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1 Idea
The goal of this paper is to describe the different methods of producing rhyth-
mic canons. A rhythmic canon is a music compositional technique in which
a specific melody or string of notes is repeated throughout the piece of music.
The melody, also called the motif, can either be repeated as an exact replica of
the original duration, or it can be repeated after being submitted to some form
of transformation.

In this paper, rhythmic canons will be broken down into two different sets:
M ⊆ Z will be the motif, or the inner voice, so that each m ∈M corresponds to
a specific note. Then T ⊆ Z will be the set of translations, or the outer voice,
such that each t ∈ T will translate each m by t beats. Together M and T will
create the map:

M × T → Zn

(m, t) 7→ m + t

For all m ∈M and for all t ∈ T .
There are two types of canons that we will be working with:

A packing is a canon that which has at most one note on every beat, thus
some beats may have nothing. Therefore, the map of M × T ↪→ Zn for some
n ∈ N is injective.

A tiling is a form of packing that has exactly one note on every beat. Then
the map for a tiling will be M × T ↔ Zn for some n ∈ N is bijective

This paper will analyze different techniques of creating packings, and then it
will explore ways to expand packings into tilings with the analysis of undirected
graphs and their cliques.

2 Construction of Packings
2.0.1 Basic Translations

Let M = {0, 2} and T = {0, 3, 6}. Now assign each element of M to a note.
Say the element 0 corresponds to A and say 2 corresponds to C. Then if we
apply the translations given in T to the elements in M , we will produce a new
set Z = M ⊕ T where ⊕ is defined as: x ⊕ y = {x + y : x ∈ X, y ∈ Y }. Below
is what the canon will look like: (The motif is the first measure and Z is the
following series of notes)
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Note that the pitch of each beat of the composition is determined by the
pitch corresponding to the element of the motif that is added to the translation
that outputs the specific beat. Furthermore, if there is any beat that does not
have a corresponding element in Z, then the pitch of that beat is carried over
from the most previous pitch before it.

2.0.2 Wrapping Around

Sometimes when choosing a specific modulus, say Zn, we may result in a case
where the sum of one element of M and one element of T is greater than n. Then,
this sum would take on its congruent value within the specified modulus. As a
result, a motif may wrap around the canon as it carries out its translations.

Example 1. Let M ⊕ T ⊆ Z48 where

M = {0, 5, 10, 12, 17, 22} and T = {0, 3, 16, 27, 35}

Then we will have that 22 + 35 = 57 > 48, but 57 ≡ 9 (mod 48), so the note
corresponding with the element {22} from M will be translated to the 9th spot,
instead of the 57th. Thus, M ⊕ T ⊆ Z48 will look like this:
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Example 2.

M = {0, 2, 5, 11, 13, 34, 43, 54}, T = {6, 28, 28, 45, 64},Z72

2.1 Translation Techniques
2.1.1 Stuttering

We can carry out the act of stuttering by replacing each element in the motif
with k repetitions of itself.
Given the inner voice M and the outer voice T , this idea can be algebraically
written as:

Stut(M, k) = kM ⊕ {0, 1, ..., k − 1}

where kM = {km : m ∈M}. T is also augmented to kT and Zn is augmented
to Zkn.

Example 3. Let M ⊕ T ⊆ Z9, where M = {0, 2}, and T = {0, 3, 6}, with the
{1} corresponding with an A and {2} corresponding with C. Then we will have
the same canon as previously:

Now let k = 2, then we will have:

Stut(M, 2) = 2M ⊕ {0, 1} = {0, 4} ⊕ {0, 1} = {0, 1, 4, 5}
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2T = {0, 6, 12} and Z9 becomes Z18

Now the new canon is: {0, 1, 4, 5} ⊕ {0, 6, 12} ⊆ Z18. Then, if we assign a note
to each element in M , say {0} corresponds to G, {1} corresponds to A, {4}
corresponds to B, and {5} corresponds to C. Then by carrying out the stutter
on M , our packing changes from one in Z9 to one in Z18:

2.1.2 Even-Odd Overlapping

Let M1 contain only odd integers, let M2 contain only even integers, and let T1
and T2 contain only even integers so that M1 ⊕ T1 = Z1 and M2 ⊕ T2 = Z2 will
be disjoint subsets, i.e. Z1 ∩ Z2 = {∅}. Then if we assign a motif to M1 and a
motif to M2, we can overlap their transpositions to have a more densely tiled
canon.
Example 4. Consider:

M1 = {1, 5, 9} and T1 = {0, 2, 12, 14}

M2 = {0, 2, 8, 10} and T2 = {0, 4, 16, 20}
Then Z1 would look like this:

Z2 would look like this:

But together, they look like this:

Note: Even though Z1 ∪Z2 creates a packing, (M1 ∪M2)⊕ (T1 ∪ T2) does not
necessarily create a packing.
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2.1.3 Switching

The act of switching involves switching the elements of M and T . So in
other words, the motif becomes the translations and the translations become
the motif.

Example 5. Consider the sets defined above from Example 1. Originally we
have in Z48:

M = {0, 5, 10, 12, 17, 22} and T = {0, 3, 16, 27, 35}

But let’s switch them to obtain:

M ′ = {0, 3, 16, 27, 35} and T ′ = {0, 5, 10, 12, 17, 22}

Then we can carry out the normal process of translating the motif to create
a new canon:

Notice that there are the same number of notes in the composition, but since
there are less elements in the motif and more elements in the translation set
after switching, each single element is repeated one extra time.

2.1.4 Packing of a Set of Motifs

Instead of assigning each element of M to a specific note, we can assign each
element of M to a different motif.

Example 6. Let M = {0, 3, 6, 12, 17} and T = {0, 8, 16, 24} in Z32
Then we can assign each element of M to a unique series of notes, but each

of the same length. Say each element corresponds with four eighth notes. Then

6



a resulting canon may look something like this:

2.1.5 Changing the Elements of a Translation Set

After choosing a motif and translation set, if one were to wish to make the
packing "more dense", then it may be possible to remove some elements of the
translation set and replace them with new elements.

Example 7. Consider M = {0, 5, 10, 12, 17, 22} and T = {0, 3, 16, 27, 35} in
Z48. Let the motif and translation look like:
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Note that we cannot add any more elements to the translation set because 10
and 12 only have a difference of 2, and the only empty beats with a distance
of 2 apart have a corresponding translation that overlaps with previously made
elements of Z48. So, what if instead we removed {0} from T and added the
elements {2, 36} to get T1 = (T \ {0})∪ {2, 36} = {2, 3, 16, 27, 35, 36}. This will
create the new composition:

Then the process can be repeated to get some T2 = (T1 \ {27}) ∪ {17} =
{2, 3, 16, 17, 35, 36} which will look like:

Of course, these were not the only possible paths to change the original trans-
lation of M . However, note that as a "denser" packing of M was created, the
elements of T grew to be more adjacent to one another.

2.2 Beyond Packings
So far all of the musical compositions have had at most one note per beat, which
satisfies the definiton of a packing. Now we will look into some translation
techniques that result with more than one note per beat.

2.2.1 One Motif, Two Translations

An interesting technique to transform a canon is to take some motif set M and
give it two translation sets, say T1 and T2. This will result in three potential
compositions: M ⊕ T1, M ⊕ T2 and M ⊕ (T1 ∪ T2).

Example 8. Let M = {0, 3, 8, 11}, T1 = {1, 5, 7, 14}, and T2 = {2, 6, 16, 20},
all in Z26.
Let the motif look like:
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Then this creates the following compositions:

M ⊕ T1 :

M ⊕ T2 :

M ⊕ (T1 ∪ T2) :

Note that both M ⊕ T1 and M ⊕ T2 creates a packing, while M ⊕ (T1 ∪ T2)
does not since there are at most two notes per beat. Lets call this type of
composition a 2-packing, a canon with at most two notes per beat. Then fur-
thermore, a k-packing is a canon with at most k notes per beat.

This leads to the conclusion that the union of k unique packing-producing
translation sets for a motif will result in at most a k-packing. Even if there
exists one element per translation set that overlaps with at least one element
in every other translation set, there can still only be k notes per beat at the
maximum.

