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ABSTRACT 

 

Uropathogenic Escherichia coli (UPEC) strain CFT073 is a common cause of hospital 

acquired urinary tract infections (UTIs) and has been shown to switch metabolic preferences 

from gluconeogenic to sugar substrates when colonized in the urinary and intestinal tracts, 

respectively.  Interestingly, CFT073 also exhibits a quiescent phenotype when plated below a 

threshold of 106 CFUs on minimal media in vitro, suggesting a link between the recurrence 

of CFT073-related UTIs and the ability to remain colonized.  This research project used the 

streptomycin-treated mouse model to first acquire total cellular RNA from E. coli CFT073 

colonized in mucosal layer of the mouse cecum.  Next, we evaluated whether genes involved 

in regulation the quiescent phenotype in E. coli CFT073 grown in vitro also play a role in 

colonization.  Lastly, we provide some details of an algorithm-based approach to the analysis 

of RNA Sequencing (RNA-seq) datasets generated using two mechanistically different 

sequencing strategies to identifying primary transcripts.   

 

1. Introduction 

 

 In the United States, uropathogenic Escherichia coli (UPEC) causes approximately 80% 

of urinary tract infections (UTIs) experienced by women (Nicolle et al., 2002).  Moreover, 

the source of recurrent UTIs, which may lead to cystitis, has been traced most frequently 

back to the UPEC responsible for the initial infection (Russo et al., 1995).  E. coli strain 

CFT073, the prototypical UPEC, uses sugars during colonization of the mammalian intestine 

and traverses the urethra to gain access to the bladder where it switches to metabolism of 

gluconeogenic substrates (Alteri et al., 2009, Meador et al., 2014).  Once colonized in the 

bladder, CFT073 can subsequently ascend the ureters and cause acute pyelonephritis in the 

kidneys (Mobley et al., 1990).  Data describing mechanisms utilized by enteric bacteria to 

compete for preferred nutrients in the intestine is insufficient.   

Recent reports suggest that antibiotic resistant quiescent intracellular reservoirs 

(QIRs) of UPEC cells mediate recurrent UTIs (Kerrn et al., 2005, Silverman et al., 2013).  It 

has been shown that seeding CFT073 at ≤ 106 CFUs on glucose M9 minimal agar causes the 

cells to enter a state of quiescence, a phenotype which can be disrupted by introducing 
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mutations in 6-phosphogluconate dehydrogenase (gnd), glutamate dehydrogenase (gdhA), 

pyruvate kinase (pykF), lysine permease (lysP), and glucose-6-phosphate dehydrogenase 

(zwf) (Leatham-Jensen et al., 2016).  The onset of disease caused by urinary tract pathogens 

is contingent upon their initial colonization of the intestine.  Therefore elucidating UPEC 

mechanisms of intestinal colonization is critical to the development of therapeutic 

approaches to reduce the potential dissemination of infections to nearby tissues.  However, 

the relationship between intestinal colonization and cellular quiescence has not been 

sufficiently studied.  Specifically, it is unknown whether the same genes that regulate the 

quiescent phenotype, observed when CFT073 is seeded on glucose M9 minimal media, also 

play a role in colonization of the streptomycin-treated mouse model.   

To begin characterizing the gene expression profile of E. coli CFT073 colonized in 

the mammalian intestine, E. coli CFT073 was colonized alone or co-colonized with isogenic 

mutants exhibiting a defect in a pathway regulating quiescence in vitro.  Strain populations 

were monitored by fecal plate counting, and total cellular RNA was extracted from cecal 

mucus samples collected immediately following euthanization using a modified hot phenol 

extraction protocol.  Currently, we are using high-resolution promoter mapping to annotate 

differential ribonucleic acid sequencing (dRNA-seq) data generated from the extracted 

bacterial RNAs.   

 

2. Experimental Details 

 

Bacterial strains.  All strains used in this study are listed in Table 1.  E. coli CFT073 is a 

sequenced UPEC prototype that colonizes the gastrointestinal tract.  It was originally isolated 

from a patient with acute pyelonephritis and found to exhibit hemolytic activity on blood 

agar plates (Mobley et al., 1990).  In order to colonize streptomycin-treated mice, all strains 

were made streptomycin resistant (Strr).  To facilitate fecal plate counting of individual 

populations during co-colonization experiments, all Str strains were made either nalidixic 

acid resistant (Nalr) by spontaneous mutation or Kanamycin resistant (Kmr) by random 

insertion of the mini-Tn5 Km transposon (Meador et al., 2014, Leatham-Jensen et al., 2016, 

