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CHAPTER I

INTRODUCT ION

A system is a configuration of components combined to perform
a particular task. The reliability of a component or system is the
probability that the device will work successfully. To analyze a
system, thi; analysis must be based upon an analysis of the components
with regards to their configuration within that system.

The system reliability depends upon the reliability of the compo=
nents that make up that system. In analyzing the reliability of a
system or component, a confidence level is associated with each
reliability since the actual reliability of an item cannot be deter=-
mined precisely. This confidence level provides a measure of the
quglity of the reliability estimate.

SPARCS* (Simulation Program for Assessing the Reliability of
Complex Systems) is a program that provides interval estimates for
assessing the reliability of complex systems. The system components
consist of two component types: Bernoulli compénents (attribute
type) and Poisson process components (timé-to-failure type). The
model uses information about the logical configuration of a system

in the form of success states or failure states and failure-history

*SPARCS was developed in conjunction with a grant from the Air
Force System Command, Wright-Patterson Air Force Base, in Dayton,
Ohio as project number F33615-74-C~4077. The result of that contract
is technical report AFFDL-TR-75-144 [62].



data for each componént as input. System mission time may also be
input as an option to obtain a MTBF (mean-time-between-failure) for
the system.

The system logical information is analyzed using Poincaire's
theorem (the method of inclusion-exclusion) to provide a system equa=
tion as a function of the system comppnenté. Each component's failure=
history data is used to provide component reliability or unreliability
values for use with the system equation. This failure=history data
are parameters of Bayesian conjugate prior distributions on the compow=
nent reliabilities. A beta distribution is used for the Bernoulli
process components and a negative-log gamma distribution is used
with the Poisson process components.

SPARCS is an efficient procedure written in PL/1 that uses Monte
Carlo methods to provide an "empirical" distribution on the system
reliabilities (or unreliabilities) and the system MTBF. This is accom~
plished for a system of any logical configuration and complexity.

The procedure involved is facilitated by the use of modularization
which allows large systems to be broken down into smaller independent

modules which may be analyzed separately and later combined.
Purpose and Scope of the Study

The purpose of this study is to provide a computerized procedure
for the determination of confidence bounds and appropriate limits
for the reliability (or unreliability) of a complex system of any
logical configuration. The scope of this study is Iimited-to the
development of such a procedure. In particular, a system equation

will be developed which is a function of the component reliabilities



and their logical placement within the system. The components will

be of two basic types: Bernoulli components and Poisson process compo-
nents. Monte Carlo Techniques will be used, in conjunction with this
equation, to provide point estimates for the system reliability.

These poiht estimates will be ordered and analyzéd-statistically

to provide empirical confidence bounds and limits on the (un)reliabili-
ty of the system under analysis. The mean, variance and standard
deviation as well as an estimated reliability for the system will

be provided.
Methodology

Since there is usﬁally no failure-history data available for
the system under evaluation, failure-history data for‘each component
is used based upon the best available data. This information is sup~
plied to SPARCS along with information concerning the logical configu-
ration of the system components and a '"mission time" for determination
of a system MTBF if desired.

Poincaire's Theorem (inclusion-e*clusion) is used to generate
an equation for the system as a function of the system components
and their placement within the system. Component (un)reliabilities
are provided for ﬁhis equation based upon the historical cpmpoﬁent
test information supplied by the user.

System components are of two basic types: Bernoulli (pass-fail)
componehts and Poisson process (time-to-failure) components. The
model uses the component failure-history data to provide reliability
confidence assessment for a system containing any logical combination

of either or both types of these components. Fpr each component type,



Bayesian analysis is used to provide the (un)reliability for that
component. For Bernoulli components, the Bayesian prior is the beta
with accumulated successes and failures as sufficient statistics.
For Poisson process components, the Bayesian prior is the negative=~
log gamma with accumulated total time in tests per test unit and
accumulated failures as sﬁfficient statistics. These sufficient
statistics are parameters of the beté prior and the négative-log
gamma prior.

Monte Carlo techniques are used to enter the appropriate Bayesian
prior distribution to provide an estimate of the reliability for
that component. The Monte Carlo techniques utilize the historical
test data as sufficient statistics when entering the appropriate
distribution. Each component reliability is placed in the reliability
equation in its proper position. This function is then evaluated
to yield a point estimate for the reliability of that particular
system. The Monte Carlo procedures prdduce a number of these point
estimates which are used to provide confidence limits and statistical
information on the empirical distribution of these reliability point
estimates.

fhése system reliability point estimates are sorted in increasing
order. Percentage points are provided by an analysis of these ordered
values. The mean, variance and sténdard deviation of this empirical
distribution is determined. An estimated reliability for the system
is also calculated by placing the mean value of each component into
the system equation. If the mean;time-between-failures (MTBF) is
desired, the MTBF is presented for each percentage point value by

direct conversion of that value into an MTBF.



Background

A program by J.L. Burris, called Model for the Analysis of the
Probabilities of Systems (MAPS) [11] provides the éYstem equation,
using Poincaire's method, and the basic input-output format. SPARGCS,
Simulation Program for Assessing the Reliabilities -of Complex Systems,
provides the Monte Carlo techniques and statistical techniques neces=
sary to develop and analyze the empirical distribution of system
point estimaﬁes; These point estimates can be generated for a system
of any logical configuration: sérieé,'pérallel, or series-paréllel.
Complex systems may be broken down into smaller subsystems (modules)
which are later combined to determine the system reliability or unreli-
ability. This modﬁlar idea along with the use of PL-l, makes it pos;
sible to handle complex systems with a considerable saving of time

and computer storage.
Chapter Organization

Chapter II discusses the pertinent literature around which the
modei revolves. Current methods for assessing the reliability of
simple systems and Monte Carlo methods for reliability confidence
assessment aré discussed. Literature concerning concepts around which
SPARCS revolves is presented such as Poincéire's Theorem and Bayesian
reliability analysis.

Chapter III discusses the system and logical aspects used in
SPARCS. Poincaire's Theorem and its development is analyzed.

Chapter IV discusses the»st;tistical distributions used in the

model. A brief discussion of the beta and negative-log gamma



distributions are presented. The implementation and reason for implemen-
tation of the uniform prior is anélyzed along with a discussion of

the statistical aspects of confidence bounds and confidence limits

used in reliability.

Chapter V describes the tests and:analysis used for model valida-
tion. The duality cohcépt, tests of the uniform prior for component
(un)reliability and some simple binomial and exponential tests are
analyzed. These tests show that the concepts are intact:in the model
and that the modelvdoes produce very good results as compared to
other results in the field.

Chapter VI analyzes some of the techniﬁues and procedures incorpo=-
rated into the model. The International Mathematical and Statistical
Library (IMSL) routines that provide component reliabilities are
checked for inherent error. Tests of the pseudo-random number genera-
tors and the sorting routine incorporated into the model are described.
Finally, a discussion of sample size determination is presented.

Chapter VII discusses the model software procedures. An analysis
of the storage requirements and the purpose Qf each procedure is
presented. The JCL aspects are also discussed to facilitate éystem
transitions.

Chapter VIII is a documentation of SPARGS. A discussion of what
the model does as a composite unit is presented. The input format
is explicitly delineated to enhance user use.

Chapter IX summarizes the model methodology and test conclusions.

" A small section lists possible extensions of this work.



Finally, four appendices are at the end of the chapters. The
first two appendices present the JCL used with the model. The next
two are a program source listing of SPARCS and an Apallo Lunar Excur-

sion Module (LEM) test rune.



CHAPTER I1I
LITERATURE REVIEW
Introduction

In reliability ponfidence assessment, prediction statements
are made concerning the reliability of a system from life test data
accumulated for each system component. The reliability of a system
is associated with a probability that shows the confidence of the
reliability estimates. Estimation of the reliability of a system
that providés no confidence or predictive value for the reliability
of that system ignores the possibility of variability in these esti=-
mates.

This chapter reviews the literature that deals with procedures
for assessing the reliability df systems. Included in this review
is a historical development of techniques and statistical descriptions
of procedures that are employed in systems reliability confidence

assessment.
A History of Reliability Confidence Assessment

This section of the literature review traces the early development
of reliability estimation and assessment techniques. Early articles
and books on reliability are reviewed dealing with both component

and system reliability analysis.



Early Articles

In 1953, Epstein and Sobel [23] write a classic article on reliabi=-
lity assessment for components, dealing with the exponential distribu~
tion. Life testing procedures are proposed for estimating the reliabi-
lity of exponential type components. Their procedure contends that
only r out of n component failures need to occur within a specified
testing time, where r < n, to provide an estimate of the component
reliability. Assessment is performed usint the Chi-square distribution
with 2r degrees of freedom, wheré r is fhe number of failures.

In 1957, Buehler [8] and Steck [87] publish articles which consi=~
der assessing the reliability of simple systems as well as a technique
for single component reliability assessment. In eaéh case, biﬁomial
components are considered. Buehler [8] provides confidence limits
on a system of two binomial indépendent components which are linked
in a parallel configuration. A Poisson approximation to the binomial
distribution is used and his analysis is specialized to smallnprobabi-
lities of failure and moderate sample sizes. Steck [87] proposed
a more general solution to the problem. His solution requifes an
ordering of component test results that produces complex manipulations
for all but simple systems. In each case, feliability analysis was
applied to systems of components. |

In 1963, Rosenblatt [76] uses a U~statistic as discussed by
,Hoeffding [35] to analyze a simple binomial system. This article
Begips to hint at analysis of systems of a more complex nature in

which the components may be either series or parallel or a combination.
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Early Books and Tables

The first text explicitly dealing with the subject of reliability

was written by Bazovsky [3] in 196l. Bazovsky provides‘discussions

of network analysis, component reliability assessment and simple

» .

system reliability estimations. In 1962, Lloyd and.Lipow [47] write

a text on reliability which used approximations such as the Poisson
approximation to the binomial as developed by Buehler [8] to produce
confidence bounds on the system reliability. This was used in lieu

of methods which combined confidence bounds on the components to
obtain confidence bounds on the system as proposed by Conner and

Wales [15]. Earlier, Lipow and Riley [46] had tabled upper confidence

limits on 1, 2, and 3 component serial systems.

Early Monte Carlo Techniques

In the late 50's and early 60's, system reliability analysis
was approached using Monte Carlo techniques. The earlier techniques
consisted of simulating the success or failure of each component
as events. These component success or failure events were then combined
logically to see if the system succeeded or failed. However, little

information is written describing these early techniques.
Simple System Reliability Assessment

In the mid 60's, the literature begins to expand. The earlier
articles on component and simple system reliability analysis are

extended by use of approximations and exact expansions. However,
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most of the literature continues to deal with assessing the reliabi-
lities of simple series or parallel systems of exponential and binomial
type components. Since SPARCS also deals with both exponentiél and
binomial type components, the literature interest is channeled in

that direction.

Binomial Systems

Confidence limits for systems consisting of binomial type subsys=
tems of more than two components are discussed by Madansky [52] in
1965. Madansky uses a maximum likelihood ratio test in lieu of the
Poisson approximation suggested by Buehler [8]. However, his procedure
did not obtain reliable Valqes for systems with high reliabilities.
’The Poisson approximation of Buehler produced much better values
in these cases. Consequently, his procedure is applicable only to
systems with moderate reliabilities.

Since Buehler's method is developed for systems with two Binomial
components and Madansky's procedure does not produce good results
for highly reliable systems, Harris [33] tries to devise a method
to provide confidence limits for systems'of more than two components
which will produce adequate results for highly reliable systems.

To accomplish this, Harris uses the Poisson approximation to the
binomial distribution in conjunction with a uniform random variate
to produce confidence limits for systems of more than two binomial
components. An article by Myhre and Saunders [67] used by Harris
[33], succinctly analyzes the method of Madansky.

Springer apd Thompson [83] are one of the earliest to try the
Bayesian approacﬁ to binomial co?ponent systems. A Bayesian prior

&
i

1
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distribution, which is uniform in the abpence of data, is applied

to the systemkuﬁder analysis. A transform is applied to each‘cpmponent
and the results combined to produce confidence limits on the system
reliability.

In 1972,-Easterling [19] develops a procedure thch uses_almaximum
likelihood estimate of.the system reliability. The maximum likelihood
estimates are substituted intolﬁn incomplete beta function to obtain
confidence limits on the reliability of the system of binomial compo-
nents. Mann [54] produces a basic simplification of Buehler's [8]
article which removes the two component restriction on system size.
For systems of more than two ;omboneﬁts; the Wilson-Hilferty [93]
transformation to the chiesquare is used to provide a standard normal
variate for system reliability confidence assessment. Winterbottom
[94] provides a comparative sﬁudy of exact and approximate methods
for providing lower confidence limits on the reliability of binomial
systems. Exact methods are methods that do not use approximations
in their techniques to facilitate calculations. Approximation methods
revolve around thevuse of approximation procedures such as chi-square
approximations,.normal approximations,:the Wilson-Hilferty transfor-
mation and others. Thus, appfoximate(meﬁhods are ways of approaching

exact results which are used as a standard.

Exponential Systems

Confidence intervals for exponential component systems are discus=-
sed by Lentner and Buehler [44] in‘l963. Life testing procedures
are applied to these exponential type components as developed by

Epstein and Sobel [23]. By defining fixed "mission times," gamma
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variates are used to provide a linear function of more than two parame-
ters which are analyzed through the use of "similar regions' as des-
cribed in Lehmann and Scheffe [42] and Lehmann [417.

In the mid 60's, El Mawazinj [21] expands the work of Lentner
and Buehler [44] to produce explicit expressions for an'exponentiai
type system of any size. A linear combination of incdmplete gamma
‘functions is used to derive confidence limits on exponential systems
by elaborate computer techniques. Later, El Mawaziny and Buehler
[22] provide a large scale approximation to El Mawaziny's procedure.
This approximation follows El Mawaziny's [21] idea of no restrictions
on the number of sysﬁem components with each component following
exponential failure laws.

Springer and Thompson [84, 85] provide an extensive analysis
of exponential type components in parallel configuration. Bayesian
confidence limits are placed on redundant exponential systems from
component test data in which component tests are terminated at the
first failure. The analysis is for components and systems having
extremely high reliabilities. Later, Thompson and Chang [89] generalize
the technique of Springer and Thompson [85] to remove the restriction
of the single life sample with termination at the first failure.

In 1971, Leiberman and Ross [43j expand the work of Kraemer
[38] and Sarkar [77] to provide lower confidence limits on systems
of two independent exponentiél components. Analysis of the two exponen-
tial components are shown to produce a distribution for the system
reliability that approximates a Gamma distribution.

Grubbs [32] develops a process which provides a lower limit

on the system reliability for systems consisting of exponential
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time-to-failure éomponents using the number of componenf failures

in specified "mission times.'" His method is designed to be used in

lieu of methods involving Monte Carlo simulation techniques. Grubbs'
method uses the'first two moments of the "fiducial“ distribution

‘of the system failure rate to fit a non-central Chi-square distribution.
His method requirés a minimum of calculation and uses tables of stan-
dard normal deviates to obtain the system lower confidence limits.

Manﬁ and Grubbs [56] combine the earlier methods of El Mawaziny
[21], Lentner and Buehler [44] and Grubbs [32] to pfopOse a‘simple
method to approximate the system lower confidence limits for»éxponential
series systems. The general results supplied by Patnaik [71] concerning
the noncentral Chi-square approximation and the Wilson-Hilferty
transformation‘[93] are used in conjunction with Fertig [27] and
Cox [18] to provide these lower limits.

The "approximately optimwﬂ' methéd of Mann aﬁd Grubbs [56] is
later simplified by Manmn [55]. Essentially, the process uses a trans-
formed chi-square probability density function and the moments of
this function to provide an approximation that teﬁds_to agree within
approximately a unit in the sécond-decimélkplace with the method

of El Mawaziny [21] which is considered an "exact' method.
Complex Syétems

Gomplex systems are systems with other than strict series or
parallel configuration in which the component types may be intermixed.
Generally, systems are restricted to either ail exponential or all
binomial components in series or parallel configuration. Some litera-

ture intimates that their procedures may be extended easily to include
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complex systems but never actually follow through with such an
explanation.

In the early 60's Rosenblatt [76] hints at an expansion of her
method to a more logically complex system as does Mann and Grubb;
[57] and Wolf [95] latef. However, no formal details are pfesented.
Mann and Grubbs propose the application of simplified approximations
to a complex system of "mixed" comporients by finding equivalent Beta
or binomial transformations for their simplified exponential computa-
tions. However, the requirement that.a complex system be expressed
as a series or parallel system composed of more series and parallel
components restricts theif calculations. Nowhere in the literature
was ﬁhere found an explicit analysis that purported to place confidence
limits on a complex system of any logical configuration using "mixed"
historical component information in ;ny order with the excepﬁion

of an article by Levy and Moore [45].
Monte Carlo Techniques

In 1961 and 1962, Burnett and Wales [10] and Bosinoff and Klion
[7] proposed Monte Carlo techniques for system reliability assessment
in which compon;nt life distributions are used to provide component
reliabilities. Thesevreliabilities are placed in a system reliability
equation to provide interval estimates on the system reliability
through repeated.Monte Carlo trials. The basic'assumption in each
instance is that the components have expoﬁential life distributions,
are all connected in series, and'ére‘indépendent. |

These basié simulation assumptions are still used, Generally,

Monte Carlo analyses still assume simple series or parallel systems
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in which all components are either exponential or binomial type compo-
nents with.the exception of Lévy and Moore [45].

Levy and Moore [45] analyze a system which is not a strict series
or parallel systém with either binomial or exponential type components.
Their components are a mixture of Weibull, normal, lognormal, exponen-
tial and Gamma type components in a complex system of seven components.
A group of values are provided for each component. These values are
ordered to form an "empirical" distribution. Then, random numbers
are used to enter these "empirical" distributions to obtain component
reliabilities. The complex system is broken down into easily ﬁanipulated
parallel or series subsystems.'These subsystems are combined to form
either a simple serieé or parallel system which can be analyzed with
relative ease. ,

In tﬁe 70's, Mann [55] and Berkbigler and Byers [4] use Monte
Carlo techniques to anélyze the effect ;rior distributions have on

the lower confidence limits of the syétem reliability. However, in

each case, a simple series system is used to provide the analysis.

Development of the SPARCS System

Reliability Assessment Model

Early Minimal State Analysis

/

In 1956, Moore and Shannon [64], iﬁspired by a paper presented
the same year by von Neuman [91], develop methods for producing highly
reliable systems from components of low reliability. This paper
set the framework for minimal state analysis of‘complex systems.

Moore and Shannon provide bounds on the number of components needed
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to achieve a specified system reliability and initially develop the»

concept of minimal state analysis. They show that the reliability

of a network consisting of independent components of equal reliability

is S-shaped. In 1959, Mine [61] further expands these procedures

by examining complex systems which are represented as Boolean functions.
In 1962 and 1963, Birnbaum, Esary and Saunders [6] and Esary

and Proschan [24, 25], expand the work of Moore and Shannon [64].

Birnbaum, Esary and Saunders explore the reliability of complex systems

in which the reliability of each coﬁposent is the same. Esary and

Proschan extend this concept to systems in thch the reliability

of the components are not necessarily analogous. In each case, minimal

paths, defined as '"a smallest set of components which by functioning

cause the system to function" [24], are uéed to provide an upper

bound on the system reliability. Minimal cuts, definéd as "a smallest

set of components which by failing cause the structure to fail" [24j,

are used to furnish a 16wer bound on the system reliability. In 1965,

Barlow and Proschan [2] also enlarge this minimal state concept by

further examination of coherent systems, i.e. structures which have

the property that replacing failed components with functioning compo-

nents cannot cause a funcioning structure to fail.

System Reliability Equation Development Using Poincaire's Theorem

In 1971, Locks [48] uses Poincaire's Theorem, based in part
on the theory of inclu;ion-exclusion diééuésed in Feller [26, pp.26£ff],
in conjunction with the minimal state definitions and concepts of
the early articles mentioned above, to-develop an exact system (un)re-

liability equation which is a function of the system components.
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The minimal states of the system under investigation are used to
obtain a polynomial that fepresents the reliability of unreliability
of the system as a function of success states:(minimal paths) or
failure states (minimal cuts). The system reliability or unreliability
estimates can be obtained for a system of any size and any logical
configuration. |

A complete description of the use of Poincaire's Theorem for
developing the éXact system reliability equatiqn.as a functionbpf
the system.minimal'states is presented By Locks [48]. Locks [49]
also piééénts an error analysis between'his exact method for pro#iding
upper and lower bounds on the (un)reliability of a‘system and thé

earlier minimal state methods for forming the upper and lower bounds.

Earlier Computer Models for System Reliability Analysis

In the late 60's, a program called SCOPE (System for Computing
Operational Probanility Equations) [88] was developed for the Saturn
and Apollo space programs. This program was the basis for MAPS (Model
for the Anal?sis of the Probabilities of Systems) [ll], devéloped
in 1972 by J. L. Burris. MAPS is coded in PL/l as opposed to the
FORTRAN coding of SCOPE and incorporates a modularity concept that
allows large systems to be broken down into smaller subsystems.

MAPS is a computer program designéd to produce a point e;timate
of the reliability of a complex system as a function of the reliabilia
ties of the components that méke-up\than sYstem. An analysis of the
system network by the user provides the ﬁinimal states for the system.
These minimal states are used as input to generate an equation for

the system as a function of the component reliabilities or
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unreliabilities. An estimate of the reliability (or unreliability,
depending upon the type of analysis desired by the user) is input
for each component. These component reliability (unreliability)
values are then substituted into the reliability (or unreliability)
equation to producé an estimate of the feliability (unreliability)
of the system. Parts of this program were used as a base for the

development of SPARCS [61].

Sample Size Determination

A formal method for sample size Determination has not been incorpo=-
rated into the model. Burdick ana N;ylor [9] and Naylor, Balintfy,
Burdick and Chu [68, pp. 335-338] discuss the samplé size determination
problem as one of the major problem; in simulation. When the data
to be analyzed lack independence anq no;mality, an efficient wmethod
for the determination of how many obsérVations to measure and when
to begin measurement becomes very difficult. Without some knowledge
of the types of distributions obtained from analysis of systems
of different configurations, the-sample‘size cannot be efficiently
determined.

Consequently, the law of large numbers and the Central Limit
Theorem are used to provide an estimate of the number of simulation
runs necessary for a certain confidence interval about the mean.
Although this basic sample siée férmulavis provided for use with
the model, it will be shown that SPARCS provides very good results
with reasonably small sample sizes. These small sémple size values

~are compared with values obtained from'larger samples obtained from
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literature and verified using a duality check. The reason for these
results with small sample sizes may revolve around the idea that
conventional sample size procedures are based upon the sampling

of events whereas SPARGCS in fact samples reliabilities.
Statistical Development of the Model

System reliability confidence assessment may be approachéd through
the use of three statistical procédures: Classical analysis, Bayesian
analysis, and fiducial analysis. Since.system reliability assessment
is a function of the components that make up that system, these proce-
dures revolve around a method for analysis of the system components.

In the classical approacﬁ, prior information is not taken into .
account and prediction 1imits are piaced around an estimate of the
true reliability. These limits provide a true frequéncy interpretation
not produced by the other two methods [39, 69]. The Bayesian procedure
[1, 30] and the fiducial procedure [28, 36] take into consideration
prior data and knowledge plus the statistician's personal assessment
of this prior knowledge. The Bayesian analysis generally uses an
ignorance (uniform) prior as the basis for ény resultant posterior
distribution. The fiducial analysis was inﬁroduced by R. A. Fisher
[28]. One of the basic differences between fiducial priors and uniform
prior revolves around the fdea that fiducial priors assume prior
experience with this experience being used as a base. The uniform
prior, in the absence of data, uses the assumption of no prior know-
ledge (ignorance). The difference betwéen Classical analysis and
Bayesian analysis (including fiducial ahalysis) is succinctly

summarized by Springer and Thompson [83]. The confidence limits



21

in the Bayesian sense are defined such that the probability of a
particular estimate lying outside these limits will not exceed the
specified posterior probability. Ia the Classical sense, as developed
by'Neyman [70], the confidence limits stipulate that the frequency
with which predi¢tion lies outside these confidence limits will not,
in the long run, exceed the specified confidence. Consequently, limits
obtained by'Bayesian and fiducial procedures do not provide an exact
frequency interpretation in all instances. However, these are used
quite extensively in reliability analysis because standard classical

procedures are unavailable for all except the simplest systems [95].
Bayesian Analysis

Bayesian priors as discussed by Locks [50, p. 115£f] are used
in the model to determine the reliability of each component for asses=
‘sing system reliability. Raiffa and Schlaifer [75] provide an analysis
of the theory behind the Bayesian approach. Using the Bayesian ap=
proach, historical data about each componenﬁ is allowed té be incorpo-
rated into an appropriate Bayesian prior distribution provided for
that component. Because the resulting posterior distribution depends
upon the specific prior chosen, it is evident that problems are
generated because of this prior. Mann [57] analyzes the selection
of prior distributions and their effect én the regulting confidence
limits. She found that for an exponéntialiseries system, the Bayesian
bounds, although exact in the Bayesgaﬁ sense were smaller than the

classical bounds in every case.
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In our case, the uniform prior is used in the absence of data
for each component. Lawless [39] and Sarkar [77] analyzed the use
of bounds generated by uniform priors on a system of exponential
components and found them to be more conservative than bounds provided
by fiduéial priors.‘In comparing the Bayesian uniform prior<épproach
with the classical approach, Schick arnd Prior [78] found that the
uniform prior approach produced lower confidence limits on the sysﬁem
reliability that were larger than that produced by exact methods.
Fertig [27] analyzed a serial system composed of exéonential components
from both the classical and Bayesian approach. He concluded that
there are no prior distributions in the absence of data that can
yield the exact unbiased confidence boundg provided by the classical
approach. A revie& of the Bayesian controversy is analyzed by Easter=
ling [20] and Lawless [39]. A summary éf the finding and results
for numerous ‘articles is found in Mann, Schafer, and Singpurwalla [58].
Although some of the literature seems to indica;e the lack of
an optimum prior, it is believed that the uniform prior used in SfARCS
in conjunction with an exact method, Poincaire's Theorem, for detefmi-
ning a system reliability equation as a function of the components,
does in fact produce confidence bounds which indicate that the uniform
prior does produce very good results. These results are verified
through the use of a duality check in which system reliabilities
and unreliabiliiies were compared from minimal path and minimal cut
analysis. The results show very accurate complementary confidence
levels for system reliability and unreliability and teénd to indicate

" that a uniform prior is perhaps the optimum prior.



CHAPTER 111
SYSTEM AND LOGICAL ANALYSIS
Introduction

An estimate of the reliability of a complex system can be deter-
mined by the development of an exact equation that is a function
of the componeht reliabilities. This equation is developed for any
logical system from an analysis of.the system states. These states
are of two types: success states called paths and failure states
called cuts.

An algorithm has been developed for combining system minimal
states, say minimal paths, to provide an equation for the system
reliability. This algorithm, called POincaire's Theorem (inclusione
exclusion), uses Boolean algebra and the’theory of partially ordered
sets to produce a system reliability equation as a fﬁﬁction of the
components. Set concepts, as presented by Feiler [26], are developed
in the concept of reliability by Locks [48]. The analysis that follows
closely parallels the analysis provided by Locks [48].

Once the system equation is developed, confidence assessment
for the system reliability can be performed. Since SPARCS specifies
that the components be either attribute or Poisson process components,
Monte Carlo methods are used to provide the individﬁal component

reliabilities for the generated system equation. This is done a number

23
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of times until a resultant empirical distribution of the system reli=

ability estimates is produced.
Mathematical Concepts

Network diégrams may be used to analyze a system to determine
the ways in which the success or failufe of a system can occur. In
a success~type network, called a logic diagram; each mode indicates
the success or non-failuré of a component or specific element of
the network. In ﬁhis context, a path is a set of.components which
by functioning cause the system to function. A minimal path is a
smallest set of components which by functioning cause the system
to -function evén if all the other components fail [25].

In a failure~type network, often called a fault tree, each mode
denotes a failure of non-success for a particular element or component
of the network. Then, a cut is a set of components which by failing
cause the system to fail. A minimal cut is a smallest set of components
which by failing cause the system to fail even with all other compo=-
nents functioning [25].

The analysis of any element of a network is binary in nature.
Either the element is a success (1) or it is a failure (0). Consequent-
ly, Boolean algebra is used to provide a matheﬁatical'representation
of the system states. Following this analysis, a.system, which we
will call ASYS, is composed of ﬁ binary components or elements i,
i=1, 2, «ee, n. A 1l denotes a success and a 0 denotes a failure.
Then, any state of ABYS can be represénted as a binary n-dimensioﬁed
vector

X = (xl, Xg 3 ¢ s o s o X )
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.
1l is a success and

»
I

X = 0 is a failure.

The set of states {X} that make up the netwo;k has 2n different
elements because of the binary nature of each element. States may
be written as a function of X which has a value of unity, f(X) = 1,
for those vectors which make the structure perform, (paths) and a
value of 0, £(X) = 0, for those vectors which make the structure
fail (cuts). It is assumed that all states are either péths or cuts.

In a system of the form

(a)
&/

— 0 @

O

there are three elements. An analysis of the network can be provided
by an analysis of the three elements. If each state is analyzed in
order with the Boolean representation of each component (A, B, C)

- as

Xn=ABC

 then the binary representations for the minimal paths are

X, =101
1 ,

X, =011
2

\
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and those for the minimal cuts are
X. =001
3
X =11 0.

4

This provides a complete analysis of the network through an analysis
of each state.

