Attempted Proof of Procedure for the Preparation of Cyclic Perarylated Oligogermanes (GeAr₂)₄ with various Aryl Groups.

Kylie Hagerdon

Department of Chemistry Faculty Sponsor: Dr. C. Scott Weinert Graduate Mentor: Dr. Sangeetha P. Komanduri

ABSTRACT

The focus of this study was the proof of procedure for the preparation of 2,5-xylyl (C₆H₃(CH₃)₂-) substituted tri- Ar₃GeCl, di- Ar₂GeCl₂ and mono-aryl ArGeCl₃ germanes as well as slightly modifying the synthesis to produce 2,4-xylyl substituted tri-, di- and mono-aryl germanes first reported by Komanduri. These substituted germanes could then further be used for preparing perarylated cyclic oligogermanes. These cyclic oligogermanes would then have the potential to be ring-opened, thus synthesizing a new series of discrete linear oligomers containing extended Ge-Ge chains. The production of relatively pure arylgermanes was successful, though provided significant challenges in purification. Difficulty in the long work up procedures gave way to product loss, and thus was difficult to reproduce. The generalization of this process with other xylene aryl groups was shown to be possible, but further investigation is needed to confirm. The use of the di-arylgermanes in the cyclization reactions involving sodium have not yet been reproducible.

Introduction

The first organic derivative of germanium (tetra-ethylgermanium, Et₄Ge) was synthesized in 1887.¹ For several years this was the only organogermanium compound until the synthesis of tetraphenylgermanium, Ph₄Ge, by Drew and Morgan, which brought quaternary organic germanium species into focus.² Since methods for the preparation of arylgermanes have involved the treatment of germanium tetrachloride GeCl₄ with an aryl Grignard, a Wurtz-Fittig reaction, or arylithium reagents. These methods were not efficient of selective, producing mixtures and resulting in low yields.³

Many investigations have been conducted of the synthesis of cyclic group 14 compounds. Perphynylated cyclosilanes have been prepared via the addition of dichlorodiphenylsilane Ph₂SiCl₂ with either sodium, lithium, or magnesium ⁴⁻⁶ After isolation compounds corresponding to $(Ph_2Si)_n$ where n = 4, 5, and 6 respectively were reported.⁷⁻⁹ Cyclic germanium compounds have been prepared following a similar method using dichlorodiphenylgermane Ph₂GeCl₂ and sodium metal. The resulting homocyclic germanium compounds of the formula $(Ph_2Ge)_n$ where n = 4, 5, and 6 were formed in various ratios. ¹⁰⁻¹²

These compounds have again become of interest for their role as precursors in ring opening reactions that allow for the preparation of long linear oliogogermanes. The Weinert group reported on the ring opening of (GePh₂)₄ using molecular bromine to yield Br(GePh₂)₄Br.¹³ The ring strain involved in the cyclogermane compound enabled the process to occur favorably and quickly.¹⁴ Similar methods have been investigated by the Weinert group to ring open decaphenylcyclopentagermane (GePh₂)₅ but have shown uncontrolled ring opening when reacted with lithium metal under argon. In an attempt to control the ring breaking reactions, cyclogermanes using various aryl ligands are under examination.

Arylgermanium halides $Ar_nGeX_{(4-n)}$ and hydrides $Ar_nGeH_{(4-n)}$ (n = 1-3) have recently become of interest for their potential as starting materials for the aforementioned production of cyclic oligogermanes. However, these investigations have been hindered because of the lack consistent and efficient synthetic pathways for germanium polymer compounds.¹⁵⁻¹⁶ Synthetic pathways that are used in the group are not applicable for organogermanium compound synthesis, thus requiring investigation into different preparatory routes. ^{15,17} Synthetic routes using organometallics compounds have included organolitihum or organomagensium compounds (RLi, RMgX), comproportionation reactions, or halogenation reactions starting from organogermanes.¹⁸⁻²³However, a versatile and reliable pathway to prepare arylgermanium compounds had until recently been elusive.²⁴⁻²⁶ Recently, work was done on a series of novel tetraarylgermanes Ar₄Ge (aryl = tolyl, xylyl, naphthyl, and mesityl derivatives) and triarylgermanium halides Ar_3GeX (X = Cl, Br).²⁷ The focus of this study was the proof of procedure for the preparation of 2.5-xylyl (C₆H₃(CH₃)₂-) substituted tri-Ar₃GeCl, di- Ar₂GeCl₂ and mono-aryl ArGeCl₃ germanes as well as slightly modifying the synthesis to produce 2,4-xylyl substituted tri-, di- and mono-aryl germanes first reported by Komanduri. These substituted germanes could then further be used for preparing perarylated cyclic oligogermanes. These cyclic oligogermanes would then have the potential to be ringopened, thus synthesizing a new series of discrete linear oligomers containing extended Ge-Ge chains.

