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ABSTRACT 

Invasive species are one of the largest drivers of declining biodiversity in stream 

ecosystems worldwide; however, factors explaining successful invasions are poorly understood. 

Ringed Crayfish Orconectes neglectus is non-native in many areas and its success as an invader 

has been hypothesized to be due to biotic factors (i.e., competition), but this has never been 

confirmed. However, I hypothesized persistence of Ringed Crayfish may instead be due to 

abiotic factors. Therefore, my objective was to identify environmental factors related to the 

relative abundance of the Ringed Crayfish in streams of the southwest Ozark Highlands where it 

is native. Crayfish were collected from 14 streams using tow-barge electrofishing and kick-

seining. I used multiple linear regression to examine the relationship between landscape factors 

(e.g., geology, percent agriculture, soil texture, distance to impoundment, catchment size, stream 

segment drainage, water temperature) and the relative abundance of Ringed Crayfish within its 

native range. My results indicated that shale lithology and possibly warm water temperatures are 

negatively related to relative abundance of Ringed Crayfish. This research aids managers in 

understanding what abiotic conditions may foster or inhibit the successful invasion of Ringed 

Crayfish outside their native range.  
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INTRODUCTION  

Biodiversity supports proper ecosystem functioning and in turn promotes ecosystem 

services. Biodiversity is a measure of the number of different kinds of living organisms 

considered at all levels of organization: genetic, species, and higher taxonomic-level variation. 

Diversity benefits proper ecosystem functioning in several ways including nutrient cycling, 

stability, and productivity (Cardinale 2012). Diverse ecosystems cycle more nutrients more 

efficiently than less specious systems and are buffered from drastic changes because they contain 

keystone species (Cardinale 2012). Properly functioning ecosystems provide many ecosystem 

services such as food and water provision, disease resistance, nutrient and waste management, 

climate regulation, and recreational services (Corvalán et al. 2005). Several factors threaten the 

diversity of stream ecosystems including land-use changes, the spread of invasive species, and 

climate change (Sala 2000).  

Crayfish, a keystone species, are vulnerable to many of these threats (Dyer et al. 2013).  

A keystone species plays a crucial role in the functioning of an ecosystem that is 

disproportionate to their relative abundance (Paine 1966). Crayfish act as both predator and prey 

within a system and are a major processor of organic matter (Momot 1995). For example, 

crayfish are an important prey species and can comprise > 60% of the caloric intake of adult 

Smallmouth Bass Micropterus dolomieu (Rabeni 1992). In addition to being consumed, crayfish 

may also compete with fish for food (e.g., Rainbow Trout Oncorhynchus mykiss; Momot 1995). 

Crayfish also consume detritus and plant material, which makes them an important processor of 

carbon in stream ecosystems (Momot 1995). The importance of crayfish to ecosystem 

functioning is particularly important in areas of the world where crayfish diversity is high.  
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North America has high crayfish diversity, but many species have narrow ranges, 

increasing their extinction risk. Over 70% (363 of 500) of all crayfish species occur in North 

America (Taylor 2007).  Within North America, two species are presumed to be extinct, 66 are 

endangered, 52 are threatened, and 54 are classified as vulnerable (Taylor 2007). Almost half of 

the crayfish species in North America only occur within one state’s political boundaries (Taylor 

2007). Smaller populations of animals naturally have higher risks of extinction (Pimm 1988) and 

this includes many crayfishes. Increased extinction risk, coupled with anthropogenic threats (e.g., 

habitat alteration, introduced species; Jones and Bergey 2007), poses a significant problem for 

the persistence and conservation of these species.  

Climate change, habitat loss, and invasive species are major threats to crayfish diversity. 

Dyer et al. (2013) suggested that climate change could affect species differently with range 

expansion for some species and range contractions for others. Contreras-Balderas and Lonzano-

Vilano (1996) documented the extinction of undescribed crayfish species in Mexico due to 

habitat loss attributed to human water use. Climate change and habitat loss are significant threats 

to crayfish persistence in the United States, but interactions with invasive species are as 

considered the greatest threat (Lodge 2000). For example, the invasive Rusty Crayfish 

Orconectes rusticus negatively affects fish, benthic algae, aquatic macrophytes, and aquatic 

invertebrates in the United States by reducing their abundance (Olden et al. 2006). 

