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CHAPTER I 

INTROOOCTION 

1. Statement of the Problem 

TI1e problem which will be considered in this study is that of find

ing the joint distribution of the coverages of two rectangular targets 

by one rectangular pattern. To present the problem clearly, let us 

consider a typical situation which is exemplified by Figure 1 below: 

J~;(t$:: 'J.}D 

L__ 

(.t;,3o) 

JoJ( .l.D:: ~00 

I 
I 
I 

-- _, 

Figure 1. A Typical Situation 

1 
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In the diagram, (0, 0) and (5, 30) are the centers of Target 1 and 

Target 2 respectively. The sizes of the targets and the pattern are 

indicated beneath each of them. The aimpoint of the pattern is (2, 15). 

The coordinate system used here is range direction-deflection direction 

where the range direction is vertical and the deflection direction is 

horizontal. 

The assumptions we make in regard to the general situation are: 

(1) Both targets are rectangular in shape with sides of different 

target elements parallel to each other. 

(2) The pattern is also rectangular in shape. 

(3) Pattern sides are parallel to target sides. 

(4) The landing point (£, £') of the pattern center is assumed to 

have a bivariate normal distribution with correlation coeffi-

cient p = 0. That is 

1 f(£, £') = ----
21T a a' 

-oo < Y < oo 

-oo < y' < oo, 

where (M, M') is the aimpoint of the pattern center point, and where 

a and a' are the standard deviations of the landing point in the range 

and deflection directions respectively. Note that if we let y=-£-, 
0 

£' M M' 
Y,_ ~= --- and ~'= ~, then the J'oint p.d.f. of y andy' is - -err' 0 ' 0 

given by 

-oo < y < oo 

-oo < y' < oo (1.1) 
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The question which prompts our study is: "Can we make any probabi

lity statements about the joint coverage on the two targets under this 

given situation?" More specifically: 

(1) What is the probability of hitting both targets? 

(2) What is the probability of hitting Target 1 but missing 

Target 2? 

(3) What is the probability of hitting Target 2 but missing 

Target 1? 

(4) What is the probability of missing both targets? 

(5) What is the probability of achieving the maximum possible 

coverage on both targets? 

(6) What is, say, Pr(Z1 ~ 100 and z2 ~ SO)? (Z1 is the coverage 

on Target 1 and z2 is the coverage on Target 2 by the patte~) 

2.. A Review of Previous Work 

Very little has been done on the subject of the joint distribution 

of two coverages (linear or rectangular). The majority of the earlier 

work in this field deals with the average value of coverages, e.g., 

the Expected Fractional Coverage. In the previous work, no probability 

statements are given with regard to coverage except in a study done 

. by Gay and Weeks (1973). They derive the distribution function of the 

fractional coverage of one rectangular target by one rectangular pat

tern. A computer program using numerical integration was used to ob

tain the distribution function. A plotting program was also included. 

The work by Gay and Weeks is by far the most relevant to our cur

rent study. Although it does not consider the joint probability of two 

rectangular coverages. Heiser (1971) also studied the distribution of 
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coverage on one rectangular target, but he allowed a free delivery 

angle of the rectangular pattern which made the coverage on the target 

non-rectangular in general. 

In ''Matrix Evaluator Computer Program" (1974), a functional rela

tionship between the linear coverage and the landing point of the pat

tern center was given. This relationship has proven to be very useful 

in our derivation of the joint distribution of two linear coverages. 

3. The Order of Investigation 

We shall first derive in Chapter II the cumulative distribution 

function (c.d.f.) and the probability density function (p.d.f.) of the 

coverage of one linear target by one linear pattern. In Chapter III, 

the c.d.f. and p.d.f. of the coverage of one rectangular target by one 

rectangular pattern is found. The approach we use in Chapter III is 

different from that used by Gay and Weeks. As a consequence, an equiva

lent but a somewhat more compact form of the c.d.f. is obtained. 

In Chapters IV and V, we derive the joint c.d.f. and the joint 

p.d.f. of the coverages of two linear targets by one linear pattern. 

It is in Chapter VI that the problem of the joint c.d.f. of two 

rectangular coverages is considered. In Section 1, of Chapter VI, we 

follow the line of approach used hitherto to obtain a "mathematical 

expression" for the joint c.d.f., which turns out to be of little prac

tical value, In Section 2, the approach used by Gay and Weeks is used 

to obtain another "mathematical expression" for the joint c.d.f. of two 

rectangular coverages. Unfortunately, it is again untamed by attempts 

to computer program it. In both'cases, we point out the difficulties 

and complexities involved in trying to program it. 
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In Chapter VII, we consider the joint probabilities of some 

"interesting" and ''useful" cases. Namely, Question (1) through Ques

tion (5) stated in Section 1 of this chapter. Exact probabilities are 

obtained in closed forms in these cases. 

In Chapter VIII, the problem of the joint c.d.f. of two rectangu

lar coverages is picked up again. An approximation to it is given. 

Chapter IX outlines an easy way to extend this study to m rectangular 

targets. In the final chapter, we give a summary and indicate some 

possible extensions. 



CHAPTER II 

lliE DISTRIBUTION OF ONE LINEAR COVERAGE* 

We start our investigation by considering the simplest case, that 

being one linear pattern delivered on one linear target. Let us adopt 

the following notation: 

Lr target length 

s = target center 

Lp pattern length 

M = aimpoint 

a = standard deviation of the landing point of the pattern center 
(aiming error) 

T LT/Zo standardized half target length 

8 = S/a standardized target center 

p = Lp/Zo standardized half pattern length 

)J = M/a standardized airnpoint. 

Figure 2 illustrates the situation of one linear pattern being 

delivered on one linear target using the above notation. 

* To make the reference easy, we shall sometimes refer to ''the coverage 
on one linear target by one lineq.r pfl.tt~rn" simply as "one linear 
coverage." Similarly, "the coverage on two linear targets by one 
linear pattern" is referred to as "two·linear coverages", and "the 
coverage on one rectangular coverage by one rectangular pattern" as 
"one rectangular coverage", etc. ' 

6 
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[ ~~~~~ · ) )' 

n '' 
e-T e '1-P Btl 'I y~p 

t 
the landing point of the pattern center 

] indicates the limits of the target 

( ) indicates the limits of the pattern realization 

Figure 2. A Linear Pattern Being Delivered on a Linear Target 

In Figure 2, y is the standardized landing point of the pattern 

center point, and according to the assumptions stated previously, y has 

a normal c~, 1) distribution of the form 

f(y) = 1 
.rz:; 

1 2 exp{- --2-- (y-~) } -oo < y < oo (2 .1) 

Also, the shaded portion of the line in Figure 2 is the standardized 

linear coverage. Since all of the subsequent discussion will be in 

terms of standardized distances (being expressed in llllits of standard 

deviations), we shall drop the modifier "standardized" henceforth. 

The functional relationship between C, the random variable which 

represents the linear coverage of the target, andY, the random variable 

which represents the landing point of the pattern center is as follows: 

(This is a generalized version of what has been established in 'Matrix 

Evaluator Computer program" (1974, pp. S-6).) 
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0 for y < -S+e 

s-e+y for -S+e ~ y < -R+e 

c = h(y) = S-R for -R+e ~ y < R+e 

S+e-y for R+e ~ y < S+e 

0 for y ~ S+e (2. 2) 

where S = T+P and R = IT-Pl. The graph of this f1.mction lS fotmd 

in Figure 3. 

- (::hCY) 

c:: s-et>' c:: 5+c3 -y 

S-Jl - -- - -) 1 j 

1..<.-

S-utG 

Figure 3. The F1.mctional Relationship between C and Y 

We note in Figure 3 that the max~ that the coverage C can attain is 

S-R, which is the minimum of 2T and 2P. 



We can now obtain the c.d.f. of C by integrating f(y), which is 

defined in (2.1), over the proper intervals indicated in Figure 3, 

corresponding to various values of u. This yields the following 

c.d.f.: 

0 for u < 0 

9 

G(u-S+e-~) + G(u-S-e+~) 

1 

for 0 < u < S-R 

for u > S-R (2. 3) 

where G(·) is the cumulative standard normal distribution function, and 

u is a standardized value. Figure 4 is a plot of Fc(u): 

6r( u-~ -te-;..«)+9- ((,(- s -e rp) 

1 1 } t- 4-c -RT<",..' - 4-( _,._,., • .,..J 

0 
.s-~ 

u 

Figure 4~ The c.d.f. of One Linear Coverage 
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The p.d.f. of C is then 

0 for u < 0 

G(-S+8-~)+G(-S-8+~) for u = 0 

fc(u) = g(u-S+8-~)+g(u-S-8+~) for 0 < u < S-R 

1-G(-R+8-~)-G(-R-8+~) for u = S-R 

0 for u > S-R (2.4) 

where g(·) is the standard nonnal density function. 

Figure 5 below is a graph of fc(u): 

I 

--------~r---------~------------------4U 
0 

Figure 5. The p.d.f. of One Linear Coverage 
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To conclude, we have derived the c.d.f. and the p.d.f. of one 

linear coverage in For.mulas (2.3) and (2.4). We note that this random 

variable is neither continuous nor discrete, but a mixture of both. 



rnAPTER III 

TilE DISTRIBUTION OF ONE RECTANGULAR COVERAGE 

In this chapter, we shall consider the distribution of one rec

tangular coverage instead of one linear coverage which was treated in 

Chapter II. 

First we shall obtain the joint p.d.f. of C.and C', the linear 

coverages in the range direction and the deflection direction respec

tively. Once the joint p.d.f. of C and C' is obtained, we can find 

the c.d.f. of the rectangular coverage Z, by noting the fact that 

Z "' C·C' and accordingly using the so called "Distribution Ftmction 

Method."* We now proceed to do exactly that. 

If we consider the notation defined above, 1.e., LT, {3, LP' J.t, etc.. 

as being in the range direction, then expression (2.4) can be considered 

as the p.d.f. of C, the linear coverage in the range direction. Now if 

we use the same notation with a prime added to each of them to denote 

the same thing.in the deflection direction, then the p.d.f. of C'·, the 

linear coverage in the deflection direction, can be similarly obtained 

as: 

* See, for example, Ash (1970, p. 59) 

12 
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0 for ul < 0 

G(-S 1 +e 1 -~ 1 )+G( -s 1 -e 1 +~ 1 ) for ul 0 

fc 1 (u 1 ) 
g(u 1 -S 1 +8 1 -~ 1 )+g(u 1 -S 1 -8 1 +~ 1 ) for 0 < u 1 < sI-R I 

= 
l-G(-R 1 +8 1 -~ 1 )-G(-R 1 -8 1 +~ 1 ) for ul = S 1 -R' 

0 for u' > s I -R 1• (3..1) 

Now the joint p.d.f. of C and C1 is simply the product of fc(u) 

and fc,(u 1). This is due to the fact that Y and Y1 were assumed to be 

independent, that Cis a function of Y only, and that C1 is a function 

of Y1 only. It is given as follows on next page: 
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0 . for u < 0, or u > S-R, or u 1 < 0, or u 1 > S1 -R 

[G(-S+8-~)+G(-S-8+~)]·[G(-S 1 +8 1 -~ 1 )+G(-S 1 -8 1 +~ 1 )] 

for u = 0 and u 1 ~ 0 

[G(-S+8-~)+G(-S-8+~)]·[g(u 1 -S 1 +8 1 -~ 1 )+g(u 1 -S 1 -8 1 +~ 1 )] 

for u = 0 .and 0 < u 1 < S 1 - R' · 

[G(-S+8-~)+G(-S-8+~)]·[1-G(-R 1 +8'-w')-G(-R'-e'+~')] 

for u = 0 and u' = S' -R' 

[g(u-S+8-w)+g(u-S-8+w)]·[G(-S 1 +8'-w')+G(-S'-8'+~')] 

for 0 < u < S-R and u' = 0 

fc, c, (u, u 1) = [g (u-S+8 -~) +g (u-s- 8+~)] · [g (u 1 -s '+8' -w 1 ) +g (u 1 -s 1 -8 '+w ')]. 

for 0 < u < S-R and 0 < u' < S'-R' 

(g (u -S+EJ -w) +g (u-S-8+w)] · [l -G (-n' +8 '-w') -G (-R'- 8 7 +w ')] 

for 0 < u < S-R and u = S'-P.' 

[1-G (-R+e -w) -G (-R- 8+~)] • [G ( -s '+e' -~ ') +G ( -s'- e '+w 1 )] 

for u = S-R and u' = 0 

[l .. G (-R+8 -~) -G(-R- 8+~)] · [g (u 1 -s 1 +8 1 -w 1 ) +g (u 1 -s 1 -8 '+~ ')] 

for u = S-R and 0 < u 1 < S1 -R 1 

[1-G (-R+8 .. ~) -G (-R-8+~)] • [1-G (-n.' +8' -~ ') -G (-R 1 -8 '+w ')] 

for u = S-R and u' = S' -R 1• 

(3. 2) 

Again this is an example of a "mixed" p.d.f. 'fl . . .1ns means that the 

probability mass of this p.d.f. is concentrated on four points, areas 

on four ''wallsn and the volume in the middle. This is illustrated by 

the graph of fC,C'(u, u 1 ) in Figure 6: 



U' 
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-------~u 

tk su.,{m of ihi~ oret-. 'tecTa•;"'- is; 

(J (u-S +B -_..u) t3 { l{- ~ ~e+-»)]· L J l t-l1- i/+ei-A;i' )+ ~ Ut'- ,;'- L) 1 t-,.ve) l 

Figure 6. The Joint p.d.f. of Linear Coverages 
in Range and Deflection Directions 
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If we sum up the flillctional values of the four points (O, 0), (0, S' -R' ), 

(S-R, 0), (S-R, S' -R'), and areas of the four "walls" whose base lines 

are {(u, u') lu = 0, 0 < u' < S'-R'}, {(u, u') lu = S-R, 0 < u' < S'-R'}, 

{(u, u')IO < u < S-R, u' = 0}, {{u, u') 10 < u < S-R, u' = S'-R'}, and 

the volume whose base is {(u, u') 10 < u < S-R, 0 < u' < S'-R'} in the 

diagram on Figure 6, we shall get one, the whole probability mass of 

this joint p.d.f. 