Experimental Details

The aryl substituted germanium compounds ArMg-Cl were prepared using the Grignard method described in Scheme 1. Magnesium was reacted with the desired arylhalide (2,5-xylyl-Cl or 2,4-xylyl-Cl) for a minimum of four hours and filtered to remove excess magnesium, a step crucial to preventing hexa-aryldigermanes (Ar₆Ge₂) from forming.²⁸ The Grignard solution was then added dropwise to the solution of GeCl₄ in Et₂O at 0°C and stirred for 4 hours. Following the reaction was quenched using 10% degassed HCl and the organic layer separated. After filtering and drying the organic layer to produce a white/yellow solid GC-MS was used to classify products. One complication in preparing pure triarylgermanium halides, also seen with other group 14 analogs, is the occurrence of subsequent products could be separated and all utilized as starting materials for varying reactions.

Scheme 1: Grignard synthesis for preparing chloride mixture $Ar_nGeCl_{(4-n)}$ (n = 1-3)

The chloride mixture was then reacted with LiAlH₄ over night. After quenching with a dilute sulfuric acid solution, the product was then filtered and stirred with potassium tartrate hydrate to balance pH. The solution was then filtered again and stirred in MgSO₄ for 30 minutes. After filtering off the MgSO₄ the solution was dried via vacuum in an ice bath to ensure none of the volatile ArGH₃ evaporated off. The mixture of halides was then separated, detailed in Scheme 2.

Scheme 2: Synthetic preparation of $Ar_nGeH_{(4-n)}$ (n = 1-3) mixture and separation.

Separation by short path distillation condensed a clear liquid solution of ArGeH₄. The remaining yellow solution contained Ar₂GeH₂ and Ar₃GeH and was dried via vacuum. The remaining solid was washed with pentane to separate the soluble Ar₂GeH₂ from the Ar₃GeH via filter cannulation. After separation, the pentane dissolved Ar₂GeH₂ was thoroughly dried.

A 3-neck flask was charged with pure Ar₂GeH₂ and dissolved CCl₄. A Catalytic amount of Palladium was added to the reaction and refluxed for 48 hours (Scheme 3). The resulting solution was filter cannulated and dried in warm water bath. Solids were washed multiple times with pentane to remove soluble impurities, then dried, resulting in a white powder.

Scheme 3: Synthetic preparation of pure (2,5-xylyl)₂GeCl₂

The prepared white powder, Ar₂GeCl₂, was then dissolved in toluene and added dropwise to a refluxing sodium and toluene solution. This was allowed to react for a minimum of 8 hours. The final black solution was then hot filtered and dried to produce an off-white powder. The solid was washed and filtered with both Et₂O and toluene to removes salts. The final solution was then dissolved in minimal toluene to create a supersaturated solution. After portioning off several small vials of this super saturated solution, it was then super-heated and immediately capped and left completely still for several days to form crystals. The crystals were then analyzed.

	m/z	Assignment
2,5-(CH ₃) ₂ (C ₆ H ₃)	105	$(CH_3)_2C_6H_3^+$
(t _r =11.79 min)		
ArGeCl ₃	284	$((CH_3)_2C_6H_2)GeCl_3^+$
(t _r =18.02 min)	248	$((CH_3)_2C_6H_2)GeCl^+$
	179	$((CH_3)_2C_6H_2)GeH_2^+$
	104	$((CH_3)_2C_6H_2)^+$
	77	$(C_6H_5)^+$
Ar ₂ GeCl ₂	354	$((CH_3)_2C_6H_2)_2GeCl_2H^+$