On the other hand, an interesting question to ask is whether or not the
translation set for every packing with at most k notes per beat be split into k
disjoint translation sets.

2.2.2 Doubling

A spin-off of giving one motif two translations is to take some motif set M and
its respective translation set T , then double each element in T to create T2. This
will still result in three potential compositions: M⊕T , M⊕T2 and M⊕(T ∪T2).

Example 9. Consider M = {0, 3, 16, 27, 35}, and T = {5, 10, 12, 17, 22} in Z48.
This results with T2 = {10, 20, 24, 34, 44}. Let the motif look like:
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Then the translations will look like:

M ⊕ T :

M ⊕ T2 :

M ⊕ (T ∪ T2) :

Notice that M ⊕ T creates a packing while M ⊕ T2 creates a 2-packing. If
we were to remove the last two elements from T , to get T ′ = T \ {17, 22} =
{5, 10, 12}, then T ′

2 = {10, 20, 24}, which will then become a packing. However,
this will result in M ⊕ T ′ and M ⊕ T ′

2 to be less musically dense and therefore
subjectively "less interesting".

2.2.3 Splitting Up the Translation Set

Idea: Each translation set can be broken apart into disjoint subsets whose union
make up the whole translation set.

Example 10. Consider the packing that has at most two notes per beat with
M = {0, 5, 7, 13, 18} and T = {0, 3, 7, 11, 12, 15, 23, 24, 27, 32, 36, 38, 39, 44} in
Z48. Then we can say that actually T = T1∪T2∪T3 where T1 = {0, 12, 15, 24, 36},
T2 = {3, 7, 23, 27, 39}, and T3 = {11, 32, 44}. Let the motif look like:
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Then, we can have two different compositions:

M ⊕ T :

M ⊕ (T1 ∪ T2 ∪ T3) :

Note that these are technically the same compositions. The only difference
is how long each pitch is held. Furthermore, T could also be split up into
T = T ′

1 ∪ T ′
2 where T ′

1 = {0, 3, 12, 15, 24, 27, 36} and T ′
2 = {7, 11, 23, 32, 39, 44}.

This new union will create yet another variation of the original M ⊕ T piece.

2.3 Summary
As different variations of these musical compositions are created using the var-
ious techniques, many questions arise:

• As more elements are added to the motif or translation set, more notes
appear in the music. How can we pick elements for M and T such that
we turn a packing into a tiling?

• Is there a pattern with how we choose the elements of M and T that would
allow us to predict how the composition will look or sound?

• What are some other ways to mathematically notate what is happening
to create these compositions?

These questions transition us into the next section, which will be the more
mathematical part of these musical compositions.
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3 Graphs and Cliques
An undirected graph is a set of vertices that are connected with bidirectional
edges. Then a clique is a subset of vertices of an undirected graph with every
two distinct pairs of vertices being adjacent. Furthermore, a maximal clique
is a clique that is not a proper subset of another clique.

From Figure 1. above, we can see that (III) and (IV) are maximal cliques
of G. Also note that (III) is a maximal clique of size 4 while (IV) is a maximal
clique of size 3. This shows that not all max cliques for a single graph have the
same size.

3.1 Construction of Graphs and Cliques
Consider some M ⊆ Zn. Then for all 0 ≤ i ≤ n − 1, let each set M + i be a
vertex of the graph. Then connect each pair of vertices M + i and M +j that do
not share any common elements. This graph will be notated as Γ(M, n). Any
subgraph of Γ(M, n) that has each pair of vertices connected by an edge is a
clique of Γ(M, n).

Example 11. Consider M = {0, 1, 5, 6} in Z16. Then the graph Γ(M, 16) looks
like:
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By observing Γ(M, 16), it can be seen that both M , M +8 form a clique and
M , M + 2, and M + 9 form a clique. Note that these are also both maximal
cliques.

3.2 The Interval Set
Consider M ∈ Zn. Let I(M) ⊆ Z where:

I(M) = {a− b ∈ Zn : a, b ∈M}

We will call this the interval set. Now take the complement of I(M) to get:

[I(M)]c = Zn \ I(M)

It is from this complement set where we will find the potential vertices for cliques
and maximal cliques.