011ce the jointp.d.f. of C and C' is obtained in (3.2), we can 

derive the c.d.f. of the rectangular coverage, ~ = C·C', by using the 

''Distribution flllction .Method." In applying this method here we simply 

realize that Pr(~ ~ v) = Pr(C•C' ~ v) which can be found for any 

specified v value by first summing over the probability mass of the 

points, areas, and volume whose "base" is inside the lower right corner 

in Figure 7, and then to subtract this sum from one. (Note that the 

value v has been standardized.) 

u' 

Figure 7. Using "Distribution Function Method" to 
Obtain the c.d.f. of the Rectangular 
Coverage 
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Now let us carry this out. 

For v < 0, Pr (~ ::: v) = 0. 

For v > (S-R)(S 1 -R 1 ), Pr(~ < v) = 1. 

For 0 < v < (S-R) (S 1 -R 1), 

Pr(Z < v) 

1- { [1-G (-R+8 -]J) -G (-R- 8+]J)] • [1-G (-R I +8 I -]J I) -G (-R I -8 I +]J I)] 

S-R · 

+ )[- [g(u-S+8-JJ)+g(u-S-8+JJ)]•[l-G(-R1+8 1 -JJ 1)-G(-R 1 -8 1 tJJ')]du 

v,{S 1 -R 1) 

S 1 -R 1 -

+ f [1-G(-R+8-JJ)-G(-R-8+JJ)]·[g(u 1 -S 1+8 1 -JJ 1)+g(u 1 -S 1 -8 1 +JJ 1)]du 1 

vAS-R) _ 

S 1 -R 1 S-R -. 

+ J J [g(u-S+e -")+g(u-S-e+")] • [g(u' -S'+ e'-"')-tg(u'-S'-e'+"~]dudu •l 
V/(S-R) vlu 1 . _ 

= 1-{[1-G(-R+8-JJ)-G(-R-8+JJ)]·[1-G(-R 1+8 1 -JJ 1)-G(-R1 -8 1+JJ 1)] 

+ [1-G ( -R I +8 I -]J I) -G ( -R1 - 8 I +]J I)] • [G (-R+8 -JJ) -G (VI cs'-R I) -S+8 -]J) 

+G ( -R- 8+]J) -G (VI (SI-R I) -S- 8+]J)] 

+ [1-G c -R+8 -JJ) -G c -R-8+JJ)] • [G c-R' +8 1 -JJ 1 ) -G cv 1 (S-R) -s 1 +8 1 -]J 1 ) 

+G[-R 1 -8 1+JJ 1 )-G(VI(S-R)-S 1 -8 1+JJ 1)] 

+ [G(-R+8-JJfG(-R-8+JJ)]•[G(-R 1+8 1 -JJ 1 )-G(VI(S-R)-S 1+8 1 -JJ 1 ) 

+G(-R 1 -8 1 +JJ 1)-G(vi(S-R)-S 1 -8 1+JJ 1)] 

S 1 -R 1 -J [g (u 1 -s '+8 1 -JJ 1) +g (u 1 -s 1 -8 '+JJ 1)] • [G (v lu 1 -S+8 -JJ) -~:G (vlu' -s-e"'1-l)]ru1} 

v JlS-R) _ · 
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= [G (vI (S'-R 1 ) -S+e -J.l) +G (v/ (S'-R 1 ) -s- e+J.l)] • [1-G (-R 1 +o 1 -J.l 1 ) -r. (- P 1 - (~ 1 +11 1 )] 

+ G(v/(S-R)-S 1 +8 1 -J.l 1 )+G(v/(S-R)-S'-S'+J.l 1 ) 

S1 -R 1 

+ J [g(u' -s' +e' -].1 1 )+g(u 1 -s 1 -e '+J.l 1 ) ]· [G (v/u' -S+e-J.l) +G (v/u1-S-e+J.l)]ru' 
v/(S-R) 

To summarize, we have the following c.d.f. of the rectangular 

coverage, Z: 

0 for v < 0 

[G(v/(S 1 -R 1 )-S+8-J.l)+G(v/(S'-R')-S-8+J.l)]· 

[l-G(-R 1 +8 1 -J.l 1 )-G(-R 1 -8 1 +J.l 1 )] 

+G(v/(S-R)-S 1 +8 1 -J.l 1 )+G(v/(S-R)-S 1 -8 1 +J.l 1 ) 

[G(v/u'-S+8-J.l)+G(v/u'-S-S+J.l)]du 1 

for 0 < v < (S- R) (S 1 - R 1 ) 

1 for v > (S-R)(S 1 -R 1 ). 

(3.3) 

We must give a warning innnediately. When v = 0, the term V/u' in 

expression (3.3) must be defined to be 0. Otherwise, V/u' is 

tmdefined at the lower limit of the integration when v = 0. 

The approach we used here to derive Fz(v) in (3.3) is entirely dif

ferent from that used by Gay and Weeks (1973}. It is interesting to note 

that when we assume the target center (8, 81 ) = (0, 0) and the aimpoint 

(J.l, J.l 1 ) = (0, 0) , expression (3. 3) will reduce to expression -(3. 4) 

below, which is equivalent to the c.d.f. fotmd in Gay and Weeks (1973, 

pp. 20-21) except that we have a more compact and unified form here, ia, 



Fz(v) = 

19 

0 for v < 0 

[2G(v/(S 1-R?-s)] • [l-2G( -R')] +2G(v /(S-R)-S 1 ) 

S 1 -R 1 +1 4g(u 1 -S') G('v/u 1 -S)du 1 for O-;V<(S-R)(S 1 -R 1 ) 

'vt(S-RJ 

1 for v > (S-R)(S 1 -R 1). 

(3.4) 

The p.d.f. of Z, the rectangular coverage, is derived by taking 

derivatives of (3.3) and taking account of the "jumps" at v=O and 

v = (S-R)(S 1 -R 1 ). Leibnitz Rule is used in this differentiation. After 

simplification, we obtain: 

0 for v < 0 or v > (S-R)(S 1 -R 1 ) 

[G(-S+e-w)+G(-S-e+w)]+[G(-S'+e 1 -w')+G(-S'-8'+w')] 

-[G(-S+8-w)+G(-S-8+w)]·[G(-S'+e'-w')+G(-S'-8'+w')] 

for v = 0 

[l-G(-R'+8'-w')-G(-R'-8'+w')] · [g(v;tS'-R') -S+8-w) 

+g(v/(S'-R') -S-8+w)]· [l/(S 1 -R 1)]+ 

[1-G ( -R+8 -w) -G ( -R- 8+w)] • [g tv/ (s-R) -s' +8 1 -IJ 1 ) 

+g ('vflS-Rj -s' "'8 1 +w 1)] • [1/ (S-R) ]+ 

1 S 1 -R 1 

[g(u'-S'+8'-w')+g(u'-S'-8 1 +w 1 )]·[g(v/u 1 -S+8-w) 
vJt.S-R) 

+g(v/u' -S-8+w)] (l/u')du 1 

for 0 < V < (S-R) (S 1 -R') 

[1-G ( -R+e -w) -G ( -R- 8+w)] • [1-G (-R 1 +8 1 -w 1 ) -G ( -R 1 -8! +w 1 ) 

for v = (S-R) (S 1 -R 1 ). 

(3. 5) 
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A graph of fz(v) is as given in Figure 8. 

Figure 8. The p.d.f. of One Rectangular Coverage 

In this chapter, we have derived both the c.d.f. and the p.d.f. 

of one rectangul~r coverage. In the next two chapters we shall deve

lop the joint distribution, i.e., the joint c.d.f. and the joint p.d.f. 

of two linear coverages. 



GIA.PTER IV 

THE JOINT C.D.F. OF TWO LINEAR COVERAGES 

AND ITS EXTENSION 

1. The Joint c.d.f. of Two Linear Coverages 

We shall make use of the same notation defined in Chapter II with 

subscript "1" or "2" added to LT, S, T, e, S, and R to differentiate 

between Target 1 and Target 2. 

Suppose we have two linear targets. Target 1 has length ZT 1 with 

center at e1=2. Target 2 has length 2T2 with center at e2. (Let 

us adopt the convention that we always denote the target on the left 

as Target 1 and assign zero as the coordinate of its center). A linear 

pattern of length 2P aimed at point ~ is delivered on them. The distri

bution of Y, the landing point of the pattern center is assumed to be 

normal c~, 1) as before. 

The linear coverage of Target 1, c1, is again a function of Y. So 

is c2, the linear coverage of Target 2. That is: 

0 for. . y ~ -s 1 

Sl+y for -s < 1 y < -R 1 

cl =hl (y) = sl-Rl for .,.R < y ~ Rl 1 

sl-y for Rl < y < sl 

0 for Y ~ sl (4.1) 

and 
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r 
0 for y ~ -S2+u2 

s2-o2+y for -S2+02 < y -R +U 2 2 

c2=h2(y) 
/ 

s2-R2 for -R +G R2+()2 \ < y < 

I 
2 2 

I s2+e2-y for R2+82 < )' < s2 +(72 

l 0 for y : S+e2 . (4.2) 

These two ftmctions, (4.1) and (4.2), can be graphed on the same 

axis. One possible configuration of targets and pattern is shown on 

the diagram in Figure 9. We note again the maximum that the coverage 

c1 can attain is 

s1-R1 = min(2T1 , 2P), 

and the maximum that the coverage c2 can attain 1s 

c, 

-5, 1 -T, 9,'0 i T, -1,.+6, &, T,•9•\ s, 
I 

v,-s, u,-.S.-te, ~.-u, 
.S, -lL,tG~ 

Figure 9. The Functional Relationship between 
c1 , c2, andY 

y 
Sst&, 
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Now let us proceed to find the joint c.d.f. of c1 and c2, namely, 

Fc1,c2 (u1, u2) = Pr(c1 .~ ul' c2 ~ u2). Since Pr(c1 ~ u1, c2 ~ u2) will 

have different expressions, corresponding to the possible values u1 and 

u2 may assume, we first break the u1u2 plane into five disjoint 

regions: 

(1) ul < 0 or u2 < o 

(2) ul > sl -Rr and u2 ~ s2 - R2 

(3) ul > sl - R 1 and o ~ u2 < s2 - R 2 
(4) 0 ~ ul < sl -Rr and u2 > s2 - R 2 
(5) 0 ~ ul < sl - R 1 and o ~ u2 < s 2 - R2 . (4. 3) 

We can find the Pr(c1 ~ u1, c2 ~ u2) region by region as follows: 

For Region (1): u1 < 0 or u2 < 0, 

Pr(Cl ~ ul' c2 ~ u2) = 0 

since coverages are non-negative. 

For Region (2) : S R_ d S R ul : 1--~ an u2 ~ 2- 2' 

Pr(C1 ~ ~l' C2 ~ u2) = 1 

since cs1-R1) and cs2-R2) are the maxima of c1 and c2 

respectively. 

For Region (3): u1 ~ s1-R1 and 0 ~ u2 < s 2-R2, 

Pt(Cl ~ ul' c2 ~ u2) = Pr(C2 < u2) = l-Pr(C2 > u2) 
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= l-(G(S1 -u1 -~)-G(u1 -s1 -~)]. 

For Region (5): 0 ~ u1 < s1-R1 and 0 ~ u2 < s2 -R2, we have more 

than one case to consider. Before we consider the possi-

ble cases, let us first adopt the following notation: 

Let A1 = u1 -s1 (the ''rear foot'' of c1 curve) 

B1 = s1-u1 (the "front foot" of c1 curve) 

A2 = u2-s2+e 2 (the "rear foot" of c2 curve) 

B2 = s2-u2+e 2 (the "front foot" of c2 curve). (4. 4) 

Since s1-u1 and s2-u2 are positive numbers, we have the rela

tionship that A1 < B1 and A2 < B2. 

With these two restrictions, there are six possible arrangements 

of these four values in Region (5): 

Case 1: Al ~ A2 < Bl < B2 -
Case 2: Al < Bl ~ A2 < B2 

Case 3: A2 ~!\ < B2 < Bl 

Case 4: A2 < B2 ~. Al < Bl 

Case 5: Al ~/A2 < B2 < Bl 

Case 6: A2 ~Ar < Bl < B2. ( 4. 4a) 

To prove that some of the above cases are impossible cases, we 

need the following lemmas: 



Lemma 1: It is impossible that A2 ~ A1 , 

Proof: Suppose A2 ~ A1. By definition, we have 

u2-s2+e 2 ~ u1-s1, which implies 

-S2+e 2 < (S1-R1) - s1 since 0 ~ u1 < s1-R1 and 

o ~ u2 < s 2-R2. 

This implies 

-T -P+T +T < -IT -PI 2 1 2 1 

Hence, 

r 1-P < -IT1-PI, which is impossible. 

Thus, we have proved Lemma 1 by contradiction. 

Lemma 2: It is impossible that B2 ~ B1• 

Proof: Suppose B2 < B1. By definition, we have 

s2-u2+82 < sl-ul, which implies 

This implies 

0 ~ u1 < s1-~ and 

o ~ u2 < s 2-R2. 

IT2-PI+T1+r2 < T1+P since e2 ~ r 1+r2. 

Hence, 

lr2-PI < P-r2 

that is 

IP-r2 1 < P-r2, which is impossible. 

Again, we have proved Lemma 2 by contradiction. 
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Therefore, we can rule out Case 3, Case 4, and Case 6 by Lemma 1; 

and Case 5 by Lemma 2. There are only Cases 1 and 2 left as possible. 

