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PREFACE 

This study shows the development of a sample size 

determination method which may be used in experiments for 

which the data are exponentially or geometrically distrihu~ 

ted. In addition, the procedure is shown to be valid for 

experimental data which are autocorrelated. The procedure 

can be applied to either physical or simulation experiments. 
' 

Finally, the procedure is shown to be a practical one in 

that it may be easily talbulated or easily incorporated 

into an on-going simulation experiment through the use of 

a subroutine. 
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CHAPTER 1 

INTRODUCTinN 

The use of computer simulation as a tool for perform

ing industrial and business-oriented experiments is fast 

becoming an important part of operations analysis. There 

are many problems, intractable using conventional analyti

cal methods, that are particularly suited for analysis 

through the vehicle of computer simulation (e.g., complex 

multi-channel queuing problems, some reliability analysis, 

and a variety of inventory problems). It is expedient, 

therefore, that research be effected that is addressed to 

the subject of computer simulation experimentation and its 

potential as a decision-oriented tool. 

Of particular importance to the researcher who uses 

computer simulation is the analysis of data generated by 

simulations. Because of characteristics inherent in 

digital simulations (e.g., non-normality, autocorrelation, 

and use of random numbers), conventional methods for 

experimental design and analysis are inappropriate for 

experimental data generated by computer simulations. 

Definition of Terms 

Simulation. Simulation is most often construed as a 
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process of performing experiments on a model of reality 

rather than on an actual system. The simulation process, 

therefore, enables the analyst to gain information about 

systems as they would perform over time. 

Monte Carlo T.echni gues. The term, t4onte Carlo 

Techniques, is sometimes used as a synonym for simulation. 

In this study, the term is used .more specifically to indi

cate experimentation on random numbers. 

Sample Size Determinatio~. The phrase, sample size 

determination, as used in this study, means that a proced

ure must be executed which indicates how many observations 

from an universe should be examined in order to adequately 

estimate a parameter of the populat·ion with a specified 

l.evel of statistical precision. 

Autocorrelation. Most conventional statistical 

techniques require that, in a data series, the value of 

any one observation is uninfluenced by the values for 

other observations. The term, autocorrelation, means that 

the values of the observations of a series of data are 

not independent of one another. 

Problem Oefinition 

Determination of sample size requirements for digital 

simulation experiments is difficult because most data 

generated by simulations tend to be autocorrelated and 

tend to fit distributions other th'an the normal distribu

tion. Several adequate sample size methods exist for 
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experiments in which the data are normal and independent. 

However, few methods have been devised which overcome the 

characteristics of non-normality and autocorrelation. 

Simulation practitioners have approached the sample 

size prob1em in various ways. Many practitioners have 

simply ignored the lack of independence and proceeded as 

though the observations were not correlated. Others have 

suggested making many runs with different random number 

sequences and appealing to the Central Limit Theorem in 

order to view the sample means as normal and independent. 

This dependency upon the Central Limit Theorem, however, 

makes necessary the gathering of an unusually large number 

of observations for an adequate analysis of the data. 

Since digital simulation experiments are ordinarily quite 

large and expensive to execute, gathering a large number 

of observations becomes prohibitive when cost is of impor

tance. 

The purpose of this study is to develop, describe and 

demonstrate a valid method of determining sample sizes. 

As developed, the method will be efficient, where effici

ency is defined in terms of the number of observations 

required for a given simulation experiment. Specifically, 

the method is particularly appropriate for data which are 

autocorrelated and which fit distributions frequently 

encountered in simulation experiments. 
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Scope Of The Study 

This study is limited to the development of a sample 

size determination procedure which is based on a method 

developed by Franklin A. Graybill. In his paper, Graybill 

outlines the conditions which must be met i~ order to 

develop a sample size determination method for distribu

tions other than normal. His examples, however, pertain 

only to the normal distribution and there is no evidence 

in the literature that others have expanded his work to 

distributions other than normal. In addition, his proced

ure is based on an assumption of independence. 

This study will expand Graybill's work by deriving 

a sample size determination procedure for the exponential 

and geometric distributions. The study will also show 
~<-

that the procedure may be used for autocorrelated data. 
" In addition, experiments will b~ performed to validate the 

procedure and to compare the procedure to one developed by 

George S. Fishman. 

Finally Graybill's method of normal data will be 

augmented with the procedure used by Fishman to adjust for 

autocorrelation. Tests will be run to validate the re-

sulting procedure when used on autocorrelated data. 

Methodology 

Validation of the method developed for computing 

sample size requirements for simulation experiments 
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generating exponentially or geometrically distributed data 

will employ a Monte Carlo approach. Sample size require

ments will be computed for a 9ata set which will be 

randomly generated to fit a specific dist~ibution and to 

exhibit a specific degree of autocorrelation. The requir

ed number of observations wil1 be taken as a sample and an 

interval estimate will be computed of the population mean. 
' 

This procedure will be repeated a number of times and 

information will be gathered concerning: {1} the propor

tion of trials in which the confidence interval actually 

contained the true value of the mean; and {2) the propor

tion of trials in which the width of the confidence 

interval is less than or equal to the desired width. 

The same ptocedure will be employed for Fishman's 

method using both expone~tial, geometric and normal data. 

The testing procedure will also be used for Graybill's 

method as it will be revised for autocorrelated, normal 

data. 

Chapter Organization 

Chapter II describes the most relevant problems en-

countered when conducting an experiment using digital 

sim~lation techniques. The problem of sample size deter

mination is shown to be a significant problem. Existing 

sample size determination techniques are ~escribed and 

the ~trengths and weaknesses of each are discussed. 

Chapter III provides a detailed description of a pro-
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cedure by which appropriate sample sizes for digital 

simulation can be determined, given that the data is 

exponentially or geometrically distributed. The technique 

is also shown to be successfully applied to autocorrelated 

data. In addition, thi~ chapter explains the conceptual 

considerations which must be met if an appropriate sample 

size is to b~ determined with this procedure. The results 

of experiments designed to compare this procedure to one 

introduced by Fishman are also included in this chapter. 

Finally, a subroutine of the procedure is included so that 

the determination of sample size can become an integral 

part of a simulation ·experiment written in FORTRAN or 

GASP. 

Chapter. IV shows how the procedure intr6duced by 

Graybill can be augmented with a process designed to 

adjust for autocorrelation. Graybill's procedure can 

then be used on normally distributed data which is auto

correlated. Results of comparisons of Graybill •s method 

with Fishman's method are reported in this chapter. 

Chapter V reiterates the conclusions which may be 

made based on the data generated in the s~udy. Possible 

extensions of the study and other areas of research re

lated to the study are also discussed in this chapter. 



CHAPTER II 

REVIEW OF LITERATURE 

Many definitions have been proposed for the term 

11 simulatioil 11 • Burdick and Naylor have defined it as 11 a 

numerical technique for conducting experiments on certain 

types of mathematical and loQical models describing the 

behavior of a system (or some componen~ thereof) on a dig

ital computer over extended periods of real time. nl Ackoff 

says simply that simulation is 11 to dupl1cate the essence 

of a system of activity without actually attaining reality 

itself. 112 

Within these two definitio.ns are contained both the 

salient points of a definition for digital computer simu

lation and the attributes which make simulation an 

important tool for analysis. First, simu·lation requires 

that a model be built that adequately describes the oper-

ation of the system under study. In this way, systems 

which are too complex for mathematical analysis may be 

examined. Conway, et al., discuss the various aspects of 

model building that should be considered.3 Secondly, 

experiments may be run to investigate the operation of the 

system for given configurations of components. As such, 

simulation is not an o~timizing device but a search 

7 
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procedure in which the configuration of components is 

varied in a number of experiments in order to find a maxi

mum for those particular configurations. Finally, the 

added dimension of time as a variable enables the practi-

tioner to incorporate a dynamic characteristic which is 

missing in most analytical techniques. 
I 

Because of the above attributes, the concept of 

computer simulation for discrete systems has become an 

important investigative tobl for management scientists. 

Practitioners and thoreticians alike are viewing simula-

tion as an acceptable method for approaching large scale, 

complex problems for which no analytical solutions are 

available. 

Problems in Simulation Experiments 

As an experiment, computer simulation usually consists 

of the following nine steps which have been outlined by 

Burdick and Naylor: 

1. Formulation of the problem. 
2. Collection and processing of real world 

data. 
3. Formulation of a mathematical model. 
4. Estimation of the parameters of the oper

ating characteristics of the model. 
5. Evaluation of the model and parameter 

estimates. 
6. Formulation of a computer program. 
7. Validation. 
8. Experimental design. 
9. Analysis of simulation data. 4 

Thus a simulation experiment is quite similar to a physical 

experiment and, as such, is subject to all the problems of 
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a physical experiment. In addition~ a simulation model 

exhibits problems brought about by the inherent character

istics of simulation. These difficulties can be 

categorized as problems of validation, experimental design, 

and sample size. Research is being actively conducted on 

all three fronts. The literature concerhing validation, 

and experimental design will be discussed in this section. 

Sample size will be discussed in the following section. 

Validation 

Validation of any experiment may be an onerous task 

in that inference to a population must be made on the 

basis of experiments on an environment which is abstracted 

from rea 1 i t y . For ex amp l e , ' a p 1 o t of g r o u n d t rea ted w i t h 

various types of commercial fertilizer may be the environ-

ment of an agricultural experiment. On the basis of 

results from this experiment, the analyst draws inference 

to a broader spectrum of so i 1 s a n.d con d i t i on s . The 

analyst using a simulation experiment also makes inference 

to the real world. However, his results may be viewed as 

more suspect since he is drawing inference from a mathe-

matical model. Van Horn lists some of the primary reasons 

for this suspicion. 

1. Simulations are often large and complex. 
2. Including many processes, simulations 

allow these parts to interact in non
linear, non-stationary ways. 

3. The assumptions may not be easily found. 
4. For the uninitiated, simulations may 

appear as very close representations of 
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reality.5 

Validating the model is viewed as a two-step process. 

The first step is to determine whether the model is 

internally correct in a logical and programming sense. 

·Next, the analyst must determine whether it represents 

the phenomena it is supposed to represent. Meier, Newell 

and Pazer suggest the following tests as possible methods 

for uncovering defects in the model: 

l. 

2. 

3. 

4. 

5 . 

Run the model for a short time period on 
a small number of transactions so that 
results can be compared with h~nd calcu
lations. 
Run separate segments of complicated models 
alone so that results can be v~rified. 
Eliminate random elements from stochastic 
models and run them as deter~inistic models. 
Replace complex distributions with elemen
tary ones so that results are more easily 
verified. 
Construct simpl~test situations that test 
as many combinat1ons of circumstances in 
the model as is feasible.6 . 

A somewhat different approach is proposed by Schmidt 

and Taylor. 7 They sugge~t analytically checking results 

against theoretical values. Obviously simulation experi-

ments would not be carried out if analytical techniques 

were readily avai\able. In many cases, however, the model 

is relatively straight forward but the underlying empircal 

data fit unusual distributions. If this be the case, then 

a more appropriate distribution may be substituted for 

purposes of verification and the res.ults checked against 

theoretical values. Similarly, authors have attempted 

verification of models through goodness-of-fit tests on 
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the resulting data.B 

The analyst must be able to show that his model is a 

reasonably valid representation of the real system. One 

method that has been suggested is. to show that the results 

df the simulation are consistent with results from the 

real system for a specific set of conditions.9 The obvious 

shortcoming for this approach is the analyst's inability 

to check simulation results for every set of conditions 

against empirical data. Thus, the analyst would rarely, 

if ever, prove that a simulation model i~ a correct or 

"true 11 model of the actual system in question. Burdick 

and Naylor concluded statements on validation in this 

fashion: 

... We consider the problem of validating com
puter models to be the most difficult unresolved 
probl~m facing individuais concerned with com
puter simulation experiments today. 

In a later article, Naylor and Finger suggest a three-stage 

approach for validation: 

1. Construct a set of ~ypotheses and postu
lates for the process using all available 
information - observations, general 
knowledge, relevant theory and intuition. 

2. Attempt to verify the assumptions of the 
model by subjecting them to empirical 
testing. 

3. Compare the input-output tra?'formations 
generated by the real world. 

Van Horn approaches verification of the model from 

the standpoint of cost/value trade-offs. 12 He sees valida-

tion as a process of selecting a set of verification 

methods which is appropriate for a particular problem or 
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model. The selection criterion he proposes is the balanc

ing of the cost of each action against the value of 

increased information about the validity of the r~sults. 

He sugg~sts eight possible methods: 

1. Find models with high face validity. 
2. Make use of existing research, experience, 

observation and other available knowledge 
to supplement models. 

3. Conduct simple empirical tests of means, 
variances and distributions using available 
data. 

4. Run tests of a Turing type. A Turing test, 
in this context, indicates the ability of 
an operationally experienced individual to 
discriminate between actual data and simu
lated data. 

5. Apply complex statistical tests on available 
data. 

6. Engage in special data collection. 
7. Run prototype and field tests. 
8. Implement tyj results with little or no 

validation. 

Thus, many suggestions have been made concerning the 

validati6n problem. To date, however, there seems to be 

very little concensus in the literature concerning a 

"proper" validation method. 

Experimental Design 

Another important consideration in any discussion of 

the problems involved in computer simulation is that of 

the design of experiments. Several authors have expressed 

concern that too little is being done to solve design 

difficulties inherent in si~ulation experiments. Mize and 

Cox state: 

Literature dealing with the statistical design 
of simulation experiments is relatively scarce. 
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... The development of practicy1 procedures is 
· urgently needed in this area. 

They follow these statements with a discussion of the ways 

in which simulation experimentation differs from physical 

experimentation. These differences include the assumption 

of independence, the definition of experimental error, and 

the concept of randomization. 

In physical experiments, great care is taken to insure 

that resu1t~ from one combination of factor levels be 

independent of other results. This is not ordinarily the 

case in simulation experiments since analysts are able to 

control the amount of variability. An identical sequence 

of events can be reproduced by reproducing the same 

sequence of pseudo-random numbers for each alternative 

simulated. Conway, et al., sees this procedure as: 

the limiting case of the blocking concept common
ly employed in experimental designs - blocks as 
homogenous as possible are seley~ed to reduce 
the variability of the results. 

This reduction in variation not only sharpens the contrast 

between alternatives, but also allows a reduction in 

sample size. 16 However, reproducing the same stream of 

random numbers does not yield statistically independent 

results and the usual analysis of variance procedures are 

not applicable. 17 If only two alternatives are being 

considered, the results can be paired and the differences 

between pairs become the relevant sample observations. 

However, if more than two alternatives are compared, there 

is no satisfactory method ayai1ab1e to make the 
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comparisons. Hillier and Lieberman do not see this as an 

over-riding limitation in that they view the procedure as: 

preferable to using different random numbers for 
each alternative and thereby obtaining statisti-
cal1Y inde~~ndent samples with relatively large 
var1ances. 

Another difference between physica1 and simulation 

experiments involves experimental error, In physical 

experiments, the residual variation is variation which 

is unexplained or beyond the control of the experimenter. 

In a simulation experiment, the stochastic variation, like 

every other feature of the model, is deliberately placed 

there by the constructor. The variation js introduced 

by generating pseudo-random numbers. As mentioned above,· 

sequences of random numbers are usually reproduced to 

reduce the variance.l9 

Finally, the concept of randomness is unusual in 

simulation experiments. In physical experiments, random-

ness refers to the order in which tests are to be 

conducted and is imposed to average out .the effects of 

uncontrolled variables. There are no "uncontrolled" 

variables in simulation. Therefore, since the programmer 

imposes each variable, the order of testing is unimpor

tant.20 

In 1966, Burdick and Naylor presented a comprehensive 

survey of experimental design methods which were applicable 

to simulation experiments. They included analysis of 

variance techniques, multiple ranking proc~dures, 
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sequential sampling and s~ectral analysis. 21 Later, in a 

book by Naylor, et al., desigrrs including full factorial, 

fractional factorial, rotable, and response surface were 

discussed. 22 An extension of that work is found in an 

article by Igna11. 23 Multiple ranking p~ocedures are more 

fully discussed in an article by Kleijnen, Naylor, and 

Seaks.24 Williams and Weeks introduced a design allowing 

a sequential study of a factorial experiment.25 Few 

studies other than these attack the problem of experimen

tal design for simulations. 

