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CHAPTER I
INTRODUCTION
Perspectives

The problem of finding the "best" procedure for classifying m
individuals (generic) into k homogeneous populations on the basis of
n observable charapteristics has perplexed man through the ages. If
the classification categories are known a priori, then discriminant
analysis provides a solution to the geheral classification problem.
However, if the classification categories must be generated from the
data, then cluster analysis is the multivariate, descriptive method
necessary to make sense out of the data.

The general classification problem has a very long and rich his-
tory, being dated at least to the time of Aristotle for its philosophi-
cal foundations. In essence, there is a "need to classify" in man (ge-
neric) which pervades his perpetual compulsion to organize and reorgan-
ize his world in search of a "perfect" organizational structure for
leach segment of his world and, ultimately, the universe. Mén feels
compelled to organize everything around him, and most conflicts among
men are derived from different perceptions of what consfitutes thg
"best" organizational structure for some segment of the world. The
concepts of "necessary property," "natural grouping," and '"natural

kind" are all attributable to Aristotle, and they symbolize the origin



of man's belief in the existence of "natural" structure in the universe
and in the existence of‘a "Best" classification for any set of objects.
Ideally, everything in the universe has a unique position in the
"natural" grouping.

On the other hand, cluster analysis is still in a relatively em-
brydnic state being dated in a sense with the publication in 1963 of

The Principles of Numerical Taxonomy by Sokal and Sneath; for initially,

it was in ‘the context of applying quantitative methods to taxonomical
data that clustering methods evolved to provide solutions for the gen-
eral classification problem. Cluster analysis has developed in a rela-
tively isolated state in many diverse fields of application including
biology; psychiatry, criminology, ecology, psychology, sociology, engi-
neering, soil sciencé, economics, and marketing research to mention only
a few. A more complete and organized listing with discussion appears in
Anderberg (1973). 1In addition, some of the relevant cluster analysis
research is being published in computer science and statistical jour-
nals.

The result of all of this diversity in the evolution of cluster
analysis is a lack of any standard notation or terminology for the con-
cepts of cluster analysis, a duplication of research, and the develop-
ment of fringe areas to satisfy a more manageable and well-defined set
of objectives. Anderberg (1973, p. 7) offers some causes for and some
criticisms of the diversity in clustér analysis.

The cause [of diversity] is probagly a mixture of pro-

fessional jealousy, a relative isolation among the fields,

and genuine differences of viewpoint. For the novice,

the disarray is bewildering and confusing; ultimately

it is highly duplicative since the same idea is discov-
ered repeatedly and published in a variety of journals.



On the fringes of cluster analysis are such diverse fields as pattern
recognition, information theory, mixtures of probability distributions,
graph theory, multidimensional scaling, and artificial intelligence.

In spite of the shades of gray and the diversity of evolution in
clustéi analysis,ba unifying framework for the development of the
theoretical aspects of cluster analysis can be found among the statis-
tical methods. Since statistics is a body of methods purporting to aid
in making sense out of data, cluster analysis belongs among the descrip-
tive, statistical methods; and as a descriptive method, cluster analysis
possesses the following noteworthy characteristics:

1. It is an exploratory technique to be used in the

initial stages of research which, hopefully, will
pfecipitate hybotheses for further research;

2. It has as its goal simplification through organi-

zation,

Within the body of statistical methods presently available for
data analysis, there exists a hierarchy of descriptive methods based on
the dimensionality of the data to be analyzed. This hierarchy of des-

criptive methods is briefly outlined below:

1. Ordering (ranking) -- univariate,

2. Graphing (scatter plots) -- bivariate,

3. Response surfaces (models) -- trivariate,

L, Factor analysis (Principal Components) -- multi&ar—
iate,

5. Cluster.analysisb(Numerical Taxonomy) -- multivar-

iate.



As Warde (1975) indicates, cluster analysis may also be viewed as the
multivariate analogue to multiple comparisons.

In viewing cluster analysis from its philosophical, histhical,
and statisfiCél perspectives, the inherent difficulties of research
within this area‘imposed by its voluminous and diverse literature have
become apparent. Consequently, any meaningful research within the
realm of cluster analysis must be limited to a well-defined facet of
cluster analysis, and a consistent set of terms, definitions, and sym-
bols must be imposed for the exposition of this research. Thué, before

defining the limits of this study, some definitions will be tendered.

A Discussion of Fundamental Concepts with

Some General Definitions

The central concept in cluster analysis is that of cluster, but its
definition is as diverse as the many applications of cluster analysis.
In fact, as Kendall (1973, p. 181) states, "The fundamental problem in
cluster analysis is to define what we mean by 'cluster'." Intuitively,
the concept of cluster encompasses the duality of homogeneity within
clusters and heterogeneity between clusters. Thus, there must also be
some concept of "closeness." However, Rand (1971, p. 846) believes,
"that evefy definitionlof 'closer' is natural for some situation." 1In
the following passage, Kendall (1973, p. 181) further exemplifies the
contextual variation which occurs in the concept of a cluster:

But what are we to say of the particles which compose one

of Saturn's rings, which are certainly a grouping, but a

hollow onej: or the tracks of a particle in a Wilson cloud

chamber, which is an organized series of droplets but a

linear one? And if we allow a scatter of points inside

an ellipse to constitute a cluster, what are we to say of

two such-shapes with common centre and major axes at right-
angles — are they one cluster or two overlapping clusters?



Hence, the difficulty ascribed to defining a cluster is one of
specificity rather than generality. Ideally, the definition of a clus-
ter defines very special clusters for each specific applicatioﬁ of
cluster analysis; and at the same time, it must be completely general,
defining a cluster for every possible application of cluster analysis.
This ideal, of course, is a logical impossibility. With an example,
Norton (1975) also cites the inherent difficulty involved in any attempt
to find a single all purpose definition of cluster. Through the liter-
ature, there are a multitude of different, idealistic definitions of a
cluster. Practically, however, most definitions of cluster are
operational in the sense that a clustering method is chosen which fhen
determines the kind of cluster generated, Unfortunately, vefy 1little
information is available concerning the association between clustering
method and type of cluster generated.

The definitional problems associated with cluster analjsis can be
at least partially resolved by a-mathematicél approach to thé problem.
Using some of Rand's (1969) notation to formalize the preseﬁtation, a
general, set theoretic framework will be established for ciuster
analysis.

Noting that the primitive components of set theory are element and
set, parallel concepts in clustér ahalysis are the elements tp be clus-
tered and the set consisting of these elements. In general terms, the
elements to be clustered have been called objects, individuals,
ratterns, and by Sokal and Sneath (1963) operational taxonomic units
(OTUs). The elements to be clustered shall be referred to as data
points in this paper, and each data point shall be represented by a

pX1 vector, Xi’ where
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| "1p |
The components, xij , of Xi will be termed variables. The set of

all elements to be clustered shall be called the object space and

symbolized by X. Letting N be the number of data points, then

X = {le Xz; ---!XN}

Obviously, the object space is embedded in Euclidean p-space. Thus, if

Ep represents Euclidean p-space, then X &€ Ep .

A popular conceptualization of the object space is the data matrix
which is formed by stacking the data points as rows of a matrix. Let-

ting X represent the data matrix, where N is the number of data

N,p
points and p is the number of variables, then

— . —

*11 %12 0 *1p

X

X214 *o2 00 ¥op

N w2 g
— -
Having lald a set-theoretic foundation for discussing cluster

analysis concepts, mathematical definitions for cluster and clustering

can be given.

Definition 1. A cluster, Yk ’ is any nonempty subset of the object

space. Symbolically, Y, SX which means that if X,€ ¥, , then



X. e X.
i

Thus, a cluster is simply a collection of data points,.

Definition 2. A clustering, Y , is any partition of the object space.

Symbolically, Y ={Y1 » Yo, wouy Y} ds a partition of X , if the
following three conditions hold:

(i) For every T e Y, Yk% 6.

(11) If Y,e Y, Y eY, and Y #Y , then ¥ [l ¥ = 4.
K

(111) U v = x.
R ]

Hence, a clustering is simply a special kind of collection of clusters.

A clustering of N data points can consist of K=1, 2, ..., N
clusters. The number of clusters contained in a clustering shall be
termed the size of the clustering, and this designation will be incor-
poraﬁed into the general notation for a clustering by the use of a super-
script. For example, if clustering Y contains X clusters, then YK
denotes a clustering of size K. ‘The set of all possible clusterings
of the obJject space shall be denoted by %‘ The fact that even for
small values of N , the cardinality of ?f is quite large has motivated
the development of a multitude of clustering methods, not all of which
are distinct. |

In very general terms, a clustering method consists of a céiterion’
and a technique in which case the criterion assigns a numerical value to
each clustering and the technique selects a subset of the set of all pos-
sible clusterings over which the criterion is optimized (providing only
a local optimum). A problem of majér proportions ‘is to classify the

many clustering methods into a small number of different types. Note-

worthy attempts at classifying and reviewing clustering methods appear



in Sneath and Sokal (1973), Norton (1975), Cormack (1971), Anderberg
(1973). and Everitt (1974). However, no standard terminology has
emerged to clarify the confused nomenclature that exists for designating
an entire family of similar clustering methods. Apparently, "agglomera-
tive hierarchical" given by Anderberg (1973)‘and Everitt‘(1974),
"sequential, agglomerative, hierarchal" given by Norton (1975), and
"sequential, agglomerative, hierarchic, nonoverlapping (SAHN)" given

by Sneath and Sokal (1973) are all descriptors for the same class of
clustering methodsvwhich was also defined as a "hierarchical clustering
scheme (HCS)" by Johnson (1967). The previously described class of

v clustering methods will be of primary importance in this paper, and these
clustering methods shall be referred to simply as agglomerative
clustering methods.

Agglomerative clustering methods are some of the oldest.and most
frequently used clustering methods, Ap agglqmerative clustering method
may be characterized as proceeding sequentiélly by Jjoining pairs of
clusters from the partition which consists of each data point grouped as
a single cluster to the partition which consists of all data points
grouped together in a single cluster (if no stopping rule is provided).
An important concept in the definition of an agglomerative clustering
method is an hierarchy.

Assuming that there are N data points, formal definitions for
hierarchy and agglomerative clustering method are given as Definitions
3 and 4, respectively.

Definition 3. A hierarchy, H ; on the object space is an ordered

/

sequence of nested clusterings. Symbolically,



where Y C V1= ..o v vl

One useful visualization of a hierarchy is a tree diagram which is

often called a dendrogram in cluster analysis appliéations. Summarizing,
a hierarchy on the object space is a nested collection of clusterings
(each consisting of a set of clusters) which may be aptly depicted by

a déndrogram.

Definition 4. An agglomerative clustering method is any clustering

method, m , which produces a hierarchy on the object space subject to
the following constraints:

(1) Y' is the initial clustering;
-1

(ii) Clustering Y , K< N, is obtained from clustering
YK by joining the two "closest" clusters in clustering
| YK; i.e., if Yi y Yj € YK and they are deemed "closest,

then Y, U Y. e yK-1
i J

Thus, the application of én agglomerative clustering method to the N
data points results in a special kind of hierarchy, thereby imposing an
hierarchical structure on the object space.

The resolution of a clustering problem by the applicationvof an
agglomerative clustering method to a data set can be described by the
triple (X, H, m); for future referehce; the components of this triple
have been carefully defined in this section. Recalling that, in general,
a clustering method cénsists of a c;iterioh and a technique, an agglom-
erative clustering méthod may be more specifically viewed as consisting

of a measure of similarity or dissimilarity (usually a metric) and an

algorithm (usually a form of linkage). The measure of similarity or
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'dissimilarity explicates "close", initially; and the algorithm reevalu-~
ates the "clqseness" of clusters after each Jjoin. As a further limita-
tion, the agglomerative clustering methods of particular interest in
this paper may be denoted by the pair (metric, algorithm).

Further delineation of the particular agglomerative clustering
methods of interest will be given in Chapter III. However, sufficient
terminology and notation have been developed to define the scope of the

study being presented in this paper.
The Rationale and Scope of This Study

Having placed cluster analysis among the descriptive, statistical
methods, the problem of actually implementing a clustering method, given
a "real" set of data, is a bewildering one. The data analyst must make
many choices before a data set can be cluster analyzed such as the fol-
lowing questions exemplify:

1. Should he standardize the variables?

2. Should he factor analyze the variables before c1usteiing

the data points?

3. What value of X, the number of clusters to be found in the

data set, should he specify? |

L. What clustering method should he use?

Although this study primarily addresses itself to the fourth question,
a brief discussion of the first three questions.is relevant.

The first two questions make reference to often advocated solutions
for frequently encountered broblems concerning the variables observed
on each data point. ijically, a data point consists of measurements

on a myriad of related variables with divergent ranges, and often these
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neasurements are made in many different incompatible units. Since,
inevitably, the variables are combined in a measure of similarity or
dissimilarity or in a criterion, the incompatibility of units problem
cannot be entirely ignored, and standardization of the variables does

at least result in unitless quantities (making at least the mathemati-
cians happy). However, from a statistical point of view, standardiza-
tion is not the panacea its advocates would lead one to believe, espe-
cially since only sample moments are available for use in this process.
It is worth noting that Kendall (1973) favors standardization of the
variables as the lesser of several evils, but for the most part, stan-
dardization is opposed by Anderberg (1973). Within the numerical
taxonomy literature, there exist many philosophical discussions concern-
ing the importance of weighting certain characteristics and the hagzards
of forcing all characteristics to have the same relative weights. Sneath
and Sokal (1973) provide a good reference to the numerical taxonomy
literature and to the biological viewpoint on philosophical questions.
Anderberg (1973) provides an extensive discussion of alternatives to
standardization based bn the scale of measurement of the variables.
Applying factor analysis or even principle components to a set of vari-
ables before cluster analyzing the data points may reduce the number of
variables, but research on the invariance of clustering methods to these
transformations is lacking. It should also be noted that there is no
reason to believe that simple correiation is the only relationsﬁip :
between pairs of variables. 1In this gtudy, problems concerning vari- -
ables will be ignored. However, additional research on this subject

would be valuablé.
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The third question is relatively unimportant when agglomerative
clustering methods are being used., If feasible, the complete hierarchy
should be examined as the output from the application of an agglomera-
tive clustering method to the data set. Often valuable additional
information about thé data points can be gained from the sequence of
clusterings, which would be totally lost if only one clustering was
examined.

The purpose of this study is tovprovide a "dynamic" comparison of
agglomerative clustering methods, which will guide the matching of
clustering method with type of cluster generated, TIdeally, the compara-
tive study would follow the suggestions made by Anderberg (1973, p. 201)
in the following passage:

What seems to be needed is an approach to evaluation

which systematically can relate the key characteristics

of cluster analysis problems to the capacities of various

cluster analysis methods; in other words, find the ele—.

ments which make problems difficult and match them with

" the strengths of powerful methods. If there could be

found a set of significant concept dimensions which des-

cribes problems and another such set which describes

methods, then a variety of important capabilities might

be within reach.

Through the literature, there have been both analytical and empirical
attempts to compare some clustering methods, but because of the large
number of clustering methods now in existence and because of the number
of factors requiring controlled change to make the comparisons relevant,
a useable comparative summary of clustering methods is non-existent.

Consequently, the comparative study presented in this paper is lim-
ited to agglomerative clustering methods of the form (metfic, algorithm),

but a comprehensive study of these clustering methods is attempted in

this paper. Chapter IIT contains an algebraic analysis of agglomerative
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clustering method algorithms, which results in a graphic portrayal of
these algorithms and a classification scheme for these algorithms based
on the degree of distortion perpetrated on the object space by the algo-
rithms in each group. Chapter IV presents a statistical analysis of the
comparative statistic employed in Chapter V, which provides a distribu-
tion for the statistic under the specific model assumptions considered.
Chapter V delineates the important considerations in any extensive,
systematic comparison of clustering methods, and then it presents an
empirical investigation of the effect of correlated variables on the
"retrieval" ability of égglomerative clustering methods. First, however,

a review of cluster analysis literature will be given for perspective.



CHAPTER IT
A REVIEW OF CLUSTER ANALYSIS LITERATURE
A Classification of Cluster Analysis Literature

The yoluminous and diversified nature of the cluster analysis liter-
ature has already been alluded to as a major impasse to research in clus-
ter analysis. Considering the present state of knowledge in the realm
of cluster analysis, making sense out of the cluster analysis literature
would represent a major advance in cluster analysis research. Initially,
a classification of the cluster analysis literature into representative‘
categories would be a valuable implement.

In the preparation of this thesis, a sizeable sample of the cluster
analysis literature was perused. Thus, the problem at hand is how to
efficiently summarize a set of publications all purported to discuss
subject matter related to cluster analysis. Rhetorically, the solution
would be to write a "comparison and contrast" of the publications..
Essentially, this means to extract those things which are similar and
those things which make each publication unique, which in essence is the
goal in the general claésification problem. Thus, a particular instance
of the general classification problem is to be solved as an efficient
means to summarizing a sample of the cluster analysis literature.

In this chapter, a subjective classification of the publications
into representative categories based on what.is perceived to be their

primary purpose is tendered. First, however, it should be noted that

14
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most journal articles in the realm of cluster analysis either propose
a new clustering method or as Cormack (1971, p. 323) comments:

Unfortunately the current swell of classificatory publica-

tions (estimated at more than 1,000 a year) is mainly de-

voted to 'testing' published techniques on data for which

'standard' classifications exist. When the technique fails

the author's response is to modify the technique instead

of thinking about the 'standard' classification or ques-

tioning the value of the whole process.

With this in mind, the four primary purposes discerned from the
cluster analysis publications sampled are as follows:

1. To survey classification procedures;

2, To propose or modify a clustering method;

3. To present statistical aspects of cluster analysis;

L. To compare aspects of clustering methods.

Since this classification is monothetic, the four primary purposes define
a partition of the sample of cluster analysis publications into four
clusters. However, the unavoidable overlapping of related publications
becomes apparent when thelr secondary purposes are examined. Although
significant secondary purposes could be used to refine the classifica-
tion by defining sub-clusters, in the present review of cluster analysis
literature, the initial four clusters are deemed adequate, and all rele-
vant secondary purposes are revealed within tﬁe defined clusters as
significant contributions to cluster analysis research.

Since to compare clustering methods is of principal interest in this
thesis, an extensive critical review of publications falling in the clus-
ter defined by a Primary purpose "to compare" will be given. First,
however, some of the publications falling in the other three clusters

will be briefly discussed with particular emphasis being given to their

significant contributions within the realm of cluster analysis.



16

Publications Having the Primary Purpose to

Survey Classification Procedures

The first cluster of publications defined by a primary purpose "to
survey classification procedures" or simply "to survey" contains several
Journal articles, two monographs, and two books. Since cluster analysis
has been developing separately in a multitude of different applied
fields, an interesting overview of the publications falling in this
cluster is obtained by considering the viewpoint of the author. The im-
portant question is: For whom is the publication being written? The

following listing of publication by perspective is enlightening:

1. From a biological sciences perspective -- Sneath and Sokal
(1973)
2. From a social sciences perspective -- Everitt (1974), Ball

(1965), and Fleiss and Zubin (1969)

3. From the viewpoint of the data analyst -- Anderberg (1973)

L. From the viewpoint of the econometrician -- Duran and Odell
(1974) |

5. From a statistical pergpective —- Cormack (1971)

6. From a philosophical perspective -- Sneath (1969), Sokal (1974),
and Kendall (1973).

The book by Sneath and Sokal (1973) is certainly a landmark in
numerical taxdnomy, but the biological nomenclature and the extensive
discussion of épecial problems associated with taxonomy make it less
- valuable as a general reference in the realm of cluster analysis thanr
the book by Anderberg (1973) or the monographs by Everitt (1974) and by
Duran and Odell (1974). These other three publications are presented in

an essentially context free manner, and each of these publications
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provides a comprehensive general review of clustering methods, including
a classification of the clustering methods into broad general categories
and discussions of measures of similarity, measures of dissimilarity,
measures of association, clustering algorithms, clustering criteria, and
clustering techniques. Of special significance, however, are the note-
worthy original contributions to cluster analysis research that each of
these three publications makes.

Anderberg (1973) provides a self—containedvpresentation of cluster
analysis which is organized to guide the data analyst sequentially from
the raw data to the finished cluster analysis, ihcluding an extensive
collection of well-documented computer programs to implement the com-
plete sequence from rawrdata to finished analysis. His comprehensive
analysis of problems pertaining to variables, scales of measurement, and
measures of association includes commentary on strategies for mixed vari-
able data sets, conversion of variables from scale to scale, compatibil-
ity of measures of association across variables, and weighting of vari-
ables, both explicitly and implicitly. The chapter entitled "Compara-
tive Evaluation of Cluster Analysis Methods" provides the framework for
a "dynamic" comparison‘of clustering methods, which includes a sugges-
tion for making sense out of the resultant clusterings, namely, cluster
the clustering methods. Anderberg (1973, p. 201) states:

A possible approach for discovering ﬁhese concept dimen-

sions is to turn cluster analysis on itself and cluster

the results obtained by applying available methods to

specially constructed data sets. The similarities and

differences among various clustering methods may be iden-

tified through comparison of the results obtained by clus-

tering data sets of known characteristics, and the char-

acteristics of various data sets may be discovered through

clustering them with methods having known properties.

Thus, Anderberg (1973) gives some philosophical perspectives on
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comparative studies, which should be considered in any attempt to com-
pare clustering methods.,

The monograph by Everitt (1974) presents an incisive discussion of
the problems encountered when applying cluster analysis to "real" data,
which includes enlightening commentary on defining a cluster, choosing
the variables, choosing a measure of similarity or distance, choosing
the number of clusters present in the data, and special problems asso-
ciated with each type of clustering method. Everitt (1974) then aptly
demonstrates the problems associated with various clustering methods by
applying representatives from different types_of clustering methods to
data sets generated from bivariate normal distributions, having various
degrees and kinds of structure. He also includes seatter plots for each
generated data set to give an elucidative illustration of the structure
and irregularities within the data sets which lead to the anomalous
clusterings. The main purpose of the empirical investigation of differ-
ent classes of clustering methods is not to compare the clustering
methods, but to discover how a wide variety of supposedly different
clustering methods perform on a few well-defined types of data structure.
In fact, Everitt (1974) deliberately constructs his empirical investiga—
tion to test the strength (without a quantitative measure of it) of the
underlying assumptions of various clustering methods to impose a struc-
ture on the data rather than find the structure existing in the data
set. Bveritt (1974, p. 87) concludes:

All the methods make implicit assumptions about the
type of structure present: when these assumptions

fail to be met spurious solutions are likely to be
obtained,

Duran and Odell (1974) attempt to unify the various results of

research in the realm of cluster analysis and present them in a coherent -
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fashion, establishing mathematical notation for many of the concepts of
cluster analysis, The resultant monograph consists primarily of a
classification of clustering methods into broad, general categories with
in depth and mathematically rigorous (extensively employing graph theory
in the case of agglomerative clustering methods) discussions of the clus-
tering methods contained in each group, emphasizing their common charac-
teristics. A valuable contribution of this monograph is the chapter on
clustering by complete enumeration and the subsequent chapter on dynamic
programming techniques as "good" approximations to clustering by complete
enumeration.