Furthermore, we note from Figure 9 that the problem of finding 

Pr(C1 ~ u1, c2 ~ u2) is really a problem of finding Pr[y*(A1, B1)U 

(A2, B2)] , which in turn can. be solved by finding 1-Pr [yE (A1, B1)U(Az, B2) ]. 



We proceed. now to find Pr(C1 ~ u1, c2 ~ u2) in Region (5): 

Under Case 1, the union of (A1, B1) and (A2, B2) is (A1 , B2), i.e., 

Cu1-s1, s 2-u2+e 2). Hence 

Pr(c1 ~ ul' c2 ~ u2) = l-[G(s2-ute2-11)-G(u1-s1-).l)] 

and under Case 2, (A1 , B1) and (A2, B2) are disjoint, the union of 

them is then (u1-s1, s1-u1) and (u2-s2+e 2, s 2-u2+e 2). Hence 

P2(Cl ~ ul' c2 ~ u2) - l-[G(Sl-ul-11)-G(ul-sl-)J)+G(S2-u2+e2-11) 

-G(u2-s2+e 2-11)]. 
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To stmmlarize, we have the following c.d.f. of c1 and c2, the linear 

coverages of Target 1 ~d Target 2, when a linear pattern is delivered 

on them: 

= 

0 

1 

for u1 < 0 or u2 < 0 (Region (1)) 

for ul > sl-Rl and u2: s2-R2 (Region (2)) 

l-G(s2-u2+e 2-)J)+G(u2-s2+e 2-11) 

for ul: sl-Rl and 0 ~ u2 < s2-R2 (Region_(3)) 

l-G(S1-u1-)J)+G(u1-s1-11) 

for 0 < ul < sl-Rl and u2 > s2-R2 (Region (4)) 

l-G(S2-u2+e 2-11)+G(u1-s1-11) 

for 0 ~ ul < sl-Rl and 0 ~ u2 < s2-R2 

and A1 ~ A2 < B1 2 B2 (Region (5), Case 1) 

1-G cs1-u1-11) +G (u1-s1 ~).1) -G cs2'-u2+e 2 -).1) +G (u2 -s2 +e 2 -).1) 

for 0 ·~ u1 < s1-R1 and 0 ~ ui < s 2-R2 
l 

and A1 < B1 ~ A2 < B2 (Region (5), Case 2) 

(4. 5) 
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where A1, B1, A2, and B2 are defined in (4.4). 

Therefore, F(u1, u2) assumes the same form in Regions 1, 2, 3 and 

4; but in Region 5, it may assume different forms depending on the order-

.1ng of the values of A1 , B1, Az , and B2 . 

Because of the different expressions in Region (5), this distribu

tion function of two linear coverages is not easy to graph. In Figure 

10, the diagram is given for the special case exemplified by the diagram 

in Figure 9, where the order of arrangement is always A1 : A2 < B1 : B2 

(Case 1) when (u1 , u2) is in Region (5). 

Figure 10. A Distribution Function of Two 
Linear Coverages 



2. Some Extensions 

In practice, when a linear pattern is delivered on two linear 

targets, a more interesting question is: '~at is the joint probabi-

lity of covering Target 1 at least u1 and covering Target 2 at least 

u2?" That is Pr(C1 ~ u1 , c2 ~ u2). This question can be answered 

by finding Pr{y£[~, B1](l[A2, B2]} in Figure 9. Expression (4.6) 

below answers this question for different (u1 , u2) values: 

0 for u1 > s1-R1 or u2 > s 2-R2 

1 for u1 < 0 and u2 ~ 0 

G(S2 -u2+e 2 -~)-G(u2 -s2+e 2 -~) 

for. u1 ~ 0 and 0 < u2 < s 2-R2 

G(s1 -u1 -~)-G(u1 -s1 -~) 

for 0 < u1 ~ s1-R1 and u2 < 0 

G(S1 -u1 -~)-G(u2 -s2+e 2 -~) 

for 0 < ul ~ sl-~ and 0 < u2 < sl-Rl 

and A1 ~ A2 < B1 ~ B2 
I 

0 for 0 < u1 ~ s1-R1 and 0 < u2 ~ s1-R1 

and A1 < B1 ~ A2 < B2 • 
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( 4. 6) 

Furthennore, we can answer this question for any number of linear 

targets. Suppose, for example, we have four linear targets with a 

linear pattern delivered on them, then 



provided that u1 > 0 and u4 > 0, and u2 : xr2 and u3 : 2T3. 

These restrictions appear to be reasonable ones. The reason that we 

can ignore the statements about e2 and e3 in the above is that once 

the statements about e1 and e4 are satisfied, Target 2 and Target 3 

must be covered completely, which means the statements about c2 and 

e3 are automatically satisfied. 

In general, we have 

Pr(e1 ~ u1 , e2 > u2, ... ,en> un) = Pr(e1 ~ u1 , en~ un) 
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provided that u1 > 0 and u > 0, and u. < 2T. for i = 2, 3, ... n-l. 
n 1 1 

Once we reduce the problem of n linear coverages to a problem of 

two linear coverages, we can find the joint probability according to 

eXpression (4.6). 

In next chapter, we shall derive the joint p.d.f. of two linear 

coverages from the c.d.f. of two linear coverages obtained in this 

chapter. 



Cl-IAPTER V 

1HE JOINT P.D.F. OF TWO LINEAR COVERAGES 

We first realize that the p.d.f. of two linear coverages is 

neither continous nor d~screte, but a mixture of them. There are four 

points which have positive probabilities. They are the points (0, 0) 

(0, s2-R2), cs1-R1, O), and (S1-Rr, s2-R2). The probabilties of these 

four points can be found as follows: 

Pr(u1=0, u2=0) 

· = Pr(u1 ~ 0, u2 ~ O)-Pr(u1 < 0, u2 < O)-Pr(u1 < o, u2 < O) 

+Pr(u1 < 0, u2 < 0) 

= F(O, 0)-F(O,"·O-)-F(O-, O)+F(o-, o-) 

where F(O, o-) = 
lim 
2-+0_F(O, 2) 

F(o-, 0) = 
lim 
2-+0_F (2' 0) 

F(o-, 0-) = lim F(£ 
2-+0- ' k). 

k-rQ-

According to (4.5), 

f(O,O) = l-G(S2+e 2 ~~)+G(-S1 -~); for -s1 < -S2+e 2 < s1 < S2+e 2 

or 

F (O, 0) l-G(S1 -~)+G(-S1 -~)-G(S2+e 2 -~)+G(-S2+e 2 -~), 

for -S1 < s1 < -S2+e 2 < s2+e 2• 

Hence,. 
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= [1-G(S2+e 2-ll)+G(-S1 -ll)]-0-0+0 = 1-G(S2+e 2-ll)+G(-S1-11) 

. for -s1~-S2+e 2 < s1 : S2+e 2 , 

or 

= 1-G(S1-ll)+G(-S1-ll)-G(S2+e 2-ll)+G(-S2+e 2-ll) 

for -s1 < s1 < -S2+e 2 < S2+e2 . 

(5 .1) 

Pr(u1=0, u2=s2-R2) 

= Pr(~: o, u2 : s 2-R2)-Pr(u1 < o, u2 < s 2-R2)-Pr(u1 < o, u2 : s2-R2) 

+ Pr(u1 < o, u 2 < s2-R2) 

= F(O, s 2-R2)-F(O, s 2-R2-)-F(O; s 2-R2)+F(O; s2-R2-) 

where, according to (4.5); 

or 

= 1-G(s1-ll)+G( -s1-11) -G(R2+e 2-ll)+G( -R2+e 2-ll) 

for -s1 < s1 : -R2+e 2 < R2+e 2 . 

Hence, 

= [1-G(S -ll)+G(-S -ll)]-[1-G(R +e -ll)+G(~S -ll)]-0+0 1 1 2 2 1 
= G(R +e -ll)-G(S -ll) 2 2 1 

or 

= G(R +e -ll)-G(-R +e -ll) 2 2 2 2 , 

(5. 2) 



= Pr(u1 : s1-R1, u2 : O) - Pr(u1 : s1-RI, u2 < O) 

-Pr(u1 < s1-R1, Uz :. 0) + Pr(ul < Sl-Rl' u2 < 0) 

= F(S1-R1, O)-F(S1-R1, o-)-F(S1-R1-, O)+F(S1-R1-, o-) 

where, according to (4.5), 

F(S -R - 0) = 1-G(S +e -~)+G(-R -~) 1 1' . 2 2 1 

or 

F(S1-RI-, 0) = 1-G(Rr-~)+G(-R1 -~)-G(S2+e 2 -~)+G(-s2+e 2 -~) 

for -R1 < Rr : -s2+e 2 < s 2+e 2. 

Hence, 

Pr(u1=s1-R1, u2=0) 

= [1-G(S2+8 2 -~)+G(-S2+e 2 -~)]-0-[1~G(S2+e 2 -~)+G(-R1 -~)]+0 

= G(-S2+e 2 -~)-G(-R1 -~) for -R1 : -S2+e 2 < R1 2 s 2+e 2, 

or 
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= [1-G(S +8 -~)+G(-S +8 -~)]-[1-G(R -~)+G(-R -~)-G(S +8 -~)+G(-S;tB -ll)] 2 2 . 2 2 1 . 1 2 2 22 

Finally, 

Pr(u1=s1-R1, u2=s2-R2) 

= Pr(u1 : s1-R1, u2 : s2-R2)-Pr(u1 : s1 -~, u 2 < s 2-R2) 

-Pr(ul < s1-~' u2: s2-R2)+Pr(u1 < s1-~' u2 < s2-R2) 

(S. 3) 

= F(S1-R1, s2 -R2)-F(S1 -~, s 2-R2-)-F(S1-R1-, s2-R2)+F(S1-R1-, s2-Rzl 
where, according to (4.5), 

F(S1-R1-, s 2-R2-) = 1-G(R2+8 2 -ll)+G(-R1 -~) 

for -R1 < -R2+8 2 < R1 : R2+8 2, 

or 



F(S1-R1-, s 2-R2-) = l-G(R1 -~)+G(-R1 -~)-G(R2+e 2 -~)+G(-R2+e 2 -~) 

for -~ < R1 2 -R2+e 2 < R2+e 2. 

lienee, 

= l-[l-G(R2+e 2 -~)+G(-R2+e 2 -~)]-[l-G(R1 -~)+G(-R1 -~)] 

+[1-G(R2+e 2 -~)+G(-~-~)J 

or 

G(R -~)-G(-R +8 -~) 1 2 2 

l-[l-G(R2+e 2 -~)+G(-R2+e 2 -~)]-[1-G(R1 -~)+G(-R1 -~)] 

+[l-G(R1 -~)+G(-R1 -~)-G(R2+e 2 -~)+G(-R2+e 2 -~)] 

= o for -R1 < R1 < -R2+e 2 < R2+e 2. 
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(5 .4) 

Besides these four points, whose probabilities were obtained in 

(5.1), (5.2), (5.3), and (5.4) above, the remaining probability is 

concentrated on four open intervals: 

{(u1, u2) iu1=o, o < u2 < s 2-R2} 

{(ul' Uz) IO < ul < sl-Rl' uz=O} 

{(u1, u2) lu1=s1-R1, o < u2 < s 2-R2} 

{(ul, Uz) lo < ul < sl-Rl, uz=Sz-Rz}. 

The probability mass concentration on these four open intervals cqn be 

obtained by following a similar argtunent by which we obtained expressions 

(5.1), (5.2), (5.3), and (5.4). We decline to do it because of the 

following reasons: Firstly, for each open interval, we shall have three 

alternative expression depending on the order of arrangement of A1, A2, 



B1, and B2. Secondly, these probabilities are not essential in de

riving the joint p.d.f. of two linear coverages. 
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Apart from these four points and four open interval, the remaining 

portion of the u1u2 plane contributes no probability to the joint 

distribution function F(u1, u2). In other words, the joint p.d.f. 

for the remaining portion is 0. This can be shown by taking derivatives 

twice on F(u1 , u2) with respect to u1 first and then with respect to 

u2• 

Since this distribution function is a mixture of continuous and 

discret distributions, the values of the function F(u1 , u2) come 

from the p.d.f., f(u1, u2), by summing over (1) the probabilities of 

the points which have positive values and belong to the region 

{ (x, y) I x ~ ul' y ~ u2}; and (2) the areas of the "walls" 'whose "base 

lines" belong to the region { (x, y) I x ~ ul' y ~ u2}. There are four 

walls built around the rectang-le {(x, y)IO ~·x ~ s1-R1 , 0 ·~ y ~ s2-R2}. 

TI1e value of F(ul' u2) on these four case lines (open intervals) are 

obtained from (4.5) to be: 
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l-G(S2 -u2+e 2 -~)+G(-S1 -~) 

for ul=O, 0 < Uz < s2-R2 and -Sl : u2-S2+e2 < sl < s2-u2+82 

l-G(S1 -~)+G(-S1 -~)-G(S2 -u2+e 2 -~)+G(u2 -s2+e 2 -~) 

for ul=O, 0 < u2 < s2-R2 and -sl < Sl· ::: u2-S2+82 < s2-u2+e2 

l-G(S 2+e 2 -~)+G(u1 -s1 -~) 

for o < u1 < ~~R1,u2=o and u1-s1 : -s2+e 2 < s 1-u1 < s 2+e 2 

= l-G(s1 -u1 -~)+G(u1 -s1 -~)-G(S2+e 2 -~)+G(-s2+e 2 -~) 

for 0 < ul < sl-Rl' u2=0 .and ul-sl < sl-ul < -S2+82 < S2+82 

1-G(S -u +e -~)+G(u -S?+e -~) 
2 2 2 2 '" ,2 

for u1=s1-R1, o < u2 < s 2-R2 

l-G(S1 -u1 -~)+G(u1 -s 1 -~) 

for 0 < u1 < s1-R1, u2=s2-R2. (5.5) 

We can now proceed to derive the p.d.f. of (C1 , c2), f(u1, u2). 