Moller et al., 2003).    
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Table 1  

E. coli Strain Relevant genotype or description Source or reference 

CFT073 Strr Nalr 

CFT073 Strr mini-Tn5 Km::gnd 

 

CFT073 Strr mini-Tn5 

Km::pykF 

CFT073 Strr mini-Tn5 

Km::gdhA 

CFT073 Strr mini-Tn5 Km::zwf  

 

CFT073 Strr lysP::Km 

Spontaneous Strr Nalr 

Mini-Tn5 Km 6-phosphogluconate 

dehydrogenase mutant of CFT073 Strr 

Mini-Tn5 Km pyruvate kinase mutant of 

CFT073 Strr 

Mini-Tn5 Km glutamate dehydrogenase mutant 

of CFT073 Strr 

Mini-Tn5 Km glucose-6-phosphate 

dehydrogenase mutant of CFT073 Strr  

lysP Deletion mutant of CFT073 Strr 

 

(Meador et al., 2014) 

Jodi Camberg 

 

Jodi Camberg 

 

Jodi Camberg 

 

Jodi Camberg 

 

Jodi Camberg 

 

Streptomycin Mouse Model.  The addition of streptomycin-sulfate in the drinking water 

provided to conventional mice selectively removes facultative anaerobes, increases mucosal 

carbohydrate availability, and permits the experimental association of E. coli strains for 

which the genome sequences are available (Wadolkowski et al., 1988, Hentges et al., 1984, 

Ng et al., 2013).  This non-invasive mechanism of antibiotic treatment has been used 

extensively to provide complete control over the facultative anaerobe population colonized in 

the mucosal layer of the mouse gastrointestinal tract, specifically the cecum (Conway and 

Cohen, 2007).  Briefly, 6-week-old mice (male, CD-1) were obtained from Charles River 

Laboratories, acclimated to the housing environment for 72 hrs., then separated into 

individual cages and provided with sterile filtered streptomycin-sulfate treated water (5 

g/Liter) for 24 hrs. Following streptomycin-sulfate treatment, both food and water were 

removed for 14 hrs. and then mice were fed approximately 105 CFU of E. coli strain(s) in 1 ml 

of 2% sucrose (day 0).  After consuming the bacterial suspension, food and water (5 g/Liter 

streptomycin-sulfate) were given to the mice ad libitum for the duration of the experiment.  

Plate Counting. Antibiotic resistance to either Str and Nalr or Str and Kmr was used to 

differentiate the strains in fecal plate counts. Feces were diluted 1:10 (w:v) in 1% tryptone, 

serially diluted, and plated on lactose-MacConkey agar supplemented with the appropriate 

antibiotics at the following working concentrations: streptomycin sulfate (100 mg/ml), 

nalidixic acid (50 mg/ml), and kanamycin (40 mg/ml).  Each colonization experiment was 

repeated, and the values for the six mice (or more) were averaged. The log10 CFU/g feces was 

determined for each strain at each time point ( the standard error of the mean).  A fold 

difference in CFU/g feces  101 between strains was statistically significant. 

RNA isolation.  Following euthanization, approximately 100 L of cecal mucus was 

gently scraped into an equal volume of ice-cold RNA stabilization buffer (3.53 M 

Ammonium sulfate, 17 mM Sodium citrate, 13 mM EDTA, pH 5.2) and pipetted up and 

down to mix and prevent RNA degradation.  Cells were separated from mucus by 

centrifugation at 14,000 x g for 5 min.  Total RNA cellular was isolated from CFT073 Str 

Nalr colonized in the mucus samples using a modified hot phenol protocol (Ares, 2012).  
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Briefly, 400 L boiling lysis buffer (2% SDS, 10 mM EDTA, 10 mM Tris) was pipetted on 

to cell pellets immediately causing lysis.  Phenol:chloroform:isoamyl alcohol (PCA, 25:24:1) 

was added to the lysate, vortexed to emulsify, and incubated at 65C for 10 min.  This was 

followed by two PCA extractions and two chloroform washes.  After the second wash, RNA 

in the aqueous phase was taken through the Quick-RNA™ Soil/Fecal Microbe Microprep 

protocol.  Contaminating DNA was removed by digestion with Turbo DNase (Invitrogen).   

The concentration and integrity of RNA was determined by spectrophotometry and agarose 

gel electrophoresis, respectively.  RNA samples were stored at -70C. 

