, K , the generating probability dis-

tribution, and the spatial configuration of the population mean vectors 

remained fixed at the previously mentioned settings throughout the com-

parative study of agglomerative clustering methods. 

The three structural parameters subject to controlled variation in 

the comparative study were o , split, and p. The settings for the 

structural parameter 6 , the distance between each pair of population 

mean vectors, were 6 4. 0 and 6 = 5. 0 ; these two settings were 

deemed worthy of further consideration for the equilateral triangle 
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spatial configuration of population mean vectors after a preliminary in­

vestigation with respect to some agglomerative clustering methods and 

various settings for some of the other structural parameters. It has 

been aptly demonstrated by other investigators (e.g., Everitt, 1974) 

that some clustering methods opt for equal sized clusters. Thus, a 

limited investigation of the robustness of the twelve agglomerative 

clustering methods to unequal sized clusters was attempted by contrasting 

the equal sized clusters setting for split, 7-7-7, with an unequal sized 

clusters setting for split, 11-7-3. 

The variance-covariance structure for the bivariate normal (BVN) 

populations of data points was of primary importance in the comparative 

study. Since the structural parameter of interest in the variance­

covariance structure was p as indicated in the discussion given in the 

previous section, the data points forming the object space X were 

generated from three similar BVN populations with a specified value of 

p and unit variances; i.e., 

y k 1' 2' 3' 

where p 0.0, .1, .2, ... , .9 

Consequently, the effect of correlated variables ("noise") on the 

"retieval" ability of agglomerative clustering methods may be investi­

gated by fixing all structural parameters in the framework which was 

developed in this section except p which is systematically varied 

across its range of settings. 

In Figure 11, the actual population mean vectors used in the com­

parative study are portrayed for 6 = 4.0 and the equilateral triangle 

spatial configuration of population mean vectors. Letting t be the 



Figure 11. An Example from the Structural Framework Developed 
for the Comparative Study 
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identity matrix, then the three circles represent the 3U contours for 

each of the BVN populations. Generated data points from this structural 

framework which, because of random variation, fall in the overlapping 

regions of the three circles are likely to be clustered with data points 

ge~erated from a different BVN population than the one from which they 

were generated. This observation, of course, illustrates only one of 

the possible reasons that a clustering method fails to "retrieve" the 

exact structure as generated, 

A brief summary of the data structures for the comparative study of 

agglomerative clustering methods may be outlined as follows: 

where: i 1, 2, .. , , 21 with splits into the 

K ~ 3 populations of either 7-7-7 

or 11-7-3 

~k' k = 1, 2, 3, is constrained by an 

equilateral triangle spatial con-

figuration and 6 = 4. 0, .5 . 0 

~d 0 to] p 0.0, .1, .2, ... , .9. 

To apply an agglomerativecl~stering method to a set of data points, 

it is necessary to specify both a measure of distance and an agglomera-

tive clustering algorithm. For the purposes of the comparative study, 

the measure of distance was fixed to be Euclidean distance since a pre-

liminary comparative investigation using some of the same agglomerative 

clustering algorithms later chosen for use in the comparative study in 

conjunction with Euclidean distance and three other measures of distance 

indicated that the measure of dista~ce is not as important in determining 
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the resultant clusterings as the algorithm is. The agglomerative 

clustering algorithms chosen for the comparative study are discussed in 

Chapter III. To briefly reiterate the agglomerative clustering algo­

rithms chosen for the comparative study, it should be noted that the 

twelve agglomerative clustering algorithms form natural groups of two 

or six algorithms. Thus, the (~, y) values which define the twelve 

agglomerative clustering algorithms are conveniently delineated in two 

groups of six algorithms as follows: 

(1) [3 

(2) [3 

0.0 with y = -.5, -.25, ... , .?5 

-.25 with Y = -.5, -.251 .. ·1 .75 

One of the basic considerations in designing the comparative study 

was the choice of a logical running sequence which would produce each 

of the sets of results necessary to compare the twelve agglomerative 

clustering methods with respect to their ability to "retrieve" the gen­

erated data structure. Each setting of the triple (P 1 0 1 split) of 

variable structural parameters characterizes a different replication 

(rep) of the comparative study of agglomerative clustering methods. For 

each setting of the triple (p 1 6, split) 1 the following sequence of 

steps was utilized to generate twelve values of c(Y 1 Y') 1 where each 

value of q(Y 1 Y') quantified the "retrieval" ability of one of the 

twelve agglomerative clustering methods: 

1. An object space X of data points was generated for 

the complete set of structural parameters; 

2. The Euclidean distance between each pair of data 

points in X was computed and stored in standard 

lower triangular matrix order by rows as the vec­

tor D ; 



J, Each of the twelve agglomerative clustering alga-

rithms was applied to D to produce a hierarchy, 

H , a a 1, 2' ... ' 12 

4. For each of the twelve agglomerative clustering 

algorithms, the three cluster clustering, (Y' )a , 

was chosen as the. representative clustering from 

H , where a= 1, 2, ... , 12 a 

5. Each of the representative clusterings, (Y' )a , 

a = 1, 2, ... , 12 , was compared by means of the 

c statistic to clustering Y of size three, which 

clustered together all data points generated from 

the same population of data points. 
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Thus, by means of the above sequence of steps, a value of c(Y, Y') was 

assigned to each of the twelve agglomera.tive clustering methods. For 

each setting of the triple (P, 6, split) , the above sequence of steps 

was replicated 100 times, and the following statistics were computed 

for each of the twelve agglomerative clustering methods: 

1. c' the sample mean of the c statistic for the 

sample of 100 reps; 

2. s , the sample standard deviation for the 100 c c 

values; 

J, The % of the 100 clusterings which corresponded exactly 

with the generated data structure, i.e., the number of 

times that c(Y, Y') was equal to one in the 100 reps. 

Consequently, for each setting of .the triple (p, 6, split) of variable 

structural parameters and for each of the twelve agglomerative cluster-

ing methods, the triple (c, sc' %) results from 100 reps to quantify 
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the "retrieval" ability of each of the agglomerative clustering methods, 

and these triples also provide a means for comparipg the performance of 

the twelve agglomerative clustering methods at the particular settings 

specified for the complete set of structural parameters. The results 

from the comparative study of agglomerative clustering methods are dis­

cussed in the next section. 