The probability of at least onevof the minimai paths occurring
is given as

R = p(X;) + p(X,) - p(X;X,) (2)
This is the sum of the probabilities of each minimal path minus their
intersections. The probability of at least one of the minimal cuts
occurring is

R = p(x3) + p(X,) = p(X;X,) (3)
which is the sum of the probabilities of each minimal cut minus their
intersection. This is the basis for Poincaire's Theorem which follows.

For each network component i, i =1, 2, ..., n, the reliability
s 0< r, <1, is the probability of success, X, = l. Then 1 - r,
is the probability of faiiure, X, = 0. Each component is assumed
to be independent. Consequently, the probability of a particular
state, pr(X) of X, is the reliability of the functioning components

times the unreliability of the failed ones.

n X, _ 1l - X, :
pr(x) = I (fi (1= r) ) > 0. [48] (&)

i=
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Poincaire's Theorem

By definition, V is a minimal path if it is a path and it does
not include another path. This is the shortest path through a logic
diagram and is so structured that the system functions even if all

the other elements fail. For any path X, this may be represented as

£(V) =1, V £ X. (5)

V is a minimal cut if it is a cut and is not included in another
cut. The system fails with a minimal cut even if all the other elements

are successful. This may be represented similar to (5) as
£(v) = 0, X£ V. (6)

Every path can be shown to include at least one minimal path
and every cut is included in at leagt one minimal ¢Ut. Then the proba-
bility of the outcome of a network (success or failure) includes
any given minimal state (path or cut) and is the numerical product
of the probabilities of the state components (reliabil@ty or unreliabi-
lity), which identify the state (path or cut). An anaiysis of these
system minimal states leads to Poincaire's Theorem. Since there is
a dual relationship between minimal-paths and minimal-cuts, Poincaire's
Theorem is developed for paths aﬁ@ eésily converted to cuts. Minimal
cuts are just the minimal paths for failure [48].>

Since every success state iﬂcludes at least one minimal path,

if there are m minimal paths V V&, .7;, Vh, then the system.reliabif

1,
lity is the probability that at least one of these minimal paths

are contained in a random outcome of system success.
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m

R(ASYS) = pr (U (V, < X)) | (7)
=

The above expression is a combination of m expressions, an expression

for each minimal path. At each step, the probability associated with

that minimal path is combined with the previously combined minimal

.
path probabilities. This is shown as

J
R.=pr(U(VkSX))

e k=1
i-1
Ro=pr ((U(V X)) v (Vv <X)) (8)
) k=1 k J
-1 :
R =R +h(V.)-pr ( (U (Vv <X) & (Vv £X))

This combination ultimately yields an equation for the system reliabi=-
lity developed from an analysis of the minimal paths and a function
of the component reliabilities. This expression, (8), expands very
quickly as the number of minimal paths increase. The expression with

3 minimal paths, Vl, VZ’ V3, is developed in three steps.

R1 =h(Vl) |
R2=R1+h(V2)-h(Vl +V2) - (9)
Ry =R, +.h(V3) - [h(vl + V3)‘ + h(V, + V3) - h(V] +V, +V, )]
R3 may be expressed
R3 =‘R2 + h(vy) - pr((V, £ X v v, <X)& (V3 < X))

If R3 is expanded to include m minimal paths, it becomes a prototype

of the general case. For any step j, j =1, 2, +4., m, let {hz} /
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2

k< j. Let {hB} denote the set of (%) minimal states expressed by

denote the set of <J> minimal ‘states expressed by h(Vi + Vk) where i< '

h(Vi + vt Vl) where i< k<1< j. Following this expansion, the general

case becomes:

j . _
R, = Z h(V,) = 25 h(V, +V, )+ 3 h(V; +V, +V))
k=1 {ho} ~ {hs} (10)
_ j
c e DI RCE V)
=1

which is Poincare‘s Theorem.

In (10), at step j, j=1, 2, «s., m, the maxiﬁum number of
terms is 2j - 1 [48]. Generally, the actual number of -terms is some
number less than 2j - 1 because in expanding (10), there are elements
in common which can be merged with or cancelled agéinst each other.
Without these cancellations and combinatiqns, (10) becomes cumbersome
and possibly iﬂfeasible for large syséems. |

The above procedures are exactly the same for én analysis of
minimal cuts. The only difference is the system reliability R(ASYSj
becomes the system unreliability R(ASYS). Then, ﬁ(ASYS) is a combina~
tion of the minimal cuts to providé the system unreliability as
a function of the component unreliabilities. In either case, it
is assumed that Qvery path is contained only in paths and every cut

contains only cuts and all components are independent,
Application of the Theorem

Assume a system of the following configuration containing five

components.
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- O~

é)@%a

The system contains three paths: 125, 135, and 145. If any
path functions, the system will function. Let T;s Tys T3y Tyy Tsy
represent the reliability of each component, then following Poincaire's

Theorem, (10), the system reliability equation becomes

R = r1r2r5 + r1r3r5 + r1r4r5 - r1r2r3r5 - r1r2r4r5
(11)

~-rrrr_+Trrrrr.

1345 12345

Because of the complementary relationship of the system reliability

and unreliability, the system unreliability may be found as
R=1--R ‘ (12)

If an unreliability analysis is desired, the system cuts are
identified as 1, 234, and 5. Thué, the system will fail if any one
of these three situations occurs'even if the other components are
not failed. Again following Poincaire's Theorem, (10), if El’ T ,

, I. represents the unreliability of each component, the system

37 T4 s
unreliability equation becomes

REm T ey, ¥ 55 - ON5T, = 4T = L5 (13

=

+ ¥, L, L,F, I .

172737475
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The system reliability can be obtained as the complement of the unreli-
ability:

R=1=-R ’ (14)
Equation Development by MAPS

The development of the system equatibn as a function of the
components iskﬁrovided in a program by J. L. Burris [11]. This equétion
generating routine is used in SPARGCS to provide the equations for
the simulation of complex systems. The minimal paths or minimal cuts
are provided by ﬁhe user. EQGEN, the part of MAPS (and SPARCS) that
generates the system equation, uées this information to provide the
system equation as a function of‘the component reliabilities or
unreliabilities. Component value% are élaCed into this equation for
each simulation run to provide an estimate of the system feliability

or unreliability.



CHAPTER 1V
STATISTICAL ASPECTS
Introduction

SPARCS provides an analysis of a complex system of any logical
configuration in which the components are either Bernoulli or Poisson
process components. Bayesian analysis is applied to the two component
types. It provides a convenient method of incorporating sample observa=-
tions with prior distributions to provide adjusted estimates of compo=
nent reliabilities. These prior distributions are fupctions of prior
data and test observations. In this wéy, prior knowledge and historical
data can be used to provide reliability assessment.

Using two basic component types allows the use of predefined
natural conjugates. These natural conjugates allow the combination
of future observations with these conjugéte priors to yield a posterior
distribution of the same faﬁily. In both cases, the priors, in the
absence of data, are defined to be uniform priors.

This éhapter covers Bayesian analysis of Beta and Gamma type
components; The Bernoulli and Poisson processes for providing component
information are analyzed. Next follows a brief discussion of the
purpose and fundamentals of the Bayesian approach with regards to
reliability analysis. Finally, a:de;ailed discussion for each type

of component with a mathematical analysis for each is given.

32
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In this discussion, a number of authors will be paralleled for
a portion of the analysis. The Bayesian discussion will parallel
Raiffa and Schlaifer [75, pp. 28-79], Lehman [41, pp. 10-21],
Schmidtt [80], Locks [50, pp. 115129] and Mann, Schafer and Singpurwalla

[58, pp. 379-404].

Bernoulli and Poisson Processes

Bernoulli Process

A Bernoullf process is a process in which the probability of
success (or failure) remains constant over a series of independent
trials. The probability of success is gerierally denoted by p and
that of failure by (l=p). Thus, the probability of any outcome is
the product of the probabilities of tbe'reéults of ﬁhe independent

trials:
pr (1_P)n-r whefe 0<p<l1. (l)

This is known as the '"kernel" of a binomial distribution which is
the result of a Bernoulli process.

There are two basic types‘of Bernoulli (attributes) testing.
If the number of tests are fixed such that the number of successes
(failures) becomes a random variable; the ‘binomial family is used
as representative of this-proceduré. When  the number of succesées
(failures) afe fixed and the number of tests become random, the nega-
tive binomial family represents this procedure.

Since the reliability of a Bernoulli component is the probability

of success of that component, the value of p is the unknown. Thus,
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assessing the feliability of a Bernoulli component is the same as
assessing the value of p.

A beta distribution is used in reliability assessment for Bernoulli
processes. This distribution is on the reliability p, which is a
continuous random variable over the range (0,1). This function appears

in the probability density function as developed from the '"kernel":

£ (pla,b) = _(atbrl)! 'pa(l-p)b (2)
B a! b!

where 0<p<1. Here,

B (atl, b+l) = (atbtl)! | (3)

a! bt

is known as a Beta function.

Poisson Process

For a Poisson process, the probability density function, distribu-
tion function, and reliability assessment is based upon the assumption
of a constant failure rate, A, which is independent of time. The
amount of time necessary for the first failure to occur, T, is a
random variable whose probability is subject to the exponential density
function, Ae_kx . The time may be in ordinary units such as minutes,
hours, etc., or in time blocks where each block represents one time
unit.

The probability that the time for a failure to occur, T, is

less than time, t, is given below. If

F(t) =pr(T L t)

1-F(t) = pr(T > t) (4)
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then

1-F(t) = exp {- At} (5)
and
F(t) =1 - exp {- At} . ' (6)

By definition

£(t) = d(F (L)) ' (7)
dt '
then
f(t) = }\e‘xp{-)\t}. - | (8)

For any time, t, the probability that failure occurs before time
t is the function represented by (4) and (6). The probability that
failure occurs after t is the survival probability or reliability

‘given by
R(t) = pr(T > t) = 1l«F(t) = exp {- At} . | (9)

If the analysis is expaﬁded to analyze cases in which more than
one failure occurs, the reliability is judged not by the time for
a single failure to occur but by the time for n failures to occur
where n > 1. This expansion yields a probaBility density function

on the time to the nth failure of the form

f(e) = X tn-z eXlZ)) i- )\t}. - (10)
' n=1)!

This expansion results in a Gamma probability density function in

which the denominator is also known as a Gamma function, [ (n).
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Bayesian Reliability Analysis

Bayesian analysis generally uses a continuous prior distribution
on the religbility, p, over the range (0,}). Because of the inherent
variability of data, the value for the reliability, p, can only
be specified up to a confidence factor. The lower confidence limit
on the reliabii-lity, p, at confidence/level Y is the lowest value

p such that
L

Y =pr(p > pQ ) (11)
and

1-Y =pr(p< p ). ‘ _ (12)

Thus, the Bayesian analysis partitions the prior distribution into
two parts: the part below the lower confidence limit pg with probabi-
lity 1=¥ and the proportion above with probability V.
For a Poisson process, the prior is a Gamma distribution on
the failure rate A with té_)tal testing time and total failures as parameters.
A change of variables techniqueb is required to produce a distribution on
the reliability, p. FoAr‘a Bernoulli process, the prior is 4 Beta prior on
the reliability,p which ma"y be used.with both binomial and negative bi=
nomial data. The parameters for ,tfhé Beta are total tests and total failures.
In SPARCS, the components are defined to be of two types: Bernoulli
and Poisson process compo1\'1ents. These»vcomponents lend them_sélves
to priors from the Beta and Gamma families which are acceptable prior
families as defined by Raiffa and Schlaifer'['jS]. These priors are
mathematically tractable in that a posterior distribution may be
reasonably determined from a prior distribution and a given observation

from the same population. Both distributions are closed in the sense
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that the posterior is a member of the same family as the prior. Thus,
both distributions are associated with the Koopman-Pitman-Darmois

[75, 41] class of distribupibns; In these distributions, the likelihood
obtained by repeated independent trials is a function of the additive
sufficient stétistics observed in these trials. Thus the priors for
both distributions are the natural conjugates. This guarantees that

the posterior distributions are of the same form and family as the
prior with parameters that are the sum of the sufficient statistics

for the prior and the sufficient statistics for current data.
Component Analysis

Bernoulli Components

Bernoulli analysis is utilized for components which are placed
in tests and a record kept on the number of failures observed in
the tests. The conditional probability given, p, that our Bernoulli
process will generate r successes and n-r failures in some specified

order is

X, lax,
i i

I(p (l-p) ) = pt (L-p)™~TF (13)

which is the likelihood of the sample observations from our population
with the parameters (r,n) as sufficient statistics.

For a Bernoulli process with p as a random variable, the natural
conjugate is the Beta distribution which is continuous and defined
by> |

£y (plr, n)« p" (1-p)""7. ' (14)
Following the use of primes (') by Raiffa and Schlaifer, [75, p. 53]

the Beta distribution has (n', r') as parameters which are sufficient
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statistics. If the sample observations also have parameters (n,r)
then it can be shown that the parameters of the posterior distribution

on p are
n''=n' + n, r't=r'+r,

and the posterior is of the same form as the prior. Then by Bayes'

Theorem,

1 tot! ) -
G' (plr', ntir,n)e p¥ (Lep)® "F . pT(l-p)™°T (15)
] e
c:pr (1_p)n r
which is a Beta.

The kernel of the beta prior distribution has the form

p" (1-p)™T . - (16)

From this function, the normalizing constant, denoted as K[B] is

developed such that

u/;lG'(p r'y n':r,n) dp=i/gl pry (l-p)n"-r"dp (17)
: =K|:B]f Pt (L-p)" ' T gp = 1.
Let ’ ‘
a=r'"!

b=n" « "

then by use of sucgcessive integratidn by parts

1

-1 _ ar1.n)b = |
[K(B)] ./g PC1p dp < __albi - as

Applying this to equationk(L7) above gives the incomplete integral as

p
f G'(x,a, b) dx = _(atbtl)! 'fp X'a(l-x)b dx (19)
0 , 0

al!b!
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which is the incomplete Beta function. This function (19) is of the
same form as the prior function with theiaddition of the normalizing
- constant.
Since (19) is the incomplete Beta function, it is represented

as
F (p[r ner) = f G'(xla b )dx

P ‘ 3
0

for easier analysis. For reliability-confidence assessment, p is
the probability of success (reliability) of the component under
analysis where

r = number of successes

n = number of trials.

Now, since the Beta distribution is continuous,

Fﬁ (pgl r, n-r ) = pr(p < pz )e (21)

For reliability-confidence assessment a lower limit is needed on

the reliability and is accomplished by

L-F, (o, [, ner ) =pr(p 2p ) ’ (22)
where

Y =pr(pr2 e (23)
and

1-7Y = Fg (p2 lr, n-r). | v (24)

Then, 1l=7% is defined as the confidence that the actual reliability

(p) is greater than the lower confidence limit (Hz ) placed on the
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reliability and that pz is the l=-7Y percentage point of the Bayesian

posterior distribution.

Poisson Process Components

The second type of components provided for are those on which
statistics have been obtained on the number of failures rglative
to a specific te;ting time. These components are analyzed in one
of two ways. 1f a‘Poisson process is used, the total number of failures
(r) in a specified testing period (t) may be observed or the components
may be tested with regards to the total testing time (t) necessary
to generate a specified number of failures (r).

In either case, the natural conjugate prior is the Gamma distribu=

tion defined by
Elr,e) @ AT e {aae) . (25)

where A 1s defined as the failure rate which is a constant independent
of time.

For Poisson processes, the survival probability is the probability
that a failure occurs after a speqified‘time t and is defined by

the relationship

!

R, = exp {- At} =pr(T > t) _ (26)

where T is the time of the specified failure. This derives from the

basic exponential density function

f(el A) = Aexp {- At} . (27)

Then

F(el a) 1l « exp {- At} | (28)

which is pr(T £ t).
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Now the probability that T occurs at some time greater than

t is
Rt =1 = (1 - exp {- At} ) or
Rt = exp {- At} = pr(T > t) ' (29)

which provides our survival probability. Then (29) is the conditional
probability that the failure time T will be greater than a specified
time t, given A.

To provide thé likelihood of the sample, the joint likelihood

that a process will provide r failures in a specified time period

t is
r v r+l
( Hi=1 ( rexp {- Ati})) exp {- )‘tr-kl } = Af exp {-AZ ti}. (30)
1f
r+1
t=y t. (31)
=
then (31) is written
A exp {- At} ] (32)

The time, T, for the first failure to occur is‘derived from
the basic exponential density function. The analysis may be extended
to include cases where the reliability of a system is j;dged by the
time for n failures to occur, n > 1, and not by the time for a single
failure [75, p. 96]. Taking this into consideration, fhe gamma density

function is used and is defined as [75, p. 225 ]

(Al r,t) « . trexp {- At} . (33)

The joint likelihood is defined as [75, p. 225]

f:trexp {- At} [75]. (34)
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1f (34) is a sample observation from the population with (r,t)
sufficient and (33) is the prior kernel with (r', t') sufficient
then

M=r'+r " =t'+ ¢t
2 3

and the posterior will be of the same form as the prior. The posterior
Gamma distribution is

-1

Gt(alrm,en) e (AT £ exp {= At} ) - (aTtTexp {- At} )

Mal "

« A t exp {- At"} . (35)

which is a combination of the natural conjugate and the joint likeli-
hood.
Following earlier analysis, the normalizing function is determined

from the Gamma density function such that

[K(B)]-1 = Jéiw xr-1 exp {-x} dx = (r=-1)!. (36)
The posterior distribution on the Pois;on process follows in that
(A e, ey = N exp {-aet} o R(B) (37)
= )\r”-l tr",, exp. {- At"}-
(r"-1)!

For easier analysis (37) is represented as

Fy ()\,.I r,t) = .( G'(Aylr”,t")d)\ . (38)
Y

The posterior distribution for a Poisson process is on the failure
rate, A such that

Y =pr (A< A, ).
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Following the reliability-confidence assessment on the Bernoulli
components, the upper confidence limit on A is the ¥ percentage
point of the Gamma distribution. The lower confidence limit on A
is provided by
7’=1-F7(Ay|r,t)=pr()\< Ay ) | (39)
1.7 =F, (A, ]r,0).
However, for component reliability analysis, a Gamma distribution

needs to be on the component reliability, p, instead of the failure

rate, Ao From earlier analysis,

Rt = exp {5 At}'

which is the survival probability (reliability) for a specified period
of time--if

Rt =p
then

p = exp {- At} (40)
which provides a lower confidence limit on p such that

R = pr(pzf; P

From (40) a conversion factor is obtained to provide a negative-log
gamma on p instead of A. Heﬁce,_

p = exp {- at}
or

At = <1n(p). . (41)

If t in (40) is measured in "required" operation time (blocks) instead

of minutes, hours, etc. and if t = 1, it becomes
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A =alnp=1n (1/p ). [50, p. 125]
Applying this conversion factor to (37), the negative-log gamma distri-

bution on p becomes [50, p. 125]

F(plrm, o) = &5 1n(u/p )5 p5 L o0<per. (42)
(r-1)!

Calculations by SPARGS

SPARCS uses the incomplete Beta and Gamma distribution obtained
from the International Mathematical and Statistical Library (IMSL)
to provide a lower confidence limit (pi ) on each component. If unreli-
ability analysis is desired, the unreliability (ﬁu) is obtained
by the relationship:

P,=l=-p

Here, ﬁu is an upper confidence limit on the unreliability. This

specifies that the true unreliability is between ﬁu and zero (0).
The reliability for each component is obtained in a series of

steps. First, a uniform random number is generated which corresponds

to the confidence level (1 = 7 ), for both component types:

1 -7 ==FB (pzl ry n - r ) for the Beta

and

1 -7

I

F, (pgl r, t) for the negative-log gamma. (43)

Next, the historical data supplied for each component is utilized.
If the component is Beta, the number of successes and failures are
used as parameters in cgnjunction with the random number. If the
component is Gamma, the number of failures and the total testing

time are used as parameters.
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The parameters and the random number are used with the appropriate
distribution to provide a random deviate from that distribution.

This deviate corresponds to a lower confidence limit (p ) for that
component for a given confidence level (1 = 7 ). When the reliability
(p2 ) or unreliability (ﬁu) for each component is obtained, this
value is placed in the reliability (unreliability) equation for the
system (or module) to provide an estimate of the reliability (unreli-
ability) for that system (or module).

In the absence of data, the input parameters for each distribution
become zero. Consequently, the observed prior onvthat distribution
becomes indeterminate. To alleviate this problem, a uniform prior
is provided for each distribution in the absence of data by adding

one (1) to each parameter. For the Beta components the parameters

become:
n'" + 1
and
At e 1 * (44)

and the negative-log gamma parameters become

™+ 1
and

U R | (45)

This uniform (ignorance) prior also allows SPARGS to handle
troublesome parameters. For example, in Apollo-Saturn component tes-
ting, many components have no failures for a representative period of
testing time. Thus, one of the parameters is zero. This would yield
an indeterminate distribution and prevent analysis. The uniform

prior alleviates this problem.



CHAPTER V
MODEL VERIFICATION
Introduction

In this chapter SPARCS is extensively tested to determine that
the concept employed in the model and the model results are intact
and correct. This testing extended over a considerable period of
time. However, to facilitate analysis, they are grouped into two
basic categoriés. |

The first portion of this chapter discusses the results of tests
of some of the concepts incorporated into the model. The duality
concept [48] which is a result of Poincaire's Theorem, is tested.
Next, the presence of the uniform (ignorance) prior in the absence
of data conceptéis verified.

The secondkportion provides tests of some simple binomial and
exponential systems. The first runs consist of single component
systems. Since reliability assessment for single components is avail-
able, this wilf'verify that the statistical routines and basic concepts
are implemented correctly. Next, test runs from SPARQS are compared
with known non-randomized, randomized and Monte Carlo techniques
for assessment of simple system reliability by Mann [ 54], Buehler

[8], Harris [33], Berkbigler and Byers [4], and Grubbs [32]. Non-

randomized bounds require techniques which do not rely on a uniform

46
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random variate from a uniform (0,1) distribution while randomized
techniques do require a uniform variate. Monte Carlo bounds utilize
simulation techniques to derive confidence bounds on the system

reliability,
Duality Verification

Poincaire's Theorem contains a duality concept which describes
a complementary relationship between the system reliability and unreli-
ability. This concept states that the system reliability, R, ¢an

be obtained as the complement of the system unreliability, R [8].

R=1-R (1)

As discussed in Chapter III, the system reliability is a function

of the reliability of the system components and is derived from the
system minimal paths. The system unreliability is a function of the
unreliability of the system compOnenﬁs and is derived from the system
minimal cuts. Although the system reliability and unreliability are
~obtained in two different ways, they still must be complementary.

In providing interval estimates for system reliability or unreli-
ability, SPARCS uses the system minimal paths to provide a system
reliability equation as a function of the component's reliabilities.
The system minimal cuts are used to obtain a system unreliability
equation as a function of the component unreliabilities. In either
case, component failure-history data is used‘to‘enter the appropriate
distribution (either beta or negative~log gamma). For the beta compo~-
nents, the failure-history data consists of total successes and total

failures. For the negative-log gamma components, the failure=history
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data consists 6f total failures and a specified number of "mission
times." In each case, the values returned from the appropriate distri-
bution is the component reliability. Using the duality concept for
each component, the component unreliability is found as l1-R. Component
reliabilities are placed in the system reliability equation generated
from the minimal paths to obtain a system reliability point estimate.
Component unreliability values are placed in the systems unreliability
equation generated from the systeim minimal cuts to obtain a system
unreliability poiﬁt estimate.

A test run was made with the simple series-parallel system of

Figure 1 and the more complex system of Figure 2.

)

sal

Figure 1. Series-Parallel System

On the first example, system reliability assessment was performed.
The four minimal i ’

e four minimal paths for Figure 1 (X1X3, X1X4, X)X3s X2X4) were
combined to provide reliability interval estimates for the system.

Next, system unreliability assessment was performed on the same system.
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The two minimal cuts (X1X2, X3X4) were combined to provide unreliabi-
lity interval estimates for the system. If the duality concept and
Poincaire's Theorem are utilized correctly, these should be complements

of each other:

@

&

Figure 2. Seven Component Example

On the second example (Figure 2), the four minimal paths (X1X2X4,

XlXBXQ’ X5X7, X6X7) were combined for the system reliability interval

estimates and th i ini
n e six minimal cuts (X1X5X6, X1X7, X2X3X5X6, X2X3X7,

.
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XQX5X6’ X4X7) provided system unreliability interval estimates. Again,
these should be complements of each other.

The reliability and unreliability values obtained from the duality
tests are shown in Table I and Table II. The results show the duality

concept intact. Since

R=1-R , (2)
then
R+R=1" | | (3)
The reliability values in each case are obtained from the system
minimal paths. The unreliability values are derived from the system
minimal cuts. The equation generated in each case by Poincaire's
Theorem is different. However, the reliability and unreliability
values obtained should be complementary according to the duality
concept. |
For example, assume a simple parallei system as depicted in

Figure 3.

—®-
_@-

Figure 3. Parallel System
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TABLE I

SERIES-PARALLEL DUALITY VERIFICATION

Reliability Unreliability Sum of
Percent Lower Bounds Upper Bounds Values Variance
1. .996452 . 003131 .999581 . 000417
2.5 . 995942 - .003415 . 999357 . 000643
5 . 995591 . 003656 .999247 . 000753
10 .995222 .+ 004979 1.000201 (.000201)
20 .993751 . 006088 . 999839 . 000161
25 .992806 . 007101 .999907 . 000093
50 . 989835 . 009908 . 999743 . 000257
75 . 984355 . 014056 . 998411 . 001589
80 .982509 .017350 . 999859 . 000141
90 . 979810 . 020747 1.000557 (.000557)
95 . 972242 - .023081 . 995323 . 004677
97.5 .970772 . 024031 .994803 . 005197
99 . 965649 . 025333 .990982 . 009018
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TABLE II

SEVEN COMPONENT DUALITY VERIFICATION

Reliability Unreliability Sum of

Percent Lower Bounds Upper Bounds Values Variance
1 .999530 . 000591 1.000121 (.000121)
2.5 «999263 . 000678 . 999941 . 000059
5 .999010 . 000999 1.000009 (.000009)
10 . 998546 . 001607 1.000153 (.000153)
20 .997917 . 002277 1.000194 (.000194)
25 .997600 . 002652 1.000252 (.000252)
50 . 995886 . 004338 1.000224 (.000224)
75 . 992766 | . 006847 -~ .999613 . 000387
80 .991539 | . 007434 . 998973 . 001027
90 . 988821 . 10059 .998880 . 001120
95 . 986696 . 012361 . 999057 . 000943
97.5 . 983445 . 015057 . 998502 . 001498

99 .979860 .017183 . 997043 . 002957
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There are two components, Xy and X2 whose reliabilities are Ri and
Rz,respectively. The system minimal paths are (X1 and X2) and the

system minimal cut is X . Following Chapter III, the system reliabili=-

1%2

ty equation generated from the minimal paths is

Sr = Xl + X2 - X1X2.

Substituting in the component reliabilities gives

Sr = R1 + R2 - R1R2.

The system unreliability equation generated from the system minimal

cut is

The component unreliabilities are (1-R1) and (l-Rz) respectively.
Substituting the component unreliabilities into the system unreliabi=

lity equation yields
S, = (l-Rl) (1-R2)

which may be expanded to obtain

S 1 -R, -R,+R,R

u 1 2 172
1 - (R1 + R, - RlR

Su

2 2)
which in fact is 1 minus the system reliability as derived in the
system reliability equation, Sy, obtained from the system minimal

paths. By adding the system unreliability and reliability

Su + Sr =1 - (R1 + R2 - R1R2) + (R1 + R2 - R1R2)

Ideally, the sum of the system reliability and unreliability should

equal 1 since the reliability factors cancel.
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To determine the accuracy of the values being generated by SPARCS,
the system reliability and unreliability values at each percentile
were added. Since the reliability factors should be equal, the sum
of the system reliability and unreliability values should equal 1.

The tables show that SPARCS is generating very good results.

In each case, the sum of the reliability and unreliability percentile
points for the system very closely approximate one. For the series=
parallel example, 100 simulation runs are made which produce a maximum
difference of .0090. For the seven component example; 400 runs are
made with a maximum difference of . 00295,

The values in each case do not exaétly equal one. These values
are obtained by finding percentile points from the empirical distribu-
tion generated by SPARCS. The idea that these points are determined
by an interpolation procedure on an empirical distribution generated
by Monte Carlo procedures can easily account for the slight differences
being encountered. However, even with these small differences, the
accuracy of the values is, in fact, very good, eveﬁ with small sample

sizes.
Test of Uniform Priors

The model was developed to handle components of two basic types:
Bernoulli.components and Poigson, process components. ?or the Bernoulli
components, the prior distribution on the reliability p is a beta
whose pfobability density function is

£(plr, n) =p" (1-p)™ " », r20;n2>r; 0<p<l1 (4)

g (rtl, n-rtl)
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where

IB(r—l—l, n=rt+l) = r! (n-r)! (5)
(ntl)!

For Poisson process components, the prior distribution on p is the

negative~log gamma whose probability density function is

f(plr, T)=pT (In 1/p)* ()T r 1 205 0<pel (6)
: r(et+l)
where
[ (r+l) = 1! [50, p. 115-128].

In either case, a uniform (ignorance) prior is provided in the absence
of data. This provision is used to remove the possibility of generating
an indeterminate distribution in cases which contain components with
very high reliabilities (no failures in a representative number.of
tests).

To test this provision, a system containing both types of compo=
nents was used. No component in this system contained any value (other
than zero) for its historical data (failures, successes, or testing
time). If the uniform provision is intact, there should be a 50%
probability for either success or failure for the system in the absence
of data.