The journal articles by Ball (1965) and by Fleiss and Zubin (1969)
are both written for the social scientist. Ball (1965) gives a compre-
hensive discussion of the sevén major classifications of cluster seeking
techniques with summaries of known measures of similarity, criteria for
clustering, and techniques for clustering. He essentially provides a
case against the normal assumption and a case for iterative clustering
methods. On the other hand, Fleiss and Zubin (1969) present a brief
critical review of factor analysis, cluster analysis, and mixtures of
distributions as procedures fof clustering individuals into homogeneous
groups with specific emphasis on the logical and technical problems
which arise in cluster analysis.

Each of the last foﬁr Jjournal articles offers a measure of philo-
sophical insight into tﬁe concept dimension of cluster analysis. The
article by Cormack (1971) represents an in depth survey of all aspects
of the general classification. problem along with many amusing philosoph-
ical comments to.amplify his scintillating style. In contrast, the

article by Sneath (1969) represents a more limited survey of some aspects
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of cluster analysis with particular emphasis on the unsolved problems in
this relatively new branch of multivariate statistical analysis. Sokal
(1974) presents an enlightehing discussion of the purposes, principles,
progress, prospects, and problems of classification from a philosophical
perspective. Finally, Kendall (1973) discusses from a non-technical,
but philosophical, perspecfive the nature of the problems of cluster

analysis.

Publications Having the Primary Purpose to

Propose or Modify a Clustering Method

The second cluster of publications defined by a primary purpose "to
propose or modify a clustering method" consists of numerous journal
articles, However; some of these Journal articles also provide valuable,
theoretical and practical discussions.

The journal articles by Fisher (1958), Edwards and Cavalli-Sforza
(1965), Mayer (1971), and Scott and Knott‘(1974) present clustering
methods which are'essentially univariate. The divisive clustering
method devised by Edwards and Cavalli-Sforza (1965) is used by Scott and
Knott (1974) to group treatment means. The clustering method‘proposed
by Mayer (1971) involves the choice of a primary variable to make the
initial monothetic clustering, and then the secondary variables are used
to refine the initial clustering.

Some specialized clustering methods are given by Fortier and Solo-
mon (1966), King (1967), and Haftigan (1970). King (1967) proposes a
step-wise, "quick and dirty"nclustering method for separating a large
number of variables into a group of clusters so that the variabies with-

in a cluster are highly intercorrelated and variables from different
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clusters are not so highly intercorrelated. Hartigan (1970) presents
an extensive review of cluster analysis by emphasizing six problem areas
of cluster analysis; however, his primary purpose is to present a new
clustering technique which simultaneously clusters variables and cases
of a data matrix. He gives the following two justifications for this
"better" clustering method:

The principle justification for this technique is that

the clusters obtained may be interpreted directly on

the data matrix, rather than on the distance function

usually necessary in other techniques. A second justi-

fication is that this direct clustering technique seems

more in accord with the practice of biological taxono-

mists, who associate with each cluster (taxon) of ani-

mals, the cluster properties the animals have in

common (Hartigan, 1970, p. 1.2).

" Two of the Journal articles in this cluster tender generalizations
of the single linkage clustering method. Jardine and Sibson (1968) pro-
pose a sequence of overlapping clustering methods as an extension of the
single-link method to reduce chaining after claiming that the single-
link method is the "best" of the well-known agglomerative clustering
methods with respect to their seven properties of a hierarchic classifi-
catory scheme. Wishart (1969b) devises mode analysis to reduce the
chaining effect associated with the single linkage clustering method.

Two journal articles by Lance and Williams (1966, 1967) form the
basis for Chapter III of this paper. Iance and Williams (1966) tender
a general linear combinatorial strategy based on four parameters, which
yields an agglomerative clustering method algorifhm for each choice of
parameter values. The parameter values for five of the well-known
agglomerative clustering methods are also given. The parameter values

of this general linear combinatorial strategy for Ward's (1963) sum of

squares clustering method are derived by Wishart (19692). The second
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journal article by Iance and Williams (1967) presents some properties
associated with the general linear combinatorial strategy and & new
agglomerative clustering method called the flexiblé strategy.

The journal articles by Hartigan (1967) and by Gower and Ross
(1969) provide graph-theoretic approaches to clustering. Hartigan
(1967) creates a measure of distance between a similarity matrix and a
tree. Gower and Ross (1969) introduce the minimum spanning tree as a
useful ancillary technique.

In addition to their primary purpose "to propose or modify a
clustering method," three of the journal articles make noteworthy mathe-
matical and statistical contributions to cluster analysis research.
Johnson (1967) introduces the ultrametric inequality to define a
hierarchical clustering scheme. Rubin (1967) presents a general frame-
work for cluster analysis through mathematical definitions, properties,
and proofs; he also creates a measure of object stability. Besides a
local optimization program with single point reassignment and amalgama-
tion of clusters criteria, Beale (1969) gives a reasonable criterion for
the number of clusters based on a one-way classification MANOVA and an

F-test.

Publications Having the Primary Purpose
to Present Statistical Aspects

of Cluster Analysis

The third cluster of publications defined by a primary purpose "to
present statistical aspects of clﬁster analysis" contains two theses and
five journal articles of a thoeretical nature. The joﬁrnal articles by

Marriott (1971) and by Scott and Symons (1971) are grouped in this
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cluster because they contain numerous applications of statisticél tools
to cluster analysis problems. Marriott (1971) uses MANOVA criteria and
the distribution theory associated with a multivariate analysis of vari-
ance. Scott and Symons (1971) employ likelihood ratio criteria in their
investigation of clustér analysis.

The journal articles by Goodall (1967), Engelman and Hartigan
(1969),‘and Bolshev (1969). represent attempts to develop theoretical
aspects of cluster analysis. Goodall (1967) gives a distribution for
the matching coefficient under certain sets of assumptions. Engelman
and Hartigan (1969) empirically derive a table of percentage points of
a test for the presence of clusters in data, but their test for the
presence of structure is limited to the univariate -case. Bolshev (1969)
makes an initial attempt at constructing a general probabilistic theory
of cluster analysis.

The thesis by Mrachek (1972) and the thesis by Norton (1975) neces-
sarily make valuable contributions to the theoretical development of
cluster analysis, and both of these theses are at least partially con-
cerned with the problem of teétiné for the presence of structure in data.
Mrachek (1972) develops a distribution theory for his metric of Euclid-
ean distance so that he can apply inferential theory to the two approxi-
mate tests for structure which he suggésts; He also considers the effect
of uninformative variables on the ability of the single linkage and the
complete linkage clustering algorithms to provide the correct clustering
of a structured data set. Norton (1975) discerns two types of cluster
analysis, which he refers to as mathematical clustering and inferential
dlustering, based on the type of "evidence" provided by the clustep

analysis with respect to the data. Norton (1975) demonstrates the
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difficulties encountered in attempts to construct "good" tests for the
presence of structure based on closed form sampling distributions, and
then he proposes several approximate tests for the presence of clusters
based on agglomerative clustering methods. Specifically, he presents

tests to detect the presence of more than one univariate normal popula-
tion along with tabulated percentage points of their null distributions

for selected sample sizes.

A Critical Review of Publications Having
a Primary Purpose to Compare Aspects

of Clustering Methods

The fourth cluster of. publications defined by a primary purpose "to
compare aspects of clustering methods" or simply "to compare" is of
Principal importance to the research being reported in this paper. The
comparative studies of this cluster are either primarily theoretical, -
both analytical and empirical, or primarily empirical in nature. It
should be noted that most of the developmént within this cluster is of
fairly recent vintage. |

Until recently, the coﬁhenetic correlétion coefficient, originated
by Sokal and Rohlf (1962), was the only comparative statistic available
for use in cluster analysis. Essentially, the cophenetic correlation
coefficient is the ordinary product moment, correlation coefficient com-
puted from the corresponding elements. of the original similarity (dis-
similarity) matrix and the elements of a similarity (dissimilarity)
matrix derived from a dendrogram; ‘it may be computed on any two similar-
ity (dissimilarity) matrices derived from dendrograms representing the

same set of data (the matrices, of coursé, must have the same
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dimensions). By the method of cophenetic correlation, different hierar-
chical clustering methods can be.indirectly compared with each other
through their derived dendrograms, and their derived dendrograms can be
compared with the origihal similarity (dissimilarity) matrix to provide
a measure of distortion for each clustering method with respect to the
data set.

The method of cophenetic correlation has come under heavy criticism
since its inception with impetus for this criticism being provided in
a journal article by Farris (1969). Farris (1969) derives some algebraic
properties of the cophenetic correlation coefficient, and he discovers
the conditions under which the cophenetic correlation coefficient is
maximized for a dendrogram. His analysis implies that agglomerative
clustering methods based on an average linkage clustering algorithm
should produce the highest cophenetic correlation coefficients among
existing agglomerative clustering’methods, when these clustering methods
are compared against the original similarity (dissimilarity) matrix by
the method of cophenetic correlation; and this implication is not tied
to any underlying data structure. In theory, at least, a "best" cluster-
ing method with respect to.the cophenetic correlation coefficient can be
constructed.

The journal articles by Gower (1967) and by Fisher and Van Ness
(1971) present comparative studies which are primarily theoretical in
nature. Gswer (1967) compares three well-known clustering methods from
a geometrical point of view in order ts expose the underlying‘cluster
structure being assumed by these clustering methods. Fisher and Van
Ness (1971), along with the extehsion;ofjtheir work by Van Ness (1973),

list eleven admissibility criteria which any "good" clustering method
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should possess. They then compare nine different clustering methods with
respect to these admissibility criteria, but their comparison is entire-
ly theoretical employing mathematical proof to construct an admissibil-
ity table.

The journal articles by Friedman and Rubin (1967), Chaddha and Mar-
cus (1968), and Maronna and Jacovkis (1974) represent extensive compara-
tive studies containing both analytical and empirical comparisons. The
journal article by Friedman and Rubin (1967) contains both an analytical
and an empirical comparison of three g?neralized variance criteria along
with manj other theoretical and practical considerations relevant to
clustering methods. Chaddha and Marcus (1968) compare three generalized
disfance statistics both analytically and empirically. Maronna and
Jacovkis (1974) compare five diverse metrics with only Euclidean distance
coming from the family of Minkowski metrics. Initially, their compari-
son of these metrics is analytical exhibiting the relationships between
the five metrics and generalized variance criteria. Then the three
"best" metrics based on the theoretical analysis are combined with an
iterative technique and compared empirically on both "real" data aﬁd data
generated from bivariate normal populations.

vSeveral of the publications in this cluster present comparative
studies which are primarily empirical in nature. Two of the earlier
emfirical, comparative studies are given by Williams, Lambert, and
Lance (1965) and by Boyce (1969).' Williams, Lambert, and Lance (1965)
provide an empirical comparison of ten different clustering methods
formed by using the single lihkage aﬁd the centroid clustering alge-
rithms in combination with each of five different measures of similarity

or dissimilarity; these clustering methods were compared using "real"
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data sets from eéology and with respect to the amount of chaining ob-
served as measured by a coefficient of chaining which was also developed
in the article. One interesting conclusion drawn from this comparative
study by the authors is that there exists interaction between measures
of similarity or aissimilarity and clustering algorithms. The Jjournal
article by Boyce (1969) represents an extensive empirical, comparative
study, using cophenetic correlation techniques and graphic techniques to
compare three agglomerative, pair-group clustering methods amongsf them-
selves and against a principal components analysis of the data. This
Journal article also includes a comparison of five measures .of similar-
ity or dissimilarity from a theoretical point of view and from an empir-
ical study using the unweighted pair-group algorithm based'on.averages.
For the anthropological data eﬁployed in this study, the overall pattern
of relationships was unaffected by the measure of similarity:or dis-
similarity used. |

The recent journal article by Kuiper and Fisher (1975)‘is a prime
example of a very poorly reported empirical, comparative study. The
journal article by Kuiper and Fisher (1975) suffers more from what they
did not say than it benefits from what they did say. Just to exemplify
the absurdity of their style of reporting, the following quote is offer-
ed as evidence of their attempt to conceal any potentially enlightening
details of their empirical study:

It is neither feasible ndr desirable to present most of

the output. The percentages given below are averages of

average values across various configurations (or proba-

bility distributions) (Kuiper and Fisher, 1975, p. 778).
The journal article by Kuiper and Fisher (1975) suffers from the follow-

ing major defects and omissions:
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1. It does not indicate which measure of similarity or dissimilar-
ity was used with the six agglomerative clustering algorithms
employed in the study; ‘

2. Although the authors indicate that the Monte Carlo runs were
made on a CDC 6400 computer, they give absolutely no indication
of the procedure or computer package used to generate the multi-
variate normal data sets;

3. Even the configuration of ‘the mean vectors is omitted for the
cases where there are more than two multivariate normal popu-
lations being generated;

4., For the caselof two bivariate normal populations, the config-
uration of mean vectors implies that one variable is completely
uninformative, and thus the supposedly bivariate clustering
problem is really reduced to a univariate clustering problem
with "noise";

5. Averaging all results over configurations as well as the small
number of replications (30) of each configuration makes the
reported results totally uninterpretable.

In all fairness, the journal article‘by Kgiper and Fisher (1975) is

a relatively short article that might ha&e been substantially chopped
before publication. Unfértunately, howevéf, the conclusions and com--
ments (based on all of t?e research»doné, not just the reported results)
made in this journal article could have been completely anticipated
based on previPus comparative studigs and theoretical knowledge of the
clustering algorithms gsed.

In contrast, the technical report by Dubes and Jain (1975) is an

outstanding example of a well reported and well conducted empirical,
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comparative study with many new insights to offer the. potential cluster
analysis user. Dubes and Jain (1975) produce a comprehensive data
analysis of a 192 X 8 dimensional subset of the Munson handprinted For-
tran character set referred to as IMOX, which does not cluster in a
trivial manner, Théir objective is not to find a "best" clustefing
method, but to explore the strengths and peculiarities of several
diverse clustering methods on a challenging data set for which a
"natural" classification exists.

Comparisons of clustering methods which are from different classes
such as the hierarchical and non-hierarchical classes of clusfering
methods are practically nonexistent because the outputs from clustering
methods which are from different classes are, in.general,'noncomparable.
However, Dubes and Jain (1975) sﬁccessfullj compare the performance of
eight clustering methodsyrepresenting three diverse classes (squared-
error, hierarchical, and grapﬁ-theoretic) of clustering methods on thé
IMOX data set by utilizing the suggestion of Anderberg (1973) to cluster
the clustering methods. Noteworﬁhy featureé of their comparative study
are delineated below: -

1. Various types of evidence concerning.the nature of the IMOX

data set are presented, such as selected scatter plots;

2. A complete description of each clustering method employed in

| the empirical study is given, includiné practical considera-

tions relevant to its computer implementation;

3. A complete summary of all results from the application of_each

clustering method to the IMOX data set is given, including the
CPU time used, the number of clusters found, the number of

patterns misclassified, and a cluster by'cafegory'table;
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4., Using Rand's (1971) statistic as a measure of similarity be-
tween clustering methods, a similarity matrix is derived to
summarize the degree of similarity among the eight clustering

. methods with respect to the IMOX data set;

5. Two dendrograms are derived from the similarity (between clus-
tering methods) matrix to determine which clustering methods
really produced different results when applied to the IMOX
data set;

6. Using one of the multidimensional‘scaling techniques, a one-
dimensional comparison of the eight clustering methods is also
provided.

The conclusions drawn by Dubes and Jain (1975) from their compar-
ison of eight clustering methods afe enlightening. For the IMOX data
set, the complete linkage clustering represented the average of four
different squaréd—error clusterings.‘ The two clustering methods which
are most dissimilar are both from the graph-theoretic class of cluster-
ing methods. Choosing a single ciusfering method from each of the
three classes of clustering methods would not cover the gamut‘of pos-
sible clusterings for the IMOX data set. Finally, the two graph-
theoretic clustering methods plus the compiete linkage clustering method
are sufficient to provide Severalia;ternative hypotheses about the
structure of the IMOX data base.

Unfortunately, one recent trend in empirical, comparative studies
involves the revival of the method of cophenetic correlation with non-
parametric measures of correlation Eeiﬁg substituted for the ordinary
product momen£ correlation coefficient. The proponents of this '"new"

comparative method are, apparently,‘aware of the criticisms of the

!
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cophenetic correlation coefficient as a measure of simi;arity between
dendrograms given by Farris (1969). However, they also, apparently,
missed, or at least ignored, Farris's (1969) overall skepticisﬁkconcern—
ing the method of cophenetic correlation itself. Some of the deficien-
cies attributable to the method of cophenetic correlation are functions
of the methodology itself, which cannot be completely overcome by

merely changing the measure of correlation. The method of cophenetic
correlation is applicable only to hierarchical clustering methods; and
more specifically, this method is used fo compare agglomerative cluster-
ing method algorithms amongst themselves and with respect to the origin-
al similarity or dissimilarity matrix.

It should be recalled that for the purposes of this thesis, a clus-
tering method was very cafefully defined as consisting of two parts; and
specifically, an agglomerative clustering method was characterized as
consisting of some measure of dis%ance, deiermihing the original dis-
similarity matrix, and an algorithm for recomputing distances after
each join. The application of an agglomerative clustering method algo-
rithm to a distance matrix imposes a hierarchy on the data set which may
be conveniently visualized by means of a dendrogram. Typically, a den-
drogram consists of a tree and a vertical sdale of measurement which af;_
fords information on the distance at which the two clusters-in cluster-

ing ¥ joined to form clustering y¥-1

; this distance will be called
the joining distance for»clustering YKfl . Initially, there are
N(N-1)/2 distances associated with N data points, and these are reduc-
ed to N - 1 Jjoining distances by the application of an agglomerative

clustering method algorithm to the original distance matrix. Thus, sum-

marizing a distance matrix by means of a dendrogram necessitates a loss
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of information with respect to distances, but the purpose of cluster
analyzing a set of data is to provide a summary of the data set which
substantially reduces its proportions. A distance matrix is itself a
summary of the data set; but even for small values of N , a distance
matrix is difficult to assimilate. An agglomerative clustering method
algorithm provides an interpretation for the distance matrix, which can
be more easily assimilated.

From a philosophical point of view, it i1s important tovconsider the
primary purpose fof cluster anal&zing a data sét. The relevant question
appears to be: Is the primary purpose of cluster analysis to describe
the data points or to describe the distance matrix, which is assumed to
be a "good" representation of the relationship between data points. The
method of cophenetic correlation implicitly assumes that the initial
distance matrix is the "best" summary of the relationships which exist
among the data points. As a consequence, the comparison of clustering
algorithms by means of the method of cophenetic correlation is not direct-
ly related to the data points or the sequence of clusterings; this com-
parative technique only considers how sell a clustering algorithm repre-
sents the original distance matrix as depicted by the set of joining dis-
tances. For example, the cophenetic correlation coefficient for compar-
ing a dendrogram resulting from the application of the singie linkage
algorithm with a dendrogram resulting from the application of the com-
plete 1inkagekalgorithm can not be equal to one, (exéept in specially
contrived cases) even when all clusterings in the hierarchy are exactly
the same. Farris (1969, p. 284) comments on the cophenetic correlation

coefficient (CPCC) as an optimality criterion as follows:
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The CPCC is a true measure of optimality of a classi-

fication only for a particular definition of taxonomic

'information.' Under the usual criterion that similar

OTUs should be clustered together in a 'good' classifica-

tion, the CPCC is not a direct measure of optimality of

classifications. Further, the problem of finding the

most appropriate optimality criterion for classifications

will have to be considered jointly with the question of

what is the most appropriate measure of ‘'similarity’

between OTUs.

Thus, the practice of beginning a comparison of agglomerative clustering
methods a step beyond the choice of a measure of similarity or dissimil-
arity is at best questionable.

Apparently, Cunningham and Ogilvie (1972) initiated the trend of
comparing agglomerative clustering method algorithms by means of the
method of cophenetic correlation in conjunction with a measure of rank
correlation; for simplicity, this method will be referred to as the
rank method of comparison. Theoretically, substituting a measure of
rank correlation for the ordinary product moment correlation coeffi-
clent in the method of cophenetic correlation will alleviate the prob-
lem of the coefficient not accurately portraying the similérity in the
sequence of clusterings. Now, supposedly, when the sequence of cluster-
ings are the same in two different dendrograms (joining distances dif-
fer), the rank method will yield a coefficient of one. However, the re-
duction of the initial distance matrix to a set of joining distances
gives rise to the mechanical problem of tied ranks, which represents a
serious encumbrance to the rank method of comparison regardless of the
rank correlation coefficient chosen. \

As a justification for their methodology, Cunningham and Ogilvie
(1972) define a perfect grouping as one which retains the information

contained in the initial distance matrix, but this definition implicitly

assumes that the initial distance matrix is a "correct" representation
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of the structure present in the data set. They choose two goodness of
fit measures, Kendall's (1948) tau (t) which measures concordance in
order reiationship and a stress type measure which assesses agreement in
absolute value, to quantify the amount of distortion imposed on the
initial distance matrix by each of seven well-known agglomerative clus-
tering method algorithms. Unfortunately, Cunningham and Ogilvie (1972)
give no indication of the formula being used to compute T, nor do they
indicate that a correction has been made in the usual expression for
T to handle the mechanical problems associated with tied ranks. In fact,
they make no reference to the existence of tied ranks. Both Baker (1974)
and Hubert (1974) indicate that T is not an appropriate measure of rank
correlation in the presence of tied ranks because it does not have a
probabilistic interpretation when tied ranks occur. It should be noted
that if Cunningham and Ogilvie (1972) used Kendall's (1938) tau as
originally defined withvno correction for tied ranks'to compare the
clustering algorithms to the initial distance matrix, then many of the
values of T appearing in their tabled results can be shown to be un-
attainable. Further, Cunningham and Ogilvie (1972, p. 213) allude to a
possible deficiency in the rank method of comparison when their measure
of stress 1s chosen as the goodness of fit criterion in the following
statement:

Computed distances, unlike average distances, are

not necessarily in the same range as the input dis-

tances, and therefore can inflate the value of

stress.

Cunningham and Ogilvie (1972) may also be credited with initiating
another trend in recent empirical, comparative studies. The construc-

tion of test data sets that are artificially contrived to représent
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certain types of ideal structure in an attempt to reveal fundamental
differences between clustering methods appears to be a new approach

to comparing clustering methods. Cunningham and Ogilvie (1972, p. 210)
give the following rationale for basing a comparative study on artifi-
cially contrived distance matriceé{

Several sets of data were tried out in an attempt to

find if there are distinguishable 'types' of data which

fit into a hierarchical structure in a characteristic

way .