A Discussion of the Results from the 

Comparative Study 

Tables I-VIII in the Appendix give the results from the comparative 

study of agglomerative clustering methods. In these eight tables, the 

results are given in the form of a triple (c, s c , %) computed over 1 00 

reps for each setting of the triple of variable structural parameters 

(p, 6, split) and for each of the twelve agglomerative clustering 

methods. To simplify the discussion, since Euclidean distance was used 

in conjunction with each of the twelve agglomerative cluste~ing algo­

rithms, the differences and similarities observed among the agglomerative 

clustering methods will be discussed in terms of the different algo­

rithms, but this convenience is not intended to imply that the results 

are independent of the measure of distance employed. An observed 

difference or similarity among the agglomera.tive clustering algorithms 

should be interpreted as a difference 0r similarity among the agglomer­

ative clustering methods formed by combining the same algorithms with 

Euclidean distance. The results from the comparative study are also not 

independent of the fixed structural para~eters which were specified in 

the previous section, but the results will be discussed in terms of the 

variable structural parameters. Thus, all results from the comparative 
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study will be discussed in terms of changes in the variable structural 

parameters (P, o, split) and changes in the ordered pair ([3, y) 

which defines the agglomerative clustering algorithm. To enhance the 

interpretation of the results from the comparative study, Figures 12-29 

in the Appendix portray various comparative aspects of the performance 

of the twelve agglomerative clustering methods. The tables and figures 

given in the Appendix will be discussed in detail in this section. 

Tables I and II display the results for the twelve algorithms in 

two groups of six and for p = 0.0, .1, .2, ..• , .9 with 6 = 4.0 and 

a split of 7-7-7. Table I presents the results for the six algorithms 

which lie along [3 = 0.0 , and these results are graphically portrayed 

in Figures 12-1.4. In Figure 12, c is graphed across the values of p 

for each of the six algorithms lying along [3 = 0 . 0 . It should be 

noted that the single linkage algorithm produces a uniformly smaller c 

than the other algorithms. The highest c value occurs at p 0. 0 

with the ( 0. 0, .25) algorithm. Except at a value of p = • 9 , either 

the (0.0, .25) algorithm or the complete linkage algorithm has the 

highest c value. At P = • 9 , the average linkage ·algorithm produces 

the highest c value. Increasing P appears to have the greatest 

effect on the c value for the single linkage algorithm. 

In Figure 13, sc is graphed across ~he values of p for each of 

the six algorithms lying along [3 = o .. 0 . It should be noted that the 

single linkage algorithm produces a uniformly larger sc than the other 

algorithms except at p = • 9 where it has the smallest s value. The c 

lowest s · value occurs at p = 0.0 with the (0.0, .75) algorithm. c 

In general, the complete linkage and 'the (0.0, .75) algorithms pro-

duce the smallest values. 
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In Figure 14, the % of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of p for each of the six algorithms lying 

along ~ 0.0 It should be noted that the single linkage algorithm 

produces a uniformly smaller% than the other algorithms except at 

P = .9 . The highest% occurs at p = .7 with the (0.0, -.25) 

algorithm. The %appears to be less stable across p for these six 

algorithms than either c or s . c 

Table II presents the results for the six algorithms which lie 

along ~ = -.25 for (p, o = 4, 0, 7-7-7) , and these results are graph-

ically portrayed.in Figures 15-17. In Figure 15, c is graphed across 

the values of p for each of the six algorithms lying along ~ = -.25 . 

It should be noted that the (-.Z5, -.5) algorithm produces a uniformly 

smaller c than the other algorithms. The highest c value occurs at 

p = .7 with the (-.25, .25) algorithm. For p ~ .3 , the (-.25, .25) 

algorithm produces the highest values of c , and for p :;:; ,2 , the flex-

ible strategy algorithm produces slightly higher values of c than the 

(-,25, .25) algorithm. !n general, increasing p appears to have only 

a slight effect on the c values produced by the six algorithms lying 

along ~ = -.25 when o = 4.0 with a 7-7-7 split. 

In Figure 16, s is graphed across the values of p 
c 

for each of 

the six algorithms lying along ~ = -.25 . It should be noted that the 

(-.25, -.5) algorithm produces a ut;J.ifarmly larger s than the other c 

algorithms. The smallest s value 'occurs at p 0.0 with the c 

(-,25, .5) algorithm. In general, \increasing p appears to have only 

a slight effect on the sc vaiues produced by the six algorithms lying 

along ~ = ~.25 when S = 4.0 with a 7-7-7 split. 
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In Figure 17, the% of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of P for each of the six algorithms lying 

along ~ = -.25 . It should be noted that the highest% obtained with 

these six algorithms was 22% which occurs at p = .5 with the 

(-.25, .25) algorithm, at p = .7 with the (-.25, .25) and the 

(-.25, .5) algorithms, and at P = .9 with the (-.25, -.25) algo-

rithm. The% appears to be less stable across p for these six 

algorithms than either c or s 
c 

Tables III and IV display the results for the twelve agglomerative 

clustering algorithms in two groups of six and for p = 0.0, .1, ... , .9 

with 6 = 4.0 and an 11-7-3 split. Table III presents the results for 

the six algorithms which lie along ~ = 0.0 , and these results are 

graphically portrayed in Figures 18-20. In Figure 18, c is graphed 

across the values of p for each of the six algorithms lying along 

~ = 0.0 . It should be noted that the single linkage algorithm produces 

a uniformly smaller c than the other algorithms except at p = .9 

where it has the largest value of c . The highest c value occurs at 

~ .1 with the complete linkage algorithm. Except at a value of 

P .9 , either the (0.0, .25) algorithm or the complete linkage 

-
alg~rithm has the highest c value. Increasing p appears to have the 

-greatest effect on the c value for the single linkage algorithm. 

In Figure 19, s is graphed across the values of p for each of c 

the six algorithms lying along ~ 0.0 . It should be noted that the 

single linkage algorithm produces a uniformly larger 

other algorithms except at p = .9 . The .lowest s c 

sc than the 

value occurs at 

~ = 0.0 with the complete linkage algorithm. In general, the complete 
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linkage and the (0.0, .75) algorithms produce the smallest sc 

values. 

In Figure 20, the % of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed acros·s the values of P for each of the six algorithms lying 

along ~ 0.0 It should be noted that the single linkage algorithm 

produces a uniformly smaller% than.the other algorithms except at 

p = .9 . The highest% occurs at P = .9 with the average linkage 

algorithm. The% appears to be less stable across p for these six 

algorithms than either c or 

Table IV presents the results for the six algorithms which lie 

along ~ = -.25 for (P, o = 4.0, 11-7-3) , and these results are 

graphically portrayed in Figures 21-23. In Figure 21, c is graphed 

across the values of p for each of the six algorithms lying along 

~ = -.25 . It should be noted that the (-.25, -.5) algorithm produces 
I 

a uniformly smaller c value than the other algorithms except at 

p = .8, .9 . The highest c value occurs at p = .9 with the flexible 

strategy algorithm. Across P, the algorithms that produce the higher 

values of c are the flexible strategy, (-.25, .25) , and (-.25, .5) , 

In general, increasing p appears to have a relatively small effect on 

the c values produced by the· six algorithms lying along ~ = -.25 

when o = 4.0 with an 11-7-3 split. 