The mean system reliability and the estimated system reliability
values were observed to determine how well théy approximated the
50% probability for success or failure for the system, The mean system
reliability is the value obtained by summing the reliability point
values for the empirically generated distribution and dividing by
the number of Monte Carlo simulation runs required to generate this

distribution. Thus, it is the "calculated" arithmetic mean of this
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empirical distribution. The estimated system reliability is a value
derived from the "average' reliability for each component. The "average'
reliability for Bernoulli componerits is r+l which is the mean of
2

the beta distribution representing that component [ 50, p. 52ff .
For each beta distribution, r is successes and n is the number of
testse.

For the Poisson process components, the '"'average' reliability is

T+2
that component [50, p. 159]. For each gamma distribution, T is actual

"<P+l L which is the mean of the gammé distribution representing
testing time in mission equivalents and r is the actual failures.
These '"average' values for each components are placed in the proper
position in the system equation to derive an estimated reliability
for the system as a function of the component ”averagéf reliabilities.
Thus, from this test, the system mean system reliability was .500852

and the estimated system reliability was .492188 which compares favor-

ably with the 50% value that was needed.
Simple System Tests

There are currently no methods other than SPARGS for reliability
confidence assessment of a compléx sysﬁem‘of any logical configuration
in which component types may‘be freely intermixed. However, there
are methodg to approximate the reliability of simplé series oriparallel
systems in which all components are of the same type.

The results of the tests performed by SPARCS tend to be very
good. Analysis of these two basic methods has shown that Monte Carlo
bounds as suggested by Burnett and Wales [10] and Levy and Modre

[45], which are approximated by Grubbs [327], tend to be slightly
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conservative. For example, the lower confidence bounds for system
reliability assessment obtained by ﬁonte Carlo methods tend to be
slightly lower than similar non—randomized bounds as developed by
Buehler [8].vConverse1y, upper bounds on system unreliability tend

to be greater using Monte Carlo techniéues than.the same non=randomized
bounds [56]. If this is the case, the bounds generated by SPARC%

are better bounds than the less conservative bounds. Although SPARCS
provides Monte éarlo bounds, the non~randomized and randomized bounds

are also presented for reference in the forthcoming tables.

Single Component Reliability Comparisons

A test was used with the IMSL routines, as incorporated in the
model, to determine that ﬁhey were producing correct component reliabi-
lity values. Since confidence bounds can be approximated for components,
these values should approximate the bouﬁas produced by simulating
values for a single component. Hand calculated lower confidence bounds
were developed for a gamma and beta component.

For the gamma component, the,chi-square approximation was used.

The upper confidence bound of the failure rate, A, at confidence

level 7 where

Y =pr(A < A,) N GO
is distributed as

Y=F

XQ(Zr)

(2A7T). r = failures :
T = total times in test (8)

From this, the lower confidence bound on the reliability, Ry , of

a component may be found by a direct conversion:
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R, = exp {-A [50, pp. 115-1287. (9)

Thus, by entering chi-square tables with 2r degrees of fréedbm and
the confidence level ¥, the value 2ZAT can be obtained. Since the
value of T is provided as part of the component historical déta,Ky
can be obtained. |

Then, A

y is placed in (9) to obtain a lower confidence bound

on Ry at confidence level ¥. Table III shows the hand calculated

bounds as compared to the lower confidence bounds determined by

simulation.
TABLE III
LCB* FOR A SINGLE GAMMA COMPONENT
WITH T=51.2 and F=5
Lower Confidence Chi-Square SPARCS Simulation
Level Approximation Values Values
.95 .83629 .824990
.90 .855529 | .854416
.80 . 876982 ' .874309
«50 .912808 .911996
.20 | . 941443 | . 942352
.10 | .953601 - | .955653
.05 | .962255 . 962827

*LCB = lower confidence bound. For this comparison, the uniform
prior assumption was removed from SPARCS.
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For the beta component test, an approximation for the lower
confidence bound on the reliability of a single compoﬁent'as developed
by Mann [33] is used. For thi; approximation, the mean is

m= ln(n + .5) = ln (n=r=-.5), ' , | ' (10)
the variance is

V = (ner=.5)"" - (n+.5)"1, : (11)

and the degrees of freedom are

f = 2m2 : where n = total time in tests (12)
Y r = failures.

This information is used in conjunction with the Wilson-Hilferty
chi-square approximation [57] to approximate a lower confidence bound

in the expression:
R = exp {-m(1 - (2/95) + 2, (2/96))°} S 3)

where Z, is the Yth quantile of the standard normal distribution.

The results are found in Table IV,

Bernoulli System Tests

Buehler [8], Harris [33] and Mann [54] provide methods for appro-
ximating the reliability of simple systems consisting of Bernoulli
type components. Buehler [8] provides confidence intervals for a
system of two binomial components with Small probabilities of failure
and moderate sample sizes for historical test information. His inter-
vals are based upon a set of inequalities in conjunction with a Poisson
approximation to the binomial distribution. These bounds tend to
be conservative in general in that the 1-O confidence level may

be frequently exceeded [33]. Harris [33] uses a random variate from
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- TABLE 1V

LCB* FOR A SINGLE BETA COMPONENT -
WITH F=3 AND $=47

Lower Confidence Values From Mann ' - SPARCS Simulation
Level Approximation Values
.95 .829573 - 832268
.90 . 849497 .850151
.75 5 .879815 .873055
.50 | .90897 .904778
.25 .933414 | | | .933372
.10 , .951533 ‘ . 952446
.05 | 960684 ' .957405

*LCB = lower confidence bound
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a uniform (0,1) distribution to remedy the conservatism of Buehler's
method. Harris also applieé a Poisson approximation to obtain lower
bounds on the reliability of redundant binomial systems and extends
his procedure to accommodate more than two COmponent_systemsa‘Mann
[54] develops a procedure to provide bounds onvseries or parailel
binomial systems in which the component sample sizes are large and
the component failures are small. Mann's Approximately Optimum (AO)
procedure can be used either with or without uniform random variates.
For these bounds, the Wilson-Hilferty transformation for the approxi-
mate noncentral Chi-square distribution is used. These methods, al=-
though based on approximations, providé results which closely
approximate supplied test values. Since some of the methods require
extensive programming and mathematical calculations, test results
were taken from several articles and compared with similar results
produced by SPARCS.

The examples used for comparison were simple parallel systems
containing two and three Bernoulli type components, fespectively.
The historical component information Was the same type used in tests
by each of thé respective authors. The results are presented in

Table V.

Exponential System Tests

As mentioned earlier, there are three basié approaches for provi=-
ding confidence bounds on the reliability of simple systems. One
approach was developed by Lentner and Buehler_[44] and expanded by
El Mawaziny [21] for simple series systems. This approach uses non-

randomized techniques for providing lower confidence bounds on the



TABLE V

COMPARISON OF UPPER 907 CONFIDENCE BOUNDS FOR
SIMPLE BERNOULLI SYSTEMS WITH
r FATLURES AND s SUCCESSES

Buehler's ~ Harris Harris '
Example Data Poisson Non-Random - " Mann Random Mann SPARCS
Number (r, s) Approx.[8] Poisson[33] Non-Random[54] Poisson[33] Random| 54 ] -Bound
1 (3,97) . 00412 .00486 . .00420 . 00416 . 00417 ' . 004477
(2,98) » _ - ,
2 (3.97) . 000133* . 000186 . 000127 . 000145 . 000146 . 000132 -

*Likelihood=ratio confidence bound substituted since confidence bounds are unavailable for k > 2.

r = number of failures
s = number of successes
k = number of components

¢9
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reliability of exponential series systeﬁs. Since the\procedure used
by E1 Mawaziny, for more than two subsystems, ténds,to be large and
tedious, approximations have been developed by Mann and Grubbs [ 56 ]
and El Mawaziny and Buehler [227.

Siﬁulation, another technique used to provide confidence boundé,
has been discussed by Levy and Moore [45] and Burnett and Wales [10]
and others. A mathematical technique for approximating these bounds
for simple series systems has been developed by Grubbs [32] to shorten
the time involved in obtaining these bounds using computer runs.
Lower bounds on the system reliability ‘determined by the simulation
techniques mentioned above tend to be lower than bound provided by
the non-randomized techniques.

Berkbigler and Byers [4] used the basic simulation techniques
discussed earlier to provide 957 lower confidence bounds on the
reliability of some simple exponential systems. The same data was
used with SPARCS to compare bounds. Bérkbigler and Byers [4 ] made
1,000 simulation runs as opposed to 400 runs by SPARCS. The results
are in Table VI. Both lower confidence_bounds assume a uniform prior
in the absence of data. |

Mann's [56] bounds are compared to the lower confidence bounds
for exponential series systems of El Mawaziny [21] and‘El'Mawaziny
and Buehler [22]. In addition, the simulation bound approximation
developed by Grubbs [32] is compared. The same data was used with
SPARCS to provide some similar bounds. The simulation bound should
approach the bound of Grubbs [32]. Table VII shows the comparison

between techniques. To obtain the values from SPARGCS, the uniform
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TABLE VI

95% LCB ON SIMPLE EXPONENTIAL SERIES SYSTEMS
AS PER BERKBIGLER AND BYERS
AS COMPARED WITH SPARGS

Number of Data Bérkbigler and SPARCS
Systems (r, T) Byers [4]

2 (1,100)
(3,140) .921 . 920151

(2,200)
(3,225)
5 (2,480) 914 .917189
(5,400) |
(4,500)

= number of failures
T = total time in test per test unit



TABLE VII

LCB ON SIMPLE EXPONENTIAL SERIES SYSTEM COMPARING
SPARCS WITH OTHER MATHEMATICAL TECHNIQUES

Number of Data Confidence El El Mawaziny
Systems (r, T) Bounds Mawaziny and Buehler Mann Grubbs SPARCS
| [21] [22] [56] [32]

(4,25.53) .

3 (3,56.47) .90 .700 .738 .699 «649 .647609
(2,23.47)
(2,35.97)

3 (2,14.61) .90 .732 .811 .738 .693 .689471
(2,62.54) .

r = number of failures
= total time in tests per test unit

<9
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prior assumption was removed to obtain a fiducial prior for comparison
purposes.

The confidence bound provided by SPARCS is lower than the other
confidence bounds. However, the bounds provided by SPARCS closely
approximate -the bounds of Grubbs [32]:as Qould also be expected since
the bounds provided by Grubbs [32] were developed to closely approxi=

mate the bounds provided by simulation techniques.



CHAPTER VI
MISCELLANEOUS MATHEMATICAL ASPECTS
Introduction -

SPARCS employs a combination of maﬁy techniques and procedures.
A discussion of some selected techniques and parts is pfesented in
this chapter.

Beta and gamma proprietary routines from the International Mathe=-
matical and Statistical Library (IMSL) [l4] are used in SPARCS. These
routines (MDBETI and GGIMAJ) provide component reliabilities for
system reliability assessment. Analysis of these routines was
performed in two steps.

An error analysis on the values generated by these routines
was provided by Keun K. Lee [40] in a master's report at Oklahoma
State University. The inverse beta (MDBETA) and gamma (GGTMAJ) were
compared to forward routines of the same type. After the routines
were incorporated into the model, SPARCS was tested to see if the
routines were producing component reliabilities consisgent with
vhand caléulated component reliability values as described in
Chapter V.

Two pseudo-random number generation routines are utilized by
SPARCS. RANF is a routine that is coded in fL/l and used with the

beta components. GGUl is an assembler language routine that is an

67
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IMSL subroutine used with the gamma type components. These roufines
are briefly compared and aﬁalyzed.

A sorting techﬁique developed by Donald Shell [81; 37, pp. 84~
86] is used to sort the sysfem (un)reliability point estimafes into
ascending order. This teéhnique is very efficient for éorting large
blocks of numbers. Since thé number 5f simulation runs (and correspon=
ding reliability point estimates)kmay tend to be large for system
assessment, this technique is chosen to sort the system (un)reliability
values.

Finally, sample size determination is discussed. The number
of simulation runs (sample size) is left fo the discretion of the
user. A brief presentation of sample size determination is pfovided
followed by a discussion of .sample size versus accuracy tradeoffs
discovered by SPARCS. This technique represents the '"standard" sample

size determination technique frequently used in simulation experiments.
Inverse Beta and Gamma Analysis

IMSL Error Analysis

Lee [40] analyzed the IMSL roufines utilized.in SPARGCS to deter=~
mine the amount of error inherent in these routines. First, the incom=
plete (forward) beta and gamma distribﬁtions were developed aé
polynomials which provided probability values for given appropriate
percentage point values. These probability values were then compared
with the probability values in Pearsoa's tables of the Incomplete

Beta and the Incomplete Gamma functions [72, 73].
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For the beta distribution, one hundred percentile point values
(from .0l to «50 in increments of «Ol) were used to correspond to
the values used in Pearson's tables. The incomplete (forward) beta
distribution was used to obtain 50 probability‘valuesa These probabili=
ty values were used as input values to the inverse beta distribution
funetion in the IMSL routine (MDBETI) and the percentage point values
compute. The difference between the input and output values of the
percentage points were considered as errors

For the gamma distribution; the IMSL random gamma deviate genera=
tor; GGTMAJ, generated a set of 50 ““1u@s. These randem deviates (pez=
centage point values) were used as input to the incomplete (forward)
gamma to obtain probability values. Since GGTMAJ used a random number
generator to pA oduce the random gamma deviates the reSults of the
incomplete (forward) gamma should be a uniform distributien in the
range (O,i): The Kolmogorovs=Smirnov (K<=8) two sample goodness of

fit test results were used to compare the probability values from

m

the incomplete gamma distribution and the theoretical uniform
distributioefs

Table VIII shows the erro¥ analysis for the IMSL MDBETI routine.
The MDBETI reutine has a maximum absolute errer value of 0008 frem
fifty tests over a range of parameter values frem a =1 apd b= 1
up to a = 100 and b = 100 in various combinationss

Table IX shews the error analysis for the IMSL GGTMAJ routime.
The results of fifey K8 goodness of fit tests over various combi=
nations of parameter values frem n = l and £ =1 up te n = 1@@ and
£ = 100 ever a range of dégfééé of freedom from 1 to 200. The hypothe=

sis for the K=§ goodness 6f fit test is
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TABLE VIII

MAXIMUM ERROR FROM MDBETI

Input

Percentage Pe?gggggge Absolute
a b Point Probability Point Error
1 1 .97 .97000 . 96999 ~.00001
20 20 .71 .99718 .70992 . 00008
50 50 .66 .99948 .69996 . 00004
50 40 .69 .99607 .68999 . 00001
100 100 .64 .99997 .63998 . 00002

100 110 .62 .99999 .61993 . 00007

TABLE IX

KOIMOGOROV=-SMIRNOV TEST FOR GGTMAJ

“Maximum Observed
" Absolute Significance
n t Difference* Level
1 1 . 0666 p > .2
13 4 . 0528 p >.2
5 29 . 0676 p >.2
50 50 ‘ . 0595 p >.2
100 100 .0775 p >.2

*Difference between empirical cumulative distribution function
and uniform cumulative distribution function.
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HO F(X) = G(X), for all X

H1 F(X) # G(X), for at least 1 value of X
where F(X) is the forward gamma and G(X) is the IMSL gamma deviate

generator. The observed significance levels were greater tham .2

for most of the tests on GGIMAJ.
Pseudo-Random Number Generators
RANF

RANF is a pseudo-random number generator that provides a number
from a uniform distribution over the range (0,1). RANF is a composite
of three multiplicative congruential generators as proposed by Maclaren
and Marsaglia E51].

In 1968, Marsaglia [59] showed that the standard multiplicative
congruential method used for most pseudo-random number generators
produced values with nonrandom characteristics. Thus, Marsaglia and
Bray [60] developed the procedures as incorporated»in RANF to remove
these inconsistencies.

RANF essentially uses numbers from one generator to shuffle
numbers obtained from a second generator. This second generator is
used to shuffle ﬁumbers from a third:.generator. The value obtained
from the third generator is the pseudo-random number over the range
0 to 1. RANF, as a composite generator, pas been subjected to tests,
by von Gelder [90] and Chandler [12], which have yielded some very
good results. RANF generallf passes all known tests of randomness.

These tests show good results even if the component generators used



72

to provide the pseudo-random digits are not of the highest quality.
However, RANF has not been exhaustively tested and, as with any such
routine, there is the possibility of some nonoptimal results given

favorable situations.
GGU1

GGULl is a proprietary subroutine of the International Mathematical
and Statistical Library (IMSL) [14]. It is used in conjunction with
the IMSL subroutine GGTMAJ to provide random gamma deviates for use
in obtaining component reliabilities forvgamma type components.

>GGU1 is written in Assembler language and provides a pseudo-
random.nﬁmber from a uniform distribution overvthe range 0 to 1.

It is a multiplicative generator that manipulates the binary digits
(bits) and groupings of bits (bytes) to produce a pseudo-random number.
The working of the generator is basically simple. Initially,

the lower order bytes of the double precision seed are zeroed. A
logical "or'" is performed against the fifth byte of the seed to ensure
a nonzero number for future multiplication. This value is multiplied
by a constant (which may be altered) to produce a third number. The
integer part of this number is truncated to leave the fraqtional

part which is the pseudo-randdm number over the range 0 to 1.

Schmidt and Taylor Tests *

Both RANF and GGUl were subjected to some simple tests for good-
ness of fit, randomness and autocorrelation proposed by Schmidt and
Taylor [79, p. 229] and Poore [74, p. 10l]. First a frequency distribu-

tion for each generator was obtained for different seed values. In



73

each case, visual inspection showed no unusual skewness as would

be expected because of initial tests on these generators. Next, the

runs test and test for autocorrelatibn [74, p. 2417 were applied

to each generaﬁor. Basically, the runs test is used to test the "random-

ness" of a sequence of numbers. Although numbers may fit a uniform

distribution, this does not guarantee "randomness' [74, p. 2417,

The autocorrelation test checks for the tendency of some numbers

to be followed by other numbers. Thus, the amount of autocorrelation

between each value from a pseudo-random number generator is examined.
The test runs show very good results. Table X shows the results

of these tests.

TABLE X

ABSOLUTE Z VALUES (] Z|) FOR RUNS
AND AUTOCORRELATION TESTS ON
RANF AND GGUI* °

RANF GGU1
Test for Randomness .885 . 794
Autocorrelation Tests , 727 510

*In both cases, the limiting value is 1.96.

In every case, the resulting values are well below our limit and
show that each generator does produce values that show very little

autocorrelation and a high degree of randomness.
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The Shell Sort

There are as many sorting routines as there are sorting needs.
There are insertion sorts, exchange sorts, selection sorts, special
purpose éorts and many others. SPARCS needed a sorting routine that
would sort a large block of numbers with an efficient use of time
and core storage; The sort chosen needed to be an internal computer
sort without the aid of peripheral storage devicés. The Shell [81;
37, pp. 84-86; 82] sort was chosen as the best and simplest sort
for our purposes.

The Sheil sort is initially discussed in a paper by Donald L.
Shell in 1959 [81]. It divides the record of information to be sorted
into groups of diminishing size. This grouping brovides each element
to be sorted with the capability of moving many positions in one
jump. This group size diminishes until the final sort is just a
straight insertion sort. The insertion sort considers one eleﬁent
at a time and compares it with a previous elemenﬁ or a group of ele«
ments that are sorted in the desired order.

The size of the decreasing increments is very important. Although
thére is no "best" size fof‘a large number of elements to be sorted,
it has been determined that some group sizes are better thén others.
In choosing group sizes, exécution time is the main factor that needs
to be minimized. Executjon time is determined by 5 factors; 1) size
of the recqrd, 2) number of sorting passes, 3) the number of comparia-
sons, 4) the number of moves, and 5) the sum of the increment values
or group sizes [37, pp. 84-86]. In SPARCS, the size of the record

(number of simulation runs) is determined externally. Therefore,
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to minimize execution time, the other 4 factors will have to be kept
to a minimum.

To choose the diminishing increment sizes, let

- - . . . th

hi = group or increment size of i group
N = record size

Then, let

h =1, h, =3 +1
1 i+1 i

and stop when

>
hito 2 N-
The first ihcrement (group size) is hi and decreases until hi = hl =1l.

For example, if

N = 1000
then:
h1 =1
hé =3(L)+1 =4
h3=3(4)+1=l3
h_4 = 3(13) + 1 = 40
h5 = 3(40) + 1 = 121
h6 = 3(121) + 1 = 364
h7 = 3(364) + 1 = 1093.
Here,
hi+2 = h7 = 1093 > N = 1000

so that the first group size (increment) is

hi = h5 =121,
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The increment will continue to diminish on each pass until hi =1
which reduces to the straight insertion sort. In this manner, record
elements will be moved closer to their correct position in large
jumps before the final simple insertion. sort.

For example, if 10 items are to be sorted with the following

increments
h1 =1
h2 =2
h3 =5

the sorting would proceed as follows.

T SR W

45 1 30 15 98 72 16 55 23 74,

Sorting with h3 = 5 would yield

45 1 30 15 74 72 16 55 23 98.
.

With h2 = 2 yields

30 1 45 15 16 55 23 72 74 98.

The final simple insertion sort yields

1 15 16 23 30 45 55 72 74 98.

For a large number of items; the She@l sort is more efficient
than any of the other sort methods mentioned’earlier [81]. The coding
of the Shell sort does not require extensive core. Consequently,
this sorting routine was chosen for use in SPARCS over other sorting

methods analyzed.
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Sample Size Determination

Conventional Methods

’

Conventional methods for saﬁple size determination revolve around
the Central Limit Theorem. This theorem,lwhich is the basic theorem
used in statistical inference, stipulates that if a universe has
a mean U and a finite standard deviation ¢, then the distribution
of sample means, ;, approaches a normal éistribution with meah U
and standard deviatioqvé?ias the sample $ize increases [13, p. 240;
86, p. 2597, This theorem holds true regardless of the type of universe
under analysis (assuming unimodality).

The Central Limit Theorem is based upon the law of lérge numbers.
This law states that sample means are approximately centered about
the universe mean. These sample means tend to become more closely
clustered about the universe mean as the sample size becomes larger.
This relationship is represented succintly by Tchebycheff's inequality

which states that for any set of data x + % and any k 21,

1’ [ 4 L]

P(I;-ﬂlz}cagsl. (4)

Thus, the probability of selecting a randomly selected value,x ,
which differs from the universe mean, U , by at least k standard

deviations will not exceed_];2 [13, p. 239].
k

Because of the Central Limit Theorem and the law of large numbers,
interval estimates can be used to provide information about the uni=
verse mean, U, and its relationship to a sample mean, X. A probability

relationship concerning the deviation of a sample mean from the
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universe mean is given by
P(x%-Z O < U<X-Z4, O_)=1-C (5)
0/2 u (1/2 X . |
where Z is standard deviation units from a standard normal distribution,
and 0= can ‘be estimated by
. :

%= A (6)

for large samples and s is the standard deviation of the sample [79,

p. 260; 74, p. 266=267].
Using the above information, the distribution of sample means

can be standardized by

Z = ‘,L:_E_. (7)
where Z is normally distributed with a mean of O and a standard devia-
tion of 1. For the analysis in (5), the universe standard deviation
must be known. When the universe standard deviation is not known

and must be estimatéd, the Student-t distribution provides the appropri-

ate distribution of the form

_ X -
t = e

(8)

n=1

The Student-t‘distribution with n - 1 degrees of freedom, although
not normally‘distributed, approaches the normal distribution as the
sample size incréasés (ﬁhere s is the‘samﬁle standard deviation and
n = 1 adjusts for small sample bias). Since most sample sizes greater
than 30 observationslare considered large, the normal approximation
discussed below is used for the distribution of t [13, p; 266 .

If the maximum allowable deviation of x from MU at a specified

confidence level is represented as
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X =M=
(9)

then the sample size, n, can be obtained iteratively as:

vn = Z e s

n = Ze* s
()

where Z standard normal statistic - N(0,1)

s = standard deviation of the sample

0 = maximum allowable deviation between X and U.
Equation (10), then, would be the applicable formula for calculation
of the required sample size for a specified confidence level for
use with SPARCS.

For a.system with a variance (sz) of .000327, a standard deviation
(s) of .018076, and a maximum allowable deviation (§) of .00l, the
sample sizé, at the 95% confidence level, would be calculated as
follows.
2 2
. zZ * s 1.96 *+ .018076
“=GMYW> =(”'Qm1*')

n = 1,255 o (11)

i 7 k| ¢
Consequently, it would take 1,255 simulation runs to provide a sample

mean, X, that would have a maximum allowable deviation of .00l from
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the true population mean at a confidence level of 95%. Furthermore,
the standard deviation used in the sample size calculation would
probably have td be‘obtaingd as a result of a sample run.

This procedure may also be used to obtain.a confidence lével
that ma& be applied to the results of any simulation ruﬁ without
regard for saﬁble size. Thé sample mean, ;, and standard deviation,
s, are derived for each system run by SPARCS. If the maximum allowable
déviatioq (0) is specified, a confidence level can be associa%ed
with the results of a specified s;mple run. For example, if a run
of a system produces a standard deviation of .010204 in 400 rums,

then for an allowable deviation of ;001, the confidencé level would

be associated with 1.96 standard normal\deviates_or a 95% confidence

level.
7 = 6 _ _ .ool
5 _.010204
vn, : \[400 ‘
Z=1.,96 (12)

Thus, there is a 95% confidence that the population mean is within

a maximum allowable deviatibn of .00l from the sample mean.

Sample Size Problems

Aithough the above analyéis of the sample size problem seems
very succinct and explicit, Burdick and Naylor [9] and Naylor, Balintfy,
Burdick and Chu [68, p. 332ff.] point to sample size determinatioq
as one of the major simulation problems. The problem revolves around
two basic elements: 1) how many observations to measure and 2): when

to begin measurement.
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In most situations, practitioners appeal to the Central Limit
Theorem, as presented above, relying on the assumptions of normality
and independence to provide a sample size value [68, p. 335]. However,
the efficiency of this method has been questioned by Fishman [29],
Graybill [31] and Cooley [17] as to the nﬁmber of samples required
and the slowness of normality convergence. With some knowledge of
the distribution of the universe to be sampled, the sample size can
be determined more efficiently in some cases [29, 31, 17]. However,
to my knowledge, there is no analysis that purports to classify dife«
ferent distributions of feliability values (assuming they are difa
ferent) obtained by analysis of different system configurations.
Consequently, there is no method for efficiently determining sample
size in SPARCS other than that proposed above.

Secondly, the problems of autocorrelation [29, 31, 17] steady
state and startup bias, as discussed by Conway [16], Moran [65, p. 87]
and Morse [66, p. 61] directly affect the problem of when to begin
measurement. However, these are areas about which there is very little
.in=depth information and consensus as can be seen by analyziﬁg the
steady state discussion by Schmidt and Taylor [79, p. 346] and Gonway
[16]. Consequently, in practice, these problems tend to be arbitrarily

determined or ignored.b

Model Sample Size Considerations

The number of simulation runs (sample size), for each system
under consideration by SPARCS, is supplied by the user. This supplied
value may be calculated by equation (7) or arbitrarily‘assigned.

Since there is no formal knowledge concerning resulting distributions



82

from system reliability assessment, these are the only two methods
currently available for sample size determination, to my knowledge.
Most of the values obtained for validation purposes in Chapter V,

were obtained from 400 iterations or less. These values were compared

y

Qith.literature values obtained from sample sizes of 1,000 iterations

up. Comparison of the values in Chapter V shows a very close correla-‘
tion between answers obtained from the smaller sample sizes of SPARCS

and the large sample sizes from literature. This phenomenon seems

to follow for each comparison run made. Thus, it seems that reasonable
accuracy can pg;obtaiﬁed with SPARCS from smallgr sample sizes.

There are no explicit reasons proposed for these results. However,
there are two situations that may contribute to this phenomenon. The
first possible explanation is baééd upon the idea that SPARGS does
not simulate discrete events but instead simulates system reliability
values. An empirical distribution of reliability values is the purpose
and direct result of this simulation. Consequently, this type of
analysis may have an effect on the sample size. Secondly, the conven-
tional sample size determination methods discussed earlier were
developed to pertain to any unimodal distribution. This encompasses
a wide range of possibilities requiring a certain amount of "overkill"
to accomplish its objectives. However, it seems that the empirical
distributions, as generated by SPARCS, do not require as large a
sample size asvwould be suggested by those methods to achieve adequate
results. Perhaps, either one or both of these situations may be respon-
sible for the satisfactory results‘obtéinéd from SPARCS relatively

small sample sizes.



CHAPTER VII
PROCEDURE DESCRIPTIONS AND JCL ASPECTS
Introduction

MAPS (Model for the Analysis of Probabilities of Systems) written
by J.L. Burris [11] is the basis around which SPARCS is developed.
MAPS provides an estimate of the system reliability as a function
of the reliabilities of the components. Originally_programmed in
two parts, MAPS I and MAPS II were combined to produce a one pass
version of MAPS.‘This version was modified to proviae for simulation
and other capabilities. Consequently, many of the procedure names
bfound in MAPS are also found in SPARCS.

SPARCS contains a Shell sort, two random number generators,
certain proprietéry routines from the International Mathematical
and Statistical Library (IMSL), percentile calculation routines,
simulation.capabilities, and an MTBF (mean-time-between-failure)
routine not found in MAPS. SPARCS is designed to call the MDBETI
and GGIMAJ routines from‘the IMSL library. If the facility using
SPARCS does not subscribe to the IMSL library, these rouytines may
be used as a load module. |

The storage requirements of each proqedu;e and array is presented
with a discussion of the dy;amié storage concept utilized by SPARGS.

JCL aspects of the model are discussed with and without the load
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module. Appendix C contains a complete source program listing which

may be used for reference dur&ng the discussion of each procedure.