As we have indicated before, all the probability mass is concentrated 

on the four points and four open intervals. The values of f(u1, u2) 

on the four points have been obtained in (5.1), (5.2), (5.3), and (5.4). 

Vlliat follows will give us the values of f(u1, u2) on the four open 

intervals. 

The value of f(ul' uz) in the open interval ul=O, 0 < u2 < s2-R2 

can be obtained by directly taking the derivative of F(u1, u2) from 

(5.5) with respect to u2. Namely: 



or 
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a. 

a.uz 

for u1=o, o < u2 < s 2-R2 and ~s1 ~ u2-s2+8 2 < s1 < s2-u2+8 2, 

a.uz 

= g(S2-u2+82-JJ)+g(uz-s2+82-JJ) 

for ul=O, a < u2 < s2-R2 and -sl < sl ~ u2-S2+82 < s2-u2+82. 

(5 .6) 

Th~ value of f(u1, u2) in the open interval 0 < u1 < s1-R1 , u2=o is 

similarly obtained by taking the derivative of F(u1, u2) with respect 

to u1: 

or 

a. [1-G(S +8 -JJ)+G(u -s -JJ)] = g(u -s -JJ) 2 2 1 1 1 1 

a. [l-G(s1-u1-JJ)+G(u1-s1-JJ)-G(S2+82 -p)+G(-s2+82-JJ)] 
r 

= g(Sl-ul-JJ)+g(ul-sl-JJ) 

for 0 < u1 < s1-R1, Uz=O and u1-s1 < s1-u1 < -S2+82 < s2+e2. 

( 5. 7) 

As for the open interval u1=s1-R1 , 0 < u2 < s 2-R2, we must be 

more careful. Taking the derivative of F(u1 , u2) with respect to 

u2 will not give us the correct f{u1 , u2) in this open interval. 

Before we present the correct way to find f(u1, u2) in this interval, 

let us take a closer 'look at the nature of F(u1, u2) in this interval. 

Figure 11 shows how the value of F(u1, u2) increases when u2 moves 
+ along this interval from (~=s1 -R1 , u2=0) to (u1=s1-R1 , u2=(S2-R2J): 



t/1e op<n inf-Pm/ 

t 1.,;:: D, r <. u 2 <:: sl.- tc\. 

Figure 11. When u2 Increases Along the Interval 

ul = sl-Rl' 0 < Uz < s2-R2 
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As u2 increases along this interval, the value of F(u1, u2) will 

increase too. The point we are trying to make here is that the in

creasing of the F(u1, u2) value does not merely come from the pro

bability mass of the interval u1=s1-R1, 0 < u2 < s 2-R2, but it also 

comes from the probability mass of the· interval u1=o, 0 < u2 < s 2-R2. 

Therefore, before we take the d~rivative of F(u1, u2), we have to 

subtract this extra, contribution of probability mass corning from the 



[F(u1, u2) in the interval u1=s1-R1, 0 < u2 < s 2-R2]

[F(u1, u2) in the interval u1=o, 0 < u2 < s 2-R2] 

= [l-G(s2 -u2+e 2 -~)+G(u2 -s 2+s 2-~)]-[l-G(s2 -u2+s 2 -~)+G(-s1 -~)] 

= G(u2 -s2+s 2~~)-G(-s1 -~). 

for -s1 ~ u2-s2+e 2 < s1 ~ s 2-u2+s 2, 

or = [l-G(S2 -u2+e 2 -~)+G(u2 -s2+s 2 -~)] 

-[1-G(S1 -~)+G(-S1 -~)-G(S2 -u2 +s 2 -~)+G(u2 -s2+s 2 -~)] 

= G(S1 -~)+G(-S1 -~) 

for -s1 < s1 ~ u2-s2+e 2 < s 2-u2+s 2. 
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(5.8) 

Now we can take the derivative of (5.8) with respect to u2 and get 

f(u1 , u2) in this open interval: 

g(uz-Sz+sz-~) 

for u1=s1-R1, 0 < u2 < s 2-R2, and 

-sl ~ uz-Sz+ez < sl ~ sz-uz+sz 

for u1=s1-R1 , o < u2 < s 2-R2, and 

-sl < sl ~ uz-Sz+sz < sz-uz+sz. 

(5.9) 

The same precaution must be taken when we derive f(u1, u2) for the 

open interval 0 < u1 < s1-R1 , u2=s2-R2. Following a similar argument, 

we take the derivative of 

[F(u1 , u2) in the interval 0 < u1 < ~1 -R1 , u2=s2-R2]

[F(u1, Uz) in the interval 0 < ul < sl-~' uz=O] 

and get: 



g(Sl-ul-~) 

for 0 < u1 < s1-R}, u2=s2-R2, and 

ul-Sl ~ -S2+e2 < Sl-ul ~ S2+e2 

for 0 < ul < sl-Rl' Uz=Sz-Rz, and 

ul-Sl < Sl-ul ~ -S2+e2 < Sz+e2 
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(5 .10) 

To summarize, we put (5.1), (5.2), (5.3), (5.4), (5.6), (5. 7), 

(5. 9,) and (5.10) together. Expression (5.11) below gives the joint 

probability density function of two linear coverages, which is a mixed 

p.d.f: 

l-G(S2+s 2 -~)+G(-S1 -~) 

for u1=o, u2=0, and -s1 ~ -S2+e 2 < S1 < S2+e2 
l-G(S1 -~)+G(-S1 -~)-G(S2+s 2 -~)+G(-S2+e 2+~) 

for u1=o, u2=o, and -s1 < s1 ~ -s2+e 2 < S2+e 2 

G(R2+e 2 -~)-G(S1 -~) · 

for u1=0, u2=s2-R2, and -s1 < -R2+e 2 < S1 ·~ R2+s 2 

G(R2+s 2 -~)-G(-Rz+B 2 -~) 

for u1=o, u2=s2-R2, and -s1 ~ S1 < -R2+e2 < R2-s2 

G(-S2+e 2 -~)-G(-R1 -~) 

for u1=s1-R1, u2=0, and -R1 < -S2+e 2 < R1 < S2+e 2 

G(R1 -~)+G(-R1 -~) 

for u1=s1 ~R1 , u2=o, and -R1 < R1 < -s2+s 2 < s2+e 2 



G(R1-~)-G(-R2+s 2 -~) 

for u1=s1-R1 , u2=s2-R2, and -R1 < -R.z+s2 < R1 < R2+s 2 

0 

for u1=s1-R1 , u2=s2-R2, and -R1 < ~ < -R2+s 2 < R2+s 2 

g (Sz -uz +sz -~). 
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for ul=O, 0 < Uz < s2-R2, and -sl ~ u2-S2+82 < sl < s2-u2+82 

g(Sz-uz+sz-~)+g(uz-sz+sz-~) 

for ul=O, 0 < Uz < sz-Rz, and -Sl < sl ~ u2~S2+82 < S2-u2+82 

g(~ -sl-~) 

for 0 < u1 < s1 -~, u2=0, and u1-s1 < -S2+s 2 < s1-u1 < S2+s 2 

g(ul-sl-~)+g(Sl-ul-~) 

for 0 < ul < sl-Rl' Uz=O, and ul-sl < sl-ul < -Sz+82 < Sz+82 

g(uz-Sz+sz-~) 

for ul=Sl-Rl' 0 < Uz < sz-Rz, and -sl ~ Uz-Stez < sl ~ Sitiz+82 

. 0 

for ul=Sl-Rl' 0 < Uz < sz-Rz, and -Sl < sl ~ u2-S2+8z<Sz-ut8z 

g(Sl-ul-~) 

for 0 < u1 < s1-R1 , u2=s2-R2, and u1-s1 < -S2+e 2 < s1-u1 ~Sz-ffiz 

0 

for 0 < u1 < s1-R1, u2=S2-R2, and u1-s1 < s1-u1 < -S2+s 2 <Sz-ffiz 

0 otherwise • 

(S .11) 

In Figure 12, we give a diagram to show how this p.d.f. may look like. 

Again this diagram is a special case where!the order of arrangement is 

always A1 ~ A2 < B1 ~ B2 when (u1 , u2) is in region (5). 



1 

>v, 
g(u2-s2+e2-ll) 

:-...::::::::::::....._---.J _ ___;,_lr G (1\ -ll) - G (-R + e -ll) 
cs1-R1' s2-Rz) 2 2 

Figure 12. A p.d.f. of Two Linear Coverages 



After we have obtained the joint c.d.f. and the joint p.d.f. of 

two linear coverages, the natural extension-is to consider the joint 

c.d.f. of two rectangular coverages. The mathematical expression for 
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it will be obtained in next chapter, however, unfortunately, this expres

sion is of little practical usage as will be- seen shortly. 



CHAPTER VI 

TIlE JO HIT C. D. F. OF TI'!O RECTANGULAR COVFRAGFS 

1. An Attempt to Use the Joint p.d.f. 

of Two Linear Coverages 

In this chapter, we shall consider the situation where a rectan

gular pattern is delivered on two rectangular targets. To find this 

joint c. d. f. of two rectangular coverages, our first teT'lptation is to 

make use of the joint p.d.f. of two linear targets Fhich ,,!e have de-

rived in Chapter V. 

If we consider fc1 , c/u1 , u2) m expression (5 .11) as the 

joint p.d.f. of two linear coverages in the range direction, we may 

then use a similar argument to obtain the joint p.d.f. of two linear 

coverages in the deflection direction, fc1 ,, c2 , (u1 ', u2'). Due to 

are the fact that the two random vectors (C1 , c2) and (C1 ', C2') 

independent, we shall have the joint p.d.f. of (C1 , c2, c1 •, c2 ') as 

the product of them, l. e. , 

Now letting z1 , z2 be the rectangular coverages of Target 1 and 

Target 2 respectively, we shall have the following relationships: 
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(6.1) 



~1 = C1·C1 1 

and ~ 2 = C2·C2 1 • 
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Theoretically, the joint p.d.f. of z1 and ~2 can be obtained by 

integrating (summing) the joint p.d.f. in expression (6.1) over the pro-

per regions that is 

whereA= { (u1 , u1 1 ) I 0 ~ u1 
1 v1 

-{(u1' u1 )I u I 

1 

u, 
s,-R, t----.-~t----. 

u 1) 
2 

0 < U 1 < S 1 -R 1 } - 1 - 1 1 

(6. 2) 

v1 I S I R_ '} S -R < u1 ~ 1 -~~ · 
1 1 

I I II\ 

I /1 !));, 
---+--~--------~--~v' 

-:5.'-R; I 
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Although the joint p.d.f. of (c1, c2, c1 ', c2') can be obtained 

explicitly for (6.2), to carry out the integration in (6.2) is by no 

means .an easy task. First of all, the joint p.d.f. of (C1 , c2, C1', C2') 

in (6.1) is a multiple-faceted function defined in four-dimensional 

space. To make things worse, this is a joint p.d.f. of a mixed random 

vector. This means that when we integrate over the proper region, we 

have to sum up the probability mass of some points, some areas, and 

some volumes in this four-dimensional space. If this is not impossible, 

it is certainly not feasible. 

In the next section, we shall consider another approach. 

2. An Alternative Approach 

Another way to look at this problem of finding the joint c.d.f. of 

two rectangular coverages is to find the right region on the two-dimen

sional plane such that the event (Z1 ~ v1 and z2 ~ v2) will be satis

fied when the center of the pattern falls within that region. This 

approach was used by Gay and Weeks (1973) in their derivation of the 

c.d.f. of one rectangular coverage. In the case of~ rectangular 

target, the region corresponding to the event (Z ~ v) for 

0 $ v < (S-R)(S'-R') is the complement of Din Figure 13 on next page. 
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D 

te-R ~ y ~ 8+R . 1 ~ 
Y 1 = 8 1 -S 1+vl 

(S-R) 
• fe-R~ y ~ 8+R ·} 

~ I = 8 I +S I -VI 
y · (S-R) 

(8, 8 1 ) 

{ a'~R' ~ ~· ~ a'•R' ( 

y - 8 - S+ I ( s I - R I ) J 

all the curves at the four corners are defined as 

ly-el·ly 1 -e 1 1-s'ly-el-sly 1 -e 1 I+S•S 1 = v. 

Figure 13. The Region Corresponding to the Event 
(3 ~ v) 
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The boundary of the region D consists of two segments in the 

range Jirection ( I j) , two segments in the deflection direction ( = ) , 
and the curves at the corners c~}). An expression defining the' four 

curves may be obtained if we realize that (2.2) can be simplified to 

0 when y ~ -S+e or y ~ S+e 

C=h(y) S-R when -R+e < y < R+e 

s-jy-eJ when -S+e < y < -R+8 or R+e < y < S+e 

and that 

v == C·C' = (S-jy-e!)(S'-Iy'-e'j) = Jy-eJ·Iy'-e'I-S'Iy-el-Siy'-e'I+S·S'. 

The definition of the boundary used in Figure 13 is equivalent to that 

used by Gay and Weeks (1973, p. 10, Table 5). 

Thus the way they obtained the c.d.f. of a rectangular coverage 

for 0 : v < (S-R) (S'-R') was essentially 

Fz(v) = Pr[Z : v] = Pr[(Y, Y')4DJ 

= 1 - J Jfcy, y')dy dy' 
D 

where Dis defined in Figure 13 and f(y, y') 'is defined in (2.1). 

For v < 0 and v > (S-R)(S'-R'), the values of Fz(v) are 0 and 1 

respectively. 

If instead of one target, we have two targets under consideration, 

we certainly can construct two regions aroUnd Target 1 and Target 2 

in exactly the same way that we constructed the D region illustrated in 

Figure 13. The diagram for two targets.may look like what is shown in 

Figure 14. 