In Figure 22 , · s c is graphed across the values of p for each of 

the six algorithms lying along ~ = -.25 . It should be noted that the 

(-.25, -.5) 

algorithms. 

(- .25, .25) 

algorithm produces a uniformly larger s that the other c 

The smallest value occurs at p = .4 with the 

algorithm. In general, increasing p appears to have only • 
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a slight effect on the s values produced by the six algorithms lying 
c 

along ~ = -.25 when 6 = 4.0 with an 11-7-3 split. 

In Figure 23, the % of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of p for each of the six algorithms lying 

along ~ = -.25 . It should be noted that the highest% occurs at 

P = .8 with the (-.25, -.25) algorithm. Across P , the flexible 

strategy algorithm usually produces the highest value of%. The % 

appears to be less stable across p for these six algorithms than either 

c or 

To enhance the interpretation of the results presented in Tables 

I-IV, Figures 24-29 provide graphical portrayals across p of the per-

formance of the twelve agglomerative clustering methods in six groups of 

two algorithms for the two different splits. In Figure 24, the% of the 

100 reps for which the agglomerative clustering method "retrieved" the 
' 

generated data structure exactly ~s graphed across the values of p for · 

each of the two algorithms lyin~ along y = ~5 with each of the two 

splits. For either the 7-7-7 split or the 11-7-3 split, the (-.25, -.5) 

algorithm produces a uniformly higher % across p than the single link-

age algorithm. In general, the values of% are higher for both alga-

rithms with the 11-7-3 split than with the 7-7-7 split. It is also 

interesting to note that for these two algorithms, increasing p affects 

the %more with the 11-7-3 split. 

In Figure 25, the % of the 100 reps for which the agglomerative 

clustering method "retrieved'i the generated data structure exactly is 

graphed across the values of P for each of the two algorithms lying 

along y = -.25 with each of the two splits. For the 11-7-3 split 
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only, the (-.25, -.25) algorithm produces a uniformly higher% across 

p than the (0.0, -.25) algorithm. In general, the values of% are 

higher for both algorithms with the 11-7-3 split than with the 7-7-7 

split. 

In Figure 26, the %_of the 1.00 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of P for each of the two algorithms lying 

along y == 0.0 with each of the two splits. Except at p 0.0 with 

the 11-7-3 split, the flexible strategy algorithm produces a uniformly 

higher% across P than the average linkage algorithm produces for both 

the 7-7-7 split and the 11-7-3 split. Increasing p appears to have 

very little effect on the values of% produced by either the flexible 

·strategy algorithm or the average linkage algorithm when the 7-7-7 split 

is used. In general, the values of% are higher for both algorithms 

with the 11-7-3 split as opposed to the 7-7-7 split. 

In Figure 27, the% of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of p for each of the two algorithms lying 

along y = .25 with each of the two splits. For either the 7-7-7 split 

or the 11-?.-3 split, the (- .25, .25) algorithm produces a higher % if 

p > .4 , when being compared to the (0.0, .25) algorithm. In general, 

the values of % are higher for both algorithms with the 11-7-3 split as 

opposed to the 7-7-7 split. It is also interesting to note that for 

these two algorithms, increasing. p affects the% more with the 11-7-3 

split. 

In Figure 28, the % of the 1.00 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 
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graphed across the values of P for each of the two algorithms lying 

along y = .5 with each of the two splits. For either the 7-7-7 split 

or the 11-7-3 split, the (-.25, .5) algorithm usually produces a value 

of % at least as large as the value of % which the complete linkage 

algorithm produces. In general, the values of% are higher for both 

algorithms with the 11-7-3 split as opposed to the 7-7-7 split. 

In rigure 29, the % of the 100 reps for which the agglomerative 

clustering method "retrieved" the generated data structure exactly is 

graphed across the values of p for each of the two algorithms lying 

along y = .75 with each of the two splits. For the 7-7-7 split only, 

the (- .25, . 75) algorithm produces a higher % when p ~ .2 in compar­

ison to the (0.0, .75) algorithm. In general, the values of% are 

higher for both algorithms with the 11-7-3 split as opposed to the 

7-7-7 split. 

Tables V and VI display the results for the twelve algorithms in 

two groups of six and for p = 0.0, .1, .2, ... , ,9 with 0 = 5.0 and 

a split of 7-7-7 . Table V presents the results for the six algorithms 

which lie along ~ = 0.0 . The results presented in Table V are similar 

to the results presented in Table I .. However, the 6 = 5.0 setting, in 

gen~ral terms, causes the values of c and% to be larger and the 

values of s to be smaller for all values of p in comparison with c 

the values of (c, s , %) which resulted for 6 = 4.0 . It is also 
c 

interesting to note that c and s c are more stable across P when 

6 = 5. 0 than nhen o = 4. 0 . However, the % is much more variable 

across P when 6 = 5.0 than when 6 = 4.0 for all six of the algo-

rithms. Table VI presents the results for the six algorithms which lie 

along S = -.25 . The results presented in Table VI are similar to the 
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results presented in Table II, and all of the general comments made 

pertaining to differences between the results presented in Tables I and 

V also hold for differences between the results presented in Tables II 

and VI. 

Tables VII and VIII display the results for the twelve agglomera-

tive clustering algorithms in two groups of six and for p = 0.0, .1, 

I I I J .9 with 6 = s.o and a split of 11-7-J Table VII presents the 
\ 

results for the six algorithms vrhich lie along ~ = 0.0 The results 

presented in Table VII are similar to the results presented in Table III. 

Table VIII presents the results for the six algorithms which lie along 

~ = -.25 . The results presented in Table VIII are similar to the 

results presented in Table IV. Also for the 11-7-3 split, when 

6 = 5.0 , the values of c and% are larger and the values of s are c 

smaller than when 6 = 4.0 , and this appears to hold for all values of 

p and for all twelve algorithms. It is also interesting to note that 

c and s are more stable across p when 6 = 5. 0 than when 6 4. 0 
c 

for all tvrelve of the agglomerative clustering aJ.,gorithms. However, the 

% is much more variable across p when 6 = 5.0 than when 6 = 4.0 

for all twelve of the algorithms. 