Procedure Descriptions

UNITED (MAIN)

UNITED is the main PL/1l procedure. It assumes control of the
program calling other procedures when necessary, controlling the
simulation process, inputting and outputting information, processing
modules, calculating percentiles, sorting system reliabilities and
determining when to stop.

Initially UNITED reads in information needed to prepare for
procedures that follow. Information about the simulation process,
MTBF calculations and dynamic storage developmenﬁ is read first.

Data for system identification, the type of analysis desired (reliabi=-
lity or unreliability), provision for user or program supplied compo-
nent and system labels, information about the input form of minimal
states (binary or hexadecimal) and an indication of whether punched
output is desired follows. Next, the appropriate storage for dynamic
arrays is allocated and UNITED begins its iterative calculations.

Entry point CALCUL is 1ocatedlin UNIIEDi CALCUL, entered after
the simula;ion process is complé;ed, provides statistical information
on the arithmetic mean, standard deviation, average reliability,
and MTBF for thevsystem. The She¥1 sort [§1] is used to sort the
system reliabilities or unreliabilities in ascending order. Itibreaks
thg items to be sorted into groups which are decreased in size fol=-

lowing each sort procedure. Information is moved between these groups
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until the items to be sorted are in the order desired. Tests and
calculations show the Shell sort as very efficient in its use of
computer time and storage when dealing with a large number of items.
CONF, in conjunction with CALCUL, theﬁ provi?es percentiles for bothv
the reliabilities or unreiiabilities and the MTBF.if desired. When
this is finished, UNITED terminates the pfogram or reads a new system

to be analyzed, whichever is applicable.

FNPUT and HEXIN

FNPUT procgdure is used-to input thetminimal states for the
system and for each module. The minimal states are represented in
either binary (bit string) or hexadecimal (character string) notation.
A code (KObE) is used to indicate wa‘the minimal states are represen=
ted. If hexadecimal notation is uéed; entry poinﬁ HEXIN converts
hexadecimal input to binary notation for use later in the program
since binary notation is necessary to generate the probability equa-
tion(s). |

HEXIN procedure uses a '"'table lookup'" approach to.convert from
hexadecimal input to binary notation. The hexadecimal option is
allowed to enable the user to reduce the gumbef of characters necessary

to represent a minimal state, especially for large systems or modules.

EQGEN

Probability equations are'generated in EQGEN using Poincaire's
method as the primary algorithm. The minimal paths (or cuts) are

combined and accumulated to form the equation. If the system
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configuration is arranged into two or more modules, the probability
equation is generated for each module, in addition to the equation
generated for the system. The same computational process is used

to generate both the system and module equationé.

For a system or module having n minimal states, the probability
equatién has a maximum of 2" ~ 1 terms. Becausé of the cancellation
of duplicate terms by EQGEN, the actual probability equation contains
only a‘fraction of the maximum number of terms. Each minimal state
is introduced-and combined with the previously generated terms to
form new terms. Terms that have zero coefficients are removed before
the next minimal state is introduced. Terms of the probability equa-
tion are initially stored in an array called TERMS. Coefficients

are stored in an array called COEF.
QUTL

Information about the system being analyzed, the probability
equations for the system and each module are handled in OUTI..These
procedures are handled by three major entry points. OUT1 is used
to assign labels to the elements of the system and print control
information concerning the system. OQT2 ?s used to assign labels
to the elements of a modulé and print control information for that
module. OUT3 is called to priqt the minimal paths and probability
equatioﬁ for each module and the éystem.

OUTLl and OUT2 are also designed to store the necessary historical
information about each component for further use in the simulation.
Information as to the historical number of failures (FAILS), number

of successes or testing time (PORT), and type of component (TYPE)
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is storgd. Next, ;he SIMULATE procedure is calied to produce the
results for the first simulation run. All other simulation runs
are performed by entry point SIMOUT of OUTI using this historical
information stored during execution of OUTl and OUT2.

A provision allowing the user to aésign labels or the computer
to assign labels to the componeﬁts and modules is incorporated into
OUTI. If the user wishes to assign particular names, OUTI uses these
names as labels. Otherwise, the labels are assigned by OUTI. Components
are assigned a number in order from 1 to 128. Modules are'assigned
labels in order from A - Z, Al - Z1, A2 - Z2, A3 -~ Z3, A4 - Z4, etc.
Thus modular elements are assigned labels beginning with an alphabetic

character and nonmodular elements are assigned numeric labels.
OUT II

Output concerning the reliabilities of each component, module
and the system.are produced by the OUT II procedure. The output is
in the following general order: | ; _ ‘

1) Identification of the system or module.

A listing of:

2) the reliability (unreliability) éalue for each component
as obtained in the first simulation run (This value is to
be uséd as a check figure), "

3) the t&pe of analysis to be performed on each component, i.e.,
either Beta or Gamma,

4) historical data about the total testing time (if Gamma) or

the total number of successes (if Beta) for each component,
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5) the total number of historical failures observed with each
component, and
6) the computed reliability and unreliability for the module.
For each additional module, steps 2 through 6 are repeated. Next,
| 7) a listing of reliabilitiesb(unrgliabilities) for the system
con;isting of both modular and nonmodular reliabilities),

is provided and is the final output produced by OUT II.
COMPUTE

The COMPUTE procedure calculates a probability wvalue for each
module and combines these to produce a system reliability. The probabi=-
lities for each module are calculated first and‘substituted into
the system probability equation to compute the values of the system
reliabilities. Each system reliabilit& is stored in an array called
RELSTO for later use.

The reliabilities for the modules and/or the system are accumu-
lated on a term-by-term basis. A three step process is used. First,
the product of the reliability (unreliab{lity) of each element in
a term, denoted by a "1" in the bit string, is found. Next, the product
found in the first step is multiplied by the coefficient of the term.
This computes the reliability (unreliability) attributable to that
term. Finally, the reliability (unreliability) calculated in step
two is added to the accumulated reliability from previous terms.

Both the system reiiability and unreliability are a product
of the COMPUTE procedure. If a reliability analysis is specified,
the analysis uses component reliabilities to provide the system and

module reliabilities. If an unreliability analysis is desired, the
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component unreliabilities are used to calculate the system and module
unreliability. In either case, the complementary value of the specified
analysis (reliability) is obtained by subtracting the result of that
analysis (system reliability) from 1 (1l - system reliability‘= system

unreliability).

SLINE, PRINTER and DLINE

The SLINE procedure is used to shod'continuation of a system
reliability equation. If a reliability equation requires more than
120 spaces on any line, an asterisk (%) is placed at the epd of that
line to indicate the continuation of the equation onto the next line.
The PRINTER procedure is called to place the asterisk (*) atlthe
end of the coﬁtinued line.

The DLINE procedure keeps track of the page number as each new
page of output is initiated. It also provides for the printing of

"%% GONT INUED**" each time a new page is started.
SIMULATE

The SIMULATE procedure calculates a reliability or unreliability
interval estimate for each component based on historical test informa-
tion provided for that component. Each component has a reliability
(Qr unreliabili@y) value calculated for each simulation run. These

values are generated from either a Beta or Gamma prior depending

\
\

on the tjpe of component being analyzed.
The BETASUB procedure is used with Beta type components. It
has two purposes: First, it calls the MDBETI routine from the IMSL

(International Mathematical and Statistical Library) library which
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provides iﬁterval estimates on the reliability (unreliability) of

each Beta component. Next, after all the simulation runs are finished,
it calculates the average reliability (unreliability) for each component
to be used in the calculatién of the average system reliability (unreli=-
ability).

The GAMASUB procedure is used with Gamma (time-to-failure) compo=
nents.’It has the same basic éurpose as the BETASUB procedure except
that it calls the GGTMAJ routine from the IMSL library. Both interval
estimates and average reliabilities (unreliabilities) are generated
by GAMASUB from historical data provided for each component.

Both BETASUB and GAMASUB procedures provide essentially the
same information for their respective component types. In both instan=-
ces, the historical component data is adjusted to provide uniform

priors in the absence of data.
RANF

The RANF procedurelprovides a random number generator that is
used in the Monte Carlo prbcess. RANF, the name of the pseudo-random
number generator, was provided‘by Dr. J.P. Chandler of Oklahoma State
University. Essentially it is a composite of three multiplicative

. . !
congruential random number generators. Tests have shown it to be

a very good generator with few vices.
IMSL Routines

MDBETI and GGTMAJ are two IMSL (International Mathematical and
Statistical Library) routines incorporated into SPARGS to be called

by the SIMULATE procedure. If the IMSL library is available at the
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facility using SPARCS, the appropriate réutines may be called directly.
If the library is not available, the appropriate routines may be
incorporated as load modulgs; If the load module is used, the facility
must have FORTRANfG, PL/1-F, and Assembler F language capabilities.
GGTMAJ is uéed with exponential (time~to-failure) type components.
It generates a gamma random deviate using a rejection method. Two
other routines, GGBTA and GGUl, are called by GGTMAJ during processing,
one of which (GGULl) is an IMSL pseudo-random number generator. Histori-
cal data about each exponential component is input as parameters
and gamma random deviates are returned. GGTMAJ and GGBTA are in FORTRAN
and GGULl is in Assembler.
MDBETI is used with Poisson proéess‘(pass-fa%l)-components.
It generates a Beta deviate from the inversg beta probability distribu=-
tion function in the exclusive range (0,1).HMDBETA and UERTST are
called during processiné both of which afe in FORTRAN the same as
MDBETI. Historical data about each pass-fail component is input and
a beta deviate is output in the range (0?1). Whether using the load
module or calling the IMSL routines directly from the IMSL library,

familiarity with JCL capabilities is a nécessity.
System Size and Storage Capacity

In SPARCS, storage is dynamic and a function of the size of
the system b?ing analyzed. Storage si%e ;s determiﬁed by three items.
The 0S (operéting systém) occupie; a certain amount of core. This
requirement is static and cannot %e affected by the programmer. Conse-

quently, for our purposes, it is disregarded. Second, storage is

required to hold the actual recorded program statements (object
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program). This storage is static énd requireé about 72,000 bytes
for SPARCS. Finally, storage for variables and arrays must be assigned.
The dynamic capabilities of PL/1l are used when possible to save storage
in the utilization of arrays. Thus, the arrays are allowed to expand
or contract as the size of the systems under analysis changes.

In discussing the systenm and storage size, three aspects are
analyzed. The maximum system limitations for use with the program
are presented. Second, the amount of core uséd with each procedure
for statement storage is given. Finally, the amount of storage required
for each array is examined. Dynamic arrays are identified. and their

core range specified where possible.

System Size

The system size limitations are presented in Table XI and are
the same as required for the Burris program [11]. These values repre-
sent a maximum. IfAsystems of a smaller size are used, SPARCS is
designed to release unused core for use elsewhere. This is done automa-
tically by the program and does not require any special manipulations

by the user.

Procedure Storage Requirements

The core requirements to store the statements from each procedure
are listed in Table XII.Singe the IMSH:roﬁtines are subroutines called
by BETASUB and GAMASUB, their storage requirements are included in
the storage requirements of these routines. The procedures vary substan=

tially in size but OUTI is by far the largest.
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Marginal Storage

Max imum Required (Bytes)
Number of Modules per System 128 11
Number of Elements per Module 128 2,015
Number of Terms in Probability
Equation of System or Module 2,000 28
Number of Systems per Run No Limit -

Number of Simulation Runs No Limit
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Procedure

Storage Required (Bytes)

UNITED (MAIN)
CONF
FNPUT
HEXIN
EQGEN
OUTI
SLINE
PRINTER
DLINE
COMPUTE
OUTII
SIMULATE
BETASUB
GAMASUB
RANF

972
268
268
540
408
10, 596
364
240
240
348
44
336
292
292
260

Total

15,868
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Array Storage Requirements

Core information about each array is presented in Table XIII.
I1f an array is static (does not vary), the dimension size and the
storage bytes required are given. For example, the array CODED is
static, dimensioned 16, and requires 16 bytes of core storage.

If arrays are dynamic they are identified as adjustable. Adjus-
table arrays are of two types: 1) those that have an upper limit
and 2) those that are not limited. If an array has an upper limit,
the maximum dimension size and core reqruiement is given. For example,
DCOM is adjustable with a maximum dimension size of 128 and a maximum
core size of 384 bytes. Because they are adjustable, these arrays
may take on any dimension value below the maximum with an appropriate
reduction in core size. Therefore, DCOM may have a dimension size
from O to 128 items and require from O to 384 bytes of core.

Some arrays are indetermiﬁate and are identified as such by
two asterisks in the storage column. Indeterminate arrays are arrays
with no upper limits to core size. This occurs when one or more of
the dimension values for these arrays are not restricted. Generally,
the use of the number of simulation rungsas;one of the dimension
values is the primary cause for an indetérminate array. Since the
number of simulation runs is not resgriqﬁed, these arrays may take

on any size necessary to accomodate the required information.
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TABLE XTII

ARRAY STORAGE REQUIREMENTS FOR SPARCS

Array Description Dimension (Maximum) Storage (Bytes)

CODED Set of 4 binary characters 16 : 16
that correspond to each
hex character

COEF Coefficient of equation 1,500 4,500
terms

COMPS  Labels for nonmodular 128 384
elements '

DCOM Storage array for terms Adjustable 0 - 384
in module groups (128)

DERMS Terms of the system or Adjustable 0 - 384,000
module probability equa- = (128, 1500)
tion

DOEF Coefficient of equation Adjustable 0 - 65,536
terms (l28, 128)

DIERM Terms of system or Adjustable 0 - 384
module equation (128)

FAILS Number of component Adjustable 0 - 229,376
historical failures ' (128, 128)

FERMS Terms of the system or - (1500) 24
module probability equation . -

HEX Table of hex characters : 16 ‘ 8

KOMPS Default labels for 128 384

nonmodular elements

LA , Dummy variable used in 20 80
calculation of percentiles

MDESCR  Description of modular 128 : 8,960
elements
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Array Description Dimension (Maximum) Storage (Bytes)

MINPTH Minimal states of 256 4,096
module or system

MODSY Labels for modules 128 384

MODSYM  Default labels for 128 384
modules

N Variable used in random 128 572
number generation

PORT Number of component Adjustable 0 - 229,376
historical successes (128, 128)
or total testing time

PREL Intermediate storage for Adjustable 0 - 1,024
reliability calculations

R Parameter for the gamma 1 4
variate in GGIMAJ

REL Values for element Adjustable 0 - 1,024
probabilities per module
or element

RELSTO  Array used in sorting Adjustable 0 -7 *%
the system reliabi- (SIMNUM *1
lities as maximum)

SIMCOM Variable which holds the Adjustable 0 - 384
number of components (128)
for each module and/or
system

SLAB Labels for elements of Adjustable 0 - 384
system or modules (128)

SREL Storage'array for Adjustable 0 - 384
computed module (128)
probabilities

TERMS Terms of the system or 2,000 24,000

module probability
equation
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Array Description Dimension (Maximum) Storage (Bytes)
TYPE Specifies whether each Adjustable 0 - 229,376
component is a gamma (128, 128) :
or beta component
WA Used in calculation Adjustable 0 - 7 %%
the average reliability (total test time
for a gamma component as maximum)
Z Used in Shell Sort Adjustable 0 - 7 #%
routine (SIMNUM as *1
max imum)

**Upper limit of array size indeterminate because one of the upper
limits of the array has no upper limit set on it.

*1 The number of simulation runs are the upper limit for this
array. There is no restrictions on the number of simulation rums.

Note: Some of these values for core are hand calculated. Conse=
quently, they may be smaller than represented on certain systems-.
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JCL Aspects

The JCL aspects of SPARCS can become intricate although noe
overly difficult. Appendix A and B illustrate the JCL used at Oklahoma
State University to execute the program. The JCL aspects of running
SPARCS will be discussed both with and without the use of a load
module., The JCL cards needed are discussed in general terms eince
the exact format of the cards used will depend upon the coﬁputer
system and the facility.

Appendix A contains the JCL for referencing the IMSL package
as a part of the system. If the IMSL package is referenced directly,

a JCL>card is neededvin the LKED section to reference the IMSL object
program and link it with SPARCS. The FORTRAN and Aseembler libraries
must be linkedvas in the load module in case some library functions
are called.

Appendix B provides the JCL for the IMSL routines as load modules
on an IBM 360-65. The load modules are composed of FORTRAN G and
Assembler F routines. The FORTRAN routines are grouped and preceded
by an EXEC card for FORTRAN G« This execute card need only compile
the routine. FolloWing the routines ehould be a SYSIN card for FORTRAN.
The Assembler routine i's preceded by an EXEC card for Assembler F
and followed by a SYSIN card for Assembler. ihis routine also need
only be compiled; The main PL/1 progrem %ollows the IMSL routines.

The basic JCL required to run and PL/1 program is adequate except
for ehe LKED (link-edit) step. The LKED step requires a SYSLIB card

to reference the FORTRAN and Assembler libraries for the load module

routine. This allows the routine to use any stored functions they
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may need pecﬁliar to that language. This is only necessary if a routine
calls a.stored function. The GO. JCL card need only refer to/thg

PL/1l program since all output is done there.

Examples of the cards referred to are identified with asterisks

~in Appéndix A and B. These were used with the IBM 360-65 at Oklahoma
State University in Stillwater, Oklahoma. SPARCS with respective

JCL has been checked out at Phillips Petroleum in'Bartlesville, Okla-
homa and Wright-Patterson Air Force Base in Dayton, Ohio on IBM 370

systems.



CHAPTER VIII
DOCUMENTATION OF SPARGS
Introduction

SPARCS, Simulation Program for Assessing the Reliabilities of
Complex Systems, is a computerized procedure to provide confidence
limits on the reliability or unreliability and the MTBF (mean=time=~
between-failures) for a system of any logical configuration. The
components that comprise this system may be either attribute or time-
to=failure components with no restriction as to their placement in
the system. Interval estimates on the system (un)reliability and
the MTBF, if desired, are provided by use of Monte Carlo techniques -
in conjunction with Bayesian component analysis.

A PL/1 program by J. L. Burris [11] called MAPS, is used to
provide a system equation as a function pf the component reliabilities
(unreliabilities) from analysis of the sjstem.minimal states. The
basic input-output format of the Burris brogram, the equation genera-
tion routine, and the modularity concept developed by Burris is the
basic structure around which SPARQS is dgveloped.

In SPARCS, the component reliab;lities (unreliabilities) are
obtained from statistical analysis oé historical data provided for
each component. It is assumed that data for the attributes components

is obtained from Bernoulli processes and the time~to-failure component

101
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data is obtained from Poisson processes. It is also assumed that

all components succeed or fail independently.
General Description'

SPARCS is designed to provide‘sfatistical,informatiOn about
the reliability (unreliability) and the MTBF of a complex system
of any logical configuration. To use SPARCS, the system under consider=-
’ afion must bé capable of being represented as a logical network
of minimal states. A minimal system success state is called a minimal
path [48], and is defined by a specified smallest setlof éomponents,
which if ﬁhey are all operating properly, will guarantee system success.
A minimal system failure sﬁate is known as a minimal cut [48], and
is defined as a specified smallest set of components which, if they
are all failed, guarantee system failure. This minimal state informa-
tion is provided by the user and is analyzed using Poincaire's Theorem
[48, 26].

In Poincaire's Method, the system reliability, or probability
of success, can be calculated from the component reliabilities if
the minimal paths are known. This reliability value is the lower
confidence bound on the system reliability. Likewise, the system
unreliability, or probability of failure, or l-system reliability,
can be calcﬁlated from the component unreliabilities, given the
minimal cuts. This unreliability is the upper confidence bound on
the system unreliability. This minimal state information along‘with
component failure data history, the n;mber of simulation runs desired,
and other information is input into SPARCS. For attributes=type

components, this failure data consists of accumulated prior tests
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and prior failures. For time~to=-failure components; this data con-
sists of prior testing time and prior failures. Optionally, system
mission time is also input to provide MTBF information for the system.
SPARCS employs Monte Carlo methods to obtain component reliabilities
(unrgliabilities) from Bayesian prior distributions whose parameters
are the component prior test data. These prior distributions’are

beta for attributes components, and negative-log gamma for time-to=-
failure components.

In this program, we have incorparated a random number generator,
RANF, developed in FORTRAN by Professor J. P. Chandler of Oklahoma
State University, based on an algorithm developed by Maclaren and
Marsaglia [51] and recoded in PL/1 for use with SPARCS. We also employ
six library routines supplied by the Iﬁternational Mathematical and
Statistical Library (IMSL). MDBETi, the inverse beta generator and
GGIMAJ, the inverse gamma generator are referenced directly. GGIMAJ
calls GGUl and GGBTA library routines while MDBETI calls MDBETA
and UERTST and seems to be somewhat time consuming.

A modularity concept is employed which enables large complex
systems to be broken down into smaller subsystems or modules. These
subsystems are analyzed individually and later combined to provide
an analysis of the system as a whole. This concept, originally deve
loped in MAPS [11], along with other advantages of the PL/1 language,
such as binary and varying bit string capabilities, makes it possible
to handle large complex systems with‘a considerable saving of time
and computer storage.

The dynamic storage capability of PL/1 is used to overcome a

major storage limitation of SPARCS. Early in the development of the



104

program, the storage requirements became greater than the IBM 360
Model 65 system could accomodate. Using the dynamic storage concept,
storage is allocated only when needed and released as soon as the
program no longer needs that information. This produces a saving

of between 250K to 300K for a mediumelarge systent.

Basically, SPARGS takes input information about the system sup-
plied by the user and generates a system reliability (unreliability)
equation. This system equation is a function of the reliability or
unreliability of the system components. Since each component is omne
of two basic types, Bernoulli or Poisson process, SPARCS must generate
a random number to be used with each component. This random number
along with the historical prior test information about each component
is used to enter the appropriate distribution and provide a reliabili-
ty or unreliability estimate for each component. This estimate is
placed in the correct position in the system equation to provide
an interval estimate for the system reliability or unreliability.

An interval estimate is determined for each simulation run desired.
These estimates are then ordered and statistical information about
the resulting empirical distribution of system interval estimates

is provided.

Output Description

SPARCS output is broken down intp four major parts. Initially,
a printout is provided of the system information read in by the user
(Figure 4). The system identification and information about components,
modules, etc. along with the minimal states for the system, either

paths or cuts, are printed. From this information, the system reliability
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reliability or unreliability equation is determined and provided.
Since systems may consist of subsystems, the minimal states and the
system reliability or unreliability equation uses letters to indicate
subsystems (modules) and numbers to indicate components. Consequently
in Figure 4, RA denotes the reliability of subsystem A.

Next follows an analy§is of each component that makes up the
system (Figure 5). Each component has four lines of information.
Line 1 gives the reliability or unreliability for that component
provided by the first simulation run. This value is pfovided to give
the user an idea of the general reliability or unreliability of that
component. Since the components of our system are defined to be
of two types, Line 2 specifies the type for this particular component.
A Beta component is an attributes component using the inverse Beta
to provide the component lower (upper) limit on the reliability (unre-
liability). A Gamma component is a time-to-failure component using
the inverse Gamma to provide a lower (upper) limit on the component
reliabilities (unreliabilities). Finally, Lines 3 and 4 provide the
prior historical data parameters that are used to enter the appropriate
distribution. If a component is a Bernoulli éomponent, Line 3 is
the total number of successes, P, obtaineg by testing similar compo-
nents. Line 4 is the total number of failures observed in these compo=-
nent tests. If the component is a time-to-failure componen;,.Line
3 is the total testing time, TIME, measured in units of required
testing time observed in tests of similarcomponents. Then, Line

4 is the total number of failures observed in this testing time.
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Figure 5-B
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If no modules‘are used (Figure 5-A5, the component analysis
is followed by an estimate of the system reliability and unreliability.
This estimate is provided as a result of the first simulation run
only. If the system has modules (Figure 5«B), each module is handled
like a minisystem. Moduie information aﬁd minimal'states are printed
first. A subsystem (module) reliability or‘unreliability equation
‘is developed and the information about each component of the module
is presented. Finally, an estimate of the module reliability and
unreliability is provided and stored for future use in the systeﬁ
equation. For systems with modules, the system component information
is presented after the subsystem information along with the system
reliability and unreliability interval estimates for the first simula-
tion run.

The last part (Figuré 6) presents statistical information about
the empirical distribution of interval estimates provided by the
Monte Carlo procedures. Initially, the mean, variance, and standard
deviation is given for the resulting distribution? An estimated reliabi=
lity or unreliability for the system is determined and printed using
maximum likelihood estimates fof the (un)reliability of each component.
An analysis of the sysfem MTBF is . optionally provided. If this option
is chosen, the system mission time and the estimated MTBF is printed.
The estimated MIBF is a direct conversion of the estimated system
reliabilityb(unreliability). The interval estimates of the reliabilis .
ties (unreliﬁbilities) are ordered and percentile points are provided
as direct conversions from the systeﬁ reliabilities.

Finally, an analysis of the frequency and cumulative frequency

counts of cases is printed. This information divides the range of
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the reliability (unreliability) interval estimates into 20 equal

parts. The first line under each subdivision is a frequency count

and the second line a cumulative frequency count of interval estimates.
Hopefully, this information makes it easier to visualize the resulting

empirical distribution of interval estimates.
Limitations

The core size increases as the size of the system under analysis
increases. SPARCS can ideally handle a system of up to 128 components
or subsystéms. Each subsystem can contain up to 128 components. Conse
quently, we can ideally handle a system of up to (128 x 128) 16,384
total components. Also, each probability equation éan contain up
to 2,000 terms. Then, the total number of terms for such a system
would be as high as 258,000 (128 x 2,000) terms. However, it is estima-

ted that such a system would require something over 600 Kto execute.

TABLE XIV

! SYSTEM LIMITS -

No. of moduleé Per SYStem o « o o o o o o o o o o o o o o o & o o 128
No. of elements per module. « « o « ¢ ¢ o o « o s o o o« o« o « « « 128
No. of minimal states per system or module. « « « = ¢« &+ ¢ ¢ « o o 256
No. of terms in probability equaéion of system or module. . . . .2,000

No. of systems per rune + « « o o o o 2 s o o o o o o« o o« « o No limit

No. of simulation TUNS. « « o o o o o« s o o o « o« o o o« o » « No limit
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Input Information

Information to be input should follow in this general order:

(1)
(2)
(3)

(4)

(5)
(6)

information used to allocate and release storage,
information to identify each sSystem,

control information about the components, modules, and
states to be used in the system,

label information about the system elements if provided
by the user,

component information, and

minimal states for the sSystem.

If the system has modules, then

(7)

(8)
and

(9)

control information about the components and states to
be used with appropriate module,

labels for the module elements if provided by the user,

the module minimal states.

Numbers 7, 8, and 9 are repeated for each module of the system. The

use of modules is left to the discretion of the user. If no modules

are used,

numbers 7, 8, and 9 are'disregérded.

Card Input

For input information, the basjc PL/1l input rules are followed.

They are as follows:

(1)

all nonnumeric data must be left justified within the field,

and

(2) numeric data may be punched anywhere within the field.
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The minimal states may appear anywhere on a card as long as each

state is separated by a comma, semicolon or a blank space.

Card l==Allocation and MTBF Information

Column  Parameter Description

FF* MAXGCOM Maximum number of components in the system or
in any module

FF* SIMNUM Number of simulation runs desired

FF* MXTERM Maximum number of minimal states in the system
‘ or in any module

FF* STIME System mission time if MTBF analysis is desired;
0 otherwise

FF* SUNITS Units of system mission time placed in single

quotationmarks; use 'NO' if MTBF option not
used ('NO' in single quotation marks)

Card 2--System Identification Card

Column  Parameter Description

1-80 SYSID Alphameric system identification

Card 3--~Control Information

Column Parameter  Description

1-3 NMOD Nﬁmber of‘modules in system

5-7 NCOM Number of elements in system

9-12 NPATH Number of system minimal states

14 ATYPE Type of analysis (R if reliability analysis, U if

unreliability analysis)

*FF = free form. Information items in free form may be placed
anywhere on a card as long as they are in the specified order and
are separated by a comma, semicolon or blank space.
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|
Card 3--Gontinued

Column  Parameter Description

16-18 ALAB Source of labels (punch YES if supplied by user,
leave blank otherwise)

20-22 APUN " Punches output of probability equation desired,
(punch YES if desired, leave blank otherwise)

Card 4-~System Label Cards (Optional)

Column  Parameter Description
7-9 COMPS1 Alphameric label for system elements
10-80 DESGR Alphameric description of system element or module

Card 5=--System Component Information Card

Column Parameter Description

FF* TYPE Type of component (punch 1 if Bernoulli component,
2 if time~to-failure component, O if system
module) ‘

FE= PORT Number of success if Bernoulli component or total

testing units if time=-to=-failure components

FF* FAILS Number of failures observed in component tests

Card 6--System Minimal State Card

Golumn Parameter Description

FF* MINPTH Minimal states for the system. May be either
in hexidecimal ('4A') qr binary ('1010' B)
representation

Cards 7, 8, 9, and 10 are used if the system under analysis has been

divided into modules.

*FF = free form. Information items in free form may be placed
anywhere on a card as long as they are in the specified order and
are separated by a comma, semicolon or blank space.
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Gard 7-=Module Control Card

Column Parameter  Description

1-3 NCOM Number of module components

5«7 NPATH Number of module minimal states

10 KODE Form of input of module minimal states (H if

hexadecimal,; leave blank otherwise)

Card 8--Module Label Cards (Optional)

Column Parameter Description
7-9 COMS1 Alphameric label for module component
10-80 MDESCR Alphameric descfiption of module components

Card 9--Module Component Information Cand

Column  Parameter Description

FF* TYPE Type of component (punch 1 if Bernouylli,
2 if Poisson process)

FF* PORT Number of observed successes if Bernoulli or
total testing units if Poisson process

FF* FATILS Number of failures observed in component tests

*FF = free form. Information items in free form may be placed
anywhere on a card as long as they are in the specified order and
are separated by a comma, semicolon or blank space.



