
Honors Thesis

Max Short

A Compiler for a Toy Language in a Web Browser

Reader: Dr. K.M. George

Second Reader: Dr. Christopher Crick

Abstract
Many websites exist today that allow users to compile code. Most of these websites require a network

call to a remote server in order to compile this code. This is theoretically not necessary and is inefficient.

EMCA Script (common name “JavaScript”), continues to grow as a programming language capable of

building full scale applications. The goal of this thesis is to demonstrate that JavaScript can be used to

implement language translators on the browser platform.

This thesis presents a compiler for a small, Haskell-inspired toy language that can compute

mathematical expressions. It documents a proof-of-concept computer programming of writing a

compiler in JavaScript that can be run in a web browser.

Table Of Contents

Contents
Abstract ... 2

1. Introduction .. 4

2. Lexical Analysis .. 5

3. The Parser ... 7

3.1 Grammar ... 7

3.2 Building the Abstract Syntax Tree (AST) ... 9

3.2.1 Constructing the nodes of the AST .. 9

3.2.2 Storing values in the symbol table ... 9

4. The Compiler ... 10

5. Future Work .. 11

6. Conclusion ... 12

Appendix A: Jison file .. 14

Appendix B: Selected JavaScript Code .. 17

1. Introduction
 Functional languages are growing in popularity and importance for at least two reasons. First, over the

last several years, large scale web applications that run on vast server architectures have become

increasingly prominent. Programmers do not typically write these applications using functional

languages. However, core functional concepts such as map-reduce are essential to these applications as

they are too large scale to maintain consistent state [1].

The second reason that functional languages are increasingly important is the desire to prove code

correct. As software continues to become more complex and expand into life-critical areas, it is

important to be able to have mathematical assurances that program logic is correct. While it is

technically possible to prove imperative code correct, it is not practical to do so. The structure of pure

functional languages that are also statically typed makes them much easier to prove correct as the

functional style is equivalent to mathematical implication and the strict types is equivalent to lambda

calculus [2].

Another trend in today’s computing environment is the use of full-fledged applications that exist only in

a web browser. Web browsers have evolved greatly from their mid-1990s capabilities which were

limited to displaying pages and perhaps some light JavaScript. Today, users can check their email, make

a spreadsheet, and accomplish many other tasks that used to be previously restricted to desktop

applications [3].

As web browsers continue to become more complex, it is logical that they should be able to compile

code. There are already websites that compile code in a variety of languages [4] [5]. However, most of

them require communication with a remote server to accomplish this compilation. This communication

requirement could be impractical for at least two reasons. First, the programmer might have a poor or

non-existent internet connection. Second, the programmer might be working on proprietary code and

so for security reasons cannot release their code to a third party.

This project is a proof-of-concept that demonstrates a functional language that can be compiled in a

web browser using pure JavaScript. The user types their program into an HTML text area and receives a

mathematical result from a JavaScript alert. If there is a syntax error or something else goes wrong, the

user will be notified via a JavaScript alert that is displayed instead of the success message. The high-level

structure of the compiler is shown in Figure 1. The sections that follow will detail the lexical analysis,

parsing, compilation, and execution phases of the program. Future work such as implementations of

function calls and types will also be discussed.

Figure 1:Phases of the compiler.

2. Lexical Analysis
The lexical analysis program (the “lexer”) is used to transform the program from a string to a series of

tokens. This project uses a lexer generator. The lexer generator is based on the popular lexer generator

lex. However, the lexer generator for this program is written in JavaScript and is part of the Jison library.

It works in much the same way the traditional Lex does. The lexer generator takes a lex specification

listing a translation of regular expressions to actions and compiles this specification into an executable

program that simulates a finite state machine (in this case, JavaScript instead of the traditional lexer’s

C). The resulting program recognizes regular expressions and perform corresponding actions such as

entering tokens and attributes in the symbol table. Figure 2 shows the schematic view of the

relationships between the lex specification, the lex, and the lexical analyzer. Table I lists all the tokens,

their meanings and regular expressions defining the tokens.

Source

Code

Lexical
Analyzer

Parser JavaScript

Figure 2: The lexical analyzer is generated from the Jison Lex Specification.

Table 1: Lex specification.

