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ABSTRACT 

Pseudomonas aeruginosa is an opportunistic pathogen that is known to infect the lungs of Cystic 

Fibrosis patients, which have abnormally high levels of calcium (Ca2+). Our lab has shown that 

elevated Ca2+ increases P. aeruginosa plant infectivity and its ability to produce several virulence 

factors, including pyocyanin, pyoverdine, extracellular proteases, and rhamnolipid. Based on these 

observations, we hypothesized that elevated Ca2+ enhances P. aeruginosa virulence in an animal 

host. To test this hypothesis, we have adapted an animal virulence model using larvae of Galleria 

mellonella, also known as wax worm. First, we aimed to determine if Ca2+ increases the 

pathogenicity of P. aeruginosa. For this, we determined the half lethal dose (LD50) of P. 

aeruginosa, which is the number of bacterial cells that cause 50% death rate. This information 

enables comparison between different testing groups. We also generated killing curves that allow 

comparing rates of the infection.  The worms were injected with PAO1, a wild type of P. 

aeruginosa, grown in 0 mM, 5 mM, or 10 mM Ca2+. We found the LD50 for 0 mM Ca2+ PAO1 is 

2 CFUs, which is two-fold higher than that of PAO1 grown in 5 mM Ca2+. The increase of Ca2+ 

concentrations to 10 mM Ca2+ further decreased LD50 to 0.3 CFUs. This proves that growth at 

elevated Ca2+ makes the pathogen more virulent. We also observed that the worms died faster at 

higher Ca2+ concentrations. We next tested the role of two proteins, CarP and CalC, which 

previously have been shown to mediate Ca2+ regulation of virulence factor production. The 

carP::Tn5 mutant exhibited density-dependent and reduced virulence at 10 mM Ca2+. The 

calC::Tn5 mutant had a slight increase in virulence at 0 mM Ca2+, but a slight reduction at 5 mM 

Ca2+. These data support the role of CarP and CalC in P. aeruginosa Ca2+ induced virulence.  This 

knowledge enables characterization of Ca2+ regulatory network controlling P. aeruginosa 

virulence, which is a step towards developing novel strategies to fight P. aeruginosa infections. 



INTRODUCTION 

Pseudomonas aeruginosa is an opportunistic and nosocomial pathogen, causing a wide 

range of infections in patients with a compromised immune system. These infections include acute 

and chronic, often deadly, infections, such as pneumonia, bacteremia, burn and surgery wound 

infections. In 2013, the CDC estimated around 50,000 P. aeruginosa caused nosocomial infections 

occur each year, with around 13% of these infections being resistant to multiple antibiotics and 

400 infections causing death per year (CDC, 2013).  P. aeruginosa also causes severe infections 

in the lungs of patients with Cystic Fibrosis. These patients have a mutation in the gene encoding 

for a cystic fibrosis transmembrane conductance regulator (CFTR). CFTR acts as a chloride 

channel, and when mutated, causes a problem regulating transport of electrolytes and chloride 

across epithelial membranes (Lyczak, Cannon, & Pier, 2002). These changes in ion homeostasis 

lead to generating a layer of thick mucus inside the airways that attracts bacteria. The airway fluids 

present in the lungs of Cystic Fibrosis patients has been found to have elevated levels of calcium 

(Ca2+) in comparison to healthy individuals (Flume, 2012). 

The greatest problem with P. aeruginosa infections is the pathogen’s increasing antibiotic 

resistance and a large number of virulence factors enabling high pathogenicity. A few of these 

virulence factors relevant to the study are biofilm formation, pyoverdine, pyocyanin, extracellular 

proteases, and swarming motility. Biofilms are formed when bacterial cells attach to a surface and 

form a community. This community allows the bacteria to be resistant to antimicrobial reagents as 

well as to evade host immune responses (Leid, 2009). Pyoverdine is a fluorescent siderophore that 

sequesters iron thus depleting host cells of iron. Pyocyanin generates reactive oxygen species 

which are toxic to the host cells. Extracellular proteases are enzymes that break down proteins, 

and play a key role in tissue damage during P. aeruginosa infections. Swarming motility is a type 



of motility activated on semi-solid surfaces, allowing P. aeruginosa to propagate and form 

biofilms. Our group has shown that these factors are at least in part controlled by Ca2+ (S. 

Sarkisova, Patrauchan, Berglund, Nivens, & Franklin, 2005).  

