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Abstract—Over the course of human history the idea of secure
communication has motivated different fields of science and one
of them reside in both Computer Science and Mathematics.
Oxford’s English Dictionary defines cryptography as the art or
practice of writing in code or cipher; the science of encryption.
From the primitive shift ciphers during the time of Caesar to
the Enigma in the second world war the race of creating an
unbreakable code and then trying to break it continues. With the
advent of Quantum Mechanics, interest in Quantum Computers
has shown the so far theoretical consequences of a true parallel
machine. Many classical ciphers relay on the difficulty of the
underlying mathematics. RSA cryptosystem relies on the fact
that for a large enough number, it is computationally in-feasible
for a classical computer to calculate it’s prime factors and Diffie
Hellman public key exchange relies on the fact that search for
a primitive root module large prime is also computationally
improbable [1]. However, this is not the case for a theoretical
quantum computer. In this paper, we shall look at a proposed
quantum key exchange that takes benefits of the Quantum
Mechanics itself and try to solve the unaddressed details of noise-
error in the process of key exchange.

I. INTRODUCTION

F.G. Deng et al., in their paper Two-step quantum direct
communication protocol using the Einstein-Podolsky-Rosen
pair block [2] have shown one possible way of exchanging a
private key between two parties using quantum particles. Be-
fore we get started with the proposed Quantum Key Exchange,
let’s familiarize ourselves with Quantum Mechanics enough
for the purposes of this paper. Quantum physics has become
essential to understand the properties of solids, atoms, nuclei,
sub-nuclear particles and light. A quantum particle is defined
with the help of a probabilistic wave function (usually denoted
using a Ψ). We will not go deeper into the mathematical
rigour of how it works, but the general idea is that this
function is a complex-valued, probability amplitude, which
maps probabilities to the possible results of measurements
made on an isolated quantum system. This function was the
core of the debate behind the interpretation and completeness
of quantum principles during 1930-1960. The residue of this
debate still makes it hard to find a concrete interpretation of
of quantum theory.

The heart of the debate lies in the way one resolves the
EPR paradox. The acronym stands for the names of people
who worked with what we now call EPR pairs; Einstein,
Boris Podolsky, and Nathan Rosen. Not so much of a paradox

any-more, but understanding the properties of the EPR pairs
are important for the sake of this paper. An EPR pair is a
pair of particles connected by the absurd property of quantum
entanglement. Entanglement takes place when the two given
particles of any EPR pair are naturally correlated such that
any action on one particle shows a change in the other, as
if they shared the same space [3]. Albeit, in reality they can
be meters apart. Most papers call this transfer of information
from one place to another as quantum teleportation. The
bits of information transferred during such a teleportation
are called qubits (quantum bits). I. Marcikic et al., showed
that qubits (in form of EPR pairs) were transferred from one
laboratory to another where the distance among the labs was
55meter, and the connection was made using 2km of standard
telecommunication fibre [4]. The EPR particles are what we
define in terms of a wave-function as discussed above.

The importance of such a communication medium is not
limited to just cryptography but is famous for other reasons
as well. Albert Einstein refutes the possibility of transporting
matter and energy from one place to another without it
travelling by an intermediate locations [5], [6]. But, this is
not true for teleportation in quantum states of EPR particles.
This is done when only the structure is teleported and the
matter stays with the sender while the information be already
present at the receivers end. Einstein called this the “Spooky
Action at a Distance”.

J. Hoffstein et al., in their book An Introduction to Math-
ematical Cryptography [7], says that “We stand today on the
brink of a revolution in cryptography.” He goes on to defend
his claim by showing the past relevance of cryptography by
bringing up the employment statistics of National Security
Agency. Which are that NSA is reputed to be the world’s
largest single employer of Ph.D.s in mathematics. However,
post 1970s, there are now far more cryptographers employed
in academia. He also mentions the United States government’s
treatment of cryptographic algorithms as munitions, to an
extant where export of any such information was considered
a treason.