Introductions of non-native crayfish have been documented throughout North America 

(e.g., Rusty Crayfish, Viral Crayfish Orconectes virilis, Red Swamp Crayfish Procambarus 

clarkii; Larson and Olden 2011), but our understanding of the mechanisms related to successful 

invasions is lacking. Although successful invasions are rare (Williamson and Fitter 1996a), when 

they do occur, the consequences on native species can be disastrous as observed with the 
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invasion of the Rusty Crayfish. At the most basic level, for a species to successfully invade a 

new habitat it must be transported from one area to another, become established (i.e., reproduce) 

in the novel habitat, and then spread to other regions (Kolar and Lodge 2001). Successful 

invaders share common characteristics including widespread distributions (Williamson and Fitter 

1996b), and a wide range of physiological tolerances (Marchetti 2004). Successful invasions 

typically involve multiple introduction events with numerous individuals released during each 

event (Kolar and Lodge 2001). Understanding what makes a species a successful invader and 

how successful invasions occur provides a means to predict future invasions or range expansions, 

and may provide options for population control. 

The Ringed Crayfish Orconectes neglectus is an example of a crayfish experiencing a 

range expansion through accidental introductions. The Ringed Crayfish is native to most of 

Nebraska, northeast Colorado, north and southeast Kansas, northeast Oklahoma, northwest 

Arkansas, and southwest Missouri (Schainost 2011). The species has invaded other areas and is 

thought to be displacing native crayfish (Bouchard 1977; Larson and Magoulick 2009). Ringed 

Crayfish have been recorded in the Eleven Point River drainage of Missouri and threatens the 

Coldwater Crayfish Orconectes eupunctus (Larson and Magoulick 2009). It has also become 

established in the Rogue River of Oregon where it puts the Klamath Signal Crayfish 

Pacifastacus leniusculus klamathensis at risk (Bouchard 1977). The Ringed Crayfish shares 

some of the characteristics of other successful invaders: broad distribution and a broad 

physiological tolerance as shown by being found in many different ecosystems (Pflieger 1996; 

Schainost 2011). However, the exact mechanism that allows it to outcompete native species is 

unknown.   
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Biotic factors (e.g., competition, predator avoidance capabilities, and growth rate) are 

hypothesized to be a primary mechanism of successful invasions by the Ringed Crayfish; 

however, the role of abiotic factors (e.g., habitat alterations) is unknown.  Rabalais and 

Magoulick (2006) found that the reintroduced Coldwater Crayfish, originally thought to be 

displaced by the Ringed Crayfish, could survive and grow in their former range. These findings 

suggest that displacement of the Coldwater Crayfish was a result of biotic rather than abiotic 

factors. However, neither juvenile competition nor adult competition explained displacement of 

Coldwater Crayfish by Ringed Crayfish (Rabalais and Magoulick 2006; Larson and Magoulick 

2009). An alternative hypothesis is that certain abiotic factors might facilitate success of Ringed 

Crayfish. Therefore, the objective of my study was to identify environmental factors related to 

the relative abundance of Ringed Crayfish. Results from this study will help managers predict 

the likely success or failure of this species if introduced under similar conditions as found in our 

study area.    

METHODS 

Study Area 

From July to October 2014-2015, crayfish were collected from 17 sites in 14 streams of 

the Ozark Highlands of northeast Oklahoma and southwest Missouri (Figure 1). The Ozark 

Highlands ecoregion is characterized by cherty-limestone lithology, which results in a karst 

topography (Woods et al. 2005). Spring-fed streams are common, which contributes to the high 

species diversity of the region (Woods et al. 2005). Oak-hickory and oak-hickory-pine forest is 

the natural vegetation in the region, but many of the low topography areas have been converted 

to pastureland (Woods et al. 2005).  
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Crayfish Data 

Crayfish were collected using both electrofishing and kick-seining methods. We 

electrofished with a tow-barge electrofisher (Infinity Box, Midwest Lake Management, Polo, 

Missouri). Electrofishing settings were pulsed direct current (DC), 60 Hz, and a 25% duty cycle. 