D, 

Figure 14. The Region Corresponding to the Event 
(ll ~ Vl' lz ~ Vz) 
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The bmmderies of D1 and D2 can be obtained by subscripting the R, S, 

e, and v in Figure 13 with "1" and rrz". 

It is clear from this diagram that the joint p.d.f. of two rec-

tangular coverages for 0 ~ v1 < (S1-R1)(s1 '-R1 ') and 

0 ~ v2 < (S2-R2)(S2'-R2'), can be obtained by integrating over all the 

plane outside n1 v n2, that is, 
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= 1-Pr [ (Y, Y') E D1 U D2] 

" 1- [ 1 1£ (y. y. ) dy dy. • f f£ (y. y.) dy dy. - 1 f f (y. y') 

Dl Dz Dlf\ Dz 

dy dy'] 

for 0 ~ v1 < (S1-R1)(s1•-R1 ') and 

o ~ v2 < cs2-R2)cs2 '-R2') 

For (v1, v2) values other then that defined above, we have: 

F 
Zl' 

= 

Zz (vl' vz) 

0 

1 

-Jif(y, y') 1 

Dl 

dy dy' 

for v1 < 0 or v2 < 0 

for v1 > (S1-R1)(S1 '-R1 ') 

and Vz > (Sz-Rz)CSz'-Rz') 

for 0 ~ v1 < (S1-R1)(S1 '-R1') 

and Vz > (Sz-Rz)CSz'-Rz') 

1 - llf(y, y') dy dy' for v1 > (S1-R1)(S1 '-R1') 

D2 

We note that in (6. 3) and (6. 3a) , 

which is, by expression (3.3), 

(6. 3) 

(6. 3a) 



Similarly, 

f f f(y, y 1)dy dy 1 

n2 

can be expressed explicitly as 

[1-G(-R2 1 +e 2 ~-~~)-G(-R2 1 -e 2 ~+~~)] 

- G(v2fcs -R )-s2~+e2~-v~)-G(v2;(s -R )-s2~-e2~+~~) 
2 2 2 2 

[G (V2; u I' -S2+e2 -~) +G cV2 I u I -s2- 82+~)] du I • 

However, the tenn 

J J f (y' Y I ) dy dy I 

Dl n D2 

so 

(6.4) 

(6. 5) 

in expression (6.3) is the one which causes a lot of trouble. The dif-

ficulty arises because there are so many possible shapes which the 

region n1nn2 may take that, a systematic treatment by a computer 
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program is almost impossible. In Figure 15 below, we give a few shapes 

that D1 n D2 may assume: 

;: I 
I 

I 

:~ 

~---~/ 

Figure 15. Some Possible Shapes D1nD2 May Take. 

To compound the problem, there are so many ways that we may or should 

partition the region "properly" that it is very hard to instruct a 

computer to do it. (The dotted lines in the above regions indicate a 

possible way of partitioning them.) 

To be fair, the problem is not as difficult when the numerical 

values of the configuration are given. If we are given specific values 

of T1 , T2, P, e2, e2', ~, ~~, v1 and v2, then we can draw a diagram 

like the one in Figure 14, and partition the D1nD2 region properly 



that we can integrate over it. Nevertheless, as far as,computer 

programming is concerned, this approach again leads us nowhere. 
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Thus far, we have witnessed the collapse of two attemps to obtain 

a computer programmable formula for the joint c.d.f. of two rectangular 

coverages although in both cases "mathematical expressions" ((6.2), 

(6.3), and (6.3a)) were obtained for it. We shall take up this subject 

again in Chapter VIII. In the next chapter, we shall confine ourselves 

to the investigation of the joint probabilities of some "interesting" 

and "useful" events. For example, the joint probability of hitting 

both targets, of missing both targets, of achieving the maximum possi

ble coverage on both targets, etc. 



CHAPTER VII 

THE JOINT PROBABILITIES OF SOME 

INTERESTING EVENTS 

1. The Probability of Hitting Both Targets 

Although in general we cannot obtain the joint probability of two 

rectangular coverages exactly, it is possible to find the exact joint 

probability of some "interesting" events such as the ones given in 

Questions (1) through (5) in Chapter I, Section 1. First, let us take 

Question (1) ''What is the probability of hitting both targets?" 

Around Target 1, we can construct a shaded rectangle (call it K1) 

such that when the pattern center lands ~nside it, we shall have some 

coverage on Target 1, and,when the pattern center lands outside it, 

we shall have a complete miss on Target 1. Figure 16 shows the bound-

aries of this rectangle. 

The marginal probabilities of hitting and missing Target 1 can be 

obtained as Pr(hitting Target 1) 

== !! f:Qy, y') dy dy' == [G(S1-l1)-G(-S1-l1)]·[G(S1 '-l1')-G(-S1 '-l1')] 

Kl 

== a (7.1) 

and 

Pr(missing Target 1) == 1 - a. (7.2) 

(Note the closed form of these solutions) 
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Figure 16. The Rectangle Corresponding to the Event 
"Hitting Target 111 
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Similarly, we can construct another shaded rectangle (call it K2) 

around Target 2 (with center at (e 2, e2')). The marginal probabilities 

of hitting and missing Target 2 are: 

Pr(hitting Target 2) 

f ff(y, y') dy dy' 

K2 

and 

[G(e 2+s 2 -~)-G(e 2 -s 2 -~)J· 

[G(e 2 '+S 2 '-~')~G(e 2 '-s 2 '-~')J 

Pr(missinr, Target 2) = 1- b .. 

Figure 17 shows both K1 and K2 on the same diagram. 

b (7. 3) 



. y 

Figure 17. The Rectangle Corresponding to the Event 
"Hitting Both Targets" 
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From this diagram, it is not difficult to see that 

Pr(hitting both targets) = f f f (y J y I ) dy dy I • 

K1nK2 
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(7.5) 

The expression given in (7 .5) shall again give an ans\ver in closed 

fonn~ The actual expression for (7. 5) depends on the way K1 and K2 

intersect. A few examples are given in Figure 18. 

j.(l 

1<1 () "'2. 

I<~ 

kl. 

I< I 
/ 

1<, "':L 

I 

',.Q.tc. 

~I 

Figure 18. Types of Intersection of the Sets 
K1 and K2 

--

1<2. 
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For each of the above intersections, the limits of integration for 

region K1nKz are different. A way to exhaust all the possible ways of 

intersection is to consider the linear intersection for each of the 

range direction and the deflection direction first and then take the 

product. 

Let us start with the intersection in the range direction. We note 

first that the extent of the boundary segment in the range direction is 

from -s1 to s1 for K1, call this Segment 1, and from 8z-Sz to e2+s2 for 

K2, call this Segment z. For ease of discussion in what follows, let 

us define 

Ll = -s (the "tail" of Segment 1 in the range direction) 1 

Hl ::: sl (the "head" of Segment 1 in the range direction) 

Lz ::: 8z-Sz (the "tail" of Segment z in the range direction) 

H = 82+Sz (the ''head'' of Segment z ln the range direction). (7.6) 2 

Since both s1 and s2 are positive numbers, we have the following obvious 

relationships: 

11 < H1 and Lz <Hz. 

The definition given in (7.6) and the relationship among 11 , H1 , 12, 

and H2 may make one recall Definition ( 4. 4) and the relationship among 

A1, B1, Az, and B2 in Chapter IV. They are indeed closely · related. 

As a matter of fact, 11, H1, 12, and H2 are special cases of~' B1 , A2, 

and Bz when ul = u2 = 0. Similar to expression (4.4a), we find the six 

ways Segment 1 and Segment Z intersect to be: 

L 11 < Lz < HI ~ Hz 

2. 1z < 1I < Hz ~ Hl 

3. LI < HI < 1z < Hz 



4. 1z < Hz ~ 11 < H1 

s. 11 < 1z < "z ~ Hl 

6. 1z < 11 < H1 ~Hz. 
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(7. 7) 

Corresponding to the six cases given in (7.7), the intersections are 

respectively: 

1. [Lz, Hl] = [ez-sz, sl] 

z. [Ll' Hz] = [-Sl' Sz+Sz] 

3. <P 

4. <P 

5. [1z, Hzl = [ez-sz, ez+Szl 

6. [Ll' Hl] = [-Sl, Sl]. (7. 8) 

The notation .[x, y] is understood as the closed interval from x to y. 

If we consider the linear intersection in the deflection direction, 

we shall have also six cases: 

1. 11 I < 1z I < H I < H I - 1 - z 
z. 1z I < L I < H I < H I - 1 z - 1 
3. 11 I < H I < 1 I < H I 

1 - z z 
4. 1z 

I < H I < 1 I < H I 
z - 1 1 

5. 11 I < 1z I < H I < H I - z - 1 
6. 1z I < 1 I < H I < H I (7.9) 1 1 - z 

where 11 ' , H1' , 1z ' , and Hz' are defined similar to (7. 6) but in the 

deflection direction. We shall have the respective intersection cor-

responding to (7.9) as 

1. [Lz'' H '] = [ e , -s , Sl'] 1 z z ' 
z. [Ll I' Hz'l = [ -sl' ez, +Sz, l 

3. <P 

4. <P 



s. [L2', Hz'l = [e2'-S2', 82'+S2 1 ] 

6. [Ll' ' Hl' 1. = [ -sl' ' sl' 1 • 
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(7.10) 

Now we can find product sets of the six cases in the range direc

tion with the six cases in the deflection direction. The resultant 36 

cases and the corresponding.intersections are listed in TABLE I. 

--; -...--

Way of 
Intersecting 

Case in Range 
Number Direction 

t Ll~Lz<Hl~Hz 

2 II 

3 II 

4 II 

5 II 

6 II 

7 Lz~Ll<Hz~Hl 

TABLE I 

CASES OF K1 n K2 

Way of· 
Intersecting 
in Deflection 

Direction 

L 1 <L 1 <H '<H I 1 - 2 1 - 2 

L I <L I <H I <H I 
2 - 1 2 - 1 

L I <H I <L I <H I 
1 1 - 2 2 

L I <H I <L I <H I 
2 2 - 1 1 

L I <L I <H I <H I 
1 - 2 2 - 1 

L I <L I <H I <H I 
2 - 1 1 - 2 

L 1 <1 '<H 1 <H I 1 - 2 1 - 2 

- .... 

The 
Resultant 

Kl ('\ Kz 

[8 2-s2, s1] x 

[8z'-£2'' 51'] 

[8z-sz, sl 1 X 

[ -sl ' , 8 z '+Sl , 1 

cp 

cp 

[82-s2, s1] x 

[8z '-sz I 8 '+S '] 
' 2 2 

[82-s2, S1] x 

[ -sl, ' sl, 1 

[ -sl' 8z+S2] X 

[8z'-Sz', Sl'] 

--

Looks 
Like 

~ I 

Efb 
[I ill 

EJEJ 

EJ 
·rtr· 
f%1 
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(TABLE I continued) 

~-------· ----- _ _,- ·--- -----
8 fl L I <L I <H I <H I [ -sl, 8/S2J X £'_] 2 - 1 2 - 1 

[-S1' 8 1+S I] 
13---~ I 

2 2 

9 II L I <H I <L I <H I <P QJ GJ 1 1 - 2 2 

10 II L I <H I <L I <H I 

I<-/ 
El 2 2 - 1 1 

1-

11 II L I <L I <H I <H I [ -s1' 82+S2J X ['·-; 
1 - 2 2 - 1 01 

[82~-s2 I 8 1+S I] 
' 2 2 

12 II L I <L I <I-I I <H I [ -S1' 82+S2] X .-{~-~ 2 - 1 1 - 2 
l~_j [ -s1 I S11] ' 

13 11<H1:::L2<I-I2 L ' I <L I <H I <H I ¢ r~-f 
.~ .. J 

1 - 2 1 - 2 r·r 
L'.J 

14 II L I <L I <I-I I <H I ID 2 - 1 2 - 1 
DJ 

15 -j II L I <H I <L I <I-I I [3] 
1 1 - 2 2 

[I] 

16 II L I <I-I I <L I <H I 8 2 2 - 1 1 

[J 

17 " L I <L I <I-I I <I-I I EJ 1 - 2 2 - 1 r.- ,---1 

18 II L I <L I <I-I I <I-I I 
2 - 1 1 - 2 [-:t i 

IJ 
19 12<H2:::L1<I-I1 L I <L I <H I <I-I I. m 1 - 2 1 - 2 w 

20 II L I <L I <I-I I <I-I I w 2 - 1 2 - 1 0 
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(TABLE I continued) 

21 II L I <H I <L I <H I [C! 1 1 - 2 2 r· - ~-~ 

22 II L I <H I <L I <H I :u 2 2 - 1 1 
w 

23 II Ll~~L21<H21~Hl I 
:-----r 
L__l _ _j 

c;-i 

24 II L I <L I <H I <H I [fJ 2 - 1 1 - 2 
r---·---; 

f-.2:---

25 Ll~L2<H2~Hl L I <L I <H I <H I [82-s2' 8tS2] X 

[~ 1 - 2 1 - 2 
[82~-s2 I s I] 

' 1 

26 II L I < L I <H I <H I [82-s2, 82+S2] X 2 - 1 2 - 1 r-4~~"--: 

[ -Sl I 8 1+S I] ;2~J ~J 
' 2 2 

27 " L I <H I <L I <H I cp ~-1 GJ 1 1 - 2 2 
--1 

28 II L I <H I <L I <H I ¢ 0 2 2 - 1 1 EJ 

29 " Ll~~L21<H21~Hl I Impossible Case I I 

~ 
30 II L2~~Lli<Hli~H2 I Impossible Case 4t 
31 L2~Ll<Hl~H2 L I <L I <H . I <H I [ -Sl' sl J X ~~:i 1 - 2 1 - 2 

[82~-s2~' Sll] i__:j 

32 II L I <L I <H I <H I [ -Sl' Sl] X 0~1 2 - 1 2 - 1 
[ -sl I 8 I +S I] 

' 2 2 

33 II L I <H I <L I <H I cp 0[j 1 1 _, 2 2 
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(TABLE I continued) 

34 II L I <H I <L I <H I 

E1 [) 2 . 2 - 1 1 

35 " L I <L I <H I <H I Impossible Case rfFr 1 - 2 2 - 1 

36 ·II L I <L I <H I <H I 
2 - 1 1 - 2 Impossible Case ,. ----;:] 

LfiJ'r 

We now prove that Cases 29, 30, 35, and 36 are impossible. 