Token Name Regular Expression Example Explanation

Let keyword Let let Beginning of a declaration of a let
statements that declares one or more
variable values to be used in evaluating
an expression

In Keyword in in Signals the end of a series of declarations
for an expression that immediately
follows this token

if keyword If if Signals the start of an if-then-else
statement.

then then then Signals the end of the conditional portion
of the if-then-else statement and the
beginning of the expression to be
executed if the conditional was true

else else else Signals the end of the first expression to
be executed if the condition of an if-then-
else statement was true and the
beginning of the expression to be
executed if the if-then-else statement
was false

Integer numeric literal \d+ 42 Similar to the Int type in Haskell

Whitespace \s+ <tab> Used to ignore all whitespace

Lex
Specificticaion

Jison Lex
Parser

Lexical
Analyzer

End of File <<EOF>> N/A Used to notify the lexer when the end of
the user program has been reached

Variable identifier [a-zA-Z][a-zA-z0-
9_']*

answer’ Names a variable. Similar to Haskell
variable names, legal names start with an
upper or lower case letter that can
optionally be followed by a series of
letters, numbers, underscores, or
apostrophes.

Plus sign + + Denotes integer addition

Minus sign - - Denotes integer subtraction

Multiplication Sign * * Denotes integer multiplication

Division Sign / / Denotes integer division

Left Parenthesis ((Denotes the start of an expression
enclosed in parenthesis

Right Parenthesis)) Denotes the end of an expression
enclosed in parenthesis

Equality conditional
check

== == Denotes a boolean check that will return
true if and only if the two arguments are
equal

Greater than
conditional check

> > Denotes a boolean check that will return
true if and only if the first argument is
greater than the second argument

Less than conditional
check

< < Denotes a boolean check that will return
true if and only if the first argument is
less than the second argument

The tokens generated by the lexer will be input to the parser.

3. The Parser
The parser is one of the most important components of this compiler. It parses the token stream

supplied by the lexical analyzer, checks for syntax validity, and produces intermediate representation in

the form of an Abstract Syntax Tree(AST). Along with the Lexer mentioned in the previous section, this

project also uses Jison to generate a parser. The parser generation of Jison is similar to the traditional

parser generating program Bison in that it takes a file denoting a grammar and transforms it into an

executable parser. In Jison’s case, this code is JavaScript unlike Bison’s C. Bison-style parsers also allow

custom functions in the grammar file to assist in construction of the AST. Jison allows JavaScript

functions instead of Bison’s C functions. Bison-style parsers (included Jison) are Look Ahead, Left-Right

(LALR) parsers [6]. Table 2 describes the language designed in this project. Appendix A shows this

grammar (as well as the lex specification in Jison format).

3.1 Grammar

Table 2: Jison Grammar

Productions Semantics

PRGRM ⇒

 LET_STMT EOF

 |EXPR EOF

The start symbol. Denotes an entire
program

Denotes a program that has a let statement
before the expression to be evaluated

Denotes a program that does not have a let
statement before the expression to be
evaluated.

LET_STMT⇒ "let" EQ_STMT_GRP "in" EXPR Denotes a series of variable value
declarations followed by an expression

EQ_STMT_GRP ⇒

 EQ_STMT EQ_STMT_GRP
 |EQ_STMT

One or more assignment statements

Multiple assignment statements

A single assignment statement

EQ_STMT ⇒ ID "=" EXPR An assignment of an expression value to a
variable

EXPR ⇒

 '(' EXPR ')'

 |EXPR '+' EXPR
 |EXPR '-' EXPR

 |EXPR '*' EXPR

 |EXPR '/' EXPR
 |NUMERIC LITERAL
 |ID

 |"if" CONDL_EXPR "then" EXPR "else" EXPR

A mathematical construct that contains one
or more of operations, numeric literals, and
variables

An expression may be contained in
parenthesis to influence evaluation order

Adds the values of two expressions

Subtracts the first expression from the
second expression

Multiplies the first expression times the
second expression

Divides the first expression by the second
expression

An atomic level of expression –a number

The other atomic level of expression – a
variable

An expression that is equivalent to one of
the two sub-expressions. It is equivalent to
the first if and only if the conditional
expression evaluates to true.