CHAPTER IX
SUMMARY, CONCLUSIONS AND EXTENSTIONS
Summary

SPARCS (Simulation Program for Assessing tﬁe Reliability of
Complex Systems) is a program designed to provide reliabiiity confidence
assessment for complex systems. The model uses Monte Carlé techniques
to furnish confidence bounds and limits for such systems.

Work done by J. L. Burris is used as a basis around which the
model is developed. Poincaire's Theorem (inclusion-exclusion) and
a modular concept used in MAPS (by Burris) is found intact in SPARCS.
Poincaire's Theorem develops an equation for the system as a function
of the component reliabilities and their placement in the system.

The modular concept allows large systems to be subdivided into smaller
modules for easier analysis.

The components for system analysis are limited to two basic
types: Bernoulli components and Poisson process components. For Ber=
noulli components, the beta distribution is used in conjunction
with Bayesian analysis to provide reliability estimates for these
types of components. Historical test information on accumulated succes-
ses and failures are used as sufficient statistics for the beta parame-
ters. For Poisson process component, Bayesian analysis is used with
the negative-log gamma prior distribution to provide component reliabi-

lities. Accumulated failures and accumulated total test time in units
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are used as sufficient statistiés for parameters of the negative-
log gamma prior. For both cases; a uniform prior is generated in
the absence of data.

The Monte Carlo techniques used in SPARCS generate an empirical
distribution of reliability point estimates for tﬂe system under
analysis. These values are ordered and analyzed statistically to

provide information about the system.
Conclusion

The beta and gamma routines are tested in Chapter V. The Interna<
tional Mathematical and Statistical Library (IMSL) routines used
to generate component reliabilities were tested and found to provide
very good values. The IMSL routines have very small inherent error.

The concepts used in SPARGCS are analyzed to determine
whether they are intact. The duality concept  is shown to
be functioning properly. The uniform (ignorance) prior is shown
to be implemented correctly in both IMSL routines.

Results of small system rums by SPARCS are compared to similar
system analysis in the literature. The results supplied by SPARCS
are consistent with the results provided.in theyliterature. Therefore,
the Monte‘Caflo brocedufes.and the theory utilized in SPARCS are
proven correct. !

Finally, a large network model is run by SPARCS. This vaLidated
the ability of the model to handle largebsystems. The test network
is a large complex network with randomly placed component types.

The model accomodated the network very well and provided a network

analysis with a reasonable amount of core usage.
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Extension

Two extensions of this work are suggested by results supplied
by the model. First, the model generates point estimates for the
reliability of each system under analysis. These estimates aré ordered
to provide an empirical distribution of the system (un)reliability.
If these distributions were analyzed, some information might be
obtained concerning the type or faﬁily of distributions that are
being generated. Perhaps, they are all the same type or all may belong
to the same family. Depending upon the results of such an analysis,
a reasonably simple mathematical algorithm for providing reliability
information ﬁor systems of any logical configuration may be found.
Secondly, SPARCS has been found to be very efficient. Small
sample sizes tend to produce very good results. A sample size determi-
nation procedure could be developed to provide a sample size signifi-
cantly smaller than those obtained with conventional methods. This

would result in a saving of computer time and money.
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XK ScP=SYSPRINT OCHE=BLKSI2ZE=€0 PLULL Dooouoo

xxsrsun. D0 _ _UNITASYSLARSPACE=(E024 2 {60600 esCONFIGIa . _PLIL 00001200
VCA3=3LKSIZL=1024 PLIL onoonoo

.III‘LIL SYSIN DU *

1EF2361 ALLOC. FUR JwCs PLIL

1EF2371 JaZ. _ ALLJUCAIED_1U SYSPRINT.

1EF2371 131 ALLOCATED TQ SYSLIN

1EF2371 131 ALLUCATED TO SYS5UT3 .

1EF2371 13} ALLUCATED TO 5YSUT1

LEF2371 202 _ALLOCATED

TO_SYSIN

1CF1a21 - STEP wAS5 EXECU
1LF2851 SYS73188.,T075H4
IEF2851 YOL SER NUS= O
-LEF2B5] .. _.5YSIS5158.10254
IEF2AS1 VOL SER NO5>= O
TEF2451 5YS75100.70754

1EF28518 VUL SER NOS= O}

1EE3731 STEP_ /L

IR ... £ STARL 518 N
IEF37a1 STEP /PLIL Z/ STUP  75184.2224 CPU

XXLKE 1) EXEC PGM=IEwWL
XX RELIONSH3K

TED - COND CODE CCCa
03«RVOD0.JWCH.LOACSET PASSED

I5K05 .

:Z.L.R)!ﬂ.nﬂ‘_.llchﬂ.LJ_.\_.__._,__ DEAETED
SK0S

03eRYO00.JWCAROCCAT?I DELETEOD

SKO0S .

MiN 08,00SEC MAIN 128K LCS  OK

FR40 PARM=PLIST +#AP* ,CONO=(08,LT.PLIL) . LKED 00001400
AXKED 00001500

//AKLD.SYSLIB DO DSNAME=®
X/SYSLIB LD DSN=EPLL

EPLILID«DISP=(S5HR,PASS)
LiB«D1S5P=(SHR+PASS) LKED 00001600

OD DSNAME=EPLISSP D ISP={SHR.,FASS)
XL .. .. .DO___DSNSLP 1SPs(SHRAPASS) . e -—RKED _0Q0Q1700
*l/ O DSNAME=SYS] « IMSL.UBJECTDISP=(SHR. <PASS)
*7 VU DSNAME=EFURTLIB.D1SP=(SHR ,PASS}
n(:,v:a_mm DO USNAHE=ZLGOSET (GD) +OISP=(NEW.PASS), LKED 000C1800
kX S—— - VS ) 24.UNLI=SYS SPACE=C(CYL. 2 (402102 LKED 00001900
o UNIY’(SVSDA-ShF‘=(5'SLNODvSV5LlH)D-SPACE=( IOZl' LKED 00002000
xx (2004201 ) +sDSN=ESYSUT1+0CB=ELKSTIZE=1024 LKED Q0002100
XXSYSPRINT DD SYS0UT=A LKED 00002200
AXSYSLAN_ . DD _DSNAMEZLLOADSET«DISP={O0LL«CELETELDCAX(RECEM=FDs _ L.KED 00002300
xx OLKSIZE=800) LKED 00002400
Ax DD DONAMEESYSIN LKED 30002500
TCF2301 ALLOC. FOR JuCa LKED
S AEE€2370.. 230 ALLLCATIEDR Ji SYSLAG
IEF2371 244 ALLUCATED TO
TEF2371 134 ALLOCATYED TO
LEF237 230 ALLUCATED
lEI‘Z;II £ 131 D 10 _SY SLMOD
2371 ALLUCATED TO SYSUT1

ALLOCATLL
1€ 2371 1N ALLOCATEL
1£F1421 =~ SIEP E
1EF2851 sYsi.PLILIB

XECUIED = COND CODE C¢COs8

TJ SYSPRINT
T SYSLIN

T PASSED
leF2es1 VoL SEN NOS= SYSRSZ.
SYS14PL1SS PASSED
_VOL _SER uos: D15K06 ——— e
SYS1 e IMSLLUBJECT PASSED
1 VUL SER NOS= DISKOZ2e
l“é“::[ SYS1.FORTLIB PASSED
3Y5730e0. r,ufsuu_n.wvﬂa'.,..uca.-.-U‘F'l : PASSED
VL SLUK JUuS= UISK
SYysluléued hOi-rVOJJ-JIC“-EV‘t'I DELLTED
VUL bR NUS= UlsK350. . [, e S
SYS7To188,.T073403, V000« JWCa s LOACSET DELETED ot

VUL SEH NUS3= DISKO0S.

STESD /LKED 7 START 75188.2224
STEP /LrkD . ./ksl'up - 7518802220 CPU. . OMIN 14.02SEC MAIN 64K LCS.. OX...
EX HuM .
E:PLTL). :{.Ek;u-bYsLMUU-CEI\D ((5eLTILKED) o (CHLLT, Ga 00002600

XXSYSPHINT 00 SYSQUI=A
. Z/7GOPUNCH DV SYSOUT = BoDCU BLKSI(E‘BO

Z7G0FTO6FDC] DV SYSOLT=A
//7GU«5YSPRINI DD SYSUOUT=
//t.u.svsm oD ¥ .

IL} 'Jul ALLOC. FUR JwCa
1t 131 ALLUCATtL
3e56 ALLUCATEQ
370 ALLOCATED
347 ALLUCATED
349 ALLUCATED

IO SYSPRRIND

GLIN=6 3K Ga 00002700
e GO 00002800

A

(Ve
Tu PGN=*.DD

10 PUNCH
TU FTO06F00I
TO SYSPRINT

Ti 303 ALUUCATED Tu SYSIN . —
I ?a,:: = 3TLe WAS EXLCUTED © CanD cooE 10co T T
a5 SYS7'5138e1C75403.-V000. JWCH . GOEET
FEE2851 VUL SER NUS= v15K05 FAsSED
ICF3T30 STEP /Gl 4. START 2518842228 . . ____ e
IEF37al STEP /GO 7/ STOP  75188,2237 CPU  OMIN S1.B4SEC MAIN 264K LCS  OK
fekzest SYSU.PLILIO T ) :
LE€F2M5T VUL 3ER NOST SYSHSZe ) KeeT
LLF265 T SYS1ePLISSP ' KEPT
1EFZ2d5] VoL _StH. _NOSz. DLSKOOs. . _ N
IEF2851  SYSI.1MSL+OHJECT KEPT
LEF2851  VOL SER NUS= DISKOZ.
CIEE2851  SYSI FURTL 1B KEPT
C IEFQASE . . VX SER _NOSx SYSRAS2 e S
1072951 SYS751808+TC750C3.4V000. JWC A+ GCEET T DELETED

lf_:l*"l:l VOL SER NUS= DISKOY .
ITE 4T Joy /JUwCe / START 7518842221

LeEFJTod. _2U3 siaCa L ST TS1RRL223T CPY 2MIN _13.86SEC .
.
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17 JWCh

XX
XXFCRT

JUB (X XAXNXAHXKXANXANKeDvreod) o' JOHA COOLEY' sCLASS =L,
/7 TIMEw(0009.001
e CFURNS 9COL

¥ /7 EXEC FORTGC

PROC KP=EBCDIC

EXEC PGMe IEVFGHT JREGICAZ99K,PARM= [CLKP)

00000010
FORT 00000020

IEF €531 SUBSTITYTION JCL = FGP=lEYFCRTJREGICN=99K,PARM={EBCOIC)

XXSYSPRINT DD 5vS0UT=A FORT 00000030

AXSYSLIN oo DSNAME=LLOAGSET D 1SP= {NODsPASS) yUNIT=SYSDA, FORT 00000040

ll SPACE-(BOD.IZUCleUII.DCB-llLKSllE-!OO.LRECL-Gﬂ. FORT 00000050
RECFM=FR) . FORT 00000060

¥* IIN:RT SYSIN DD * .

LEF2381 ALLODC. FOR JwCé FCRT .

TEF2371 341 ALLOCATED TO SYSPRINT

IEF2371 131 ALLOCATEU TO SYSLIN

JEF22T] 301 ALLUCATED TU SYSIN

TEF142] - STEP WAS EXECUTED - (OND CODE 0000

LEF2€5
1EF285
IEF2373
IEF3T4

1 5¥S715207. T080104.RV0O00, JWC 44 LOADSET

I vOL SER NOS=
JFORT 7 START 715207.1728
JFURT 7 STOP  15207.1728 CPU

1 STEP
1 STEP

¥ // EXEC ASPFC

DISKOS «

OMIN 05.72SEC WAIN B8BK LCS

PASSED

AXASH EXEC P GM=TEUASM REG LON=63K,PARM= *NODECK,LCAD* ASH 00000010

XXSYSL1S DD DSNAME=LMACLIB.,D1SP=(|5HA,PASS] ASH 00000020

XXSYSUTL DD UNIT=SYSDA,SPACE= (1700, (400,500 ), DSN=55YSUTQ ASH 60000030

XXSYSLT2 00  UNIT=SYSDA,SPACEa{1700, {4C0s50) ) DSN=£5YSUT2 ASH 00000040

XXSYSUT3 0D UNIT={SYSCA,SEPa(SYSUT2,SYSUT1+SYSLIBY), ASH 00000050

xx SPACE=(1700, {4 00,50) ), DSN~CSYSUT3 ASN 00000060

XXSYSPRINT DD  SYSOUTsa AS§  $0000070

XX5YSGO DD DSNAME=CLOADSE T,01SP=(MOD.PASS ) JUNIT aSYSDA, + ASN  QD00008%

xx SPACE={400,(200.50)),0Ch=(BLKSIZE=BO0 L RECL =80, AsH 00000090

XX RECFM=F8) ASN 00000100
I //ASM.SYSIN DD *

SEF2361 ALLOC. FOR JNC4 ASH

FEF23T1 130  ALLOCATED TO SYSLIB -

FEF237] 131 ALLDCATED 10 SYSUTL \

1EF2371 131  ALLOCATED 70 SYSUT2 )

1EF2371 232  ALLOCATED TO SYSuTl :

IEF2371 347  ALLOCATED TO SYSPRNT

TEFZ371 131  ALLOCATED TO SYSGO

TEF23TI 3C4  ALLOCATED T0 SYSIN

T1EF142
1EF285

TEF265]

JEF285
1EF285

1EF2851

1EF285
IEF285
1EF285

1EF2851
1EF2851

I - STEP WAS EXECUTED - COND CODE 00CO
I SYS1eMACLIB

YOL SER NOS= SYSRS1.

1 SYS75207.T0B0104.RY000.IWC4.SYSUTL
{ VOL SER NOS= DISKO5.

SYS75207.7080104.RV0O00. JNCA.SYSUT2

1 VOL SER NOS= DISKOS.
1 SYST75207.T060104«RV000.JWC 4. 5YSUT3
1 VOL SER NOS= DISK5b.

¢/ EXEC PLILFCL Gy
/7 REGITA. G(=275K
EXEC PGM=]1EMAA,PARM=*LOAD, NODECK * oREGION= 127K PLIL 00000600

AXPLIL

XAKSYSPRINT DD. SYSOUT=A
£7PLILSYSLIN DD SPACE=(40C,t2(C,200)}
D  DSNAMEsZLOUADSET,D1SP={MOD.+PASS] +UNIT=SV¥S0A, PL 1L 00000800

X/75YSL
XX

IN D

XXSYSLT3 DO

XX
XXSVSUI

SPACE>14D0, 150,201 ), DCO=BLKS IZE=800

IIH)L.SYS!N oD *

1EF2361
I1EF2371
IEF2371
T1EF2371
TEF23T1
TEFZ3T71
TEF142]
IEF2851
L1EF2851
IEF2851
1EF2851
1EF2851(
TEF2851
TIEF3731
IEF3T41

llLKED

SYST75207,7080104. RVO00, JNCALOADSET
VOL SER NOS=
TEF3T31 STEP /ASK
1EF3741 STEP /ASH

SK05«

/ START 1520T.1728
/ STOP  15207.1729 CPU

PA SSED
OELETED
DELETED
DELETED
PASSED

OMIN D2,14SEC MAIN 64K LCS 0K

PLIL 000C3700

PLIL 00000500

UNLT=SYSLA,SPACE=(80,(250,250) 04 CSN=ESYSUTI , PLLL 00001000
SEP=SYSPRINT ,UCB=BLK SIZE=BO PLIL 0QPO1100

L D UNIT=SYSOA.SPACE= (10244 (60,600, .cuunon. . PLIL 00001200
DCH=BLKSIZEr 1D 24 ! bL1L 00001300

ALLOC. FOR JWi4 PLIL

347  ALLGCATED TO SYSPRINT

131 ALLDCATED 1O SYSLIN

131 ALLOCATED TG SYSUT3

131 ALLUCATED .TU SYSUT1 ’

308 ALLGCATED TC SYSIN

= STEP WAS EXECUTED ~ COM) CODE Q004

SYST5207.T080104.RV000.INC4.LOADSET PASSEQD
¥CL SER NOS= DISKOS.
SYST5207.T0B0104. RVCO0. JWC4,. SYSUT DELETED
VOL SER NOS= DISKCS. '
5YS75207.7080104.RY 000« JWC 4. RO00L304 DELETED i
VOL SER NOS= DISKOS.
STEP /PLYL / START 75207.172%
STEP /PLIL / STOP 75207.1734 CPU IMIN 08.09SEC MAIN 138K LCS  OK
EXEC PGM=IEWLF44Co FARM="LIST MAP*yCOND=({08,LT,PLIL }, LRED 00001400
REGION=63K LKED 00001500

-I-//uen sYsLis
X/5YSLIS 00

W/
Xz

(1]

’
XXSYSLMOD CD
C XX

XXSYSUTL bo
Xx

OD DSN=SYS1.PLILIB,DISP=SHR"
OSK=GPLILIB,DISPw [SHR,PASS )
00 DSN=SYSL.PLLISSP4DISP=SHR"
OSN=CPLLSSP,DISP={SHR ¢PASS)

DD OSN=SVYS1.FORTL IB.,OISP=SHR

OSNANE=LGCSEI GO} oD(SP=INEW,PASS ),

LKED 00001600
LKED 00001700
LKED 00001800

DCB=BLKS [ZE=1024%,UNI T=SYSDA, SPACES(CY Lol %0yl )) LKED 00001900
UNIT=(SYSOA,SEP=( SYSLMOD, 5YSLEB) ) 4 SPACE=( 1024, LKED 00002000

(20G4204) ¢ DSN=ESYSUT 1,DCO=BLKSIZE=1024

LKED 00002100
LKED 00002200

DSNAME=ELOADSET,01SP={OLD 'DELETED.DLI-(KECFR- F8, LKED 00002300

XXSYSPRINT LD SYSNUT=A

KXSYSLIN (1]

XX BLKS IZE=800)

xx cc DObhAME=SYSIN
//L¥ED.SYSIN DD *

TEF2361 ALLOC. FOR JWC4 LKED
1€F2311 230 ALLOCATED TO SvsLIs
TEF2371 234 ALLOCATED TO

1EF2371 23C ALLOCATED .70

LEF2371 131 ALLOCATED TG SYSLMOD
1EF2371 232 ALLOCATEDC To SYsurl
1EF2371 346 ALLOCATED TO SYSPRINT
1EF2371 131 ALLUCATED TO SYSLIN
IEF237] 306 ALLODCAYED TO

IEF142] = STEP WAS EXECUTED - COND COOE 0004

LKED 00002400
LKED 00002500
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THE PREVIOUS JOBSTEP REQUESTED 12X BYTES OF JNUSED CORE,

STEP COMPLEY ION CODE - 0000

STEP COMPLEYION CODE - 0000

STEP COMPLETION CODE - 0004



1EF2051
1EF2851
1EF20651
1EF2851
1EF2651
1EF20851
1EF20851
1EF 2851
1EF2851
1EF2651
LEF2051
1EF2851

Xxxec

SYS1.PLILIB

VCL SER NOS=

SYSL.PL1ISSP .
SER NOS= DISKO6e
SYS1.FORTL I8

vou

VCL SER NOS* §
4Y$75207.70001

YSRS2e
04.RV000. JWCA .GOSET

SYSRS2.,

VOL SER NOS= DESKO05.

SYS75207.7080L04.RV 000+ JHC 44 SYSUTL

VOL SER NOS= DISK56.

SY$75207.7080404. RV000. JWC4oLOADSET
VOL SER NOS=
1EFITI1 STEP /LKED
LEF3741 STEP /LKED

DISKCSe
/ START 75207.1734

131

" KEPY
KEPT
KEPT
PASS ED
DELETED
DELETED

/ STOP T5207.1735 CPU  OMIN 12.85SEC MAIN 64K LCS = OK

. STEP COMPLET ION COOE - 0004
EXEC PGMaé LKEDSYSLMODsCOND=( ( 94LToLKED) 9 08¢L Ty GO 00002600
PLIL) ) yREGION= 63K GO 00002700
SYSOLT=A GO - 00002600

XX
XXSYSPRINT DO

4/GC.FUNCH DD SYSOUT=8,DCO=BLKSIZE=B80

//GC.FTO6FO0L OD SYSOUT=A
//GC.SYSPRINT DD SYSQUT=A
//GC.SYSIN COD ¢
/

1EF236]
1EF2371
1EF2371
1EF2311
1EF2371
1EF23T1
1EF2371
1EF1421
1EF 2851
1EF2851
JEF2731
1EF374]

JEFZ831
1EF2851
1€F2851
1EF2851
TEF3751
1EF3T61

ALLOC.
131
346
3rc
347
348
307

« STEP wAS EXECUTED - CCND CODE 2000
$Y575207. T0801044RVOCO, JWC4.GOSET

vou
STEP /
STEP /

sYs1

VOL SER NOSw= SYSR
S$YS75207.7080104.RV 0004 JNCAHGOSET

FOR JwCé
M.LOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED

10
T0
T0
10
10
T0

GC
PGM=9,0D
SYSPRINT
PUNCH
FTC6FO00L
SYSPRINT
SYSIN

SER NOS= DISKOS.

50 / START 75207.1735
G0 -/ siop

<NACLIB

Sl

VOL SER NUS= DISKOS.

JCB /JWCH
J08 /7JuCs

/ staop

/ START 75207.1728
75207.,1735 CPU

75207.1735 CPVU

PASSED

CMIN 01.82S5EC MAIN 268K LCS . OK
THE PREVIOUS JOBSTEP REQUESTED 8K BYTES OF JNUSED CORE.
KEPT STEP COMPLET ION CODE - 2000

DELETED

ININ 30. 62SEC
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SOURCE PROGRAM LISTING OF SPARCS
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63
64
o6
61
68
49
70

11

13

({SUBRG,STRG+S1ZE):
UNITED:PROCEDURE OPTIONS (MAIN)}

SLl

/% DECLARE STATEMENYS &/
DCL At20) REAL FIXEC DEC(640) CONTROLLED:
DCL.ALAB CHAR(3)
DCL APUN CHARL3):
CCL ATYPE CHARI1);
OCL ATYPE] ChARI13) VARYING EXY;
OCL AV REAL FIXED DEC(3) EXT;
CCL AVAL REAL FLOAT DEC{14) EXT;
DCL AVREL REAL FLCAT DEC(14) EXT;
DCL BTYPE REAL FIXED OEC(1l) EXT;
OCt, BVAL REAL FIXED DEC{6,0) EXT;
DCL CA20) REAL FIXED.BEC(6+0) CONTROLLED:
DCL CD REAL FIXED CECI3) EXT;
OCL CE REAL FIXED GEC(3) EXT;
CCL (LPy CCP) REAL FIXED DEC(&);
DCL (CSe CRy CYs CPC) REAL FIXED DEC(5);
DCL CVAL REAL FLCAT DEC(14) EXT;
OCL (COMPS(12B)s SLABI1Z8)) CHARU{3) VAR EXT STATIC:
CCL DCCM{MAX EL) REAL FIXED DEC(3} CONTROLLED EXT3:
CCL DERMS(MAXEL,MAXEL) BIT (128) CCNTRCLLED VAR EXT;
DCL OMOD REAL FIXED DEC (3) EXT;
CCL COEF(MAXEL,MAXEL) REAL FIXED DEC(4) CONTROLLED EXT;
DCL OTERMIMAXEL) REAL FIXED DEC(3) CONTROLLED EXT;
DCL (DVAL, EVAL) REAL FIXED DEC(3.,2):
DCL FERMS (1500) BIT (1z8) VAR EXTi
DCL FVAL REAL FLGAT DECU6):
DCL GAMMA REAL FLOAT OEC(14) EXT3
DCL KV REAL FIXED DEC (2} EXT:
BCL (KS.KT.KUyKXsKY) REAL FIXED DEC (3) EXTV;
DCL KCDE CHAR{1) VAR EXTi
DCL LABELS REAL FIXED DEC (1) EXT:
OCL LA{20) REAL FIXED DEC{6+5) CONTROLLED;
CCL MEAN REAL FLOAT CEC(l4);
DCL MTBF REAL FLGAT DEC(10);
DCL MXTERM REAL FIXED DEC{3);
CCL NARG FIXED BINARY(31,0) EXT;
OCL NCCM REAL FIXEC DEC (3) EXT;
DCL NMOD REAL FIXED DEC (3) EXT;
DCL NPATH REAL FIXED DEC (3) EXTi
DCL PREL(MAXCCM) REAL FLOAT DEC(l4) CONTROLLED EXT;
DCL PUNOUT REAL FIXED CEC (1) EXT;
DCL REL{MAXCOM) REAL FLOAT DEC(14) CONTRCLLED EXT;
DCL RELSTO(SIMNUM) REAL FLOAY DEC{1l4) CONTROLLED EXT;:
DCL RELVAL(SIHNUM) REAL FLOAT DEC(14) CONTROLLED EXT;
DCL RELSCRT FLCAT CEC(14);
DCL SEED REAL FLOAT DEC(16) EXT;
DCL (SCOM, STERM,SMOD ) REAL FIXED DEC (3) EXT;
DCL SIMCCOM(MAXEL) REAL FIXED DEC(3) CCNTROLLED EXT;
OCL SIMNUM REAL FIXED DEC(6) EXT;
DCL SN REAL FIXED DECt6,Q) EXTS
DCL SORTVAL FIXED CEC(6,01);
DCL SREL(NMOD) REAL FLOAT DEC{14) CCNTROLLED EXT;
DCL STDEV REAL FLOAY DEC(14)3
DLL STIME REAL FLOAT DEC(8);
DCL SUNITS CHAR (2C) VAR;
DCL SYSID CHAR (80} VAR EXT;
DCL SYSIN FILE STREAM INPUT; .
DCL SYSPRINT FILE SYREAM OUTPUT PRINT;
DCL TERMS (1500) BIT (128) VAR EXT;
OCL (TYPE(MAXEL MAXCCH) y PORT(MAXEL,MAXCOM},
FAILSUMAXEL yMAXCOM)}} REAL FLODAT DEC{1%) CONTROLLED EXT;
DCL VAR REAL FLOAT CEC{14);
DCL 2ULL) FIXED DEC(6,0) INITIAL (4+13,404121,364,1093,3280,
9841y 29524 885734265720)%
CPEN FILE(SYSIN), FILE(SYSPRINT)
ON ENDFILE{SYSIN) STOP3
NARG = 7;
GAMMA = RANF(NARG);
NARG = 03
SEED = .75:

GET FILE (SYSIN) LIST (FAXCOM,SIMNUM,MXTERM, STIME, SUNITS )
GET FILE (SYSIN) EDIT (SYSID) (COL{l)s» A(BOJ);
GET FILE (SYSIN) LIST (NMOO,NCOMsNPATHIG
GEV FILE (SYSIN) ECIT (ATYPE,ALAB+APUN,KODE)
(COLUMNLU L4 b AL Do XL oAt DX TL)oAl3)4XI 1),
AlLLl)) '

SN = 13
AV = 13
MXTERM = 2¢¥NXTERM - 1}
IF NMOD = NCOM THEN MAXEL = NCOM + 1;
ELSE MAXEL = ACCM3 .
IF NMOD = U THEN ALLOCATE TYPE({l,MAXCCHM), PORT(1,MAXCOM),

FAILS(1.MAXCOM);
ELSE ALLOCATE TYPE(MAXEL,MAXCOM), PORT(MAXELsMAXCOM},

FAILS(PAXEL sMAXCOM);
ALLOCATE REL (MAXCOM);
ALLOCATE SIMCOMIMAXEL);
ALLOCATE PRELIMAXCOM);
ALLOCATE RELSTG(SIKNUM) ;
ALLOCATE SREL{NMOD);

ALLGCATE DTERM{MAXEL)y OOEF(MAXEL MXTERMI, DERMSUMAXEL,MXTERMI,

. DCOM(MAXEL):
SIMCOMIL) = NCOM;

0OMOD=0;
SMOD=0; SCOM=0; STERM=0;
SCOM = NCOM;
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111

113
114
115
116
17
118
11§

120
121
122
124
12¢
127
128
129
130
131
132
132
133
134
135
136

137 |

138
139
140

14l
142
143
144
145
146
148
149
150
151
152
153
154
155
157
158
160
161

162
163
le4
lo6
167
l68
169
170
171
172

173
174
175
117
178
119
181
182
184
185
L1486
187
188
189
190
191
192
193
193
194
195
196
198
199
200
2C1
202
203

sL2

DFCD = NMQD;

SMOD= NMOD;

CE = 13

IF SN > 1 THEN £0;

NCOM = SIMCOM(1)
CALL SIMOUT:
GO TO SL2;
END;

ELSE

IF APUN='YES®' THEN PUNDUT=1;
ELSE PUNOUT=0;

IF ALAB=*YES®' THEN LABELS=1:
ELSE LABELS=0:

IF ATYPE = fU' THEN BTYPE = 1;
ELSE BTYPE = 0;

CALL OUTL;

CALL FNPUT2;

CALL ECGEN;

CALL OUT3;

IF DMOD=0 THEN GD TO R1l:

/% PROCESS MCOULES #/
Kv=13
KX=03;

QLl:IF KX=SMOD THEN GOTO L3;

IF SN > 1 THEN D0
NCCM = SIMCCMIKX*2);
CE = KX ¢ 23
CALL SIMULATE;
CALL COMPUTE;
GO TO SL3;
END;

ELSE

CE = KX + 2§

CALL FNPUTL;

SIMCCM{KX+2) = NCOM;

CALL ECGENS

CALL 0UT3;

CALL S0UT1;

CALL COMPUTE:

CALL souTt2;

SL3:

KX=KX+13
GOT0 01

L3:D0 KS=1 TO SMOD;

RELIKS }=SREL (KS)3
COMPS(XS)=SLAB(KS);

END L3;

IF SCOM-SMOD=0 THEN GOTO Wl;
DC KY=L TO SCGM=SMCC;
REL(KY+SMOD)=PREL{KY+SHQOD);
COMPS{KY+SMOD) =SLAB(KY +SM0OD);
END;

wWli0MOD =03

CeE = 13
CALL CCMPUTE;
IF SN = 1 THEN CALL SOUT2;
ELSE:
IF SN < SIMNUM THEN DO:
SN = SN + 13

GO 10 sL1;
END;
ELSE DC;
IF AV = ) THEN DG; s i
AV = 2 [
GC TO SL1;
END;
ELSE:

FREE TYPE, PORT(FAILS JREL,SIMCOM, PREL, SREL §
FREE DTERM, DCEF., DERMS, DCOM;

60 TO CALCUL; !

END;

R1: KV=13

IF SN > 1 THEN DO;
CALL COMPUTE;
SN = SN + 13 4
IF SN <= SIMNUM THEN GB TO SL1;
ELSE DO;
IF AV = 1 THEN DO}
AV = 2
GG TO SL13
ENO;
ELSE; : 3 3
FREE TYPE, PCRT, FAILS, REL, SIMCOM, PREL,
FREE DYERM, DDEF, DERMS§, DCOM;
GO TO CALCULS f
END&
END;
ELSE
CALL SQUT1;
CALL COMPUTE;
CALL $0UT2;
1F SN < SIMNUM THEM CO;
SN = SN + 13
GO TO SL1;
- ENDE
ELSE DO:
PREC TYPE,PORT,FAILS,REL+SIMCOM,PRELSRELS
FREE DTERM, DOEF, DERMS, DCOM;

SRELS

134



204
205

2C6
2C7
208
209
210

211
212
214
215
216
217
219

221
222
223
224
225
226

213
234

255
251

258
259

260
261
262
263
264
265

2¢6

261
269

270
211

212
273
274
276

211

218

219
280
481

282

483
284
285
287
Z88
289
2sC
290
91
292
294

CALCUL:

CAL:

CQAA:

CQA:

cos:

cac:

CQD:

CQE:

END;
SUMVAL = 03
SUMSC = 03

DC IX = 1 TO SIHNUMS

SUMVAL = SUMVAL + RELSTO(IX);
SUMSQ = SUMSQ + RELSTO(IX)*#*2;
END CAL3

0C CS =3 TO 113
IF ZI(LS) >= SIMNUM THEN D0;

CR = CS~2;

GC Ta COa;

END;

ELSE IF CS = 11 THEN DO}
CR = 10; :
GO 1O COA;

END;

ELSE:

END COAA;

DO CS = CR.TO 1 BY =13

SORTVAL = SIMNUM / Z(CS); .

