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CHAPTER I
INTRODUCTION
1. Statement of the Problem

The problem which will be considered in this study is that of find-
ing the joint distribution of the coverages of two rectangular targets
by one rectangular pattern. To present the problem clearly, let us

consider a typical situation which is exemplified by Figure 1 below:

' Target 2
'Targ etl *ge
(2,f) ( 1’, 30)
Y N
(o,0) ' JoX3o = 200
18X15=2)70
'-_Fa'f*e\‘ n -_’
| |
!
| |
- —_— —

Figure 1. A Typical Situation
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In the diagram, (0, 0) and (5, 30) are the centers of Target 1 and
Target 2 respectively. The sizes of the targets and the pattern are
indicated beneath each of them. The aimpoint of the pattern is (2, 15).
The coordinate system used here is range direction-deflection direction
where the range direction is vertical and the deflection direction 1is
horizontal.

The assumptions we make in regard to the general situation are:

(1) Both targets are rectangular in shape with sides of different

targef elements parallel to each other.

(2) The pattern is also rectangular in shape;

(3) Pattern sides are parailel to target sides.

(4) The landing point (&, ') of the pattern center is assumed to

have a bivariate normal distribution with correlation coeffi-

cient p = 0. That is
1 2-M, 2 2'-M'2
£z, 2) = —— expt- — [ED? + A20°D
21 o o

—°°<y<00

-0 <y'< =,
where (M, M') is the aimpoint of the pattern center point, and where
o and o' are the standard deviations of the landing point in the range
and deflection directions respectively. Note that it we let y=~—§—,
y's= ——%;3 p= —g;, and up'= Jg;, then the joint p.d.f. of y and y' is

given by :

£, v = 5= el o [o-0” + &0 D

-'00<y<00

- <y' < o, (1.1)



The question which prompts our study is: '"Can we make any probabi-
lity statements about the joint coverage on the two targets under this
given situation?'' More specifically:

(1) What is the probability of hitting both targets?

(2) What is the probability of hitting Target 1 but missing

Target 27
(3) What is the probability of hitting Target 2 but missing
Target 17

(4) What is the probability of missing both targets?

(S)IWhat is the probability of achieving the maximum possible

coverage on both targets?

(6) What is, say, Pr(Z1 > 100 and 22 > 50)7 (Zl is the covérage

on Target 1 and ZZ is the coverage on Target 2 by the pattern)
2. A Review of Previous Work

Very little has been done on the subject of the joint distribution
of two coverages (linear or rectangular). The majority of the earlier
work in this field deals with the average value of coverages, €.g.,
the Expected Fractional Coverage. In the previous work, no probability
statements aré givén with regard to coverage exéept in a study done
. by Gay and Weeks (1973). They dérive the distribution function of the
fractional coverage of one rectangular target by one rectangular pat-
tern. A computer program using numerical integration was used to ob-
tain the distribution function. Alplotting program was also included.

The work by Gay and Weeks is by far the most relevant to our cur-
rent study. Although it dqes not consider the joint probability of two

rectangular coverages. Heiser (1971) also studied the distribution of



coverage on one fectangular target, but he allowed a free delivery
angle of the rectangular pattern which made the coverage on the target
non-rectangular in general.

In "Matrix Evaluator Computer Program' (1974), a‘functional rela-
tionship between the linear coverage and the landing point of the pat-
tern center was given. This relationship has proven to be very useful

in our derivation of the joint distribution of two linear coverages.
3. The Order of Investigation

We shall first derive in Chapter II the cumulative distribution
function (c.d.f.) and the probability density function (p.d.f.) of the
coverage of one linear target by one iinear pattern. In Chapter IIT,
the c.d.f. and p.d.f. of the coverage of one rectangular target by one
rectangular pattern is found. The approach we use in Chapter III isv
different from that used by Gay and Weeks. As a consequence, an equiva-
lent but a somewhat more compact form of the c.d.f. is obtained.