CONDL_EXPR ⇒

 EXPR "==" EXPR

 |EXPR "<" EXPR

 |EXPR ">" EXPR

Evaluates a boolean condition and returns
either true or false

Returns true if and only if the two
expressions are numerically equivalent

Returns true if and only if the first
expression is less than the second
expression

Returns true if and only if the first
expression is greater than the second
expression

3.2 Building the Abstract Syntax Tree (AST)
An Abstract Syntax Tree (AST) is a data structure that represents an expression in a programming

language [7]. It is generally used as an intermediate form between source and target language (in this

case, the Haskell-like toy language and JavaScript). This project generates multiple ASTs – one for each

expression. Examples of expressions with their own ASTs include assignments in let statements and the

main expression. Like other ASTs, this project’s ASTs has leaves consisting of literal values or variables

and internal nodes consisting of functions that combine these values.

3.2.1 Constructing the nodes of the AST
Several functions are embedded directly in the Right Hand Side(RHS) of the Jison grammar to assist in

the creation of the AST. The first of these is a constructor function for Node, which creates an object

that represents a node in the AST. The Node constructor function takes three parameters: the first, the

“value” of the node, is required. The second two, the left child node and the right child node, are

optional. The value of the node could be one of several things (this is accomplished cleanly using

JavaScript’s dynamic typing system).

First, the value of a node could be a numeric literal. This implies that the node is a leaf of the AST and

the left and right children should not be evaluated during the evaluation phase (described in a later

section) as they should not exist.

Second, the node could be a variable name. In this case, left and right children should also not be

evaluated in the evaluation phase but instead the variable value should be determined from the symbol

table (described below).

Third, the node’s value could be a two-parameter function. This implies that the left and right children

of the node should be evaluated and then passed to the two-parameter function to ultimately

determine the value of the node during the evaluation phase of the program.

The final potential type of a node value is itself a special kind of node called a conditional node. A

conditional node is first constructed using a separate constructor. It implies that during the evaluation

phase the left and right children of the conditional node should be evaluated and then used to

determine whether the node’s final value should be determined from the node’s left child or right child.

This is represented in the source syntax as an if-then-else statement.

3.2.2 Storing values in the symbol table
The procedures defined in the previous section are adequate to build the AST for the expression to be

evaluated. However, the language of this project also necessitates the use of a symbol table.

Complicating the implementation of the symbol table is this project’s language’s imitation of Haskell’s

lazy evaluation. In order to implement lazy evaluation efficiently, the symbol table stores two different

kinds of values: numeric values and expressions. This way, an expression can be assigned to a variable

without being evaluated.

The final symbol table is a JavaScript object mapping names to expressions or values. The symbol table

must be built up over time as the AST is built. This is accomplished using the shallow merge function.

Initially, when an expression or value is assigned to a variable, it is put into a new symbol table

consisting of only that assignment.

4. The Compiler
Code Generation and running of the program occurs after the syntax tree is generated. The nodes of the

abstract syntax tree are evaluated in a modified post-order traversal, using the function evalNode (see

Appendix B). The method of evaluation depends on the type of node. See Figure 3 for a visual

representation of this process.

The first type of node, numeric literals, are immediately returned.

The second type of node, variable names, are looked up in the symbol table (called “context” in the

compiler source code). The variables may point to an expression that has not yet been evaluated due to

the lazy evaluation semantics of the language. However, once an expression is evaluated, its value is

stored back to the symbol table to avoid unnecessary re-computation of values. This does not make the

language stateful as it has the same effect as evaluated the expression multiple times. This process is

depicted in Figure 4.

The third type of node, a two parameter function, requires that both of its children be evaluated before

the function is called. This behavior is the source of the general post order traversal. Examples of two

parameter functions include addition, subtraction, multiplication and division. Once this function is

evaluated, it is replaced in the tree by its literal result.

The final type of node is a conditional node. A conditional node consists of the usual left and right

children plus a value with three properties: a conditional function, a conditional left argument and a

conditional right argument. The conditional function is a binary function that compares two values. An

example of a conditional function include an equality function (==) that returns true if and only if the left

conditional argument is equal to the right conditional argument. The greater than function (>) returns

true if and only if the left conditional argument is greater than the right conditional argument. The less

than function (<) returns true if and only if the left conditional argument is greater than the right

conditional argument. When a conditional function evaluates to true, its node’s value becomes equal to

the value of the node’s left child. When a conditional function evaluates to false, its node’s value

becomes equal to the node’s right child.