Voltage was adjusted to achieve a target power (W) that maintained a consistent electric field 

regardless of ambient water conductivity as described by Miranda (2009). Electrofishing effort 

was not standardized across the sites and areas < 0.2-m (the electrofisher was too large to move 

into those areas) or > 1.3-m deep (over wader depth) were not sampled. In addition, one riffle at 

each site was kick-seined twice if the majority of the substrate was small enough (< 200 mm). 

All crayfish were humanely euthanized and preserved in formalin. GPS coordinates of crayfish-

sampling locations (reaches) were recorded to provide a spatial reference for calculating 

environmental attributes. 

Crayfish were brought to the lab for measurements and identification. I identified each 

crayfish to species and measured carapace length using Vernier calipers (1.0 mm). Age-0 

crayfish (carapace length < 21mm) were determined using length-frequency histograms and 

excluded from the analysis because habitat use can differ between juveniles and adults (Gore and 

Bryant 1990). I chose to use relative abundance for the analysis rather than density because 

sampling effort was not consistent among samples and relative abundance would provide a more 

accurate representation of the Ringed Crayfish population at each site.  

Environmental Data 

Environmental variables hypothesized to explain the distribution of crayfish species were 

obtained from a variety of spatial data sources and imported into ArcMAP (10.2.1, ESRI, Red 

Lands, California; Table 1). GPS coordinates were imported to ArcMAP and converted to a 
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vector layer to provide a spatial reference for each site. Each site was assessed using the stream 

segment (one tributary to the next) encompassing the site. 

I quantified percent land use that was agricultural and distance to impoundment to better 

understand the influences of humans on the distribution of Ringed Crayfish. Alterations to 

stream ecosystems can have a significant influence on the occupying species. For example, 

stream species have evolved to live in certain flow regimes, which are altered by both 

impoundments and agriculture (Poff et al. 1997). I chose to use percent agriculture for the land-

use component of my model because Westhoff et al. (2011) found agriculture to be the most 

important anthropogenic factor related to distribution of several species of crayfish. To 

determine percent agriculture around each site, a 500-m buffer was formed around the stream 

segment that contained the sampling location. The land-use data set was converted to a binary 

raster (1 = agriculture, 0 = non agriculture). The clip tool was used to determine percent 

agriculture inside the 500-m buffer. A 500-m buffer was chosen to analyze percent agriculture 

because local land use can have more of an effect on stream taxa distributions than broader-scale 

catchment variables (Stanfield and Kilgour 2012). Distance to impoundment (km) was 

determined by measuring manually from the study site along the stream to the nearest 

downstream impoundment. 

I included variables that represented both geology and soil because of their critical role in 

explaining the distribution of aquatic taxa, including crayfishes (Westhoff et al. 2011; Nolen et 

al. 2014). Geology is important to aquatic taxa because it influences the abiotic characteristics of 

the stream and therefore the stream community (Neff and Jackson 2012). Soil texture is 

important to the distribution of fishes (Brewer et al. 2007) and crayfishes (Westhoff et al. 2011; 

Dyer et al. 2013). In order to maintain consistency, geology and soil were obtained using the 
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same methods used to obtain percent agriculture. Geology of the stream segment was defined as 

the dominant lithology inside the buffer and soil was defined as the dominant soil texture class 

inside the buffer.  

Because my focus was the relationship between landscape variables and Ringed Crayfish 

occurrence, instream habitat was not assessed with the exception of relative thermal differences 

among the sites. Temperature is an important variable that influences the distribution of aquatic 

taxa (Allan and Castillo 2007), including crayfish (Usio et al. 2006); therefore, I chose water 

temperature as one of my variables. I classified water temperature at each site as either warm 

(>21°C) or cool (≤21°C) based on a natural break in the instream measurements.  Water 

temperature (0.1°C) was measured at the furthest downstream point of each site at a similar time 

of day under summer conditions (June-August) using a conductivity pen (Myron L Company, 

Carlsbad, California; Model PT1).  

Catchment size and stream segment drainage area were included in my variable set 

because they can be linked to stream size and flow conditions (Hansen 2001). Stream size can be 

important to the diversity of aquatic species because species composition changes as you move 

from the headwaters to the mouth of stream ecosystems (Allan and Castillo 2007). Discharge 

conditions influence the distribution of stream species because they have evolved to live under 

specific flow regimes that influence the abiotic characteristics of the stream (Bunn and 

Arthington 2002). To obtain the variables for analysis, catchment size and the stream segment 

drainage were joined to the stream segment of interest using ArcMAP. 