The Problem nf Sample Size 

·surdick and Naylor classify the sample size problem 

as one of the major problems remaining in simulation ex

periments. The problem may be broken down into two sub

classifications: 1) when to begin measurement; and 2) how 

many observations to measure. 26 The former is commonly 

called the problem of steady state and occurs when a 

process which operates on a substantially continuous basis 

is being studied. The determination of how many observa

tions to measure becomes difficult when the data lack 

independence and normality. 

Steady State 

For a continuously-running process or system, the 

question of when to begin measurement of observations 

hinges on a determination of when the system has reached 
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equilibrium. Starting the process in simulation introduces 

some mis-leading observations at the very beginning of the 

run. For instances, the first entities entering a queuing 

system would experience a very small waiting time while, 

in equilibrium, the waiting time might be an average of 

thirty minutes or more. Obviously inclusi6n of these 

observations would bias the results. Therefore, measure

ment shou1d begin only after some preliminary running time 

during which the transient conditions are allowed to 

decay. 27 Equilibrium, however, implies only that the long 

range mean be stationary. The term does not require that 

the sample be normally distributed nor that it be void of 

runs or cycles.28 

The ques.tion that lingers, though, is when does steady 

state occur. Schmidt and Taylor define the steady state 

for a parameter as the condition that occurs when 11 the mean 

and variance of a particular parameter stabilize to essen

tially constant values. 1129 Over-all steady state is 

reached only when the mean and variance of each parameter 

stabilize. Conway, however, cautions against using cumu-

lative statistics to determine steady state on the basis 

that these statistics lag behind the current state. 30 

Their use results in discarding information unnecessarily. 

In addition, these statistics will 11 Settle down even for 

systems which do not have a stationary state probability 

distribution. 1131 As yet, no satisfactory method for 

determining steady state has been found. 
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Stochastic Convergence 

The second phase of the sample size problem could be 

called the problem of stoch~stic convergence and refers to 

the convergence of sample averages to population averages 

for large sample sizes. A measure of precision is the 

standard error of the mean, .cr/fn (the ratio of the popula

tion standard deviation, d; to the square root of the 

sample size, n), To insure that the estimate is twice as 

precise, the sample size must be increased by four times. 

Thus, stochastic convergence is relatively slow and an 

extremely large sample ~ize m~y be necessary to produce 

a reasonable level of precision. 

This problem is compounded by the realization that 

conventional sample size techniques may not be appropriate 

for most simulation experiments in that assumptions of 

normality and independence are required. Simulation data, 

however, many times fit distributions other than norma1. 32 

In addition simulation data are usually not independent 

for observations which coexist in a system during a partic

ular unit of simulated time. In fact, Conway states, 

in every investigation with which I have been 
concerned the correlation has been found to be 
appreciable and has had ~~ be considered in the 
assessment of precision. 

In the past many practitioners have simply ignored 

the problem of lack of independence and proceeded as 

thoug·h the observatio~s were not correlated. Others have 

suggested that a sample of large size can be used without 
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significantly under-estimating the parameter. Theoreti-

cians have suggested making many runs with different random 

number sequences.34 With an appeal to the Central Limit 

Theorem, the disttibutio~ of the means of these independent 

runs could be ~iewed as normal and independent, This 

method also requires an unusually large number of observa

tions for analysis of the data. In addition, restarting to 

get independent observations means that steady state 

conditions must be reached each time. 35 A similar method 

which circumvents the steady state problem is making one 

continuous run and sub-dividing the observations into sets 

with intervening observations~ the intervening observations 

quaranteeing independence. 36 

In a 1964 _article, Murray A. Geisler suggested a 

sample size method for inventory simulations which allows 

the analyst to specify precision and confidence.37 

Geisler recognized the autocorrelation problem and propos

ed the values of pth_order lag correlations be found and 

used i~ formulas for computing the variance Of the mean of 

an autocorrelated series, as given by Moran.38 From this 

the sample size could be found. Giesler, however, did not 

give an analytical method for calculating the lag correla-

tions. Instead, a Monte Carlo approach was taken to 

estimate these values. 

In 1967, another method was proposed by George S. 

Fishman. 39 Fishman showed that the variance of the sample 

mean for autocorrelated data is inversely proportional to 
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a fraction of the number of observations. Using this 

relationship, he defined the number of equivalent indepen

dent observations contained in an autocorrelated series. 

Fishman's Method for Computing 

Sample Size 

In 1971, Fishman provided the theoretical basis for 

writing a subroutine for computing sample size for autocor

related data which could be used in simulation programs. 40 

Fishman shows that this procedure overco~es the assumption 

of independence and that it can be used in simulation ex

periments for which autocorrelation is a problem. This 

method also guarantees that the confidence interval on the 

estimated parameter· will fall within the ~pecified or 

desired width of the interval 100 percent of the time. 

Fishman's method for computing sample size depends on 

a transformation of the correlated observations to an 

autoregressive form. A linear combination of deviations 

of the observations from their mean is found which produces 

new observations which are independent random variables. 

The sample variance, adjusted for autocorrelation, can 

then be estimated as a function of the estimates of the 

sample residual variations and the estimated coefficients 

of the autoregressive scheme. Fishman's development of 

the method can be explained as follows: 

If an experiment should result in the observation of 

a sequence of events defined as Xt where t is an integer 
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and -~ < t < ~, the mean of that sequence c~n be expressed 

as 

( 2. 1 ) 

The autocovariance function of the sequence can be expres

sed as: 

R = R = E[(x ~·l.l) (X - l.lt.)], t-s s-t s s t ( 2. 2 ) 

and the sample mean for N observations as 
- . N 
X = (1/N) E X . 

. t=l t 
( 2 . 3 ) 

The variance can then be written as 

Var(XN) (l/N 2 ) 
N 

R (2.4) = E 
s 't= 1 s-t 

( 1/ N) N-1 
( 1 I s I IN) = E - Rs. s=l-N 

This approach assumes that the covariance between events 

in the sequence vanishes as the number of intervening 

events increases; that is, 

lim R = 0. (2. 5) 
s+~ s 

With these assumptions, M can be defined as the sum of an 

infinite stream of autocovariances, 
N-1 

M =limN+~ Es=l-N (1 - jsj /N) 

this is equivalent to 
~ 

M = E R • s=-oo s 

R 
s 

( 2 • 6 ) 

Thus, for large values of N the variance of the mean can be 

expressed as 

( 2. 7) 
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The inco~venience of viewing M as a sum of an infinite 

sequence can be alleviated by expressing the sequence of 

events Xt as an autoregressive sequence: 
co 

xt = ~ + ~ 0 a yt ' s= s ~s 

where a is a sequence of real constants such that 
s 

~~=0 lasl< co 

( 2. 8) 

and Yt is a sequence of uncorrelated~ identically distribu

ted random variables with mean zero and variance cr 2 , Using 

this definition of Xt, the autocovariance of the Yt 

sequence can be written as 

as+t · ( 2 • 9 ) 

The sum of the infinite stream of autocovariances, M, can 

then be written as 
00 

M = L R s=-co s 

(2,10) 

This result can be used to show that X has an auto-

regressive representation: 

~co b X' = yt {2.11) 
s=O s t-s ' 

where 

X' = xt - l1, t 
with 

00 

1 I ( ~ 00 b ) ' ~ a = 
s=O s s=O s 

M = t;2j(~co b ) 2 • 
s=O s {2.12) 

Fishman also shows that for a finite al.ltoregressive repre-

sentation of order p' only p parameters need to be 
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estimated and 

M = a2/(Ep b ) 2 , where b = 1. 
s=O s o (2.13) 

The estimation process which Fishman suggests involves 

the determination of the autoregressive order which is 

applicable for the given set of data and the subsequent 

application of equation (2.13). The general estimation 

process proceeds as follows! 

The sample autocovariantes are computed for several 

possible autoregressive orders, r, which range from value~ 

of zero to R': 

c = (1/N)EN-r x• x• 
N,r t=l t t•r 

(2.14) 

where 

xt = xt - x. 
Then for a scheme of order, r+l, the s th co.effi ci ent is 

6 1 . and is determined by a recursive formula. r+ , s 
= 0 for all values of r, then 

A 

br+l, r+l 

and 

CN,r-s+l] 

eN, s] 

.,.. ,... .... ,.. 

b r + 1 , s = b r , s + b r + 1 , r +l b r , r-' s + 1 ' 

where 

s=l, ... ,r. 

The sample residual variances can be computed as 

cr 2 = (n-r-1)-1 E 
N 

r+l t=r+2 
(Er+l 

s=O 
b 

r+ 1 , s 
x• 
t-s 

A 

If b r+ 1 , 0 

(2.15) 

(2.16) 

(2.17) 
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where 

r = O, ... ,R'-1. 

Fishman shows that a confidence interval can be placed on 

the estimated coefficients with the interval . '· 
b + Z ,~ [(l-b2 )/N]~ 
r,r- 1-a/2 r,r 

(2,18) 

where Zl-a/ 2 is the point of the normal curve correspond-

ing'to a significance level a in 

(2·)-\> jzl-"/2 .-x 2 / 2 dx = 1 - a/2. (2.19) 

-co 

The coefficient is not significantly different from·zero 

if the confidence interval in equation (2.18) contains 

zero. The order of the autoregressive scheme, designated 

as 11 p 11 , is the largest 11 r 11 for which br is significant. 

Thus, the vari~nce, M, of the sequence of original random 

numbers can then be estimated as 

M = cr 2/(rP b )2 
p -.. s=O p,s · 

(2.20) 

A confidence interval can be constructed on the mean 

by use of the probability statement 
\ ,, 

Pr [1 X N - ~ I < z 1 - cp I 2 ( M/ N) ~J ~. (2,21) 

where Zl-cp/ 2 is the normal point corresponding to 

(2•)-\> J::-~/2 .-x 2 / 2 dx = 1-~/2. 

If a confidence interval of width 2C be preferred, then 

c = zl-cp/ 2 (M/N)~. (2.22) 
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The necessary sample size for a confidence interval of 2C 

can be then computed by 
"· 2 N* = M(Zl-a/ 2/C) • (2.23) 

Fishman also shows that the u~e of an estimate for M 

in equation (2.23) requires that a t distribution be used 

in the construction of the confidence interval with L - 1 

degrees of freedom where 
~ 

L = N (CN,O I M). (2.24) 

Rather than read values from a table, the value of t is 

estimated by the following series of equations! 
gl . g2 . g3 + 

t 1 - <PI 2 :>< Z 1 - <P I 2 + ( L - 1 ) ( L - 1 )2 ( L - 1 )3 . . . 
(2.25) 

where 

gl = 114 (zl-<PI23 + zl-<PI2) 

g2 = 1196 ( 5Z -~5 + 16Z · 3 + 3 ) 
1-<Pil~ l-<j>l2 l-<j>l2 

g3 = 11384 (3Z 7 = 19Z 5 + 17 3 - 15 ) 
l-<j>l2 . l-<PI2 l-<j>/2 l-<PI2 

g4 = 1192160 (79Zl-<t>l 29 - 776Zl-<t>l 27 + 14827l-<PI 25 -

3 41 
1920Zl-<j>l 2 - 945Zl-<j>1 2). 

The estimate for sample size is, then, 

N* = M(t IC)2. 
l-<t>l2 

If the assumption that the sample means are normal 

is viewed to be inappropriate, Fishman shows how the pro

cess may be modified to accomodate an onimodal assumption. 

The probability statement on the mean can be written as: 



PR < kl (5k2 - 3) /' [3(l+k2 )J, 

0'< k (5/3)"2 

or 

25 

where 

1 

k > (5/3)"2. (2.27) 

If a confidence interval of 90% is desired, for instance, 

k can be found by: 

(1 +. 9k 2 ) l [9(1 + k2 )l = .90 

or k.2 = 7 89 . . 
(2.28) 

(2.29) 

An estimate for the sample size, N*, can then be computed 

by: 

N*,= k2M;c 2 , 

where 2C is the desired interval width. 

~-· 

Graybi 11' s Method For Determi n~g 

Sample Size 

It is useful to study a conventional sample size 

(2.30) 

method which proves to be ~pplicable to simulation studies. 

The basic theory for sample size determination for distri-
\ 

butions other than normal was introduced by F.A. Graybill 

for physical experiments with independent observations. 42 

In addition, a recent article by Narula and Li discusses 

a sample size method for exponential life testing data 

which allows the experimenter to specify the level of 
43 significance and the probability of Typ~ II error. 

Although other methods may be superior under certain 
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conditions for normal data, Graybill's method is the only 

one purporting to handle m~ny other known distributions.44 

As in other methods, the analyst specifies the confi-

dence. coefficient 1-n/2, and the desired confidence 

interval width, d, In addition, he specifies the probabil

ity, s2 , that the actual width of the resulting confidence 

interval is less ~han or equal to the desired width, d. 

Suppose the analyst wishes to determine the sample 

size, n, necessary to form a confidence interval of desir-

ed width, d, on some unknown parameter, p. He must first 

determine the actual width of the confidence interval, w, 

as a function of the sample size and some unknown para

meter, 6, which may be equal to P• Suppose there exists 

a function of the confidence interval width, sample size 

and 6, Y = g{w;6,n), such that Y is monotonically increas-

ing in w for every 6 and n and the distribution of Y de

pends only on the sample size. Then a function of the 

sample size, f(n), may be found so that 

P[Y <f(n)J = s for 0 ~ s < 1. (2.31) 

If the equation, f(n) = g(w;e,n), is solved for w, then 

the confidence interval width is expressed as. a function 

of e and the sample size, h(e,N). The function, h(e,n) 

be monotonically increasing for every nand monotonically 
. I . 

decreasing in n for every e. 

This method is a two-staged procedure in that a random 

variable, z, must be obtained in a preliminary samp~e_ of 

size, m. A function of z, f(z), must be defined so that 
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it does not depend on any unknown parameters or on the 

sample size, n, and 

P [ t ( z) > e] = B for 0 < 13 < 1 . (2.32) 

Given that d is the desired confidence interval width, if 

a value of n is found such that 

h Et(z) ;n] ~ d, (2,33) 

then the actual confidence interval width will be less 

than the desired width with a probability of 8 or, stated 

mathematically, 

(2. 34) 

Graybill used these conditions to develop a sample 

size formula to estimate the mean of a normal population. 

An initial sample, u1 , u2 , ... um,· is taken.of size'm. The 

sample variance, z, is found and N* is the smallest inte-

gral value of the following: 

2·ta/ 2 ·IZ ·lf(N*-1) 

< 2C, 

/.f(m-1) • IN*(N*- 1) (2.35) 

where: 

1 ) t a/2 is a variate of Student • s distribution with N*-1 
00 

degress of freedom or Jta/2 U(t,N*-l)dt = a/2; 

2) f(N*-1) is a chi-square variate with N*-1 degrees of 

freedom or ff(N*-1) W(x 2 ; N*-1) dx 2 = B ; 
0 

3) f(m-1) is a chi-square variate with ~-1 degrees of 
00 

freedom or Jf(m-l) W(x 2 ; m-l}dx 2 =B. 

The estimate of the normal population is computed, then, by 
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taking a new sample of size N*, (v1 , v2 , ... vN*)' and form

ing a confidence interval about the sample mean. 

Summary 

This chapter discusses the literatur~ available con

cerning three basic. problems in simulation experiments: 

1) validation; 2) experimental design; and 3) sample size. 