Let us take Case 29 first. This case gives the way of intersection as: 

L1 ~ L2 < H2 ~ H1 and L1 ' ~ Lz' <Hz' 2 H1 '. 

By definition, this is 

(7 .11) 

The first inequality in (7.11) implies con$ecutively 

-s1 2 82-s2 and 82+s2 ~ s1 

-T1-P ~ 82-T2-P and 82+T2+P ~ T1+P (by definition) 

-T1 < e2-T2 and e2+T2 ~ T1 

-T1 < 82 and e2 < T1 (since T2 is positive) 

lezl < Tl. (7 .12) 

Similarly, the second inequality in (7 .11) implies 

lez'l <Tl'. (7 .13) 

But (7.13) ~ogether with (7.12) means the center of Target 2 is inside 

Target 1 area, which is not allowed. Hence Case 29 is an impossible 

case. 
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Let us take Case 30 next. This case has an intersection g1ven 

by: 

Ll ~ Lz < Hz ~ Hl and Lz I < Ll I < Hl I < Hz I . 

By definition, this is 

and 8 ~-s I < -s I < s I < 8 I+S I 
2 2 1 1 2 2 . 

(7.14) 

The first inequality in (7.14), as we have seen just a moment ago, 

:implies 

lezl < Tl. 

The second inequality 1n (7.14) implies,consecutively, 

8 1 -S 1 < -s I 
2 2 - 1 

e '-T 1-P 1 < -T 1-P and 2 2 - 1 

and T I-T I < 8 I 
1 2 2 

(7 .15) 

8z' < -Tli+Tzl 

821 < Tli+Tzl and -T 1-T 1 < e 1 
1 2 2 (since T1 ' and T21 are positive) 

(7 .16) 

( 7 .16) , together with ( 7 .15), implies that the area of Target 1 and the 

area of Target 2 overlap· like what is shown in Figure 19. This is again 

not allowed. Hence Case 30 is also an impossible case. 

The impossibility of Case 35 can be proved by the same reasonmg 

used for Case 30, and the impossibility of Case 36 can be proved in the 

same way as Case 29. It is just .a matter of reversing Target 1 and 

Target 2. 

Once the boundaries of K{\ K2 are well defined in TABLE I for all 

possible cases, we can proceed to find the joint probability of hitting 

both targets. Let us define 

c = Pr(hitting both targets). 

From Expression (7. 5) and TABLE I. we have the following results: 
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Figure 19. Targets Overlapping Implied by Case 30 



Case 1: c = 

Case 6: c = 

Case 7: c = 

Case 8: c = 

f(y, y 1 ) dy dy 1 = f(y)dy 

8 1 +S I 
2 2 

f(y)dy • I f(y 1 )dy 1 

-s I 
1 

[G(S -~)-G(8 -S -~)]·[G(S '-~ 1 )-G(-S 1 -~ 1 )] 1 2 2 1 . 1 

s I 

0 ! 1 

8 I-s I 
2 2 

[G(8 +S -~)-G(-S -~)]·[G(S 1 -~ 1 )-G(8 1 -S 1 -~ 1 )] 2 2 1 1 2 2 

[G(8 +S -~)-G(-S -~)]·[G(8 1 +S 1 -~ 1 )-G(-S 1 -~ 1 )] 2 2 1 2 c2 1 
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f(y 1)dy 1 

C= 0 for cases 3, 4, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 27, 28, 33, and 34. Case 29, 30, 35, and 36 are impossible cases. 

We shall call all the above expressions of c collectively as formula Ul~ 
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2. A Two-way Table to Find Probabilities 

of Some Other Interesting Events 

The joint probability of hitting both targets which we obtained 

in formula (7.17), together with the marginal probabilities expressed 

1n (7 .1) , (7. 2) , (7. 3) , and (7. 4) , will enable us to also answer the 

following questions easily: 

(2) What is the probability of hitting Target 1 but missing Target 2? 

(3) What is the probability of hitting Target 2 but missing Target 1? 

(4) What is the probability of missing both targets? 

Before answering these questions, we recall that, in expression 

(7.1) and (7.3), we have 

a = Pr(hitting Target 1) 

[G(S1 -~)-G(-S1 -~)]·[G'(S1 '-~')-G(-S1 '-~')], and 

b = Pr(hitting Target 2) 

= [G(e 2+s2 -~)-G(e 2 -s 2 -~)]·[G(e 2 '+S 2 '-~')-G(e 2 '-s 2 '-~')]. 

A two-way table can be constructed in the following way: We first 

enter the joint probability of hitting both targets, the marginal pro

babilities of hitting and missing Target 1, and the marginal probabi-

lities of hitting and missing Target 2 in the table. The remaining 

three cells then can be filled in by using the principle that the sum 

of the row entries equals to the row margin and the sum of the column 

entrie~ equals to the column margin. The circled values in Figure 20 

are filled in by using this principle. 
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Target 2 

Hitting Missing Marginal 
Probabilities 

Hitting 

Target 1 

Missing 

Marginal 
Probabilities 

c 

e) 
b 

e a 

~~ -b+c) 
~_../ 

1-a 

1-b 

Figure 20. A Two-way Table of Joint Probabilities 

Question (2), (3), and (4) are then answered by (a-c), (b-e), and 

(1-a-b+c) respectively. We note that all the answers are in closed 

form since a, b, and c are all in closed form. Figure 21 below shows 

a two-way table with numerical values as an example: 

Hitting 

Target 1 

Missing 

Marginal 
Probabilities 

Target 2 

Hitting Missing 

0.5 ~ 

~ ~ 
0.6 0.4 

Marginal 
Probabilities 

0.7 

0.3 

Figure 21. A Two~way Table with Numerical Values 
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3. An Extention of the Two-way Table Method 

The Two-way Table Method illustrated in the last section may also 

be extended to the case of n rectangular patterns, identical* or non-

identical. As usual, we assume that all pattern landing points are 

distributed independently. 

Let us consider the case of n identical patterns first. The pro-

bability that all n patterns miss Target l is the product of the pro-

babilities of Pattern 1 missing Target 1, Pattern 2 missing Target 1, 

... ,and Pattern n missing Target 1. This is nothing but (1-a)n. 

Similarly, we shall have 

n Pr(all n patterns missing Target 2) = (1-b) , and 

n Pr(all n patterns missing both targets) = (1-a-b+c) 

Thus the two-way table corresponding to the n identical patterns can be 

constructed by entering these three values first. Figure 22 gives an 

illustration. Again the circled values are filled in by using the "sum 

equals the margin" principle. Vie note that the probability in the 

"Hitting-Hitting" cell in Figure 22 is the probability that Target 1 is 

hit by at least one of the n patterns and Target 2 is hit by at least 

one of then patterns. 

When we haven non-identical patterns, the procedure is more te-

dious. We have to construct a two-w~y table for each pattern. Figure 

23 shows such a table for the ith pattern. 

* n patterns are identical if they have same size, same aim point, and 
same aiming errors. 



Target 2 

Hitting Missing 
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Marginal 
Probabilities 

--~------ ... -~.--. ... ' ' ,-------~------~----·------------. 

Hitting ~(1-af- (1- bjl~~~:=;~~f~ ({~~~)n--~~=~=-~+c)~) 
--~------------· ---·--. 

n 1- (1-a) 

Target 1 

Missing 

Marginal 
Probabilities 

1-(1-b) n 

n (1-a-b+c) n {1-a) 

Figure 22. A Two~way Table for n Identical Patterns 

Hitting 

Target 1 

Missing 

Marginal 
Probabilities 

Hitting 

c. 
l 

b. -c. 
l 

b. 
l 

l 

Target 2 

Missing 

a. -c. 
l l 

1-a. -b.+c. 
l l l 

1-b. 
l 

Marginal 
Probabilities 

a. 
l 

1-a. 
l 

Figure 23. A Two~way Table for the i th Non-identical Pattern 

Tims, for i = 1, 2, ... , n, we have n two-way tables, each is like 

the one above. We note that, in general, a. Ia. , b. lb. , and c. tc. for 
l J l J l J 

ifj. 
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A reasoning similar to the one we used to obtain the two-way table 

m Figure 22 will lead us to the construction of the two-way table for n 

non-identical patterns. The two-way table given in Figure 24 results. 

Hitting 

Target 1 

Missing 

Marginal 
Probabilities 

Target 2 

Hitting 

n n 
1-n(l-a.)-n(l-b.)+ 

. 1 1 . 1 1 1= 1= 

n 
n(l-a. -b.+c.) 

. 1 1 1 1 
1= 

n n 
~(1-a.)-n(l-a.-b.+Ci 

. 1 1 . 1 1 1 1= 1= 

n 
1-n{l-b.) 

. 1 1 1= 

I 

:Missir~g 

n n 
n(l-b.) -n(l-a. -b.+c.) 

. 1 1 . 1 1 1 1 
1= 1= 

n 
n(l-a. -b.+c.) 

. 1 1 1 1 1= 

n 
n(l-b.) 

. 1 1 1= 

Marginal 
Probabilities 

n 
1-n(l-a.) 

. 1 1 1= 

n 
TI(l-a.) 

. 1 1 1= 

Figure 24. A Two-way Table for n Non-identical Patterns 

To summarize Sections 2 and 3 of this chapter, we have developed 

a procedure, the so called "Two-way Table Method"~which enables 

us to answer Question (1), (2), (3), and (4), specified in Section 1 

of Chapter 1, for n identical or. non-identical patterns by merely 

using fomulas (7.1), (7.3), and (7.17). 



4. The Fewest Number of Passes Required to 

Achieve a Specified Probability of 

Hitting Both Targets 
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Suppose we have identical rectangular patterns delivered on two 

rectangular targets. Another interesting question one may ask is, 

"What is the fewest number of passes required to have a probability of 

at least, say 0.9 of hitting both targets?'' The answer to this ques

tion turns out to be rather easy to find. We first obtain values for 

a, b, and c from Formulas (7.1), (7.3), and (7.17), respectively. Once 

this is don~, we use the expression in the "Hitting-Hitting" cell of 

the two-way table in Figure 22 and obtain the following inequality: 

(7 .18) 

Since the values of a, b, and c are known, the smallest value of n 

which satisfies the inequality in (7.18) can be found using a simple 

iterative procedure. 

If we do not know c, the joint probability of hitting both targets, 

and use the product of marginal probabilities, a·b, to estimate c, 

what woulq happen to the calculation of the n value? The answer is 

that we may sometimes over estimate it and sometimes under estimate it 

Consider inequality (7.19) below: 

(7.19) 

This is an inequality we could use to calculate n were c not available. 

When a•b is greater than c, then value obtained from (7.19) will be 

smaller than the true n value. On the other hand, when a·b is 



smaller than c, then value obtained from (7.19) will be greater than 

the true n value. This is true since (1-a-b+x)n is a monotone in

creasing function of x. 
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Another related question is the following. Does the fact that an 

n value that satisfies both Pr(hitting Target 1) : 0.9 and 

Pr(hitting Target 2) : 0.9 imply that this n value will also satisfy 

Pr(hitting both targets) : 0.9? The answer is no. The relationship 

between the joint probability and its two marginal probabilities is 

Pr(hitting both targets) < min[Pr(hitting Target 1), Pr(hitting Target 2)] 

The reason for the strict inequality is that we theoretically have no 

zero values in the Hitting-Missing and Missing-Hitting cells in the 

two-way table in Figure 22. As a consequence of this inequality, the 

n value wl1ich satisfies both Pr(hitting Target 1) : 0.9 and 

Pr(hitting Target 2) : 0.9 is, in general, an under estimate of the 

true n value which satisfies Pr(hitting both targets) : 0.9. 

One last comment: Everything developed so far in this chapter is 

applicable to point targets. A point target is a special case of 

rectangular target when T = T' = 0. 

5. The Probability of Achieving the 

Maximum Possible Coverage 

on Both Targets 

In this section, we shall answer Question (5) given in Chapter I, 

Section 1, namely, 'What is the probability of ad1ieving the maximum 

possible coverage qn both targets?" Wl1en a rectangular pattern is deli

vered on two rectan~1lar targets, the maximum possible coverage on 
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Target 1, call it MPCl, is given by 

(7.20) 

This relationship is implied in Gay and Weeks (1973). The probability 

of achieving ~~Cl may be found as follows: 

Pr(achieving MPC1] = Pr[l = (S1-R1)·(S1 '-R1 ')] = Pr((Y, Y')sJ1] 

= f f f(y, y') dy dy' (7 .21) 

J1 

where region J 1 is defined in Figure 25. 

Figure 25. The Region Corresponding to the Event 
''Achieving MPCI'' 
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We note the similarity between the botmdaries of J 1 and the boundaries 

of K1 defined in Figure 16. As a matter of fact, both are limits of 

the botmdaries of the region D defined in Figure 13. If we set 

(8, 81 ) = (0, 0) in Figure 13, then it is not difficult to verify that 

K1 is the limit of D when v-+ 0, and J 1 is the limit of D when 

v-+ (S1-R1)·(S1 1 -R1 1). Using these as the botmdaries of J1 in (7.21), 

we have: 

Pr[achieving MPCl] = r f{y) dy . 