With research focused towards the use of quantum comput-
ers to solve hard problems, it is equally legible to ask what
are some of the hard quantum mechanics problems that could
be used as a spine of a new cryptosystem whose class of
difficulty meets the competition of the abilities of a theoretical



quantum computer. Such a system comes with it’s details and
intricacies. For this paper we I will analyse the problems of
noise and the error caused by it, in a quantum network of com-
munication. I will combine the naive empirical mathematics
with machine learning’s statistical models to demonstrate the
relationship between desired accuracy, quantum bits necessary
and present noise. This paper may help fill in some of the
details in a usual Quantum Key Exchange protocol. August
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II. RELATED WORK

Where there are current cryptosystem secure against a
quantum computer such as NTRU cryptosystem, Goldre-
ich–Goldwasser–Halevi (GGH) lattice-based cryptosystem and
Merkle–Hellman knapsack cryptosystem. They are all strictly
reliant on the same principle of a hard mathematical problem.
We now look at a cryptosystem based on quantum mechanics
that uses the entanglement property of EPR pairs.

Charles H. Bennett et al., wrote one of the first papers
describing how to use the quantum teleportation properties
of EPR pairs in order to communicate information [8]. The
paper called Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels published on
29 March 1993, lays down the groundwork for all the research
done afterwords on quantum communication. He shows the
teleportation using correlated EPR pairs. The main idea is
that the correlations assists in the “teleportation” of an intact
quantum state from the sender to the receiver.

To talk about the simplest way of sending information about
the quantum state of a particle, we’ll call the sender “Alice”,
and “Bob” will be the receiver. Suppose Alice has a quantum
system (a photon or spin-state particle), in state |φ〉 unknown
to her. The goal here is to communicate this state to Bob so he
can make a copy of it. The knowledge of the the state vector
of |φ〉 will be sufficient. Although normally we don’t know
that ahead of time. If Alice knew the state vector |φ〉 belongs
to a given orthonormal set beforehand, then she can produce
a copy of |φ〉. The state vector with more than two (possible)
nonorthogonal states can not be copied.

The simplest method for Alice to send Bob the state vector
|φ〉 would be to send the particle itself. Otherwise she can
make it interact unitarily with another system, or “ancilla”,
whose initial state vector is known |a0〉. The original particle is
in a standard state |φ〉0 after the interaction. While the ancilla
containing all the information about the state vector |φ〉, in
state |a〉. Alice can now send Bob the ancilla and Bob can
reverse her manipulations to obtain a copy of |φ〉. Park and
James explain further about this “spin-exchange measurement”
in [9]. They talk about how information can be swapped from
one system to another, but it cannot be duplicated [10].

We saw that EPR can be used to exchange information
over a distance and showed one way of doing it through spin-
exchange measurement. Now we turn our attention to a secure
communication, or in other-words a public key exchange.
There are many papers that talk about a key exchange which
are permutations of the usage of the general idea of EPR pairs’

entanglement property. Few examples are BB84 protocol [11],
Cabello protocol [12], B92 [13] and Einstein-Podolsky-Rosen
scheme [14], [15].

F.G. Deng et al. [2], Long, Gui-Lu and Liu, Xiao-Shu [16]
show a similar QKE scheme. Some notation would be helful
before presenting the scheme, we can represent any EPR pair
in one of the four Bell measurement states,

|ψ1〉 =
1√
2

(|00〉+ |11〉) State 00

|ψ2〉 =
1√
2

(|00〉 − |11〉) State 01

|ψ3〉 =
1√
2

(|10〉+ |01〉) State 10

|ψ4〉 =
1√
2

(|10〉 − |01〉) State 11

As seen in the equations, Alice and Bob can decide on
an encoding which in this case is, (|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉) =
(00, 01, 10, 11). I will write an EPR pair as an ordered pair
(x, y) for simplicity where x is the state of the first particle
in EPR pair and y is the state of the second particle. For
the sake of the key exchange, we will concern ourselves
with an observation whose output will be binary. So, either
particle in an EPR pair will output either 0 or 1 in case of
this observation. Therefore, x ∈ {0, 1}, y ∈ {0, 1}. Notice
the entanglement property implies that if an EPR pair was
originally entangled as (x, y) = (1, 0) and we observe y then
y get’s randomly reassigned to 1 or 0 where x get’s negated
as 0. Now the result of the observation and state x are same,
namely 0. Similarly if the original entanglement was of the
same states (x, y) = (0, 0) then after observation on y, the
other partner particle should be exactly the opposite. The key
exchange happens as follows:

1) Alice produces a set of n EPR pairs originally in opposite
states (or in the same states, the choice can be made
either way but this effects how to conduct a check for an
eavesdropper later). Let’s denote this set as P and write,

P = {n ∈ N : (x, y)0, . . . , (x, y)n−1}

She then splits the pairs into two sets where one, Px

contains only x states and the other, Py contains only y
states.

Px = {n ∈ N : x0, . . . , xn−1}
Py = {n ∈ N : y0, . . . , xn−1}

Notice we originally entangled them so that,

Px = ¬Py

2) Alice sends Py to Bob and Bob picks a sufficiently
large subset of Py and performs the binary measurement
we discussed before on it. He records the result as a
binary vector and shares it with Alice through a classical
channel, say a telephone.



3) Alice now compares the result of Bob’s measurements on
some subset of Py with the corresponding subset in Px.

4) For some given error and how it correlates with the size
of the original subset chosen in Py , we can now tell if
someone, say Eve, looked at Py while it was sent to Bob
[2]. If yes, then Alice never sends the set Px or if the error
is under the expected probability then she sends over the
remaining Px. This is the first eavesdropper check in the
system.

5) After this we can make other checks to make the system
secure against the man in the middle attacks as explained
by F.G. Deng in [2] and G. L. Long in [16].

Fig. 1. QKE

In this scheme both [2] and [16] prove the security of the
system and difficulties of actual implementation.

Riedmatten et al., discusses a similar issue with respect to
the distance a qubit has to travel between Alice and Bob. Noisy
detectors and lossy fibres decrease the signal to noise ratio
(fidelity) with distance, and the maximal distance for a given
fidelity is limited. Riedmatten’s quantum communication is
done through man in middle which they call Charlie. Alice’s
qubit is teleported to Bob by Charlie. Charlie measures the
joint Bell state (BSM) of Alice’s photon and one-half of the
EPR pair, which projects Bob’s photon into the state of Alice’s
photon. This way, the total distance travelled by the logical
qubit is l from Alice to Bob but the effective distance covered
by the photon to be detected by Bob is reduced to around l

3
[17]; maximising the distance for a given fidelitity. Riedmatten
further shows the different fidelity plots for different quantum
communication relays.

My paper will study that how does the size of the sufficient
large subset of Py look like. Also how can we come up with
a secure size for a given error rate caused by noise in the
network. Lastly we will try to implement various machine
learning algorithms with features being error (only in certain
subset of qubits) and noise rate that we know is present in our
quantum network.

III. EXPERIMENTAL RESULTS

We would like to know that what is the size of the suffi-
ciently large subset for Bob to pick for a given probability of
making an error. Let’s take an example under the assumption
of no noise. Let Alice pick for n = 2,

P = {(0, 1), (0, 1)}

Fig. 2. “ Fidelity of the transmitted quantum state as a function of the distance
for different configurations. Direct transmission (n = 1), with an EPR source
in the middle (n = 2), teleportation (n = 3), and entanglement swapping
(n = 4). We assume that the fidelity is affected only by the detectors noise.
The curves are plotted for a realistic dark count probability D = 10−4 per
ns and a fibre attenuation of 0.25 dB/km”

Then,

Px = {0, 0}
Py = {1, 1}

She sends Bob Py and say in this case, he picks all of Py

as a subset. He observes, [1, 1] while turning Px = {1, 1}
from {0, 0}. Now Bob communicates [1, 1] to Alice and she
observes Px and obtains [1, 1]. She matches this with Bob’s
results and finds a perfect match. If we had a remaining subset
of Px at this point she would send it to Bob and he would
have both Px, Py forming the whole P .