The ideal data set concept provides an interesting approach to comparing
clustering methods, which is continued by Baker (1974) and by Hubert
(1974). However, artificially contrived data sets necessitate a com-
parative study of a more limited scope than the usual Monte Carlo
approach to generating data sets would permit. There are no replica-
tions in the empirical, comparative study reported by Cunningham and
Ogilvie (1972). Finally, they also used their overallbframework (ideal
data sets and rank method of comparison) to explore robustness against
random permutétion and robustness against random perturbation of the
chosen agglomerative clustering method algorithms.

Baker (1974) presents an "improved" version of the "robustness
against random perturbation" investigation originated by Cunningham and
Ogilvie (1972). Baker's (1974) empirical, comparative study suffers
fromvan artificiallquality which makes it difficult to relate his
resﬁlts to the data analyst's problem of choosing a clustering method.
For example, there is no data in his comparative study, only basal tax-
onomies representing ideal data structures (such as a completely chained
structure). An "efror-free" matrix of ranks, the initial rank matrix,
is derived from each of three basal taxonomies such that the application

of either the single linkage or the complete linkage clustering
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algorithm to the initial rank matrix recreates the original basal taxon-
omy. It should be noted that both the single linkage and the complete
linkage clustering algorithms require only an ordinal scale of measure-
ment for their application. However, since the ordinal scale of
measurement is fundamental to Baker's (1974) comparative study, it is
not generalizable to other agglomerative clustering method algorithms.

Baker's (1974) objective is to compare the single linkage and the
complete linkage clustering algoirthms with respect to their sensitivity
to random perturbation of the data. However, there is no data to which
random error may be added. Instead, Baker (197&) adds random perturba—
tions (by a seemingly complex scheme) to each entry of the initial rank
matrix. Although he has three different levels of random error, it is
very difficult to visualize the different levels of perturbation of the
ranks as relating to different degfees of perturbation at the variable
level. Instead, a higher level of perturbation of ranks may be merely
an indication of additional variables being used to describe each data
point.

In‘Baker's (1974) empirical,. comparative investigation, each of the
perturbed rank matrices is clustered by the single linkage and the com-
piete linkage clustering algorithms. The resultant hierarchies are com-
pared to the basal taxonomy by means of the rank method of comparison in
conjunction with the Goodman and Kruskal (1954) gamma coefficient as an
alternative goodness of fit measure to Kendall's (1938) tau coefficient.
Although, the gamma coefficient retains a probabilistic interpretation
even in the preseﬁce of tied raﬁks, there is still a considerable loss
of information resulting from the tied ranks. Paradoxically, the gamma

coefficient probably attains its highest values, when the greatest
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amount of information is lost due to tied ranks. This observation might
partially account for the following conclusions alluded to by Baker
(1974)

1. The single linkage clustering algorithm is more sensitive to
random perturbation of the ranks than is the complete linkage
clustering algorithm;

2. A completely chained data structure is more easily obscured by
a fixed level of random perturbation of the ranks than are
the other two types of data structure employed in this compara-
tive study.

Hubert (1974), like Baker (1974), is concerned with the single
linkage and the complete linkage clustering algorifhms and the concept
of "noise." Hubert (1974) also emfloys the basic framework developed
by Baker (1974), i,e., initial rank matrix and gamma coefficient as a
measure of goodness of fit. However, Hubert (1974) explicitly bases
his empirical comparative studj on Ling's (1973) assumption that every
permutation of the object pairs has an equal chance of occurring; and
thus, he pfoceeds to randomly sélect with replacement from the set of
all possible permutations of the object pairs from an initial rank
matrix. This assﬁmption appears to be a very poor basis for an empir-
ical study because for a fixed p-dimensional Euclidean space, a large
proportion of the set of all possible permutations may be geoﬁetrically
impossible. It is analogous to assuming that the data points come from
an infinite dimensional sﬁace.

A simple example will aptly depict the inappropriateness of aésum-
ing that every possible permutétion of tﬁe object pairs is equally

likely to occur at least from a geometric point of view. For N =4



38

(distinct) data points, there are N(N-1)/2 = 6 ranks in the initial
rank matrix. For these six ranks, there exist 720 possible permutations
" of the ranks. It can be easily shown that in one-dimensional Euclidean
space (i.e., on a line) 5/6 or 600 of the 720 possible permutations are
geometrically impossible. Let it suffice to pose the question: Would
these 600 impossible cases produce high values of the gamma coefficient?
The main difficulty, however, lies in trying to interpret Hubert's (1974)
comparative study in an applied sense without a "real" world context.

For the purposes of this thesis, the empirical, comparative study
reported by Rand (1969, 1971) is of primary importange. Chapter V of
this thesis represents an extension of one aspect of the empirical
studies reported in a thesis by Rand (1969) and in a subsequent journal
article by Rand (1971), which summarized and supplemented the original
thesis. Consequently, an extensive critical review of Rand's (1969,
1971) comparative studies will be given with additions and possible
extensions being noted. Rand's major cpntribution to the problem of
comparing clustering methods is a statistic, c, which measures the
similarity between pairs of clusterings; the c¢ statistic is the sub-
Ject of Chapter IV of this thesis.

Rand (1969, 1971) uses the measure of similarity between cluster-
ings, c, to investigate four relevant questions in a series of‘Monte
Carlo studies, reporting the sample mean of ¢, the samplé standard
deviation of c, and the percentage of complete agreement for each case
considered. The four fundamental aspects of clustering methods proposed
by Rand (1971, p. 848) are exemplified by the following questions:

1. "How well does a method retfieve 'natural' clusters?"

2. "How sensitivé is a method to perturbation of the data?"
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"How sensitive is a method to missing individuals?"
"Given two methods, do they produce different results when

applied to the same data?"

Chapter V of this thesis is primarily concerned with the "retrieval®

ability of agglomerative blustering methods for particular types of

structure.

‘Without intending to be critical of Rand's empirical studies, the

following criticisms and comments should be noted as indications of

possible extensions and as indications of factors not considered, which

could make a comparative study of clustering methods more "dynamic"

and more meaningful to the data analet:

1.

The clus£ering methods compared by Rand are not well-known
clustering methods, and they appear to be poor for the purpose
of "retrieval" and computationally inefficient.

For all of the Monte Carlo studies except that of "retrieval,"
he generated all of the data points from a single distribution.
For the "retrieval" study, he generated the same number of -
points from each population. |

Rand did not attempt to relate the distance between popula-
tions to the "retrieval"‘ability of the clustering methods.
The only measures of similarity or dissimilarity considered
by Rand were forms of Euclidean distance.

A1l of the multivariate normal data was generated from popula-
tions having an identity variance-covariance matrix.

More use could be made of the fact that c¢ is a valid
statistic for comparing clhsterings even when the clusterings

contain different numbers of clusters.
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The main point of the observations given above is that Rand's empirical,
comparative studies could be naturally extended by the controlled change
of a wider range of contextual variables. However, the concept of com-
paring clustering methods based on the clusterings produced rather than
the joining distances seems more relevant to the objectives of cluster

analysis from a practical point of view.
Some Reflections

The literature of cluster analysis, obviously, suffers from frag-
mentation due to its diverse evolution. Consequently, the lack of a
standﬁrd nomenclature for cluster analysis concepts, even, resists at-
tempts to edit the discﬁssioﬁ of'cluster analysis research to provide a
consistent exposition of the literatufe. Very simply, with respect to
the same concept, subtle differehces of meaning, as reflected by the
diverse'terminology, exist across>fields of application. In summary,
since the primary purpose of this thesis is "to compare," some reflec-
tions on the philosophical basis for comparing clustering methods ap-
pear to be necessary before proceeding to a discussion of the present
research effort.

The conclusions from an empirical study are necessarily embedded
in some context (initial specifications and underlying assumptions) or
parameter space, whether this fact is explicitly acknowledged or not.
The infelicitous aspect of empirical, comparative studies which begin
with an initial distance or rank matrix rather than an initial set of
data points is that the aforementioned procedure effectively causes the
context to be unknown; i.e., certain, important control parameters are

inestimable. Regardless of the level at which an empirical, comparative
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investigation is begun, it is not independent of contextual variables
or control parameters as they will be referred to in this discussion.
Instead, failure to specify the necessary control parameters renders
the results uninterprétable in an applied sense. The consequences of
this general discussion for the comparison of agglomerative clustering
methods is worth considering.

From Chapter I, it should be recalled that the resolution of a
clustering problem by the application of an agglomerative clustering
method to a data set can be described by the triple (X, H, m). The
object space, X, and the clustering method, m, are élements of the
parameter space which reéuire specification, initially, and the hier-
archy, H, is the resultant sequence of clusterings for the specified
pair (X, m). Since X 1is essentially specified by N, the.number of
data points, and p, the dimension of the Euclidean space in which the
object space 1s embedded, and since m 1is specified by the pair
(measure of distance, clustering'aigorithm), the parameter space may be
completely specified by the quadruplé (N, p, measure of distance,
clustering algorithm). The spééification of all four of these param~
eters is required for the application of an agglomerative clustering
method to a set of data points, and all conclusions concerning the
resultant hierarchy are dependgnt on these initial specifications.

When agglomerative clustering algorithms are compared based only on
an initial distance or rank matrix being generated without the existence
of data points per se, then only the pair (N, clustering algorithm) is
§pecified to obtain the sequence of clusterings. The parameter pair
(p, measure of distance) is left undefined, and these control parameters

are, essentially, inestimable or unrecoverable. However, conclusions
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concerning ‘H are not independent of the parameters p and measure of
distance. Instead, conclusions concerning H are based on one pair of
unknown control parameters and one pair of known control parameters. H
exists only for some unknown éubset of the set of all possible choices
of the pair (p, measure of distance), and the possibility of this subset
being empty cannot be theoretically eliminated. If this subset is
nonempty, recovery of a parameter pair (p, measure of distance) may be
accomplished by showing that the initial distance or rank matrix is
obtainable from the parameter triple (N, p, measure of distance). Thus,
the vaiidity of any conclusions concerning the relative merits of the
agglomerative clustering algorithms being compared is difficult to .
assess when the émpirical, comparative study is based on an initial
distance or rank matrix without reference to a set of data points.

The necessity to specify all four members of the quadruple (N, p,
measure of distance, clustefing algorithm) places a serious restriction
on the generalizations which may be made from an empirical, comparative
investigation of agglomerative clustering methods. It should be noted
that generalizations of\empiricél, comparative studies conducted in
p-space, are not necessarily valid for any other choiée of p; i.e.,
generalization to either a -higher or a lower dimensional Euclideanvspace
is usually not possible. It is also quite possible that there is an
interaction between the measure of disfance and the clustering algorithm.
At least, both members of the pair defining the agglémerative clustering
method contribute to the process which produces the dendrogram, and
varying either member of this pqir may produ;e a different sequence of
clusterings for a particular dafa,set. In conclusion,’the further

removed an empirical study, within the realm of cluster analysis, is



from the data analyst's problems alluded to in Chapter I, the less

viable is the research.
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CHAPTER IIT

THE PROPERTIES OF AN INFINITE SET OF AGGLOMERATIVE

CLUSTERING AIGORITHMS

A General Formulation for Agglomerative

Clustering Algorithms

For the purposes of this chapter, the application of an agglomera-
tive clustering method to a set of data requires that a measure of dis-
tance, d, be imposed on the object space, X. Thus, the properties and
some examples of distance measures will be established before giving a
general formulation for agglomerative clustering algorithms.

In very general terms, a measure of distance, d, on some arbitrary
set, 3, is a real—valuedifunction on S xS. In particular, some.of the
relevant properties which a measure of distance may possess will be
given with respect to the object space, X. However, these properties
may apply to an arbitrarily definéd measure of distance on any set.

Letting 4d denote the distance between data point 'Xi and data

ij
point Xj y the hierarchy of properties for a measure of distance is
aptly depicted in Definitions 5, 6, and 7.

Definition 5. A semi-metric on the object space, X , is a function,

d: XxX—> R,

such that the following two properties hold for every pair of data

points, Xi and X‘j y in X:

Ly
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(i) 4 1is a strictly positive function, i.e.,

>
v Xi’ Xj e X, dij =0

and _ d..=0 iff X, = X.
1] 1 J
(i1) 4 is a symmetric function, i.e.,

v X.,, X. e X, d,. = d., .
J 1] Ji

Definition 6. A metric on the object space, X, is a semi-metric d

such that the following third property also holds for every Xi’ Xj,
and Xk in X:
(1i1) d satisfies the triangle inequality, i.e.,

v X Xj, X eX,

1 k
dig S35+ dype

Definition 7. An ultrametric (Johnson, 1967) on the object space, X,
is a metric d such that the following fourth property also holds for
every Xi' Xj' and Xk in X:

(iv) d satisfies the ultrametric inequality, i.e.,

J k
d,
i

A4 Xi' X., X. eX,
| .= max”{dij; djk}
The ultrametric inequality is a stronger property than the triangle in-
equality. Thus, if the ultrametric inequality holds for a measure of
distance oﬁ X , then thé triangle inequality necessarily holds for that
measure of disfance on X . It is also worth noting that an ultrametric
measure of disfance is invariant to all monotonic transformations of 4 .
A metric measure of distance, however, is not, in general, invariant to

monotonic transformations of the measure of distance because the triangle

inequality is not preserved under all monotonic transformations of d .
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It should be noted that for the derivations presented in this chapter,
only a semi-metric measure of distance is required as a basis for the
initial distance matrix.

A well-known family of distance measures for which the metric pro-
perties hold is the family of Minkowski metrics. The m‘tE member of the
family of Minkowski metrics will be designated by Km' Recalling that
Xi is a p-component vector, if Xsy denotes the vih component of data
point Xi and xjv denotes the VEE component of data point Xj y then

the mEE Minkowski metric between data points Xi and Xj is computed

by the following formula:
D

B m~1/m
Km(xi' Xj) - [vil Ixiv - xjvl ] !

where m=> 1

Euclidean distance is a member of the family of Minkowski metrics,
namely, KZ' However, squared Euclidean distance (in common use with
some agglomerative clustering algoirthms) is only a semi-metric measure
of distance, since the triangle inequality is not preserved under the
operation of squaring distances,

From this brief background on measures of distance, the general
formulation for agglomérative clustering algorithms given by Lance and
Williams (1966) can be presented in a notation consistent with the pres-
ent development. First, however, with respect to an agglomerative clus-
tering method, some subtle distinctions, concerning the set on which d
is a measure of distance, are necessitated.

In the application of an aggiomerative clustering method to a set -
of data, initially, the distance between each pair of data points, Xi

and Xj , 1s computed using some measure of distance, 4 , which is at
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least semi-metric. Since d is at least semi-metric, the resultant set

of distances may be denoted by
D = {q | <3, 4=1,2,.00,8-1, §=2,3,...,)

A convenient device for displaying D 1is the distance matrix DN N’
1

where only the N(N—i)/Z upper triangular elements of DN N are
’

necessary.
Therefore, d 1is a measure of distance on X . However, the set of
single-point clusters, YN , corresponds to X . Consequently, 4 is also

a measure of distance on YN , Where an element of YN is a cluster,

Y.1 y corresponding to data point X.1 . Hence, the process of clustering
a set of data by means of an agglomerative clustering method is initiat-
ed by viewing the measure of distance on X as a measure of distance on
YN ; and thereby, D becomes the set of all distances between pairs of
clusters in YN.A
The role of the agglomerative clustering algorithm is to sequen-
tially impose a measure of distance on each clustering, YK , K=1, 2,
++y N-1 , in the hierarchy such that the measure of distance imposed on

YK is functionally -related to the measure of distance imposed on YK+1.

In a sense, 4 1is not the same measure of distance on YK and on YK}l
(i.e., on two clusterings of diffe%ent siZes). In fact, even when d
is initially a metric, for some clustering in the hierarchy, d may not
even be semi—metfic,‘and this anomalous situation will be illustrated
in the next section. _

To clarify the notation, since YK , K=1,2, ..., N, is a set of

clusters, a measure of distance may be imposed on YK , and dij shall

now be used to denote the distance between cluster Yi and cluster Yj’
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where Yi’ Y. € YK, K=1, 2, ..., N. This is not inconsistent since in

J
the case of YN, Xi and Yi correspond. Thus, the distance between
data points is a special case of the distance between clusters, and this
distance between data points will be used to initiate a recursive algo-
rithm fof the recomputation of distance between clusters after each
Jjoining of two clusters. As a further simplification of the notation,

if Y., Yj e Y¥ join at distance d,., to form YK‘l, then Y( will

i) ij)

denote the new cluster, i.e.,

Yay - wUY

and dij shall be termed the joining distance for clustering YK"1 .
Using the notation of this section, the general linear combinator-

jal strategy originally presented by Lance and Williams (1966) is given

as Equation (3.1),‘and it represents a faﬁily of agglomerative cluster-

ing algorithms. For any clustering YK in the hierarchy, if the dis-

between pairs of clusters are obtained from
1

tances dij' dik' and djk

some source (recuréively from clustering YK+ y K % N), then the dis-

tance between the new cluster Y(ij) and any other cluster Yk £ YK
can be computéd from the following formula:
Uisye = %kt ol Bdij + y[dik - djk] , (3.1)
where: ai' aj, B, and Yy are specified parameters,
defining the particular member of the family
of agglomerative clustering algorithms,
Beginning with the initial distance matrix obtained by imposing d on

X , Equation (3.1) is applied recursively to obtain each clustering in

the hierarchy.
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The objective of this chapter is to explore the properties of
d(ij)k under a particular set of constraints. To motivate the choice
of "interesting" properties, a brief discussion of the consequences of
particular choices of the parameter values in Equation (3.1) will be

given in the next section.

Some Examples of the Consequences of Arbitrary

‘Parameter Choices

Equation (3.1) characterizes a family of agglomerative clustering
algorithms so that for each choice of the parameter quadruple
(ai, aj, B, v), a particular member of this family of agglomerative
clustering algorithms is specified. In this section, two parameter

quadruples will be specified, and the resultant algorithms will be

applied to a set of Buclidean distances, D , derived from a Small set of
generated data points. Since, initially, the measure of distance being
| used is Ruclidean distance, d is a metric on X . However, the tri-
angle inequality is not necessarily preserved under the application of
an agglomerative clustering algofithm to D,

Pigure 1 gives the six bivariate normal data points and the Eucli-
dean distance between each pair of data points, conveniently displayed

in a two-way table. The first three data points, Xl’ XZ’ and X,, were

3
generated to simuléte a random sample from a bivariate normal population
with a mean vector given by u” = (0, 5) and a variance-covariance
matrix given by the identity matrix. The last three data points, Xu,
X5, and X6, were generated to simulate a random sample from a bivariate

normal population with a mean vector given by u” = (0, 0) and a

variance-covariance matrix given by the identity matrix. It should be
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X§ = (-.333, k.634)
Xy = (-.728, 3.929)
x! = ( .664, 5.800)
X, = (-.342, -.985)
X' = (1.491, 1.078)
X, = ( .222, .453)

a) Six Bivariate

Normal Data
Points
1 2 3 b 5 6

1| 0.0 1.535 5.619 3.997 W.217
2 0.0  2.332 4.929 3.613 3.603
3 0.0 6.850 4.794 5.365
4 0.0  2.759 1.545
5 0.0  1.M5
6 0.0

"b) The Euclidean Distance Between Each Pair of
Single-point Clusters or between Each
Pair of Data Points

Figure 1. The Generated Tata and an Initial
Distance Matrix for the Examples

noted from Figure 1b that data points X1 and X2 are "closest" since

d1 5 = .808 1is the smallest distance in D. As a consequence, clusters
y .

Y1 and Y2 will Jjoin first, regardleés of the choice of algorithm, and
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their joining distance will be d1,2 = ,808 (it is circled in Figure 1b
because it is the first joining distance). Hence, cluétering Y7 ig
obtained from clustering Y6 by replacing clusters Yl and Y2 by
cluster Y(12) = Ylt) Yzb. Before proceeding to clustering Yu '
distances from cluster Y(12) to each of the other clusters must be
obtained, but this requires the specification of a pafticular member of
the family of agglomerative clustering algorithms.

Choosing a, = 1/2, o5 = 1/2, B =-1/2, and y = -1, then

Ui = (1/2)dik‘+ (1./2)djk - (1/2)dij - |4y, - ajk]

I

(1/2)a,, + (1/2)djk - (1/2)dij - max{d, ., djk}

ik Syl

(3/2)min{dik, djk} - (1/2)max{dik, djk} - (1/2)dij
(3.2)

Derived from the recursive application of Equation (3.2) to the sets of

+ min{d

!

distances, Figure 2 depicts the sequence of clusterings and their asso-
cilated sets of distances, conveniently digplayed in two-way tables.

The joining distance for each successive clustering is circled in each
set of distances. It should be obser&ed that the sequence of jolning
distances is not monotone inc:easing, which i1s a somewhat undesirable
situation, especially when a dendrogram is to be used to portray the
hierarchy. It is also interesting to observe that for the set of dis-
tances obtained after the first join (in Figure 2a), the triangle
inequality novlonger holds for all choices of three clusters. For

example,



d(.lj)k = (B/Z)min{dik, djk} - (1/2)max{dik, djk} - (1/2)(1ij

1,2 3 L 5 6
1,2 | 0.0 (7325 4.180 3.017 2.8%2
3 0.0 6.859 4.794 5.365
L 0.0  2.759 1.545
5 0.0  1.45
6 0.0
a) Distances after First Join
1,2,3 b 5 6
1,2,3 | 0.0 2474 1.762
L ‘ 0.0 2.759 1.545
5 | , 0.0 1.415
6 0.0

b) Distances after Second Join

1,2,3,6 L 5

1,2,3,6 0.0 597

4 0.0 2.759

5 0.0
c) Distances after Third Join

| 1,2,3,6,4 5

1,2,3,6,4 0.0 (702

5 N 0.0

d) Distance at Which Iast Join Is Made
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Figure 2., Example 1 Concerning the Consequences of the Parameter

‘Quadruple (1/2, 1/2, -1/2, -1)
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d(12)1+ = L|'-18 ’
dB,Llr = 6'859 ’

but ‘

q(12)3~+ d(lz)h = L.9125 # 6.859 = dy ), :
The ultimate consequence of choosing the parameter quadruple (1/2, 1/2,
-1/2, -1), however, is that the final joining distance (Figure 2d) is
negative, which is a highly undesirable characteristic for a distance
between two clusters to have.