Idea: If C ⊆ [I(M)]c is a clique of Γ(M, n), then each element of C is
contained in [I(M)]c, and each interval between every two elements of C is
contained in [I(M)]c.

Proof. Let Γ(M, n) be the graph for some motif M ⊆ Zn. Recall that Γ(M, n) is
created by connecting all M + im that do not share a common element. There-
fore, for all a ∈M and for all b + i ∈M + i, it must be that a 6= b + i in order
for M and M + i to be connected. This implies that a − b 6= i. Then since
a− b ∈ I(M), i 6∈ I(M), so i ∈ [I(M)]c. Thus, the elements of [I(M)]c compose
Γ(M, n). Furthermore, since a clique is a subset of Γ(M, n), the vertices of the
clique must be found in [I(M)]c as well.

Furthermore, cliques also have the property that each pair of their elements
are connected. This means that the difference between each i and j in C must
also be in [I(M)]c. So for all a + j ∈ M + j and b + i ∈ M + i, we must have
that a + j 6= b + i in order for the vertices to be connected. Thus, a− b 6= j − i.
Then since a− b ∈ I(M), j − i ∈ [I(M)]c. Therefore the intervals between each
vertex of a clique are contained in the interval set as well.

From here we can define a clique to be:

C = {i, i− j : i ∈ [I(M)]c, i− j ∈ [I(M)]c}

Example 12. Let M = {0, 5, 10, 20} ⊆ Z40. This motif produces:

I(M) = {5, 10, 15, 20, 25, 30, 35}

[I(M)]c = {0 . . . 4, 6 . . . 9, 11 . . . 14, 16 . . . 19, 21 . . . 24, 26 . . . 29, 31 . . . 34}

Now consider C = {0, 9, 18, 27}. Note that each of these elements are contained
in [I(M)]c, along with their differences. Thus C is a clique. Since 10 is not
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contained in [I(M)]c, we can already conclude that any element with a 0, 9, 8,
or 7 in the one’s place cannot be added to the clique. And also since 5 is not
contained in [I(M)]c, any element with a 4, 3, 2, 1 in the one’s place cannot
be added to the clique. Thus no more elements can be added to C, so C is a
maximal clique.

3.3 Relationships Between Graphs, Cliques, and Sets
3.3.1 Cliques and Translation Sets

In order for M ⊕ T to produce a packing, we must have that no M + im share
any common elements. This means that each im is contained in [I(m)]c and
each im1 − im2 is contained in I[(M)]c as well (for similar reasons as stated
previously). Then if we take each im that satisfies this condition to make the
translation set T = {i1, i2, . . . , im}, T is now equivalent to a clique.

Idea: M ⊕ T is a packing if and oly if T is a clique of Γ(M, n)

3.3.2 Motif and Translation Sets

Recall that the act of switching involves swapping the elements of M and T .
Now consider the graph Γ(M, n) with a clique whose elements compose the set
T . If the elements of M and T were swapped, say to get M ′ and T ′, then the
graph Γ(M ′, n) will contain a clique whose elements compose T ′.

Example 13. Let M = {0, 3, 6} where M ⊆ Z9. Then the graph Γ(M, 9) will
look like:

Notice that the vertices 0, 2, and 4 create a complete subgraph, thus they make a
clique. Let T = {0, 2, 4} be this clique and therefore a translation set. Now if we
switch M = {0, 3, 6} and T = {0, 2, 4} to get M ′ = {0, 2, 4} and T ′ = {0, 3, 6},

14



the graph Γ(M ′, 9) will look like:

Note that the vertices 0, 3, and 6 create a clique in this new graph.

So, in conclusion T is a clique of Γ(M, n) and M is a clique of Γ(T, n), i.e.
M and T are each cliques of the other’s graph. This is particularly useful when
trying to add an element to either the motif or translation set. After graphing
Γ, we can visually spot the vertices that create a larger clique. These vertices
can be added to either M or T , depending on which graph Γ we are looking at.