Results

(tr=24.26 min)	248	$((CH_3)_2C_6H_2)_2GeCl_2^+$
	179	$((CH_3)_2C_6H_2)_2GeH_2^+$
	104	$((CH_3)_2C_6H_2)^+$
	77	$(C_6H_5)^+$
Ar ₃ GeCl	424	$((CH_3)_2C_6H_3)_3GeClH^+$
(t _r =27.62 min)	387	$((CH_3)_2C_6H_3)_3Ge^+$
	318	$((CH_3)_2C_6H_3)_2GeCl^+$
	283	$((CH_3)_2C_6H_3)_2GeH^+$
	209	$((CH_3)_2C_6H_3)_2^+$
	177	$((CH_3)_2C_6H_3)Ge^+$
	105	$((CH_3)_2C_6H_2)^+$

 Table 1: GC-MS data for product mixture of chlorides

	m/z.	Assignment
ArGeH ₃	180	$((CH_3)_2C_6H_3)GeH_3^+$
(t _r =10.06 min)	165	$(CH_3(C_6H_3))Ge^+$
	151	$(C_6H_3)GeH_4^+$
	107	$((CH_3)_2C_6H_3)H_2^+$
	91	$(CH_{3}(C_{6}H_{3}))H^{+}$
	78	C ₆ H ₃ +
Ar ₂ GeH ₂	284	$((CH_3)C_6H_3)_2GeH_2^+$
(t _r =20.28 min)	180	$((CH_3)_2C_6H_3)GeH_3^+$
	165	$((CH_3)C_6H_3)GeH_3^+$
	151	$(C_6H_3)GeH_4^+$
	105	$((CH_3)_2C_6H_3)^+$
	77	$C_6H_4^+$
Ar ₃ GeH	284	((CH3)4C6H3)GeH ⁺
(t _r =26.41 min)	269	((CH ₃) ₃ (C ₆ H ₃))Ge ⁺

207	$((CH_3)_2(C_6H_3))_2^+$
192	$(CH_3)_3(C_6H_3)_2^+$
179	$((CH_3)_2(C_6H_3))GeH^+$

Table 2: GC-M	S data for	product mixture	e of halides
---------------	------------	-----------------	--------------

	m/z	Assignment
ArGeCl ₃	284	$((CH_3)_2C_6H_2)GeCl_3^+$
(t _r =18.13 min)	248	$((CH_3)_2C_6H_2)GeCl^+$
	179	$((CH_3)_2C_6H_2)GeH_2^+$
	104	$((CH_3)_2C_6H_2)^+$
	77	$(C_6H_5)^+$
Ar ₂ GeCl ₂	354	$((CH_3)_2C_6H_2)_2GeCl_2H^+$
(t _r =23.96 min)	248	$((CH_3)_2C_6H_2)_2GeCl_2^+$
	179	$((CH_3)_2C_6H_2)_2GeH_2^+$
	104	$((CH_3)_2C_6H_2)^+$
	77	$(C_6H_5)^+$
Ar ₃ GeCl	424	$((CH_3)_2C_6H_3)_3GeClH^+$
(t _r =27.28 min)	387	$((CH_3)_2C_6H_3)_3Ge^+$
	318	$((CH_3)_2C_6H_3)_2GeCl^+$
	283	$((CH_3)_2C_6H_3)_2GeH^+$
	209	$((CH_3)_2C_6H_3)_2^+$
	177	$((CH_3)_2C_6H_3)Ge^+$
	105	$((CH_3)_2C_6H_2)^+$
2,5-(CH ₃) ₂ (C ₆ H ₃)	105	$(CH_3)_2C_6H_3^+$
(tr=24.64 min)	209	((CH3)2C6H3)2 ⁺
	77	$(C_6H_5)^+$

Table 3: GC-MS data for product mixture after attempted cyclization

Discussion

After the reaction with GeCl₄ the resulting sample was analyzed by GC-MS with four main components in the product mixture with retention times at 11.79, 18.02, 24.26, and 27.62 minutes (**Table:1**). The peak at t_r =11.79 minutes is a small peak of xylene with features at m/z= 105. The second compound eluted off the column with t_r = 18.02 minutes is the trichloride ArGeCl₃ with a MS having peaks at m/z = 284, 248, 179, 104, and 77 amu, which correspond to the parent ion (ArGeCl₃⁺), and (ArGeCl⁺), (ArGeH₂⁺), (C₆H₂(CH₃)₂⁺), and (C₆H₅⁺), respectively. The main peak eluting third off the column is dichloride Ar₂GeCl₂ with t_r = 24.26 minutes as its MS has peaks at m/z = 354, 248, 179, 104, and 77 amu, corresponding to the parent ion (Ar₂GeCl₂H⁺) and (ArGeCl₂⁺), (ArGeH₂⁺), (C₆H₂(CH₃)₂⁺), and (C₆H₅⁺), respectively. The final eluted compound with t_r = 27.62 minutes matches the fragmentation of monochloride Ar₃GeCl, with MS features at m/z = 424, 387, 318, 283, 209, 177, 105, and 79 amu, indicating the presence of (Ar₃GeClH⁺), (Ar₃Ge⁺), (Ar₂GeCl⁺), (Ar₂GeCl⁺), (Ar₂GeCl⁺),