A second example ﬁsing the same generated data set and the same
resultant set of Euclidean distances, which are given in Figure 1, as
used for the first example will demonstrate some of the consequences
which may occur when the sequence of joining distances is monotone
increasing. Choosing the parameter quadruple (3/4, 3/4, -1/2, 1/2),

then

.d(ij)k = (B/L")dik + (B/M)d.]k - (l/Z)le + (1/2)ldik - dJkl

(/Mg + (3May - (1/2)ay 5 + (1/2)mex gy, 4

- (1/2)min{dik, djk}

Il

(5/4)mex 14, gt + (1/8)min{d, ., gl - (1/2)dij
(3.3)
Derived from the recursive applicationxof Equation (3.3) to the sets of
distances, Figure 3 depicts the sequence of clusterings and their asso-
ciated sets of distances, conveniently dis?layed in two-way tables. As
in Figure 2, the joining distance for each successive clustering is
circled in each set of distances. It should be noted that the séquence

of joining distances is monotone increasing, which is a desirable



ik " (5/4)max{d, dgb + (1/u)min{dik, djk} - (1/2)di'j
1,2 3 L 5 6
1,2 0.0 2.895 7.852 5.496 5.768
3 0.0  6.859 4.794% 5.365
4 0.0 2.759 1.545
6 -0.0
a) Distances after First Join
1,2 56 3 L
1,2 0.0 7.876 7.852
5,6 0.0 - 7.197 3.128
3 0.0 6.859
4 ' 0.0
b) Distances after Second Join
- 1,2,3 5,6 k4
1,2,3 0.0  10.197 10.082
5,6 0.0
L 0.0
c) Distances éfter Third Join
| 123 4,5,6
1,2,3 0.0 - (3.709)
45,6 0.0

d) Distance at Which Iast Join Is Made

Figure 3. Example 2 Concerning the Consequences of the
Parameter Quadruple (3/4, 3/4, -1/2, 1/2)
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characteristic for a sequence of jJjoining distances to possess. However,
as in Example 1, even for the set of distances obtained after the first
join (in Figure 3a), the triangle inequality does not hold for every

possible choice of three clusters. For example,

d(g2)y = 7:85%2
d(12)6 = 5768,
g = 1545,

but
dy2)e t g = 73134 7.852 = 8 (12)4

The ultimate consequence of choosing the parameter quadruple
(3/4, 3/4, -1/2, 1/2), however, is that the final joining distance is
approximately twice as large as the largest initial distance, which
surely indicates that some type of distortion is being perpetrated on
the initial set of distances by the application of this member of the
family of agglomerative clustering algorithms to the sets of distances.
In Figure 2, the sequence of clusterings provides an exampie of
complete chéining as each single-point cluster in turn joins Y(12) .
In Figure 3, however, the sequence of clusterings provides an example of
the direct opposite to complete chaiﬂing, i.e., the case where at each
. join the tendency is to form equal-sized clusters. Thus, two quite
different hierarchies are derived from the same set of data by speci-
fying twg different members of fhe family of agglomerative clustering
algorithms. Iance and Williams (1966) madevthe following similar obser-
vation concerning the consequences of arbitrarily choosing parameter

quadruples for Equation (3.1):
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The extent of clusﬁering is thus not an inherent property

of data; a given set of data may now, by varying the param-

eters, be made to appear as sharply clustered as a user

may desire.
Therefore, it seems relevant to study the properties of the sequence of
distances, d(ij)k y as a means to exploring the amount of distortion

which might result from the application of an agglomerative clustering

method to a set of data.

A Two Parameter Sub-Family of Agglomerative

Clustering Algorithms

A two parameter sub-family of agglomerative clustering algorithms
may be derived from the four parametér family by placing a suitable set
of constraints on the parameters given in Equation (3.1). If the con-

straints are given by

oai+ocj+=\B = 1 ,

then a member of the four parameter family of agglomerative clustering
algorithms that has parameter values which satisfy the constraints can
be represented by the ordered pair (8, Y).

Without loss of generality, it will be assumed that

a5 < 4y < dg

Noting that the two constraints imply that

then Equation (3.1) becomes

1 -B ' 1 -
a,. . = a. i-8 _
(13)k 7 gt T Ay v B+ v[agy - dg ]
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Since
Gy < 4y < dg
then
43 35)K 2 Ui ¥ 2 dig ¥ Bdy5 - (3.%)

Thus, Equation (3.4) characterizes a sub-family of égglomerative clus-
tering algorithms which shall be referred to as the (B, y) family, and
each member of this sub-family shall be referred to as a (B, y) algo-
rithm. Consequently, it is possible to represent eéch member of the

(B, y) family of agglomerative clustering algorithms as a point in the
(B, y) Cartesian coordinate plane. It is also worth noting that single
linkage, complete linkage, unweighted average linkage, and the flexible
strategy given by Lance and Williams (1967) are members of the (B, y)
family of agglomerative clustering‘algorithms.

If
X . :
D = {d,, .,y at d,. < 4,, < 4,1}
B, v) = Cagr 2t Evlay gy <agd
then the essential properties to consider for (B, Y) algorithms are

given by Definitions 8, 9, 10, and 11.

Definition 8. A (B, y) algorithm is monotone increasing iff for each

Wk We, v 0 Yak T 4y

Definition 9. A (B, y) algorithm is space-conserving iff for each

¥
Yank € Pe, v) ¢ Yk < Yapnx < Yk

\

Definition 10. A (B, y) algorithm is space-contracting iff

el y) < & '

Definition 11. A (B, y) algorithm is space-dilating iff
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It is of interest to explore the properties of I?B Y)
4

regions of the (B, y) plane, and this investigation will be presented

over various

in its entirety in the next section.

A Study of the Properties of the (B, Y) Family

of Agglomerative Clustering Algorithms

The regions of the (B, Y) plane investigated in this study origi-
nate in a natural way as a part of the overall development. The three
primary boundary lines result from considering the values of the param-
eters for which each coefficient in Equation (3.4) is equal to zero.

Hence, the following points are relevant:

(i) 1—2+'2¥ B -1

=0, if Y =

\V]

; 1 -B -2y ‘
(11) — = 0, if Y >

-e

(1ii) B = 0 on the Y-axis

The seven regions to be investigated in this study are shown in Figure 4.
Region I is defined by the intersection of the following inequali-
ties:

(1) o<p<1t1 ,

1-8

(11) E—%—l < vy < > .

The boundary lines for Region I shall be labeled as follows:

A, B=0 & (B-1)2<y<(1-8)2 \
B. y=(1-8)2 & 0<B<1 ;
c. y=@®-1)/2 & 0<B<1 .

‘The three vertices of the triangular Region I are worthy of separate
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consideration before exploring the properties of Region I and its
boundary lines.

The point (0.0, .5) represents the complete linkage algorithm; and
for this algorithm,
d,, . = d,.
(13)k jk
The point (0.0, -.5) represents the single linkage algorithm; and for
this algorithm,
ik = %k
The point (1.0, 0.0) designates an algorithm for which
d,. . = d,.
(13)k ij
The properties of the algorithms lying along the boundary lines for

Region I will be considered before the properties of the algorithms

lying inside Region I are considered. Since B = 0 along Boundary A,

1+ 2 1 -2
1)k = =t dog ¥ ey (3.5)

An upper bound for D} alon Boundary A results from ddding the
®, v) & ,

By v

positive number,

to the right side of Equation (3.5). Therefore,

1+ 2y 1 -2y _
d(ij)k < 5 djk + 5 djk djk .

A lower bound for D? ) along Boundary A results from adding the

By v
negative number,
1+2y _

2 (dik djk) !

to the right side of Equation (3.5). Therefore,
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1+ 2y 1-2y -
dank = T Y4kt Tz 44k T dik

Consequently, for each d(ij)k € D?B ¥) where B =0 and
1
(B-1)/2<y<( -8B,

d < 4 ’

ik < Y9k 5k

 and therefore the set of agglomerative clustering algorithms defined by
Boundary A is a set of space-conserving algorithms.

Since y = (1 - B)/2 along Boundary B,

Qi = - B)djk P (3.6)

An upper bound for D% along Boundary B may be derived by adding
By v)

the positive number,

B(djk - dij) ’

to the right side of Equation (3.6). Thus,
d,. . < (1 - d.. + Bgd. = d,.
(13)k (1 -8)dyg + By = dy

A lower bound for D? ) along Boundary B results from adding the

By ¥
negative numbér,
(1 - B)(dij - djk) ]

to the right side of Equation (3.6). Therefore,

d(ij)k > (1 - B)dij + Bdij = dij .

Consequently, for each d(ij)k € ITB y) where y = (1 - B)/2 and
’
0<p<1,

d, . < d,,. < d. .
i3 (15)k jk
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Sincevthe only other potentially interesting lower bound for I?B Y)
’

along Boundary B is given by
d,. . > - g)d.
(13)k (1 -8y

and since for each 0 <B <1 , there exists dik < djk such that

(1 - B)djk < dyy

then along Boundary B,

g.ﬂ.b.(D?B’ Y)) < dy

Hence, the set of agglomerative clustering algorithms defined by
Boundary B is a set of space-contracting algorithms.

Since Y= (B - 1)/2 along Boundary C,

d(ij)k = (1 -84, +'Bdij . (3.7)

An upper bound for D?B ) along Bouhdary C may be derived by adding

the positive number,

Bldy - 45

to the right side of Equation (3.7). As a result,
< - =
41 35)K (1 - B)dyy + Bdyy iy
A lower bound for D?B v) along Boundary C may be derived by adding
’
the negative number,

L]

(1 - B)(dlj - dlk) ’
to the right side of Equation (3.7). Hence,

¥ | d(ij)k ? 1 - B)qij + Bdij = d,, .
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Therefore, for each d(ij)k € D?B' Y)" where y= (B - 1)/2 and
0 <B <1,

45 < Yar < Gk

Since the only other potentially interesting lower bound for ﬁ?B Y)
’
along Boundary C is given by
Yagx > (- By

and since for each 0 <B <1, (1 - B)d.lk <d then along Boundary

ik '’

C| *

guﬂ.b.(D(B, Y)) < d, o
Thus, the set of agglomerative clustering algorithms defined by Boundary
C is a set of space-contracting algorithms. |

To derive the properties for the algorithms lying inside Region I,
Equation (3.4) must be considered. An upper bound for D?B,»y) inside

Region I may be derived by adding thevpositive number,

1-8-2
g (@5 - ayq) + B(ay - 4 5)

to the right side of Equation (3.4). Therefore,

1 -8B+ 2y 1 -8 -2y . -
Fane S T2 It T G PPk T 4y o

A lower bound for- D? ) inside Region I results from adding the

By, v

negative number,

1-8+2Y(q . -a, )+itzB-2¥( . -aq
Jk 2 ij i

2 ij k) !

to the right side of Equation (3.4). Hence,

>
415k 5 13 > 15 7 Bdy g i3
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Consequently, for each d(ij)k € D?B
B -1)/e<y<(@-8)2,

y) ! where 0<B <1 and
’

d, . < d,.. < d.
ij (1j)k Jk
Although there are other possible lower bounds for D?B ¥) inside
’

Region I, in a manner similar to that used for Boundary A, it can be

shown that inside Region I

U3
g:£2-g, ) = i

Consequently, the set of agglomerative clustering algorithms defined by
Region I is a set of space-contracting algorithms.

Region II is defined by the intersection of the following inequali-
ties:

(1) o<p<1 ,

..y 1 - B+ 1
(11) —Z—Q < vy < >

The boundary lines for Region II shall be labeled as follows:

B, y=(1-8)/2 & 0<p<i ;
D. Yy=0B+1)/2 & 0<B<1 ; |
E. B=1 & (1-B)2 < v < B+1)2 .

The properties of the algorithms lying along the boundary lines for
Region II will be considered before the pfoperties of the algorithms ly-
ing inside Region IT are considered; and since Boundary B was discussed
in conjunction with Region I, tﬁe discussion 6f the properties of the
algorithms lying along the boundary lines of Region II will begin\with‘
Boundary D.

Since Yy = (8 + 1)/2 along Boundary D,

Qg = g By + By (3.8)
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An upper bound for I?B ¥) along Boundary D may be derived by adding

’

the positive number,
AT

to the right side of Equation (3.8). Thus,

d,. . \. < d., -Bd,.+Bd . = 4,
(13)k sk~ By T Py )4

A lower bound for D?B ¥) along Boundary D may be derived by adding

the negative number,

(45 - dg) + B(d5, - 4, 9)

to the right side of Equation (3.8). Hence,

d(ij)k > (1 - B)dij + Bdij = dij

, . * .
Consequentl for each d,, . €D where = +1)/2 and
quently, (1) <26, v) Y- B/
0<B <1,
d,. < d,.. < a.
ey (1)k Jk
Since the only other potentially interesting lower bounds for D?B Y)
. ’

along Boundary D are g:'l.ven by
> - > ‘ -

and since for each 0 <pB <1 , there exists dik < djk such that

(1 —B)dik < (1 —‘B)djk < dik ’

then along Boundary D,

¥*

54>, v)

Therefore, the set of agglomerative clustering algorithms defined by

) S 4y

Boundary D is a set of space-contracting algorithms.
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Since £ =1 along Boundary E,

-yd, +d.. . (3.9)

d(ij)k = Ydjk ik ij

An upper bound for D?B v) along Boundary E may be derived by adding
’

the positive number,
(dik - dij) + (1 - Y)(djk - dik) ’
to the right side of Equation (3.9). As a consequence,

'd(ij)k < ydjk + (1 - y)djk‘ = djk

A lower bound for 'D?B Y)' along Boundary E may be derived by adding

the negative number,

v(dye - dg)
to the right side of Equation (3.9). Thus,

Yk 7 Y~ Vi T4y 7 4y o

Consequently, for each d(ij)k € D?B v) where B =1 and

(1-8)/2 <y < (B+1)2 ,

d, . < d,.. < 4,
ij (1j)k k
Since the only other possible lower bounds for D?B ¥)
?

then along Boundary E,

along Boundary

E are smaller than d,. and since d,..< d., ,
. 1] 1] ik

% .
g-t.b.(D(s, v)) < 4 .

Therefore, the set of agglomerative clustering algorithms- defined by
Boundary E is a. set of space-contracting algorithms.
To derive the properties for the algorithms lying inside Region II,

¥*

Equation (3.4) must be considered. An upper bound for D(B v) inside
’

Region II may be derived by adding the positive number,

B(dik_dij) + 1'+2 -2 (djk—dik) ’ .
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to the right side of Equation (3.4). Hence,

1-B +2y 1+8 -2 _
dipx < 2 dyp * 2 d s s

X

A lower bound for D ) inside Region II may be derived by adding

B, v

the negative number,
1 -8B+ 2y _ _ _
to the right side of Equation (3.4). Hence,

d(ij)k > (1 - B)dij + Bdij = dij .

Consequently, for each d(ij)k £ D?B ¥) where 0 <B <1 and |
(1-8B)2 < vy < (B+1)2

d,. < d

. . <
1j (1j)k

djk

The other potentially interesting lower bounds for I?B ¥) inside
. y .

*

Region II are the same as the ones given for D(B ¥) along Boundary D.
’

Therefore, it can be shown that inside Region II

g.ﬁ.b.(D?B, Y)) S d

Consequently, the set of agglomerative clustering algorithms defined by
Region IT is a set of space-contracting algorithms. |

Region III is defined by the intersection of the following inequal-
ities:

(1) o<p<1,

(11) v > B34

The boundary lines for Region III shall be labeled as follows:

]
2
]

B+1)2 & o0<pg<1 ’;'

0 & y>@B+1)/2 ;

|
w
It
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G. B=1 & y>(@+1)2 .

. The'properties of the algorithms lying along the boundary lines for
Region.III will be considered before the properties of the algorithms
lying inside Région IIT aré considered; and since Boundary D was dis-
cussed in conjunction with Region II, the discussion of the properties
of the algorithms lying along the boundary lines of Region IIT will
begin with Boundary F.

Since B = 0 along Boundary F,

1+ 2 1 -
Uss)e = = djk + ——Q——X A (3.10)

An upper bound for D?B ¥) along Boundary F may be derived by adding

the positive number,

zx'-id
z %k

\

to the right side of Equation (3.10). Thus,

1+ 2y
Yk < Tz Yk

A lower bound for D?B‘ Y) along Boundary F may be derived by adding -
?

the negative number,

2y -1 -
S (dyy djk) ’

to the right side of Equation (3.10). Hence,

1+ 2y 1 -2y _
d(ij)k > > djk+ > djk = djk .

Consequently, for each d(ij)k € Iﬁé Y) y where B =0 and
?

y> (B +1)/2, s
' + 2y
TS fax T T Yk
Since any other upper bounds for D?B ¥) -along Boundary F are larger
, , ,

than  ((1 + 2y)/2)dsk and since for each y >.5 ,
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A dog 2 e
then along Boundary F,v
Zuu.b.(I?B' Y)) 2 dg .
Therefore, the set of agglomerative clustering algorithms defined by
Boundary F is a set of space-dilating algorithms.
~Since B =1 along Boundary G; |
d(ij)k = ydjk - ydy + dij . (3.11)
. An dpper bound for D?B' ¥) along Boundarj G results from adding the
positive number, |
Yo = 445 o

to the right side of Equation (3.11). Thus,

d,, . < wvd.
(13)k ~ Yok
~ A lower bound for I%B ¥) along Boundary G results from adding the
, .
negative number,
v(dyy - dg)
to the right side of Equation (3.11). Thus,

d..- >d.- [N
(i3)k i

CcnseQuently, for each d(ij)k € D?B y) where 8 =1 and y>1.0,
4

d-. < d.- < do .
ij (15)k Y5k

To derive the properties for the algorithms lying inside Region III,

*

Equation (3.4) must be considered. An upper bound for D(B ¥) inside
. ’

Region III may be derived by adding the positive number,

E.i.%l_:_l d,, - pd,. ,
~ ik ij.

to the right side of Equation (3.4). Hence,
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1 -B+2y
fapr T Tz

A lower bound for D?B ¥) inside Region III may be derived by adding

the negative number,

B -2y -1 B+ 2y - 1
+djk++dik+(1_ﬁ)dij ,

to the right side of Equation (3.4). Hence,

d(ij)k > (1 - B)dij + Bdij = d,lj

v *
Consequently, for each d,. . e D , where 0 <B <1 and
(13)x ~ “(B, v)

B+ 1 .
Y>——2 ’
1 -8B +2
,dij < d(ij)k < =B Ty > djk

It can be shown that bounds for D?B ¥) inside Region III are such
y

that an agglomerative clustering algorithm represented by a point inside
Region IIT might be space-conserving, space-contracting, or space-

dilating depending upon the relative magnitudes of di" d. :vand dj

j' ik’
Region IV is defined by the intersection of the following

k'

inequalities:
(1) B<o0 ,
(11) v > 52
The boundary lines for Region IV shall be labeled as follows:

F. B

0 & y> (@B +1)/2 ;
(1-8)z & B<oO
The properties of the algorithms lying along the boundary lines for

1l

G. vy

Region IV‘Will be considered before the‘properties of the algorithms
lying inside Region IV are considered; and since Boundary F was dis-

cussed in conjunction with Region III, the discussion of the properties
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of the algorithms lying along the boundary lines of Region IV will
consist of Boundary H.

Since Yy = (1 -B)/2 along Boundary H,

d(ij)k = (1 - B)djk + Bdij . (3.12)

An upper bound for D?B ¥) along Boundary H may be derived by adding
’

the positive number,

_Bdij 1

to the right side of Equation (3.12). As a consequence,
d,. . < (1 -B)d.
(i < (- By

A lower bound for D?B ¥) along Boundary H may be derived by adding

the negative number,
_B(dij - djk) ’
to the right side of Equation (3.12). As a consequence,
d,. . > 1 - d.. + gd. = d,.

(1x 7 (- Blag +Bdy = dy

Conse ueﬁtl for each d,, .\, € D, wher = (1 - 2 and
wuently, (13 © D, vy » here v = (1 -B)/
B<o0, |
d. < d,.. < - d.
Jk (i3)k (1 -8) Jk
Since any other upper bounds for D?B Y) along Boundary H are larger
‘ , ,

than (1 - B)djk and since for each B <0 ,

then along Boundary H,

*

£L.u.b.(D ) = 4.

(BI Y) Jk

Therefore, the set of agglomerative clustering algorithms defined by

Boundary H is a set of space-dilating algorithms.
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To derive the properties for the algorithms lying inside Region IV,

Equation (3.4) must be considered. An upper bound for D?B ) inside

Region IV may be derived by adding the positive number,

2y + B -1
2 dig - Bdij '

to the right side of Equation (3.4). Thus,

1 -8+ 2y
Ui < 2 ik

M :
A lower bound for D(B ) inside Region IV may be derived by adding

the négative number,

2y +B -1 . - _
7 (g = dy) - B(dy5 - dg)
to the right side of Equation (3.4). Thus,

1 -B+2 d +1"B'2Xd

15K > 5 ik > st Bdg = Ay
Consequently, for each d(ij)k € D?B Y) , where B < 0 and
1
y > 138
2 ' |
. 1 -8B+ 2y
dage < k. < 5 dsy

Since any other upper bounds for D?B ¥) inside Region IV are larger
' ’

than ((1 -8B + ZY)/Z)djk and since for each y > (1 - B)/2,

1 -B + 2y .
2 doge > g

then inside Region IV,

K.u.b.(IQB’ f)) 2 Ay

Therefore, the set of agglomerative clustering algorithms defined by
Region IV is a . set of space-dilating algorithms.
Region V is defined by the intersection of the following

inequalities:
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(1) B<o0

(ii)8£1<y<1£B

The boundary lines for Region V shall be labeled as follows:
A. B=0 & (®-1)2 <y < (1-8)2 ;

(1 -B)2 & B<O ;

B-1)/2 & B<oO

ju o]
o2
il

oy
ol
fl

The properties of the algorithms lying along the boundary lines for
Region V will be considered before the properties of the algorithms
lying inside Region V are considered; and since Boundary A was dis-
cussed in conjunction with Region I and Boundary H was discussed in
conjunction with Region IV, the discussion of the properties of the
algorithms lying along the boundary lines of Region V shall consist of
a discussion of Boundary J.

Since y = (B - 1)/2 along Boundary J,

d(ij)k = (1 - B)dik + Bdij . (3-13)

An upper bound for D?B ¥) along Boundary J may be derived by adding
, .

the positive number,

s

to the right side of Equation (3.13). Hence,

| apne < (¢ -8)dy

A lower bound for D? ) along Boundary J may be derived by adding

By ¥
the negative number,
By - dy)

to the right side of Equation (3.13). Hence,

ik (1 -8)a;, +>Bdik = 4k
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Consequently, for each d(ij)k € I?B ¥) where B < 0 and
’

Y:(B—l)/zl
d. < d(ij)k < (1 - B)dik

Since any other upper bounds for D?B ¥) along Boundary J are larger

than (1 - B)dik and since for each B <0, there exists d, < djk
such that
(1--B)dik > djk ,

then along Boundary J, :
ﬂ.u.b.(I?B, Y)) z dg .

Therefore, the set of aggiomerative clustering algorithms' defined by
Boundary J is a set of space-dilating algorithms.