But say Eve looked at Py while it was being sent to Bob,
her observations would cause Py to be reset randomly. Say
she resets Py = {0, 0} and saves for herself the original
measurements [1, 1]. This would also cause Px to be negated
into (1, 1). But when Bob observes Py = {0, 0} again, Px

comes back to (0, 0). This is the scenario where Eve deceives
the system. This happens exactly when Eve is able to negate
all of Py . But what is the probability of that happening for
n bits? Each bit can be set randomly to a 0 or 1 so it is
the same as flipping a coin n times and observing that exact
sequence. Hence the probability of Eve negating all of Py

where |Py| = n is, (1

2

)n
Thus we can write a function which maps from the size of
subset of Py or in other words the number of checks made,
to corresponding error probability as,

f(x) =
(1

2

)x
However we are more interested in the inverse of this function
which maps from a given error probability to the number
of checks. Therefore we need the inverse function of f(x).
Let’s denote error probability by ε then observe that f(x) = ε
where,



f(x) =
(1

2

)x
⇒ log 1

2
(f(x)) = x

− log2(f(x)) = x

Hence,
f−1(ε) = − log2(ε)

We take the ceiling of this function to get whole numbers for
the number of checks and write f(x) = ε,

f−1(ε) = d− log2(ε)e

Now we can evaluate f−1(ε) for desired ε and obtain the
number of checks given no noise.

We can show this experimentally, for a word size of 1000
and sampling randomly and increasing the sample size with
each iteration until maximum sample size, in this case N , that
the error dives under (or stays under) ε.

Fig. 3. N = 1000, ε = 0.1, f−1(0.1) = 4

Fig. 4. N = 1000, ε = 0.01, f−1(0.01) = 7

Now we face the problem where there is noise in the
network like in all real world scenarios. But this time we have
some headway or insight about at least how many checks we

Fig. 5. N = 10000, ε = 0.001, f−1(0.001) = 10

Fig. 6. N = 10000, ε = 0.1× 10−9, f−1(0.1× 10−9) = 34

Fig. 7. f−1(ε), ε ∈ [0.1, 0.1× 10−20]

need to make? Let’s define a function g that maps from error
probability ε, known noise δ and word size n to the number



of checks x. Then we know,

∀δ > 0, (g(ε, δ, n) > f−1(ε))

This simply means that if noise exists then we need to make
more checks than given by our normal f−1. Let’s define
g(ε, δ, n) such that,

g(ε, δ, n) = dϕ(ε)× ξ(δ)× ne

Here we can just use the f−1 for ϕ,

ϕ(ε) = f−1(ε) = d− log2(ε)e

Where ξ is what we need to find out. Naively we can just say,
ξ(δ) = δ. But, we know that there exists some constant that
makes this function work for a reasonable noise level δ with
a given error probability ε. So let,

ξ(δ) = cδ

We can look for smallest c which drives the error under ε
for each δ ≤ 0.3 upon making checks outputted by g(ε, δ, n).
Following are the plots for δ ∈ {0.3, 0.2, 0.1, 0.01, 0.001, 1×
10−4, 1× 10−6, 1× 10−7, 1× 10−8},

Fig. 8. δ = 0.3

Fig. 9. δ = 0.2

Fig. 10. δ = 0.1

Fig. 11. δ = 0.01

Fig. 12. δ = 0.001



Fig. 13. δ = 0.0001

Fig. 14. δ = 0.000001

Fig. 15. δ = 0.0000001

Fig. 16. δ = 0.00000001

Looking at these plots we know which value of c behaves
as desired. We are picking the values of c which make the
function ξ(δ) drive the error bellow ε in our original function
g(ε, δ, n),

δ c
0.3 0.35
0.2 0.35
0.1 0.4
0.01 0.55

0.001 1.5
0.0001 15
0.00001 150

0.000001 1500
0.0000001 15000

Observe that after δ = 0.001, there is a pattern, that for all
δ ≤ 0.001, we have ξ(δ) = cδ = 0.0015. For the case where
0.001 < δ ≤ 0.03, the points look logarithmic.