In the final chapter of this thesis, some general conclusions will 

be drawn from the comparative study of agglomerative clustering methods, 

and some possible directions for the extension of the comparative study 

will be indicated. 



CHAPI'ER VI 

GENERAL TRENDS AND POSSIBLE EXTENSIONS 

The stated objective of the research presented in this thesis is: 

To compare agglomerative clustering methods. However, because of the 

number of structural parameters requiring controlled variation to make 

the comparative study "dynamic" and because of the infinite number of 

possible agglomerative clustering methods which might be chosen for 

inclusion in the comparative study, the realization of the above objec­

tive was necessarily limited in its scope. The comparative study of 

agglomerative clustering methods presented in this thesis, however, is 

at least a source for structuring future comparative studies of cluster­

ing methods. 

Observations and conclusions from the comparative study of agglomer­

ative clustering methods must be made with respect to (wrt) the settings 

(MVN, N = 21, p = 2, K = 3, equilateral triangle spatial configuration) 

used for the fixed structural parameters and also with respect to the 

fixed metric of Euclidean distance; generalizations beyond these settings 

are of a purely hypothetical nature. Some general trends observable in 

the results as specified by the triple (c, sc' %) will be indicated in 

terms of the triple (p, 6, split) of variable structural parameters 

and in terms of the ordered pairs (~, y) which define the agglomera­

tive clustering algorithms. However, these trends were evidenced only 

for the setting (MVN, N = 21, p =,2, K = 3, equilateral triangle spatial 
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configuration) of the fixed structural parameters and for the fixed 

metric of Euclidean distance. 

In the context of the triple (c, sc' %) of results from the com­

parative study, a "good" agglomerative clustering algorithm for a speci-

fied (P, 6, split) might be designated as one that produces a high 

(close to 1 .0) value of c , a low (close to O.Ol value of and a 

high (close to 100) value of % To explicate "good" algorithms in 

comparative terms, some convenient notation and terminology is required. 

For a fixed setting of the triple (p, 6, split) of variable structural 

parameters, c [A] shall denote a c value produced by algorithm A; 

shall denote an value produced by algorithm A; and %[A] 

shall denote a% value produced by algorithm A . Algorithm A will be 

termed "better" wrt c than algorithm B or algorithm B will be 

termed "worse" wrt c than algorithm A iff 

'if p' c[AJ ~. c[:BJ and '} p _::) c[AJ > c[B]. 

where p 0.0, .1' I I I' .9 and the pair (6' split) is 

fixed. 

Algorithm A will be termed "better" wrt s than algorithm B or c 

algorithm B will be termed_ "worse" wrt s than alc-orithm A iff c 

'if p ' s [A] :;; s [B] and 3P ~ sc[A] < sc[B] c c 

where p 0.0, .. 1' I I I' .9. and the pair Co' split) is 

fixed. 

Algorithm A will be termed "better" wrt·% than algorithm B or 

algorithm B will be termed "worse" wrt% than algorithm A iff 
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v p , %[A] ~ %[B] and 'J p ) %[A] > %[B] 

where p = 0.0, .1, ... , . 9 and the pair (6, split) is 

fixed. 

Thus, given the previously mentioned settings for the fixed structural 

parameters and a metric of Euclidean distance, some general observations 

with respect to the settings for the variable structural parameters and 

the agglomerative clustering algorithms included in the comparative study 

will be offered for the triple (c, sc, %) of measured statistics. 

The single linkage algorithm, which is the only space-contracting 

algorithm included in the comparative study, was conspicuously different 

. from all of the other algorithms wrt (c, sc, %) for all settings of the 

triple (p, 6, split) used in the comparative study. The single linkage 

algorithm was in general (with a few exceptions when p was close to 

1.0) the worst algorithm wrt (c, s , %) c for all settings of (6, split). 

The single linkage algorithm was the only algorithm on which increasing 

( ~) p had a marked effect with respect to its performance. The follow-

ing general trends should be noted for the single linkage algorithm wrt 

p for all settings of the pair (6, split) used in the comparative 

study: 

(i) p ;r ~ C"j 

(ii) p ~ ~ s / c 

(iii) pft ~ %Jf 

Thus, the performance of the single linkage algorithm improves wrt 

(c, sc' %) as p increases for all settings of the pair (6, split). 

The observations concerning the single linkage algorithm seem to imply 

that space-contracting algorithms are worse at "retrieving" the 
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generated structure than either space-conserving or space-dilating 

algorithms when MVN data and Euclidean distance are employed; this is 

not surprising considering the theoretical research on agglomerative 

clustering algorithms presented in Chapter III. 

The three space-conserving algorithms -- (0.0, -.25) , average 

linkage, and (0.0, .25) -- lie along the line ~ = 0.0 . The boundary 

algorithm on the lower end of the space-conserving region is the single 

linkage algorithm which is a space-contracting algorithm. It has already 

been noted that the performance of the single linkage algorithm is 

better wrt (c, sc' %) when p is close to 1.0 than when p is close 

to 0.0 The boundary algorithm on the upper end df the space-conserving 

region is the complete linkage algorithm which is a space-dilating algo-

rithm. The other space-dilating algorithm along the line ~ = 0.0 is 

the (0.0, .75) algorithm. It should be noted that the performance of 

the complete linkage and the (0.0, .75) algorithms is worse wrt 

(c, s , %) when p is close to 1..0 than when p is close to 0.0 for c 

the settings of the pair (6, split) used in the comparative study. In 

contrast, the space-conserving algorithms are relatively stable across 

p wrt (c, s ' %) c for all settings of the pair ( 6, split) used in 

the comparative study. 

From the results of the comparative study, the best algorithms wrt 

(c, sc' %) appear to be those lying along the line ~ -.25 , and all 

six of these algorithms are space-dilating algorithms. One of the algo-

rithms lying along the line ~ = -.25 is always the best wrt c and s c 

for all settings of the pair (6, split) used in the comparative study. 

However, the performance of all twelve aggl6merative clustering algo­

rithms wrt% is somewhat erratic. All six of the algorithms lying along 
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the line ~ ·= -.25 show relatively little change in their level of per-

formance (i.e., they are relatively stable) across p wrt c and 

for all settings of the pair (o, split) used in the comparative study. 

For each pair of algorithms with the same y value, the algorithm Hi th· 

~ = -.25 is generally (a few exceptions exist wrt c) better wrt c and 

sc for all settings of the· pair (o; split) used in the comparative study. 