RNA-Seq and High Resolution Promoter Mapping.  Total RNA was shipped on dry 

ice to vertis Biotechnlogie AG (Freising, Germany) for cDNA library preparation and 

sequencing on an Illumina HiSeq2000.  For differential RNA-seq (dRNA-seq) analysis, one 

portion of each RNA sample was fragmented, and modified on the 3’- and 5’- end with a 

poly(A) tail and RNA adapter, respectively.  Reverse transcriptase and poly(dT) primer were 

used to in first-strand cDNA synthesis, and a barcoded TrueSeq adapter was incorporated 

during the synthesis of the second strand.  A second portion of each RNA sample was 

similarly fragmented as the first, then subject to treatment with terminator exonuclease 

(TEX), which selectively digests RNA with 5’ monophosphate ends thereby enriching for 5’-

triphosphorylated ends characteristic of transcription start sites (TSS) at promoters.  

Following digestion, TEX treated RNA’s were tailed and ligated as described above.  To 

begin constructing a comprehensive and high-resolution promoter map of E. coli CFT073 

using differential dRNA-seq methodology, the following criteria were applied to identify 

statistically significant promoters: (1) consensus among biological replicate data sets, (2) 

sequencing read enrichment facilitated by terminator exonuclease (TEX); (3) Increased 

sequencing reads in the TSS+9 bp region relative to the TSS-9 bp region in untreated 

(coverage) data sets, and (4) promoter motif analysis.  

 

3. Results 

 While facultative anaerobes have previously demonstrated to prevent colonization of 

enterohemorrhagic E. coli (EHEC) strain O157:H7, ureopathogenic E. coli CFT073 (UPEC) 

and enteropathogenic E. coli E2348/69 (EPEC) both grew from low to high numbers in the 

mouse intestine when associated on day 10 of streptomycin mice pre-colonized with 

commensal strains E. coli HS and E. coli Nissle 1917 (Maltby et al., 2013; Leatham et al., 

2009).   Similarly, our data support that E. coli CFT073 can successfully grow from low to 

high numbers when 105 CFUs are associated in the streptomycin-treated mouse in the 

absence of native facultative anaerobes (Fig 1A).  

 We found that when 105 CFU each of CFT073 wild-type and CFT073 pykF were fed 

simultaneously, CFT073 wild-type colonized at ~109 CFU for the duration of the experiment, 

whereas CFT073 pykF initially grew to ~108 CFU after 24 hrs., but decreased to ~106 CFU 

by day 15 (Fig. 1B). Similarly, CFT073 lysP initially grew to ~107 CFU after 24 hrs., but also 

decreased to ~106 CFU by day 15 (Fig. 1D). Neither CFT073 gdhA, gnd, zwf showed 
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significant colonization defects when 105 CFUs of each was simultaneously colonized with 

105 CFUs of CFT073 wild-type (Fig. 1C, E, F).  

  Using our modified version of a hot phenol extraction protocol in combination with the 

Quick-RNA™ Soil/Fecal Microbe Microprep kit (Zymo Research), we successfully purified 

approximately 1 g of total cellular RNA from E. coli CFT073 colonized in the mucosal 

layer of the mouse cecum (Fig 2, lane 1). 

In our ongoing analysis of RNA-Seq data from CFT073 grown in vitro, the algorithm 

based approach has facilitated TSS identification, as illustrated in the example of the 

threonine leader peptide (thrL) expression during logarithmic phase growth (Fig 3).  The step 

factor is calculated as the fold increase in the TSS counts (height) in the treated sample 

relative to the untreated control.  For the TEX-enriched RNAs this value equals was ~0.49, 

whereas the corresponding value in the Cappable-seq enriched RNAs was ~1.61.  The 

average number of reads for the TSS+9 and TSS-9 regions in the untreated control were 

72073 and 993.   This suggests that there is a 72.6 fold increase in transcription beginning at 

the  TSS without enrichment. 

 

 

 

  

 
Fig 1 – Colonization and co-colonization of mice with UPEC wild-type and UPEC metabolic mutants. (A) Two 

sets of 3 mice were fed 105 CFU of E. coli CFT073 Strr Nalr or co-colonized with 105 CFU of (B) CFT073 

pykF,  (C) CFT073 gdhA,  (D) CFT073 lysP  (E) CFT073 gnd or (F) CFT073 zwf. 