Data Analysis  

I fit a linear regression model to examine relationships between landscape variables and 

the relative abundance of Ringed Crayfish. Multiple linear regression was chosen because I 
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hypothesized that the relative abundance of Ringed Crayfish could not be adequately explained 

by a single variable. Linear regression works by describing the relationship between an 

explanatory variable (x-axis) and the response variable (y-axis). Multiple linear regression works 

with the same basic principles as linear regression, but can handle more than one explanatory 

variable. I assessed significance at α ≤ 0.10.  My dataset contained a mix of continuous and 

categorical explanatory variables. An important assumption of multiple regression is that the 

explanatory variables are orthogonal (i.e., free of extreme correlations). I used the Pearson 

product-moment correlation coefficient and considered multicollineaity where r ≥ |0.28| (Graham 

2003). Graham (2003) determined this level of collinearity affected parameter estimates in 

multiple regression scenarios. Soil texture was removed from the analysis due to lack of 

variation among study sites (15 sites were silt loam and two were sandy loam). I treated geology 

and water temperature (both categorical) as dummy variables. Dummy variables make the use of 

categorical variables in linear regression possible by assigning the variable a one or zero to 

indicate presence or absence of the variable. Alluvium was the reference variable for geology 

and cool was the reference variable for water temperature. I natural-log transformed distance to 

impoundment, catchment size, and stream segment drainage to improve linearity. All analyses 

were performed using R (version 3.2.2, R Core Development Team, 2014).  

Diagnostic plots of residuals revealed evidence of heteroscedasticity and non-normality. 

Consequently, I arcsine square root transformed relative abundance. Arcsine square root is a 

common transformation for proportions when using linear models (Gotelli and Ellison 2004). 

After performing the transformation of relative abundance, diagnostic plots of residuals 

suggested reasonably equal variance and normality.   
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RESULTS 

The relative abundance of Ringed Crayfish and environmental characteristics were 

variable among study sites. Values are reported as mean ± SD unless otherwise noted. The total 

number of Ringed Crayfish collected was 1,009 individuals (59.35, ±64.12), which were used to 

calculate relative abundance (0.78, ±0.27). Distance to impoundment ranged from 0.45 to 85.08 

km (23.15, ±26.05 km) and percent agriculture ranged from 0 to 79.34% (44.09, ±19.01 %). 

Catchment size ranged from 0.13 to 38.00 km2 (261.99, ±197.15 km2) and stream segment 

drainage ranged from 53.48 to 779.91 km2 (8.75, ±11.83 km2). I classified the temperature 

regime of 10 streams as warmwater and seven as coolwater. The distribution of dominant 

lithology across the sites was alluvium (n = 2), chert (n = 6), limestone (n = 4), and shale (n = 5).   

No evidence of multicollinearity among continuous variables was detected (r ≥ |0.28|); 

however, my initial model suggested overfitting and influential points. There was evidence of 

overdispersion (standard error exceeded the parameter estimates) for catchment size and stream 

segment drainage. Since neither of these variables were contributing to the model (i.e., parameter 

estimates were extremely low), I removed them from further analysis. Cook’s distance indicated 

two data points with values > 0.5. To avoid deleting observations, I removed percent agriculture 

from the analysis to eliminate influential points because it was not contributing to the model. 

After removing percent agriculture, Cook’s distance still indicated one data point with a value > 

0.5 (Evansville Creek). This influential point was presumably due to Evansville Creek being the 

second furthest site from an impoundment and having the lowest relative abundance of Ringed 

Crayfish. I choose to remove Evansville Creek from the analysis and found all remaining data 

points had Cook’s distance values < 0.5. 
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Geology, water temperature, and distance to impoundment were used in the final model 

explaining the relative abundance of Ringed Crayfish (adjusted R2 = 0.52, F5,10 = 4.25, P = 0.02; 

Table 2). Although all three variables were used in the model, only geology with a dominant 

lithology of shale was significant in explaining the relative abundance of Ringed Crayfish (t10 = 

0.12, P = 0.03; Figure 2). Streams with dominant lithology of shale, chert, or limestone were 

negatively associated with relative abundance of Ringed Crayfish. Streams that I classified as 

warmwater were negatively associated with the relative abundance of Ringed Crayfish when 

compared to those classified as coolwater (Figure 3).  