DO CP = 1 TO SIMNUN BY 1 WHILE (SORTVAL+CP <= SIMNUM);

IF RELSYC(CP) > RELSTC(SORTVAL#CP} THEN DQ;
RELSORT = RELSTU{(CP);

RELSTO(CP) = RELSTC(SORTVAL+CP);
RELSTO{SORYVAL#CP) = RELSCRT;
END

ELSE:

END CGB;

END CQA3

00 CS = 1 TO SIMNUM-1;

IF RELSTC(CS) > RELSTO(CSel) THEN DO;

CR = CS;

RELSORT =2 RELSTO{CS);

RELSTOICS) = RELSTO{(CS+1);

RELSTO{CS+1) = RELSCRT;

IF CS = 1 THEN GO TO CQE3

ELSE;

€0 CP = CR TO 2 BY ~-1:

IF RELSTGI(CP) < RELSTO(CP-1) THEN 003
RELSORY = RELSTO(CF-1);
RELSTO(CP=-1) = RELSTOICP);
RELSTO(CP) = RELSORT;

END;

ELSE GO 1O CQE;

END CCD;

END CQC3

PUT FILE (SYSPRINT) ECIT ("ORDERED VALUES OF THE SYSTEM ¢,

YRELIABILITIES AND UNRELIABILITIES®) (SKIP(3),A.A);

DO CP = 1 TO SIMNUM;

FUT FILE (SYSPRINT} ED'T (RELSTO(CP}, 1-RELSTO(CP))
(COLU23), F(8,6)s CGL(62)s F(8,y6));

. END.CN;

MEAN = SUMVAL / SIMNUM;

VAR = SUMSQ/SIMNUM =~ (SUMVAL/SIMNUM)®%2;
STOEV = SQRTU(VAR) ;

PUT PAGE;

PUT FILE (SYSPRINT) EDIT (*THE MEAN ', ATYPEL, ' IS ¢4 MEAN,
*VARIANCE = ', VAR, °*STANDARD DEVIATION = *, STDEV)
USKIP(2) s X(5)0AeAsAsF(B16)eXIS)sAF(Be6)XIS)iAFIBs61);
PUT FILE (SYSPRINT) EDIV (*THE ESTIMATED *,ATYPEL,

' FOR'THE SYSTEM IS ', AVREL)
(COLLG)sAsAyAVF(B,6) )3
IF STIME ~= 0 THEM DC;

- PUT FILE (SYSPRINT) EDIT ('THE MISSIOM TlME IS 'y STIME,SUNITS

SL4 s

(SKIP(2),COLE6)IAFIBs 200 XL2),A)5

MTBF = STIME / =(LOGIMEAN));

PUT FILE (SYSPRINT) EDIT (*THE ESTIMATED MTBF IS *,MTBF)

(COLU6)4ALELLS48) )%

END;

ELSE;

IF STIME -= 0 THEN DC;

PUT FILE (SYSPRINT) EDIT (ATYPELl, "MTBF')
ISKIP(3),COLI25),AsCOLI49) A);

PUT FILE [SYSPRINT) EDIT (*PERCENTILE', 'PERCENTILE',

*PERCENTILE®)
(COLE4)1AICOLI2510ACOLI46) AL

PUT FILE (SYSPRINT) EDIT {*POINTS', 'POINTS*)
(COLL2T),ALCCLU4BYA)

END

ELSE DO3

PUT FILE (SYSHRINT) COIT (*PERCENTILEY, 'PERCENTILE®)

 USKIPU3) COLLAN A CCL (260,835 ' :

PUT FILE (SYSPRINT) EGIT ($POINTS®)

1COLI271,A);
END; X ,
AVAL = SIHNUM % .01;
IF AVAL < 1 THEN GO TQ SL4;
ELSE CALL CONF;
IF STIME == 0 THEN
PUT FILE (SYSPRINT) EDIT (* 1 PERCENT’, AVAL,MTBF,SUNITS)
EL;:KIP(Z).CDL(Z).A.COL(Z&).FIB.bl.COL(43) VEL15,8) 0 X(2) 4 A):
PUT FILE (SYSPRINT) EDIT (¢ 1 PERCEAT',AVAL)
(SKIPI2), COLU2), Ay COLU28)s F(B6)1 3
AVAL = SINMIN & .025;
IF AVAL ¢ 1 THEN GC TO SLS
ELSE CALL CONF;
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5%
296

297
297

298

303

3C4
304

3¢5

218

319
219

320
321
222
323

233

334
334

235
338
337
338

339
239

340
341
342
343

344
344

245
346
347
348
349
348
350
351
252
353
354
54

355

SLS:

SLé63

ME ~= 0 THEN
:zis:iti (SYSPRINT) EDIT (' 2.5 PERCENT', AVAL,MTBF,SUNITS)
(COLU2) sAoCOL(26) oFLB+6) sCOLI43) E (15:8) 9X(2) 9A);
LSE .
gur FILE (SYSPRINT) EDIT (* 2.5 PERCENT®, AVAL)
(CGL(2)y Ay COL(26)s F(Bs6));
AVAL = SIMNUM * ,05;
IF AVAL < L THEN GO TO SL6;
ELSE CALL CCNF;
IF STIME ~= O THEN
PUT FILE (SYSPRINT) EDIT (* 5 PERCENT', AVAL,MTBF,SUNITS)
(COL(2),AsCCLI26),F(B16)9COL(43)0E(L15,8)4X(2).A);
ELSE
PUT FILE (SYSPRINT) EDIT (¢ 5 PERCENT', AVAL)
(COL(2)y Ay COLI26)s FLB6));
AVAL = SIMNUM ¢ ,10;
CALL CONF3
IF STIME ~= O THEN
PUT FILE (SYSPRINT) EDIT (¥ 10 PERCENIY, AVAL,MTBF,SUNITS)
(COLU2)o Ay COLU26) oF(846)4COLI43) sE(L548)1X(2) 9A)3
ELSE
PUT FILE (SYSPRINT) EOIT {* 10 PERCENT', AVAL)
(COL(2), Ay COLL26)y F(B46));
AVAL = SIMNUM * .20;
CALL CONF;
1F STIME ~x= 0 THEN
PUT FILE (SYSPRINY) EDIT (* 20 PERCENT', AVAL,MTBF,SUNITS)
(COL (214 AsCOLL26) o FUB46)COLI43)E(LS48) 4X(2)4A)3
ELSE
PUT FILE (SYSPRINT) EDIT (* 20 PERCENT', AVAL)
(COL(2), Ay COLU26), FEBy6));
AVAL = SIMNUM * .25;
CALL CONF3
IF STIME ~= 0 THEN :
PUT FILE (SYSPRINT) EODIT (' 25 PERCENT', AVALMTBF,SUNITS)
(COL(2) Ay COLE26)F(By6)sCOLI43)4EL(L5,48)4X(2)4A)35
ELSE
PLT FILE (SYSPRINT) EDIT (' 25 PERCENT', AVAL)
(COL(2)y Ay CCLU26)y F(By6));
AVAL = SIMNUM * ,50;
CALL CONF3
IF STIME ~= O THEN
PUT FILE (SYSPRINT) EGIT (* 50 PERCENT', AVALMTBF,SUNITS)

(COL(2)9AyCOLI26)sF(B6)+COLI43) 4E(L5+8),X(2),A);
ELSE
PUT FILE (SYSPRINT) EDIT (' 50 PERCENT', AVAL)
(COL(2) s Ay CCLI26)y F(B46));
AVAL = SIMNUM # ,75; '
CALL CONF;
IF STIME ~= 0 THEN
PUT FILE (SYSPRINT) EDIT (' 75 PERCENT', AVAL MTBF,SUNITS)
(COL(2)0AyCOL(26) oFUB+6)sCOLI43)E(1548) 4X(2) 4A);
ELSE '
PUT FILE (SYSPRINT) EDIT (* 75 PERCENT', AVAL)
TICOL(2)y Ay COLL26)y FUB46))}
AVAL = SIMNUM * ,80;
CALL CCNF;
[F STIME ~= 0 THEN
PUT FILE (SYSPRINT) EDIT (¢ 80 PERCENT®, AVAL,MTBF,SUNITS)
(CDL(Z).A.COL(ZAI.F(&.b)?CDL(ABO.E(lS.B).X(Zl.A):
ELSE !
PUT FILE (SYSPRINT) EDIT (% 80 PERCENT®, AVAL)
(COL(2), Ay COL(26)y F(B46));
AVAL = SIMNUM # .90;
CALL CONF3
IF STIME == 0 ThEN
PUT FILE (SYSPRINT) EDIT (* 90 PERCENT®, AVAL,MTBF,SUNITS)
(COLU2)9AyCOL(26) FUB+6) yCOLI43) JE(L548),X(2) 4A)3
ELSE ’ .
PLT FILE (SYSPRINT) EDIT (* 90 PERCENT', AVAL)
(COL(2)y Ay CCLE26), F(846));
AVAL = SIMNUM #* .95;
CALL CONF;
IF STIME ~= 0 THEN
PUT FILE (SYSPRINT) EDIT (* 95 PERCEAT', AVAL,MTBF,SUNITS)
(COL(2),A,COLI26) oFUB+6)sCOLI43) sE(LS598)oX(2)4A);
ELSE ! ‘
PUT FILE (SYSPRINT) EDIT (' 95 RERCENT', AVAL)
(COL(2)s A, COL(26)y F(B46));
AVAL = SIMNUM * ,975;
CALL CCNF:
IF STIME == 0 THEN
PUT FILE (SYSPRINT) EDIT (*97.5 PERCENY', AVAL,MTBF,SUNITS)
(COL(2)yAsCOLI26)oF(B16),EOLI43),EIL508)4X(2)4A)5
ELSE I
PUT FILE (SYSFRINT) EDIT (°97.5 PERCENT®, AVAL)
(COL(2), Ay CGL(26), FLBy6));
AVAL = SIMNUM * .99;
CALL CONF;
IF STIME ~= 0 THEN
PUT FILE (SYSPRINT) EDIT (' 99 PERCENT', AVAL,MTBF,SUNITS)
(COLE2)9AsCOLI26)+F(B16)sGOLI43)4E(15,8) 4X(2) JA);
ELSE
PUT FILE (SYSPRINT) EDIT (' 99 PERCEAT', AVAL)
(COLL2)y A, COLU26), FUB,6I);
ALLGCATE LA, CA, A;
00 CS = 1 TO 20;
AlCS) = 0;
END;
DVAL = RELSTO(1);
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360

385

36
387
388
38s$
390
391
293
294
395

404
405
4C6
407
4C8

409
410

411 .

412
413
4l4

415
416
417
418

418

420
422
423
424
425

426
4217

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
446
447

CcQa:
coL:

CQ:

CONF:
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EVAL = RELSTO(SIMNUM) ¢ .01:
FVAL = (EVAL = DVAL) / 20;
D0 CR = 1 TO 20; |
LA(CR) = DVAL + CR * FVAL; '
END:
CC CCP = 1 TO SIMNUM;
00 CPC = 1 1O 203
IF RELSTO(CCP) <= LALCPC) THEN DO;
A(CPC) = ALCPC) + 1;
GO TO CQ;
END;

CAl(l) = A(L) 3

€O CS = 2 YO 20;

CA(LS) = CA(CS-1) + A(CS);
END:

PUT FILE (SYSPRINT) EDIT (*FREQUENCY AND CUMULATIVE FREQUENCY®,

* COUNTS OF CASES') (SKIP(3),L0LI25),A,A);

FUT FILE (SYSPRINT) EDIT ((LA(I) CO I = 1 TO 10)) (SKIP(2),
COLIS)e LC(F(6s4)ds X(3D)DS

PUT FILE (SYSPRINT) EDIT ((A(I) DO I =1 TO 10)) (COL(S),
LO(F(6,0)y X(3)))3

PUT FILE (SYSPRINT) EODIT ((CA(I) DO [ = 1 TO 10)) (COL(5),
L0UF(640)y X(3)));

PUT FILE (SYSPRINT) EDIT ((LACI) DO I = 11 TO 20)) (SKIP(3),
COL(5), LO(F(bs4)y X(3)));

PUT FILE (SYSPRINT) EDIT ((A(I) DO I = 11 TO 20)) (COL(5),
LO(F(640) 9 XU3)))3

PUT FILE (SYSPRINT) EDIT ((CA(I) DO I = 11 TO 20)) (COL(S),
LO(F(640), X(3)))35

FREE LAy CAy A}

FREE RELSTO;

GO TO L1

FROCEDURE;

BVAL = AVAL:

IF BVAL ~= AVAL THEN 003;
AVAL = AVAL = BVAL;
CVAL = RELSTC(EVAL*YL) - RELSTCI(BVAL);
AVAL = CVAL * AVAL:
AVAL = RELSTO(BVAL) ¢ AVAL;
END;

ELSE AVAL = RELSTC(BVAL):

IF STIME -~=. 0 THEN 00;
1F BTYPE = 1| THEN MTBF = STIME / -(LOG(1-AVAL));
ELSE MTBF = STIME / =(LGG(AVAL));:

END;

ELSE:

RETURN;

END CONF 3

FNPUT: PROCEDURES

/* DECLARE STATEMENTS =/
OCL CE REAL FIXED DEC(3) EXT:
CCL I REAL FIXED DEC (3);
OCL KODE CHAR (1) VAR EXT;
DCL MINPTH (256) BIT (128) VAR EXT;
DCL MCCM REAL FIXEL DEC (3) EXT;
DCL NPATH REAL FIXED DEC (3) EXT;
/% ENTRY POINT FOR MUDULES =*/

FAPUTL SENTRY;

GET FILE (SYSIN) LIST (NCOMyNPATH);
GET FILE (SYSIN) EDIT (KODE) (COL(10),A(1));
CALL 0QUT2;

/% ENTRY POINT FOR THE SYSTEM ¥/

FNPUT2ZENTRY;

/% CHECK KODE TO DETERMINE IF MINIMAL
STATES ARE TO BE INPUT IN BINARY
OR HEXADECIMAL NQTATION #/
IF KODE=*H®' THEN CALL HEXIN;
ELSE GET FILE (SYSIN) LIST ((MINPTH(I) DO I=1l TO NPATH));
RETURN;
END FNPUT;

HEXIN: PROCEDURE;

/% CECLARE STATEMENTS #/
DCL CCDE CHAR(32) VAR;
DCL CODED(16) CHARCL) INIT(PA! ,989,7CY,°D,¢E',*F',

000" )0y 1209030, 040,150,060,070,080,091);

CCL hEX{l6) BIT(4) INIT(*1010'B,*1011°'B,'1100'8,

‘1101'8,'1110*B,%1111°*8, *00C0*B,'0001*8,*0010'8,°0011'8,
*0100'8,'0101'8,'011C*8,°0111'8,°1000'8,'1001"8};

HEXL:

DECOOE:

CCL TEMP1 CHARL1);

DCL NPATH REAL FIXEC DEC (3) EXT;

DCL NCOM REAL- FIXED DEC (3) EXT;

OCL' MPTH B1T(128) VARYING;

DCL MINPTHI(256) BIT(128) VARYING EXTERNAL;
DCL (J1,sJ39J4eJdJ) REAL FIXED DEC (3);
00 JJ=1 TO 2563

MINPTH (JJ) = *'83

END;

00 J4=1 TO NPATH;

MPTH= '8

GEY FILE (SYSIN) LIST (CCDE);

DC Jl=1 TO (NCOM#3)/4; "

TEMP 1=SUBSTR(CODE»Jkv 1) 3

SEARCh: DO J3=1 70 t6;

IF TEMPL=CODEC(J3) THEN 00;
MPTH=MPTH| |HEX(J3) ;
GO TO NEXT; END;



449
450

451
452
453
454
455
456

457
458

459
460
461

462
4¢4
466
469
471
412
473
474
476

4717
@18
419
480
481
482

483
484
485

486
4817
488
489
490
452
493
495
496
497
-498
499
5C0

503

533
534
£3s

NEXT:

EQGEN:

LogP1:

LOGP2:

ENDA:

sus:

ENDI4:
ENCI3:

K5uB:

ENDI6

ENDEQ:
outTI:

END SEARCH:
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PUT FILE (SYSPRINT) LIST('JOB TERMINAVED - INVALID CHARACTER®,
¢ ENCOUNTERED IN MINIMAL STATE *,04)%

STOP;
END DECODE;

MINPTH(J4 ) =MINPTH(J4) | | SUBSTRIMPTH Lo NCOM) 3

END HEXL:
END HEXIN;
PRUC EDURE i
/% DECLARE STATEMENTS */

OCL COEF (1500) REAL FIXED DEC (4) EXT;

OCL (1., NSUB,I2, NOUP. INC2, 13, l4, 15,

REAL FIXED.DEC (3)3

DCL MINPTH(256) BIT(128) VARYING EXTERNAL:

KK1, 16, KOUP, 17}

OCL (NCOM, NPATH,NTERM) REAL FIXED DEC (3) EXT;

OCL TERMS (1500) BIT (128) VAR EXT;
/¥ FIRST THREE TERMS #/

/% INITIALIZE PROBABILIYY EQUATION ¢/

TERMS{1)}=MINPTHIL1){ COEF(L)=1;
IF NPATH=L THEN DC}
NTERM=1; RETURN; END;
TERMS{ 2)=MINPTH(2} i COEF{2)=1;
TERMS{3)=MINPTHIL1) | MINPTH(2);
COEF{3)=~1;
NTERM=3;
IF NPATH=2 THEN GO TO ENOEQ;
hSuB=4;
/* REMAINING TERMS */
00 Il = 3 TO NPATH;
TERMS{NSUB)=MINPTHULIL) G
CCEFINSUBY=1;
NSUB=NSUB* L;
CO 12 = )1 YO NYERM;
TERMS{NSUB)=FINPTH(IL) | TERMS(I2);
/% OETERMINE COEFFICIENT
COEF (NSUB)==COEF(12);
NSUB=NSUB+1;
END LOCP2;

/% ACCUMULATE DUPLICATE TERMS

NDUP=0;

INC2=NSUB-1;

DO I3=NFERM+Z TQ INC2;
DO 14=3 TO [3-1-NDUP;

Y

.

IF TERMS ({14)-~aTERMSLI3-ADUP) THEN GO TQO ENDI4;

CCEF (14)=COEF(14) ¢ COEF{I3-NDUP);

IF I3-NDUP=NSUB—1 THEN GO TO SuB;
00 I15=13-NDUP TO INC2-1-NDUP}
TERMS (E5) sTERNMS(15+41 )3
COEF{IS)=COEFII5+1 )5
END;

ASUB=NSUB~1;

NDUP=NDUP+L;

GO TO ENDI3;

END;

END;

/% REMOVE TERMS WITH 2ERD COEFFICIENTS #/

KDUP=0 ;

KKL=ASUB-1;

DO 16<3 TQ KK1:

IF CUEF(16-KDUP)~=0 THEN GO TO ENDI6;

IF 16-KDUP=NSUB~1 THEN €O TO KSUB;
0C [7=16-KDUP TO KKL-1-KDUP;
TERMSUIT)=TERMS{IT+1)3
COEF(17)=COEF(E7+1);
END;

NSUD=NSUB-~1;

KDUP=KDUP+ 1}

END;

NTERM=NSUB=1;

END LOOP1;

END EQGEN:

PROC EDUR E:

CCL BYYPE REAL FIXEC CEC(1) EXT;

DCL CE REAL FIXED DEC(3) EXT;

DCL CHARL CHAR(120) VAR EXT;

DCL CHAR2 CHAR(120). VAR EXT;

DCL CHECKL REAL FIXED DEC (3);

OCL COEF (1500) REAL FIXED DEC (4) EXT;

BCL COMPS1 CHAR (313
DCL CCMPS2 CHAR(L);
OCL COEFF CHAR({3) VARYING:

OCL (COMPS{128)s SLABL128)) CHAR(3) VAR EXT STATIC;

DCL CTYYPE CHAR(L3) VARYING STATIC:
OCL DESCR CHAR(74);

OCL DCOM(MAXEL) REAL FIXED DEC(3) CONTROLLED EXT;

DCL OEKMS{MAXEL MAXEL) BIT (128) CONTROLLED VAR EXT;
CCL DCEF(MAXEL MAXEL) REAL FIXED DEC(4J CONTRCLLED EXT;
OCL DTERM(MAXEL) REAL FIXED DEC(3) CONTROLLED EXT;

DCL GAMMA REAL FLOAT DEC(l4) EXT;
OCL JEN REAL FIXEC CEC (3) EXT;
OCL JMID REAL FIXEL DEC (3) EXTS

-DCL KOMPS(128) CHAR(3) VARYING INIVIAL(®L1*,'2¢,'3°,

T4t 0500060 T, "8, "9, 10, 11%,012°%,713%,114",°15*,%16°,
CLT . 18,019 ,020°,%21°0,022%,%23°%,%24" ,725%,026,%27",
"28'y'29%,°30°,"31°%,32",°33%,934°,°35% ,°35",°37%,'38",

9394,040°,
'504,°51¢
‘6l 620
72,0 73%,

T41, 142047430, 744"

1046 ,04T70 ,048,%49,
57%4%58',¢°59°,'60',
654,661,067 68% 69 470,71,
PV I51, 1760, 0TI, 0780, 79,7007, 817 ,82°,

983%,°84%,%85%:°86,87",'88°,°891,°90,%91",'92*,'93",



551

552
553
554
555
556
£57

558

568

569
€71
572
574

575
511
578

579
580
581
582
583
584
585

586
587

589
549G
591
592
593

594

595
597
598

599
600
602
603
404
&C5

607
e€ce
€10

096,005 ,096%,0970,9G8,%99°,°100°%,*101¢,102*,'103*,
CL04% *1050 .7 106%,°107",°108°,°109¢,°110,¢111",'212%,

139

C113% ‘116, "LL5",

1160, 0217, 0 11B%*119¢ *12C*,"121°,

11229, 01230, %024, %125%: 7126, 127",°128") STATIC;

pr,rEY
IR 050

GVF 1G0T a0 g,
e 'T VU T I e ey

DCL HEADL CHARI(60) VARYING:

ocu (MINPL,NMIN) REAL FIXED DEC (3);

DCL K& REAL FIXED DEC (2) EXTQ

DCL K7 REAL FIXED CEC (3) EXT;

DCL KX REAL FIXEC CECU3) EXT;

DCL LABELS REAL FIXED DEC (1) EXT§

OCL MDESCR(12B) ChAR{T01};

DCL MINP CHAR(500) VARY ING:

DCL MINPTH(256) BIT1128) VARYING EXTERNAL;

DCL MGDSY{128) CHAR(3) VARYING INIT('A®*;*B','C",
"Ll'lnll 1 .

"Zl.lAl'.

TELY, TFL0, "L, tHL "I L1y "L, "KI® 4 L1 " PLE,ONL? .01,

'PLrt,0L" SE® e *TL0,0ULY , V1 e WL o X1 YL " L1,
tA2¢,'82° D2, E2' ,"F2', ' G2 "H2"
rLar,e2e 020, 'P2°,°Q2",'R2%,*S2','T2%,

W2, I X2%, TY2%, %12, A3, 'B3,*CI', D3 ,E3"

ourtL:

TM3%,0N3?,*03°,°P30,703¢,'R3,

X300 ¥3T P23, PALY VB4 40 CAY,

FA0 1A% 0 KA ot LAY (P e INGY,y

Q4L TRG T, TS4T, S T4, TURT S TVAY WA, T X4t ) STATICS

CCL MODSYM (128) CHAR -(3) EXT;

DCL LEN REAL FIXED CEC {3) EXT;

DCL (NCOM,NMOD (NPATH,NTERM) REAL FIXED DEC (3) EXT;

DCL NARG FIXED BINARY(3140)}

CCL NPAGE REAL FIXED DEC (4) EXT;

DCL (T +KL ¢K2¢K3 yKé K54 dS+LCIKLOKL5 K16 sLENG ¢ JLoK13¢ [4K11)
REAL FIXED DEC (2); -

‘DCL PREL (MAXCOM) REAL FLOAT DEC(14) CCNTROLLED EXT;

CCL PUNCH FILE STREAM OUTPUT;

DCL FUNOUT REAL FIXEC DEC (1) EXT; .-

OCL REL{MAXCON} REAL FLCAT DEC(l4) CONTROLLED EXT;

DCL STATE CHARUS) VARYING STATIC:

CCL SYSID CHAR(8Q) VAR EXT; .