-Rl 

Rl 

/
1 

f(y 1 ) dy 1 

-Rll 

By the same token, we can construct a region J 2 for Target 2 and find 

82+R2 
Pr[achieving MPC2] = J Jf(y, y 1 ) dy dy 1 = j f(y) dy • 

32 . 82-R2 

= [ G C 8 2 + R2 - )l) -G C 8 2-R2- )l) ] • [ G C 8 2 I + R2 I - )l I ) - G C 8 2 I - Rz ~-)1~ ) J 

where (8 2, 821 ) is the center of Target 2. 

Consider now the intersection J 1 nJ2 of the regions J 1 and J 2. 

This J 1nJ2 region is the one which, when we integrate f(y, y 1 ) over 

it, will give us the probability of achieving the maximum coverage on 

both targets. Figure 26 shows J 1 , J 2, and J 1nJ2. 



y 

I R 1 a <. - ..... '""L.._:;:. 

J 

Figure 26. The Region Corresponding to the Event 
"Achieving MPC on Both Targets" 
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Thus, 

Pr(achieving MPC on both targets) = I [f(y, Y1 ) dy dy 1 

31n' 2 
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(7.22) 

The problem again amounts to finding the correct boundaries for the 

region J 1n J 2 • 

Although we could have followed the same route in finding K1n K2 

in Section 1 of this chapter, working things out case by case, we would 

like to try a different and better approach here. 

Let us define 

x =max (-R1, e 2 -~), 

w =min (R1 , e2+R2), 

OP =Overlap of J 1 and J 2 in·the range direction, 

then { [x, w] · if w-x > 0 
OP = 

0 if w-x < 0 

(7. 23) 

(7.24) 

(7.25) 

(7.26) 

where [x, w] is understood to be the closed interval from x to w. 

Similarly, if we define 

xI = max (-Rl I ' e 2 I - R2 I ) , 

w1 =min (R1 1 , e21 +R21 ), 

OP 1 = Overlap of J 1 and J 2 in the deflection direction, 

then 1 [X 1 , WI ] if WI -X I > 0 
OP = 

0 · if W 1 -x 1 < 0. 

(7. 27) 

(7. 28) 

(7.29) 

(7.30) 

The intersection of J 1 and J 2 is tpe product of the'overlap of J 1 and 

J 2 in the rang~ direction and the overlap of J 1 and J 2 in the deflec

tion direction. Thus, expression (7.22) becomes 



· Pr (achieving MPC on both targets) = f J f (y, y 1 ) dy dy 1 

Jl nJ2 

J f(y) dy 
X 

0 

f(y 1 ) dy 1 

= I I f (y' y I) dy dy I 
0Px0P 1 

if w-x > 0 and W1 -X 1 > 0 

otherwise 

where w, x, W1 , and x 1 are defined in (7.23), (7.24), (7.27), and 
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(7.31) 

(7.28) respectively. Again we have a closed form answer for Question 

(5). 

Thus we have answered Questions (1) through (5) which are stated 

in Chapter I, Section 1. The "Two-way Table Method" is a handy device 

with which to obtain answer to Questions (2), (3), (4) by using the 

answer to Question (1). 

In the next chapter, we are going to continue the unfinished task 

left from Chapter VI and given an approximation of the joint c.d.f. of 

two rectangular coverages. 



rnAPTER VI I I 

A~ APPROXIMATION OF T~ffi JOINT C.D.F. 

OF TWO RECTANGULAR COVERAGES 

Recall that the main obstacle we encow1tered in trying to obtain 

the joint c.d.f. there, was the shape of the intersection of regions 

D1 and n2 as illustrated in Figure 14. The difficulty arises because 

of the curved portions of the boundaries of D1 and D2. 

Now suppose we approximate both D1 and D2 with rectangular regions 

by removing the curve from each of the four corners and extending the 

four boundary segments on each. To illustrate this, we reproduce 

Figure 14 with the proposed approximations shown in Figure 27. We note 

that the intersection of these two rectangular approximations is a 

rectangle too. This is the reason why we choose the rectangular 

approximation. 

Now let the rectangular approximations of D1 and D2 be denoted by 

D1* and D2* respectively. The approximation we propose is to evaluate 

II f (y, Y I ) dy dy I (8 .1) 

Dll'"' D2 

by II f (y' Y I ) dy dy I • 

D*f'\D * 1 2 

(8. 2) 
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This in turn implies that the joint c.d.f. of two rectangular coverages 

expressed in (6.3) is approximated by F;1, lz(vp v2) as follows: 

f! f(y' y 1 ) dy dy 1 + 

Dl 

ff f(y, y 1 ) dy dy 1 

Dz 

f f f(y, y 1 ) dy dy' 
D1 *nD1 * 

for 0 ~ v1 < (S1-R1)(S1 1 -R1 1 ) and 

o ~ v2 < cs 2 -R2)(s2 ~-R2 1 ). (8.3) 

The tenns 

fficy, y 1 ) dy dy 1 . and 

Dl 

ff f(y, y 1 ) dy dy 1 

Dz 

have been expressed explicitly in (6.4) and (6.5). As for the last term 

in (8.3), the integration is performed ov~r the intersection of the two 

rectangles. By using the same approach we used to obtain (7.31) in 

Chapter VII, Section 5, we find that 

[ G (Q -~) -G (E - ~) ] • [ G (Q I - ~ I ) - G (E I - ~ I ) ] 

I I f (y' yl) dy dy I = 

n1 *n n2* 
0 

if Q-E > 0 and Q 1 - E 1 > 0 

otherwise (8.4) 
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Thus, the substitution of (8.4) into (8.3) will give us the approx~ 

irnation part of the c.d.f. of two rectangular coverages. This, together 

with the exact part of the c.d.f. expressed in (6.3a), gives us the 

following: 

* Fz z (vl' v2) 
1' 2 

(1-1 lf(y,y')dy dy'- I lf(y, y')dy dy' + [G(Q-~)-G(E-~)]· 

= 

Dl D2 

[G(Q'-~')-G(E'-~')] 

for 0 ~ vl < (Sl-Rl)(Sl'-Rl') and 0 ~ v2 < (S2-R2)·(S2'-Rz') 

and if Q-E > 0 and Q'-E' > 0 

1-1 1 f (y, y, ) dy dy, -1 1 f (y, y,) dy dy, 

Dl D2 

for 0 ~ vl < (Sl-Rl) (Sl' -Rl ') and 0 ~ v2 < (S2-R2)(S2'-R2') 

and if Q-E < 0 or Q'-E' ~ 0 -

1-I I f(y, y')dy dy' 

D1 

for 0 ~ v1 < (S1-R1)(S1 '-R1 ') and v2 > (s2-R2)(S2'-R2') -

1-I I f(y, y')dy dy' 

D2 

for vl > (S -R ) (S '-R ') 1 1 1 1 and o ~ v2 < (S -R )(S '-R ') 2 2 2 2 
0 for vl < 0 or v2 < o 
1 for vl > (S -R)(S '-R ') and v2 > cs2-R2) cs2' -Rz ') - 1 1 1 1 -

(8. 5) 

where E, Q, E', and Q' are as defined in (8.4). 



We note that 

'fhis approximation, in our opinion, is on the right side of the true 

value, since the event ".Z1 ~ v1 and .z2 ~ vz" is an undesirable event 

and it is safer to over estimate the probability of an undesirable 

event than to under estimate it. 
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It may happen that we are more inte·rested in the joint probability 

of covering at least a certain area of Target 1 and covering at least 

a certain area of Target 2. This means that instead of 

Pr(.Z1 ~ v1 , z2 < v2), Pr(Z1 : v1 , z2 ~ v2) is the thing that is more 

useful for us to find, like Question (6) given in Chapter 1, Section 1. 

This probability is evaluated by expression (8.1) and approximated by 

expression (8.2) for 0 < v1 ~ (S1-R1)(S1 '-R1 ') and 

0 < v2 ~ cs2-R2)(S2 '-R2 '). For (v1, v2J not belonging to this region, 

the probability can be obtained in exact fonn. Together, the following 

formula gives us an approximation: 
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* Pr (Z1 ~ v1, z2 ~ v2) 

[G(Q-~)-G(E-~)]·[G(Q 1 -~ 1 )-G(E 1 -~ 1 )] 

for 0 < vl < (Sl-Rl)(Sl 1 -Rl 1 ) and 0 < Vz < (Sz-Rz)CSz 1 -Rz 1 ) 

and if Q-E > 0 and Q1 -E 1 > 0 

0 for 0 < vl < (Sl-Rl)(Sl 1 -Rl 1 ) and 0 < Vz < (Sz-Rz)CSz 1 -Rz 1 ) 

and if Q-E < 0 or Q1 -E 1 < 0 

l~ 

I I f (y, y I) dy dy I 

Dl 

for 0 < v1 ~·· (S1-R1) (S1 1 -~ 1 ) and v2 < 0 

I I f (y' y I) dy dy I 

Dz 

* 

for vl ~ 0 and 0 < Vz < (Sz-Rz) (Sz I -Rz I) 

for v1 ~ 0 and v2 ~ 0 

for v1 > (S1-R1) (S1 1 -R1 1 ) (8. 6) 

Again, Pr (Z1 ~ v1, z2 ~ v2) ~ Pr(z1 ~ v1 , z2 ~ v2). However, this 

approximation is on the wrong side of the true value. Since the event 

and z2 > v " - 2 is a desirable event. 

To conclude, we have given approximations to both the joint c.d.f. 

of two rectangular coverages and the joint probability of the event 



CHAPTER IX 

EXTENTION TO M RECTANGULAR TARGE'l:S 

The results obtained in all the preyious chapters can be extended 

to the case of m targets (m > 2). This is possible due to the approach 

we developed in finding the intersection of two rectangles in Chapter 

VII, Section 5. For example, consider the case where a rectangular 

pattern is delivered on three rectangular targets. The probability of 

hitting all three targets can be obtained by integrating f(y, y') 

over the intersection of K1, K2, and K3 as shown on the diagram in 

Figure 28. (8 3, 83 1 ) there is the center of Target 3 and 

s3 = T3+P, s3• = T3 '+P'. We note that the diagram in Figure 28 is an 

extension of the diagram in Figure 17. 

The intersection, K1~K2AK3 , is a rectangle again. This rectan

gle is the product of the overlap of the three segments in th~ range 

direction and the overlap of the three segments in the deflection di

rection. In the range direction, the three segments involved are [-s1 , 

s1], [8 2-s2, 82+s2], and [8 3-s3 , 83+s3]. To find the overlap of them, 

we follow the method we used in Chapter VII, Section 5 and define 

~ =max (-s1 , 82-s2, 83-s3), and 

~~ =min (S1, 82+s2, 83+S2). (9.1) 

If ,J~ let the overlap in the range direction be denoted by OP, then 

if y - * > 0 

otherwise. (9.2) 
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Figure 28. The Rectangle Corresponding to the Event 
"Hitting All Three Targets" 
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Similarly, we can obtain the overlap of the three segments in the deflec-

as 
I 

if y'- ~ > 0 
OP 1 = 

otherwise, (9. 3) 

where ~and Y'are defined as the counterparts of ~and rfor the deflec-

tion direction. Thus we find 

K1 n K2 n K3 = or_ x or I " I ~'if,"flx['if' y'J 
~ I £. if 'V - x > 0 and y - ~ > 0 

otherwise. 

Returning to our original problem, we find 

Pr(hitting all three targets) = ~ ~ 
K1nK2nK3 

f (y' Y I ) dy dy I = 

,_, f(y' yl) 
olxo I 

dy dy 1 

y y' 1 f(y)dy ·! f(y 1 )dy 1 = 

~ *' 
[G ( 'V -f.!) -G ( ~ - M)] • [G C(- f.l) -G ( Jf'-fl I)] 

if 1· - -~ > 0 and "'·(- =1! > 0 

0 otherwise. (9. 4) 

The nice thing about this approach is that it can be easily extended 

to any mnnber of targets . In the general case of m targets , we only have 

to redefine 

=i: =max(-s1 , e2-s2 , •.. em-Sm) 

1' = min(S1 , e2+s2 , ••• em+Sm). (9 .5) 

The rest of the derivation is exactly the same and we still end up with 

formula (9.4) as Pr(hitting all m targets). 

We recall that the Pr(achieving MPC on both targets) in Chapter VII,-
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Section 5, and the approximation of the Pr(l1 ~ v1 , z2 ~ v2) in 

01apter VIII were both obtained by integrating f(y, y') over the inter-

section of two rectangles. In the case of m rectangular targets, the 

problem also amounts to finding the intersection of m rectangles, the 

mechanism of which has been illustrated above. Once the intersection, 

always a rectangle, is found, the integration over it causes no diffi-

culty. 

To extend the approximation of the joint c.d.f. of rectangular 

coverages from two tom targets is a little bit more tedious, but still 

feasible. We shall illustrate it by fir.st considering m = 3. Similar 

to the diagram in Figure 27, we shall this time have D1 , D2, and D3. 

'TI1e exact joint c.d.f. is expressed in the following formula: 

F(v1 , v2 , v3) = Pr(Z1 : v1 , z2 : v2 , z3 : v3) 

1 - r r f (y. y • ) dy dy •. 

r< UD2 u~3 
= (9.6) 

The "Principle of Inclusion and Exclusion", can be used to express the 

union, n1v n2vn3 , as the sum of intersections. That is 

where the symbol "+" and "-" are defined in Berman and Fryer (1972, 

pp. 60-61). For example, A+B represents the totality of elements in 

A and B (with repeats cmmted). 

There are at least two approximations we can use for (9.7): 

(1) D *+D *+D *-(D *(\D *)-(D *!lD *)-(D *f\D *)+(D *AD *(\D *) 1 2 3 1· 2 1 3. 2 3 1 2 3 

(9. 8) 
or 
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where D1*, Dz*, and D3* are rectangular approximations of n1 , 1>2, and 

D3 respectively. 