Each category of problems is broken into subproblems and 

examined. The problem of sample size is a ripe area for 

research given the dearth of practical solution techniques 

for this problem. Methods currently in use, requiring 

large blocks of computer core and time, tend to limit the 

use of simulation as a reliable tool of analysis. For 

these reasons, the section concerning sample size is more 

detailed and includes complete discussions of two methods, 

Fishman•s and Graybill •s, which are viewed as particularly 

relevant. 
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CHAPTER III 

A SAMPLE SIZE METHOD FOR 

EXPONENTIAL DATA 

Introduction 

As explained in Chapter II, the issues involved in 

the sample size problem have largely been skirted in the 

literature. GeorgeS. Fishman has developed the only 

algorithmic approach to handling the complications of non

normality and autocorrelation of the data. The purpose of 

this chapter is to develop a new approach to the problem 

by revising a sample size method introduced by Franklin A. 

Graybill. Graybill's approach, as outlined in Chapter II, 

is designed for distributions of data other than normal 

in which the data points are independent; The method pr6-

posed here is for exponential or geometric distributions 

with either independent or autocorrelated data. 

Also included in this chapter are the results of tests 

comparing the proposed method with Fishman's method. The 

tests included comparisons of the relative abilities of the 

two models to produce samples with a specified confidence 

interval width and with a stated confidehce coefficierit. 

The average sample sizes which are produced are compared 

33 
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for the two methods using the same data - generating 

models and the same data. In addition, the computer times 

necessary to generate samples of the required sizes are 

compared. Finally, tests were performed to validate the 

confidence coefficients used in Fishman's method. 

The Proposed Method Revised For 

Exponential Distri~utions 

Use of The Exponential Distribution 

In Simulation 

The data generated by many simulatipn experiments fit 

expoential distributions. _In queuing experiments, for 

instance, one may be interested in the distribution _and 

mean for the total amount of time spen~ in the system by 

the entities.l Other simulations may generate time-to

failure data for reliability estimates. For these and 

other simulations generating exponentially distributed 

data, the knowledge that the data fit that distribution 

can be used to facilitate sample size calculations. 

Develop~ent of the Method 

The theory for developing a sample size method for 

distributions other than normal was developed by Franklin 

_A. Graybill and is discussed in Chapter II. In this sec

tion a method for estimating sample size for exponential 

populations will be developed using the conditions prescri-
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bed by Graybill and summarized in the previous chapter. 

Graybill's conditions can be utilized to formulate a 

model for exponential data if a basic sampling property 

of the exponential dtstribution is recognized. A relation

ship exists whereby the ratio of twice the sum of sample 

observations (v 1 , v2 ,.,.,vn) and the true mean of the 

popu1ation exhibits a chi-square distribution with 2n 

degrees of freedom: 
~ 

2ne rv x2 (2n), where 
e 

1 s = ;;-
2 

V.i. ( 3 . 1 ) 

Let the parameter, e, be: 1) the true mean of the popula

tion for which a confidence interval is formed; and 2) the 

unknown parameter as specified in the second chapter. 

Given equation (3.1), the following statement may be 

made: 

p [X~ < 2ne < xi] ~ 1 - a, ( 3 • 2) --e 
where x2 and x2 are defined as 

1 2 
x2 J 2W(x 2;2n) dx 2 = !-

0 

and 00 ;:, 
1 

Then a confidence interval on the man can be derived as 

follows: 
p 1 

< - < 
e 



p [~ < e < m] = 1 - Ct. • 

X x2 

.:. 1 2 

Therefore, the width 

w = 2ne 

of the confidence 

[ 1 - 1 J 
~;z-

2 1 

If the variable, Dn' is defined as 

= 1 1 
-: 

then 

Recalling equation (3.1), let 

v = 2ne 
e . 

( 3 . 3 ) 

interval w, is: 

( 3. 4) 

( 3. 5) 

( 3. 6) 

be a chi-square distribution with 2n degrees of freedom 

and, thus, dependent only on n. Solving equation (3.5) 

for 2na·and substituting into equation (3.6} results in 

Y = g(w;e,n) = ( 3. 7 ) 

If f(n) is defined as 

f(n) 
f W(x 2 ; 2n) dx 2 = B, ( 3 • 8 ) 

0 

then condition (2.31} is satisfied. If f(n) = g(w;e,n) 

then 

f(n) = w 

36 



and 

w = f(n) • e • On, 

or, equivalently, 

h(e,n) = f(n) • ~ • on . 

37 

( 3 . 9) 

In the first stage of the sampling procedure, m items 

(u , u , ••. ,u ) are summed so that 
1 2 m 

or 

From the 

z = 

relationship 

2me 
e 

2 

z 

in 

m . :E u 
i 

i=l 

= 2m8, 

equation (3.1), 

'\.. x2 (2m) , 

a statement may be made that 

P [! > x~J = a. 
where x2 is defined as 

3 

Th~refore, condition (2.32) is satisfied by 

= B ' 

where 

t(z) 

(3.10) 

(3.11) 

{3.12) 

(3.13) 

(3.14} 

(3.15) 

(3.16) 



Substituting equation (3.16) into equation (3.9) gives 

h [t ( z), n J = f(n). z • 0n. 
x2 

3 

(3.17) 

As stated above, any value of n satisfying the require-

ment, 

h [t(z),n] < d, 

insures that 

• 
p ( w ~' d ) ~8 2 • 
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Therefore, the necessary sample size, N*, is the smallest 

integral value of n satisfying 

f(n) • z • Dn d < • 
'2 

X 
3 

(3.18) 

The procedure, then, for determining the necessary 

sample size for a specified width confidence interval and 

c o n s t r u c t i ·n g t h a t co n f i d e n c e i n t e r v a 1 i s : 1 ) s e 1 e c t a 

random sample of m observations; 2) based on the mean of 

the m observations, find the smallest integral value of n 

satisfying equation (3.18); 3) select a second random 

sample of size N*; and 4) compute a confidence interval 

using equation (3.3), and the sample mean from the N* 

number of observations. 

The development given above provides a samole size 

method for exponential data. However, the assumpt1on of 

independence still remains. The hypothesis was made. that 

autocorrel~tion of data would not be a complicating factor 
I 
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for this particular method. The presence of autocorrela

tion affects the estimate of the variance and, therefore, 

changes the relationship between the mean and Vftriance. 

However, since the necessary sample size for this method 

depends only on the mean of the data and not on the vari

ance, the only requirement is that the estimate of the 

mean be correct. Therefore, the proposed method is 

sufficient for exponentially distributed data which is 

either independent or autocorrelated. 

A FORTRAN subroutine for this algorithm has been 

developed for use in FORTRAN or GASP simulations. A ~e

tailed explanation, flowchart, and program listing may be 

found in Appendix A. 

Comparisons of Sample Size Methods 

For Exponential Data 

In order to validate the new method a number of tests 

were devised. This section includes a discussion of the 

measures of effectiven~ss which were considered important 

and the results of tests to estimate these measures. 

Each test was also applied to Fishman's method to 

provide a comparison between the new method and Fishman's 

method for computing sample size. After some initial test

ing, it became apparent that when using Fishman's method 

for exponential data it is necessary to use the unimodal 

assumption. This procedure is consistent with results 
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reported by Fishman for the same kind of data.3 

Measures of Effectiveness -
The primary concern in testing the two methods was to 

determine if the method actually attained a confidence in

terval with the required level of confidence. Therefore, 

a sample size, N*, was comput~d for a given method and 

that number of observ~tions was collected. Based on these 

observations, confidence limit.s were computed. Next, the 

true value of the mean of the distribution was compared to 

the confidence limits in order to determine if it were 

contained in the confidence interval. Upon completion of 

many trials, statistics were computed for the proportion 

of times the confidence interval actually contained the 

true value of the mean, 1 -a. This proportion was com

pared to the confidence coefficient, 1-a, for the inter-

val. In order to be satisfactory, the sample size method 

was required to produce a statistic, 1-8~ that was at 

least as great as the desired confidence co~fficient 1 - a, 

or: 

1 - a.~ 1 - a, (3.19) 

The second criterion of importance was the proportion 

of times, s2 , the method produced a confidence interval 

width which was less than or equal to the desired width. 

Therefore, 

(3.20) 
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where S2 is the stated probability that the computed confi

dence interval width is less than or equal to the desired 

width. Stated mathematically, 

P(w ~d)~ s2 , (3.21) 

where d is the desired confidence interval width and w is 

the computed width. Accumulating the estimate, ~ 2 , en

tailed finding the difference between the confidence 

interval limits for the sample and comparing this differ

ence to the desired width, d. 

Comparisons were made of the estimated sample sizes 

produced by each method. The objective of this test was 

to determine which method was more efficient in terms of 

the number of data points need~d to satisfy the restric

tions on the quantities, 1 - a and s2 • 

In addition, comparisons were made in regard to the 

computer time required to compute the value for the 

estimated sample size and t6 collect that many observa

tions. The criterion of time was seen as an important 

measure of effectiveness in the context of simulation 

experiments. As stated previously, many computer simula

tions are quite large and complex. A sample size method 

which is to be incorporated in a simulation, then, should 

be efficient in terms of time to avoid unneces~arily 

increasing the time requir~d for the total simulation. 

Average compilation times and average execution times 

were computed for each method. 



42 

The methods were also compared on the basis of com

puter core required to complete the required computations. 

The amount of core required for most simulations is quite 

large. Therefore, a sample size routine which is incor~ 

porated in the simulation should use as little core as 

possible. This test should indicate which method is more 

efficient in terms of core requirements. 

Finally, tests were made concerning the probability 

statements inherent in Fishman's method. 

Data-Generating Models 

Autoregressive formulas were used to achieve several 

levels 6f autocorrelation. Therefore, an ~bservation, Xt, 

might depend on several previous values of X, Xt_ 1 , and 

Xt_ 2 ,_ and the corresponding independent variable, Yt. The 

models used to generate data are given below. 

1) Independent data: Autoregressive order = 0.0 

xt = .5 + vt, (3.22) 

2) Autocorrelated data: Autoregressive order = 1.0 

(3.23) 

3 ) Autocorre1ated data: Autoregressive order = 2.0 
I 

xt = .5xt-1 + .25Xt_ 2 + 0 5 + v ... , (3.24) 
I. 

4) Autocorre 1 a ted data: Autoregressive order = 3.0 

X = .5X + .25X + .05X 
t t-1 t-2 t-3 

+ . 5 + yt' (3.25) 
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5) Autocorrelated data: Autoregressive order = 5.0 

Xt = .5Xt-l + .2Xt_ 2 + .05Xt_ 3 + .03Xt_ 4 + 

(3.26) 

6) Autocorrelat~d data: Autoregressive order = 10.0 

Xt = • 5Xt-l + • 2Xt_ 2 + • 05Xt-J + • 03Xt_ 4 

+ .01Xt_ 5 + .005Xt_ 6 + .003Xt-l + .001Xt_ 8 

+ .0006Xt_ 9 + .004Xt-lO + .5 + Yt. (3.27) 

' For each of the above models, different distributions 

can be achieved by varying the distribution of Y . If 

Yt is distributed normally with a mean of 0.0 and a vari

ance of 1.0, then, using model (1), Xt is distributed 

normally with a mean of 0.5: 

(3.28) 

and 

E(Xt) = .5 + 0.0 = .5. (3.29) 

Using model (3), X is distributed normally with a mean of 

2.0. The mean is computed as follows: 

and 

and 

E(Xt) = .5E(Xt-l) + ~25 E(Xt_ 2 ) 

+ E(.5) + E(Y 5 ) 

.25E(X ) = .5 + E(Y ) 
t t 

E (X t) = 2. 0 • 

(3.30) 

(3.31) 
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Extending this idea, exponential and geometric data 

can be generated for various autoregressive orders and the 

true means for the distributions can be computed. 

Test Procedures 

Each test described in this chapter was performed 

using a Monte Carlo procedure. Data were generated for a 

specified distribution and autoregressive order. An ini

tial sample of the data population was randomly selected 

to provide input for the two sample size methods. An 

estimated sample size was computed using the proposed 

method for exponential data and Fi~hman's method augmented 

with ~n assumption of unimodally distributed means. Then 

a sample of that size was taken from the population. 

Based upon this sample, confidence intervals were calcula

ted. This procedure was repeated a number of times for 

each data-generating model and estimates were computed 

for: 

l) Mean sample size for each method; 

2} Variance of the sample size; 

3) Probability that the true mean is contained 

in the confidence interval constructed about 

the sample mean; 

4) Probability that the confidence interval width 

is less than or equal to the desired width. 

Through the use of the data-generating models 
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described in the previous section, many different kinds 

of distributions may be generated. A series of programs 

were written to incorporate these models ~nd to produce 

the data necessary to make comparisons of the two methods. 

Examples of these programs may be found in Appendixes B 

and C. Notice that random numbers were produced using 

a random number generator called LLRANDOM. 4 This genera~ 

tor has been found to be a better generator than other 

random number generators which are commonly used. In 

addition, the generator will produce exponentially distri

buted, as well as normally distributed, numbers. For 

these tests exponential numbers with ~ = 2 were generated 

and transformed to autoregressive data using the data

generating models. 

For each model, two hundred (200) trials, or repeti

tions of the experiment, were taken. After analyzing 

inttial data it was found that two hundred sample size 

estimates were sufficient to produce a confidence interval 

with a confidence coefficient of .9 and ~ confidence 

interval width which at most is fifteen percent of the 

mean sample size. Calculations for selected experiments 

are found in Appendix D. 

Test Results 

Confidence Coefficient. One of the primary purposes 

of these tests was to verify thFt the proposed method for 
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exponential data did actually produce the desired confi

dence coefficient, 1 - a. The results of these tests may 

be found in Tables I - III. A confidence coefficient of 

.90 was used in each experiment. After two hundred trials 

of each model, at least 90 percent of the computed con

fidence intervals contained the true mean using the new 

method and Fishman•s method. In fact, the proposed method 

appears to be quite conservative in some cases. The 

experiment.s using autoregr~ssive orders one and two pro

duced results showing 1 - & to be greater than .96 for 

every value of s2 used. 

Confidence Interval Width. The probability that the 

computed confidence interval width is within limits set by 

the analyst has been defined as s2 • For these tests six 

values for s2 have been chosen for the new method. Fi~h

man, of course, implied a s2 of 1.0 for his method. In 

Tables I - III the desired level of s2 is given at the top 

of the table. The simulated estimate of s2 , S2 , is given 

at the bottom of the table. Again, both methods performed 

as expected by producing values well above the stated 

value for s2 • Using this criterion, the proposed method 

was ag~in very conservative. 