 6 

4. Discussion and Conclusion  

 

In this project, we have taken a mechanistic approach to enhancing the current 

understanding of the physiology of bacteria colonized in the mammalian intestine, focusing 

on E. coli CFT073 (UPEC), the pathogen most frequently cited in urinary tract infections in 

the United States (Welch et al., 2002).  Critical to generating these data was our use of the 

streptomycin mouse model, which has high experimental reproducibility (Adediran et al., 

2014, Leatham et al., 2009, Chang et al., 2004, Jones et al., 2007).  To date, very few groups 

have reported RNA-seq data generated from bacteria stably colonized in the mucosal layer of 

the gastrointestinal tract (Li et al., 2015, Jenior et al., 2018).  As a first step towards 

performing transcriptomic analysis on bacterial RNA recovered from the mouse cecum, we 

have developed a protocol which relies on organic extraction in combination with a column 

based approach to purify total cellular RNA suitable for RNA-seq (Fig 2, lane 1).  It is 

expected that the completed annotation of our E. coli CFT073 RNA-seq datasets will provide 

additional insight on global catabolic pathway utilization during colonization of the cecum.   

It has been reported that >75% of recurrent urinary tract infections are caused by the 

UPEC responsible for the initial infection, suggesting that UPEC 

such as CFT073 are capable of entering stages of quiescence and 

giving the pretense that an infection has been cleared  (Ejrnaes et al., 

2006, Russo et al., 1995).  It has recently been shown that E. coli 

CFT073 wild-type grows on glucose M9 minimal media when 

seeded at  106 CFU.  However, when seeded below this threshold, 

cells take on a quiescent phenotype that was shown to be disrupted 

in five E. coli CFT073 mini-Tn5 non-quiescent mutants (Leatham-

Jensen et al., 2016).  We tested the roles of five genes identified to 

be involved in a quiescent phenotype observed when CFT073 is 

seeded at ≤ 106.  The CFT073 pykF and lysP strains showed greater 

than a 10-fold reduction relative to the CFT073 wild-type when 

simultaneously colonized at an initial density of 105 CFU’s in the 

streptomycin mouse.  The absence of a functional pyruvate kinase, 

which converts phosphoenolpyruvate to pyruvate, reinforces the 

importance of the glycolytic pathway to colonization of the mouse 

intestine by commensal as well as pathogenic E. coli (Fabich et al., 

2008, Chang et al., 2004, Meador et al., 2014, Miranda et al., 2004).  

However it is unclear why CFT073 pykF is non-quiescent in vitro (Leatham-Jensen et al., 

    
Fig 2 - Gel 

electropherogram

 
showing total cellular 

RNA extracted from 

CFT073 colonized in 

cecal mucus (lane 1) 

and RNA from an in 

vitro culture (lane 2). 
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2016).  One hypothesis centers around the accumulation of intracellular 

phosphoenolpyruvate, a precursor to lysine, methionine, and tyrosine biosynthesis, in 

CFT073 pykF (Siddiquee et al., 2004).  Sufficient levels of the three amino acids may 

stimulate growth in CFT073 pykF.  Specific transport of lysine in E. coli is mediated by the 

lysine-specific permease system, LysP, but also through the lysine-arginine-ornithine (LAO) 

system (Steffes et al., 1992).  Perhaps the LAO system, which is repressed under nutrient rich 

conditions in vitro, is similarly repressed in vivo, relegating the LysP system as the sole 

mechanism of transporting lysine from the extracellular environment (Rosen, 1971).  

Previous reports also 

indicate that E. coli 

gdhA can grow when 

provided with glucose 

as the sole carbon 

source, relying on 

alternative pathways 

of glutamate synthesis 

(Helling, 1994).   

However, the reason 

for non-quiescence in 

CFT073 gdhA 

remains unclear.  

 

5. Summary 

  

This report reinforces the importance of targeting total cellular RNA acquired from 

bacteria colonized in the mucosal layer of the gastrointestinal tract as the most 

physiologically relevant approach for characterizing nutrient acquisition in vivo.  Total 

cellular RNA preparations from bacteria in feces may possibly include RNA’s transcripts 

from transient microorganisms that were ingested but never colonized.  We also provide a 

small glimpse into the complex signaling that controls cellular quiescence, by demonstrating 

the overlapping importance of two genes, pyruvate kinase and a lysine permease, to both 

quiescence and being important for colonization.  To our knowledge, this is the first report to 

establish a role for lysine transport in colonization of the streptomycin mouse model.  Lastly, 

we explain three features critical for accurately annotating RNA-seq datasets which remains 

an ongoing aspect of this project.  

 

  

 
Fig 3 - Annotation of threonine leader peptide (thrL) TSSs in Gene Expression 

Database.  Users view quantitative information (step height, coverage) from multiple 

replicates simultaneously and annotate transcriptional features with base pair 

resolution. 
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