Fig. 17. 0.001 < δ ≤ 0.03, ξ(δ) = cδ

Hence any negative base 2 log curve that passes above those
points will work for 0.001 < δ ≤ 0.03 in ξ(δ). Therefore, we



can finally write for δ ≤ 0.3, ε ≥ 0.01,

ξ(δ) =

{
0.0015, δ > 0.001

− log2(δ0.04) + 0.29

ϕ(ε) = − log2(ε)

g(ε, δ, n) = dϕ(ε)× ξ(δ)× ne

Which completes the function g(ε, δ, n). Now let’s show this
experimentally. Let ε = 0.01, δ ∈ {0.3, 0.2, 0.01, 0.001}, n =
1000. Out max sample size N will be 1000.

Fig. 18. ε = 0.01, δ = 0.2, 0.3, g(ε, δ, 1000) = 509, 717

Fig. 19. ε = 0.01, δ = 0.01, , g(ε, δ, 1000) = 37

Fig. 20. ε = 0.01, δ = 0.001, g(ε, δ, 1000) = 10

Now let’s fix the sample size N = 1000 and show the
function g(ε, δ, n) for different word sizes.

Fig. 21. ε = 1× 10−15, δ = 0.01

The following graph shows the number of checks returned
by g,

Fig. 22. Number of Checks (Subset Size) for each Word Size (P )



Now we shall turn our attention to the Machine Learning
algorithms. We’ll observe how can machine learning be of
help in detecting an eavesdropper by looking at the ratio of
difference between a subset of Px and Py . Additionally, how
small can these subsets (from which we measure the ratio of
difference) be for a desired error probability? The first step in
the generation of data would be to generate EPR pairs and call
the set containing them P , as we previously did. The nature of
the problem here is discriminative, we would like to classify
the data according to whether or not the data was eavesdropped
on during the transition. This makes the problem at hand a
binary classification. The question for the machine learning
problem is, what are the features and labels and how do we
get them? Our labels are simply a binary array of boolean,
where each label tells us if the data was affected by Eve. True
meaning yes–it was and false meaning no–it was not.

L = {li ∈ {0, 1} : i < N}

We generate this boolean array with some probability of
Eve, which is to say true entries. Then we generate N , P ’s
which would be the sets of EPR pairs. The number of EPR
pairs in each P , or qubits will be mentioned as the word-size
n.

P = {Pi : i < N}, |Pi| = n

So now we have N messages or keys which are essentially
P ’s where the length of each P is the n. These P ’s correspond
to the labels and if the label li ∈ L of a particular Pi ∈ P is
true then it was affected by Eve. We have also treated each
of these P with some random value of noise (with an upper
bound) and stored that vector of length N as well. Now we
pick a subset of sufficient size for a desired error portability
and measure the difference ratios between only that subset
of Px and Py . We do it for all P ∈ P and this gives us
N ratios of differences. Combined that with the noise each
Pi was affected with and we have our features. They are an
N × 2 matrix where the first column is difference ratios and
the second column is the noise that effect that EPR pair.

The first machine learning algorithm that comes to mind
for binary classification is Logistic Regression. We can use
this model to judge how our initial accuracy rates look like,
specially At this point I would like to point out that the cost
of false negatives (saying that message wasn’t stolen while it
was) in our classification is far more costly than false positives
(message was not stolen but we said it was). So we’d observe
not just the accuracy rate but also the false false negative rates.