To derive the properties of the algorithms lying inside Region V,

Equation (3.4) must be considered. An upper bound for D?B ) inside
’
Region V may be derived by adding the positive number,
1 -8B -2y - ;

2 @y - d4y) - By

to the right side of Equation (3.4). Thus,
1-8B+2y 1-B-2 - -
d1x < 2 Qe ¥ 73 d s (1 - B)dy

A lower bound for D? ) inside Region V may be derived by adding the

By v

negative number,
:1—B+2X _qa: _ o
2 (dik djk) B(dij dik)

to the right side of Equation (3.4). Thus,

l_:_E_i_ZX d.. + 1_:;§_:_§X d,. + Bd = 4

A3 2 ik v ik T By ik

Consequently, for each d(ij)k € D?B Yj

B-1)2 <y < (1-8)/2,

, where B < 0 and
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d < d( )

ik i < (0 -Blag

Since any other upper bounds for D?B ) inside Region V are larger

than (1 - B)djk and since for each B <0 ,
(1 - B)djk > djk []

then inside Region V,
* :
ﬂ.u.b.(D(B, Y)) > djk

Therefore, the set of agglomerative clustering algorithms defined by
Region V is a set of space-dilating algorithms.

Region VI is defined 5y the intersection of the following inequal-
ities:

(i> B<O !

(1) v < 252
The boundary lines for Regibn VI shall be labeled as follows:
B-1)/2 & 8<0 ;
0 & v < (B -1)/2

The properties of the algorithms lying along the boundary lines for

J.oy
K. B

il

Region VI will be considered before the properties of the algorithms
lying inside Region VI are considered; and since Boundary J was discus-
sed in conjunction with Region V, the discussion of the properties of
the algorithms lying along the boundary lines of Region VI shall consist
of a discussion of Boundary XK.

Since B = 0 along Boundary K,

' _ 1+ 2y 1 -2
Qe = 7 Ay I r g (3.14)

*

An upper bound for D(B ¥) along Boundary K may be derived by adding
’

the positive number,



1 - 2y )
7 (g - d5)

to the right side of Equation (3.14). Hence,

1+ 2y 1 -2y -
dak S Tz 4kt Tz Yk dig

A lower bound for’ I?B Y) along Boundary K may be derived by adding
Y

the negative number,

2y - 1 a
2 ik !

to the right side of Equation (3.14). Hence,

1+ 2
> LT ey
d(ij)k 2 djk

Consequently, for each d(ij)k € IQB ) where B = 0 and
. ]

y< @ - 1)/2 ’

1 + 2y
7 S S Yapr S Yk
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Since any other lower bounds for D?B v) along Boundary K are smaller
’ /

than ((1 + Zy)/z)djk and since for each vy < -.5 ,

1_J2:_21<0,0,

then along Boundary K a,. . D B
en along Boundary K, 3 d(4 5y, € Dfg, )

d,. . < d..
(1J)k 1j

Therefore, the set of agglomerative clustering algorithms defined by
Boundary K is a set of algorithms which are not monotone increasing.

It should also be noted that .D
B, v)

1

along Boundary K can contain
negative distances. |

To derive the properties of algorithms lying inside Region VI,
*

Equation (3.4) must be considered. An upper bound for D(B Y)
; ’ .

Region VI may be derived by adding the positive number,

inside
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1 -Bg+2
1 -8 +2y (dik - djk) - Bd

2 ij

to the right side of Equation (3.4). As a consequence,

1-8+2y 1-8-2y _ _
15k < 2 dig + T3 Ay = (1 -B)dyy

A lower bound for I?B‘ ¥) inside Region VI may be derived by adding
4 ’

the negative number,

B+ 2y -1 -
7 dig =By

to the right side of Equation (3.4). Thus,

1 -B + 2y
Yapr T Tz
Consequently, for each d( )k € D? ) where B < 0 and

iJ By v
y < (8 -1)2, o
1-P+2y < 4, _
2 dge < dysye < (@ -B)dyy
Since any other iower bounds for D?B ¥) inside Region VI are smaller
, .

than ((1 -8B + 2y)/2)djk and since for each y < (B -1)/2 ,

lf:_%_i_gl < 0.0

then inside Region VI, 3 d(ij)k € D?B Y)
y

Tax T %
Therefote,vthe set of agglomerative clustering algorithms defined by
Region VI is a set of algorithms which are not monotone increasing, and
the application of anyone of thesé algorithms to a set of metrig dis-
tances may result in negative jdining distances for some of the joins
in the formation of the hierarchy.
Région VII is defined by the ihtersecfidﬁ of the following inequal-

ities:
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The boundary lines for Region VII shall be labeled as follows:

®B-1)2 & o0<pg<1 ;

Q
o2
it

~
™
il

0 & Y<@-1)/2 ;

L. B=1 & Yy<@®-1)/2
The properties of the algorithms lying along the boundary lines for
Region VII will be considered before the properties of the algorithms
lying inside Region VII are considered; and since Boundary C was discus-
sed in conjunction with Region I and Boundary K was discussed in con-
Junction with Region VI, the discussion of the properties of the algo-
rithms lying along the boundary lines of Region VII shall consist of
a discussion of Boundary'L.‘

Since Bl= 1 along Boundary 1 ,
d(ij)k = ydjk - ¥4, + dij . (3.15)

An upper bound for D?B ¥) along Boundary L may be derived by adding

the positive number,

“¥(dg - dgg)

to the right side of Equation (3.15). Hence,

CED &
A lower bound for D?B, Y)l along Boundary L may be derived by adding
the negative number, |
| ALY
to the right side of Equation (3.15). Hence,

Y 7 Yk
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Consequently, for each d(ij)k € D?B g) where B =1 and
)
y < (B“i)/zv

. < d,, . < 4,
jk (13)x ij

Yd
Since any other lower bounds for D?B Y) along Boundary L are smaller
3
than Ydjk and since vy <0 , then along Boﬁndary L,
*
d,. . €D
) I CH N
d. o & < d'n .
(1J)k ij
Therefore, the set of agglomerative clustering algorithms defined by
Boundary L is a set of algorithms which are not monotone incfeasing. It
should also be noted that D?B Y) albng Boundary L can contain nega-
: y Y

tive distances.

To derive the properties of the algorithms lying inside Region VII,

Equation (3.4) must be considered. An upper bound for D?B ¥) inside
. : : ’
Region VII may be derived by adding the positive number,
1 -8B+ 2y i} ,
> (4 - dg) + B(dy - 455)
to the right side of Equation (3.4). Thus,
1 -B+2 1 -8 -2y B
i < 7 Y T 2 dyg * By = 4y

A lowe: bound for D?B. Y) inside Region VII may be derived by adding
the negative number,

Pt - By
to the right side of Equation (3.4). ‘Thus,

1-p+2y
Yax T T2 Ok

Consequently, for each d(ij)kze D?B Y) , where 0 <B <1 and
. ]

Y < (B"i)/zv

1 -8B+ 2y e <
5 s 45 5)k 45
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Since any other lower bounds for D?B ) -inside Region VII are smaller

?

than ((1 - B + 2y)/2)d;, and since for each y < (8 -1)/2 ,
1 -B+2 < 0.0
e .

then inside Region VII, 3 d(ij)k € D?B ¥) e

Yk < Yy

Therefore, the set of agglomerative clustering algorithms defined by
Region VII is a set of -algorithms which are not necessarily monotone
increasing. Tt should also be noted that D?B' ,) inside Region VII
can contain negative distances.

The prbperties of the (B, y) family of agglomerative clustering
algorithms are summarized in Figure 5 and Figure 6. In Figure 5, a
range of values for D?B, Y) inside each of the seven regions and along

their boundary lines is given. In Figure 6, each of the seven regions

is labeled according to Definitions 8, 9, 10, and 11.

Choosing the Agglomerative Clustering Algorithms

for the Comparative Study

Initially, tﬁe objective of iﬁvestigating the properties of the
(B, y) family of agglomerative clusteriﬁg algorithms was to choose a
"good" set of agglomgrative clustering algorithms for the comparative
study which is presented in Chapter V. Since a (B, y) algorithm which
is not monotone increasing also results in a D?B, v) which may contain
negative distances, then the (B, y) algorithms from Regions VI and VII

and Boundaries K and L were immediately eliminated from consideration

for the comparative study. It remained to be determined whether
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space—conserving, space-contracting, or space-dilating algorithms pro-
~duce "better" results when used in conjunction with the metric of
Euclidean distance on multivariate normal data sets.

To further limit the set of agglomerative clustering algorithms
being considered for the comparative study, a preliminary investigation
was devised using multivariate normal data séts, Euclidean distance,
and representative (B, y) algorithms from each of the five remaining
regions and from most of the remaining boundary lines. The following
two important observations emanated from the preliminary investigation:

1. Algorithms which are cloée together in the (B, y) plane

produce very similar results when applied to the same

set of distances; |

2. Space-contracting algorithmskpréduce relatively "“poor"

results with the metric of Euclidean distance on multi-

variate normal‘data sets.
Thus, the set of agglomerative clustering algorithms being considered
for the comparative study was reduced to Regions IV and V and Boundaries
A, F, H, and J by the preliminary investigation. |

The final choice of the subset of the (B, y) family of agglomera-
tive clustering algorithms to be used in the comparative study was made
by balancing the following objectives:

(1) Include all of the well-known algorithms from the (8, vy)

| family;
(11) 1Include some space-conserving algorithms (Boundary A);
(111) 1Include some space—diiating algorithms from both

Region IV and Region V;
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(iv) Include only (B, y) algorithms which are relatively far

apart in the (B, y) plane;

(v) Include some (B, y) algorithms from each side of the

Y-axis.

Single linkage at the point (0.0, -.5) is a space-contracting algo-
rithm, and complete linkage at the point (0.0, .5) is a space-dilating
algorithm. Tt should be noted that the two points, (0.0, -.5) and
(0.0, .5), are the endpoints of Boundary A which is the space—conserving
region of the (B, ¥) 7plane. Thus, single linkage and complete linkage
are sometimes referred to as boundary algorithms, since the space-
conserving algorithms lie betﬁeeh them along Boundary A. Average link-
age at the point (0.0, 0.0) is a space-conserving algorithm. Hence,
single linkage, complete linkage, and average linkage formed a basis
for choosing six equally spaced algorithms along the y-axis, which would
satisfy all of the objectives except (iii). The six algorithms chosen
are given in order from negative to positive along-the Y-axis as follows:

(1.1) Single linkage at (0.0, -.5),

(1.2) (0.0, -.25),

(1.3) Average linkage at (0.0, 0.0),

(1.4) (0.0, .25),

(1.5) Complete linkage at (0.0, .5),

(1.6) (0.0, .75).

To determine a matching set of six algorithms in the space-dilating
regions of the (B, y) plane and thereby satisfying objective (iii)
also, it was noted that the flexible strategy (Lance and Williams, 1967)
is represented by the point (-.25, 0.0). Thus, it was decided to choose

six equally spaced algorithms along the line B = -.25 such that this
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second set of six points would be paired horizontally with the first
set of six points. The six algorithms chosen are given in order from
negative to positive along the line B = -.25 as follows:

(2.1) (-.25, -.5),

(2.2) (-.25, -.25),

(2.3) Flexible strategy at (-.25, 0.0),

(2.4) (-.25, .25),

(2.5) (-.25, .5),
(2.6) (-.25, .75).

To satisfy the five previously stated objectives, a set of twelve
agglomerative clustering algorithms from the (B, y) family was chosen
for the comparative investigation which is presented in Chapter V.
Before the coﬁparative study is presented, however, a discussion of the
comparative statistic to be employed in the comparative study wili be

presented in Chapter IV,



CHAPTER IV
A COMPARATIVE STATISTIC
Equivalent Forms of the Comparative Statistic

Since the primary objéctive of this thesis is to compare clustering
methods, a comparative statistic is required to quantify each comparison
of clustering methods. Rand's (1969, 1971) c statistic is a very gen-
eral and versatile statis£ic which may be used to compare clustering
methods baséd on how they partition the object space. Essentially, c
measures the similarity between clusterings derived from any source.
However, if two clusterings are produced by the‘application of two dif-
ferent clustering methods to the same object space, then ¢ 1is a meas-
ure of the similarity bétweén the two clustering methods through their
resultant clusterings. As mo£ivation for the coﬁparisons presentgd in
Chapter V; discussion of Rand's development of the .c statistic is pre-
sented in this section, »

Rand (1971, p. 847) makes the following three reasonable assump-
tions concerning the nature of a general clustering problem as a
rationale for the development,ofsfhe ¢ statistic:

First, clusterihg is discrete in the sense that every

point is unequivocably assigned to a specific cluster.

Second, clusters are defined Jjust as much by those points

which they do not contain as by those points which they

do contain. Third, all points are of equal importance
in the determination of clusterings.

86
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Thus, Rand (1971) points out that a basic unit of comparison between two
clusterings is how pairs of points are clustered.

To facilitate the definition of the ¢ statistic, Definition 12
concerning the similar assignment of point-pairs is tendered.

Definition 12. Given an object space X consisting of N data points,

}

X, X Cen XN , and two clusterings of X , Y = {Yi’ Yo, «oon X

1 72 X

v 1

and Y' ={Y}, Yé, vy Yﬁz} y then a similar assignment in clusterings
Y and Y' of a pair of data points, X.l and Xj , results if and only
if either of the following two conditions holds:

(1) Fk and k' 3 Xy xng and X;, X, € Yg

k jooCkr

(11) F k and k' D X, e Y., Y], , and XJ.4:Yk,YI'{,
Baéically, if the elements of an individual point-pair are placed to-
gether in a cluster in éach of two clusterings, or if they are aésigned
to differenf ciusters in both clusterings, then a similar assignment of
the point-pair has been made in the two.clusterihgs. In essence, the
c statistic gives a nqrmalized count of the number of similar assign-

4

ments of point-pairs between two clusterings as designated in Definition

13.

Definition 13. Given an object space X consisting of N data points,

Xl, XZ, cey XN , and two clusterings of X, Y = {Yl’ Yo, ooy YKl}’ and
Y = {Yi, Y, ..., Yk } , then the c¢ statistic between Y and Y' is
2
defined as follows: . : 5
s M s
ot ¥) = ST . (4.1)
- (2)
where

1, if there is a similar assignment of X, and X.
in Y and Y', J
13
' 0, otherwise.
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Hence, ¢ 1is a measure of similarity on 1{, the set of all possible
clusterings of X.

Rand (1971) also gives a computational form for the c statistic,
which is related to incidence matrix concepts. If the clusters within
each clustering are arbitrarily numbered and if n.lj represents the num-
ber of data points which are simultaneously in the i—JE-1E cluster of Y and
the jih cluster of Y', then

. 2 : 2
n, . + . s + .
N ORS F i S
c(Y, ¥') = ——— .
(z) |
¢ (4.2)

Another formulation of Rand's c¢ statistic is worth noting. Accord-

ing to Anderberg (1973), the c statistic is equivalent to the simple
matching coefficient. The simple matching coefficient, which was
originally introduced to numerical taxonomy by Sokal and Michener (1958),
is a binary measure of association based on 2X2 contingency tables. To
demonétrate the equivalence relationship between Rand's c¢ statistic and
the simple matching coefficient, a particular form of the simple match-
ing coéfficient will be developed. .

The simple matching coefficient may be used to assess the amount
of agreement between any two binary vectors of the same lenéth, where
a binary vector is defined in Definition 14.

Definition 14. A vector V ='(v1, Voy e vn) is a binary vector if

and only if for each i =1, 2, ..., n, v, = 1 or v, = 0,
To compute the simple matching coefficient, it is necessary to define a
match between two binary vectors as indicated in Definition 15.

Definition 15. A match between the corresponding components of two
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binary vectors, U = (ul, Uy v un) and V = (Vi’ Voy vee vn) ,
occurs if and only if either of the following two conditions hold:
(1) u =0 & v; =0

(i1) =1 & v, =1 .

If the number of matches between two binary vectors of length n is
denoted by m , then a definition for the simple matching coefficient is

given as Definition 16.

Definition 16. ' The simple matching coefficient between two binary vec-

tors, U and V , of length n 1is given by the following formula:

s, V) - L, (5.3)

where m is the number of matches.
Thus, the simple matching coeffiéient represents a normalized count of
the number of matches between two 5inary vectors.

If a clustering can be represented as a binary vector, thenh a
simple matching coefficient between clust;rings can be computed. A
binary representation of a clustering can be obtained by constructing
a binary vector, U , consisting‘of n==(g) components, where each
component of U _indicates whether a pair.of data points are together or
apart in the clustering. Letting X ©be an oﬁject space consisting of
N data points, then a more precise formﬁlization of a binary representa-
tion of a clustering is given in Definition 17.

Definition 17. The binary vecfor,f

U = (ulz’ u13' s 00y uln ’ u23’ v 00y uzn, s 80y un-l’n) ’
is a binarybrepresentation of clusﬁering Y = {Yl’ YZ' ey YK} if

and only if for each i< j ,



90
} 1, if Pk 3 X5 xj eY,
= 0, otherwise .

Therefore, if U is a binary representation of clustering Y and V

is a binary representation of clustering Y' , then

X
m . m 1<

& )

Consequently, Rand's (1969, 1971) c¢ statistic is equivalent to the

™ j

s(Un V) c(Y, Y*)

simple matching coefficient.

The c¢ statistic has the following three fundamental properties as
noted by Rand (1969, 1971):

1. ¢ is a measure of similarity with 0 <c <1 ;

2, 1 - c¢c 1is a metric on the set of all possible clusterings of X ;

3. ¢ 1is a random variable.

It should be noted that Rand (1969) provides a proof of the fact that
1 - ¢ is a metric on 3{ in his thesis. Fundamental property 3 is the
subject of the remainder of Chapter IV,

Since ¢ is a random variable, under certain assumptions, c¢ pos-
sesses a probability distfibution. However, Rand (1969, p. 39) comments
on the distribution of ¢ as follows: "This is a complicated distri-

- bution and analytic expression of it is not attempted here." Logically,

part of the complication with respéct to the distribution of ¢

concerns the choice of the space on which:initial distributional assump-

tions should be placed. Conceptually, X is a subset of Euclidean

p-space with»cardinality N : a‘clustering method maps X into 1{; and
c: YxY —= [0, 1] o

The present research effort includes some work on the distribution of

the c¢ statistic, and this effort is reported in the next section.
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A Method for Deriving the Exact Distribution

of the Comparative Statistic

Since both the c¢ statistic and the number of matches, m , are
discrete random variables on ?{ X ?{ and since m and c¢ are propor-
tional by a proportionality factor of n = (g).’ then m and ¢ havev
the same probability distribution under a fixed set of assumptions pér—
taining to @[. Theoretically, given a fixed value of N , if a proba-
bility distribution for %{ and a sampling scheme on ﬂf are specified,
then the probability distribution of c¢ (or equivalently m) may be de-
rived by a procedure which shall be reférred to as the method of complete
enumeration. In this section, under a reasonable set of assumptions
which simulate the hypothetical phenomenon of obtaining clusterings from
two random clustering methods, the method of complete enumeration is dem-
onstrated for small values of N , and the exact probability distribution
of the c¢ statistic is given for N = 3, 4, and 5. |

Letting LN denote the'cardinality of the set ?! of all possible
clusterings of object space X which consists of N data points, then
the probability distributions of the ¢ statistic are derived under the
following two fundamental assumptions:

1. The clusterings Y E:?! . have a discrete uniform distribution;

i.e., |
VY e‘y y P(Y) = 1/LN

2. The two clusterings, Y and Y' , are drawn at random from ?{

with replacement.

Therefore, if the ordered pair (Y, Y')\represents an element of j!.x ?{,

‘then P[(Y, Y.)-] _ (1/LN)2
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Case 1, N =173

Figure 7 illustrates the method of complete enumeration for N = 3.
Figure 7a presents the L3 = 5 clusterings in 1{, which are arbitrari-
1y labeled with a small letter to facilitate the derivation of the dis-~
tribution of the number of matches. Figure 7b provides the binary repre-
sentation of each clustering in ?{, where the vector length of each
binary representation.is n =3, In Figure 7c, the distribution of the
number of matches (conveniently displayed in a two-way table) for each
pair of clusterings inl ?JX %{ is given», where each clustering is

identified by its arbitrary label.

K=1 a (x1 X, x3) a. (1 1 1)
b. (x1 xz) (XB) b. .(1 0 0)
K=2 c. (¥ xj) (%) c. (01 0)
d. (%, x3) (X1) a,. (0 0o 1)
K=3 e (%) (X) () e. (0 0 0)
a) Clusterings b) Binary Representations
y ¥ a b d e

N )
N )

O A0 oW
O W
DWW - =
WD O

c) Number of Matches for Each Pair
of Clusterings

Figure'71 For N =3 , the Set of All Possible Clusterings
and the Distribution of the Number of Matches
for Pairs of Clusterings from %Y
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Recalling that
o(Y, ¥') = = , (4.4)

n
then the distribution of the values of the ¢ statistic for N =3 1is
derived from the distribution of m by dividing each element in the
two-way table given in Figure 7¢ by 3. Consequently, for N = 3 , the
proﬁability mass function (p.m.f.) of the c¢ statistic is given by

the following expression:

2/25 , if ¢ =0

12/25 , if ¢ =1/3

f(c; N=3, n=3,1Ly=5) = 0 6/25 , if ¢ =2/3
' 5/25 , if c =1
' 0 , otherwise.

Therefore, when N =3 ,

B(c) = -;%
VAR(c) = a%% - .0896

Case 2, N = 4

| Figures 8 and 9 Illﬁstfate the method of complete enumeration for
N = 4. Figure 8a presents the L, = 15 clusterings in ?{, which are
arbitrarily labeled with a smali letter to facilitate the derivation of
the distribution of the number of matches. Figure 8b provides ‘the bi-
nary representation of each clustering in ?5, where the vector length of
each binary representation is n = 6. 1In Figure 9, the distribution of
the number of matches (conveniently displayed in a two-way table) for
each pair of clusterings in ?!X;?j is given, where each clustering is

identified by its arbitrary label from Figure 8.



K=1 a (x1 X, x3 Xu) a. (1 11 1 1 1)
b (x1 X, XB) (Xu) b. (1 1 0 1 0 0)
- c. (X X, X)) (x3) c. 1 o1 0 1 0)
d (x1 Xy Xu) (Xz) d., (0 1 1 0 0 1)
e. (X, x3 Xu) (xl) e. (00 01 1 1)
£ (X X)) (M5 Xy) £, (1 0 0 0 0 1)
K=2 g. (x1 x3) (%, Xu) g. (01 0 0 1 0)
h. (x1 Xu) (xz‘ xj) h. (0 01 1 0 0)
i. (x1 xz) (x3) ‘(Xu) i. 1 0o 0 0 0 0)
Joo (g xg) (%) (%) . (001 0 0 0 0)
k. (x1 Xu) (XZ) (x3) k. (0 01 0 0 0)

K = : :
’ 1. (%, x3) (xi) (Xu) 1. (0 0 0 1 0 0)
m. (x2 xu) (Xi) (xj) m. (00O 0 0 1 0)
n. (x3 Xu) (xl) (X,) n. (0 000 0 1)
K=14 o. (xl) (xé) (x3) (x,,) ~o. (00 0 0 0 0)
a) Clusterings : _ b) Binary Representa-

tions

Figure'B. For N = 4 , the Set of All Possible Clusterings of X

Thus, from Equation (4.4), it follows that the distribution of the
values of the c¢ statistic for N = 4 can be derived from the distri-
bution of m by dividing each element in the two-way table given in
Figure 9 by six. Gonsequentlf, for N = 4 , the p.m.f, of the ¢

statistic is given by the followingiexpression:

3
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Case 3, N = 5

For N = 5, Figure 10 presents the binary representations for the
L5 = 52 clusterings in ”g, where the vector length of each binary
representation is n = 10. From these binary representations, the dis-
tribution of m and thus, of ¢ can be derived by applying the method
of complete enumeration and by considering certain patterns and short-
cuts learned from the previous cases.