Ca2+ is an ion that has been studied extensively as an intracellular signaling cation acting 

as a second messenger in eukaryotes. When intracellular concentrations of Ca2+ are elevated or the 

cell is prompted, the cells utilize pumps to eject the Ca2+ into the cytosol from the intracellular 

Ca2+ stores. This emission of Ca2+ transmits a signal which can regulate different mechanisms in 

these cells such as cell cycle, gene expression, metabolism, and transport. The Ca2+ signal is 

recognized by binding to Ca2+-binding proteins, which further transmit the “signal” mostly via 

protein-protein interactions (Permyakov & Kretsinger, 2009). Ca2+ also plays a role in prokaryotes 

by regulating different mechanisms (Naseem, Wann, Holland, & Campbell, 2009). One of these 

mechanisms suggested by our current data is quorum sensing, which is the ability of a cell to 

communicate with other cells via chemical signals (Williams & Cámara, 2009). Our lab also has 

shown that P. aeruginosa maintains its intracellular Ca2+ homeostasis. We collected the evidence 

supporting that the changes in the intracellular Ca2+ regulate virulence of the pathogen. 

Patrauchan lab has observed that a large number of genes of P. aeruginosa are positively 

regulated by elevated concentrations of Ca2+. They include virulence factors associated with P. 

aeruginosa biofilms, pyocyanin, pyoverdine (S. Sarkisova et al., 2005). We have also observed 

that Ca2+ induces swarming motility in P. aeruginosa (Guragain, Lenaburg, Moore, Reutlinger, & 

Patrauchan, 2013). These virulence factors aid the pathogen in establishing a successful infection 

in a host. In addition to in vitro experiments, we tested the effect of Ca2+ on P. aeruginosa virulence 

in a plant model (S. A. Sarkisova et al., 2014). The necrosis in lettuce leaves was increased when 

infected with P. aeruginosa grown in elevated Ca2+ compared to no Ca2+. This finding built the 



foundation for further studies in an animal model to better understand the role of Ca2+ in P. 

aeruginosa virulence. The model selected for this purpose was Galleria mellonella. 

Galleria mellonella larvae, also known as wax moth, has been used as an animal model for 

studying virulence of bacterial pathogens such as Escherichia coli, Bacillus cereus, 

Staphylococcus aureus, as well as Pseudomonas aeruginosa (N. Ramarao, Nielsen-Leroux, C., & 

Lereclus, D. , 2012). When choosing an animal model, several factors must be considered, such as 

the life span, maintenance, and complexity of the model’s systems. G. mellonella can be injected 

with quantifiable doses due to their size, and can grow from 20-37 °C. The model has a short life 

span which makes them manageable for screening multiple mutants in a short amount of time, and 

are economically sensible. They also have a relatively complex innate immune system comparable 

to that of a mammal which is important to providing a relevant host environment for pathogens 

(Jander, 2000).  

Since previous experiments showed an induction of P. aeruginosa virulence factors by 

elevated Ca2+, we hypothesized that elevated Ca2+ would also induce the virulence in G. 

mellonella. The first goal of my research project was to determine if elevated extracellular Ca2+ 

levels would induce the virulence of P. aeruginosa in G. mellonella. The first step towards my 

goal was optimizing a protocol to use G. mellonella as an animal model, then utilizing the protocol 

to test the virulence of the wild type P. aeruginosa in G. mellonella at different Ca2+ 

concentrations. The second goal was to determine the role of two proteins produced by P. 

aeruginosa, CarP and CalC, in Ca2+-induced virulence by the pathogen. CarP is a putative phytase 

that plays a role in Ca2+-induced production of pyocyanin, pyoverdine, and swarming motility. 

CalC is a putative Ca2+-leak channel that regulates intracellular Ca2+ homeostasis and plays a role 

in Ca2+ regulation of production of pyoverdine and swarming motility. This research allowed for 



the adaptation of an animal virulence model for use in future experiments in the Patrauchan lab to 

test other conditions and mutants. This knowledge enables characterization of Ca2+ regulatory 

network controlling P. aeruginosa virulence, which is a step towards developing novel strategies 

to fight P. aeruginosa infections. 

 

MATERIALS AND METHODS 

Pseudomonas aeruginosa culture 

A wild type strain of P. aeruginosa, PAO1, was struck onto a Luria Bertani (LB) agar 

plates from a frozen stock, and a preculture (PC) was inoculated from the plate into 5 mL of 

Biofilm Minimal Medium (BMM) (9.0 mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 

0.15 mM NaH2PO4, 0.34 mM K2HPO4, 145 mM NaCl, 20 μl trace metal solution, and 1 ml vitamin 

solution) and grown shaking for 12 hours at 37 °C. For culturing mutant strains, the 

corresponding frozen stock cultures were struck on an LB + tetracycline60μg plate and incubated 

at 37 °C for 24 hours. Once grown for 12 h, PCs were normalized to an optical density (OD) 600 

= 0.3 by measuring absorbance in 1 mL of the PC in a Biomate 3 spectrophotometer and 

adjusting the volume with BMM. 500 µL of normalized PC was inoculated into 125 mL flasks 

containing 50 mL of BMM at 0 mM, 5 mM, and 10 mM Ca2+. For calC::tn5, the bacteria were 

grown in 0 and 5 mM Ca2+. For carP:tn5, the bacteria were grown in 0 and 10 mM Ca2+ BMM. 