The resulting product mixture after the lithium aluminum hydroxide reaction was analyzed by GC-MS to verify products, showing a chromatogram having three major compounds with retention times at 10.06, 20.28, and 26.41 minutes. (**Table:2**) The first eluted compound off the column was ArGeH₃ at $t_r = 10.06$ minutes, with its MS fragmentation patterning m/z = 180, 165, 151, 107, 91, and 78 amu matching parent ion ((C₆H₃(CH₃)₂GeH₃⁺, then successive loss of methyl groups giving ((C₆H₃(CH₃)Ge⁺) and (C₆H₃GeH⁺), (C₆H₃(CH₃)₂)H₂⁺, (C₆H₃(CH₃))H⁺, and PhH⁺, respectively. The second eluted compound at $t_r = 20.28$ minutes was Ar₂GeH₂, and has the following fragmentation: m/z = 284, 180, 165, 151, 105, and 77, these peaks correspond to $(C_6H_3(CH_3)_2)_2GeH_2^+$, $(C_6H_3(CH_3)_2)GeH_3^+$, $(C_6H_3(CH_3))GeH_{3+}$, $(C_6H_3)GeH_4^+$, $(C_6H_3(CH_3)_2^+$, and PhH⁺ respectively. The last compound eluted off is Ar₃GeH at t_r = 26.41 minutes, and its MS has leaks at m/z = 284, 269, 207, 192, and 179 amu. These peaks correspond to the ions of $(C_6H_3(CH_3)_2)_2GeH^+$, followed by the loss of one methyl group, $(C_6H_3(CH_3)_2)_2^+$ with another loss of a methyl group, and ArGeH⁺, respectively.

The side products generated from the LAH reaction, Ar₃GeH and ArGeH₃, and the major Ar₂GeH₂ species could all be used as starting materials a new series of linear oligomers, since these materials could be used in the hydrogermolysis reactions. After separation, the resulting insoluble white solid was identified by GC-MS as relatively pure dichlordiarylgermane Ar₂GeCl₂ with slight impurities of Ar₃GeCl and ArGeCl₃.

The attempted cyclotetragermane production resulted in an off-white/yellow product that upon analysis yielded predominately Ar₂GeCl₂ with slight impurities of Ar₃GeCl and ArGeCl₃. The sample was analyzed by GC-MS with four main components in the product mixture with retention times at 18.13, 23.96, 27.28, and 24.64 minutes (**Table:3**). The features at 18.13, 23.96, and 27.28 minutes correspond to ArGeCl₃, Ar₂GeCl₂, and Ar₃GeCl respectively as discussed before. The feature at 24.64 minutes, however showed *m*/z= 105, 209, and 77 indicating ((CH₃)₂C₆H₃)⁺, ((CH₃)₂C₆H₃)₂⁺, (C₆H₅)⁺. This longer retention time suggests that an unaccounted-for reaction occurred at during the sodium reaction. The lack of cyclization indicates that the sodium reaction did not react as expected. This could be due to the impurities found in the final Ar₂GeCl₂ solution. Re-purification and reaction is underway; however, results will not be mentioned in this text. Both the para-xylene and meta-xylene reactions produced same results throughout, though the product for the reaction of the meta-

10

xylene were ruined in a lab error that resulted in complete loss of product before the cyclization reaction with sodium. Further work is needed to reexamine the process of the production of product with the meta-xylene.

Conclusion

This study aimed to prove that reproducibility of a previously designed and executed synthetic pathway first outlined in the dissertation by Komanduri. The production of relatively pure arylgermanes was successful, though provided significant challenges in purification. Difficulty in the long work up procedures gave way to product loss, and thus was difficult to reproduce. The generalization of this process with other xylene aryl groups was shown to be possible, but further investigation is needed to confirm. The use of the diarylgermanes in the cyclization reactions involving sodium have not been reproducible. Though, currently ongoing research preliminarily shows that the reaction is producible. Investigation into the variables that play apart into the cyclization need to be conducted to optimize the final procedure.