DCL TERMS (1500) BIT (1z8) VAR EXT;

OCL (TYPE(MAXEL MAXCOM) ¢i PORT( MAXEL +MAXCOMI 4

FAILS(MAXEL sMAXCOM)) REAL FLOAT DEC(14) CONTROLLED EXT;

DCL ‘XCCMPS CHAR{3) VARY INGi

OPEN FILE(PUNCH} ;

/% ENTRY POINT TO PRINT CONTROL DATA,
AND PROCESS LABELS FOR THE SYSTEM #/

ENTRY;
/% SET LABELS DEPENDING ON THE TYPE OF
ANALYSIS PERFORMED &/
IF BTYPE = O THEN CTYPE = 'RELIABILITY";
ELSE CTYPE = CUNRELIABILITY']
IF BTYPE = 0O THEN STATE = *PATHS';
ELSE STATE = 'CUTS*;
/¥ PUNCH SYSTEM 1OENTIFICATION, AND
NUMBER OF MODULES =/
IF PUNOUT=0 THEN GO TO L20;
PUT FILE(PUNCH) ECIT{SYSID) (A(80));
PUT FILE (PUNCH) ECIT (AMOO, BTYPE)
(F(3)oeXUL)WFLL1D DG

L20: 00 JI=1 TO 128;

Liz:

MODSYM (J1) = pODSY (JI);
COMPS (JI) = KOMPS (J1};
END:
JEN=0;
JMOD=0;
NPAGE=1;
/* PRINT SYSTEM CONTROL INFORMATION ¥/

PUT FILE (SYSPRINT} EDIT (*SPARCS: EQUATION GENERATION *,
'ROUTINE ", *PAGE 'y NPAGE) (PAGE A+ACOLILLILYoAWF(4));
PUT FILE (SYSPRINT) EDIT (*SIMULATION PROGRAM FOR THE ',
*ANALYSIS OF THE RELIABILITY OF COMPLEX SYSTEMS*) (SKIP(l),A,
A); . - :
PUT FILE (SYSPRINT) EDIT (*COLLEGE OF BUSINESS °,
CADMINISTRATION, OKLAHGFA STATE UNIVERSITY') (SKIPUl),A,A};
PUT FILE (SYSPRINT) EDIT (*SYSTEM IDENTIFICATION cccccscsccea’,
Teao 04 SYSID) (SKIP(2) sAsAsAld;
PUT FILE (SYSPRINT) EDIT ("NUMBER OF NODULES scaceseccccacsa’y
Yeeas "o NMOD), (SKIP(2)4A A, F(3));
PUT FILE  {SYSPRINT) EDIT {'NUMBER OF NONMCDUL AR COMPONENTS *,
Y eeeee "oNCOM ~ NMOD) {SKIP(Ll)eAsA.F(3))}
PUT FILE (SYSPRINT) ECIT ('TOTAL NUMBER OF SYSTEM ELEMENTS «e',
‘eee 'JNCON) (SKIP(L),8,4,F(3)});
PUT FILE C(SYSPRINT) EDIT!{*NUMBER OF MINIMAL Py STATE " annseaa'y
®epecec ;e NPATHI (SKIP(L)sAeACOLUZ25)AsAFLI}I;
PUT FILE (SYSPRINT) EOIY ('PUNCHED GUTPUT QF EDUAT]DQ ecasnca’
1%eee ') (SKIPLL) A WA
IF '‘PUNQUT=0 THEN PUT FILE {SYSPRINT) EDIV (* NO*) (AL3});

ELSE PUT FILE {SYSPRINT) EDIT ('YES') (A(3));
JFUT FJLE (SYSPRINT) EDIT ('LABELS SUPPLIED BY USER eesecccene’s
Taee ") (SKIPLLYyAsA,SKIPLLD}; .
JEN=JEN+123; .
IF NMOD=0 THEN GO TO L12%
DC K10=1 TC NMCD;
COMP S(K10)=MOOSY{K10);
END;
IF NMOD=NCOM THEN GC TO L123:

/* HANDLE NONMODULAR ELEMENTS OF THE
SYSTEM ™ */

DO K15=1 TO NCOM~NMOD;
COMPS{KLS+NMOD 1 =KCNPS (K15 )35 ENC3
IF LABELS = O THEN IF NFOD = 0 | NMCD = NCOM THEN
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CF:

CGs

L9

Laa:

LL2:
LLa:

L23:

SINQUT:

auTta:

BA: DO
PUT FILE (SYSPRINT) EDIT (* NO*) (A(3D);
BB: DO KJ = 1 TC NCOM{

GET FILE (SYSIN) LIST LTYPE(L.KJ), PORT(L.KJ}y FAILSILoKII§

IF NMOD ~= 0 THEN SLAB(KJ) = MODSY(KJ)};
ELSE:
END BB}

CALL SIMULATE;

RETURN:

END BA;

ELSE
CA: DC; L

PUT FILE (SYSPRINT) EDIT (* NO') (AU(3));
CB: DO KL = 1 TO NCOM; ' .
GET FILE (SYSIN) LIST (TYPECL,KL)s PORTIL,KL),

END 'CB3: .
CALL SIMULATE;
CC: DC KN = NMOD ¢ 1 TO NCOM:

PREL(KM) = RELIKN);

END CC3
DO KN = 1 TC NMOD;
SLABUKN) = MODSY(KAN);
END' CF3
OC KC = NMOD#1 TO NCOM;~
SLABUKO) = KCMPS(KC-NMGL);

- END CG3

RETURN
END CAj

ELSE PUT FILE (SYSPRINT) EDIT (*YES') {Al3));

FAILS(L,KL) )G

PUT FILE (SYSPRINT) EDIT (*LABEL INFORMATION FOR THE SYSTEM')

S USKIP(5),CCLUMNIZ0 )oA);
DO LC=1'TO 4; CALL DLINE; END;

PUT FILE (SYSPKRINT) EDIV, (*LABEL®,'DESCRIPTION')

(SKIP(2),COLUMNILO }oAsCOLUMNI45) A4 SKIP(2));

DC LC=1 TO 2; CALL CLINE; END:
IF NMOD=0 THEN GOTO LLZ:

DO Kl=1 TO' NMOOD;

GET FILE (SYSIN) ECIT (COMPSL,MDESCRIKL))
(COL (73 ,A03),COLILO) ,AL7C) DS
SLAB(K1)=COMPSIL ;

XCCMPS=* 1

DO K10=1 TQ 3;
COMPS2=SUBSTR(COMPSL,K10,1);
1F COMPS2=' * THEN|GO TO L22;
XCOMPS=XCONPS| [ COMPS2;:

END;

IF XCOMP S~='* THEN COMPSIKL) MODSYM(K1)=XCOMPS;

PUT FILE (SYSPRINT} EDIT (°*NMOOULE
MDESCRIKLY) (SKIPoA, A COL(L5)sA0A0A);

CALL DLINE ¥

END L9;

IF NCCP=NMGD THEN RETURN;

DQ K2=NMCD+1 TO NCCM;

¢ 4COMPS(KL)» (2000,

GET FILE (SYSIN) LIST (TYPE(14K2}, PORT(L,K21s FAILS(1,K2));

CALL SIMULATE;

FREL (K2)=REL{K2};

GET FILE (SYSIN) EQ[Y (CPHPSI.DESCRJ

(CDLl7l.A(3)oCOLllQl'AITDl)'

SLAB{K2)=COMP51;

XCOMPS=t 1 . ’

DO Kll=l YO 3;

COHPSZ‘SUBSTR(CDHPSL-KII-ll.

IF CCHP§2=* ' THEN GO TG L23;

XCUHPS-XCDHPSIICDFPSZ.

END;

IF XCOMPS~='* THEN CDHPilKZ)-XCDNPS;
ELSE XCOMPS=COMPS ( K2);

PUT FILE (SYSPRINT) EDIV ('COMPONENT *,XCOMPS,020)°%.

DESER) (SKIP(l).A.A.CDL(I5|.A»A:A).
CALL OLINE;
END LL3:
RETURN;

/% ENTRY POINT FOR ﬁlHULATlUN */
ENTRY:

IF LABELS = O THEN IF NHDD = q | NMOD = NCOM THEN

BAl: -DO; N
CALL SIMULATE; A
RETURN: :
END BALl;

ELSE DO:

CALL SIMULATE:

CAl:

DO KM = ‘NpCD+1 TG MCOM:
PREL(KM) = REL(KM);

END CALS

RETURN;

END;

/% ENTRY POINT TO PRINT CONTROL DATA,

AND PROCESS LABELS FOR MODULES

ENTRY;
DO JL=1 TO 128;

MODSYM(JL) =MCDSY (JL);
COMPS(JL )=KOMPS(JL) ;
END; "

JFOD=JMOD+1
CALL DLINE;:

IF LABELS=0 THEN 6OTO JC;
DO JS=1 TC NMCD;

MUDSY M{JSI=SLAB(JIS);

*/
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713 END;
/% PRINT CONTROL INFORMATICN FOR THE
MODULE 7/ : _
114 JC:IF LABELS=0 THEN PUT FILE (SYSPRINT) ECIT (*MODULE ',
16 MCDSYH{JMOD)) (SKIP(4)yAsA); ELSE
16 PUT FILE (SYSPRINT) EDIT (*MUDULE °®,MCOSYM{JMOD),* *,(L3)°.¢,
" ¢, MCESCRIJMOD)) . (SKIP(4)sAshiAsAsA0A); .
ny CALL DLINE: ’
718 PUT FILE (SYSPRINT) EDIT [*NUMBER CF COMPCNENTS *,(160%.%,* ¢,
’ NCOM)  (SKIP(L)sAsAsAsFI3));
n9 CALL DLINE;
720 PUT FILE (SYSPRINT) EDIT (*NUMBER OF MINIMAL ¢,STATE,* *,{13)
Pot, 0 I NPATHE (SKIPUL)sAsAsAsAsA FL3N)G
121 DO LC=i TO 2; CALL LCLINE; END:
124 If LABELS = O THEN
725 LAt DO;
26 . ' LB: DO K3 = 1 TC NCOM; )
127 . GET FILE (SYSIN) LIST (TYPE(CE.K3), PORTI{CE.K3), FAILS(CEK3I);
728 . END LB3
125 CALL STMULATE;
730 RETURN;
731 END LA3
132 ELSE PUT FILE (SYSPRINT) EDIT (* LABEL INFORMATION FOR *,
P MCDULE * o FODSYM(JIMOD)) (SKIP(S5),COLI20)sAsAsA);
733 PUT FILE (SYSPRINT) EDIT (*LABEL®,'DESCRIPTION?)
(SKIP(2) 4 COLUMN{10)+A,COLUMNL45):A) 3
734 DO LC=1 TO 7; CALL CLINE; END;
37 LL4: DO K3=1 TO NCGM;
738 GET FILE (SYSIN} LIST (TYPE(CE,K3), PORT(CEsK3), FAILS(CE;XK3));
739 GET FILE (SYSIN) EDIT (COMPS1,0ESCR)
(COL(T)oA(3),CCLULC),ALT0));
740 XCOMPS=® 4
741 . D0 K13=1 TO 3;
142 - COMPS2=SUBSTR(COMPSL oK1 3,41 );
743 IF COMPS2=*¢ * THEN GO TC L24;
745 XCOMPS=XCOMPS| |COMPS2;
146 L24: END:
147 IF SUBSTR(XCOMPS ,141)~=*" THEN COMPS{K3)=XCOMPS;
749 ELSE XCOMPS=COMPS(K3);
150 PUT FILE (SYSPRINT) EDIT (*COMPONENT ¢,XCOMPS,(20)*.%,* *,
DESCR)  (SKIP{L), A¢A,COLILS) AR A5
751 . CALL DLINE;
152 END LL4:
753 CALL SIMULATE:
154 RETURN; )
/¢  ENTRY POINT TO PRINT MINIMAL STATES,
AND PROBABILITY EQUATIONS */
155 OL13: ENTRY;
756 DTERM{CE)} = 03
757 DCOMICE) = 0; .
158 DCOM(CE} = NCCM;
759 DYERMICE) = NTERM;
760 DO I=1 TO NTERM;
161 DCEF{CE,I) = CCEF(I};
162 DERMS(CE I} = TERMS(I);
763 END;
/* PUNCH NUMBER OF COMPONENTS, NUMBER OF
TERMS, LABELS AND THE TERMS  #/
164 IF PUNOUT=0 THEN GO TO L21;
166 IF JMCD=0 THEN PUT FILE(PUNCH) EDIT (NCOM,NTERM)
. (CCLUMN (1) 4F(3) oX{5)+F(3));
768 ELSE PUT FILE(PUNCH) LIST(MODSYM(JIMOD)NCOMJNTERM);
769 PUT FILE(PUNCH) SKIP LIST((COMPS(I) DO I=l
TO NCOMI )
170 PUT FILE(PUNCH) SKIP LIST({COEF(I) 0O I=1
[0 NTERM));
m PUT FILE(PUNCH) SKIP LIST((TERMS(I) DO I=}

TO NTERM) )
/%  PRINT MINIMAL STATES %/

172 L213CALL 'DLINE;
73 o IF JMOD=0 THEN PUT FILE {SYSPRINT) EDIT{*THE.',NPATH,
: ¢ MINIWAL *¢STATE,* FOR THE SYSTEM FOLLOW:*)
175 (SKIPU2) 1AsF(3) sAsAsA SKIP(2)) ELSE
115 ' PUT FILE (SYSPRINT) EDIT ('THE *,NPATH,*MINIMAL *,STATE,

' FOR MODULE *,MODSYM{JMOD),* FOLLOW:?®)
(SKIP(2) yAsF( Do X{L)9AsAsAIALA¢SKIP(2));

176 DO tC=1 TO 25 CALL DLlNEi END;

779 L5: DO K4=1 YO NPATH; ¥ "

180 MENP=® 03

181 ' MINP= 'Y

782 MINPL=1"

183 L6: DC KS=1 TO NCOM;

784 If SUBSTRUMINPTH(K4)(K5.1)=*1*B
' 785 i THEN iMINP=MINP | ICCMPS(KS ) 11% "5
786 > - : CHECK1I=LENGTHIMINP)/MINPL; :

187 IF CHECK1>128 THEN CO;

789 MINPL=MINPLS LG

790 00 I=1 TO 132-CHECK1;

91 MINP=MINP |1 * *;

192 END;§

793 END;

194 END LG

195 AMIN=LENGTH(MINP) ;

796 SUBSTRIMINP,NMIN1lin'ot3

197 PUT FILE (SYSPRINT) EDIT (MINP) (SKIP(1)+COL(1)sA)3
798 CALL OLINES

799 END L5; .

800 IF JX0D=0 THEN

8ol HEADL=*SYSTEM *{ICTIYPEI|" EQUATIGN ('3

802 ELSE HEAD1=*SUBSYSYEM * JICTVYPE]|® EQUATION *
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F1%case. MODULE *|| MODSYN{JMOOD) 11 * (*;
PUT FILE (SYSPRINT) EDIT (HEADI,NTERM,' TERMS)')
(SKIPL2) ,COLE32) o AsFI3),A,SKIP(2))5
DO LC=1 TO 2; CALL OLINE; END;
/% DETERMINATION OF COMPONENT SYMBOLS
FGR CUTPUT #/
CHAR1a??;
CHAR2= "R ;
IF JMOD=0 THEN CHARL=CHARL||*SYS L ELSE
CHARL=CHARL| |MODSYM{JMOO) I I? LS
IF JMOD=0 THEN CHARRsCHARZ[I' = '3 ELSE DO
DO K10=1 TO LENGTH(NODSYM{JUMOD))el;
CHARZ=CHARZ2I1Y *; END;
CHARZ=CHARZ2| | *= ¢ "END;
K6=03
“IF K6=NTERM THEN €O TO KK23

IF COQEF(K6+1)>0 THEN COEFF=' + *; ELSE 00;

AG:

Lii:

L50:

KC1:

KK2:

SLINE:

COEF(K6¢1)==COEF(Ko¥1); COEFF=* = *;  ENO;
KI16=K6+ 15
IF Kl6~=1"THEN CO3
CHAR2=CHAR2| | CCEFF;
CHARL=CHARLI{® '
END3
IF CCEF(K6#1)~=1 THEN C€O;
CHARL=CHARLI ' *;
CHAR 2=CHAR2| |KOMP S(COEFIK6+1) )3
END;
K720;
IF K7=NCOM THEN GQ. TO KCl;
IF SUBSTRITERMS(K6¢1),K7+1,1)=*0"8 THEN GO TO L50;
CHARL1=CHARLI [CCHPSIKT+1 I 3
/% DETERMINE R-STRING FOR OUTPUT @/
LEN6=LENGTHICONPS (K7#13);
IF LEN6=1 THEN GO TQ GOl:
IF LEN6=2 THEN GG TO GOZ:
ELSE GO TO GO3:
GOL: CHARZ2=CHARZI1*R *;
. 60 7O L11;
GD2: CHAR2=CHAR2}II'R *;
GO TO L11;
G03: CHARZ=CHAR2||'F “
LEN=LENG TH(CHAR2)
CALL SLINE;
K7=K7+1;
GOTO AG:
Kb6=K6+1;
6070 LT;
CALL SLINE; i
CLOSE FILE{PUNCH} ;
END QUYI;
FROCEDURE;
DCL (LEN,NCOM,NTERM) REAL FIXED DEC (3} EXT;
IF LEN>112 & LEN <120 THEN DO;
GCL CrARZ CHAR(120) VAR EXT;
DCL (K6#K7) REAL FIXER LEC (3) EXT;
IF KT+1~sNCOM THEN CHAR2=CHAR2|I*%*;
CALL PRINTER;
RETURN;
END;
ELSE 0O:
IF K6=NTERM THEN CALL PRINTER;
RETURN;
END;
END SLINE;

PRINTER: PROCEDURE ;

OCL {CHARI,CHAR2) CHAR(120) VAR EXT:

OCL LEN REAL FIXED DEC (3) EXT;

CALL OLINE;

PUT FILE (SYSPRINT) EDIY (CHARZ2) (SK1P{2),COL(31),A);
PUT FLLE C(SYSPRINT) EDIT (CHARL) (COLU(4),A);

CALL CLINE: CALL CLINE;

LEN=03

CHAR1=171;

CHARZ2='13

RETURN

END FRINTER;

Ot INE:

PROCEBURE 3

DCL JEN REAL FIXED DEC (3} EXT;

DCL NPAGE REAL FIXEC DEC (4) EXT;

JENSJEN+L3

IF JEN<53 THEN. GO YO OVERS

PUT' FILE (SYSPRINT) EDIT (*s® CONYVINUED ®%¢)
(SKIP(3),CLLLBC) A) G

NPAGE=NPAGE+1;

FUT FILE (SYSPRINT) ECIT {*PAGE' ,NPAGE )
(PAGELCOLULLLY 4 AsX(11gF (%) SKIPL21}3

JEN=03 !

OVER: RETURN;

COMPUTE:

END OL INE:

PROCEDURE ;
OCL A REAL FLOAT DEC (14);

DCL AV REAL FIXEC CEC{3) EXT;
DCL AVREL REAL FLCAT DEC(14) EXT;
OCL BROD REAL FLOAT DEC (}4):

CCL CE REAL FIXED CEC(3)\EXT:
OCL DCCM(MAX EL) REAL FIXED DEC(3) CCNTROLLED EXT;
OCL DMOD-REAL FIXED DEC (3} EXT;

CCL DERMS{MAXEL 4MAXEL} BIT {128) CONTROLLED VAR EXT;
CCt DOEF{MAXEL,MAXEL) REAL FIXED DEC(4) CONTROLLED EXT;
OCL OTERM(MAXEL) REAL FIXEO GEC(3) CCNTROLLED EXT;
DCL KA REAL FIXED DEC ( 2);

\
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FIN:

CuT!l:

SQuT1:

souT2:

LLE

CCL KB REAL FIXED CEC (3);

DCL KV REAL FIXED LEC (2) EXT;

DCL MODREL REAL FLOAT DEC {14} EXT3

DCL PMB REAL FLDAT DEC (l4);

OCL REL(MAXCCM) REAL FLCAT DEC(14) CCNTROLLED EXTi

DCL RELSTO(SIMNUM) REAL FLOAT DEC{l4) CONTROLLED EXT;
" BCL SN REAL FIXED DECI6%0) EXT;

DCL SREL (NMOC} REAL FLOAT DECil4) CONTROLLED EXT;
DCL SYSREL REAL FLCAT DEC {(l4) EXT;
DCL ZUM REAL FLOAT DEC (14);

IUM=0,03¢

DO KA = 1 TO DYERMICE);

PMB=0.0 ;

BROD=1.03:

A=0.0 H

00 KB = 1 TO CCGMICEdL

IF SUBSTR{DERMS(CE.KA}, KB, 1) ~= *1°*8 THEN GO TO
A=BROD*REL (KB )3

BRCO=A3

A=0.0;

END3 .

PMB = BROD * CCEF(CE«KAI;G

LUM=ZUMPMB:

END;

If DMOD~=0 THEN DC;

MODREL=ZUM; .

SRELUKV) =ZUM; \

KV=KV+1;

END;

ELSE DG;

SYSREL=ZUM;

IF AV = 2 THEN AVREL * SYSREL;

ELSE

RELSTG{SN) = SYSREL;

CE = 13

END;

END COMPUT E} i

FROCECURE: H ‘

/* DECLARE STATEMENTS =/

DCL ATYPEL CHAR{13) VARYING EXT;

DCL ATYPE2 CHAR{15) VARYING:

OCL AYYPE3 CHAR(13) VARVING;

OCL BEGA(0:2) CHAR(T)} INITIAL ('HODULE ',
"BETA ty YGAMMA )

DCL BTYPE REAL FIXED DEC(1} EXT;

DCL (C1,C2,1,LC) REAL FIXED DEC (3);

DCL CE REAL FIXED-DEC(3) EXTi

DCL DCCM{MAXEL) REAL FIXED DEC{(3) CONVROLLED EXT;
CCL DMCD REAL FIXEL CEC (3) EXTS

DCL JMOD REAL FIXED DEC (3) EXT;

DCL XQ REAL FIXED DEC (3);

DCiL COMPS(128) CHAR{3} VAR EXT STATIC;
OCL MODREL REAL FLCAT DCC (L14) EXT;

DCL MODSYM {128) CHAR (2) EXTi

DCL REL{MAXCOM) REAL FLOAT DEC(14) CONTROLLED EXT.
DCL SYSREL REAL FLCAT DEC (l4) EXT;

/% ENTRY POINT TO PRINT HEADINGS #/

ENTRY

PUT FILE {SYSPRINT) EDIT (*SPARCS: PROBABILITY COMPUTATION

"ROUTINE') ISKIP(S5) yAsAd;

PUT ‘FILE (SYSPRINT) EOIT (*(THE COMPONENT AND SYSTEM *,
*RELIABILITY INFORMAYION IS FOR THE FIRST ITERATION ONLY)?)

(SKIPLL)sALA);

00 LC=1 TO 5; CALL DLINE; END;

RETURN
/%  ENTRY POINT TQ PRINT PROBABILITIES *

ENTRY; i

"IF BTYPE = O THEN DO;

ATYPE 1= "RELIABILITY';
ATYPE2=* RELIABILITIES®;
© ATYPE3='UNRELIABILITY'; END; ELSE DO;
ATYPE L= *UNREL IABR| ITY?;
ATYPE2=' UNREL IABI[ ITIES?;
ATYPE3=*RELIABILITY';  END:
IF DMOD ~= 0 THEN

PUT FILE(SYSPRINT) EDIT('COMPONENT *,ATYPE2,*' FOR MODULE *,

HMCOSYM(UJMOOD})  (SKIP(3)+COLI1)vAcAsALA); ELSE

PUT FILE(SYSPRINY) ECIT (" MODULE AND CGMPCNENT ' ,ATYPE2,

' FOR THE SYSTEM')
USKIPU3),COLUMNEL) (ApA4A);

DC LC=1 70 3; CALL CLINE; END;

Cl=l;

IF DCOMCCE) < 4 THEN C2 = DCOMICED;

ELSE C2 = 4;

DO KQ = 1 TO DCOMICE)/4 ¢ .95

PUT FILE(SYSPRINT) EDIT (('R = ', REL(I) DO I-C} 1o czn

,
(SKIP(2)y COLULY. (5) ' (AL6)y F(Byb), X(12)));
PUT FILE (SYSPRINT) EOET ((COMPS(I), *TYPE = ¢,
BEGA(TYPE(CEsI)) CO I = C1 TO C2))
(COLI2Ds (S5HIAUI NI X(2)0AsAsXUT))5

FIN:

/
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PUT FILE (SYSPRINT) EDIT ({'P CR TIME = 1, PURT(CE,!I 00 1 =

C1 70 C2)) (COL(TIs (5) LAy FUT42), XITID2;

PUT FILE (SYSPRINT) EDIT {('FAILURES = *, FAILSICE,1) DO I =

C1 TO C2)) (CCLUT7)y (5) (Ay FUTe2)s X(8)));
DO LC=1 TO 3; CALL DLINE; END;

€l = L1 ¢ 45

IF C2v4 > OCCMICE) ThEN C2 = DCOM(CE);

ELSE €2 = C2 + 43 .
END ‘Ww3

IF DMOD~=0 TYHEN

PUT FILE (SYSPRINY) EDIT (*HODULE *,MGDSYM(JNOD), ATYPEL,
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¢ = ¢,MODREL,y ATYPE3,' = ',1.-MODREL)
ASKIP(2)sCOLIL)sAsAsAAsF(Bs6) sXI15) sAsAsF(B46)); ELSE
PUT FILE (SYSPRINT) EDIT (*SYSTEM *, ATYPEL, ' = ¢, SYSREL,
ATYPE3, * = *, 1l.~SYSREL)
(SKIP(2)y COL(LDy Ay As Ay FUBIO)oXULS) s Ay Ay FUBB));
DO LC=L TO 2; CALL CLINE: END:
RETURN:
/% ENTRY POINT FOR SIMULATICN OUTPUT %/
SIMOT: ENTRY;
IF BTYPE = 0 THEN
PUT FILE (SYSPRINT) EDIT (SYSREL, l.=-SYSREL)
(COL(22)y FUB,6)s Xt3LDs F(B46))G
ELSE )
PUT FILE (SYSPRINT) EOIT (SYSREL, l.~SYSREL)
(COL(24), F(Bs6)y X(29)y FUBO));
0C LC =1 TO 23
CALL OLINE;
END
RETURN;
END OUTII;
SIMULATE: PROCEDURE;
CCL AV REAL FIXED CEC(3) EXT}
DCL BTYPE REAL FIXED CEC(1) EXT;
DCL CD REAL FIXED DEC(3) EXT§
DCL CE REAL FIXED DEC(3) EXT;
DECLARE FLAG EXTERNAL;
DCL GAMMA REAL FLOAT DEC(14) EXT;
DCL NARG FIXED BINARY(31,0) EXT;
DCL NCOM REAL FIXEC DEC(3) EXT3
DCL NMOD REAL FIXED DEC(3) EXT;
DCL NVAL FIXED (7,6) €XT§ '
DCL RELUMAXCCM) REAL FLOAT GEC(l4) CONTROLLED EXT;
DCL SEED REAL FLCAT DEC(L6) EXT;
UCL (TYPE(MAXEL sMAXCOM), PORT(MAXEL jMAXCOM), FAILS(MAXEL MAXCOM))
REAL FLOAT DEC(14) CONTROLLED EXT;
REED: €O CD = 1 TC NCCM;
IF TYPE (CED) = 0 THEN DC;,
KEL(CD) = 0} ;
GG TC ER;
END;
ELSE
IF TYPE (CE,CD) = 1 THEN GG TO BETAVAL;
ELSE IF TYPE(CE,CD) = 2 THEN GU TO GAMMAVAL;
PUT SKIP LIST (TYPE(CE,CD));
PLT LIST (*TYPE CESIGNATED IN ERRGR®);
GO TC WRITEM;
BETAVAL: CALL BETASUB;
GC TO ER;
GAMMAVAL: CALL GAMASUB;
GO TO ER3
WRITEM: PUT SKIP(2) EDIT (CAMMA 4FLAGyNVAL,PORT,FALLS, TYPE,PSUBL)
(COLUMN(2) oF(T45)y CCLUMNI(L2)4F(2,0)y COLUNN(18),F(9,6),
COLUMN(29)4F(992) s COLUMNL4L) oF(4s0)y CCLUMNL49) 4F(2,0),
COLUMN(S55),F(8,6)0 3 .
RETURN;
ER:
IF BYYPE = 1 THEN REL(CD) = 1 - REL(CO):
ELSE;
IF TYPE(CE,CC) = 1 THEN GAPMA = RANF(NARG);
ELSE;
END REEL;
RETURN;
BETASUB: PROCEDURE ;
DCL AV REAL FIXEC DEC(3) EXT:
DCL CD REAL FIXEC LEC(3) EXT;
DCL CE REAL FIXED DEC(3) EXT;
CCL GAMMA REAL FLOAT DEC(1l4) EXT; ~
'CCL IER REAL FIXED BIN(31);
DECLARE LAMDA FIXED(12,10);
DCL NCOM REAL FIXED DEC(3) EXT;
DCL NVAL FIXED (7,6) EXT;
DCL (P,AAB,X) REAL FLCAT CEC;
DCL REL{MAXCOM) REAL FLOAT DEC(14) CONTROLLED EXT;
CCL (TYPE(MAXEL yMAXCOM), PORTUMAXEL yMAXCOM)y FAILS(MAXEL yMAXCOM))
REAL FLOAT DEC(l4) CCNTRCLLED EXT;
AA = PORT(CE,CD) + 1;
B = FAILS(CE.CD) + 1;
P = GAMMA;
IF AV = 2 THEN DO;
RELICD) = AA / (AA+¢B);
GO TO BETAL;
END:

ELSE;
CALL MDBETI' (P,AA,BsX+IERD; |
REL(CD) = X;
BETALl: RETURN;
END BETASUB;
GAMASUE: PROCEDURE;
‘OCL (AA,8,RE1}) REAL FLOAT DEC;
DCL AV REAL FIXED DEC(3) EXT;
CCL CD REAL FIXED CEC(3) EXT;
DCL CE REAL FIXED CEC(3) EXT;
UCL GAMMA REAL FLOAT DEC(14) EXT;
OCL NI REAL FIXEC BIN(31) INITIALC(L)
DCL NCCM REAL FIXEC CEC(3) EXT;
OCL NVAL FIXED (T,6) EXT; 3
DCL REL (MAXCOM) REAL FLOAT DEC(14) CONTROLLED EXT;
OCL SEED REAL FLCAT CECt16) EXT;
DCL (TYPE(MAXEL»MAXCCM) o PCRT (MAX EL ¢ MAXCCM)s FAILS (MAXEL JMAXCOM))
REAL FLOAT DEC(14) CONTROLLED EXT;
CCL WA(MA) REAL FLOAT DEC CONTROLLED:
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1113

1114

1115
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

1128

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150
1151
1151
1152
1154

1155
115¢
1157
1158

1156
116C
1161
1162

1163
1164
1165
1166
1167

1168

1170
1171
1172
1173

1174
1178

AA = FAILS(CE,CD) ¢+ 13

B =11/

(PORT(CE,CO) + 1)}

IF AV = 2 THEN DC;

RE

LICD) = ((L/B) / (L/B+1)) *% AA;

GO TO GAM;
END;

ELSE;

ALLOCATE WALAA+1) 3

CALL GGTMAJ (SEEDyAAsBsNIoWALL)R(L))D;
FREE WAS *

RELICD) = EXPI=-R(1))3

GAM: RETURNS

END GAMASUB:
FINIS: END SIMULATE;
(NOFIXEDOVERFLOW):
RANF: PROC (NARG) RETURNS (FLOAT BINARY);

zl

ThIS FUNCTION GENERATES PSEUDO-RANDOM NUMBERS,
THIS VERSION IS FOR THE I8M 360
Jo Po CHANDLER, COMPUTER SCIENCE DEPTas GKLAHOMA STATE UNIVERSITY.

OISTRIBUTED ON tOs1).

METHOC.o. COMPOSITE OF THREE MULTIPLICATIVE CONGRUENTIAL GENERATORS
Gs MARSAGLIA AND.T. A. BRAY, COMM. ACM 11 (1968) 757.