The main cultures (MC) were then incubated shaking at 37 °C for 16 hours. The MC was 

normalized to an OD600 = 0.1.  

 

Serial Dilutions and estimating infectious dose  



Serial dilutions were performed by transferring 20 µL of the normalized MC into 180µL 

of PBS at the corresponding Ca2+ concentration in the first well of a 96-well plate. The cells were 

mixed well by pipetting up and down several times, then 20 µL was transferred to the next well. 

These steps were repeated from 10-1 to 10-6. 10 µL of the dilutions from 10-4 to 10-6 were plated 

onto LB plates split into 4 quadrants, and spread evenly. The plates were incubated at 37 °C for 

approximately 20 hours, then the colony forming units (CFUs) were counted.  

 

Galleria mellonella injection  

This protocol was modified from a protocol obtained from Dr. Barbier at West Virginia 

University (N. Ramarao, Nielson-Leroux, C., Lereclus, D., 2012). G. mellonella larvae were 

ordered from Speedy Worm, and kept in the dark at 4 °C without food for no more than 48 hours 

before injection. Active worms 2-3 cm long were chosen for injection. For each experiment, 25 

worms were removed from the fridge in a chilled container, and kept on ice. The worms were 

washed in a glass petri dish with 70% ethanol then with rifampicin (1mg/mL) by dropping 2 drops 

on each worm using a Hamilton 25 µL syringe with a Hamilton 12 gauge needle. After washing, 

the needle was inserted into 5 worms to serve as an injection control. Next, the PBS controls were 

injected, 5 worms were injected with 5 µL of PBS at the required Ca2+ concentration. Finally, 10 

experimental worms were injected with 5 µL of cell suspension grown at 0 mM, 5 mM or 10 mM 

Ca2+ and normalized to contain 1 (10-6) or 10 CFU (10-5). To verify the infection dose, the 

normalized cultures were serially diluted, plated, and the CFUs were counted. In addition, 5 worms 

were injected per Ca2+ concentration to be analyzed for hemolymph bacterial load, Ca2+ 

concentration, and immune response (protocols detailed below). Between each worm, the syringe 

was cleaned with 70% ethanol by aspirating up and down in a flask, then the syringe was rinsed 



with sterile 10 mM MgSO4 by aspirating. The worms were incubated at 37 °C for 24 hours and 

monitored for death every 2 h, identified by observing movement in response to turning them over 

with a sterile toothpick. Times of death (TOD) were recorded for each worm. Dead worms and 

those surviving after 24 h were placed in microcentrifuge tubes and frozen at -20 °C for further 

analyses. 

 

Calculation of LD50 

Lethal dose 50 (LD50) was calculated using the Miller and Tainter method (Miller & 

Tainter, 1944). This method requires mortality percentages below 50% and above 50%. For each 

experiment, a table was generated, as exemplified below including the number of live and dead 

worms in each group. The % or mortality was calculated as: 

% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
# 𝑑𝑑𝑑𝑑𝑀𝑀𝑑𝑑 𝑤𝑤𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤 𝑥𝑥 100

# 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤
 

CFU/worm # total worms # dead # alive % Mortality 

1 10 3 7 30% 

10 10 7 3 70% 

100 10 10 0 100% 

 

Next, the Fractional titer was calculated using the formula: 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭𝑭𝑭𝒕𝒕𝑭𝑭 (𝒇𝒇. 𝑭𝑭. ) =  
𝟓𝟓𝟓𝟓 − (% 𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎 < 𝟓𝟓𝟓𝟓%)

(% 𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎 > 𝟓𝟓𝟓𝟓%) − (%𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎 < 𝟓𝟓𝟓𝟓%) 

The LD50 titer was calculated using the following formula: 