Thus, for N =5, the p.m.f. of the c¢ statistic is given by the

following expression:

a 2/2704 , if ¢ =0
20/2704 , if ¢ = 1/10
30/2704 , if ¢ = 2/10
120/2704 , if ¢ = 3/10
uho/2704 ,  if c = 4/10
£(e; N =5 n=10, L = 52) = < 48o/2704 , if c = 5/10
600/2704 , if c = 6/10
. 560/2704 , if ¢ = 7/10
300/2704 , if ¢ = 8/10
100/2704 , if c¢ = 9/10

52/2704 , if c =1

\__ 0 , otherwise.

Therefore, when N = 5 ,
Bo) = 32 - 5895
VAR(c) = .02897 .

The Cardinality of Y

Theoretically, the method of complete enpumeration could be applied
for N=3, 4, 5,6, 7, 8, ... ; and cumulative distribution function

(c.D.F.) tables could be constructed. However, the cardinality of 1]
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increases rapidly thereby making the construction of C.D.F. tables for
the é statistic costly with respect to computer time. As an indication
ofvtﬁe counting problems related to dériving the probability distribu-
tion of the c¢ statistic by the method of complete enumeration, a brief
discussion of the cardinality of ﬁy for specified values of N is
relevant.

It should first be noted that any problem related to cluster analy-
sis which requires the complete enumeration of all pdssible clusterings
for a specified value of ‘N as a part of its solution approaches practi-
. cal impossibility in terms of numerical enormities for even relatively
small values of N. In addition, for a speqified value of N ,‘thé deri-
vation of the‘probability distribution of the c¢ statistic by the method
6f complete enumeration‘fequires v(LN)Z pairwise comparisons of the
clusterings from ?{. However, tﬁe number of pairwise comparisons neces-
sary to derive the probability distribution of the c statistic by the
method of completé enumeration can be substantially reduced by noting
that ¢ 1is a symmetric function on 'y X ‘y , 1.e.,

c(Y, Y') = c(Y', Y)
and that
e(Y, Y') = 1 if and only if Y = ¥

Therefore, only

Ty(ty - 1
-2

pairwise comparisons of clusterings from ?J are required to derive the

probability distribution of the ¢ statistic for a specified value of N.
From a practical point‘of view, it\is‘the,size of LN which

restricts the derivation of the probability distribution of the c¢ sta-

tistic by the method of complete enumeration to "small' values of N
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(e.g., N =3, 4, and 5). Duran and Odell (1974) show that for each
specification of N and K , the number of possible clusterings of size
- K-, denoted by .S(N, K) » is a Stirling number of.the second kind. As a
Consequehce ’ ‘
Ly = g s(N, K)

K=1
Hence, fhe cardinélity of %j for each specification of N 1is the sum
of Stirling numbers of the second kind,

Computing Stirling numbers of the second kind is tedious. Duran

and Odell (1974) prove that Stirling numbers of the second kind may be

computed by the following formula:

K .
1 K j AN
sou 0 = r (%) (- of L @)
2o
J=0.
By definition,
s(N, 0) = 0
8(N, N+1i) = 0 , if 1i>0 .
Obviously, ' '
s(v, 1) = 1 .
It can also be shown that
s(N, N) = 1

In addition, Duran and Odell (1974) give the following recursive rela-
tionship between Stirling numbers of the second kind, which may be em-

ployed in deriving a table of Stirling numbers of the second kind:
s(N+1, XK) = k[s(N, K)]+s(N, K -1) . (4.6)

Using the above properties of Stirling numbers of the second kind, Duran
and Odell (1974) derive a two-way table of Stirling numbers of the sec-
ond kind from S(1, 1) through 8(8, 8) , which aptly depicts the

immensity of the numerical problem of complete enumeration of ?J. -
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In this section, the exact probability distributions of the c¢
statistic for N = 3, L, and 5 were derived by the method of complete

enumeration. For N =6 ,

LN = 203 '
which implies that

LN(LN - 1)

5 20,503

1

Pairwise comﬁarisons of clusterings from ﬂj are necessary to derive
the probability distribution of the c¢ statistic by the method of com-
plete enumeration. Thus, for large values of N , an alternative pro-
cedure for deriving or approximating the probability distribution of the

¢ statistic is necessitated.

The Relationship of the Distribution of the
Simple Matching Coefficient to the
Distribution of the Comparative

‘Statistic

An alternative to the method of complete enumeration for deriving
the probability distributions of tﬁe ¢ statistic for specified values
of N is to construct, under a set of "reasonable" assumptions, a pop-
ulation model fof the ¢ statistic, which yields general formulas for
the p.m.f. énd the moments of the distribution. The set of "reasonable"
assumptions should adequately and correctly characterize the population
of interest. ;

. Goodall (1967) derives a theoretical distribution for the simple
matching coefficient under a set of assumptions which may be delineated

as follows:
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1. Each binary vector, U = (ui, Upy vaey un) , is randomly
selected from a population of binary vectors of length
n , where the probabilities of the alternatives in tﬁe

population for each component, uj y J=1,2, ..., n,

of U are given by the following formulation:

£15 = P(uj =1)
foj = P(uj =0)
ij + flj = 1
2. The components, uj y J=-1,2, ..., n, of each binary

vector U are mutually independent.
From the above assumptions, it follows that the probability, Pj y that
two randomly chosen binary vectors, U and V , of length n match on

their jzh components is derived as follows:

py = EFlyy=vy)
= P(uj = 1)P(vj =1) + P(uj = O)P(vj = 0)
2 2
£5 * fo3 .

As a consequence, Goodall (1967) states that the probability dis-
tribution of the simple matching coefficient, s , is a special case of
the Poisson binomial distribution. Therefore,

1 B -
E(S) = n -Z Pj=P }
j=1

' VAR(S) = Eﬁl.ﬁ.il - Xfﬁész

It is also noted by Goodall (1967) that if f,, is constant for all

13
uj, J=1,2, «.., n, then the Polsson binomial distribution
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degenerates to the binomial distribution. Thus, under certain restric-
tions, the simple matching coefficient has a binomial distribution.

It was previously shown that the c¢ statistic and the simple
matching coefficient are equivalent. Since each component of a binary
representation of clustering Y indicates whether a particular pair of
data points occur together or apart in clustering Y and since each
pair of data points has the same likelihood of occurring together in a
randomly chosen partition of X , then over the set of all possible |
clusterings of N data points, fij. must be a constant for all compo-
nents of the binary repreéentation of clustering Y . Hence, according
to Goodall's (1967) development of the distribution of the simple.match—
ing coefficient, the probability distribution of the c statistic should
be binomial. The relationshiptof the binomial distribution to the pre-

viously derived exact probability distributions of the ¢ statistic for

N =3, 4, and 5 requires further exploration.

Case 1, N =13

When N =3, n=3; and from Figure 7b, it is obvious that for

all j=1,2, 3,

_ 2 - 2
fij = B and ij B
Therefore,
2 2
- (2 3 ) -
- (3) - (5) 25 » I b A3

- - 1
P - 25

Hence, if N = 3 , then

-
2

I
=3
1
|

E(c)

N
(S,
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and the population mean for the ¢ statistic as obtained by the method
of complete enumeration agrees with the mean of the binomial distribu-
tion.

If the variance ofvthe ¢ statistic for the binomial formulation is

denoted by VARb(c) , then

RENORE (%%) (%%) - =/ g% — VAR(c)

3

It should be noted that for N = 3 , the variance of the binomial distri-
v bution underestimates the exact variance of the ¢ statistic as derived
by the method of cohplete enumération. It is also easily observed that
for N =3, the probability distribution of the c¢ statistic 1s not

derivable from the binomial p.m.f.

[
&~

Case 2, N

all j=1,2, ..., 6,
1 2
. = = d . = =
-fig 3 an fOJ 3
Therefore,
2 2
1 2 5
= = = = 2 = 2 .
PJ (3) + (3) 9’ J 1! ’ !6 y
T _ 2
P =3
Hence, if. N =4 , then
Be) = F - 3

and the population mean for the c¢ statistic as obtained by the method
of complete enumeration agrees with the mean of the binomial distribu-

tion,
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If the variance of the ¢ statistic for the binomial formulation

is denoted by VARb(c) y then

VAR, (c¢) = _(_g_)z(_%_), - -% L2~ yar(e)
b 243 405

If should be noted that for N = 4 , the variance of the binomial dis-
tribution underestimates the exact variance of the c¢ statistic as
derived by the method of comﬁlete enumeration. It is also easily ob-
served that for N = 4 , the probability distribution of the ¢

statistic is not derivable from the binomial p.m.f.

Case 3, N =45

When N =5, n=10 ; and from Figure 10, it is obvious that for

al‘l .j:l! 2’>---’109
. 15 _ X
f1J =5 and ij = 5
Therefore,
2 2
_ 1;) (_3__7_) _ 159 _
PJ - (52 + 52 - 27014* ’ J - 11 21 ’ 10
= _ 159 _
P = %Gy - 5895
Hence, if N = 5, then
E(c) = D = .5895 ,

and the population mean for the c¢ statistic as obtained by the method
of complete enumeration agrees with the mean of the binomial distribu-
tion. |

If the variance of the ¢ statistic for the binomial formulation

is denoted by VARb(c) , then
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VAR (c) = (489523'“105) = L0242 £ .02897 = VAR(c)

it should be noted that for N = 5 , the variance of the binomial dis-
tribution underestimates the exact variance of the c¢ statistic as
derived by the method of complete enumeration. It is also easily ob-
served that for N = 5 , the probability distribution of the c .statis—

tic is not derivable from the binomial p.m.f.

Reconciling the Disparity

Although the c¢ statistic and the simplé matching coefficient are
equivalent, the c¢ statistic represents a restricted appliéation of the
simple matching coefficient. The assumption of mutual independence
among the cbmponents. uj y J o= 1, 2, ..., n , of each binary vector U
is fundamental to Goodall's (1967)\derivation of the theoretical distri-
bution of the simple matching coefficient. However, the components of a
binary representation of clustering Y are necessarily dependent because
the classification of a particular subset of object space X into clus-
ters is sufficient to determine'clusterihg Y . For example, in cluster-

ing Y , if data points X, and X occur together in cluster Y and
' 1 2 _ k

data points X1 and X3 occur together in cluster Yk' y then
Yk = Yk' and data points X2 and X3 also occur together in cluster
Yk ; this is a consequence of overlapping clusters being disallowed in

a partition of the object space. Thus, Goodall's (1967) second funda-
mental assumption is invalid for the restricted application of the -
simple matching coefficient to the comparison of clusterings of the
object space. Hence, the c¢ statistic does not have a binomial

probability distribution.
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A partition of the object space represents a strong condition with
respect to the composition of ?y. However, the condition of being a
-partition is difficult to quantify in general terms. If, for the pur-
poses of this discussion, N and X are fixed and n = (g) , then the
cardinalify of the population of binary vectors of length n is 2 )
and .the éardinality of the set of binary representations of’?J is

: N
Ly = I S(v, k) < 2"
K=1
Consequently, the binary representations of ﬂg are only a subset of the
population of binary vectors of length n j; and on this larger population
of binary vectors, the c¢ statistic would have a binomial probability
distribution. However,
anLN
of £he members of the population of binary vectors are eliminated from
the set of binary representations of ?{ by the condition that a cluster-
ing must be a partition of oﬁject space X . Therefore, the probability
distribution of the c¢ statistic on ?{ must be derived by a condition-
al probability argument, but so far this approach has proven to be
intractable in general terms. The special cases where N = 3, 4, and 5
were given previously in this chapter.

For the purposes of the compérative study presented in £he,next
chapter, three observations concerning‘the ¢ statistic will suffice:

1. .5<E(e)<1.0 ; |

2. The closer c ié tb 1.0, the more similar are the twokclus—

terings; |

3. If :
(Y, ¥') > o(t, ¥")

then Y aﬁd Y*' are more similar than Y and Y'' are.



CHAPTER V

A COMPARATIVE STUDY OF TWELVE AGGLOMERATIVE

CLUSTERING METHODS
Rationale for the Comparative Study

» A clustering results from‘the interaction of the lineaments of the
data with a clustering method, but distinct clustering methods often
produce different clusterings when applied to the same data. One expla-
nation for this phenomenon is that different clustering methods are
affected by different aspects of,tﬁe structure (or the lackvof it) with-
in the data. Consequently, a comparative study of clustering methods
should also provide for an investigation of the effect of controlled
structural chénges within the data on the resultant clusterings. Thus,
a basis for comﬁaring clustering methods is induced by giving operation-
al interpretations to the fundamental concepts of "retrievai" and
"nqise".

The philosophical genesis of the concept of "retrieval" may be
traced to the Aristotelian postulétion of the existence of '"natural"
structure in the universe. A clustering method is purported to be a
functional mechanism for finding or "retrieving" "natﬁral" structure
within data. Hence, the degree to which a clustering method "retrieves"
known structure within generated data is an important characteristic of
the clustering method. To quantify the "retrieval" ability of a clus-

tering method, N data points are generated from K "well-separated"

107
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populations, and the clustering of size K which groups together data
points which are generated from the same popuiation is denoted by Y .
Letting Y' denote the clustering which results from applying a
specific clustering method to the N data points, then the value of
c(Y, Y') is a measure of the "retrieval" ability of the clustering
method (subject to random variation in the generaﬁed data).

In engineering terms, the concept of "noise" is used to describe
detectable interferences in a signal. Thus, "noise" in terms of the
performance of a clustering methdd_might be viewed as any anomaly in
the data which interferes with the ability of thekclustering method to
"retrieve" the "natural" structure present in the data. The sihulation
of various types of "néise" has been an important aspect of many recent,
empirical comparative studies as indicated in Chapﬁer IT. Empirical,
comparative studies concerning the perturbation of data points as des-
cribed by Rand (1969, 1971) or ‘the perturbation of initial ranks as des-
cribed by Cunningham and Ogilvie (1972) or Baker (1974) represent
attempts to investigate the effect of a particular type of "noise" on the
performance of a clustering method. Rand (1971, p; 848) gives the fol-
lowing motivation for investigating the sensitivity of a clustering
method to perturbation of the data:

In many applications it is no£ known whether the data are

good representations of their respective populations. The

changes of clustering which result from slight movement of

. points are therefore of critical importance in both choice

of methods and interpretations of results.

Hence, these perturbation studies might be viewed as investigations of
the sensitivity to measurement errors or the sensitivity to resampling

of a clustering method. Another form of "noise" is simulated by the

addition of uninformative variables to the set of p informative
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variables which locate the data points in p-space as described by
Mrachek (1972).

The simulation of different levels of "noise" by means of changing
the correlation betwegn variables embodies the essence of the ideas pre-
sented in each of the previously mentidned "noise" studies. For simpli-
city,'ohly bivariate data will be considered in this discussion; i.e.;
all data points will consist of two variables and only two variables,

If p represents the population correlation between the two variables
within a single populatioﬁ of data points, then the level of "noise"
existent in this population to obscure the clustering ofvdaté points from
this population into the same cluster is quantified by the specification
of a value of p. Thus, a specification of p % 0 implies that each
variable within the single population of data points is semi-informative
rather than completely informative or completely uninformative. It
should also be noted that increasing p, p & 0 , for an otherwise fixed
population of data points causes the‘data points within this population
to be systematically shifted from én approximately circular configuration
to a more elliptical configuration. Since it has been demonstrated that
some clustering methods opt for circular clusters, a relevant, compara-
tive characteristic of a clustering method is its robustness to increas-
ing non-circularity in the population of data points. Hence, a study of
the effect of increasing p, p = 0 , on the "retrieval" ability of a
clustering method provides a measure of the degree £o which a clustering
method imposes structure on the data rather than "retrieving" structure
from the data, and it provides a measure of the effect of a particular

type of "noise" on the resultant clusterings.
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For convenience, the important considerations in any extensive,

systematic comparison of clustering methods shall be termed structural

parameters; a structural parameter is any variable which controls some

aspect of the structure of the data.  For the purposes of the comparative

study presented in this chapter, the primary structural parameter of

interest is p as discussed above. Howe&er, the set of structural para-

meters for a comparative study of clustering methods should consist of

all variable features within the data which might affect the resultant

clusterings. Some of the possible structural parameters which require

controlled change to make a comparative study "dynamic" are delineated

as follows:

1.

2.

N, the number of data points in X;

p, the number of variableé definiﬁg each data point;
i.e., the dimensionality of the Euclidean p-space in
which X is embedded;

K, the number of populations from which the data points
are generated; |

The type of population or the probability distribution
from which each of the K populations of data points is
generated;

Bp o k=1, 2, ..., X, the mean vector for each population
of data points;

*k y k=1, 2, ..., K, the variance-covariance structure
for each population of data points;

8, ,i=1, 2, ,(12{) y the distance between each pair

of population mean vectors;
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8. The relative location of the population mean vectors or

the spatial configuration of the population mean vectors;

9. The split or n k=1, 2, ..., K, the number of data

points generated from each population of data points.

In any comparative study of cluStering methods, some of the struc-
tural pa?ameters in the set of possible structﬁral parameters must
remain fixed, and a few of the structural parameters of special interest
may be extensively studied over a range of meaningful settings.for a
fixed set of clustering methods. The primary objective of the compara-
tive study presented in the remainder of this chapter is to investigate
the effect of increasing thé correlation between variables within the
populations of data points on: the "retrieval" ability of twelve agglom-
erative clustering methods. However, a limited investigation of the
effect of changes in the.settings of two other structural parameters is
also piesented. In the next section, the particular struétural parame-
ters of interest for the comparative study of twelve agglomerative clus-
tering methods are sbecified, and the fixed and variable settings for

these structural parameters are given.
Design of the Comparative Study

In terms of the design of the comparative study, initially, it is
necessary to specify the setting for eaph of the fixed structural para-
meters and the range of settings for eaéh of the variable structural
parameters. ‘For the purposes of the comparative study, the probabllity
distribution from which each of the K populations of data points was
generated was fixed to be multivariate normal (MVN). A brief discussion

of the basic generating procedure used should suffice. For the purpose



112

bf efficient discussion, MVN populations with the same variance-
covariance matrix will be termed "similar"., MVN vectors may be generated
from a poﬁulation having a mean vector of zero and any specified positive
definite, symmetric variance-covariance matrix by calling subroutine
GGNRM from the IMSL catalogued programs. Generation from other similar
MVN populations may be accomplished by adding a fixed constant veétor to
each vector generated from the GGNRM subroutine., This procedure simu-
lates the-genération of vectors ffom a MVN population with a mean vector
equal to the fixed constant vebtor which was added to each of the gener-
ated vectors and the same variance-covariance matrix as was originally
specified,

Because of the necessity to operate within certain cost constraints,
the number of data points, the number of variables per data point, and
the numger of MVN pdpulations of data points in X were fixed at the

following values:

(1) N=21 ;
(i1) p=2 ;
(iii) K =3 .

The choice of N = 21 was arbitrary subject to its di&isibility by
three.‘ However, since the primary purpose of the comparative study was
to investigate the effect of increasing thé correlation between vafiables
on £he "retrieval" ability of tweive‘agglomerative clustering methods,
the choice of p =2 was neceséary to simﬁlify the design of the compar-
ative study and to enhance the%nterprgtabélity of the results from the
comparative study. One rationaie for choosing K =3 1s that to main-
tain thebinformation content of\the_variables within a population of

data points throughout X , it is important to choose K> p . The
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cﬁoice of K =73 was also related to the choice of a potentially
interesting spatial configuration for the population mean vectors.

To facilitate the controlled change of the structural parameters
b, ,i=1, 2, (.., (12{) , it was apropos to quantify the distance
betweeﬁ population mean vectors by a single structural parameter, & ;
i.e.,

o K ~
v i=1, 2, Cea (2) , 61 =95

Consequentiy, since K was fiied at £hree and since the representation
of the distance between the population mean vectors by a single struc-
tural parameter implies that the populatibn mean vectors are equélly
spaced in the plane, the sﬁatial configuration for the population mean
vectors was automatically fixed so that the three population mean vec-
tors were always placed at the vertices of an equilateral triangle. It
should be noted that the specification of a value for & in conjunction
with the equilateral triangle configuration for the population mean

. vectors is sufficient with respect to locating the population mean vec-
tors in Euclidean two-space since the actual location of-the,equiiateral
triangle in the plane does not affect the‘perfqrmance of an agglomera-
tive clustering method. Thus, N, p, K , the generating probability dis-
tribution, and the spatial configuration of the population mean vectors
remaiﬁed fixed at the previously mentiqned settings throughout the com-
parative study of agglomerative clustering methods.

The three structural parameters subjecf to controlled variation in
the comparative study were & , split, and p. The settings for the
structural parameter & , the distance between each pair of population
mean vecfors, were & = 4,0 and & = 5.0 ; these two settings were

deemed worthy of further consideration for the equilateral triangle
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spatial configuration of population mean vectors after a preliminary in-
vestigation with respect to some agglomerative clustering methods and
various settings for some of the other structural parameters. It has
been aptly demonstrated by other investigators (e.g., Everitt, 1974)

that some clustering methods opt for equal sized clusters. Thus, a
limited iﬁvestigation of the robustness of the twelve agglomerative
clustering methods to unequal sized clusters was attempted by contrasting
the equal sized clusters setting for split, 7-7-7, with an unequal sized
clusters setting for split, 11-7-3.

The variance-covariance structure for the bivariate normal (BVN)v
populations of data points was of primary importance in the comparative
study. Since the structural parameter of interest in the variance-
covariance structure was p as indicated in the discussion given in the
previous section, the daﬁa points forming the object space X were
generated from three similar BVN populations with a specified value of

p and unit variances; i.e.,

12,3 b = - [160 1?0] ’

where p = 0.0, .1, .2, «..y .9

I

vV k

Consequently, the effect of correlated variables ("noise") on the
"retieval" ability of agglomerative clustering methods may be investi-
gatedvby fixing all structural parameters in the framework which was
developed in this section except o which is systematically varied
across its range of settings.