Figure 3: Process of evaluating a node in the AST

Figure 4: Looking up a value in the symbol table

5. Future Work
This project was a proof-of-concept of a compiler for a functional language written in native JavaScript.

There is much potential for future work, both in extending this project and in pursuing other avenues of

compiling a functional language entirely in a web browser. There are several immediate extensions

Node is evalutated
based on type

Node's type is
determined

evalNode called with a
node and its context

Node

Numeric Literal

Return literal

Variable

Context/Symbol
table

Look up variable in
symbol table

Binary Operator

Evaluate left and
right nodes, then

run function

Conditional Node

Evaluate condition.
If true, return left
node, else return

right node

Is the value stored
as a number?

Is it in the symbol
table?

Symbol table is
called with

potential value

Look up value in
symbol table

Yes - continue

Yes- return value

No - Compute value
using evalNode. Store

value to avoid
recomputation. Return

value

No- give error to user

possible for this project. First, function calls would greatly enhance the power of the language. These

were not implemented due to time constraints but in theory they would not force a large redesign of

the program. The biggest challenge would be enforcing constraints on variables and maintaining proper

context for parameters while still following lazy evaluation. Another enhancement to the language

would be the addition of a type system. This type system could work by adding types as an attribute

nodes.

A more practical extension of this project would be to use an existing functional language such as

Haskell and port that language to a web browser. This could be accomplished in different ways. First, a

new compiler could be written from scratch in JavaScript. Alternatively, a transpiler (possibly created

with the LLVM) could be used to transpile code from whatever language the compiler was written in to

JavaScript.

6. Conclusion
The preceding paragraphs and the implementation of the compiler demonstrate that it is possible to

make a simple compiler entirely in JavaScript, thanks in part to the tools provided by Jison. This project

means that it is possible for compilers to follow word processors, spreadsheets, email clients, and many

other types of software from the desktop to a web browser. Within this browser compiler, it is possible

to use functional languages, which should be increasingly important over time.

7. Works Cited

[1] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," in OSDI'04:

Sixth Symposium on Operating System Design and Implementation,, San Francisco, 2004.

[2] Haskell Wiki, "Curry-Howard-Lambek correspondence," February 2010. [Online]. Available:

https://wiki.haskell.org/Curry-Howard-Lambek_correspondence.

[3] Google Inc., "Google Apps," [Online]. Available: apps.google.com.

[4] Sphere Research Labs, [Online]. Available: http://ideone.com/.

[5] Tutorials Point, "Compile and Execute Haskell Online," [Online]. Available:

http://www.tutorialspoint.com/compile_haskell_online.php.

[6] Free Software Foundation, "Bison - GNU Project," 6 March 2014. [Online]. Available:

https://www.gnu.org/software/bison/.

[7] A. V. Alfred , R. Sethi and J. D. Ullman, Compilers Principles, Techniques, and Tools, Menlo Park:

Addison-Wesley, 1988.

Appendix A: Jison file

%lex

%%

//Lex goes in order so keywords have to go first

"let" {return "let";}

"in" {return "in";}

"if" {return "if";}

"then" {return "then";}

"else" {return "else";}

\d+ {return "NUMERIC_LITERAL";}

\s+ /*Ignore whitespace*/

<<EOF>> {return "EOF";}

'+' {return "+";}

"-" {return "-";}

"*" {return "*";}

"/" {return "/";}

"(" {return "(";}

")" {return ")";}

[a-zA-Z][a-zA-z0-9_']* {return "ID";}

"==" {return "==";}

"=" {return "=";}

"<" {return "<";}

">" {return ">";}

. return "INVALID"

/lex

%left '*' '/'

%left '+' '-'

%nonassoc "=" "<" ">" "else"

%start PRGRM

%%

PRGRM: LET_STMT EOF {return $1; }

 | EXPR EOF {return {baseNode: $1, context:{}}; }

;