3.3.3 The Motif Set and Γ(M, n)

Idea: If I(M1) = I(M2) for M1, M2 ⊆ Zn, then Γ(M1, n) = Γ(M2, n). In other
words, different motif sets can create the same graph.

When we add an element to M , we add a pair of elements to I(M). There
are n different elements that can be added to M , but there are only n

2 or n+1
2

element pairs that can be added to I(M), depending on if n is even or odd.
Therefore, there are more combinations of elements that can be added to M
than the combinations of elements that can be added to I(M). This gives that
there will be more than one motif set that will result in the same I(M). Then
furthermore, the complement to the created interval set, [I(M)]c will be the
same for different motif sets. Since it is from [I(M)]c that the Γ(M, n)’s are
made, it must be that multiple motif sets will create the same graph.

This leads to the creation of classes for the motif set. The class of some set
M ⊆ Zn can be defined as:

Cl(M) = {M1 ⊆ Zn : I(M) = I(M1)}
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Example 14. Consider M1 = {3, 5, 6} ⊆ Z9. This makes Γ(M1, 9):

Note that I(M1) = {1, 2, 3, 6, 7, 8}. Now consider M2 = {3, 4, 6} ⊆ Z9. This
makes Γ(M2, 9):

Note that I(M2) = {1, 2, 3, 6, 7, 8} as well. So, M1 and M2 are two different
motifs, but they both produce the same graph. Thus, they are in the same class.

3.4 Clique Sizes
3.4.1 The Maximum Size of a Clique

Let M be a motif for Zn, giving Γ(M, n). Then T is a clique for Γ(M, n) iff
M ⊕T does not have any repeating elements,which implies M ⊕T is a packing.
Assume that M ⊕ T has one note on every beat in Zn. Then M ⊕ T has n
elements. Since each of these elements are created by adding each m ∈M with
each t ∈ T , |M ⊕ T | = |M ||T | < n. So |T | < n

|M | . Note that not all motifs and
translation sets will create a packing with exactly one note on every beat, and
the cardinality of M ⊕ T must be represented by an integer. Thus, the largest
size of the maximal clique of Γ(M, n) is less than or equal to b n

|M |c.
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3.4.2 There exist arbitrarily large cliques

Let M and T be motif and translation sets that together create a packing in Zn.
Note that T is then a clique of Γ(M, n). Then if the sum of the largest element
of M and the largest element of T is less than n (i.e. no "wrapping around"
occurs) then T a = (T +(a−1)n)∪(T +(a−2)n)∪ ...∪T is a clique for Γ(M, an).

Note: It follows that |T a| = a|T |

Example 15. Let M = {0, 1, 5, 6} and T = {0, 2, 9} in Z16, giving Γ(M, 16).
Note that 6+9 < 16, so no "wrapping around" occurs. This creates the packing:

Now let a = 3. This gives Γ(M, a(16)) = Γ(M, 48) so

T 3 = (T + (3− 1)n) ∪ (T + (3− 2)n) ∪ (T + (3− 3)n)

= (T + 2n) ∪ (T + n) ∪ T

= {32, 34, 41} ∪ {16, 18, 25} ∪ {0, 2, 9}

Then by the translation of M by T 3 creates the packing:

3.4.3 Graphs Γ(M, n) can have arbitrarily far apart cliques

Note that even though T a can be a clique for Γ(M, an), the original T is still
a clique for Γ(M, an) (though not a maximal clique). Thus since |T a| = a|T |,
|T a| is arbitrarily larger than |T | as a becomes arbitrarily large.
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3.4.4 Graphs Γ(M, n) can have arbitrarily far apart maximal cliques.

Recall that Γ(M, n) can have more than one maximal clique. So let T and S both
be two different max cliques for Γ(M, n). Then |T a| = a|T | and |Sa| = a|S|.
Let |T | = t and |S| = s with s > t. Then

lim
a→∞

(|T a| − |Sa|) = lim
a→∞

(a|T | − a|S|) = lim
a→∞

a(t− s)

Since this goes to infinity, |T a| and |Sa| can be arbitrarily far apart. Thus max-
imal cliques can be arbitrarily far apart.