Size of Sample. Test results for estimated sample 

size are also given in Tables I - III. For independent 

d~ta and for data with an autoregressive order of two, 

the proposed method was superior to Fishman•s method. For 

independent data, Fishman•s method required an average of 



TABLE I 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAL DATA WITH AUTOREGRESSIVE 

ORDER OF ZERO 

Variable Fishman's Method The Proposed Method 

6 2=1 .00 g2=.65 6 2=.70 g2=.80 g2= .. 90 g2=.95 

Mean Required Sample Size 631 318 333 369 430 485 

Stan-6-ard Deviation of 
Distribution of Sample Sizes 9l.9 78.7 82.0 90. 1 103.6 1J6 .• !J 

Estimated Mean of Data (X') 9. 01 9.02 9.03 9.01 9.00 8.99 

True Mean of Data ( J.1 ) 9.00 9.00 9.00 9.00 9.00 9.00 

Proportion of Trials ( 1 -a) In 
Which J.1 Is Contained In 
Confidence Interval About X 1. 00 .94 .94 .93 .92 .90 

Proportion of Trials (82) In 
Which Confide nee Interval 
Width Is Within Desired 
Limits 1.00 .87 . 91 .96 .99 1. 00 

g2=.99 

613 

·145.2 

8.99 

9.00 

.90 

1.00 

~ 

" 



TABLE II 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAL DATA WITH AUTOREGRESSIVE 

ORDER OF ONE 

Variable Fishman's Method The Proposed Method 

~2=1 .00 . ~2=.65 ~2=.70 ~ 2 =.80 ~ 2 =.90 ~2=.95 

Mean Required Sample Size 79 102 108 1 21 143 163 

Standard Deviation of 
Distribution of Sample Sizes 57.2 1 9. 7 30.6 22.8 26.6 30.3 

Estimated l~ean of Data (X) 4.78 5.00 5.00 4.99 5.00 5.00 

True Mean of Data (J.l) 5.00 5.00 5.00 5.00 5.00 5.00 

Proportion of Trials ( 1 -a) In 
Which lJ Is Contained In 
Confidence Interval About x .87 . 97 .96 . 96 .96 .97 

Proportion of Trials (~2) In 
Which Confidence Interval 
Width Is Within Desired 
Limits l . 00 .93 .97 .99 1. 00 1.00 

~2=.99 

2·09 

37.9 

5.01 

5.00 

.98 

1. 00 



. TABLE -II I 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAL DATA WITH AUTOREGRESSIVE 

ORDER OF TWO 

Variable Fishman's Method The Proposed Method 

; 

e2=1 .oo s2=.65 s 2=.7o a2=.8o e2=.90 s 2=.95 

Mean Required Sample Size 401 330 345 383 445 502 

Standard Deviation of 
Distribution of Sample Sizes 1 75. 2 67.6 70.3 77.2 . 88.8 99.3 

Estimated Mean of Data ·{X) 9.87 10.02 10.02 10.00 -10.00 9.99 

True Mean of Data ( )J ) 10.00 10.00 10.00 10.00 10.00 1 0. 00 

Proportion of Trials (1-ll) In 
Which )J Is Contained In 
Confidence Interval About x .94 .99 .98 .98 .97 .97 

Proportion of Trials <a2) In 
Which Confidence Interval 
Width Is Within Desired 
Limits 1.oo .77 .83 .92 .99 1.00 

a2=.99 

635 

124.2 

9.99 

1 0. 00 

.99 

1. 00 

..j:oo 

1.0 
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631 items. The proposed method indicated that only 613 

were necessary for a s2 of .99. In practice, s2 would 

usually be set at .90 or less. For a more useful level of 

sz, then, the proposed method indicated a sample size of 

at least 200 items fewer than Fishman's method. For a 

second order autoregressive equation~ Fishman's method 

in~icated a sample size of 401 .. This sample size would 

fall between the sample sizes necessary for s2 = .80 and 

s2 = .90 for the new method; however, the 1 - a value is 

less for Fishman's method than for the new method for this 

experiment. Both values are still acceptable. This is 

not the case for the first order autoregressive experi

ments. The 1 - & level of ~87 is insuffi~ient for 

Fishman's method. Therefore the smaller sample size must 

be viewed as suspect. Histograms of the sample sizes for 

selected experiments are shown in Figures 1-4. Figure 5 

shows the distribution of average sample size estimates 

using the new method for various values of s2 and auto

regressive orders. 

Time Requirements. The time requirements for each 

method ~re Shown in Table IV. The proposed method was 

superior in terms of compilation time and execution time 

in every instance. For independent data, the new method 

was at least 64 times faster than Fishman's method for 

execution time. For autoregressi~e order two, the new 

method was 19 times faster than Fishman's. However, the 

new method was only 6.5 times faster than Fishman's 
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method for autoregressive order one. This last compar

ison was a result of Fishman's smaller sample size for 

an autoregressive order of one. 
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Core R~~uirements. The proposed method is also sup

erior based on the criterion of core requirements.· Only· 

46 K is required for the new method while 64 K is neces-

sa~y for Fishman's~ as shown in Table IV. 

Probability StatEpents. In analyzing the results of 

the previous tests, a doubt arose as to the interpretation 

of Fishman's implcation that s2 is 1.00 using his method. 

Obviously, the confidence interval width must be less than· 

the desir~d width in Fishman's method because it is forced 

to be less. Fishman ends his procedure only when the 

standard error of the mean ~s small enough to satisfy the 

confidence interval Width requirement. The question, 

then, was whether this value could be interpreted in the 

same way as the a2 value i~ interpreted in the proposed 
-·;.-..,.: 

method. The interpretation of the value in the new method 

is that a2 is the proportion of times that the confidence 

interval width will be less than a desired width if that 

size sample is collected a large number of times. This 

same definition was employed using data generated by 

Fishman's method. A repeated number of samples were 

collected of the size indicated by the average sample size 

for each autoregressive order. The results of this experi

ment are shown in Table V. 



Variable 

ARO = 0 
Compilation Time 
Average Execution 

TABLE IV 

COMPARISON OF TIME REQUIREMENTS AND 
CORE REQUIREMENTS FOR SAMPLE 

SIZE EXPERIMENTS USING 
EXPONENTIAL DATA 

Fishman•s Method 

(seconds) 6.09 
Time (seconds) 8.43 

ARO II l 
Compilatibn Time (seconds) 
Average Execution Time (seconds) 

ARO = 2 
Compilation Time (seconds) 
Average Executi~n Time {seconds.) 

Core Requirements 

6.45 
.98 

6.42 
3.70 

64K 

The 

8 2=. 90 

4.22 
.13· 

4.37 
.-15 

4.59 
.19 

46K 

Proposed 

62=.95 

3.99 
. 13 

4.40 
• 1 5 

4.80 
• 19 

46K 

Method 

62=.99 

3.80 
. 13 

4.42 
.1 5 

5.47 
.21 

46K 



EVA LUAT ION 0F PROBAB I L I TV STATEr1ENTS 

f\RO = (\ ARO = 1 ARO = 2 

Fishman•s f.lethod: 

Average Estimated Sample Size 
Using Fishman•s ~1e t hod 631 79 401 

s 1 2 ' 
" 2 Estimate of 81 ' 13y Generating Repeated Samples 

Of Size N* .45 .29 .35 

The Proposed nethod: 

Estimate of Sample Size Using 
The B 2 Value From Fishman• s 
He tho~ as ~2 

2 268 71 257 

Resulting s2 2 . 71 . 5 b . 39 
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The computation of estimated sample sizes is explain

ed in a previous section and the results are shown in 

Tables I through III. For independent data, Fishman•s 

method indicated that a sample of 631 items should be 

taken for 1 - a = .9 and with s2 = 1 implied. Two hun

dred samples of 631 observations were collected and 

confidence intervals were tomputed for each. In each 

trial the confidence interval width was compared to the 

desired width. The computed width was less than or equal 

to the desired width in o~ly 45% of the trials. The next 

step was ta test the new method with a s2 value of .45. 

As shown in Table V, the new method produced an average 

estimated sample size of 268 when s2 = .45. Of the 200 

samples taken, 71% had confidence intervals with widths 

less than or equal to the desired width. The experiment 

was repeated for autoregressive orders one and two with 

similar results. 

This experiment would indicate that a probability 

statement concerning the confidence Jnterval width cannot 

be made for Fishman•s method. The data are not actually 

random data in that the sample is taken in sequential 

iterations and the sampling process e~ds· when the specific 

data pofnts selected have a standard error of the mean 

small enough to satisfy the ;Confidence interval width cri-. : 

terion. Thus, a B2 o~_one is forced and cannot be said to 

have taken place as a result of random sampling. 



Comparisons of Sample Size 

Methods f6r G~ometric Data 
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Just as many simulations produce exponential data, 

they also produce geometrically distr~buted data. For in

stance, in queuing experiments the number of entities in 

the system takes on a geometric distribution. 5 Since the 

exponential distribution is the continuous analog of the 

geometric, it was felt that the proposed method for expon

ential data would also be satisfactory for geometric 

data.6 

Geometric data were generated by calling a LLRANDOM 

subroutine for normal data. 7 The normal data ~ere then 

transformed to geometric data using a method which is re

ported by Schmidt and Taylor. 8 Different autoregressive 

orders are obtained in the same manner as for exponential 

data. 

The tests used to verify the use of the proposed 

method on geometric data are the same as were reported for 

exponential data. The results of these tests are shown in 

Tables VI - VIII. Notice that in each case the estimate 

for the confidence co~fficient, - a, is larger than the 

lowest acceptable value of .90. The computed confidence 

interval widths were also acceptable. The value of §2 

was at least as large as the d~sired level, s2 , in every 

case. Tests of models with higher autoregressive orders 

were also run. The results of these tests are shown in 



TABLE VI 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE 

ORDER OF ZERO 

Variable Fishman's Method The Proposed Method 

Average Required Sample Size 

Estimated Mean (X) of Data 

True Mean (JJ) of Data 

Proportion of Trials (1-a) In 
Which JJ Is Contained In 
Confidence Interval About X 

Proportion of Trials (82) In 
Which Confidence Interval 
Width Is Within Desired 
Limits 

s2 =1 .oo 

138 

4.89 

5.00 

.95 

1. 00 

. 105 

5.00 

5.00 

.95 

.90 

111 125 

5.01 5.01 

5.00 5.00 

.93 .93 

.91 .97 

147 

5. 01 

5.00 

.93 

1.00 

168 

5.01 

5.00 

.93 

1. 00 

215 

5. 01 

5.00 

.92 

1. 00 



TABLE VII 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE 

ORDER OF ONE 

Variable Fishman•s t4ethod The Proposed Method 

s2=1 .oo ~2=.65 ~2=.70 ~2=.80 ~2=.90 ~2=.95 ~2=.99 

Average Required Sample Size . 600 445 465 515 597 671 846 

Estimated ~1ea n (X) of Data 10.95 11 . 02 ll. 02 11 . 04 11 . 03 11 . 02 10.98 

True Mean ( lJ ) of Data 11 . 00 11 . 00 11 . 00 11 . 00 11 • 00 11 . 00 11 . 00 

Proportion of Trials ( 1- & ) In 
Which lJ Is Contained In 
Confidence Interval About x .99 .97 .97 . 9.6 .96 .97 .95 

Proportion of Trials (g2) In 
Which The Confidence Interval 
Width Is Within Desired Limits 1 . 00 .86 .89 .95 1. 00 1.00 1 . 00 



TABLE VIII 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE 

ORDER OF TWO 

Variable Fishman's Method The Proposed 

§2=1.00 .§2 = .65 ~2=.70 ~2=.80 

Average Required Sample-size 523 395 413 458 

Estimated Mean (X) of Data 21 . 55 22.03 22.03 22.05 

True Mean hd of Data 22.00 22.00 22.00 22.00 

Proportion of Trials { 1- a) In 
Which ll Is Contained In 
Confidence Interval About x .92 .97 .97 . 97 

Proportion of Tria 1 s, {i3 2) In 
Which Confidence Interval 
Width Is Within Desired 
Limits l. 00 .71 .79 .88 

Method 

§2=.90 ~2=.95 ~2=.99 

,531 598 755 

22.07 22.05 22.03 

22.00 22.00 22.00 

.96 .95 .95 

.97 . 1 • 00 1 . 00 
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Appendix E. 

Fishman's method with an assumption of unimodality 

was also used on the same data. The sample sizes indica

ted by this method fall between the sizes indicated by the 

new method for s2 = .8 and s2 ~ .9. Since these levels of 

s2 would be acceptable in a practical application, the two 

methods can be said to produce comparable results. 

Summary 

Although Graybill stated that his sample size method 

could be used for distributions other than normal, there 

is no indication in the literature that the method has 

ever been revised and tested for exponential data. This 

cha~ter shows the deve16pment of the sample size method 

for exponential or geom~tric data which is independent or 

autocorrelated. The tests which·were run and reported 

show that the method does w~rk even for high orders of 

autoregression. 

Finally, the method was compared to Fishman's method 

for estimating sample size. The proposed method is more 

straight forward conceptually and computationally. It 

also proved more efficient than Fishman's method in terms 

of s.ize of sample, of time required for compilation and 

execution, and of core requirements. In addition, the new 

method appears to be less erratic from one autoregressive 

order to another. 
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8schmidt and Taylor, p. 275. 
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CHAPTER IV 

COMPARISON OF SAMPLE SIZE 

METHOD FOR NORMAL DATA 

The purpose of this chapter is to record the results 

of experiments designed to investigate the most appropri

ate method of obtaining sample size estimates when data 

are normally distributed and autocorrelated. The initial 

hypothesis was that Graybill's method could be augmented 

with Fishman's method for correcting for autocorrelation 

and, thus, could be used for autocorrelated data. Since 

Graybill's method allows the analyst to .make a probabi

lity statement concerning the width of a cbnfidence 

interval computed about the parameter of interest, the 

hypothesis was that smaller sample sizes would be required 

using Graybill's method than would be required using 

Fishman's method. Fishman states that the width of a 

confidence interval computed using the sample size 

generated by his method will be within the desired width 

every time or with a probability of 1.0.1 

Test Procedures 

The measures of effectiveness which were identified 

for tests on normal data are essentially the same as were 

66 
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used in the tests for exponentially and geometrically dis-

tributed data. A comparison of the mean and variance of· 

the average sample size which was estimated by each method 

was of primary importance. The tests were also designed 

to verify that the methods were operating in accorrlance 

with the probability statements which were made concerning 

each method. Finally, checks were made oh the actual con

fidence coefficients in use for Fishman•s method. The 

tests for these criteria were Monte Carlo simulations and 

were performed using the program in Appendix C. 

Normally distributed data points, Yt, were generated 

through the use of the random number generator, RANDU, and 

a process generator described by Schmidt and Taylor. 2 The 

data were then transformed from independent data to auto-

correlated data using one of the following data-generating 

models: 

1) Independent data 

xt = .5 + vt ; 

2) Autocorrelated data with autoregressive order of 

1.0 

xt = .5 xt-1 + .5 + vt 

3) Autocorrelated data with autorearessive order of 

2.0 

xt = .5 xt-l - .25 xt-z + .5 + vt. 

Since RANDU is not completely reliable in producing sequen-

tial blocks of data in which each block is ~niformly 

distributed~ a subroutine was employed to insure that the 



data used for each trial in the experiment were actually 

normally distributed. Any data set which failed to meet 

the normality requirement was discarded. 
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For each trial, then, a sample of 50 was initially 

taken and the statistics from this sample were used to 

estimate sample size. For Fishman•s method the statistics 

from the initial sample were used to obtaih a first esti

mate of the sample size, N, necessary to meet the 

conditions imposed by the probability statements. Instead 

of collecting the N - 50 new data points necessary to 

obtain the required sample size, a portion, y{N-50), of 

the data points w~re gathered. The estimating procedure 

was then repeated until a sufficient number of data 

points, N*, were obtained to satisfy the conditions impos

ed by the probability statements. A confidence interval 

was constructed about the meah of the sample of N* points. 

Information was then collected concerning the width of the 

interval and the proportion of trials in which the true 

mean of th~ population was contained in the interval. 

Next, Graybill •s method was used with the same 50 

data points taken as the initial sample. An estimate for 

N* was computed using the variance of the sample (adjusted· 

for autocorrelation) and N* new data points were collected. 

A confidence interval was computed and the information 

necessary to investigate the test criteria was collected. 

Graybill •s procedure was repeated for five additional 

values of s2 • 



The number of trials repeated for each method was 

limited by the large size of the program and the excessive 

time required by the program. However, after observing 

the variances of the estimated sample sizes for some 

initial runs, it was found that one hund~ed trials would 

be sufficient to insure a confidence inte~val about the 

mean sample size with a width of no more than 15 percent 

of the true value of the mean. (See Appendix D for the 

calculations which were used to verify that a sa~ple size 

of one hundred would be adequate.) 

Test Results 

Comparison of Sample Size 

The primary criteria for comparison of Graybill's 

method with Fishman's were a comparison of the average 

sample sizes produced by each method and a comrarison of 

the variance of the sample sizes produc~d. The results of 

the tests ire shown in Tables IX, X, and XI. For each of 

the three data-generating models used, Graybill's method 

indicated that a larger sample size would bi necessary 

than that indicated by Fishman. Fishman's method produced 

a smaller average sample size than was produced by Gray

bill's method with even the smallest value for s2 , .65. 

In addition, the variance of the sample sizes was greater 

for Graybill's method than for Fishman's. 