Consequently, in a future comparative study of agglomerative clustering 

algorithms in conjunction with Euclidean distance, it would be interest­

ing to explore the performance with respect to their "retrieval" of MVN 

data structure of a set of six algorithms along the line ~ = -. 5 Hi th 

the same y values as the sets 6f six algorithms along ~ = 0.0 or 

~ = -.25 which were employed in the comparative study presented in 

this thesis, 

A few general observations with respect to the settings of the pair 

(o, split) used in the comparative study can also be made. Apparently, 

as 6 increases, the performance of the algorithms becomes more stable 

across p Hrt c and s c for each setting of the structural parameter 

split; this observation is not surpr,ising since the clusters become more 

distinct as the population means move further apart. It should be noted 

that the performance of the algorithms becomes more erratic across p 

wrt% for each setting of the structural parameter split when 6 

increases. Overall, increasing 6 from 4.0 to 5.0 causes an increase 

in c and the % values and a decrease in the sc values produced by 

each of the twelve algorithms for all settings of the pair (p, split). 

The two different splits have a greater effect on the performance of the 

algorithms wrt% than they do Hrt c and s c As an overall conclu:-

sion, p does not greatly affect the performance of the agglomerative 
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-clustering algorithms wrt c and s c 
for the two different splits with 

the effect becoming less for increasing 6. 

There are a myriad of possible extensions for the comparative study 

of agglomerative clustering methods presented in this thesis in terms of 

changing a setting for any of the specified structural parameters, inclu-

ding both the fixed structural parameters and the variable structural 

parameters. Obviously, in future comparative investigations of agglomer-

ative clustering methods, a larger value of N should be chosen, and at 

least a limited comparative investigation of the effect of correlated 

variables on the "retrieval" ability.of the agglomerative clustering 

methods should be attempted when p = 3 Of course, the populations of 

data points could be generated from probability distributions other than 

the MVN probability distribution, but the choice of a MVN data st,ructure 

for each of the populations of data points seems reasonable. Hovrever, 

it would be enlightening to attempt a limited comparative investigation 

of agglomerative clustering methods when each MVN population of data 

points represented in X has a different variance-covariance matrix. 

A great deal of flexibility in a limited extension of the compara-

tive study of agglomerative clustering methods could be achieved by mak-

ing the spatial configuration a variable structural parameter Hhile keep-

ing the settings for the other structural parameters (both fixed and var-

iable) the same as specified in Chapter V. An effective method for ob-

taining a systematic variation of the spatial configuration would be to 

consider isosceles triangles with the two equal sides having length 6 

and since the length of the third side of the isosceles triangle is a 

function of the measure of the included angle between the two equal 

sides of the isosceles triangle, the ''new" variable structural parameter 
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could be designated as the measure of the included angle between the two 

equal sides of the isosceles triangle, which would then be allovred to 

vary between 0 and 'TT radians, Some theoretical 1-rork with respect to 

the "size" of the overlapping regions for the equilateral triangle 

spatial configuration and for some of the possible isosceles triangle 

spatial configurations would represent a valuable contribution tovrards 

understanding the "retrieval" results provided by the agglomerative clus­

tering methods, when MVN populations of data points are utilized. The 

consideration of non-triangular spatial configurations requires the 

specification of a larger value of K , which should be accompan:i.ed by 

an increase in the value of N to provide for potentially interesting 

settings_of the structural parameter for split. It should also be noted 

that an increase in the value of p should be accompanied by an increase 

in the value of K to maintain the information content within the gener­

ated populations throughout object space X . 

If the settings for the fixed and variable structural parameters 

other than 6 and split remain the same as specified in Chapter V, then 

the range of potentially interesting settings for 6 should be between 

3.0 and 6.0; and the two different splits, 7-7-7 and 11-7-3, are probably 

sufficient to indicate any changes in the performance of the agglomera­

tive cluster~_ng methods with respect to equal vs. unequal cluster sizes, 

conf:lidering the relatively small value of N . Since the values of p 

close to 1.0, in general, affected the performance of the agglomerative 

clustering methods the most, a larger number of values of p close to 

1 .0 (such as .8.5, .9.5, .96, .97, .98, .99) might be chosen for inclusion 

in an extension of the comparative study. It should also be noted that 

any extension of the comparative study should include a larger number of 
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replications at each setting of the variable structural parameters for 

each of the agglomerative clustering methods. 

Two extensions of the theoretical work presented in this thesis are 

also worth noting. The classification of agglomerative clustering algo-

rithms into the classes of space-contracting, space-conserving, and 

space-dilating algorithms could be repeated for a different set of con­

straints on the quadruple (cx.i, ex. j' S, y) of parameters which determine 

d(ij)k in Equation (3.1); i.e., in the general linear combinatorial 

strategy originated by Lance q,nd Hilliams (1966). It was also noted in 

Chapter IV that C.D.F. tables could be constructed for Rand's (1969, 

1971) c statistic. However, it is necessary to provide the probability 

distribution of the c statistic for each special application of the c 

statistic; e.g~, the probability distribution of the c statistic is 

needed when N = 21 , K = 3,, and all clusterings are to be compared to 

one "correct" clustering. Another interesting paradox results when 

possible null hypotheses to be tested with respect to the c statistic 

are tendered. For example, if the pair of hypotheses, 

H0 : c = 1.0 

HA: c < 1..0 

were of interest in terms of "retrieval"' of some generated data 

structure, it would be desirable to accept H0 . 

In conclusion, two justifications for cluster analyzing a data set 

are offered. Dubes and Jain (1975, p. 20) make the following comment 

concerning the usefulness of cluster analysis: 



A user must remember that a clustering program is a tool 
for discovery, not an end in itself. A cluster analysis 
is really a preprocessing step that should generate ideas 
and help the user form hypotheses. A cluster analysis 
should be supplemented by other descriptive techniques ... 
The utility of a cluster analysis is more in the ques­
tions raised than in the questions answered, 
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Finally, Kendall (1973, p. 183) provides a philosophical justification 

for the research presented in this thesis: 

Over the past fifty years mathematics has tended to dis­
count subjective impressions gained from visual inspec­
tion, but the practising statistician cannot afford to 
neglect any method of feeling his way in p dimensions, 
however intuitive and how~ver empirical, 
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TABLE I 

A COMPARISON ACROSS p OF SIX AlGORITHMS 
ALONG 13 == 0 .0 WHERE 0 = 4.0 

WITH A 7-7-7 SPLIT 

p Single (o, -.25) Average (0, .25) Complete (o, . 75) 

~ .66829 .81.243 .86395 .88314 .87586 .87848 
0 Sc .17675 .15176 .10594 .09396 .10382 .08941 