When we substitute (9.8) into (9.6), we have 

F* ( v 1' v 2 ' v 3) = l- [ I I + I f + I f - I I - I I -
D * D * D * D *(\D * D *(\ D * 

I f 
1 2 3 1 2 1 3 D *"D * 2 I I 3 

where j /is a short hand notation for 

A 

+ f I 
D *f\D *f\D * 1 2 3 

f If (y, y I ) dy dy I • 

A 

Now the mechanics of finding the intersection of rectangles can be 

] 

(9.10) 

utilized to handle the last four terms in (9.10). An approximation for 

the joint c.d.f. of three rectangular coverages is thus obtained. 

Since expression (9.8) is equivalent to. D1*VD2*VD3*, of 

which D1 U D2 V D3 is a subset, we shall have 

Unfortunately, this approximation is on the wrong side of the true 

value. 

When we use the second approximation, expressed in (9.9), for 

D1 V D2 V D3 in (9. 6) , the relationship between F* and F is not at all 

clear. We may have 

Our inclination is to recommend the second approximation since we have 
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a chance to be on the right side in this approximation. That is 

+ I I 1 · 
D1 *A Dz*AD3* 

(9 .11) 

In the general case of m rectangular targets, the joint c.d.f. of 

m rectangular coverages is given by 

By using the "Principle of Inclusion and Exclusion'', we can always 

express the union as the sum of intersections; namely 

... U Dm = 
m 
z 

i=l 
D. -

l 
Z (D. I' D. ) + Z (D. !I D . tl Dk) -

i < j l J i < j <:k l J 

m+l 
+ ( -1) (D/' D2 (\ . .. f\Dm) . (9 .13) 

We may use 

m 
l: 

i=l 
D. -

l 
z 

i<j 
(D.*f'\D.*)+ 

l J 
z 

i<j<k 
CD. *1'\ D.* 1'\D *)-

l J k 

to approximate (9.13) and then substitute it into (9.12) to get 

F*(v1 , v2 ... vm). 

In the next chapter, we shall have more to say about the possible 

future studies based on the results obtained in this chapter. 



GIAPTER X 

SIJM.1ARY AND POSSIBLE EXTENSIONS 

1. Summary 

The purpose of this study was to find the joint distribution of 

the coverages on two rectangular targets by one rectangular pattern. 

Following a natural order of development, we have derived the c.d.f. 

and the p.d.f. of one linear coverage, the c.d.f. and the p.d.f. of one 

rectangular coverage, the joint c.'d.f. and the joint p.d.f. of two 

linear coverages, an approximation of the joint c.d.f. of two rectan

gular coverages. Also, we have found the joint probabilities of some 

interesting events, e.g., the probability.of hitting both targets; 

missing both targets, etc. A Two-Way Table Method was introduced to 

find the probabilities of some other interesting events, once the 

probability of hitting both targets is obtained. A "power up" formula 

was given to extend the two-way table to n(n > 2) identical or 

non-identical patterns. The question of "the fewest number of passes 

required to achieve a specified probability of hitting both targets" 

is investigated, and a formula which can be solved iteratively is given 

to give the answer to this question. 

A way to extend this study to handle the general case of m rec

tangular targets is outlined in the last chapter. This is possible due 

to the simple mechanism we developed to find the overlap of m line seg

ments. 
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2. Possible Extensions 

One Target Being·a Subset of 

Another Target 

91 

All through this study, we have assumed the separation of the two 

targets under consideration. The situation that one target is a subset 

of another target may arise in the following way. We have a single 

target, but a small portion of it is the "heart" of this target. Conse-

quently, . we like to treat this portion differently, e.g. , we want to have 

a higher fractional coverage on this portion than on the rest of the 

target. Figure 29 illustrates this situation: 

Figure 29. The Heart Is More Important than the Body 
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Strictly speaking, we should consider this situation as if we have two 

targets, with the ''heart" being of the shape CJ and the "body" being 

of the shape c:J. It can be seen innnediately that this sort of rigo

rous treatment will vastly complicate the calculation of almost any 

joint probability. To avoid this complication, we may approximate the 

"body" by the whole target. It is in this way that we have two rectan-

gular targets with one being a subset of the other. Of course, this 

approximation is good only when the "heart" is a small portion of the 

·target. 

Once we have two rectangular targets, we can construct rectangles 

around them corresponding to the desired joint probability statement 

and find (or approximate) the probability just like the way we did it 

all along. 

More about the Case of m Rectangular Targets 
I 

The theory and material about the case of m rectangular targets 

developed in Chapter IX can be explored further. For example, when 

m = 3, we can find 

Pr(hitting Target 1 and 2 but missing Target 3) 

!! f /. 
Klf\ K2 K1l'\ Kz'' K3 

and 

Pr(hitting only two targets) 

= f f + !!+ f !- 3 f I 
Kl/) K2 Klf\ K3 K2f\ K3 Kl () K2f\ K3 



In this direction, many useful questions can be asked and answered in 

the general case of m rectangular targets. It is even possible to 

develop an 'M-way Table Method" analogous to the Two-way Table Method 

we illustrated in Chapter VII. We leave this to the hands of future 

researchers in this field. 

To Increase the Number of Patterns 
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In the context of ''Hitting or Missing", there is no problem in 

handling the case of n rectangular patterns, as has been demonstrated in 

01apter VII, Section 3. But in the general context of the c.d.f., it 

is very difficult to handle even two linear patterns delivered on one 

linear target. For one thing, we have the overlap of Pattern 1 and 

Pattern 2 to worry about. For another, there are uncountably infinite 

ways that we can combine coverages by Pattern 1 and Pattern 2 to satisfy 

the event "C < u. '·' We believe a different approach other than that 

developed in this study is needed. 
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APPENDIX 

A NUMERICAL EXAMPLE OF THE JOINT PROBABILITY 

OF 1WO RECI'ANGULAR COVERAGES 

At the end of Chapter VII, we claimed that when the numerical 

values of the target-pattern configuration are given, it is straight-

forward but tedious to find the exact joint probability of two rectan-

gular coverages for any specified v1 and v2 values. In this Appendix 

we shall illustrate how this can be done in an example. 

Let us consider the following configuration of one rectangular 

pattern being delivered on two rectangular targets: 

LT1 = length of Target 1 in the range direction = 50 

L\ = length of Target 1 in the deflection direction = 20 

LT = length of Target 2 in the range direction = 50 
2 

L' = length of Target 2 in the deflection direction = 20 
T2 

s2 = center of Target 2 in the range direction = 0 

Bz = center of Target 2 in the deflection direction = 35 

Lp = length of the pattern in the range direction = 70 

Lp length of the pattern in the deflection direction = 40 

M = aimpoint in the range direction = 0 

M' = aimpoint in the deflection direction= 17.5 
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cr = aiming error in the range direction = 20 

a' = aiming in the deflection direction = 10 • 

As usual, we designate the center of Target 1 as the center of the 

Cartesian coordinate system, (0, 0). Now using the definitions in 

Chapter II, we shall have: 

Tl = 1.25 

T' 1 = 1 

T2 = 1.25 

T' 2 • 1 

92 II: 0 

e ' 2 • 3.5 

p • 1. 75 

P' II 2 

1J • 0 

\.1 1 • 1.75. 
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Figure 30, illustrates this situation with all distances standar· 

dized by ·the aiming errors a and a 1 • The standardized. areas of Tar· 

get 1, Target 2, and the pattern are indicated in the bottom of each. 

They are: 

The standardized area of Target 1 • 2T1x2T2 • 2.Sx2 • S, 

the standardized area of Target 2 • 2T2!x2T21 • 2.Sx2 • S, 

and 

the standardized area of the pattern • 2Px2P' • 3.Sx4 • 14. 



I 
L__ 1. ~ J1. 4 :: I 4-

( o, 3.l-) . 

l 

I 

I 

I -· 
Figure 30. An Example of One Rectangular Pattern 

Being Delivered on Two Rectangular 
Targets 
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We note that in this configuration, two targets are of the same 

s1ze and their centers line up horizontally. Also the aimpoint is 

placed midway between the two target centers. We did this in order to 

simplify the calculation of joint probabilities. In a more general 

configuration, the joint probabilities can be obtained in a fashion 

similar to what is done here in this case. The following values will 

also be needed. 



S == T + P == 3 1 1 

s I == T I + P 1 == 3 
1 1 

S = T +P = 3 2 2 

s I = T '+P 1 ~ 3 
2 2 
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We shall find the joint probability of "the fractional coverage on 

Target 1 : r1 and the fractiona,l coverage : r2" for r1 ==0, 14, 2;4, 3;4, 

1 and r2=o, 1;4 , 2;4 , 3;4, 1. First, we express the fractional coverage 

r in terms of a standardized area v. That is 

v1 standardized area of Target lxr1 == 5r1 

v2 standardized area of Target 2xr2 = 5r2 

(Recall that the standardized area of both Target 1 and Target 2 1s 5) 

From this relationship, we have, for example, 

Pr(fractional coverage on Target 1:1~, fractional coverage on 

Target 2:1/4 ) 

= Pr(Z1 : 2.5, z2 : 1.25) 

Thus, the problem becomes to find Pr(Z1 : v1 , z2 > v2) for v1==0, 1.25, 

2.5, 3.75, 5 and v2==0, 1.25, 2.5, 3.75, 5. 

Some joint probabilities can be found straightforwardly. For ex-

ample, 
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Pr(z1 > 0, z2 > 0) = 1 

Pr(Z1 > 0, z2 > 2.5) = Pr(z2 ~ 2.5) = 1-Fz (2.5) (AI) 
2 

The last equation in (Al) is true since Pr(Z 2=2.5) = 0. The value 

of Fz (2.5) can be obtained by using expression (3.3) directly. 
2 

Some of the joint probabilities are found by integrating f(y, y') 

over the region D1r\D2. It is this region that we have to graph care

fully and partition it before 'doing the numerical integration. Consi-

der the Pr(Z1 : 1.25, z2 : 3.75), for example. Corresponding to the 

event z1 : 1.25; we can construct a n1 region around the center of 

Target 1. Corresponding to the event z2 > 3.75, we can also construct 

a D2 region around the center of Target 2. The boundaries of n1 and 

D2 are w~ll defined in Figure 13. Figure 31 shows both D1 and n2 and 

the way they intersect. Because of the symmetry, we only have to con-

sider the upper half of n1 () n2; We partition it into two areas, 

Area 1 and Area 2 as shown in Figure 31. 

The equation representing the curve on the upper right corner of 

the n1 region is, by the defintion in Figure 13, 

Substituting e1=e1 '=0, s1=3, ~1 '=3, and v1=:j._.25 into (A2), we obtain: 

y = 3y' -7.75 
y' -3 

Similarly, we can obtain the equation representing the curve on the 

left upper corner of the n2 region: 

y = 3y'-5.25 
y'-0.5 
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We can now see that 

?r(<1 > 1.25, •z ~ 3. 75) " J J f(y, y') dy dy' 

Dl'\ D2 

2l J J f (y, y') dy dy' + J J f (y, y • l dy dy • 

~rea 1 Area 2 

3y' -5.25 

-- 2 ! 12 • 3 7 5 f y I - Q • 5 g (y) 

2 0 

2.5 

+ I.375 

3y' -7.75 

f. y',-3 

0 

g(y'-1.75) dy dy' 

g(y) g(y'-1.75) dy dy' 

[G(3y' -5. 25) 
y'-,0.5 G(O)] g(y'-1.75) dy' 

2.5 

+ ( [G(3y:~~· 75) - G(O)] g(y'-1.75) dy' 
~.375 

Two numerical integrations are needed to find the values in 
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(A3) 

expression (A3), which turns out to be 0.096. This is a way to find 

Pr(Z1 ~ 1.25, z2 ~ 3.75), which is Pr(fractional coverage on Target 

1~14, fractional coverage on Target z~3;~. 

If we use rectangles D1* and D2* to approximate n1 and D2, then 

the approximated joint probability is: 



Pr*(~1 > 1.25, z2 > 3.75) = J J f(y, y') dy dy' 

Dl*(\ D2* 

1.125 

= f g(y) dy 
-1.125 

12
.
5 

g(y'-1.75) dy' 

2 

= [G(l.l25)-G(-1.125)] • [G(O. 75)-G(0.25)] 

= 0.129. 
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In this fashion, we have found both the exact and the approximated 

joint probabilities of "fractional cm.;erage on Target 1 ~ r 1 and 

fractional coverage> r 2" for r1=o, 14, 2i, 3i, 1 and r 2=o, 1;4 , 1'4 , 

3i, 1. TABLE II give the exact joint probabilities. FCl in the table 

stands for "the fractional coverage on Target 1", and FC2 in the 

table stands for "the fractional coverage on Target 2." TABLE III 

give the approximated joint probabilities. AFCl and AFC2 have the 

same meaning as FCl and FC2 except the extra "A" stands for "approxi-

mated.'' 



> 1 0.086 -

>31 - 4 0.269 

~2;4 J. 491 

> 1; 
- 4 0.717 

> 0 1.000 -

. FC2 > 0 
FC1 -

> 1 0.086 

~ 3/4 0.269 

~ 2/4 0.491 

> - 1/4 0.717 

> 0 1. 000 -
AFC2 > 0 .AFC1 

TABLE II 

1HE EXACT JOINT PROBABILITY OF 
1WO FRACTIONAL COVERAGES 

o.o o.o o.o 

0.096 o.o o.o 

0 .. 262 0.109 o.o 

0.457 0.262 0.096 

0.717 0.491 0.269 

> 1/4 > 2/4 > 3/4 - - -

TABLE III 

o.o 

o.o 

o.o 

o.o 

O.Jd6 

> 1 -

1HE APPROXIMATED JOINT PROBABILITY OF 
TWO FRACTIONAL COVERAGES 

o.o o.o o.o o.o 

0.129 o.o o.o O.J 

0.342 0.152 o.o o.o 

0.531· 0.342 0.129 o.o 

o. 717 0.491 0.269 0.086 

~ 1/4 2/4 3/4 1 > > > - - -
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