In Figure 11, the actual population mean vectors used in the com-
parative study are portrayed for & = 4.0 and the equilateral triangle

spatial configuration of population mean vectors. Letting i be the
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6;0;#153

—x\ r

(+.0,0.0)

Figure 11. An Example from the Structural Framework Developed
for the Comparative Study
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identity matrix, then the three circles represent the 306 contours for
each of the BVN populations. Generated data points from this structural
framework which, because of random variation, fall in the overlapping
regions of the three circles are likely to be clustered with data points
generated from a differeh@ BVN population than the one from which they -
were generated. This observation, of course, illustrates only one of
the possible reasons that a clustering method fails to "retrieve" the
exact structure as generated.

A brief summary of the data structures for the comparative study of

agglomerative clustering methods may be outlined as follows:

X, v BUNQu, ) ,
where: 1 =1, 2, ..., 21 with splits into the
| "X = 3 populations of either 7-7-7
or 11-7-3 ;
Pl k=1, 2, 3, is constrained by an L.

' equilateral triangle spatial con-

figuration and & 4.0, 5.0 ;

IR P

To apply an agglomerative clustering method to a set of data points,

0.0, .1, .2, ..., .9 .

Il

it is necessary to specify both a measure of distance and an agglomera-
tive clustering algorithm. For the purposes of the comparative study,
‘the measure of distance was fixed to be. Buclidean distance since a pre-
liminary comparative investigation using some of the éame agglomerative
clustering algorithms later chosen for use in the comparative study in
- conjunction with Euclidean distance and threé other measures of distance

indicated that the measure of distance is not as important in determining
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the resultant clusterings as the algorithm is. The agglomerative
clustering algorithms chosen for the comparative study are discussed in
Chapter III. To briefly'reiterate the agglomerative clustering algo-
rithms chosen for the comparative study, it should be noted that the
twelve agglomerative clustering algorithms form natural groups of two
or six algorithms, Thus, the (B, y) values which define the twelve
agglomerative clustering algorithms are conveniently delineated in two
groups of six algorithms as follows:

(1) B

(2) 8

I

0.0 with vy =-.5 -.25, ..., .75 ;

Il

-.25 with vy = -.5, -.25, ..., .75
One of the basic considerations in designing the comparative study
was the choice of a logical‘runﬁiné sequence which would produce each
of the sets of results necessary tq compare the twelve agglomerative
clustering methods with respect‘to their ability to "retrieve" the gen-
erated data structure. Each setting of the triple (p, &, split) of
variable structural parameters characterizes a different replication
(rep) of the comparative study of agglomerative clustering methods: For
each setting of the triple (p, 9, split) , the following sequence of
steps was utilized to generate twelve values of c(Y, Y') , where each
value of c(Y, Y') quantified the "retrieval" ability of one of the
twelve agglomerative clustering methods:
| 1. An objJect space X of data points was generated for
the complete set of strﬁctural parameters;
2. The Euclidean distance between each pair of data
points in X waé céﬁpuﬁed and gtéred in standard
lower triangular matrix order by rows as the vec-

tor D H
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3. Each of the twelve'agglémerative clustering algo-
rithms was applied to D +to produce a hierarchy,
H, ,a= 1, 2, .4y 12

L. For each of the twelve agglomerative clustering
algorithms, the{three cluster clustering, (Y')a~’
was chosen as the representative clustering from
Ha , where a =1, 2, ..., 12 :

5. Bach of the representative clusterings, (Y')a
a=1,2, ..., 12 , was compared by means of the
c statistic to clustering Y of size three, which
clustered together'all daﬁa points generated from
the same population of data points.
Thus, by means of the above sequence of steps, a value of c(Y, Y') was
assigned to each of the twelve agglomerative clustering methods. For
each setting of the triple (p, &, split) , the abbve sequence of steps
wds replicated 100 times, énd the following statistics were computed
for each of the twelve agglomeratiye clustering methods:
1. ¢, the sample meéan of the c¢ statistic for the
sample of 100 reps;
2. S, the sample standard deviationifor the 100 ¢
values;
3. The % of the 100 clusterings which cqrresponded exactly
with the generated daté structure; i.e., the number of
times that c(Y, Y') was equal to one in the 100 reps.
Consequeﬁtly, for each setting of tﬁe triple (p, 6, split) of variable
structural parameters and for each of the twelve agglomerative cluster-

ing methods, the triple (E, So1 %) results from 100 reps to quantify
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the "retrieval" ability of each of the agglomerative clustering methods,
and these triples also provide a méans for comparing the performance of
the twelve agglomerative clustering methods at the particular settings
specified for the complete set of structural parameters. The results
from the comparative study of agglomerative clustering methods are dis-

cussed in the next section.

A Discussion of the Results from the

Comparative Study

Tables I-VIII in the Appendix give the results from the comparative
study of agglomerative clustering methods. In these eight tables, the
results are given in the form of a triple l(g, So %). computed over 100
reps for each setting of the triple of variable structural parameters
(p, 8, split) and for each of the twelve agglomerative clustering
- methods. To simplify the discussion, since Euclidean distance was used
in éonjunction with each of the twelve agglomerative clustering.algo—
rithms, the differences and similarities observed among the agglomerative
clustering methods will be discussed in terms of the different algo-
rithms, but this convenience is npt intended to imply that the results
are independent of the measure of distance employed. An observed |
difference or similarity among the agglomerative clustering algorithms
should be interpreted as a difference or similarity among the agglomer-
ative clustering methods formed by combining the same algorithms with
Euclidean distance. The results f£0m the comparative study are also not
independent of the fixed structural paraﬁeters which were specified in
the previous section, but the results ﬁill be discussed in terms of the

variable structural parameters. Thus, all results from the comparative
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study will be discussed in terms of changes in the variable structural
parameters (P, &, split) and changes in the ordered pair (B, vy)
which defines fhe agglomerative clustering algorithm. To enhance the
interpretation of the results from the comparative study, Figures 12-29
in the Aﬁpendix portray various comparative aspects of the perforﬁance
of the twelve agglomerative clu;tering methods. The tabies and figures
given in‘the Appendix will be discussed in detail in this section.

Tables I and II display the results for the twelve algorithms in
two groups of six and for , = 0.0 , .1, .2, ..., .9 with & = 4,0 and
a split of 7-7-7. Table I presents the results for the six algorithms
which lie along B = 0.0 , and these results are graphically portrayed
in Figures 12-14., 1In Figure 12, ¢ 1is graphed across the values of o
for each of the six algorithms lying along B = 0.0 . It should be
noted that the single linkage algorithm produces a uniformly smaller c
than the other algorithms. The highest ¢ value occurs at p = 0.0
with the (0.0, .25) algorithm. Except at a value of p = .9 , either
the (0.0, .25) algorithm or the complefe linkage algorithm has the
highest ¢ value. At p = .9 , the average iinkage'algorithm produces
the highest c value. Increasing 0 appears to have the greatest
effect on the ¢ value for the single linkage algorithm,

In Figure 13, S, is graphed across the values of p for each of
the six algorithms lying along B = 0.0 . It should be noted that the
. sihgle linkage algorithm produces a uniformly larger So than the other
algorithms except at p = .9 where it has the smallest S. value. The
lowest s . value occurs at p = 0.0 with the (0.0, .75) algorithm,
In general,.the complete linkage and 'the (0.0, .75) algorithms pro-

duce the smallest sc values.,
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In Figure 14, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data struéfure exactly is
graphed across the values of o forbeach of the six algorifhms lying
along B = 0.0 . It should be noted that the single linkage algorithm
produces a uniformly smaller % than the other algorithms except at
o= .9 . The highest % occurs at p = .7 with the (0.0, -.25)
algorithm. ‘The % appears to beiless stable acrogss p for these six
algorithms than either ¢ or S,

Table II presents the results for the six algorithms which lie
along B = -.25 for (p, & = 4.0, 7-7-7) , and these results are graph-
-ically portrayed'in Figures 15-17. 1In Figure 15, c¢ 1is graphed across
the values of p for each of the six.algorithms lying along B = -.25 .
It should be noted that.the (-.25, -;5) algorithm produces a uniformly
smaller ¢ than the other algorithms. The highest ¢ value occurs at
'p = ,7 with the (-.25, .25) algorithm, For p = .3 , the (-.25, .25)
algorithm produces the highest values of ¢ , and for p < .2 , the flex-
ible sfrategy algorithm produces slightly higher values of {E than the

(-.25, .25) algorithm. In general, increasing p appears to have only
a slight effect on the ¢ values producedvby the(six algorithms lying
along B = -.25 when & = 4.0 with a 7-7-7 split.

In Figure 16, S, is graphed across the values of p for each of
fhe six algorithms lying along B = -.25 . It should be noted that the
(-.25, -.5) algorithm produces a uniformly larger S, than the other
algorithms. The smallest S, value ‘occurs at p = 0.0 with the
(-.25, .5) algorithm. In general, ‘increasing p appears to have only
a slight effec£ on the S, vaiues.produced by the six algorithms lying

along B = -.25 when b = 4.0 with a 7-7-7 split.
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In Figure 17, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data strﬁcture exactly is
graphed across the valueg of p for each of the six algorithms lying
along B = -.25 . It should be noted thaf the highest % obtained with
these six algorithms was 22% which occurs at p = .5 with the
(-.25, .25) algorithm, at p = .7 with the (-.25, .25) and the
(-.25, .5) algorithms, and at p = .9 with the (-.25, -.25) algo-
rithm. The % appears to be less stable across p for these six
algorithms than either ¢ orb S, |

Tables IIT and IV display the results for the twelve agglomerative
clustering algoritﬁms in two groups of six and for o = 0.0, .1, ..., .9
with & = 4.0 and an 11—7—3 split. Table III presents the results for
the six algorithms which lie along B = 0.0 , and these results are
graphically portrayed in Figures 18-20. 1In Figure 18, ¢ is graphed
across the values of p for each of the six algorithms lying along
B = 0.0 . It should be noted that the siﬁgle linkage algorithm produces
a uniformly smaller c than the other algorithms except at p = .9
where it has the largest value of ¢ . The highest ¢ value occurs at
B = .1 with the complete linkage algorithm. Except at a value of
p = .9, either the (0.0, .25) algorithm or the complete linkage
algorithm has the highest ¢ valué} Increasing p appears to have the
greatest effect on the ¢ vaiue for the single linkage algorithm.

In Figure 19, S, is graphed‘across the values of p for each of
the six algorithms lying along B = 0.0 ; It should be noted that the
single linkage algorithm producés:a uniformly larger S, than the
other algorithms except at o = .9 . The lowest S, value occurs at

B = 0.0 with the complete linkage algorithm. -In general, the complete
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.linkage and the (0.0, ;75) algorithms produce the smallest So
values,

In Figure 20, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data structure exactly is
graphed across the values of p for each of the six algorithms lying
along B = 0.0 . It shouid be noted that the single linkage algorithm
produces a uniformly smaller % than the other algorithms except at
p = .9 . The highest % occurs at p = .9 with the average linkage
algorithm. The % appears to be less stable across p for these six
algorithms than either c or S

Table IV presents the results for the six algorithms which lie
along B = -.25 for (p, § = 4.0, 11-7-3) , and these results are
graphically portrayed in Figures 21-23. In Figure 21, c¢ 1is graphed
~across the values of p for each of‘the six algorithms lying along
B = -.25 . It should be noted that the (__.25, -.5) algorithm produces
a uniformly smaller c¢ value than the other algorithms except at -

p = .8, .9 . The highest. ¢ value occurs ét p = .9 with the flexible
strategy algorithm. Aéroés P, the algorithms that produce the higher
values of ¢ are the flexible strategy, (-.25, .25) , and- (-.25, .5) .
- In general, increasing p appears to have a relatively small effect on
~ the ¢ values produced by the six algorithms lying along B = -.25
when & = 4.0 with an 11-7-3 split.

In Figure 22, S, is graphed across the values of p for each of
the six algorithms lying along B = -.25 . It should be noted that the
(-.25, -.5) algorithm produces a uniformly larger S, 'that the other
algorithms. The smallest s, value occurs at p = .4 with the

(-.25, .25) algorithm. In general, increasing o appears to have only
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a slight effect on the S, values produced by the six algorithms.lying
along B = -.25 when &8 = 4.0 with an 11-7-3 split.

In Figure 23, the % of the 100 reps for which the agglomerative

- clustering method "retrieved" the generated data structure exactly is

graphed across the values of p for each of the six algorithms lying
along B = -.25 . It should be noted that the highest % occurs at

P = .8 with the (-.25, —.25) algorithm. Across P , the flexible
vstrategy algorithm usually produces the highest value of %. The %
appears to be less stable across p for these six algorithms than either
c or S,

To enhance the interpretation of the results presented in Tables
I-1IV, Figures 24—29'provide graphical portrayals across p of the per-
vformance of the twelve agglomerative clustering methods in six groups of
two algorithms for the two different splits. In Figure 24, the % of fhe
100 reps for which the agglomerative clustering method "retrieved" the
generated data structure exactly is graphed across the values of p for
each of the two algorithms lyiﬁg along vy =5 with each of the two
splits. For either the 7-7-7 split or the 11-7-3 split, the (-.25, —.5)
algorithm produces a uniformly higher % across p than the single link-
age aigorithm. In genefal, fhe values of % are higher for both algo-
rithms with the 11-7-3 split than with the 7-7-7 split. It is also
interesting to note that for thesé two algorithms, increasing p affects
the % more with the 11-7-3 split.

In Figure 25, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated daia structure exactly is
graphed across the values of P for each of the two algorithms lying

along vy = -.25 with each of the two splifs. For the 11-7-3 split
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only, the (-.25, -.25) algorithm produces a uniformly higher % across
p than the (0.0, —.25) algorithm. In general, the values of % are
higher for both algorithms with the 11-7-3 split than with the 7—7-7k
split.

In Figure 26, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data structure exactly is
graphed across the values of p for each of the two algorithms lying
along Yy = 0.0 with each of the two splits. Except at p = 0.0 with
the 11-7-3 split, the flexible strategy algorithm produces a uniformly
higher % across P than the average linkage algorithm produces for both
the 7-7-7 éplit and the 11-7-3 split., Increasing p appears to have
very little effect on the values of % produced by either the flexible
strategy algorithm or the average linkage algorithm when the 7-7-7 split
is used. 1In general, the values of % are higher for both algorithms
with the 11-7-3 split as opposed to the 7-7-7 split.

In Figure 27, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data structure exactly is
graphed across the values of p for each of the two algorithms lying
along vy = .25 with each of the two splits. For either the 7-7-7 split
or the 11-7-3 split, the (-.25, .25) algorithm produces a higher % if
p > .4 , when being COmpared to the (0.0, .25) algorithm. In general,
the values of % are higher for both algorithms with the 11-7-3 split as
opposed to the 7-7-7 split. It is‘also interesting to note that for
these two algorithms, increasing p affects the % more with the 11-7-3
split. |

In Figure 28, the % of the‘loo reps for which the agglomerative

clustering method "retrieved" the generated data structure exactly is
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graphed across the valueé of p for each of the two algorithms lying
along 7y = .5 with each of the two splits, For either the 7-7-7 split
or the 11-7-3 split, the (-.25, .5) algorithm usually produces a value
of % at least as large as the value of % which the complete linkage
algorithm pfoduces. In general, the values of % are higher for both
algorithms with the 11-7-3 split as opposed to the 7-7-7 split.

In Figure 29, the % of the 100 reps for which the agglomerative
clustering method "retrieved" the generated data structure exactly is
graphed across the values of p for each of the two algorithms lying
along Yy = .75 with each of the two splits. For the 7-7-7 split only,
the (-.25, .75) algbrithm produces a higher % when p = .2 in compar-
ison to the (0.0, .75) algofithm. In general, the values of % are
higher for both algorithms with the 11-7-3 split as opposed to the
7-7-7 split. |

Tables V and VI display thé‘results for the twelve algorithms in
two groups of six and for p = 0.0, .1, .2, ceny .9 with 6§ = 5.0 and
a split of 7-7-7 . Table V presents the results for the six algorithms
whiqh lie along B = 0.0 . The results presented in Table V are similar
to the results presehted in Table I.: However, the & = 5.0 setting, in
éengral terms, causes the values of ¢ and % to be larger and the
values of S, to be smaller for all values of p in comparison with
the values of (G, s_, %) which resulted for & = 4.0 . It is also
interesting to note.that ¢ and S, aré more stable across P when
& = 5.0 than when & = 4.0 . However, the % is mucﬁ more variable
across P when & = 5.0 than when & = 4.0 for all six of the algo-

rithms. Table VI presents the results for the six algorithms which 1lie

along B = -.25 . The results presented in Table VI are similar to the
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results presented in Table II, and all of the general comments made
pertaining to differences between the results presented in Tables I and
V also hold for differences between the results presented in Tables II
and VI.

Tables VII and VIII display the results for the twelve agglbmera—
tive clustering algorithms in two groups of six and for p = 0.0, .1,

.,\.9 with & = 5.0 and a split of 11-7-3 . Table VII presents the

results for the six algorithms which lie along B = 0.0 . The results
presented in Table VII are similar to the results presented in Table IIT.
Table VIIT presents the results for the six algorithms which lie along
B = -.25 . The results présented in Table VIII are similar to the
results presented in Table IV. Also for the 11-7-3 split, when
§ = 5.0 , the values of c aﬁd % are larger and the values of ’Sc are
smaller than when & = 4.0 , and this appears to hold for all values of
p and for all twelve algorithms. It is also interesting to note that
¢ and s, are more stable across p when & ¥ 5,0 than when & = 4.0
for all twelve of the agglomerative clustering algorithms. However, the
% is much more variable across p when & = 5.0 than when 6 = 4.0
for all twelve of the algorithms.

In the final chapter of this thesis, some general conclusions will
be drawn from the comparative study of agglomerative clustering methods,
and some possible directions for the extension of the comparative study

will be indicated.



CHAPTER VI
GENERAL TRENDS AND POSSIBLE EXTENSIONS

The stated objective of the research presented in this thesis is:

To compare agglomerative clustering methods. However, because of the
number of structural parameters requiring controlled variation to make
the comparative study "dynamic" ané because of the infinite number of
possible agglomerative clustering methods which might be chosen for
inclusion in the comparative study, the realization of the above objec-
tive was necessarily limited in its scope. The.comparative study of
agglomerative clustering methods presented in this thesis, however, is
at least a source\for structuring future comparative studies of cluster-
ing methods.

Observations and conclusions from the comparative study of agglomer-
ative clustering methods must be made with respect to (wrt) the settings
(MVN, N = 21, p = 2, K = 3, equilateral triangle spatial configuration)
used for the fixed structural parameters and also with respect to the
fixed metric of BEuclidean distance; generalizations beyond these settings
are of a purely hypdthétical natuQe. Some general trends observable in
the results as specified by the triple (e, Sq s %) will be indicated in
terms of the triple (p, 6, split) of variable structural parameters
and in terms of the érdefed pairs (B, Y) which define the agglomera-
tive clustefing algorithms. However, these trends were evidenced only

for the setting (MVN, N = 21, p =2, K = 3, equilateral triangle spatial
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configuration) of the fixed structural parameters and for the fixed
metric of Euclidean distance.

In the context of the triple (c, S %) of resﬁlts from the com-
parative study, a "good" agglomerative clustering algorithm for a speci-
fied (p, &, split) might be designated as one that produces a high
(close to 1.0) value of c¢ , a low (close to 0.0) value of s, » and a
high (close to 100) value of % . To explicate "good" algorithms in
comparative terms, some con&enient notation and terminology is required.
For a fixed setting of the triple (p, &, split) of variable structural
parameters, ET}Q shall denote a c¢ value produced by algorithm A;
sc[A] shall denote an S, value produced by algorithm A; and %[A]
'shall denote a % value produced by algorithm A . Algorithm A will be
termed "better" wrt c¢ than algorithm B or algorithm B will be

termed "worse" wrt c than algorithm A iff

ve, <c[A] ='¢B] and 3 o > c[a] > co[B] ,
where p = 0.0, .1, ..., .9 and the pair (5, split) is
fixed,
Algorithm A will be termed "better" wrt S, than algorithm B or
algorithm B willl be termed "worse" wrt Se than alrorithm A iff

YV o, sc[A] < sC[B] and F,5 3 SCEA] < sc[B] '

where ¢ = 0.0, .1, ..., .9. and the pair (&, split) is
fixed.
Algorithm A will be termed "better" wrt' % than algorithm B or

algorithm B will be termed "worse" wrt % than algorithm A 1iff
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vo, )z #E] and Fo220] > 2Bl

where p= 0.0, .1, ..., .9 and the pair (&, split) is
fixed,
Thus, given the previously mentioned settings for the fixed structural
parameters and a.metric'of Fuclidean distance, some general observations
with respect to the settings for the variable structural parameters and
the agglomerative clustering algorithms included in the comparative study
will be offered fof the triple (c, So %) of measured statistics.

The single linkage algorithm, which is the only space-contracting
algorithm included in the’combarative study, was conspicuously different
from all of the other algorithms wrt (c, So1 %) for all settings of the
triple (p, &, split) wused in the comparative study. The single linkage
algorithm was in general (with a few exceptions when p was close to
1.0) the worst algorithm wrt (c, Sq %) for all settings of (&, éplit).
The single linkage algorithm was the only algorithm on which increasing
(A) p had a marked effect with respect to its performance. The follow-
ing general trends should be noted for the single linkage algorithm wrt
p for all settings of the pair (6, split) used in the comparative
study:

1) o/ — /A

(11) oA —> s ¥

(111) oA — %A
Thus, the performance of the single linkage algorithm improves wrt
(c, 8o %) as p increases for all settings of the pair (9, gplit).
The observations concerning thé single linkage algorithm seem to imply

that space-contracting algorithms are worse at "retrieving" the
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generated structure than either space-conserving or space-dilating
algorithms when MVN data and Euclidean distance are employed; this is
not surprising considering the theoretical research on agglomerative
clustering algorithms presented in Chapter III.

The three space-conserving algorithms -- (0.0, -.25) , average
linkage, and (0.0, .25) -- lie along the line B = 0.0 . The boundary
algorithm on the lower end of the space-conserving region is the single
linkage algorithm which is a space-contracting algorithm. It has already
been noted that the performance of the single linkage algorithm is
Better wrt (E, Sq %) when P is close to 1.0 than when p 1is close
to 0.0 . The boundary algorithm on the upper end of the space-conserving
region is ‘the complete linkage algorithm which is a space-dilating algo-
rithm. The other space-dilating algorithm along the line B8 = 0.0 is
the (0.0, .75) algorithm. It should be noted that the performance of
the complete linkage and the (0.0, .75) algorifhms is worse wrt
(c, S %) when p 1is close to 1.0 than when p 4is close to 0.0 for
the settings of the pair (8, split) used in the comparative study. 1In
contrast, the spabe—conserviné algorithms are relatively stable across
o wrt (c, So %) for all settingé of the pair (6, split) wused in
the comparative study.

| From the results of the comparative study, the best algori{hms wrt
(c, So» %) appear to be those lying along the line B = -.25 , and all
six of these algorithms are space-dilating algorithms. One of the algo-
rithms lying along the line B = -.25 is always the best wrt ¢ and S,
for all settings of the pair (&, split) qsed in the comparative study.
However, the performance of all twelve agglomerative clustering algo-

rithms wrt % is somewhat erratic. All six of the algorithms lying along
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the line B = -.25 show relatively little change in their level of per-
formance (i.e., they are relatively stable) across p wrt c and S,
for all settings of the pair (&, split) used in the comparative study.
For each pair of algorithms with the same Yy value, the algoritﬁm with:
B = -.25 is generally (a few exceptions exist wrt @) better wrt ¢ and
s, for all settings of the pair (&, split) used in the comparative study.
Consequently, in a future comparative study of agglomerative clustering
algorithms in conjunction with Euclidean distance, it would be interest-
ing to explofe the performance with respect to their "retrieval" of MVN
data structure of a set of six algorithms along the line B = -.5 with
the same vy values as the sets of six algorithms along B = 0.0 or
B = -.25 which were employed in the comparative study presented in
this thesis.