TABLE IX 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
NORMAL DATA WITH AUTOREGRESSIVE 

ORDER OF ZERO 

Variable Fishman's Method Graybill's 

s2 =1. oo s2 =.65 s2 =.70 s2 =.80 s2 =.90 

t4ean Required Sample Size 250 339 350 378 423 

Standard Deviation of 
Distribution of Sample Sizes 53.3 107.7 111 . 2 119.5 133.0 

Estimated f4ean of Data (X) .506 .506 .505 .505 .506 

True Mean of Data ( ~) . 5 • 5 . 5 . 5 . 5 

. Proportion of Trials ( 1- a) In 
Which ~ Is Contained In 
Confidence Interval About x .93 . 93 .94 .93 . 97 

Proportion of Trials ((32) In 
Which Confidence Interval 
Width Is Within Desired 
Limits l. 00 .78 .79 .85 .89 

Hethod 

s2 =.95 s2 =.99 

463 557 

144.9 1 7 3. 1 

.505 .507 

. 5 . 5 

.96 .96 

.94 .96 

-....J 
0 



TABLE X 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
NORMAL DATA WITH AUTOREGRESSIVE 

ORDER OF ONE 

Variable Fishman•s Method Graybill 1 s 

62=1.00 s 2=.65 s 2=.7o s 2=.80 s2=.90 

Mean Required Sample Size 233 325 335 361 404 

Standard Deviation of 
Distrib~tfon of Sa~ple Sizes 74.5 177.4 183.3 197~7 220.6 

Estimated Mean of Data {X) 1. 04 1. 03 1. 03 1 . 03 1. 02 

True Mean of Data ( ~ ) 1. 00 1 . 00 1 . 00 1 . 00 1 . 00 

Proportion of Trials ( 1 -&) In 
Which Is Contained In 
Confidence Interval About X" . 90 .93 . 94 . .94 .95 

Proportion of Trials <s2) In 
Which Confidence Interval 
Width Is Within Desired 
Limits 1. 00 .54 .55 .58 .69 

Method 

s 2=.95 s 2=.99 

442 531 

240.4 286.6 

1. 01 1. 01 

1 . 00 1. 00 

.95 .94 

.72 .81 

....... __, 



TABLE XI 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
NORMAL DATA WITH AUTOREGRESSIVE 

ORDER OF TWO 

Variable Fishman's r~ethod The Proposed Method 

a2 =1 .oo a2 =.65 a2 =.7o a2 =.BO a2 =.90 s2 =.95 

_Mean Required Sample Size 212 237 350 378 422 463 

Standard Deviation of 
Distribution of Sample Sizes 58. 1 199.6 205.6 220.3 244.4 265.7 

Estimated Mean of Data (X) .6658 .6681 .6661 .6653 .6633 .6615 

True Mean of Data ( ).1 ) .6667 .6667 .6667 .6667 .6667 .6667 

Proportion of Trials ( 1 -&) In 
Which lJ Is Contained In 
Confidence Interval About x .93 .94 .96 .96 .96 .96 

Proportion of Trials (a2) In 
Which Confidence Interval 
Width Is Within Desired 
Limits l. 00 .66 .70 • 7 4 .79 . 81 

a2 =.99 

556 

316.3 

• 6611 

.6667 

.94 

.92 

""-' 
N 
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Verification Of Confidence Cnefficients 

One of the primary purposes of these tests was to 

verify that Fishman's method and Graybill's method did 

actually produce the desired confidence coefficient, 1 -

a. The results of the tests may be found in Tables IX, X, 

and XI. Notice that in each tase the value for 1 - ; is 

greater than or equal to the specified level of - a, 

.90. Based on these tests, then, each method appears to 

produce the confidence coefficient which is specified. 

As in the case of the exponential method, Graybill's 

method appears to be more conservative. The values of 

1 - a generated by Graybill's method are larger than those 

generated by Fishman's and would indicate that larger 

samples had been taken than were necessary. 

Verification of s2 

A fourth purpose of the experiment was to verify that 

Graybill's method produced a value for §2 (an estimate of 

probability that the computed confidence interval width 

was within a desired width) which was consistent with th~ 

stated value of s2 • The results of the experiment may be 

found in Tables IX, X, and XI. Notice that the value for 
~2 . 
B was greater than or equal to the stated value for s2 

in only five of eighteen cases. These estimates indicate 

that Graybill's method did not produce the sample size 

estimates necessary to satisfy the confidence interval 
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width criterion. 

The method proposed by Graybill is based on the assum

ptions of normality and independence. Clearly the data 

used in these tests were not independent. However, the 

transformation to an autoregressive scheme should have 

adjusted for the autocorrelation and should have made 

possible the use of Graybill's method just as it made 

possible Fishman's method. At the point where the sample 

size is estimated, both methods require independence. 

The problem occurred in that a departure to Graybill's 

method was made after the first fifty observations were 

. taken. It was found ~hat a correct estimate of the auto

regressive order could not consistently be obtained after 

only fifty data points. The estimate of autoregressive 

order was used t~ correct the computed variance of the 

sample for autocorrelation. Fishman's method requires 

several iterations before a sample size can be estimated. 

After more data points are collected the true autoregres

sive order can be found more consistently. Therefore the 

variance of the sample was more often correctly adjusted 

for· the presence of autocorrelation using Fishman's 

method. Graybill's method, however, depended on the cor

rection for autocorrelation which was based only on the 

first fifty observations. Since the variance used was 

frequently in error, the value of s2 was not consistent 

with the stated value for p,2. Further study could be done 

using a larger initial sample to ascertain whether 
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Graybill •s method can successful1y be used in conjunction 

with Fishman•s for normally distributed, autocorrelated 

data. 

Implications of the Probability 

Statements 

As indi~ated in Chapter III, the method developed by 

Fishman forces the confidence iriterval width to be equal to 

or less than the desired confidence interval width in every 

case. The iterative process terminates only when the 

standard error of the mean is small enough to guarantee a 

confidence interval of the desired width. The implication 

is that the probability, a2 , is equal to 1.0. 

An exrteriment was performed to see if Fishman•s pro

cedure could actually be said to meet a requirement that s2 

= 1.0 in terms of an ordinary interpretation of the prob

ability statement. The interpretation given Graybill •s 

probability statement concerning confidence interval width 

is that if a large number of samples were collected from a 

population, the width of a confidence interval constructed 

about the sample mean would ·be less than or equal to the 

desired width in s2 proportion of the trials. 

The experiment constructed to test this interpretation 

involved the use of the average size of the sample, N*, 

required when using Fishman's method. A number of samples 

of size, N*, were collected and confidence intervals were 

constructed about the sample means. Each interval was 
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checked to ascertain whether or not the width was within 

the specified limits. The results of thiS test are shown 

in Ta~le XII. Notice that for each autoregressive order 

. used, the values for ~ 2 (.21, .32, .49) are much smaller 

than the value of 1.0 which is implied throughout Fishman•s 

article. The result would indicate that, although the con

fidence interval width is forced to be within limits, a 

probability statement concerning s2 cannot be interpreted 

in the same way as it wou1d be interpreted using Graybill •s 

method. A probability statement of the type made by Gray

bill is based on an assumption of a random sample.· As 

shown in this test, a sample taken according to Fishman•s 

method is not a random sample. Therefore, other methods of 

analysis based on an assumption of a random sample could 

also lead to inappropriate conclusions. 

The second phase of this experiment was to test Gray

bill •s method using a stated value of s2 equal to the 

estimated value, ~ 2 , obtained from Fishman•s method. Again 

the results are shown in Table XII. For each autoregres

sive order, the resulting sample size and the resulting 

value of ~ 2 is given. Notice that the sample sizes are 

still greater than the average size calculated by Fishman•s 

method. 

A final observation in cpnjunction with the probability 

statements revolves around a special problem of simulation 

experiments. The problem of steady state, as defined in 

Chapter II, is that the estimates of the values of the para-



TABLE XII 

EVALUATION OF PROBABILITY STATEMENTS: 
N 0 R i,t A l D /1. T Jl. 

,!\ RO. = 0 ARO = 1 ARO = 2 

Fishman's r'1et hod 
\ 

i' 

Average Estimated Sample Size 
Using Fishman's r-~ e t h 0 d ' t-1 * 250 233 217 

Estimate of s 1 2 ' ~ 1 2 ; Calculated 
By Generating Repeated Samples ( 

Of Size N* . 21 .32 .49 

Graybill's Hethod: 

Estimate of Sample Size Us ina 
The s. 2 Value From Fishman 1 s 
l""let ho a as 62 

2 292 309 225 

Resulting 
~ 

2 
B2 .54 .48 .63 

-------------
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meters of a system fluctuate wildly for the first observa

tions. Therefore, an estimate for a parameter from the 

first fifty observations might ap~ear to be esti~ating an 

entirely different value than the same estimate made on the 

basis of the next fifty observations. This problem would 

have the same effect on the interpretation of probability 

statements as the situation described by Graybill where the 

true value of the parameter changes in the intervening time 

between samples. Graybill states that if~, ~ ~ 2 and if 

a 1 ~ a 2 then his procedure will produce a confidence in

ter~al on ~ which has a known confidence coefficient but 

which has an unknown probability. of a specified width. 3 

However, Fishman's method would produce a confidence in

terval on ~ in which the confidence coefficient is not 

known. This situation may be responsible for the low 

values of 1-a obtained by Fishman in his tests on data 

generated by simulation experiments.4 

Summary 

This chapter describes the way in which Graybill •s 

sample size procedure for normal and independent data was 

augmented to adjust for autocorrelation. The chapter dis

cusses the test procedures used to validate the resulting 

procedure and to compare the procedure to the method 

developed by Fishman. The tests indicate that the 

adjustment for autocorrelation is imperfect. The confidence 

intervals which result from the use of Gr~ybill •s method 
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with this adjustment may be wider than desired. In addi

tion, the necessary sample sizes indicated by Graybill •s 

method are somewhat larger than would be required using 

Fishman•s method. 

The chapter also includes an analysis of the inter

pretations which can be given to the probability statements 

used as criteria for each method. Tests indicate that 

the value for s2 used in Fishmanjs method cannot be inter

preted as it would be using Graybill •s method. The sample 

as taken according to the Fishman procedure is not a random 

sample and, therefore, ordinary interp~etations of prob

ability statements do not apply. 
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CHAPTER V 

SUMMARY, CONCLUSIONS AND EXTENSIONS 

Summary 

Sample size determination is recognized by simulation 

theorists and practioners to be one of the remaining prob

lems in the area of digital simulation theory. The facts 

that simulation output data are often autocorrelated and 

often fit distributions other than normal make the sample 

size problem one that cannot be adequately attacked using 

conventional statistical techniques. Therefore, the pur

poses of this study were as follows: 

1) To develop a sample size determination technique 

for autocorrelated data fitting exponential or 

geometric data based on a method by Graybill. 

2) To empirically test the method for exponential 

or geometric data in order to ascertain whether 

or not the method performs correctly. 

3) To compare the method for exponential or 

~eometric data with a method developed by 

Fishman. 

4) To adjust Graybill's method for normal data for 

autocorrelati-on. 

31 



5) To compare Graybill's method for normal 

data with Fishman's method. 

Sample Size Determ{nation For 

Exponential or Geometric Data 

82 

The method for determining the necessary size of a 

sample for simulation data fitting an exponential or a 

geometric distribution was based on the method for inde

pendent data proposed by Graybill in 1958. Graybill's 

method enables the analyst to select a value_for the prob

ability that the true mean of the population is contained 

in the confidence interval constructed about the sample 

mean. In addition, the analyst may select a value for the 

probability that the width of the confidence interval con

structed about the sample mean is less than or equal to a 

desired confidence interval width. Graybill stated that 

similar procedures may be used to determine sample sizes 

for distributions other than normal. However, before this 

study no_one had developed the method for other distribu

tions. 

This study has extended Graybill's work by showing 

the development of a sample size method for exponential or 

geometric data. The theory involved in the development 

is discussed in Chapter III. In order to make the pro

cedure accessible to a practitioner of simulation who 

does not have a sophisticated mathematical or statistical 

background, an algorithm is given for the procedure in 
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Appendix A. Appendix A also includes a flowchart of the 

procedure and the documentation and program listing for a 

FORTRAN subroutine. This FORTRAN subroutine is designed 

to enable the practioner to include the process of sample 

size determination as an integral part of his simulation. 

Using this subroutine, his simulation program can access 

the sample size subroutine, determine the proper ~ample 

size, return to the main program to collect more data 

points, and continue with the simulation experiment. 

Correctinq Graybill •s Procedure (Normal 

Data) For Autocorrelatio~ 

Graybill •s procedure for determining sample size re

quirements for normal data is based on an assumption of 

independence. This assumption of independence would pro

hibit the u~e of Graybill •s method using simulation data 

which is often autocorrelated. This study shows how Gray

bill •s procedure may be augmented by the procedure for 

correcting for autocorrelation as discussed by Fishman. 

In addition to the discussion in Chapter IV, the linkage 

of Graybill •s procedure with Fishman•s correction for 

autocorrelation is demonstrated in the program listed. in 

Appendix C. 



Conclusions 

Validity of the Sample Size Method 

Fo~ Exponential or Geometric Data 

84 

The procedure which was developed f6r determining 

sample size requirements for exponential or geometric data 

was empirically tested to determine whether or not the 

probability statements were accurate. The probability 

that the true mean was contained in a confidence interval 

constructed about the sample mean was stated to be 1 - a. 

A series .of samples were taken using the sample size 

method developed in this study. For each sample, a con-

fidence interval was constructed about the sample mean. 

Each inte~val was checked to determine whether or not it 

contained the true value of the mean. In each series of 

tests (both exponentia1 and geometric}, the empirical 

value 1-a, was at least as great as the theoretical 

probability, 1-a. In addition, the widths of each confi-

dence interval were compared to a desired width. In each 
~ 

series of tests, the empirically developed estimate, B, 

(the probability that the width of the confidence interval 

be within a specified limit) was at least as great as the 

theoretical value, e2 • These tests show that the pro-

cedure for determining sample size requirements for 

exponential or geometric data produces results which are 

consistent with the stated probability criteria. 



Comparison Of The Propos!d Method 

With Fishman's Method 

8S 

The proposed method for determining sample size, as 

developed in this work, was compared to Fishman 1 s method 

using data generated by the program in Appendix C. It was 

found that an assumption of unimodally distributed sample 

means (rather than normal} sh~uld be used when the data 

are distributed exponentially or ~eometrically. In most 

cases, the exponential method ptoduced a sample size re

quirement which was comparable to or less than that 

required by Fishman's method. In addition, the variances 

of the distributions of sample sizes were· often 1 es s for 

the method developed in this study than for Fishman's. 

The method described in this paper required less computer 

time for compilation and ex.ecution and also required less 

core for execution. The proposed method appeared to be 

less era tic from one autoregressive order to another. 

Finally, the method developed in this study is relatively 

easy to understand and to compute. This one attribute 

alone should be extremely important from a practitioner's 

point of view. 

Comparison Of Graybill's Method 

With Fishman's Method 

Graybill's method, as augmented with a correction 

for autocorrelation, did not compare favorably with 
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Fishman•s method. Graybill •s method appeared to perform 

correctly for the criteri~n that the probability of the 

true mean being contained in the confidence interval about 

the sample mean be at least 1-a. However, the empirically 

developed values of ~2 fell well below the stated values 

for s2 {the probability that the width of the confidence 

interval is within desired limits). An explanation of why 

Graybill •s method did not perform well using the correc

tion for autocorrelation may be round in Chapter IV. In 

addition, the sample size ~equirements produced by Gray

bill •s method were consistently higher than the estimates 

produced by Fishman•s method. 

Additional Findings 

The conclusions reported in the preceding section 

would seem to imply that Fishman•s method is superior to 

Graybill •s method for normally distributed, autocorrelated 

data. However, Fishman•s method was also found to be 

suspect when one considers the method in which his sample 

is taken. The sampling process he prescribes is an iter

ative process where successive blocks of data are 

collected until the standard error of the mean is small 

enough to guarantee the desired confidence. interval width. 