DISCUSSION 

I found lower abundances of Ringed Crayfish in areas where the dominate lithology was 

shale. Geology is an important factor to consider when determining the distribution of aquatic 

taxa, especially crayfishes (Westhoff et al. 2011; Nolen et al. 2014). For example, the Saint 

Francis River Crayfish Orconectes quadruncus was associated with igneous geology whereas 

Big Creek Crayfish Orconectes peruncus was associated with limestone and dolomite geology 

(Westhoff et al. 2011). Geology is important to distributions of aquatic taxa because it structures 

both the physical and chemical properties of the stream such as discharge, conductivity, 

temperature, dissolved oxygen, soil, and pH (Neff and Jackson 2012).  

Substrate stability is one possible reason why shale lithology was negatively related to 

the abundance of Ringed Crayfish. Shale lithology may be related to streambed stability because 

shale has a platy shape, which makes it susceptible to being moved downstream (Magalhaes and 

Chau 1983). Several aquatic taxa may be affected by streambed instability. For example, insect 

diversity decreases when substrate stability decreases (Cobb et al. 1992), suggesting that 

substrate stability plays a role in insect diversity. Less stable substrate may also negatively 



14 

 

affects mussels because less stable substrate is likely to crush mussels or send them downstream 

during periods of high flow (Morales et al. 2006; Allen and Vaughn 2010). There has been little 

work done to assess the influences of substrate stability on crayfish; however, stream bank 

stability (Parkyn and Collier 2004) and certain substrate sizes (Dyer et al. 2015) provides refuges 

for crayfish during floods, droughts, and other harsh conditions. The negative relationship 

between shale and relative abundance may suggest that Ringed Crayfish prefer more stable 

substrate or substrates more readily used to construct burrows. 

Shale lithology may be important to Ringed Crayfish distribution because of its 

relationship to pH. Catchment geology is the most significant determinant of stream chemistry 

(Cushing and Allan 2001). For example, Nolen et al. (2014) found that Orconectes marchandi 

was positively associated with dolomite geology, which suggests they prefer water with a neutral 

pH. Shale is largely composed of silica (Bluth 1994) and silica can cause streams to have higher 

pH levels (Hem 1985). Crayfish often depend on neutral or higher pH because lower pH limits 

the amount of calcium in water. Crayfish need calcium to produce their exoskeleton (Reynolds 

2002). The negative relationship between shale and relative abundance may suggest that Ringed 

Crayfish prefer neutral pH.  

Water temperature is also important to the distribution and abundance of aquatic taxa, 

including crayfishes. Some crayfish species better tolerate variation in water temperature. For 

example, Nolen et al. (2014) found that water temperature was not important as a predictor of 

occurrence for two species of crayfish: Coldwater Crayfish and Hubb’s Crayfish Orconectes 

hubbsi. Alternatively, temperature was the most important predictor of the invasive Signal 

Crayfish Pacifastacus leniusculus with highest abundances where water temperatures exceeded 

18°C and no crayfish occurred where water temperatures were less than 14.5°C (Usio et al. 
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2005). Although not statistically significant, trends in my data suggest a negative relationship 

may exist between streams classified as warmwater and relative abundance of Ringed Crayfish, 

with preferences likely for cooler temperatures (Figure 3). Ringed Crayfish have been invading 

cooler streams located in Oregon and New York (Bouchard 1977; Daniels et al. 2001), which 

also suggests that they may prefer cooler streams. Growth of crayfish is regulated by water 

temperature and species adapted to cooler waters usually demonstrate slower growth, longer life 

spans, and overall larger size (Reynolds 2002). Having a larger overall size may allow Ringed 

Crayfish to outcompete other species (Gherardi 2002). 

Calculating geology and temperature as continuous variables, rather than categorical 

variables, may provide additional insight to Ringed Crayfish tolerances. Treating geology as a 

continuous variable would allow quantification of what percentage of certain geology types are 

contributing to distribution of Ringed Crayfish. I could then build a broken-line regression model 

to determine if multiple lines could be fit to the data, thereby suggesting a threshold response to 

lithology. Other stream organisms (e.g., Smallmouth Bass, Brewer et al. 2007) show threshold 

responses to different geology types. Another way I could have improved my results would be to 

assess possible interactions between temperature and geology. Possible collinearity may prevent 

temperature from being statistically significant, even if ecologically important.  