𝑳𝑳𝑳𝑳𝟓𝟓𝟓𝟓 𝑭𝑭𝑭𝑭𝑭𝑭𝒕𝒕𝑭𝑭 =  𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟓𝟓(𝒅𝒅𝑭𝑭𝒅𝒅𝒕𝒕 𝑭𝑭𝑭𝑭𝒄𝒄𝒅𝒅𝑭𝑭𝑭𝑭𝒄𝒄 < 𝟓𝟓𝟓𝟓% 𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎) +  𝒇𝒇. 𝑭𝑭 ×  𝑭𝑭𝑭𝑭𝒄𝒄𝟏𝟏𝟓𝟓 ( 
𝒅𝒅𝑭𝑭𝒅𝒅𝒕𝒕 𝑭𝑭𝑭𝑭𝒄𝒄𝒅𝒅𝑭𝑭𝑭𝑭𝒄𝒄 > 𝟓𝟓𝟓𝟓% 𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎
𝒅𝒅𝑭𝑭𝒅𝒅𝒕𝒕 𝑭𝑭𝑭𝑭𝒄𝒄𝒅𝒅𝑭𝑭𝑭𝑭𝒄𝒄 < 𝟓𝟓𝟓𝟓% 𝒎𝒎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒎𝒎

 )  

The LD50 was calculated by: 𝑳𝑳𝑳𝑳𝟓𝟓𝟓𝟓 =  𝟏𝟏𝟓𝟓𝑳𝑳𝑳𝑳𝟓𝟓𝟓𝟓 𝑭𝑭𝑭𝑭𝑭𝑭𝒕𝒕𝑭𝑭 



In this example:  𝑓𝑓. 𝑀𝑀. =   (50 − 30)/(70 − 30) = 0.4 

 𝐿𝐿𝐿𝐿50 𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀 =  𝑀𝑀𝑀𝑀𝑙𝑙10(1) +  0.4 ×  𝑀𝑀𝑀𝑀𝑙𝑙10 (10/1) = 0.4 

𝐿𝐿𝐿𝐿50  =  100.4 = 2.51 CFU 

 

Homogenization and Bacterial Load 

The worms were thawed, and 500µL of 10mM MgSO4 was transferred into the 1.5 mL 

centrifuge tube holding the worm. Worms were homogenized by using a BT Labs handheld 

homogenizer. Serial dilutions were performed using the method described above from 10-1 to 10-

4.  Ten µL of each dilution was pipetted onto one quadrant of an LB plate split into four quadrants, 

and spread using a sterile loop. Plates were incubated at 37 °C for 20 hours. After 20 hours, they 

were removed and CFUs were counted to determine the bacterial load in each worm. 

  
Prophenoloxidase (PPO) Assay 

Five worms collected at 11 h after injection were removed and frozen for infection dose. 

These worms were thawed, and 15 µL of the hemolymph was removed from each. 10 µL each 

sample were centrifuged at 1,500 g for 10 min at 4 °C. The remaining 5 µL was collected to 

measure free Ca2+ (described below). Immediately after centrifugation, the samples were diluted 

tenfold in Tris-Buffered Saline (50 mM Tris-HCl pH 6.8, 1mM NaCl), and 2 µL of this mixture 

was added to 18 µL of TBS with 5 mM CaCl2 in a 96-well plate. The samples were then incubated 

at room temperature for 20 minutes. One hundred and eighty µL of 2 mM dopamine in 50 mM 

sodium phosphate (pH 6.5) was then added to the samples, and absorbance was measured every 

15 minutes for 45 minutes using a Biotek microplate reader.  

Measurement of free Ca2+ 



 To measure changes in free Ca2+, 5 µL of the above described hemolymph sample was 

used for subsequent estimation of free Ca2+
 by using QuantiChrom™ calcium assay kit following 

the manufacture’s protocol.  

 

RESULTS  

Optimization of G. mellonella Protocol to Study the Virulence of P. aeruginosa 

To investigate the role of Ca2+ in the virulence of G. mellonella, we first needed to optimize 

the G. mellonella infection protocol shown in Figure 1. 

  

 

 

 

 

Infection dose. To optimize the infection dose, we first determined the optical density (OD600) of 

PAO1 to attain 1x106 CFUs/5 µL. To do so, PAO1 cultures were normalized to an OD600 equal to 

0.3, 0.2, and 0.1. Each normalized culture was diluted from 10-1 to 10-6 in a 96-well plate and 10 

µL was plated of each dilution from each OD600. We discovered that an OD600 equal to 0.1 

generated 1x106 CFUs/5 µL. Next we aimed to determine what infection dose would give the best 
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Figure 1: G. mellonella infection protocol. Arrows indicate points of optimization. 



ratio of live to dead larvae for comparison among testing groups, or the dose that killed over 50% 

and the dose that killed under 50% of the larvae. To discover this, we performed serial dilutions 

from 10-1 to 10-6 and injected G. mellonella larvae with 1,000 CFUs/5 µL, 100 CFUs/5 µL, 10 

CFUs/5 µL, and 1 CFU/5 µL. The dilution that produced over 50% death was 10-5 which 

corresponded to 10 CFUs/5µL, and the dilution that produced under 50% death was 10-6 which 

corresponded to 1 CFU/5µL.  