In this sense, the sample is not a random sample. There

fore, one could not take a new sample of size, N*, 

(estimated with Fishman•s iterative procedure) and expect 

the resulting confidence interval width to be within the 
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desired limits. Confirming tests are found in Chapter IV 

for the normal distribution and Chapter III for the 

exponential distribution. This finding should make the 

procedure developed for exponential data even more desir

able than Fishman's. 

Finally, in simulation experiments the steady state 

problem may be responsible for a change in the values of 

the parameters of the distribution (~and cr 2 ) from one 

phase of sampling to another. If this be the case, Fish

man's method would produce a confidence interval with a 

known probability of a specified width but the confidence 

coefficient would not be known. Although the probability 

of a specified width would be unknown using Graybill •s 

procedure, the confidence coefficient would be known. 

Therefore, Graybi 11' s procedure or a method based on· 

Graybill •s criteria would appear to be more appropriate 

for simulation data. 

Extensions 

Several other studies are suggested by the results of 

this work. One problem encountered was the failure to 

successfully augment Graybill's method with the correction 

for autocorrelation used in Fishman's method. A form of 

sensiti~ity analysis could be used to discover whether the 

size of the initial sample has an effect on the correct 

determination of autoregressive order. A larger initial 

sample size might make possible a more accurate estimate 



of the variance and, hence, a better value for s2 • 

Secondly, a larger initial sample when using Fish

man's method might eliminate the pre-mature termination 
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of the iterative procedure as evidenced in Chapter III. 

The results for Fishman 1 s procedure appeared to be suspect 

for exponential data with an autoregressive order of two. 

A second area for research, then, would be to determine 

if the size of the initial sample could be responsible 

for unrealistically small sample size requirements. 

A third area for research would be the development of 

Graybill •s procedure for nther relevant distributions. 

Finally, a more general area of research would be to 

interface the sample size problem with the related area 

of steady state. 
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APPENDIX A 

THE PROPOSED METHOD FOR EXPONENTIAL 

DATA: ALGORITHM AND 

FORTRAN SUBROUTINE 

The proposed method, as it was revised for exponen

tial or geometric data, can be most ~xplicitly stated in 

algorithm form. The following is a detailed explanation 

of the steps which must be completed in order to implement 

this method. 

1. Set upper and lower bounds on the sample size 

of zero: SSL = SSR = 0. 

2. Collect a random sample of M observations. 

3. Compute a value, Z, which is twice the sum of 

M observations: Z = 2 • Ivj, where vj is the 

value of the jth observation in the sample. 

4. Let GN = M. 

5. Select a value for D, the desired width of the 

confidence interval computed about the sample 

mean. 

6. Select values for e2 , the probability that the 

confidence interval width will be less than or 

equal to the desired width, and 1-a, the 

probability that the confidence interval about 
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7 . 

8 . 

the sample mean will contain the true value 

of the mean. 
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Find the standard normal deviates, ZB and z 1 ) -a/ 2 

for the chosen values of s2 and 1 - a • 

Approximate the values of f ( n) , 2 x2 X 1 ' 2 

using the following forinulas:l 

f(n) = (Z + '\)4(GN)- 1)2/2 
B • a) 

b) = (Zl-a/z 

= (- z 
l-a;2 

+ '\)4(GN) - 1 ) 2 / 2 

c) 

d) = (- z + ..J4r~ -
B 

1) 2j2. 

and x2 
3 

(A. 1 ) 

(A.2) 

(A.3) 

(A.4) 

9. Calculate CN according to the following formula: 

CN = 1 /x 2 - l/ 2 2 xl 
(A. 5) 

10. Calculate a trial value forD, D* as follows: 

0* = [f(n) • CN • Z] /X~ (A. 6) 

11. Calculate the absolute difference between the 

values for D* and D: 

DIFF = jD* - Dl (A. 7) 

12. If the value calculated for DIFF is less than or 

equal to .001, use the value selected for GN as 

the necessary sample size, N, and go to step 15. 

If not, continue. 

1 3 . I f D i s 1 e s s t han ·o * , set the n e vJ 1 owe r bound 

on the sample size, SSL, equal toG~. If the 

upper bound, SSR, is equal to zero, the new 



value of GN is twice the lower limit, SSL. 

If SSR is not equal to zero, then the new 

value of GN is half-way between the upper 

and lower bounds: 

GN = SSL + .5(SSR - SSL) (A.8)" 

R~turn to Step 8. 

14. If D is greater than D*, set a new upper 

bound on the sample size equal to GN. Select 

a new value for GM which is halfway between 

the upper and lower bounds on the sample size: 

GN = SSR - .5(SSR - SSL). (1' •• 9) 

Return to Step 8. 

15. Select a new sample of data points, uj' of 

s i z e ~1. 

16. Comnute thl lower confidence limit on the mean 

as follows: 

CL = 2L:u ./xf. 
L J 

(A.lO) 

17. Compute the upper confidence limit on the mean 

as follows: 
,, 

CL = 2L:u.jx 2 (A.ll) J 2 
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A desirable property of a sample size method for sim-

ulation experiments is the capability of incorporating the 

method in an on-going simulation. 2 The remainder of this 

appendix describes a FORTRAN subroutine for the exponential 

method which can be used in simulations written in FORTRAN 

or GPSP. 



SSR•GN 

GN•SSR

l/2[SSR-SSL) 

A 

Figure 6. 

Start. 

Transfer from 
Main Program: 
BETA,D,GN, 
M,Q.Z 

Initialize: 
XM:M 

SSL= 0 
SSR: 0 

Calculate: 
FN,FM. 
CHISQl. 
CHISQ2, 
CN, DTRIL, 
DIFF 

yes~ 

SSL•GN 

GN•SSL+ 

1/2 (SSR-SSL) 

A 

Flowchart Of Sample Size Method 
For Exponential Data 
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0001 
0002 
CCC3 
CCOit 
0005 
C006 
CC07 
0008 
0009 
COlO 
0011 
0012 
0~13 
CCilo 
0015 
0016 
CC17 
0018 
0019 
CC2C 
0021 
0022 
CC23 
0024 
0025 

Figure 7. 

SUBRCUTII\E EXPSZ IH,GN,Q,ZoO,BHA,CHISOlrCHISQZI 

Xlt ·" H 
SSL z 0.0 
SSR z 0. 0 
FN " II !lETA. + SQRTI4. * Gt4 - l. n*•z.l I 2, 
FH z 11-1. * !lETA+ SQRTI4o * XM- 1.11**~.1 I Zo 
CHISOl 2 110 • SORTI4o * GN- t.OII**2ol I 2, 
CHISOZ " 11-1.0 * 0 + SQR Tl4o*GN- loOII**Zol I 2 0 

CN = 1. I CHIS02 - 1. I CHISQl 
DTRIL = IFN*CN*ZI I FH 
DIFF = ABSID- OTRILI 
IF IOIFF.LE.O.OOll GO TO~ 
IF (D.GT ,OTR Ill GO TO 3 
SSL • GN 
IF ISSR.EQ.O.OJ GO TO 2 
GN z SSL + .S*ISSR-SSLI 
GO JO 1 

2 GN = z.•SSL 
GO TO 1 

3 SSR '" GN 
GN '" SS~ - , 5*1 SSR - SSLI 
GO TO 1 

· 4 CONllNUE 
RETURN 
END 

FORTRAN Subroutine For Computing 
Sample Sizes For Exponential 
Data 

98 



FOOTNOTES 

1J.W. Schmidt and R.E. Taylor, Simulation And Analysis 
of Industrial Systems (Homewood, Illinois, l970~p. 618. 

2George S. Fishman, 11 Estimating Sample Size In Com
puting Simulation Experiments, 11 r·1anaqement Science, XVIII 
(September, 1971), p. 21. 
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APPENDIX B 

A PROGRAM FOR TESTING THE 

PROPOSED METHOD 

As explained in Chapter III, a program was written to 

allow testing of the new method for various data-generating 

models. These autoregressive models, specified by the pro

grammer, operate on exponential data with ~ = 2 to produce 

exponential ·distributions with new means. In this way 

data can be generated with a variety of means and autoreg

ressive orders. 

To use this program, the analyst must specify six 

values of z6• The value, s2 is the desired probability 

that the confidence interval width computed for a sample 

will be no wider than a width specified by the programmer. 

Thus, the value, z6, is a normal variate with probability, 

s. For each iteration, then, this program will produce 

six different sample size estimates which correspond to 

the six different values for s2 • 

Within the program, the analyst may change the values 

for Q, D, GN, M or ITER. The definitions for these vari

able names are given below: 
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1 01 

The subroutine is based on the concept of binary 

search to find the smallest integral value of n satisfying 

equation (3.18). A flow chart of the subroutine is shown 

in Fi~ure 6 and a print-out of the subroutine is given in 

Figure 7. 

Variable names used in the subroutine are as follows: 

BETA 

CHISQl. 

CHISQ2 

D 

DTRIL 

DIFF 

FN 

H1 

GN 

Q 

SSL 

SSR 

1 or a standard normal variate for 

the probability, f3 

x2 
1 

x2 
2 

Desired confidence interval width 

Trial confidence interval width 

based on a trial sample size 

Absolute difference between the 

desired confidence interval width 

and the trial confidence interval 

width 

· f ( n) 

x2 
3 

Trial sample size 

Size of first sample 

z1 or a standard normal vari--a; .2 

ate with probability, 1-aj 2 

Lower limit for the estimated 

sample size 

Upper limit for the estimated 

sample size 
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z Twice the sum of observations in 

the first sample 

The following variables should be read in to the main 

program: BETA, 0, GN, M and Q. The variable, Z, will be 

calculated by the main program. CHISQl, CHISQ2, and ("' fd ' 
\..1 ;.:, 

must be transferred back to the main program so that a 

sample of size GN may be collected and a confidence inter

val computed about the mean of that sample. 



0001 
0002 
0003 
CCC4 
0005 
0006 
CC01 
coo a 
0009 
CClO 
0011 

0012 
COl3 

0014 
C015 
0016 
0017 

COlB 
0019 
0020 
0021 
0022 
0023 
C024 
0025 
002b 
0027 
ccze 
0029 
0030 
cc:n 
0032 
0033 
0034 
0035 
COlt. 
0037 
0036 
0039' 
C04C 
0041 
0042 
C043 
0044 
0045 
CC46 
C047 
0046 
0049 
C0 50 
0~51 
C0 52 
C05~ 
0054 
oos:. 
CC5ti 
0057 
0058 
ccsc; 
0060 
0061 
0062 
C063 
0064 

t 
c 
c 

1 03 

THIS PI'OGP.AM tALC.ULATES .90 tONFtuENtF. INTF.RVALS AND tOMPUTFS 
THE SAMPLE SIZE NECESSAI'.Y FOR OBTAINING A SPECIFIED WIDTH INTERVAL 
FOil. EXFONENTIAL DATA ACCORDING TO GRAYBILtS METHOD. 
DI~EhSIUN XllZCOI 
DIMENSION BETAl16l 
DIMENSION Yll2001 
DIMEhSIOJI. Nl61 
DIMENSION AMEANI61 
DIMENSION SUHCM16l 
DIMENSION SUHCWI61 
D PHN S IrJ h SUHMNI 61 
DIMENSION SUHNI61 
PP I NT 201 

2Cl FORMAT 141X, 1 (0'\PUTIT\G SAMPLE SIZE .WITH A SPEtiFI£:0 1 ,//,47Xo 1 WIDTH 
$ CONFIDENCE INTERVAL 1 ,///1 

PRINT 202 
202 FORMAT 1 1 THE DATA APE EXPCNENTIALLY DISTP!BUTEO WITH A MEAN OF 9. 

so.• ,/, 1 A 90 PE?CENl CCNFICENCE INTERVAL WILL tiE CALCULATED WITH A 
$MAXIMUM wiDTH OF 2.0, 1 ,///1 

PP !NT 203 
203 FOPMAT 142X, 1 RESULTS FCR 100 INCEPENOENT TPIALS 1 ,/I 

P~ !NT 204 
204 FO;I.MAT I 1 TRIAL 1 o5Xo 1 VARlABLE'o21Xo 1 .65 1 ,11Xo 1 o70'ollX, 1 oB0 1 ollXo 1 

~.'10 1 ol1X,•.9:.• ollXo' .99' oil I 
REI>C 10loiBETAll 11.1=1,61 

101 FOP!o!AT I 6IF5.4o5Xll 
CHISQ1 = 0.0 
CHISOZ = 0.0 
Q = 1.645 
0 .. 2. 
ITER = 5 
DOlJzl,& 
SUMCHIII = 0.0 
SUMCW I II ,. 0 .0 
SUMI'.NI II = 0.0 
SU"'NIII = 0.0 

1 COt-ITINUE 
1 X = 7'.59183 
DO 12 IT= loiTER 
CALL C'vFLOW 
CALL EXPON CIXoYo12001 
DO 2 I =1 ol200 
YIII = YIIJ * 2.0 
IFII.Nf.ll GO TO 20 
XC II = .5 + Yl J) 
GO TO 2 

20 IFCI.NE.21 GO TO 21 
11 • I - 1 
Xlll" .5 * Xllll + o5 + Ylll 
GO TO 2 

21 11 ., I - 1 
IZ • I - Z 
XIII = .5 *XI Ill + .25 * Xll21 + .5 + Yl II 

2 CONTINUE 
DO 11 J ,. lo 6 
GN = 50. 

" " 50 
l • 1 
Zl= 0,0 

3 DO 4 I '" L,M 
ll= Z1 + XI IJ 

4 tuNT INUE 
l " 2. *l1 
IF IM.NE.501 GO TO 5 
BETA = HETAliJ I 
CALL EXPSl IMoGN,O,l,OoBETA,CH1SQl,CHIS021 
NIJJ = GN 
L = 11 + 1 
M=NIJI+H 
Z1 " o. 
GO TO 3 

Figu-re 8. FORTRAN Program For Testing The 
Sample Size Method Developed 
For Exponential Data 



0065 
0066 
OC67 
0068 
CC69 
C07C 
0071 
0072 
CC13 
oo-,4 
0075 
COlt; 
0077 
0078 
C079 
coeo 
0081 
0082 
CC83 
COe4 
0085 
CC86 
C087 
0088 
0089 
(090 
C091 
0092 

CC93 
0091t 
0095 
0096 
CC<;7 
0099 

C09CJ 
ClOO 

ClOl 
0102 

COOl 
0002 

. ceo 
CCC It 
ooos 
C006 
CC07 
0008 
0009 
COlO 
0011 
0012 
0'013 
CCIII 
0015 
0016 
CC1l 
0018 
0019 
CC2C 
0021 
0022 
CC23 
0024 
0025 

5 GN = N IJ) 
AMEt.I\IJI ~ ZliGN 
CONFR. = Z/CHIS02 
CO NFL = Z/CH I SOl 
IFICONFR - 10.01 8,7,6 

6 If C C CNFL - I O. 0 I 7 o1 ,a 
1 SUMCMIJI = SUMCHIJI • 1. 
8 WIDTH E CCNF~ - CONFL 

IF I~IOTH- OJ 9,9,10 
9 SUMCWIJI = SUMCWIJI • 1. 