% 6 12 19 20 20 18 

c .67929 .82648 .85957 .87924 .88181 .87362 
.1 sc .18289 .15090 .12373 .09757 .09233 .09657 

% 7 15 18 18 18 17 

c .70614 .83857 .86243 .87581 .88148 .87810 
.2 sc .18323 .14086 .12166 .11083 .10101 .09539 

% 8 18 16 16 16 16 

c .70795 .83852 .86767 .88286 .88152 .87581 
.3 sc .18708 .13631 .11744 .09232 .09287 .09507 

% 9 19 16 17 14 14 

c .72029 .82471 .86838 .86524 .87805 .86190 
.4 sc .17541 .13515 .10526 .11458 .10085 .10566 

% 9 14 16 16 17 14 

c .71919 .81929 .85357 .86452 .86790 .86438 
.5 sc .17753 .14881 .13125 .10797 .10471 .10461 

% 10 16 16 14 15 14 

c .73057 .83981 .85524 .86600 ' .86438 .86010 
.6 sc .17688 .12886 .12126 .11198 .10959 .10953 

% 10 18 17 14 12 14 

c .74986 .84105 .86857 .8668(-) .85257 .85767 
.7 sc .18247 .14573 .11406 .11665 .11916 .11819 

% 13 21 17 17 15 15 

c .77338 .83810 .85590 .85433 .85552 .83924 
.8 sc .16066 .13937 .12471 .12769 .11947 .12798 

% 13 18 17 16 18 14 

c .80505 .84348 .85795 .84667 .82767 .80886 
.9 sc .11648 .13362 .12240 .13521 .13097 .13673 

% 13 19 18 16 14 12 
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TABlE II 

A COMPARISON ACROSS p OF SIX AlGORITHMS 
ALONG 13 = - .2.5 Where 0 = 4.0 

WITH A 7-7-7 SPLIT 

p (-.2.5,- . .5) (-,2.5,-.2.5) Flexible (-.25, .25) (-.2.5, . .5) (-.2.5, .7.5) 

c .82781 .88010 .89810 .89490 .89776 .88448 
0 sc .12637 .09604 .07909 .08001 .06989 .0?708 

% 13 19 20 18 17 1.5 

c .8349.5 .8819.5 .89843 .89.581 .89281 .878.57 
.1 sc .1138.5 .088.5.5 .08062 .078.58 .0712.5 .083.52 

% 12 16 21 18 1.5 13 

c .83700 .88.5.52 .89676 .89.5.57 .89200 .88924 
.2 sc .12231 .09292 .08317 .07969 .07.534 .08.5.57 

% 12 17 19 18 17 18 

c .84148 . 88.510 ' '.8930.5 .89867 .896.52 .89362 
.3 sc .12222 .09690 .09184 .08387 .07998 .08076 

% 16 17, 19 20 19 18 

c . 8360.5 .88819 .• 89271 .90110 .89.59.5 .89086 
.4 sc .12897 .09.59.5 .08871 .0828.5 .08.543 .08784 

% 15 20 21 21 21 20 

c .840.57 .87910 .89290 .9000.5 .89471 .89210 
. .s sc .12682 .1091.5 .08836 .08787 .08476 .086.56 

% 16 19 19 22 20 19 

c .84671 . 87610 .89776 .90467 .89848 .88.562 . 
.6 sc .12647 .10749 .08448 .07729 .08386 .090.58 

% 18 16 19 19 . 20 17 

c . 846.57 .8899.5 .89867 .90614 .90381 .89867 
.7 sc .13640 .10026 . 08130 .. 07944 . .07663 ;08196 

% 18 19 19 22 22 21 

- .8.5871 .88962 .89624 .90.571 .89.510 .89819 c 
.8 ·sc .12323 .08948 .08204 .07021 .07.580 .07719 

% 21 19 19 19 16 17 

c .86481 .8929.5 .89800 .899.57 .89748 .88724 
.9 sc .11027 .09.593 .07921 .07492 .07597 .08713 

% 19 22 21 20 19 20 



c 

1.0 

.95 

.90 

.85 

.80 

.0 .1 .2 

Figure 15. 

{-.25, -.5) I ;. >If 't' 

(-.25, -.25) 
flexible 
(-.25, .25) -· -· 
(-.25, .5) ~ >( I( )( 

(-.25, .?5) 

.J .4 .5 .6 .7 .8 .9 p 

p of Using c, a Graphical Comparison across 
Six Algorithms along S = -.25 where 
with a 7-7-7- Split 

6 = 4.0 

149 



s 
c 

.)0 

.25 

.20 

.15 

.10 

.05 

/ 
·.-- ...:... __ 

.0 .1 ,2 .) .4 .5 .6 

(-.25, -.5) f j .... 

(-.25, -.25) 
flexible 
(- .25, .25) 
c-.25, .5) 
(-.25, .75) 

.7 .8 

'( . '( . 

.9 

Figure 16. Using sc , a· Graphical Comparison across P 
of Six Algorithms along ~ = -.25 where 
~ = 4.0 with. a 7-7-7 Split 

150 

p 



% 

30 

25 

20 

15 

10 

5 

(-.25, - .5) " . ,. 4-

(-.25, -.25) 
flexible 
(-.25, .25) 
(-.25, .5) t X ~ " 
(-.25, . 75) 

, . .,.,.·, J·~ /1 
• • 1-· .... 

.... . ; ' /:'.;../ . '\ . / . -·-~-·'~-·rx . -;."~-· ,.,.~,.../· 
• ·' •• >. • • .1- k'. X )( ~\II X .'I- / ..._ ' ~.; 

• / .j. • . • ....~. / :1 
• . . .... // • ' / \ /..: . .... # ' . . . ~ . ~ ;: / . . . . . . . . /- · ... - . -· -· '\- . 
' / r r / ,. ... 

- '\- • -•- . - ' - / • 'If J "*. \- r 

' "i- / • .. ..Lr / \- / i-
~ ' 1'.1:. - - - • ~ -..:' + 
~ ' , 4 / ~ ~ 

+ ' ........ J ' ;. -+. -j..,. 1.--:f. *' . 
++.1-1- * ''·"~'Jt 

"" .'It 
'II ... 