Let’s train a logistic regression model with word-size n =
1000, 1000 training examples and 10000 testing examples.
Observe the plots for the sufficient size of a subset of P
with desired accuracy of 0.7, 0.8, 0.9, 0.999. We will look at
different noise levels for these accuracies along the x-axis and
see what is the sufficient subset size,

In addition to logistic regression I will also implement
simple Linear Regression before it is passed through a function
like sigmoid. This is so I can pick a threshold for classifying a

Fig. 23. Subset Size for Noises, Accuracy: 0.7

Fig. 24. Accuracy: 0.7

Fig. 25. False Negative Rate, Accuracy: 0.7

certain data point either way. This will help us drive the false
negatives down to zero and we would be able to compare at
what cost of false positives could that happen. We would test



Fig. 26. Subset Size for Noises, Accuracy: 0.8

Fig. 27. Subset Size for Noises, Accuracy: 0.8

Fig. 28. Accuracy: 0.8

the effect of different thresholds on false negatives and false
positives, to see how they correlate and if we can bring the
false negative down to zero for some threshold value. Let’s
train a simple linear regression with word-size n = 1000,

Fig. 29. False Negative Rate, Accuracy: 0.8

Fig. 30. Subset Size for Noises, Accuracy: 0.9

Fig. 31. Subset Size for Noises, Accuracy: 0.9

10000 training examples and 1000 testing examples. We
learned from our previous logistic regression that a subset
size of 40 is good enough for any reasonable noise level



Fig. 32. Accuracy: 0.90

Fig. 33. False Negative Rate, Accuracy: 0.90

Fig. 34. Subset Size for Noises, Accuracy: 0.999

and accuracy, so we will use this information in our linear
model. Furthermore, any output by the model which is bellow
zero will be set to zero and above one to one respectively.
To visualise our threshold we look at a testing set of 100

Fig. 35. Subset Size for Noises, Accuracy: 0.999

Fig. 36. Accuracy: 0.999

Fig. 37. False Negative Rate, Accuracy: 0.999

example (with increasingly noisy samples) and it’s real labels
versus predictions.

The plots show how the model becomes less sure of itself as
the noise increases (becomes unreasonable). However, by just
looking at the plots we can tell that if we pick our threshold



Fig. 38. Predictions of linear model across different noise levels

Fig. 39. Predictions of linear model across different noise levels

to be around 0.4, which means if the 0.4 probability of Eve is
classified as a Yes/True then we will catch a few more false
positives but almost no false negatives as desired. Consider
the ROC plot and the plot of false negatives vs false positives
given below. The “Error Rates versus the Threshold” figure
agrees with with the value of 0.4 for about no false negatives
and shows their relationship with false positives. We will pick
threshold to be 0.25 and show confusion matrices with test
sets where 50%, 10%, 1% of the three test sets were corrupted
by Eve.

1 Eve: 0.525000
2 Accuracy: 0.852000
3 Confusion Matrix:
4 [[0.328 0.147]
5 [0.001 0.524]]
6

7 Eve: 0.085000
8 Accuracy: 0.735000
9 Confusion Matrix:
10 [[0.65 0.265]
11 [0. 0.085]]

12

13 Eve: 0.010000
14 Accuracy: 0.715000
15 Confusion Matrix:
16 [[0.705 0.285]
17 [0. 0.01 ]]

Here for the chosen threshold = 0.25, we get about 0.8-0.7
accuracy and for the test sets with the probability of Eve being
less than 10%, we get no false negatives.

Fig. 40. ROC

Fig. 41. Error Rates versus the Threshold

We generated synthetic data, now we can look at how will
a prospective data set look like where some percentage of
samples are affected by Eve and some are not. Is there a clear
difference between them? The very first question that comes to
mind is that if we can observe two clusters in our data where
one is the cluster affected by eve, if so will all the data points
which get eavesdropped on, lie close to that cluster? K-means
clustering could be utilised in answering these questions. Let’s
first generate data with really low noise and probability of eve
being zero and then plot the difference ratios against noise. We
can see that the graph shows no difference between the subset
of Px and Py which is expected due to almost no noise and
no attacks. Now if we turn on the noise a reasonable amount



we see some difference ratios as shown in the figure bellow.
In this case if there is an attack by Eve, it can be detected
clearly and the clusters can be found easily by K-means as
shown.