10 SUMMNIJI • SUMMNIJI • AMEANIJI 
SUMtdJI "' SUMNIJI • NIJI 

11 corn INI.!E 
PRINT 205, IT ,N(l),N121rNC31,NI41oNI51,NI61 

205 FORMAT (1X.,I3,~X. 1 SA.I!PLE SllE',8X,6U0X.I411 

l 04 

PRINT 206, AMr:ANI11,AHEANI21oAMEANIJI,AHEANC4loAHEANI51rAHEANI61 
206 FOP.HAT C9Xr 1 HEAN 1 ,16X,617X,F7o3ltlll 

12 CONTINUE 
00 13 J = 1;6 
NIJI • SUMNIJI I ITER 
SUHMNIJI SUHHNIJI I ITER 
SUMCMIJI = SUMCMIJI I ITER 
SUMChiJI = SUHCWIJI I ITER 

13 CONTINUE 
PR !NT 207 

207 FORMAT 11Hloiiiii,51Xo 1 SU~~ARY GF RESULTS 1 rllll 
PRI~T 208 

208 FORMAT l4iJX, 1 .65°rlOX, 1 .70 1 ,lOX,•,ao•,lOX, 1 .9C 1 olOX, 1 ~95'olOX, 1 ,99 
~·.111 

PRII\T 209, NIU,NI21 oNI31 ,t-.141ofii5J,r-.161 
Z 09 FORM A T I 8 X , ' SA .I"P LE $ ll E 1 ol 9 X , 6 I 9 X .I 41 , It 

PP HH 21 0, SlJr~MNI 11 , S U'IMN I 2 J , SUMMNI 31 ,s UMMN I 41 , SUMMNI 5 I, SUMMN 161 
210 FOP.MAT 18X 0 'MEA~ 1 ,27X,6(6X,F7.4J,/l 

PI". I NT 211, SUI!CMI 11 , SUr-1CM 12 J oSUMCI' 13 I ,SUMCM I'• I oSUMCMI 5 I, SUMCMI6 J 
211 FO:>"'AT CBX,•PROPOF.T!O"' OF HIALS',I,8X.o'TRUE I"EAN CO"-TAINE01 tlo8X, 

S 1 IN CONFIDENCE !NTEPVAL •,9X,616X,F7,41 ,/I 
PPINT 212oSUMCWC11 ,~UMCWI2loSUMCWI3loSUMCWI41,SUHCWI51oSUMCWI61 

212 FORMAT ISX,'PROPORT!ON OF TRI.ALS 1 ,/,8X, 1 CONflOENCE lNTE~VAL 1 tlo8Xo 

s•wtOTH IS wiTHIN li:-IITS 1 o9Xobi6X,F7.411 
STOP 
END 

SUBRCUTI~E EXPSZ IHoCN,OoZoOoBfTA,CHISOloCHIS021 

XH " M 
SSL z 0.0 
SSR s 0.0 
FN"' ICI:IETA + SORTI4.• Gil- l.Jt .. Z.I I 2. 
FM" 1(-1. • BETA+ SORT(4. • XM- 1.J)U2,1 I 2o 
CHI SOl = I I C + SORTC4. • GN - 1.011**2. I I 2. 
CHISOZ " 11-1.0 • 0 + SQR TI4.•Gt. - 1.01 1••2.1 I 2. 
CN ~ 1. I CHIS02- 1. I CHIS01 
DTP.ll " IFN•CN•ll I FM 
OIFF " ABSIO- OTRILI 
IF CO IFF .LE: .0.0011 GO TO It 
IF ID.GT .OTR Ill GO TO 3 
SSL " GN 
IF ISSR.EO.O.OI GO TO 2 
GN " SSL + .S•ISSR-SSL I 
CO TO 1 

2 GN • z.•SSL 
GO TO 1 

3 SSP. s GN 
GN = SSII. - • 5*1SSR - SSLI 
GO TO 1 

4 CONTINUE 
RETURN 
END 

Figure 8. (Continued) 



APPENDIX C 

A PROGRAM FOR TESTING FISHMAN'S 

METHOD FOR DETERMINING 

SAMPLE SIZE 

This program is designed to produce comparisons of 

sample size estimates using Fishman's method and Graybill's 

method on normal, autocorrelated data. Although Graybill's 

method assumes independence, the variance adjusted for 

autocorrelation is used to circumvent this assumption. 

The program will generate the following data: 

1) The estimated sa~ple size averaged over the num

ber of iterations. 

2) The mean averaged over the samples taken. 

3) The proportion of iterations in which the true 

autoregressive order was actually found. 

4) The proportion of iterations in which the comput

ed confidence interval actually contained the true 

mean. 

5) The proportion of iterations in which the computed 

confidence interval width was less than or equal 

to the desired interval width. 

The input data necessary are as follows: 
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Q 

.D 

GN 

r-1 

ITER 

1 06 

A standard norm a 1 v a r i ate , Z 1 1 , w i t h -a. 2 

probability, 1-a./2-

Desired confidence interval width 

The initial "guess 11 for the correct 

estimate of the necessary sample size 

The size of the first sample of each 

iteration 

The number of iterations desired of the 

program. 

In addition, different autoregressive models may be used 

to produce a desired level of autocorrelation. For example 

in the accompanying print-out, statements 37 through 46 

produce data with autoregressive order two. Once the model 

has been selected, the true value for the mean of that 

model should be placed in ~tatements 69 and 70. 

The program will generate the following data: 

l) The estimated sample size averaged over the number 

of iterations. 

2) The mean averaged over the samples taken. 

3) The proportion of iterations in which the computed 

confidence interval actually contained the true 

mean. 

4) The proportion of iterations in which the computed 

confidence interval width was less than or equal 

to the desired confidence interval width. 



Card 1 

columns 1-5 

Card 2 

co 1 urn ns 1-5 

columns 11-15 

columns 21-25 

columns 31-35 

columns 41-46 

columns 51-55 

columns 61-65 

1 07 

A five digit integer to be used 

as a random number seed 

A right-justified integer giving 

the size of the initial sample of 

each iteration 

A standard normal variate with 

probability 1-a/ 2 

A standard normal variate used in 

computi~g confidence intervals 

around the coefficients of the 

autoregressive equations 

A number between 0 and 1 which 

indicates the proportion, G, of 

the observations remaining to be 

collected which are taken on the 

subsequent sample 

The specified width, 0, of the 

confidence interval 

A right-justified integer giving 

the largest autoregressive order 

to be tested 

'A right-justified integer giving 

the number of methods to be com

pared (one plus the number of s 

values used) 



columns 71-75 

Card 3 

columns 1-5 

columns 11-15 

card 4 

columns 1-5 

Card 5 

columns 1-5 

11-15, .•. , 

51.-55 

l 08 

The number of iterations to be 

completed 

The true autoregressive order of 

the data-generating model 

The tru~ mean of the data 

The sample size to be used as a 

f i r s t "guess 11 i n Gray b i 11 1 s 

method 

The standard normal variates with 

probability, ~' corresponding to 

the various 62 values to be used 

for G ray b i 11 • s me t h o d . 

The programmer may also specify a data-generating 

model which produces the desired order of autocorrelation. 

For instance, in the following program, the model is locat

ed at statement 76. 



PROGRAM SAMPSIZ<INPUTrOUTPUT> 
[IJMENSION XM1C8) 
DIMENSION SUMS01(8) 
DIMENSION IEXES<B> 
DIMENSION BETA<8> 
DIMENSION XBAR<B> 
DIMENSION XVAR<B) 
DIMENSiON SUMCM<B> 
DIMENSION SUMCW(8) 
DIMENSION SUMPCB) 
DIMENSION SUMHN(8) 
DIMENSION SUMVR(S) 
DIMENSION SUMNRC8) 
DIMENSION NXNC8> 
DIMENSION PMCI(S) 
DIMENSION PCWC~B) 
DIMENSION PAROC(8) 
DIMENSION XC1500lrY<1500)rX1<1500) 
DIMENSION W<10) 
DIMENSION VAR<lO) 
DIMENSION B(10rl0) 
[I!MENSION C<10) 
READ 2000riX 

2000 FORMAT (15) 
READ 100rMSTARrOrPrGrDrLRrNMETHriTERL 

100 FORMAT CI5r4<5XF5.0)r3C5XI5)) 
READ 2501r TAROrTMEAN 

.2501 FORMAT C2F10.0) 
READ 707rBN 

707 FO~MAT <Flq,o> 
f'RlNT 2502 ' . 
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00010 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 

·00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
OQ420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570' 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00670 
00680 
00690 
·oo7oo 
00710 
00720 
00730 
00740 

2502 FORMAT C41Xr38HCOMPUTHiG SAMPLE SIZE WITH A SPECIFIEDr//r47Xr25HWI 
. 1DTH CONFIDENCE INTERVALr///) 

PRINT 2503 
2503 FORMAT <77H THE MOD~L TO BE ~SED IS X<T> = ,5 + Y<T> ; WHERE Y IS 

!DISTRIBUTED AS N<Orl),)\ ' 
PRINT 2504r TARO 

2504 FORMAT (34H THE TRUE AUTOREGRESSIVE ORDER IS rF2.0r2H .) 
PRINT 2505, TMEAN . i · 

2505 F"ORMAT. ·c 31 H THE TRUE. VALUE" ·oF "THE' ME.AN ·rs· 'lf"fo·;4, 21! • ) 
PRINT 2506 , D 

2506 FORMAT (231! A CONFIDENCE WIDTH OF r F10.2r13HIS SPECIFIED.,///) 
PRINT 2507riTERL 

2507 FORMAT < 42Xr11HRE~ULTS FOR rl5r20H INDE~ENDENT TRIALS.) 
PRINT 2508 

2508 FORMAT C6H TRIALr5XrBHESTIMATEr5Xr7HFISHMANr41Xr8HGRAYBILL> 
PRINT 2509 

2509 FORMAT (5H NO.r34Xr3H,65r11Xr3H.70r11Xr3H.80r11Xr3H,90r11Xr311.95 
1, 11 X, 3H, 99,// > 

DO 95 I = lrNMETH 
SUMMN<I> ,. 0. 
SUMVR< I> "' O, 
SUMNR(I) ,. o, 
BETA<I> "' O, 
SUMCM<I> ,. O, 
SUMCWCI> = O, 
SUMP(!) = O. 
SUMNR<I) '" 0 • 
SUMMN<I> "' O, 

95 SUMVRC I> O, 
READ 2500rCBETACI>ri=2rNMETH> 

2500 FORMAT C6CF5,4r5X>> 
DO 99 ITER = 1riTERL 

98 DO 2006 J = 1r1500 
CALL RANDUCIXriYrRN> 
IX = IY 
IFCRN-,5> 2002r2001r2001 

2001 W1 : 1, - RN 
. GO TO 2003 

2002 Wl = RN 

Figure 9. FORTRAN Program For Testing Fishman's 
·Method For Computing Sample Size 



007.50 
00760 
00770 
00790 
00790 
Oo9oo 
00810 
00820 
00830 
00940 
00860 

1 00950 
00960 
00970 
00990 
00990 
01000 
01010 
01020 
01030 c 
01040 c 
01050 c 
01060 
01070 
01080 
01.090 
01100 
01110 
01120 c 
01130 c 
01140 c 
01150 
01160 
01170 c 
01180 c 
01190 c 
01200 
01210 
01220 
01230 
01240 
01250 
01260 
01270 
01280 c 
01290 c 
01300 c 
01310 
01320 
01330 
01340 
01350 
01360 
01370 
01380' 
01390 
01400 
01410 
01420 
01430 
01440 
01450 
01460 
01470 
01480 
01490 
')1~0') c 
01510 c 
01520 c 
01530 
01540 
01550 
01560 

2003 Z"' 1, /'CW1**2,) 
Z1 = ALOGCZ) 
V = SORT<Zt> 
GW = V- ((2,515517 t .802853 * V + ,010328 * <V**2,)) / C1~ t 

11.432788 * V t .189269 * <V**2•> t ,001308 * <V**3,))) 
IFCRN-.5> 2004,200Sr2005 

2004 Y<J> = -1, * GW 
GO TO 2009 

2005 YCJ> = GW 
2009 CONTINUE 

X<J> = YCJ> t ,5 
2006 CONTINUE 

94 DO 97 HETH 1rNHETH 
H =MSTAR 
N = M 
LRl = LR t 1 
SUHX = O, 
K = 0 
KDC ., K + 1 

FIND THE MEAN OF ALL DATA POINTS 

1 SIJMX = O, 
r•o ? J = Knc, N 

2 SUMX = SUMX + X<J> 
GN = BN 
ZN = N - I( 
XI<AR1= SUMX / ZN 

SUI<TRACT MEAN FROM EACH [lATA POINT 

I•O 3 J = KDCrN 
3 X1CJ> = X<J> - XBARl 

CALCULATE THE VECTOR OF COVARIANCES 

DO 5 I = 1rLR1 
K3., N- I+ 1' 
1<2 = I + K · 
SUM = 0 
DO 4 J = KDCrl<3 
SUM = SUM + CX1CJ) * X1CK2)) 

4 K2 "' 1<2 t 1 
5 CCI> = SUM / ZN 

COMPUTE THE COEFFICIENTS OF THE AUTOREGRESSIVE EQUATIONS 

BC1r1) • t, 
J = 2 
no 71 I=1rLR 
SUMl = O, 
SUH2 "' O, 
Io<Jo1) • 1, 
DO 6 KS = 1oi 
1<2 = I - KS- + 2 
SUM1 = SUM1 t CIICI,KS> * C<K2)) 
SUH2 = SUM2 t B(I,KS> * CCKS) 
IFCI.EQ,KS> GO TO 72 

6 CONTINUE 
72 Io<JrJ) = -1. * CSUH1 / SUM2) 

IFCJ.LT.3) GO TO 70 
DO 7 KS = 2oi 
1<2 = I - KS t 2 

7 B<JrKS> = B<IrKS> t CBCJrJ) * BCirK2)) 
70 J = J + 1 
71 CONTINUE: 

CALCULATE SAMPLE RESIDUAL VARIANCES 

DO 10 I=2rLR1 
SUH2 = O, 
1<2 a I t 1 t K 
NPLUS "' N t 1 

Figure 9. (Continued) 
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01570 IIO 9 J=K2rNPLUS 
015SO SUH1 z o. 
01590 DO 8 L1 ~1ri 
01600 K3 = J - Ll 
01610 e SUH1 = SUH1 t <B<Irll) * X1 (11:3)) 
01620 9 SUH2 = SUH2 t SUH1**2 
01630 AN z ZN - I + 1 

__ 91~---HLY._~~<_I_~-· f!l)H3_ _ _1 AN_ 
1}1650 c 
01660 c 
01670 c 
01680 
01690 
01700 
01710 
01720 
01730 
01740 
01750 
01760 
01770 
01780 c 
01790 c 
01800 c 
01810 

CALCULATE CONFIDENCE LIMITS AND DETERMINE AUTOREGRESSIVE ORDER 

J .. 1 
KP,. 1, 

11I=I+1 
W<I> = 1. - CB(Ir1>**2> 
CONFR = T!C 1 r I) t ·F' * I I W <I ) I ZN > **, 5) 
CONFL • B<Iri> - P * <<Will I ZN>**~S) 
IFICONFR> 13r14r12 

12 IFCCONFL) 14r14r13 
13 KP = I 
14 IF ~I.NE.LR1l GO TO 11 

CALCULATE THE NECESSARY SAMPLE SIZE 

15 IF IKP.NE.t> GO TO 16 
XM = C(l) 
I( = 0 
GO TO 18 

16 SUM1- ;.· (), 
I•O 17 I = 1 r KP 

17 SUM1 a SUM1 + BIKPri> 
XM = VARIKP>' I CSUHU*2> 
K = IXM I Cit>> - 1, 

18 G1 • <0**3• t 0) I 4, 
02 • (5o * (0tt5,) + 16o * (0**3,) + 3o * 0) I 96o 
G3 c 13, * 10**7•> + 19, * <D**S,) t 17. * <D*t3,) - 15, *D) I 