Larvae injection and disinfection. Larvae for the infection model were obtained from Speedy 

Worm, and used within 48 hours of delivery. After 72 hours, larvae begin to lose firmness and die. 

For ideal firmness of larvae for injection, the larvae were warmed up at 25 °C for 1-2 minutes in a 

glass petri dish. If warmed for a longer period, worms were too active to successfully inject. When 

injecting the larvae with PAO1, we wanted to avoid contamination from the surface of the larvae 

by commensal bacteria. To prevent contamination, we cleaned the site of injection using first 70% 

ethanol then 1 mg/mL Rifampicin in drops from a plastic syringe. To avoid drowning the larvae, 

only one to two drops of 70% ethanol and 1 mg/mL Rifampicin, an antibiotic that acts in inhibiting 

bacterial RNA polymerases. Larvae were injected into the last left proleg (Figure 2) slowly to 

avoid puncturing any vital structures.  

Figure 2: G. mellonella injection 



Larvae incubation. Larvae began cocooning at 72 hours, and death ceased to occur after 24 hours. 

To avoid cocooning and unnecessary incubation time, we began observation of the larvae 6 hours 

after injection, then every 2 hours for survival up to 24 hours.  

 
Elevated Ca2+ Induces Virulence of PAO1 in G. mellonella 

After optimizing the G. mellonella infection protocol, we aimed to determine the effect of 

elevated Ca2+ on the virulence of PAO1 in the model. For this, larvae were injected with PAO1 

grown at three Ca2+ concentrations: 0 mM, 5 mM, and 10 mM. The larvae were monitored over 

the course of 24 hours to generate survival curves and calculate LD50.  

PAO1 carP::Tn5 calC::Tn5 

0 mM Ca2+ 5 mM Ca2+ 10 mM Ca2+ 0 mM Ca2+ 10 mM Ca2+ 0 mM Ca2+ 5 mM Ca2+ 

2 CFUs 1 CFU 0.3 CFU 5 CFUs 6.1 CFUs 2.51 CFUs 1.28 CFUs 

 

 

To compare different conditions, we calculated the LD50 which is the infection dose that 

caused 50% death to the larvae. The LD50 determined for PAO1 at 0 mM, 5 mM, and 10 mM Ca2+ 

are shown in Table 1. The LD50 decreases as Ca2+ concentration increases. We also plotted killing 

curves (Fig. 3). Larvae injected with 10 CFUs of PAO1 grown at 0 mM Ca2+ began to die at 20 

hours post infection (hpi), and had 10 % survival. At 5 mM Ca2+, the larvae began to die 4 hours 

earlier with 20 % survival, and at 10 mM Ca2+ they began to die even earlier at 13 hpi with 0 % 

survival. Similarly, at infection dose of 1 CFU, each increase in Ca2+ concentration exhibited a 

faster death rate and lower survival (Fig. 3). Overall more death in the larvae was observed at 10 

mM Ca2+ compared to 0 mM Ca2+. The experiment was conducted with 0 mM Ca2+ three times, 

with 5 mM Ca2+ two times, and one time with 10 mM Ca2+.   

 

Table 1: Calculation of lethal dose 50% for PAO1, carP::Tn5, and calC::Tn5 



 

 

 

 

 

  

 

carP Plays a Role in Virulence in G. mellonella 

carP is a gene previously found to play a role in mediating Ca2+ regulation of production 

of virulence factors, such as pyocyanin and pyoverdine, as well as swarming motility, in P. 

aeruginosa (Guragain et al., 2016). The gene codes for a protein predicted to function as a phytase. 

We hypothesized that carP also plays a role in the ability of P. aeruginosa to kill G. mellonella. 

Therefore, we expected that the mutant with disrupted carP would show reduced virulence. 

Considering our recent data suggesting that carP is regulated by quorum sensing, we aimed to test 

the role of the gene at different cell densities by injecting worms with two infection doses: 1 and 

10 CFU.  

To study the role of carP in P. aeruginosa virulence, G. mellonella larvae were injected 

with 10 CFUs and 1 CFU of carP::Tn5 grown at 0 mM Ca2+ and 10 mM Ca2+. For larvae injected 

with 10 CFU, the calculated LD50 for carP::Tn5 (Table 1) was 2.5-fold higher at 0 mM Ca2+ and 

20-fold higher at 10 mM Ca2+ than those for PAO1. The mutant carP::Tn5 grown in 0 mM Ca2+ 

exhibited death beginning 4 hours earlier than PAO1, but had 20% higher survival than PAO1 

(Fig. 4). carP::Tn5 grown in 5 mM Ca2+ exhibited a similar relationship, with larvae dying 2 hours 

earlier than PAO1 and exhibiting 20% higher survival. 