,. t l< .. ., '\ '*······ 

.0 .1 .2 .J .4 .5 .6 .7 .8 .9 p 

Figure 17. Using% Correctly Classified, a Graphical Com­
parison across p of Six Algorithms along 
~ = -.25 where 5 = 4.0 with a 7-7-7 Split 

151 



152 

TABLE III 

A COMPARISON A CROSS p OF SIX ALGORITHMS 
ALONG ~ = 0.0 WHERE 8 = 4.0 

WITH AN 11-7~3 SPLIT 

p Single (0, -.25) Average (0, .25) Complete (0, .75) 
- .73690 .84286 c .88281 .87762 .89029 .88100 

0 sc .17293 .13059 .10336 .10947 .08978 .09757 
% 6 14 21 21 21 18 

c .73262 .85729 .86405. .87986 .89357 .87876 
.1 s .16995 .12401 .11236 .10782 .09674 .09793 

·~ 7 15 18 23 25 21 

c .72110 .84195 .86400 .88029 .88438 .87124 
.2 sc .17196 .13244 ~11760 .10299 .09652 .10533 

% 7 15 20 23 23 20 

c .73095 .84843 .86552 .88271 .87495 .87514 
.3 sc .17258 .13080 .11502 .10155 .09843 .10310 

% 11 17 19 21 19 21 

c . 74524 .84238 .85714 .87629 .87867 .87067 
.4 sc .16973 .13408 .12262 .10773 .10304 .11281 

% 11 17 19 21 21 22 

c ; 7440.5 .85262 .88186 .87748 .88443 .87576 
.5 sc .17147 .12990 .10624 .10165 .09875 .10954 

% 11 19 22 20 23 24 

c .74929 .83976 .86414 .88324 .87943 .88276 
.6 sc .16572 .13096 .11609 .10914 .10610 .10174 

% 11 17 21 24 24 23 
- . 78281 .84157 .$4390 .87952 .88543 .86476 c 

.7 sc .15686 .14743 .12904 .11422 .10445 .12061 
% 13 23 19 26 27 23 

c ,83529 .86248 .85048 .86257 .87290 .86100 
'.8 Sc .14194 .13307 .13348 .13085 .11145 .11017 

% .20 26 23 25 25 21 

c .87200 .86633 .86900 .8.5443 .85210 .83200 
.9 sc .12752 .13556 .12885 .12608 .11884 .13003 

% 27 24 29 25 22 19 
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TABLE IV 

A COMPARISON ACROSS P OF SIX AlGORITHMS 

(-.25,-.5) 

.83552 

.1)198 
15 . 

. 84790 

.12291 
16 

.84214 

.13501 
18 

.84929 

.12425 
21 

.85981 

.11194 
21 

.85224 

.12235 
22 

.84952 
.. 12927 

22 

.86824 

.11063 
23 

.87190 

.11083 
25 

.88719 

.10214 
29 

ALONG ~ = -.25 WHERE 8 = 4.0 
WITH AN 11-7-3 SPLIT 

(-.25,-.25) Flexible (-.25, .25) 

.88552 .89800 .89595 

.09389 .08262 .08388 
17 20 18 

.88852 .90071 .89810 

.09478 .08675 .08026 
21 25 22 

.87071 .88952 .89457 

.11219 .09458 .08516 
22 26 25 

.87824 .88738 .88967 

.10136 .08492 .08146 
21 21 22 

.88490 .89248 .89000 

.09562 .08493 .07691 
23 23 20 

.89114 .90252 .89490 

.09682 .08494 .08126 
24 28 25 

.88205 .90071 .90314 

.10486 .08894 .08126 
25 29 27 

.88190 .90114 .90462 

.10596 .08835 .08561 
.27 30 29 

.89938 .90443 .89952 

.09689 .09092 .08929 
33 32 30 

.89724 .90752 .89814 

.09238 .08170 .09080 
31 32 30 

(-.25, .5) (-.25, .75) 

.89071 .87229 

.08845 .09822 
19 17 

.89133 .88338 

.08712 .08962 
21 19 

.89748 .88214 

.07950 .09379 
23 20 

.89343 .88481 

.08677 .08972 
23 18 

.88862 .88352 

.08670 .09158 
21 19 

.89300 .89076 

.09421 .09031 
25 24 

.89371 .87648 

.09421 .09680 
27 24 

.88795 .87519 

.09593 .10285 
25 22 

.89362 .87133 

.09450 .09899 
30 23 

.88933 .87429 

.09413 .09923 
28 25 
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Figure 24. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms 

along y = -. 5 where 8 = 4. 0 with Two Different Splits 
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Figure 25. Using % Correctly Classified, a Graphical Comparison across p of Two Algorit!Lrrrs 
along y = -.25 where o = 4.0 with Two Different Splits 
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Figure 26. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms 
along y = 0.0 where o = 4.0 with Two Different Splits 
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Figure 27. Using% Correctly Classified, a Graphical Comparison across. p of Two Algorithms 
along y = • 25 where 8 = Lf. 0 with Two Different Splits 
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Figure 28. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms 
along y = . 5 where o = 4. 0 with Two Different Splits 
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Figure 29. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms 
along y = . 75 where o = 4. 0 with Two Different Splits 
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TABLE V 

A COMPARISON ACROSS p OF SIX ALGORITHMS 
ALONG 13 = 0.0 WHERE o = 5.0 

WITH A 7-7-7 SPLIT 

p Single (o' -.25) Average (0, .25). Complete (0, .75) 

c .87171 .94667 .96290 .96252 .95614 .94705 
0 sc .1:3392 .08379 .06205 .06132 .06006 .07082 

% 42 62 66 66 57 51 

c .86271 .94190 .95795 .96357 .95695 .95681 
.1 

s% .13347 .09258 .06772 .06050 .06785 .06320 
39 63 65 66 60 58 

c .85962 .93690 .95467 .96052 .95690 .96171 
.2 s~ .13815 .09992 .07146 .05933 .07098 .05827 

38 62 62 61 61 60 
- .87548 .94552 .95700 .96329 .96029 .95571 c 

.J sc .. 12904 .09369 .06591 .05593 .06575 .06233 
% 40 64 61 61 60 56 

c .88438 .93790 .95467 .96314 .96743 .95776 
.4 sc .13350 .11.070 .06841 .05671 .04814 .06192 

% .43 63 59. 60 62 58 

c .88681 .94352 .95648 .95600 .95743 .95457 
.5 s~ .14621 .09828 .06861 .06680 .06740 .06387 

49 61 61 59 59 57 
- .88876 .94300 .94552 .96243 .95529 .94357 c 

.6 sc .14520 .09929 .09054 .06091 .06885 .08795 
% 49 60 57 62 57 55 

c .89052 .92814 .93881 .95405 .94457 .94990 
.7 Sc . 14643 .11581 .10415 .06853 .07957 .06969 . 