Literature Cited

- 1. Morgan, G. T.; Dugland, H.; Drew, K., J. Chem. Soc., Trans. 1925, 127, 1760.
- 2. Kraus, C. A.; Foster, L. S., J. Am. Chem. Soc. 1927, 49, 457-467.
- Samanamu, C. R.; Amadoruge, M. L.; Yoder, C. H.; Golen, J. A.; Moore, C. E.; Rheingold, A. L.; Materer, N. F.; Weinert, C. S., Organometallics 2011, 30 1046-1058.
- Gilman, H.; Peterson, D. J.; Jarvie, A. W.; Winkler, H. J. S., Tetrahedron Lett. 1960, 1 (44), 5-7.
- 5. Kipping, F. S.; Sands. J. E.; J. Chem. Soc., Trans. 1921, 119 (0), 830-847.
- Jarvie, A. W. P.; Winkler, H. J. S.; Peterson, D. J.; Gilman, H., J. Am. Chem. Soc. 1961, 83 (8), 1921-1924.
- 7. Gilman, H.; Schwebke, G. L., J. Am. Chem. Soc. 1964, 86 (13), 2693-2699.
- Winkler, H.; Jarvie, A.; Peterson, D. J.; Gilman, H., J. Am. Chem. Soc. 1961, 83(19), 4089-4093.
- 9. Goto, M.; Tokura, S.; Mochida, K., Nippon Kagaku Kaishi 1994, (3), 202-207.
- 10. Ross, L.; Drager, M., J. Organomet. Chem. 1980, 194 (2), 195-204.
- 11. Ross, L.; Drager, M., J. Organomet. Chem. 1980, 199 (2), 195-204.
- Roewe, K. D.; Golen, J. A.; Rheingold, A. L.; Weinert, C. S., Can. J. Chem. 2014, 92(6), 533-541.
- 13. Drager, M.; Simon, D., J. Organomet. Chem. 1986, 306 (2), 183-192.
- 14. Rupar, P. A.; Jennings, M. C.; Baines, K. M., Organomet. 2008, 27, 5043.
- 15. Simons, J. K., Wagner, E. C., Muller, J. H., J. Am. Chem. Soc. 1933, 55, 3705-3712.
- 16. Gynane, M. J. S.; Lappert, M. F., J. Organomet Chem. 1977, 142 (1), 9-11.

- Cooke, J. A.; Dixon, C. E.; Netherton, M. R.; Kollegger, G. M.; Baines, K. M., Synthesis and Reactivity in Inorganic and Metal-organic Chemistry 1996, 26 1205-1217.
- Chaubon, M. A.; Dittrich, B.; Escudie, J.; Ramdane, H.; Ranaivonjatovo, H.; Satge,
 J., Synth. React. Inorg. Met. -Org. Chem. 1997, 27, 519-533.
- Samanamu, C. R.; Anderson, C. R.; Golen, J. A.; Moore, C. E.; Rheingold, A. L.;
 Weinert, C. S., J. Organomet. Chem. 2011, 696, 2993-2999.
- 20. Morgan, G. T.; Drew, H. D. K., J. Chem. Soc. Trans. 1925, 127, 1760-1768.
- 21. Kraus, C. A.; Foster, L. S., J. Am. Chem. Soc. 1927, 49, 457-467.
- 22. Harris, D. M.; Nebergall, W. H.; Johnson, O. H., Inorg. Synth. 1957, 5, 70-72.
- Wolf, M.; Falk, A.; Flock, M.; Torvisco, A.; Frank, U., J. Organomet. Chem. 2017, 851, 143-149.
- 24. Okano, M.; Mochida, K., Chem. Lett. 1990, 5, 701-704.
- 25. Gilman, H.; Gerow, C. W., J. Am. Chem. Soc. 1956, 78 (20), 5435-5438.
- 26. Thornton, P., Sci. Synth. 2003, 5, 55-73.
- 27. Johnson, O. H.; Harris, D. M., J. Am. Chem. Soc. 1950, 72, 5564-5566.
- Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C., Organometallics 1991, 10, 1510-1515.