Example 16. Recall the set M = {0, 1, 5, 6} ⊆ Z16 from Example 11. Both
the sets T1 = {0, 8} and T2 = {0, 2, 9} form maximal cliques in Γ(M, 16). Thus,
as a → ∞, T a

1 and T a
2 will become arbitraily large in Γ(M, an), but they will

be arbitrairly far apart, as shown above.

4 Questions and Future Ideas
4.1 Stuttering Cyclic Graphs
When graphing many different motifs, it was often found that if Γ(M, n) is cyclic,
then Γ(Stut(M, k), kn) is also cyclic. (Cyclic: Γ(M, n) contains at least one
path between vertices where the first vertex corresponds with the last). Though,
some stuttered graphs created a single cycle between all the vertices while other
ones created two disjoint cycles through the vertices whose union makes up the
whole graph. A counter example has not yet been found to disprove this idea,
so the question arises as to whether or not this is a property of stuttering the
graphs.

Example 17. Let M1 = {3, 5, 6} ⊆ Z9 to create Γ(M1, 9) :

Notice that Γ(M1, 9) is composed of just a single cycle. Then if we stutter
Γ(M1, 9) by k = 2, we will obtain 2M1 = {6, 7, 10, 11, 12, 13} ⊆ Z18. This
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creates Γ(2M1, 18) which looks like this:

Notice that Γ(2M1, 18) is also composed of one single cycle.

Now let M2 = {2, 5, 6} ⊆ Z9 to create Γ(M, 9) :

Then we will also stutter this graph by k = 2 to get 2M2 = {4, 5, 10, 11, 12, 13} ⊆
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Z18. This creates Γ(2M2, 18) which looks like this:

Γ(2M2, 18), however is composed of two disjoint cycles that together make up
the entirety of Γ(2M2, 18). How do we know when a single cycle or two disjoint
cycles will appear after stuttering some Γ(M, n)?

Some other questions that were asked about stuttered graphs were:

• Is there a way to predict that if Γ(M, n) is composed of a single cycle,
then Γ(Stut(M, k), n) has either one cycle or two disjoint cycles?

• Would looking at I[M ] give us any information?

• Is there a relationship between the sizes of cliques in Γ(M, n) and
Γ(Stut(M, k), n)?

• What about the relationship between the degrees of the vertices?

4.2 Affine Maps
Originally, we used the map (m, t) 7→ m + t to translate the motif and make a
musical composition. Instead, if we chose some k ∈ Z such that gcd(k, n) = 1,
we could change the map to:

m 7→ km + t

It is important to make k and n relatively prime since as you multiply all m ∈M
by k, you do not want the product to be an equivalent value of m in the modulus.
This new map would result in a different Γ(M, n) for each different k. We could
then find a clique among the vertices of the different Γ(M, n)’s, rather than just
vertices within the same Γ(M, n), to create a translation set and furthermore a
musical composition.
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Example 18. Consider the motif M = {3, 5, 7} ⊆ Z11. Then as

k = 1, M = {3, 5, 7}

k = 2, 2M = {6, 10, 3}

k = 6, 6M = {7, 8, 9}

More specifically,
2M + 9 = {4, 8, 1}

and
6M + 2 = {9, 10, 0}

Since M , 2M + 9, and 6M + 2 do not share any common elements, we can
translate each element of the motif by the functions m, 2m+9, and 6m+2. Let
3 correspond with the note C, let 5 correspond with a B, and let 7 correspond
with an E. Then our composition composed with this new map will look like:

4.3 Two Dimensional Compositions
The musical compositions produced by M⊕T have so far been one-dimensional,
meaning that the motif is only translated across a number line of beats. We
could add a second dimension to this by using the map:

(m, t, s) 7→ (m + t, m + s)

For all m ∈ M , t ∈ T , and s ∈ S. In this case, we have two translation sets S
and T . T would move the motif along the x-axis while S would move the motif
along the y-axis. So, for example, S could produce the pitch, depending on how
far up or down the motif is moved, and T will produce the placement of the
pitch on a specific beat.
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