Figure 3: Graphs show percent survival for G. mellonella. Ten larvae per Ca2+ concentration 
were injected with 5µL of PAO1 grown at 0 mM Ca2+ (•), 5 mM Ca2+ (•), and 10 mM Ca2+ (•). 
Five larvae were injected with PBS, and five larvae were punctured (- -). 
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At the infection dose of 1 CFU, larvae injected with carP::Tn5 grown at 0 mM Ca2+ began 

dying at 11 hpi, 9 hours before larvae injected with PAO1. Larvae injected with carP::Tn5 at 1 

CFU had 40 % survival, while larvae injected PAO1 had 70 % survival. At 10 mM Ca2+ and 1 

CFU/5 µL, larvae injected with carP::Tn5 showed 40 % more survival than larvae injected with 

PAO1. The experiment was conducted twice with 0 mM Ca2+, and once with 10 mM Ca2+. 

 

 

 

 

 

  

 

 

 

 

 

 

 

calC::Tn5 Mutant Has a Slight Reduction in Virulence in G. mellonella 

Our group collected data showing that calC, a gene coding for a putative Ca2+ leak channel, 

contributes to Ca2+ regulation of virulence factor pyoverdine and swarming motility. It is 

responsible for generating intracellular Ca2+ transients. We hypothesized that calC plays a role in 

Ca2+ induction of P. aeruginosa virulence in G. mellonella.  

Figure 4: Graphs show percent survival for G. mellonella. Ten larvae per condition were 
injected with 5 µL of PAO1(•) or 5 µL of the carP::Tn5 mutant (•) at 0 mM Ca2+ and 10 mM 
Ca2+. Five larvae were injected with PBS, and five larvae were punctured (- -). 
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To study virulence of calC::Tn5 mutant, we injected G. mellonella larvae with calC::Tn5 

grown at concentrations of 0 mM Ca2+ and 5 mM Ca2+. The calC::Tn5 mutant exhibited a slightly 

higher LD50 compared to PAO1 at both 0 mM Ca2+ and 5 mM Ca2+  (Table 1). At 0 mM Ca2+ and 

10 CFUs/5 µL, the larvae injected with calC::Tn5 began to die at 15 hpi and exhibited 10 % 

survival. At 5 mM Ca2+, the larvae injected with calC::Tn5 exhibited 10 % more survival than 

PAO1, and a slower mortality rate (Fig. 5). 

At 1 CFU/5 µL, The larvae began to die at 16 hpi when injected with the calC::Tn5 mutant 

at 0 mM Ca2+, but both calC::Tn5 and PAO1 had 70% survival (Fig. 5). At 5 mM Ca2+, larvae 

injected with the calC::Tn5 mutant died slower, but had the same total survival as PAO1 at 60 %. 

The experiment was repeated three times with both 0 mM Ca2+ and 5 mM Ca2+. 
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Figure 5: Graphs show percent survival for G. mellonella. 10 larvae per condition were injected 
with 5 µL of PAO1(•) or 5 µL of the calC::Tn5 mutant (•) at 0 mM Ca2+ and 5 mM Ca2+. Five 
larvae were injected with PBS, and five larvae were punctured (- -).  
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DISCUSSION 

P. aeruginosa is a pathogen that causes severe chronic infections in the airways of patients 

with cystic fibrosis. It is also known for causing hospital-acquired. It is highly antibiotic resistant 

and produces many virulence factors that aid in its pathogenicity, many of which are induced by 

elevated Ca2+. The virulence factors induced by Ca2+ include production of pyocyanin, 

rhamnolipid, alginate, and extracellular proteases, as well as more complex behaviors such as 

swarming motility and biofilm growth (S. Sarkisova et al., 2005). Here we confirm that elevated 

Ca2+ enhances virulence of P. aeruginosa and its ability to kill larvae of G. mellonella. These data 

support previously described Ca2+ induction of PAO1 infectivity in lettuce leaves used as a plant 

model (S. A. Sarkisova et al., 2014). We explain such induction of virulence by Ca2+-induction of 

individual virulence factors. For example, the extracellular protease, Elastase B, has been shown 

to digest proteins and peptides in the hemolymph of G. mellonella (Andrejko, 2012). We have 

previously shown that LasB biosynthesis is increased in the presence of elevated  Ca2+ (S. 