1384 •. 
04 = 179, * (0**9,) t 776, * 10**7,) t 1482 * <Dt*S,) - 1920, * 

1 <0**3,) - 945, *D) I 92160, 
DF • <<ZN t C(1)) I XM> - 1, 
DE • 0 t 101 I DFl t <02 I <DFI*2,)) + (03 I CDF**3,)) t 

1104 I IDFU4o)) 
IF<HETH.Nf.,1> GO TO 23 
CW = Dl2. 
XN = XM * ((0EICWl**2) 
GO TO 24 

23 IFCN.NE,MSTAR> GO TO 19 
SUMSO = XM * ZN 

.FN = <<BETA<METH> t SORT(2, *ON- 3,)) **2,) I 2, 
FM = <C-1.*BETA<METH> + SORTC2, * ZN- 3,)) **2,) I 2, 
TO = tlE 

111 

01820 
01830 
01840 
01850 
01860 
018'70 
01.880 
01890 
01900 
01910 
01920 
01930 
01940 
01950 
0196() 
01970 
01900 
01990 
02000 
02010 
02020 
02030 
02040 
02050 
02060 
02070 
02080 
02090 
02100 
02110 
02120 
02130 
02140 
02150 
02160 
02170 
02180 
02190 
02200 
02210 
02220 
02230 
02240 
02250 
02260 
02270 
02280 
02290 

DTRIL = <2•* TO* SDRTCSUMSO> * SORT<FN>> I CSORTCFM> * SORT<GN * 
1 < GN - 1.>)) 

IF <DTRJL,LE,D> GO TO 22 
GN1 = <2, *TO* SORT<SUMSO> * SORT<FN>> / <SORT<FM> *D) 
NGN1 = GN1 
NGN = ON 
IF<NGN1.EO,NGN) GO TO 21 
ON = GN1 
GO TO 23 

21 ON = GN1 + 1o 
GO TO 23 

22 XN = GN 
M • GN 
K = N 
Ktoc = K t1 
N = N + H 
GO TO 1 

24 1\DC = K + 1 
ZN .. N - I< 
IF CXN.LE,ZN> GO TO 19 
M G * <XN ZN> 
N = N t M 

Figure 9. (Continued) 



02300 
02310 
02320 
02330 
02340 
02350 
02360 
02370 
02380 
02390 
02400 
02410 
02420 
0::0<130 
0:!<1<10 · -o24so __ _ 
02460 
02470 
02480 
02490 
02500 
02510 
02520 
02530 
02540 
02550 
02560 
02570 
02580 
02590 
02600 
02610 
02620 
02630 
02640 
02650 
02660 
02670 
02680 
02690 
02700 
02710 
02720 
02730 
02740 
02750 
02760 
02770 
02780 
02790 
02800 
02810 
02820 
02830 
028<10 
02850 
02860 
02870 
02880 
02890 
02900 
0;2910 
02920 
02930 
02940 
02950 
02960 
02970 
02980 
02990 
03000 
0~010 

IF<M.GE,5> GO TO 26 
NXN1,. XN 
NZN "' ZN 
M = NXN1- NZN +1 
N = N + M 

26 GO TO 1 
19 SUM = O, 

[10 20 I • KDCrN 
20 SUM = SUM + XCI) 

XBAR<METH> "' SUM I ZN 
XVAR<METH> = XM I ZN 
CONFR = XBARCMETH> + CSQRT<XVAR<METH>>*GE> 
CONFL = X~AR<METH> - CSORT<XVARCMETH>>*OE) 
IF CCONFR - TMEAN> 63r62r61 

61 IF CCONFL - TMEAN) 62r62r63 
62 sut1ci1ii1E:THi -.;,--s-ul1ct1Tt1EflifT1-:------
63 WIDTH = CONFR - CONFL 

IF !WIDT~- Dl 64r64r65 
64 SUMCW<METH> = SUMCW<METk> + ·1, 
65 KP = KP - 1 

IF CKP,NE,TARO) GO TO 66 
SUMP<METHl = SUMP<METH> + 

66 SUMMN<HETHl = SUHMN(METH> 
SUMVR<METH> = SUMVR<METH) 
SUMNRCMETH> = SUMNR<METH> 
SUMS01<METH> = SUMSQ .. 
XM1<METH> = XM 
NXN<METH> = XN 

97 CONTINUE 

1. 
+ XIIARCMETH> 
+ XVARCMETH> 
+ XN. 

PRINT 2511, ITERrNXN.< 1 > ,NXN<2> rNXN<3> rNXN<4>rNXN<5> rNXJH6) rNXN(7) 
2511 FORMAT !1Xri<I,4X,2HN*•l3X,I4•6<10Xri4>> 

112 

PRINT 2560r XBARC1l,XBAR<2>rXDAR<3lrXBAR<4lrXBAR<5>rXBAR<6>rXBAR<7 
1> 

2560 FORMAT <9Xr4HMEAN, 9X,F6.4,6(8XrF6,4)) 
PRINT 2562,XVAR(1),XVAR<2>rXVAR!3lrXVAR(<I)rXVAR(5),XV~R(6)rXVAR(7) 

2562 FORMATC9X,8HVARIANC£,1,11X,7AOF MEAN,4X,F6.4,6<8X,F6.4)) 
PRINT 2361,XM1<1>,XM1(2),XH1C3>•XM1<4l•XM1<5>•XM1C6>•XM1<7> 
PRINT" 2559,SUMS01<2>•SUMS01(3),SUMS01(4)•SUMS01<5>rSUMSQ1!6), 

$SUMS!H (7) 

2559 FORMAT(9X,6HSUM OF•I•11X•7HSOUARES,lOX•6<5XrF9.4)) 
99 CONTINUE - . ' 

2561 FORMAT <9XrBHVARIANCE,5X,F6,4,6(8XrF6.4),11> 
PRINT 2512 

2512 FORMAT <1H1,//I//,51X,18HSUMMARY OF RESULTSr/11) 
PRINT 2513 

2513 FORMAT (33X,7HFISHMAN,36X,8HGRAYBILL) 
PRINT 2514 

2514 FORMAT <48X,3H.65,10X,3H.70,10X,3H,80r10X,3H,90r10X,3H.95r10Xr31l.9 
19.11) 

DO 67 I = 1•NMETH 
XBAR<I> = SUMMN<I> I ITERL 
XVAR<I> = SUMVR<I> I ITERL 
NXN<I> = SUMNR<I> I ITERL 
PMCI<I> = SUMCM<I> I ITERL 
PCWC<I> = SUMCW<I> I ITERL 

67 PAROC(Il = SUMP<I> I ITERL 
PRINT 2515, NXN<l>• NXNC2>• NXN<3>• NXN<4>• NXN<5), NXNC6lr NXNC7) 

2515 FORMAT C8X,2HN*•25Xri3•6<10X,I3ltl) 
PRINT 2516,XBARC1>•XBAR<2>•XBARC3>•XBAR<4>•XBARC5),XBAR<6lrXBARC7) 

2516 FORMAT (8X,4HMEAN,21X,F6,4,6<7X,F6,<1),1) 
PRINT 2517rPAROCC1l,PAROC<2>•PAROC<3>,PAROC(<I~•PAROC<5),PAROCC6lr 

1PAROC<7> . I 

2517 FORMAT C8X,20H~ROPORTION OF TRIALS,I,BX,20HTRUE AUTOREGRESSIVEri•B 
1X•1<1HORDER IS FOUND,10X,F7.4•6<6X,F7,4l•l> 

PRINT 251B,PMC1(1),PMCI<2lrPMCIC3l,PMCI<4>•PMCI<5>,PMCIC6),PMCIC7) 
2518 FORMAT CBX,20HPfiQ"PORTION OF TRIALS,/t8Xd9HTRUE MEAN CONTAINED,t.S 

1X,22HIN CONFIDENCE INTERVAL,2X,F7,4,6{6X,F7,4l•l> 
PRINT 2519,PCWC<lltPCWCC2ltPCWC<3ltPCWC(4ltPCWC<5>,PCWC(6),PCWCC7) 

2519 FORMAT <8X•20HPROPORTION OF TRIALS•I•BX,19HCONFIDENCE INTERVALrlr8 
1X,22HWIDTH IS WITHIN LIMITS,2XrF7.4r6C6XrF7,4)) 
STOP 
END 

Figure 9. (Continu~d) 



APPENDIX D 

STATISTICAL VALIDITY 

The purpose of this appendix is to substantiate the 

techniques used in performing the experiments described in 

Chapter III and IV. The experiments were based on two 

assumptions: 1) that the distributions of sample sizes 

were normally distributed; and 2) that sufficient trials 

had been run to adequately estimate a mean sample size for 

the particular data and sample size determination method 

in question. The calculations reported in this appendix 

show that the sample size distributions can be treated 

as being normally distributed. Also, sufficient trials 

were taken so that a confidence interval cbmputed about 

the estimated mean sample size would have. a width no more 

than fifteen percent of the estimated mean sample size. 

Several distributions· of sample sizes were selected 

for testing. Normal distributions were assumed and confi

dence intervals (a = .05) were computed about the estima

ted mean of each distribution. The widths of the 

resulting intervals are reported in the fourth column of 

Table XIII .. The maximu~ allowabl~ width was chosen to be 

fifteen percent of the estimated mean sample size for each 

distribution. The maximum allowable widths are reported 

11 3 
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in the fifth column of Table XIII. Notice that, for each 

distribution selected, the interval width is well within 

the desired limits. 

The confidence intervals which were cal~ulated were 

based on the assumption that the distributions of sample 

sizes were normal, For each selected distribution, a 

Lilliefors test was performed to check the goodness-of-fit 

for a normal distribution. The sixth column lists the 

test statistic, D, for each set of sample sizes. Column 

seven gives the .90 quantile for the Lilliefors test. The 

null hypothesis (i.e., the data fit a normal distribution) 

should be rejected if the test statistic, D, exceeds the 

.90 quantile. Based on the test statistics, the null 

hypothesis cannot be rejected for any of the selected 

distributions. 



Distribution 
of Data 

Norma 1 

Normal 

Exponential 

Exponential 

Exponential 

Exponential 

TABLE XIII 

SELECTED DISTRIBUTIONS OF SAMPLE SIZE: 

Autoregressive 
Order 

1 

1 

0 

0 

1 

2 

VALIDATION OF SAMPLE SIZE 
AND DISTRIBUTION 

Computed Width 
Of Confidence 
Interval About 
Mean Sample Maximum Allowable 

s2 Size Interval Width 

l. 00 29.56 34.95 

1. 00 23.05 31.8 

1. 00 25.634 94.65 

.95 32.356 72.75 

.95 8.368 24.45 

.95 27.698 75.3 

D 

.0440 

.0654 

.0357 

.0525 

.0469 

.0422 

w 
.90 

.0805 

.0805 

.0569 

.0569 

.0569 

.0569 

_, 
_, 



APPENDIX E 

RESULTS 0~ EXPtRIMENTS USING 

HIGHER AUTOREGRESSIVE ORDERS 

This supplementary material gives the results of 

experiments for higher autoregressive orders. The propos

ed method was tested on both exponential and geometric 

data for autoregressive orders three, five, and ten. The 

results shown in Tables XIV through XIX indicate that the 

procedure performs properly under the conditions of higher 

autoregressive orders. 

ll 6 



TABLE XIV 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAL DATA WITH AUTOREGRESSIVE 

ORDER OF THREE 

Variable The Proposed Method 

a2 =.65 a 2 •.70 s 2 =.8o a2 l!l.9o a 2 =.95 

Mean Required Sample Size 469 390 541 627 706 

Estimated Mean Of Data (X) 12.49 12.48 12.49 12.49 12.48 

True Mean Of Data hd 12.50 12.50 12.50 12.50 12.50 

Proportion of Trials ( 1 -a) 
In Which ll Is Contained 
In Confidence Interval 
About X .970 .955 • 965 .980 . 955 . 

Proportion Of Trials <82> 
In Which Confidence 
Interval Width Is 
Within Desired Limits .665 .710 .845 .940 . 985 

a2 =.99 

889 

12.41 

12 .>50 

.935 

1. 00 

.... .... 



TABLE XV 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAl DATA WITH AUTOREGRESSIVE 

ORDER Of FIVE 

Variable The Proposed Method 

s 2 =.65 s2=.70 e2=.ao e2=.90 s2=.95 

Mean Required Sample Size 212 222 247 289 327 

Estimated Mean Of Da.ta (X) 12.52 12.52 12.52 12.54 12.52 

True Mean Of Data (p) 12.50 12.50 12.50 12.50 12.50 

Proportion of Trials (l-&) 
In Which p ls Contained 
In Confidence In terva 1 
About x .970 .970 .975 . 970 . 975 

. 
Proprti on Of Trials (s2> 

In Which Confidence 
Interval Width Is 
Within Desired limits . .665 .710 .845 .965 .985 

s2=.99 

416 

12.49 

12.50 

.975 

1. 00 



TABLE XVI 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
EXPONENTIAL DATA WITH AUTOREGRESSIVE 

OfWER OF TEN 

Variable The Proposed f.iethod 

Mean Required Sa~p1e Size 

Estimated Mean Of Data (i) 

True ~·lean Of Data (JJ) 

Proportion of Trials (1-a) 
In Hhich Jl Is Contained 
In Confidenc~ Interval 
About X 

Proportion Of Trials (s 2 ). 
In Which Confidence 
Interval Width Is 
Within Desired Limits 

s2=,65 

211 

»r. ·' 12.52 

12. 50 

.975 

.660 

s2=.70 s2=,80 sz=.90 

221 246 288 

1 2. 52 12.52 1 2. 54 

12.50 12.50 12.50 

. 97 5 .975 .975 

.700 .845 .965 

s2=,95 s2 =.99 

326 414 

1 2. 52 12.49 

12.50 12.50 

.975 .. 975 

.985 1.00 



TABLE XVII 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE 

ORDER OF THREE 

------------·----·------
Variable The Proposed r·iethod 

Mean Re~uired Sample Size 

Estimated Mean Of Data(Y) 

True Mean Cf Data (p) 

Proportion of Trials (1-a) 
In Which P Is Contained 
In Confidence Interval 
About X 

Proportion Of Trials (B 2 ) 
In Hhich Confidence 
Interval Width Is 
Within Desired Limits 

s2 =.65_ 

260 

27.48 

27. 5.0 

.950 

.655 

s2 =.70 

272 

27.48 

27.50 

• 94 5 

.. 720 

s2 =.so s2 =,90 s2 =.95 

303 353 399 

27.46 27.53 27.54 

27.50 27.50 27.50 

.• 97 .955 .965 

.865 .940 .996 

s2 =.99 

506 

27.58 

27.50 

.965 

1. 00 

N 
.0 



TABLE XVIII 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE 

ORDER OF FIVE 

Variable The Proposed Method 

e2=.65 s2=.70 s 2=.80 s2=.90 s2=.95 

Mean Required Sample Size 253 266 295 344 389 

Estimated Mean Of Data (X) 27.48 27.48 27.46 27.52 27.53 

True· Me-an of Data (1l ) 27.5 27.5 27.5 27.5 27.5 

Proportion of Trials (1-&) 
In Which lJ Is Contained 
In Confidence Interval 
About X .950 .943 .965 .960 .950 

Proportion of Trials (~2) 
In Which Confidence 
Interval Width Is 
Within Desired Limits .635 .705 .835 .93 .99 

a2=.99 

494 

27.56 

27.5 

.970 

1. 00 

N __, 



Tf-\BLE XIX 

RESULTS OF SAMPLE SIZE EXPERIMENTS FOR 
GEOMETRIC DATA WITH AUTOREGRESSIVE· 

ORDER OF TEN 

Variable The Proposed 

s 2=.65 s 2=.7o s 2=.8o 

rvte an Required Sample Size 252 265 294 

. E-st ima.ted He an of Data {X) 27.49 27.48 27.46 

True ·M-ean Of Data { ~) 27.50 27. 50 . 27.50 

Proportion of Tria 1 s { 1 -a) 
In t·.Jhich 1-1 Is C.o.n t a i ned 
In Confidence Interval 
About x .950 .945 .965 

Proportion C•f Trials (s2) 
In ~J hi c h Confidence 
Interval Hidth Is 
L~ithin Desired Limits .625 .69 .835 

Method 

s 2=.9o s 2=.95 

343 388 

. 2 7. 52 27.54 

27.50 27.50 

.960 .950 

.93 .99 

s2=,99 

492 

27.56 

27.50 

.970 

1 . 00 

N 
rv 
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