Sampling across the entire distribution of Ringed Crayfish may also have improved my 

results by allowing me to determine if these relationships are only observed at the southern 

extent of the species range or throughout their distribution. Ringed Crayfish are a wide-ranging 

species (Schainost 2011), which suggests they may have wide physiological tolerances. Their 

broad distribution may have allowed different environmental preferences to develop at different 

extents of their range because of interactions between landscape and local habitat conditions 
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(Brewer et al. 2007). Further, range contractions are most common at the edges of a species 

range, likely because the abiotic conditions become less suitable (Sexton et al. 2009).  This 

suggests that, although using data across the entire distribution would be useful, my study 

captures conditions that may be marginal habitat for Ringed Crayfish. Therefore, these data are 

helpful for examining conditions that could be considered marginal habitat for the species and 

thus, help to identify conditions where the species may not persist.  

The results of my study provide evidence that some environmental factors, such as 

geology and perhaps water temperature, may facilitate or inhibit invasion success by Ringed 

Crayfish. It appears that shale lithology and warmer water temperatures may inhibit expansion 

by Ringed Crayfish. Developing a framework such as that used by Dyer et al. (2013) to predict 

the distribution of crayfish would be beneficial to understanding these patterns. My results could 

be used to establish a monitoring protocol to assess expansion within the southern extent of this 

species’ range. Further laboratory studies showing the relationships between substrate stability, 

burrowing, temperature and crayfish survival would be useful to understanding the mechanisms 

that explain the observed trends. Ultimately, it is an understanding of the mechanisms that 

explain my observations that will be most instructive to developing methods to prevent invasion 

of this species. Preventing the spread of introductions will help to maintain the native diversity of 

regions. 
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FIGURES AND TABLES 

 

Figure 1: Map of the study area showing the location of each study site within the Ozark 

Highlands of northeast Oklahoma and southwest Missouri, USA. 
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Figure 2: The relationship between the dominant lithology at each site and the relative 

abundance of Ringed Crayfish. Shale lithology was negatively associated with relative 

abundance of Ringed Crayfish (t10 = 0.12, P = 0.03).  
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Figure 3: The relationship between temperature classification (warmwater >21°C, coolwater 

21≤°C) of each site in the Ozark Highlands ecoregion and the relative abundance of Ringed 

Crayfish.  
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Table 1: Environmental data used to model the relationship between landscape variables and the 

occurrence of the Ringed Crayfish. The study was completed in the Ozark Highlands of 

Oklahoma and Missouri, USA.   

Habitat variable Description Source 

Geology The dominant lithology within a 500-

m buffer of each site 

USGS (2005) 

Soil texture The dominant soil texture within a 

500-m buffer of each site 

Miller and White 

(1998) 

Percent agriculture The percentage of land use that was 

agricultural within a 500-m buffer of 

each site 

USDA, NRCS (2011) 

Distance to impoundment Distance (km) from site to nearest 

downstream impoundment 

USEPA, USGS (2012) 

Catchment size 

 

The cumulative size of the catchment 

(km2) 

USEPA, USGS (2012) 

Stream segment drainage Area draining directly to the stream 

segment (km2) 

USEPA, USGS (2012) 

Water temperature Stream temperature classified as 

warm (>21ºC) or cool (≤21ºC) 

Recorded at site 
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Table 2: Results of a multiple linear regression model relating landscape variables to the relative 

abundance of Ringed Crayfish among 16 sites, located in the Ozark Highlands of northeast 

Oklahoma and southwest Missouri, USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Parameter Estimate Standard  

error 

t statistic P-value 

Intercept 1.52 0.23 6.75 0.00 

Distance to impoundment -0.01 0.05 -0.25 0.81 

Water temperature -0.18 0.13 -1.38 0.20 

Chert lithology -0.10 0.20 -0.51 0.63 

Limestone lithology -0.02 0.22 -0.10 0.92 

Shale lithology -0.49 0.19 -2.61 0.03 