A few general observatidné with respect to the settings of the pair
(6, split) wused in the comparative study can also be made. Apparently,
as 0 increases, the performancé of the algorithms becomes more stable
across p wrt c and s, for eéch setting of the structural paraﬁeter
split; this observation is not surp;ising since the clusters become more
distinct as the population means move further apart. It should be noted
that the performance of the algorithms béecomes more erratic across o
wrt % for each setting of the structural parameter split when &
increases. Overall, increasing & from 4.0 to 5.0 causes an increase
in ¢ and the % values and a‘decrease in the s, values produced by
each of the twelve algorithms for all settings of the pair (p, split).
The two different splits have a greater effect on the performance of the
algorithms wrt % than they do wrt ¢ and S, - As an overall conclu-

sion, p does not greatly affect the performance of the agglomerative
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clustering algorithms wrt ¢ and S, for the two different splits with
the effect becoming less for increasihg 5.

There are a myriad of possible extensions for thé comparative study
of agglomerative clustering methods presented in this thesis in terms of
changing a setting for any of the specified structural parameters, inclu-
ding both the fixed structural parameters and the variable structural
Parameters. Obviously,'in future comparative investigations of agglomer-
.ative clustering methods, a larger value of N should be chosen, and at
least a limited comparative investigation of the effect of correlated
variables on the "retrieval' ability of the agglomerative clustering
methods should be attempted when p =3 . of course, the populations of
data points could be generated from probability distributions other than
the MVN probability distribution, but the choice of a MVN data structure
for each of the populations of déta poiﬁts seems reasonable. However,
it would be enlightening to attempt a limited coﬁparative investigation
of agglomerative clustering methdds when each MVN population of data
points represented in X has a different variance-covariance matrix.

A great deal of flexibility in a limited extension of the compara-
tive study of agglomerative clustering methods could be achieved by mak-
ing the spatial configuration a variable structural parameter while keep-
ing the setfings for the other structural parameters (both fixed and var-
iable) the same as specified in Chapter V. An effective method for ob-
taining a systematic variation of the spatial configuration would be to
consider isosceles triangles with the two equal sides having length & ,
and since the length of the third side of the isosceles triangle is a
function of the measure of the included angle between the two equal

sides of the isosceles triangle, the "new" variable structural parameter
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could be designated as the measure of the included angle between the two
equal sides of the isosceles triangle, which would then be allowed to
vary between 0 and m radians. Some theoretical work with respect to
the "size" of the overlapping regions for the equilateral triangle
spatial configuration and for some of the possible isosceles triangle
spatial configurations would represent a valuable contribution towards
understanding the "retrieval" results provided by the agglomerative clus-
tering methods, when MVN populations of data points are utilized. The
consideration of non-triangular spatial configurations requires the
specification of a larger value of K , which should be accompanied by
an increase in the value of N +to provide for poteﬁtially interesting
settings of the structural parameter for split. It should also be noted
that an increase in the value of p should be accompanied by an increase
in the value of K +to maintain the information content within the gener-
ated populations throughout object space X

If the settings for the fixed and variable structural parameters
other than 6> and split remain the same as specified in Chapter V, then
the range of potentially interesting settings fdr 5 should be between
3.0 and 6.0; and the two different splits, 7-7-7 and 11-7-3, are probably
sufficient to indicate any changes in the performance of the agglomera-
tive clustering methods with respect to equal zﬁ.’unequal cluster sizes,
considering the relatively small value of N ., Since the values of o
close to 1.0, in general, affected the performance of the agglomerative
clustering methods the most, a larger number of values of p close to
1.0 (such as .85, .95, .96, .é?, ;98, .99) might be chosen for inclusion
in an extension of the comparative study. It should‘also be noted that

any extension of the comparative study should include a larger number of
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replications at each setting of the variable structural parameters for
each of the agglomerative clustering methods.

Two extensions of the theoretical work presented in this thesis are
also worth noting. The classification of agglomerative clustering algo-
rithms into the classes of space-contracting, space-conserving, and
space—dilating algorithms could be repeated for a different set of con-
straints on the quadruplé (ai, aj, B, v) of parameters which determine
d(ij)k in Equation (3.1); i.e., in the general linear combinatorial
strategy originated by Iance and Williams (1966). It was also noted in
Chapter IV that C.D.F. tables could be constructed for Rand's (1969,

- 1971) c statistic. However, it is necessary to provide the probability
distribution of the c¢ statistic for each special application of the ¢
statistic; e.g., the probability distribution of the c¢ statistic is
needéd when N = 21 , K=73 , and all élusterings are to be compared to
onevﬁcorrect" clustering. Another interesting paradox results when
possible null hypotheses to be tested with respect to the c¢ statistic

are tendered. For example, if the pair of hypotheses,

HA: c <’1.0 y

were of interest in terms of "retrieval"(of some generated data
structure, it would be desirable to accept HO .

In conclusion, two Justifications for cluster analyzing a data set
are offered. Dubes and Jain (1975, p. 20) make the following comment

concerning the usefulness of cluster analysis:
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A user must remember that a clustering program is a tool
for discovery, not an end in itself. A cluster analysis
is really a preprocessing step that should generate ideas
and help the user form hypotheses. A cluster analysis
should be supplemented by other descriptive techniques...
The utility of a cluster analysis 1s more in the ques-
tions raised than in the questions answered.

Finally, Kendall (1973, p. 183) provides a philosophical justification
for the research presented in this thesis:

Over the past fifty years mathematics has tended to dis-
count subjective impressions gained from visual inspec-
tion, but the practising statistician cannot afford to
neglect any method of feeling his way in p dimensions,
however intuitive and however empirical,
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A COMPARISON ACROSS o
ATONG B = 0.0 WHERE 6 = 4.0

TABIE T

WITH A 7-7-7 SPLIT

OF SIX ALGORITHMS

144

(0, .25) Complete (0, .75)

13

Single (0, -.25) Average
T .66829 .81243 .86395  .88314 .87586 .87848
se 17675 15176 10594 .09396 .10382 .08941
% 6 12 19 20 20 18
c .67929 .82648 .85957 87924 .88181 .87362
Sc .18289 .15090 12373 09757 09233 09657
% 7 15 18 18 18 17
T 70614 83857 .86243 87581  .88148 .87810
Se .18323 .14086 12166 .11083 .10101 .09539
% 8 18 16 16 16 16
T .70795 .83852 .86767 .88286 .88152 .87581
Sc .18708 13631 21740 .09232 .09287 .09507
% 9 19 16 17 14 14
é 72029 82471 .86838 86524 .87805 .86190
Se 17541 13515 10526 11458 .10085 .10566
% 9 14 16 16 17 14
T 71919 .81929 .85357 86452 .86790 .86438
Se 17753 .14881 13125 .10797 10471 10461
% 10 16 16 14 15 14
c .73057 .83981 .85521 86600 - .86438 .86010
Sc .17688 .12886 12126 11198 .10959 .10953
% 10 18 17 14 12 1L
T ,74986 .84105 .86857.  .86685 .85257 85767
Se .18247 14573 11406 .11665 11916 11819
% 13 21 17 17 15 15
c 77338 .83810 .85590 85433 .85552 83924
Se 16066 13937 12471 12769 11947 12798
% 13 18 17 16 18 14
- .80505 BU3L8  .85795  .Bu667  .82767  .B0BS6
Se 11648 13362 ¢ .12240  .13521 .13097 13673
% 19 18 16 14 12
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Figure 12. Using €, a Graphical Comparison across P - of
Six Algorithms along B = 0.0 where & = 4.0
with a 7-7-7 Split
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‘parison across P of Six Algorithms along
B =0.0 where & = 4.0 'with a 7-7-7 Split
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A COMPARISON ACROSS
ALONG B = -.25 Where

TABLE II

5 = 4.0

WITH A 7-7-7 SPLIT

p OF SIX ALGORITHMS

148

p

(-.25,-.5) (-.25,-.25) Flexible (-.25,.25) (-.25,.5) (-.25,.75)

20

C .82781 .88010 .89810  .89490 .89776 .88448
0 sg 12637 09604 .07909  .08001 .06989 .07708
% 13 19 20 18 17 15
T .83495 .88195  .89843  .89581 .89281 87857
Sc .11385 .08855 .08062  .07858 .07125 .08352
% 12 16 21 18 15 13
T .83700 ,88552 .89676  .89557 .89200 .88924
2 s .12231 09292 .08317  .07969 L07534 .08557
% 12 17 19 - 18 17 18
T .84148 .88510 ' °.89305 .89867 .89652 .89362
3 s 12222 .09690 .09184  .08387 .07998 .08076
% 16 17 19 20 19 18
- c .83605 .88819 ©.89271  .90110 .89595 .89086
b oose .12897 .09595 .08871  .08285 .08543 .08784
% 15 20 21 21 21 20
) .84057 .87910 .89290  .90005 . 89471 .89210
Sc 12682 .10915 .08836  ,08787 08476 .08656
% 16 19 19 22 20 19
c .8U671 .87610 .89776 90467 .89848 .88562
Sc 12647 .10749 .08448 07729 .08386 .09058
% 18 16 19 19 20 17
C 84657 .88995 .89867  ,9061L4 .90381 89867
Se 13640 .10026 .08130  .07944 .07663 ;08196
% 18 19 19 22 22 21
T .85871 88962 89624 .90571 89510  .89819
Se .12323 ,08948 .08204  ,07021 07580 .07719
% 21 19 19 19 16 17
T 86481 .89295 .89800  .89957 .89748 .88724
Sc .11027 - .09593 07921 07492 07597 .08713
% 19 22 21 19 20
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Figure 15. Using ¢, a Gfaphical Comparison across p of
Six Algorithms along B = -.25 where & = 4.0
with a 7-7-7 Split
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A COMPARISON ACROSS
ALONG B = 0.0 WHERE

TABLE III

WITH AN 11-7-3 SPLIT

p OF SIX ALGORITHMS
§ =4.0

152

Single (0, -.25) Average (0, .25) complete (0, .75)
z 73690 84286  .88281  .87762  .89029  .88100
Se 17293 .13059 .10336 10947 .08978 .09757
% 6 14 21 21 21 18
] 73262 .85729 86405 .87986 .89357 .87876
Se .16995 12401 11236 .10782 09674 .09793
% 7 15 18 23 25 21
T 72110 -~ 84195 .86400 .88029 .88438 87124
Se 17196 13244 .11760 .10299 .09652 .10533
% 7 15 20 23 23 20
T 73095 .84843 - .86552  .88271  .87495 87514
Se .17258 .13080 11502 .10155 .09843 .10310
% 11 17 - 19 21 19 21
<] 7524 .84238 85714 .87629 .87867 .87067
So 16973 .13408 12262 .10773 10304 11281
% 11 17 19 21 21 22
T 74405 85262  .88186  .87748  .88L43 87576
Se 17147 .12990 10624 .10165 .09875 .10954
% 11 19 22 20 23 24
T 74929 83976  .86414  .8832h  .87943 .88276
Sc 16572 .13096" .11609 10914 .10610 10174
% 11 17 21 2L 2L 23
c .78281 84157 84390 .87952 .88543 86476
Se .15686 14743 .12904 11422 10445 .12061
% 13 23 19 26 27 23
<] .83529 .86248 .85048 .86257 .87290 .86100
Se 14194 .13307 13348 - .13085 11145 .11017
% 20 26 © 23 25 25 21
T .87200 .86633 .86900 85443 .85210 .83200
Se 12752 .13556 .12885 .12608 .11884 .13003
% 27 2L 29 25 22 19
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‘Figure 18. Using ¢ , a Graphical Comparison across ¢ of
Six Algorithms along B = 0.0 where & = 4.0
with an 11-7-3 Split
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of Six Algorithms along B = 0.0 where
8 = 4.0 with an 11-7-3 Split
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Figure 20. Using % Correctly Classified, a Graphical Com-
parison across p of Six Algorithms along
B =0.0 where 6 = 4.0 with an 11-7-3 Split



TABLE TV

A COMPARTSON ACROSS P OF SIX ALGORITHMS

ALONG B = -.25 WHERE 6 = 4.0

WITH AN 11-7-3 SPLIT

156

(--25,—¢5) (-.25,-.25) Flexible (-.25,.25) (-.25,.5) (-.25,.75)

T .83552 .88552 .89800  .89595 .89071 87229
Se .13198 .09389 .08262  .08388 08845 09822
% 15 1y 20 18 19 17
T .8L4790 .88852 .90071  .89810 89133  .88338
s 12291 09478 .08675  .08026 .08712 .08962
A 16 21 25 22 21 19
T .8u21h .87071 .88952  .89L457 .89748 .8821L
S .13501 11219 09458 - .08516 .07950 .09379
% 18 22 26 25 23 20
T .84929 .87824 .88738  .88967 .89343 .88481
sc 2425 .10136 08402 ,08146 .08677 .08972
% 21 21 21 22 23 18
g  .85981 88490 .89248  .89000 .88862 .88352
Sc 11194 .09562 08493  .07691 .08670 .09158
% 21 23 23 20 21 19
T .85224 .89114 90252 89490 .89300 .89076
So 12235 .09682 08494 .08126 .09421 .09031
A 22 2l 28 25 25 21
T .84952 .88205 .90071  .90314 89371 .87648
se 12027 .10486 .08894 08126 09421 .09680
% 22 25 29 27 27 2l
T .86824 .88190 90114 .90u62 .88795  .87519
se  +11063 .10596 .08835  .08561 .09593 .10285
A 23 27 30 29 25 22
c .87190 .89938 .o0L443  ,89952 .89362 .87133
Se .11083 .09689 .09092  .08929 .09450 .09899
% 25 33 .32 30 30 23
T .88719 89724 90752 .8981L .88933 .87429
s .10211 .09238 .08170  .09080 .09413 .09923
% 29 31 32 30 28 25
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Figure 21. Using ¢ , a Graphical Comparison across p of
Six Algorithms along B = -.25 where & = 4.0

with an 11-7-3 Split
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Figure 22, Using se , & Graphical Comparison across P
of Six Algorithms along B = -.25 where
d = 4,0 withan 11-7-3 Split
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Figure 24. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms
along Y = -.5 where § = 4,0 with Two Different Splits
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Figure 25. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms
along Yy = -.25 where & = L,0 with Two Different Splits
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Figure 27. Using % Correctly Classified, a Graphical Comparison across. p of Two Algorithms
along Yy = .25 where § = 4.0 with Two Different Splits
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Figure 28. Using % Correctly Classified, a Gréphical Comparison across p of Two Algorithms
along y = .5 where § = 4.0 with Two Different Splits
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Figure 29. Using % Correctly Classified, a Graphical Comparison across p of Two Algorithms
along Yy = .75 where & = 4,0 with Two Different Splits
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A COMPARISON ACROSS p
AIONG B = 0.0 WHERE ¢ = 5.0

TABLE V

WITH A 7-7-7 SPLIT

OF SIX ALGORITHMS

166

Single (0, -.25) Average (0, .25) Complete (0, .75)
T 87171 . QU667 .96290 96252 95614 .94705
Sc 13392 .08379 .06205 06132 .06006 .07082
% L2 62 66 66 57 51
c 86271 94190 95795 96357 95695 95681
s 13347 .09258 06772 .06050 .06785 .06320
4 39 63 65 66 60~ 58
c .85962 .93690 .95467 .96052 .95690 .96171
s .13815 .09992 .07146 .05933 .07098 05827
A 38 62 62 61 61 60
c 87548 94552 .95700 .96329 .96029 .95571
Sc 12904 .09369 .06591 .05593 .06575 .06233
% 40 64 61 61 60 56
T .88438  .93790  .95467 L9634 96743 .95776
Se .13350 .11070 . 06841 .05671 04814 .06192
% 43 63 59 - 60 62 58
5 .88681 94352 95648 .95600  .O5743  .95457
s 14621 .09828 .06861 .06680 06740 .06387
2 49 61 61 59 59 57
c .88876 .94300 94552 96243 .95529 94357
Se 14520 .09929 .09054 .06091 .06885 .08795
% L9 60 57 62 57 55
) .89052 .92814 .93881 .95405 .Ul 57 . 94990
Se 4643 11581 10415 .06853 .07957 .06969 .
% 51 55 53 57 54 54
C 89648 .91824 93614 94738 92248 92448
S .12383 11955 .10803 .07986 .09936 09660
% 48 51 Sk 57 L3 L5
c .89929 .92871 .93800 .93243' .93405 92829
s JA1412 .10384 .09300 .08470 .07949 .08617
g 48 Bl 52 s 43

L9
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TABIE VI

A COMPARISON ACROSS p OF SIX -ALGORITHMS
AIONG B = -.25'WHERE 6 = 5.0
WITH A 7-7-7 SPLIT

('-257—-5) ("251"25) Flexible (“-251-25) ("25:{5) (';259-75)

T .94195 .96581 .966L48  .96833 .96019 .95338
Se .08604 05629 04841 04657 .05231 .05631
% 59 65 61 62 55 50
c .95324 .96362 .97019  .96771 .96286 95714
sc .07265 .06129 LOL6LO 04927 04858 .05278
% 62 66 66 63 57 52
T .97 52 .96800 96752 96700 .96319 .95605
Se .08401 L0514 05365 0L .0L696 05264
% 62 66 63 59 56 51
T .ou171 .97090 .96800  .96500 .96395 .96400
Se .08818 .04985 .05184 04858 .04971 .0L88YL
% 57 68 ) 63 59 59 58
T .9U267 . 96467 J96743 96748 96319 . 96276
So .09771 .05L466 04490 0650 .05009 .04970
% 59 63 59 61 58 57
z U657 96319 .97129  .96976 .96981 .96L467
S .08193 .05580 .0L487  ,05165 .0L48L2 04591
% 58 62 - 64 65 64 57
T 94105 .96581 97248  .96881 96867 96543
Sc. .08731 .05572 obl2l 04692 .04825 .04897
% 57 65 66 62 62 60
c 94005 .96352 .96519  .96538 96295 .96100
Se .08707 .06039 .05171  .05148 05214 05245
% 56. 62 61 60 58 57
c .93433 .96171 96419 95962 .95857 . 96038
Sc .08639 .06093 .05068  .05427 .05650 .05409
% 52 62 .60 56 56 57
[ .93448 o542 96157 96119 .95857 95357
c .08883 .06481 - ,05463  ,04886 .05251 .05712

55 56 59 56 v 55 52




TABLE VII

A COMPARISON ACROSS p OF SIX ALGORITHMS

AIONG B = 0.0 WHERE ¢ = 5.0

WITH AN 11-7-3 SPLIT

168

Single (0, ~.25) Average (0, .25) Complete (0,..75)
c 87486 .95157 .9L243 .95181 94976 LOL7L3
Se 15043 ,07208 .07570 06617 .07148 .08022
% 37 55 L9 52 52 S5k
c 87552 LOL72L e n .95824 .95595 94805
Se L4722 .07961 07742 .05738 06466 .07155
% 36 53 L9 54 53 51
T .86819 93619 .95400  .95519  .947L3  .95043
Se .15052 .09763  .07589 .06076 .06533 .06329
% 35 52 60 56 50 52
c .87500 94248 .94110 94833 .9L986 .94519
s 14639 09228 ,09010 07245 .06531 .07225
% 37 56 5 54 53 50
c 87419 .94348 9Ll .94119 .95090 95124
So 15423 .09129 .09151 .09685 .07312 .06500
% 39 - 58 57 55 55 55
c ., 88448 .95176 95810 .95590 .95843 Oll 57
Se 15004 .08072 ,06115 .08109 .07877 ,08266
% 43 59 55 61 65 S5k
c .91062 .95290 .95043 .95610 .95890 .94695
Sc .12887 06645 .08622 .08537 .08038 .08290
% Lé 57 58 61 €5 59
S 91776 95776 94671 (94629  .95419  .oL8u3
s .11683 .05958 .08745  .09814 08210 07543
% 48 57 55 58 60 55
c .91738 .95290 .93714 .9L257 94367 .93438
Se .09531 .06533 .09608 .09512 .08903 .09616
% b1 53 51 55 54 52
T .92833 .94500 Ohs51L 93871 .93014 924,57
S .07115 .06700 .09176  .10219 10415 .09939
% 39 L8 53 S5k 53 L7




A COMPARISON ACROSS

TABLE VIII

AIONG B = -.25 WHERE 6 = 5.0
WITH AN 11-7-3 SPLIT

1

p OF SIX AILGORITHMS

169

(-.25,-.5) (-.25,-.25) Flexible (-.25,.25) (-.25,.5) (-.25,.75)

T .9LL86 .95010 95324 ,95781 96133 .95086
Se 07604 06937 06276 ,05372 04670 .06602
% 52 52 52 51 53 50
T .ou762 .95276 96024 ,96152 95776 .ou771
s 07525 .06684 .05923  .05341 .05296  .07142
% Sk 53 58 56 53 50
T .95057 .95214 95929  .95500 95571 .94838
sec ~ .07398 .06778 05769 06174 .05759  ,06808
% Sh Sk 57 Sk 55 49
c .95105 9557 95610  .95757 .95224 94781
s 07425 .06058 .05702  .05892 06074  .06L48L
% 56 53 56 57 2 49
c 94619 .95552 95905 .95890 95290 L9L676
sc  .08210 .05995 05478  .05803 06238  .06916
% 55 56 ' 58 59 55 50
T .94838 95614 96181  .96110 96133 .95381
se  .07736 .06100 .05659  .05853 06057  .06261
% 57 58 62 62 62 5l
T .95210 .96295 96876 96019 . .96067  .95467
s,  .06818 .05552 .05231  .05979 0584l 06466
% 58 61 67 62 60 56
T .95548 .96090 (96110 95933 95800  .94519
se  -06690 .06083 .06079  .06312 06161 .07307
% 59 61 62 61 59 52
c .95876 95733 95338  .95524 95524 93743
sc  .05935 .05960 06549 06476 06417 07902
% - . 58 56 55 57 57 50
c 95024 95010 94995  .95381 94395 .93657
s, 06541 .07012 .06868  .06529  .07275  .07800

2 55 55 57 53 50
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