LET_STMT: "let" EQ_STMT_GRP "in" EXPR {$$ = {baseNode:$4, context:$2 };}

;

EQ_STMT_GRP: EQ_STMT EQ_STMT_GRP {$$ = shallowMerge($1, $2);}

 | EQ_STMT {$$ = $1;}

;

EQ_STMT: ID "=" EXPR {sylList = {}; sylList[$1] = $3; $$ = sylList;}

;

/*EXPRS: EXPR EOF {return $1;}

;*/

EXPR: '(' EXPR ')' {$$= $2;}

 | EXPR '+' EXPR {$$= new Node(add, $1, $3);}

 | EXPR '-' EXPR {$$= new Node(sub, $1, $3);}

 | EXPR '*' EXPR {$$= new Node(mul, $1, $3);}

 | EXPR '/' EXPR {$$= new Node(div, $1, $3);}

 | NUMERIC_LITERAL {$$= new Node(+($1));}

 | ID {$$ = new Node($1)}

 | "if" CONDL_EXPR "then" EXPR "else" EXPR {$$ = new Node($2, $4, $6);}

 ;

CONDL_EXPR: EXPR "==" EXPR {$$ = new CondlNode(eq, $1, $3);}

 |EXPR "<" EXPR {$$ = new CondlNode(lt, $1, $3);}

 |EXPR ">" EXPR {$$ = new CondlNode(gt, $1, $3);}

 ;

%%

function shallowMerge(x, y) {

 var xProps = Object.getOwnPropertyNames(x);

 var yProps = Object.getOwnPropertyNames(y);

 var expectedSize = xProps.length + yProps.length;

 var temp = Object.assign({}, x);

 var combined = Object.assign(temp, y);

 var combinedProps = Object.getOwnPropertyNames(combined);

 if (expectedSize > combinedProps.length) { //there was a duplicate so

set < sum of individual sizes

 dup = xProps.find(function findADup(currentX) {

 return y[currentX] !==undefined;

 });

 throw {message: "Duplicate identifier: " + dup}

 }

 return combined;

}

//value could be a literal value or an operation to combine l and r (which should be

literal values...

function Node(val, l, r) {

 if (val == null) {

 throw {message: "A Node must have a value"}

 }

 this.left = l;

 this.right = r;

 this.value = val;

}

function CondlNode(condF, condL, condR) {

 if (!condF) {

 throw {message: "No conditional function passed"}

 }

 if (!condL) {

 throw {message: "No left conditional passed"}

 }

 if (!condR) {

 throw {message: "No right conditional passed"}

 }

 this.condF = condF;

 this.condL = condL;

 this.condR = condR;

}

function add(x, y) {return x + y;}

function sub(x, y) {return x - y;}

function mul(x, y) {return x * y;}

function div(x, y) {return x / y;}

function gt(x, y) {return x > y;}

function lt(x, y) {return x < y;}

function eq(x, y) {return x == y;}

Appendix B: Selected JavaScript Code

function evaluateNode(node, context) {

 if (node.value.condF != undefined) {//boolean special case

 node.value.condL.value = evaluateNode(node.value.condL, context);

 node.value.condR.value = evaluateNode(node.value.condR, context);

 var useLeft = node.value.condF(node.value.condL.value,

node.value.condR.value);

 if (useLeft) {

 node.value = evaluateNode(node.left, context);

 return node.value;

 }

 else {

 node.value = evaluateNode(node.right, context);

 return node.value;

 }

 }

 if (!isNaN(node.value)) {

 return node.value;

 }

 //http://stackoverflow.com/questions/5999998/how-can-i-check-if-a-javascript-

variable-is-function-type

 else if (typeof node.value === "function" &&

Object.prototype.toString.call(node.value) == "[object Function]") {

 node.left = evaluateNode(node.left, context);

 node.right = evaluateNode(node.right, context);

 node.value = node.value(node.left, node.right);

 return node.value;

}

 else if (typeof node.value === "string") {

 node.value = evaluateNode(context[node.value], context);

 return node.value;

 }

 else {

 console.log("Problem node value: ");

 console.log(node.value);

 throw {compileError:{message:"Unknown type for node value: " +

node.value}};

 }

}