IF RANF IS CALLED WITH NARG=Q, THE NEXT RANDOM NUMBER IS RETURNED.
IF RANF IS CALLED WITH NARG~=0, THE GENERATOR IS RE-INITIALIZED

USING [ABS(2%*NARG+¢1) ANC THE FIRST RANDOM NUMBER FROM THE NEW

SEQUENCE

*/
CccL
ocL
DCL
ocL
ccL
ocL
ocL
ocL
ocL
oCL
ccL
ocL
ocL
ocL
DCL
DCL
DCL

1S RETURNED.

J FIXED BINARY(15,0) STATIC;

JRAN BASED(P_RAN) FIXED BINARY(31,0);

K FIXED BINARY(31,0) INITIAL(7654321) STATIC;
KLM FIXED EINARY(31,0) STATIC:

L FIXED BINARY(31,0) INITIAL(7654321) STATICS
M FIXED BINARY(31,0) INITIAL(T7654321) STATIC;
MK FIXED BINARY(31,0) STATIC INITIAL(282629);
ML FIXED BINARY(31,0) STATIC INITIAL(34821);
PM FIXED BINARY(31,0) STATIC INITIAL(65541)3
N(128) FIXED BINARY(131,0) STATIC;

NARG FIXED BINARY(31,0);

NDIV FIXED BINARY(31,0) STATIC;

NFIRST BIT(1) STATIC INITIAL(*'1'B};

NR FIXED BINARY(31,0) STATIC;

P_KAN POINTER STATIC;S

RAN FLCAT BINARY STATIC;

RDIV FLOAT BINARY STATIC;

IF NARG ~= 0 THEN
DOs
/%
RE=-INITIALIZE USING NARG.

*/

KLM = ABS(2 * NARG ¢ 1);
KoLoM = KLM3

END;
ELSE
003
IF ~ NFIRST THEN GO TO SKIP;
END;
/7%
INITIALIZE THE ROUTINE.
*/
P_RAN = ADDR(RAN);
NFIRST = 40'B;
NDIV = 167772163
RDIV = 32768.,0 * 65536,4C;
Vil
FILL THE TABLE.
*/
0C 4 =1 TO 1283
K= K % MK;
N(J) = K3
END;
/7%
COMPUTE THE NEXT RANDOM NUMBER.
./
SKIP: L = L * ML;
J =1 + ABS(L) / NOIvV;,
M= M * MM;
AR = ABSIN(J) + L + M);
RAN = FLCAT(NR) / RCIV;
Vil

FIXUP THE LEAST SIGNIFICANT:BITV. .

./

/%

13

‘ i i
IF J > 64 & RAN < 1.0 THEN JRAN = JRAN + 13

\

REFILL THE J~TH PLACE IN THE TABLE.
»/

K =
NOJ)

K *® MK; A
=Ko y

RETURN(RAN) ;
END RANF ;

CLOSE FILE(SYSIN)s FILE(SYSPRINT);

END

UNITED;

UNITFORMLY

145

RANFOOL0
RANF 0020
RANF0030
RANF0040
RANF0050
RANF0060
RANF0070
RANF0080
RANF 0090
RANFO100
RANFOL10
RANFO120
RANF0130
RANF0140
RANFO150
RANFOL60
RANFO170
RANFOLB0
RANF 0190
RANF0200
RANF0210
RANF0220
RANF0230
RANF 0240
RANF0250
RANF0260
RANF0270
RANF0280
RANF0290
RANF0300
RANFO31 0
RANF0320
RANF0330
RANF0340
RANF0350
RANF0360
RANF0370
RANF0380
RANF0390
RANF0400
RANF0410
RANF 0420
RANF0430
RANF0440
RANF0450
RANFO460
RANF0470
RANF0480
RANF0490
RANF0500
RANFOSL0
RANF0520
RANF0530
RANF0540
RANF 0550
RANF0560
RANF 0570
RANF0580
RANF0590
RANF0600
RANF0610
RANF 062 0
RANF0630
RANFO0640
RANF0650
RANFO0660
RANFO670
RANF 0680
RANF0690
RANFO700
RANFO710
RANFOT20
RANFO730
RANF0740
RANFO750
RANF0760
RANFO770



APPENDIX D

APOLLO=-SATURN LUNAR EXCURSION MODULE (LEM)
LARGE SAMPLE RUN FROM PRESSURIZATION

THROUGH POWERED ASCENT
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LEM Large System Test

SPARCS was tested using a large network consisting of both beta
and gamma components placed thrbughodt the network in an arbitrary
pattern. A network diagram was obtained for the Apollo Lunar Excursion
Module (LEM) from pressurization through powered ascent. Although no
data was provided with the network, component test data from previous
Apollo=-Saturn tests waS'found and ‘arbitrarily placed in the LEM network.

The network is a logically complex network consisting of both
"series and parallel components. It is subdivided into 13 modules each
of which cont#ins a varying number of components. Beta and gamma com-
ponents are arbitrarily dispersed throughout the network. Thus to assess
this syséém,‘the module would havé to handle a large complex network,
using the modularity concept, with the two component types being ran-
domly interspersed.

The fun results and system assessment are presented in this
appendix. Due to the size pf the network, only 50 simulation runs
were made. These runs took approximately 15 minutes on the IBM 360/65
at Oklahoma State and almost % minutes oﬁ the iBM 370/124 at Phillips
in Bartlesville, Oklahoma. The resulps s?owed that SPARCS could ade=-

quately handle a system of any reasonable size and configuration.

§
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5

Apollo Lunar ‘Exé‘ursion Module (LEM) from
Pressurization Through Powered Ascent
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MAPS-1: EQUATICON GENERATION ROUTINE
MODEL FOR THE ANALYSIS OF PROBABILITIES OF SYSTEMS
COLLEGE OF BUSINESS ADMINISTRATION, OKLAHOMA STATE UNIVERSITY

SYSTEM TDENTIFICATION cceecccccacanss LEM HELIAQILIYY INTEGRATED ASCENT PRESSURTZATION & FEED SVSTEM

NUMBER OF MODULES suees . 13
NUMBER OF COMPONENTS ceeeseses .2
_TOVAL NUMBER OF SYSTEM ELEMENTS .esee 15
NUMBER OF MINIMAL PATHS ceecensae . 1
PUNCHED QUTPUT OF EQUATION . « NO
LABELES SUPPLIED BY USER +.e . NO

THE 1 MINIMAL PATHS FOR THE SYSTEM FOLLONW:
CAyBsCoDrEsFoGoHy Lo daKeLlsMely2> .
v

SYSTEM RELIABILITY EQUATION ( 1 TERMS)

R =RRRRARRRRRRRRRR
SYS ABCODEFGHITI JKLML2

MODULE A
HUMBER OF COMPONENTS .escsesvecocsesa 7
NUMBER OF MIMNIMAL PATHS ccceesccssses 2

THE 2 MINIMAL PATHS FOR MODULE A  FOLLGW:
1930495004 7>
€21314150647>

SUBSYSTEM RELIABILITY EQUATION ee.e. MODULE & t 3 TERKS;

R = RRRRR

‘R +RRRRRR -RRRRRRR -
A 134567 2.3 4 12345617

567

MAPS-11: PROBABILITY COMPUTATION ROUTINE . !

COMPONENT RELIABILITIES FOR MODULE A

- : R = 0.997938 R = 0.998947 R = 0.996224 |
BT e e 2 TYPE = 200 3 TVPE = 2400 o TeES a0
P OR TIME = = 250.00 P OR TIME = 256,10 P OR TIME = 309.20 P OR TiME - ts.0
FAILURES = 0,00 FAILURES =  0.00 FAILURES = 0400 FAIL 2 i
= 0.987663 R = 0.998626 R = 0,998492
T Teee e 2.0 6  TYPE = 2.00 7 T TYPE = 2400
P OR TIME = 310.00 P OR TIME = 325.20 P OR TIME = 275.80
FAILIRES = 1,00 FAILURES =  1.00 FAILURES =  0.00
MUDULE A PELIABILITY = 0.980056 UNRELTARILITY = 0.01994%
*x CONTINUED %
MODULE B

NUMBER OF COMPONENTS ...,
NUMBER (IF MINIMAL PATHS cecesnccccces 4

AN
THE 4 MINIMAL PATHS FOR MODULE A  FOLLOW:
<143145506,748:9
K11334450647+8,19> . i -

€24344459647,849> : \
<2930495469748,10> . ) N
K .
"SUBSYSTEM RELIABILITY FOQUATION ..e.e MODULE B {9 TERMS)
R = RRRRRRRR +RRRRRRRR - RRRRARRRRR R: + RRARRRHRR ~-RRRRRKRRR ¢+ RRR¥
8 134567089 134567810 13456789 }0 234561789 1234561718689 23 4

{ H N

R RRRR t+tRRRRRRRRRR - RRRRRRRHRR ~RRRRRRRRR
5678110 1234567382910 12345674810 23445678910

MAPS-1T1: PROBABILITY COMPUTATION ROUTINE

COMPONENY RELEIABILITIES FOR MODULE B

R = 08.,971001 R =-.0.995998 R = 0.996695 R = 0,995081
1 TYPE = 1.00 2 TYPE = 1.90 3 TYPE = 2.00 4 TYPE =, 2.00
P OR TIME = 275,00 P OR TIME = 275.00 P DR TIMF = 302.00 P OR TIME = 300.00
FAILURES = 1. 00 FAILURES = 1.00 FATLURED = 0.00 FAILURES = 3.90
R = 04994775 R = 0.997664% ' E R = 04994522 R = 0,993460
5 TYPE = 2.00 [ TYPE = 2.00 T TYPE = 2.00 3 TYPF = 2.00
P OR TIME = 252.00 P OR TIME = 325,00 P NR TIME = 225,00 P OR TIME = 302,00
FAILURES = 0.00 FATLURES = 1.00 FALLURES = 1.00 FAILURES = 0.00
R = 0.986553 R = 0.992491
9 TYPE = 1.00 10 TYPE = 1.0
P DR TIME = 249,00 P OR TIME = 251.00
FAILURES = 1.00 FAILURES = . 1.00

MODULE 8 RELIABILITY = 0,976210 UNRELTABILITY = 0.023790
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MODULE C
NUMBER OF COMPONENTS o.e
NUMBER OF MINIMAL PATHS secvacsaccess 4

THE 4 MINIMAL PATHS FOR MODULE C FOLLOW:
112434695, 7>

€le203¢49647>

<Bs9,10,114124145

<8,9,10411413,14>

SUBSYSTEM RELTABILITY FQUATION uoees MODULE C { 15 TERMS)

R =RRRRRR +RRRRRR -RRRRRRR +RRR R R R ~-RRRRRR R - RRRARR®
[ .1 23457 1234617 1234567 8 9 10 11 12 14 12345 7 8 9 10 ll l( 14 1234506

RRRR R R R t+tRRRARRRRRR R R +RRR R R R -~-RARRRRRRRR R R - RRRRRH®*
78 9.10 11 12 14 1234561788910 ll 12 14 8910 11 13 14 12345789101} 13 14 12346

AR RRR R R R +RRRRRRRR - RRR R'R R R + RRRRRRRRR t+ R R *
7891011 13 14 1234567 B 9 10 ll 13 14 89 10 11 12 13 14 123457889 10 ll \Z 13 14 12

RRRRRRR R ~-RRRRRRRRR R ‘
34 e e 10 T TP R TR TLIPLITLN

MAPS-II: PRNBABILITY COMPUTATION ROUTINE

COMPONENT RELTABILITIES FOR MODULE C ) :

R = 0.985782 R = 0.995716 ' R = 0.981222 0.989727

R =
1 TYPE = 2.00 2 TYPE = 2.00 3 TYPE = 2400 4 TYPE = 2.00
P OR TIME = 242,60 P OR TIME = 275.70 P OR TIME = 231.60 P OR TIME = 209,00
FAILURES = 1.00 FAILURES = 1.00 FAILURES = 1.00 FAILURES = 0,00
R = 0.996925 R = 0.,986412 . R = 0,996692 R = 0.991958
H TYPE = 1.00 6 TYPE = 1.00 7 YPE = 2.00 8  TYPE = 2.00
P OR TIME = 223,00 P OR TIME = 252,00 P OR TIME = 305,20 P OR TIME = 300,10
FAILURES = 1.00 FATLURES = 1.00 FAILURES = 1.00 FAILURES = 1.00
R = 9,992307 R = o 995021 R = 0.983919 R = 0,995136
9 TYPE = 2.00 10 YPE = 2,00 11 TYPE = 2,00 12 TYPE = 1.00
P OR TIME = 310,20 p OR TIME = 325.20 P OR TIME = 251.50 P OR TIME = 220.00
FATLURES = 1,00  _ FAILURES = - 1,00 FAILURES = 0.00 FAILURES = 1.00
R = 0,995567 R = 0,989237
13 TYPE = 1.00 14  TYPE = 2400
P OR TIME = 206400 P OR TIME = 220.40
FAILURES = 1.00 FATLURES = 1.00
MODULE C  RELTABILITY = 0.997187 UNRELIABILITY = 0.002813
MODULE D )
NUMBER OF COMPONENTS +.... . 3

NUMBER OF MINIMAL PATHS cvcenesovcnne 3

ITS .3 MINIMAL PATHS FQR MODULE D FOLLOW:

<>
<3>

SUBSYSTEM RELTABILITY EQUATION ..... MODULE D € T TERMS)

R =R +R -RR-¢+R -RR -RR +RRR
)] 1 2 12, 3 13 2 3 123

'

MAPS-=I1: PROBABILITY CGMRUTATION ROUTINE

COMPONENT RELIABILITIES FOR MODULE D

R = 0.996975 R = 0,992268 : R - ﬂ 9’
1 TYPE = 1.00 2 TYPE = 1,00 3 wee oo
P OR TIME = 245,00 P OR TIME = 230.00 SR Tine 2 240,00
FAILURES = 1.00 FAILURES = 1. 00 FAILURES = 1.00

MODULE D RELIABILITY = 1,000000 UNRELTABILITY = 0.000000



HODULE € k R
NUMBER OF CONPONENTS evsvecscecesesse 3
NUMBER OF MINIMAL PATHS cessssesseces 3 . S T

ITE 3 MINIMAL PATHS FOR MODULE E FOLLOW:
<2>
<3>

SUBSYSTEM RELIABILITY EQUATION ..... MODULE E {7 TERMS)
R =R +R -RR +R -RR -RR $RRA )
1 2 12 3 13 23 123

MAPS-11: PROBABILITY COMPUTATION ROUTINE ‘ : ’

COMPONENT RELIABILITIES FOR MODULE E -

R = 0.984993 R = 0,987080 R = 0,99
1 TYPE = 1.00 2 TYPE 3 1.00 P 5L Y
P OR TIME = 225,00 P OR TIME = 240.00 P OR TIME = 232.00
FAILURES =  1.00 - FATLURES =  1.00 FATLURES =~  1.00
MODULE € RELIABILITY = 0.999999 UNRELIABILITY = 0.000001
MODULE F

NUMBER NF COMPONENTS ceaececcrcscsnee 6
NUMBER OF MINIMAL PATHS c.ccceesvecce &

THE & MINIMAL PATHS FOR MODULE F FOLLOW?
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PAGE

- RRRR*

1245

€14243,5>
<19243,6>
<1e24405>
<L1Z0496>
- SUBSYSTEM RELIABILITY: EQUATION «eese MODULE F ( 9 TERMS) . ——
' : *+ CONTINUED *#
R =RRRR +RRRR -RRRRR $RRRR ~-RRRRR +RRAR +RRRRRR -RRRRR
F 1235 1236 12356 1245 12345 1246 123456 12346
R
&

MAPS-11: PROBABILITY COMPUTATION ROUTINE

COMPONENT REL!AB!LIT}ES FOR MODULE F

R = 0.99605C R = 0.998690 R = 0.997227 R 2 0.989677
1 TYPE = 2.00 2 TYPE = 2.00 3 TYPE = 1.00 4 TYPE = 1.00
P DR TIME = 250,90 P OR TIME = 272.30 P OR TIME = 249.00 P OR TIME = 262.00
FAILURES = 1.00 FAILURES = 1.00 FATLURES = 1.00 FAILURES = 1.00
R = 0,998559 R = 0.995052
5 TYPE = 2.00 6 TYPE = . 2,00
P OR TIME = 279.40 P OR TIMF = 220.90
FAILURES = 1.00 FAILURES = 0.00
MODULE F RELTABILITY = 0.994709 UNRELTARILITY = 0.005291
MODULE 6

NUMBER OF COMPONENTS caceseccoccsnaer -]
NUMBER OF MINIMAL PATHS <ee

THE 4 MINIMAL PATHS FOR MODULE G FOLLOW:

<142+5>
Cle2o8>
<34445>
<30446>
SUBSYSTEM RELIABILITY EQUATION ..... MODULE & {9 TERMS)
R ~RRR +RAR -RRRR +RRR -RRRRR $+RRR tRRRRRR -~RRRRR -RRRR
4 125 126 1256 345 12345 3406 123456 12346 3456

MAPS-11: PROBABILITY COMPUTATION ROUTINE

COMPONENT RELIABILITIES FOR MODULE 6

R = 0.985847 i R = 0.990353 R = 0.,995867 R = 0,982296
1 TYPE = Tle00 2 TYPE = 1.00 3 TYPE = 1.00 4 TYPE = 1.00
P.OR TIME = 205.00 P OR TIME = 249.00 P OR TIME = 179,00 P OR TIME = 200.00
FAILURES = 1.00 FAILURES = 2.00 FAILURES = 1.00 FAILURES = 1.00
R - 0,997993 R = 0,990351

5 TYPE = 1.00 & TYPE = 1.00
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P OR TIME = 225,00 P OR TINE = 250,00

FAILURES = 1.00 . FAILURES = 2.00
MODULE 6 RELIABILITY = 0.999466 UNRELIABILITY = 3.00053¢
HODULE H

NUMBER OF COMPONENTS scevccccccscsons 3
NUMBER OF MINIMAL PATHS cececsasccene 4

THE 4 MINIMAL PATHS FOR MODULE H FOLLOW:

<143,5>
Cly4 5>
<24345>
<24445>
SUBSYSTEM RELIABILITY EQUATION ..... MODULE H {9 TERMS)
R =RRR +RRR ~RRRR +RRR -RKRRRR +RARRR +RRRRR -RRRR ~RRRR
H 135 145 1345 235 1235 245 12345 1245 2345

MAPS~11: PROBABILITY COMPUTATION ROUTINE

CGMPONENT RELIABILITIES FOR MODULE H

R = 0.998158 . B = 0.995086 R = £,995702 R = 02998578
1 TYPE = 2,00 2 TYPE = 2,00 3 TYPE = 2.90 4«  TVPL = 2 ,
P OR TIME = 252,90 ¥ OR TIME = 222,20 P UR TIME = 1985.20 P OR TlﬂE = 195,20
FAILURES = 1.00 FATLURES = 1,00 rAILURES = 0.00 FALLURES =  0.00
R = 0.990379
5 TYPE = 2.00
P DR TIME = 209,10
FAILURES = _ 1.00
MODULE H RELTABILITY = 0,990364 UNRELTARILITY = 0.609636

MODULE -1 .
NUMBER OF COMPONENTS cecescctvcccscen &
NUMBER OF MINIMAL PATHS ccevsccasccen 4

THE 4 MINIMAL PATHS FOR MODULE { FOLLOW:
Cly344,5>

<1y3,46>

€213 4445>

<24346>

SUBSYSTEM RELIABILITY EQUATION ..... MODULE T t 9 TERMS)

R =RRRR +RRR ~-RRRRR +R
1345 136

RRR ~RRRRR +RRR +RRRRRR RRRRR
1345068 2345 12345 2 36 1 2.

~-RRRR -
3.496_. 1236 . 2345.6

MAPS-{]: PlOBABlLiTV COMPUTATION ROUTINE

COMPONENT RELIABILITIES FOR MODULE I

R = 0,901406 R = 0.990043 R = 0.989489 :
1 TYPE = 2.00 2 TYPE = 2,00 3 TYPE = 2.00 R = fisgeloe 2.00
P OR TIME = 200.20 P OR TIME = 200.20 P OR TIME = 232,50 P OR TINE = 242.60
FAILURES = 2,00 FAILURES =  2.00 FAILURES =  1.90 FAILURES =  2.00
R = 0.985117 R = 0.989208
5  TYPE = 2.00 6  TYPE = 2,00
P OR TIME = 250.20 P OR TIME = 198,10
FAILURES = 2,00 FAILURES = 1,00
MODULE I RELIABILITY » 0,988959 UNRELIABILITY = 0.011041
MODULE J
NUMBER OF COMPONENTS o+ . 4

NUMBER OF MINIMAL PATHS ..

ssses 4

THE 4 MIENINAL PATHS FOR MODULE J FOLLOW:

<ly3>
<loé>
<243>
<2¢4>
SUBSYSTEM RELIABILITY EQUATION ..... MODULE J { 9 TERWS)
R *=RR +RR -RRR +RR -RRR +RR ¢RR RR =RRR - .
J 13 14 134 23 1213 2 4 124 RZRBRG

MAPS=I1: PROBABILITY COMPUTATION ROUTINE

COMPONENT RELIABILITIES FOR MOOULE J

R = 0.990919 R = 0.991159 R = 0.976723 R = 0.994587
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1 TYPE A 2,80 2 TYPE = 2.0 3 YYPE = 1.00 YYPE = 1.00
P OR TIME =. 199,90 P OR VIME = 202,40 - P OR VIME = 249,00 P OR TINE =" 269,00
FAILURES = 1,00 FAILURES = 1,00 FAILURES = 2,00 FAILURES =  2.00
MODULE J RELTABILITY = 0.999794 UNRELTABILITY = 0.000206
MODULE K
NUNBER DF COMPONENTS ssvessvecsssscss 6
NUMBER DF MINIMAL PATHS veseccsevases %
THE 4 MINIMAL PATHS FOR MODULE K FOLLOW:
<1,2,5>
Cly2,6>
<3,4,5>
<3yh o8>
SUBSYSTEM RELIABILITY EQUATION ..... MODULE K { 9 TERNS)
R. =RRR +RRR -RRRARR *+RRR -RRRRR +RRR + RRRRRR ~RRR -
x 125 126 256 3 123 es bt RERAR T R RRAR, T RS
MAPS~11: PROBABILITY COMPUTATION ROUTINE
COMPONENT RELIABILITIES FOR MOOULE K
R = 0,991581 R = 0,981691 R = 0,997981 : R 0. 99
1 TYPE = 2,00 2 TVWE = 2.00 3 TYPE = 2.00 o " IAPBR 0
P OR TIME = 158,10 P OR TIME = 199.10 P OR TIME = 206,00 P OR TIME = 210,00
FAILURES =  2.00 FAILURES =  1.00 FAILURES = 0,00 FATLURES = 0,00
R = 0.992313 . R = 0.999391
5  TYPE = 2,00 6  TYPE = 2.00 -
P OR TIME = 210,00 P OR TINE = 215,10
FATILURES =  0.00 FAILURES =  0.00
WODULE K RELTABILITY = 0,999919 UNRELIABILIYY = 0.000981
MODULE L
NUMBER DF COMPONENTS oo . 5
NUMBER OF MINIMAL PATHS .. . &
THE 4 MINIMAL PATHS FOR MODULE L  FOLLOM:
<1¢335> T
Clekes>
<243,5> . B
<244 .55
SUBSYSTEN RELIABILITY EQUATION ..... MODULE L ( 9 TERMS)
R =RRR +RRR -RRRR +RRR ~RRRR +RAR +RRRRR =RRRR =-RARAR
L 135 145 134% 235 1235 245 12345 1245 2345
MAPS-T1: PROBABILITY COMPUTATION ROUTINE
COMPONENT RELTABILITIES FOR NODULE L
R = 0.997664 R = 0,997453 R = 0,992979 R = 0.984631
1 TYPE = 2,08 2 TYPE = 2.00 3 TYPE = 1.00 4  TYPE = .
P OR TINE = 18260 P OR TIME = 189460 P OR TIME = 249,00 P OR TIME = 251,00
FAILURES =  0.00 FAILURES = 0,00 FAILURES = 2.00 FAILURES =  2.00
R = 0,994559 :
5  TYPE = 2.00
P OR TIME = 260,90
FAILWRES =  1.00
NODULE L RELIABILITY = 0.994445 UNRELIABILITY = 0,005555
HODULE M
NUMBER OF COMPONENTS sevessscsscenses 6
NUMBER OF MINIMAL PATHS ssscesescasas
THE 4 MINIMAL PATHS FOR MOOULE M FOLLOW:
CLi3réy 5>
<1,3,6>
C2133445>
<2,346>
SUBSYSTEM RELIABILITY EQUATION o.... MODULE W ( 9 TERMS)
R RRRR $RAR ~RRRRR #+ RARRR ~-RRRRR +RRR $RRRRRR -RRRR ~RRRRR
W 1345 ‘136 134856 2345 12345 236 123456 1236 23456

MAPS-T1: PROBABILITY COMPUTATION ROUTYINE



COMPONENT RELIABJLITIES FOR MODULE M

R = 0.986934 R = 0.987026 = 0. 993153 R
1 TYPE = 2,00 2 TYPE = 2.00 Y 2.00 4
P OR TIME = 242,60 P OR TIME = 201.50 3 on TIHE = 200,10
FAILURES = 2.00 FAILURES = 1.00 FAILURES = 2.00
R = 0,982185 = 0.990429
5 TYPE = 1,00 & TYPE = 1.00
P OR TIME = 250,00 P OR TIME = 240.00
FAILURES w 2.00 FATLURES = 1.00
MODULE M RELIABILITY = 0.993376 UNRELIABILITY = 0,006624
MODULE AND COMPONENT RELIABILITIES FOR THE SYSTEM
= 0.98 R = 8,976210 R = 0.997187 R
RA gvpi’:s‘ 0,00 B TYPE = 0.00 [ TYPE = 9.00 1]
P OR TIME = 0.00 P DR TIME = 0.00 P OR TINE = 0,00
FAILURES = 0.00 __FAILURES = . 0,00 __ __ FAILURES = 0.00
- : = 0,994709 = 0.999466
Re " Wot 2 o.00 F " TYPE = 0.00 G TVPE D.00 "
P OR TIME = 0.00 P OR TIME = 0.00 P OR YIME = 0400
FAILURES = 0,00 FAILURES = 0.00 FAILURES = 0.00
= 0.988959 = 0,99979¢ = 0.999919 _
Rl 1y3§ - 0.00 J TYPE = 0.00 K TYPE = 0.06 . L
P OR TIME = 0.00 P OR TIME = 0.00 P OR TIME = 0,00
FAILURES = 0,00 FAILURES = 0.00 FAILURES = 8.00
R = 0.993376 = f.99911) = 0.997819
] TYPE = 0.00 1 TYPE = 2.00 TYPE = 2,00
P OR TIME = 0.00 P OR TINE = 318,50 P OR TIME = 256010
FAILURES = 0.00 FAILURES = 0.00 FAILURES = 0.00
SYSTEM RELIABILITY = 0,914624 UNRELIABILITY .» 0,085376
0.838367 0.161633
0.876308 0,123700
0.877376_ e 0,1220624
0.884099 i 0.115901
0,8p5395 0.114605
04885404 0.114596
0.885706 0.114294
0.889522 0.110478
0.889554 0.110446
0.893957 0.106043
0.894438 0.105562
0.896596 0.103404
0.897614 0.102386
0.900380 0.099620
0.,901833 0.098167
0.904009 0.095991
0.911390 0.088610
0.911959 0.088041
0,914624 0.085376
0.928642 0.071358

THE MEAN RELIABILITY IS 0.893357

VARIANCE = 0.0083
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THE ESTIMATED RELIABILITY FOR THE SYSTEM 1S 0.895148
THE MISSICN TIME 1S 90,00 DAYS
THE ESTIMATED MTBF IS 7.98091985E¢02
RELTABILITY MTBF
PERCENTILE PERCENTTLE PERCENTILE
POINTS POINTS
5 PERCENT 0.838367 5.10497067TE402 DAYS
10 PERCENT 0.876300 8.81574433E402 DAYS
20 PERCENT 0.884099 7.30601605E402 DAYS
25 PERCENT 0.885395 7.39393492E402 DAYS
50 PERCENT 0.892957 B.02867758E402 DAYS
15 PERCENT 0,901633 8.71027822E402 DAYS
80 PERCENT 0.904009 0.91829229E402 DAYS
90 PERCENT 0.911959 9.76554280E402 DAYS
95 PERGENT 0.914624 1.00845020E403 DAYS
97.5 PERCENT 0.921633 1.10282636E403 DAYS
99 PERCENT 0.925838 1.16796142E403 DAYS
. FREQUENCY AND CUMULATIVE FREQUENCY COUNTS OF CASES
0.8350 G.8400 0.8450 0.68500 0.8550 0.8600 0.8650 0.8700
0 1 0 0 0 0 0 0
0 ‘1 1 1 1 1 1 1
0.8850  0.8900 0.8950 0.9000 ©0.9050  0.9100 0.9150 0.9200
1 5 . 2 2 3 0 3 0
4 9 11 13 16 16 19 19

0.8750

0.9250
0
19

STANDARD DEVIATION = 0.01807¢

0.86800°

0.930?
20

0.995785
feae®l 1.00
P OR TIME = 249,00
FAILURES = 2.00
. ’
1t o.0e
P OR TINE = 0,00
... FAILURES = 0,00 .
0 99036# ‘-
PE = 0,00
P DR TIME = 0.00
EAILURES =  0.00
0,994445
TYPE = 0.00 -
P OR TIME = 0.00
FAILURES =  0.00
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