Fig. 42. No noise and absence of Eve

Fig. 43. Reasonable noise and absence of Eve

Fig. 44. Presence of Eve in reasonable noise

Fig. 45. Eve Detected

However observe what happens in absence of Eve when the
noise approaches 0.5. Then observe how does the cluster of
Eve affected points look like in presence of no noise. We can
tell what would happen if these two occurred at the same time.

Fig. 46. Noise reaches 50% in absence of Eve

Fig. 47. Presence of Eve with 0% noise

K-means still does a pretty good job of clustering the two
classes, the confusion matrix for this case is:

1 Confusion Matrix:



Fig. 48. Max 30% chances of Eve and noise level

Fig. 49. Clusters Found

2 [[7.0118e-01 1.0000e-04]
3 [1.9800e-03 2.9674e-01]]

Therefore we conclude that K-means is the best choice for
reasonable noise and probability of an attack because it gives
no false negatives and positives. Remember that we are still
using subset’s of size 40 to calculate difference ratios for
the features even in K-means. We used logistic regression to
observe this number and then implemented linear regression
with observation of a threshold in case where we want do
force the false negative down to zero even in bad noise.

Lastly, We attempt classification using a Neural Network.
I implemented a neural network with three layers namely an
input layer, a hidden layer and an output layer. It was trained
on 10000 training examples which were again generated using
a subset of P of size 40 and a word-size of 1000. With
completely random assignment of initial weights I get about
80%−90% accuracy. I iterated 10 times. However, starting off
with random weights bearing a standard deviation of 0.001 and
a seed of 0, (I used Tensorflow in Python), I was able to obtain
accuracy of 92%−99% with false negatives approaching 0 like
the following:

1 Iteration: 0 Average Cost = 0.693
2 Iteration: 1 Average Cost = 0.693
3 Iteration: 2 Average Cost = 0.693
4 Iteration: 3 Average Cost = 0.688
5 Iteration: 4 Average Cost = 0.585
6 Iteration: 5 Average Cost = 0.474
7 Iteration: 6 Average Cost = 0.449
8 Iteration: 7 Average Cost = 0.441
9 Iteration: 8 Average Cost = 0.437

10 Iteration: 9 Average Cost = 0.434
11

12 Final Accuracy:
13 0.99
14

15 [[0.66 0.10]
16 [0.00 0.33]]

IV. CONCLUSION

I iterated over methods of quantum communication and
it’s application in cryptography. We showed numerous papers
concentrating on Quantum Key Exchange which depends on
the quantum property of entanglement found in EPR pairs.
The schemes relied upon the fact that under some noise and
given error probability we could use a subset of the set of
EPR pairs for security checks, the remaining set would be the
key or the message. I formulated a theoretical function which
outputs the size of the subset which we need to check for a
desired error probability. The function is as follows,

ξ(δ) =

{
0.0015, δ > 0.001

− log2(δ0.04) + 0.29

ϕ(ε) = − log2(ε)

g(ε, δ, n) = dϕ(ε)× ξ(δ)× ne

Here, δ ≤ 0.3, is the noise and ε ≥ 0.01, is the error
probability.

We then looked at machine learning algorithms considering
our problem as a classification problem. The features were
the difference ratios and noise. Logistic regression helped us
find the appropriate size of the subset of P to calculate the
difference ratios for the features. This subset correlated to a
desired accuracy. In order to drive down the more costly false
negatives, we implemented linear regression. Linear regression
allowed for a threshold which enabled us to minimise false
negatives for the best false positive rate we could get. Lastly
K means clustering worked and found clusters perfectly in a
reasonable amount of noise and we saw what could go wrong
as the noise went up. A neural network showed the possibility
of 99% accuracy with no false negatives when trained with
shown initial weights and biases.

Further research could be done on the implications of
allowing an error rate. For instance, is it possible for Eve to
steal certain small enough parts of messages without causing
error that is bigger than expected from a communication where
same data is shared over and over again. A more theoretically
compact noise function g can be looked for and proved with
mathematical rigour. Machine Learning algorithms other than
the ones i implemented could also be analysed.
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