% 51 55 53 57 54 54 

c .89648 .91824 .93614 .94738 .92248 .92448 
.8 Sc .1.2383 .119.55 .10803 .07986 .09936 .. 09660 

% 48 .51 54 57 43 4.5 

c .89929 .92871 .93800 .93243 .93405 .92829 
.9 s~ .11412 .10384 .09300 .08470 .07949 .08617 

48 54 52 49 45 43 
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TABLE VI 

A COMPARISON ACROSS p OF SIX-ALGORITHMS 
ALONG ~ = .,. .25 ·WHERE 0 = 5.0 

WITH A 7'-7-7 SPLIT 

p (-.25,-.5) (-.25,-.25) Flexible (-.25, .25) (-.25, .5) (-.25, .75) 

c .94195 .96581 .96648 .96833 .96019 .95338' 
0 sc .08604 .05629 .04841 .04657 .05231 .05631 

% 59 65 61 62 55 50 

c .95324 .96362 .97019 .96771 .96286 .95714 
.1 sc .07265 .06129 .04640 .04927 .04858 .05278 

% 62 66 66 63 57 52 

c .94752 .96800 .96752 .96700 .96319 .95605 
.2 sc .08401 .05144 .05365 .04441 .04696 .05264 

% 62 66 63 59 56 51 

c .94171 .97090 .96800 .96500 .96395 .96400 
.3 sc .08818 .04985 .05184 .04858 .04971 .04884 

% 57 68 63 59 59 58 

c .94267 .96467 .96743 ' .96748 .96319 .96276 
.4 sc .09771 .05466 .04490 .04650 .05009 .04970 

% 59 63 59 61 58 57 
- .94657 .96319 .97129 .96976 .96981 .96467 c 

.5 sc .08193 .05580 .04487 .05165 .04842 .04591 
% 58 62 64 65 64 57 

c .9410.5 .96581 .97248 .96881 .96867 .96543 
.6 sc .08731 .05572 .04424 .04692 .04825 .04'897 

% 57 65 66 62 62 60 

c .9400.5 .96352 .96519 .96538 .96295 .96100 
.7 sc .08707 .06039 .05171 .05148 .05214 .05245 

% 56 62 61 60 58 57 

c .93433 .96171 .96419 .95962 .95857 .96038 
.8 sc .08639 .06093 .05068 .0_5427 .05650 .05409 

% 52 62 60 56 56 57 

c .93448 .95424 .96157 .96119 .95857 .95357 
.9 sc .08883 .06481 .0.5463 .04886 .05251 .05712 

% 55 56 59 56 55 52 
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TABLE VII 

A COMPARISON ACROSS p OF SIX ALGORITHMS 
ALONG i3 = 0.0 WHERE 0 = 5.0 

WITH AN 11-7-3 SPLIT 

p Single (o, -.25) Average (0, .25) Complete (0' .75) 

c .87486 .95157 .94243 .95181 .94976 .94743 
0 sc .15043 .07208 .07570 .06617 .07148 .08022 

% 37 55 49 52 52 54 
- .87552 .94724 .94424 .95824 .95595 .94805 c 

.1 sc .14722 .07961 .07742 .05738 .06466 .07155 
% 36 53 49 54 53 51 

c .86819 .93619 .95400 .95519 .94743 .95043 
.2 sc .15052 .09763 .07589 .06076 .06533 .06329 

% 35 52 60 56 50 52 

c .87500 .94248 .94110 .94833 .94986 .94519 
.3 s% .14639 .09228 .09010 .07245 .06531 .07225 

37 56 54 54 53 50 
- .87419 .94348 .94443 .94119 .95090 .95124 c 

.4 sc .15423 .09129 .09151 .09685 .07312 .06500 
% 39 58 57 55 55 55 
-
c .88448 .95176 .95810 .95590 .95843 .94457 

.5 sc .15004 .08072 .06115 .08109 .07877 .08266 
% 43 59 55 61 65 54 
- .91062 .95290 c .95043 .95610 .95890 .94695 

.6 sc .12887 .06645 .08622 .08537 .08038 .08290 
% 46 57 58 61 65 59 
- .91776 .95776 .94671 .94629 .95419 .94843 c 

.7 s% .11683 .05958 .08745 .. 09814 .08210 .07543 
48 57 55 58 60 55 

- .91738 .95290 .93714 .94257 .94367 ·93438 c 
.8 sc .09531 .06533 .09608 .09512 .08903 .09616 

% 41 53 51 55 54 52 

c . 92833 .94500 .94514 ·93871 ·93014 .92457 
.9 sc .07115 .06700 .09176 .1 0219 .10415 .09939 

% 39 48 53 54 53 47 
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TABLE VIII 

A COMPARISON ACROSS P OF SIX ALGORITHMS 
ALONG ~ = -.25 WHERE o = 5.0 

WITH AN 11-7-3 SPLIT 

p (-.25,-.5) (-.25,-.25) Flexible (-.25, .25) (- .25, .5) (- .25,. 75) 

c .94486 .95010 .95324 .95781 .96133 .95086 
0 sc .07604 .06937 .06276 .05372 .04670 .06602 

% 52 52 52 51 53 50 

c .94762 .95276 .96024 .96152 .95776 .94771 
.1 s~ .07525. .06684 .05923 .05341 .05296 .07142 

54 53 58 56 53 50 
- .95057 .95214 .95929 .95500 .95571 .94838 c 

.2 sc .07398 .06778 .05769 .06174 .05759 .06808 
% 54 54 57 54 55 49 
- .95105 .95457 c .95610 .95757 .95224 .94781 

.3 s~ .07425 .06058 .05702 .05892 .06074 .06484 
56 53 56 57 52 49 

c .94619 .95552 .95905 . .95890 .95290 .94676 
.4 sc .08210 .05995 .05478 .05803 .06238 .06916 

% 55 56 58 59 55 50 

c .94838 .95614 .96181 .96110 .96133 .95381 
.5 sc .07736 .06100 .05659 .05853 .06057 .06261 

% 57 58 62 62 62 54 
-c .95210 .96295 .96876 .96019 .96067 .95467 

.6 sc .06818 .05552 .05231 .05979 .05844 .06466 
% 58 61 67 62 60 56 

c .95548 .96090 .96110 .95933 .95800 .94519 
.7 sc .06690 .06083 .06079 .06312 .06161 .07307 

% 59 61 62 61 59 52 
-c .95876 .95733 .9,5338 .95524 .95524 .93743 

.8 sc .05935 .05960 .06549 .06476 .06417 .07902 
% 58 56 55 57 57 50 

c .95024 .95010 .94995 .95381 .94395 .93657 
.9 sc .06541 .07012 .06868 .06529 .07275 .07800 

52 55 55 57 53 50 
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