Sarkisova et al., 2005). Although LasB abundance was measured in-vitro, we expect a similar 

regulatory event occurring in-vivo and shaping pathogenesis of P. aeruginosa in G. mellonella.  

To better understand the behavior of P. aeruginosa in G. mellonella as a host, we aimed to 

quantify changes in bacterial load during infection and host response. For this, we plan to perform 

an immune assay called the prophenoloxidase (PPO) assay. Prophenoloxidase is an enzyme 

present in the hemolymph of G. mellonella that is post-translationally cleaved to form 

phenoloxidase. The latter activates a pathway that secretes molecules toxic to microbes. One of 

these molecules is melanin, the production of which can be measured by a colorimetric assay using 

dopamine as an activation of the cascade (Kopácek, Weise, & Götz, 1995). This assay has been 

used to characterize the immune response of G. mellonella during infection with P. aeruginosa 

(Zdybicka-Barabas & Cytryńska, 2010). The authors showed a correlation between the PPO 



activity and immune response to an immune challenge. Collecting these data allows for a 

comparison between immune responses to PAO1 and the mutants at various Ca2+ concentrations. 

We are also in the process of testing the final bacterial load in the worms at 11 hpi. This will 

determine the level of replication of PAO1 and the mutants at different Ca2+ concentrations.  

carP is a gene previously identified as a putative phytase in P. aeruginosa. The 

transcription of carP is regulated in a Ca2+-dependent manner by CarSR, a two component system 

that itself is positively regulated by elevated Ca2+ (Guragain et al., 2016).  Here we showed that 

disruption of carP gene led to a reduction in virulence at 10 mM Ca2+. No Ca2+-induced virulence 

was observed in the mutant, indicating the necessity of carP gene for Ca2+ induction of P. 

aeruginosa virulence. Recent research in my lab suggests that quorum sensing, the system bacteria 

use to regulate gene expression in response to cell density, is regulated by Ca2+. Quorum sensing 

regulates expression of P. aeruginosa virulence factors, such as extracellular proteases, alginate, 

formation of biofilms, all of which contribute to pathogenicity in a host (Holm & Vikström, 2014). 

Furthermore, our most recent data suggests Ca2+ induction of carP transcription is also dependent 

upon quorum sensing regulation. Our data showing enhanced virulence in carP::Tn5 at lower 

density correlates with this data. Overall, these data confirm the role of carP in P. aeruginosa 

virulence. Such impact can be explained by the earlier established role of the gene in the production 

of virulence factors: pyocyanin, and pyoverdine.  

Based on sequence similarities to established Ca2+ channels and its role in maintaining 

intracellular Ca2+ levels, CalC was predicted to function as a Ca2+-leak channel in P. aeruginosa. 

Earlier, disruption of calC has been shown to abolish Ca2+ regulation of pyoverdine production, 

swarming motility, and biofilm production. Our data showed only a slight decrease in virulence of 

the mutant when compared to the wild type, PAO1. A quicker mortality was present in larvae 



injected with the calC::Tn5 mutant compared to PAO1, but the same percent survival was 

observed. This result suggests that CalC and the intracellular Ca2+ transients may contribute to 

regulation of chronic type of infection, which may require a different animal model. The bacterial 

load assay and PPO assay will allow for better characterization of the pathogenesis of P. 

aeruginosa in relation to the gene, calC. 

Overall, this study verified the role of Ca2+ in the induction of virulence in the animal 

model, G. mellonella. The experiments with the carP::Tn5 and calC::Tn5 mutants assisted in 

further characterization of the role of these genes in regulation of Ca2+-dependent virulence. This 

study also assisted in optimizing an animal model for further characterization of P. aeruginosa 

virulence by testing a variety of mutants. Further characterization of the mechanisms coordinating 

Ca2+-dependent virulence will lead to a better understanding of P. aeruginosa pathogenesis, and 

eventually to the development of better methods to kill this deadly pathogen.  

  



REFERENCES 
 

Andrejko, M., & Mizerska-Dudka, M. . (2012). Effect of Pseudomonas aeruginosa 
elastase B on level and activity of immune proteins/peptides of Galleria mellonella 
hemolymph. Journal of insect science (Online), 12, 88.  

Flume, P. A., & Van Devanter, D. R.  . (2012). State of progress in treating cystic fibrosis 
respiratory disease. BMC Medicine, 10, 88.  

Guragain, M., King, M. M., Williamson, K. S., Pérez-Osorio, A. C., Akiyama, T., Khanam, 
S., . . . Franklin, M. J. (2016). The Pseudomonas aeruginosa PAO1 Two-
Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-
Induced Virulence Factor Production through Its Regulatory Targets CarO and 
CarP. Journal of Bacteriology, 198(6), 951-963. doi:10.1128/JB.00963-15 

Guragain, M., Lenaburg, D. L., Moore, F. S., Reutlinger, I., & Patrauchan, M. A. (2013). 
Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters 
and modulates swarming motility. Cell Calcium, 54(5), 350-361. 
doi:https://doi.org/10.1016/j.ceca.2013.08.004 

Holm, A., & Vikström, E. (2014). Quorum sensing communication between bacteria and 
human cells: signals, targets, and functions. Frontiers in plant science, 5, 309-309. 
doi:10.3389/fpls.2014.00309 

Jander, G., Rahme, L.G., Ausubel, F.M. (2000). Positive Correlation between Virulence 
of Pseudomonas aeruginosa in Mice and Insects. Journal of Bacteriology, 182(13), 
3843-3845.  

Kopácek, P., Weise, C., & Götz, P. (1995). The prophenoloxidase from the wax moth 
Galleria mellonella: purification and characterization of the proenzyme. Insect 
Biochemistry and Molecular Biology, 25(10), 1081-1091. 
doi:https://doi.org/10.1016/0965-1748(95)00040-2 

Leid, J. G. (2009). Bacterial Biofilms Resist Key Host Defenses. Microbe, 4, 66-70.  
Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic 

fibrosis. Clinical microbiology reviews, 15(2), 194-222. 
doi:10.1128/CMR.15.2.194-222.2002 

Miller, L. C., & Tainter, M. L. (1944). Estimation of the ED50 and Its Error by Means of 
Logarithmic-Probit Graph Paper. Proceedings of the Society for Experimental 
Biology and Medicine, 57(2), 261-264. doi:10.3181/00379727-57-14776 

Naseem, R., Wann, K. T., Holland, I. B., & Campbell, A. K. (2009). ATP Regulates 
Calcium Efflux and Growth in E. coli. Journal of Molecular Biology, 391(1), 42-56. 
doi:https://doi.org/10.1016/j.jmb.2009.05.064 

Permyakov, E. A., & Kretsinger, R. H. (2009). Cell signaling, beyond cytosolic calcium in 
eukaryotes. Journal of Inorganic Biochemistry, 103(1), 77-86. 
doi:https://doi.org/10.1016/j.jinorgbio.2008.09.006 

Ramarao, N., Nielsen-Leroux, C., & Lereclus, D. . (2012). The Insect Galleria mellonella 
as a Powerful Infection Model to Investigate Bacterial Pathogenesis. Journal of 
Visualized Experiments : JoVE(70), 4392.  

Ramarao, N., Nielson-Leroux, C., Lereclus, D. (2012). The Insect Galleria mellonella as 
a Powerful Infection Model to Investigate Bacterial Pathogenesis. Journal of 
Visualized Experiments(70). doi:10.3791/4392 

https://doi.org/10.1016/j.ceca.2013.08.004
https://doi.org/10.1016/0965-1748(95)00040-2
https://doi.org/10.1016/j.jmb.2009.05.064
https://doi.org/10.1016/j.jinorgbio.2008.09.006


Sarkisova, S., Patrauchan, M. A., Berglund, D., Nivens, D. E., & Franklin, M. J. (2005). 
Calcium-induced virulence factors associated with the extracellular matrix of 
mucoid Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 187(13), 
4327-4337. doi:10.1128/JB.187.13.4327-4337.2005 

Sarkisova, S. A., Lotlikar, S. R., Guragain, M., Kubat, R., Cloud, J., Franklin, M. J., & 
Patrauchan, M. A. (2014). A Pseudomonas aeruginosa EF-hand protein, EfhP 
(PA4107), modulates stress responses and virulence at high calcium 
concentration. PloS one, 9(2), e98985-e98985. doi:10.1371/journal.pone.0098985 

Williams, P., & Cámara, M. (2009). Quorum sensing and environmental adaptation in 
Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal 
molecules. Current Opinion in Microbiology, 12(2), 182-191. 
doi:https://doi.org/10.1016/j.mib.2009.01.005 

Zdybicka-Barabas, A., & Cytryńska, M. (2010). Phenoloxidase activity in hemolymph of 
Galleria mellonella larvae challenged with Aspergillus oryzae. 65(2), 49. 
doi:https://doi.org/10.2478/v10067-011-0013-5 

 

https://doi.org/10.1016/j.mib.2009.01.005
https://doi.org/10.2478/v10067-011-0013-5

	Measurement of free Ca2+
	To measure changes in free Ca2+, 5 (L of the above described hemolymph sample was used for subsequent estimation of free Ca2+ by using QuantiChrom™ calcium assay kit following the manufacture’s protocol.