In Chapters IV and V, we derive thé joint c.d.f. and the joint
p.d.f. of the coverages of Eyg_ligggz_tafgets by one linear pattern.

It is in Chapter VI that the problem of the joint c.d.f. of two
rectangular coverages is considered. In Section 1, of Chapter VI, we
follow the line of approach used hitherto to obtain a "mathematical
expression' for the joint c.d.f., thch turns out to be of little prac-
tical value. In Section 2, the approach used by Gay and Weeks is used
to obtain another "mathematical expression' for the joint c.d.f. of two
rectangular coverages. Unfortunately, it is again untamed by attempts
to computer program it. In both cases, we point out the difficulties

and complexities involved in trying to program it.



In Chapter VII, we consider the joint probabilities of some
"interesting' and "useful"‘cases. Namely, Question (1) through Ques-
tion (5) stated in Section 1 of this chapter. Exact probabilities are
- obtained in closed forms in these cases.

{n Chapter VIII, the problem of the joint c.d.f. of two rectangu-
lar coverages is picked ﬁp again. An approximation to it is given.
Chapter IX outlines an easy way to extend this study to m rectangular
targets. In the final chapter, we give a summary and indicate some

possible extensions.



CHAPTER II

THE DISTRIBUTION OF ONE LINEAR COVERAGE*

We start our investigation by considering the simplest case, that
being one linear pattern delivered on one linear target. Let us adopt

the following notation:

target length

=2

B = target center
L, = pattern length
M = aimpoint

o = standard deviation of the landing point of the pattern center
(aiming error)

T = LT/Zo standardized half target length
6 = B/o standardized target center
P = LP/Zo standardized half pattern length

u = M/o standardized aimpoint.

Figure 2 illustrates the situation of one linear pattern being

delivered on one linear target using the above notation.

* To make the reference easy, we shall sometimes refer to ''the coverage
on one linear target by one linear pattern" simply as 'one linear
coverage.' Similarly, ''the coverage on two linear targets by one
linear pattern'" is referred to as '"two linear coverages', and ''the
coverage On one rectangular coverage by one rectangular pattern' as
""one rectangular coverage', etc.



o-T e y-p otT Y J+P
T
the landing point of the pattern center
[ | ] indicates the limits of the target
( ) indicates the 1limits of the pattern realization

Figure 2. A Linear Pattern Being Delivered on a Linear Target

In Figure 2, y is the standardized landing point of the pattern
center point, and according to the assumptions stated previously, y has
a normal (p, 1) distribution of the form

£y) = —2— epl- 5 G-0%) | ey <o, (2.1
J2m
Also, the shaded portion of the line in Figure 2 is the standardized
linear coverage. Since all of the subsequent discussion will be in
terms of standardized distances (being expressed in units of standard
deviations), we shali drop the modifier '"standardized" henceforth.

The functional relationship betweenIC, the‘random variable which
represents the linear coverage of the target, and Y, the random variable
whi;h represents the landing point oflthe pattern center is as follows:
(This‘is a generalized version of what has been established in 'Matrix

Evaluator Computer program' (1974, pp. 5-6))



0 for y < -S+e

S-6+y for -S+6 <y < -R+6

(@]
1}

h(y) = S-R for -R+6 <y < R+6
S+6-y for R+6 <y < S+6
0 for y > S+6 (2.2)

where S = T+P and R = |T-P|. The graph of this function is found
in Figure 3.

C=$-oty | c=5+0-Y

']". »
] >
-8 T-:?o -Rt8 0 Rt0 T&OT $+0

U-S+9 | 5-u+@

Figure 3. The Functional Relationship between C and Y

We note in Figure 3 that the maximum that the coverage C can attain is

S-R, which is the minimum of 2T and ZP.
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We can now obtain the c.d.f. of C by integrating f(y), which is
defined in (2.1), over the proper intervals indicated in Figure 3,

corresponding to various values of u. This yields the following

c.d.f.:
0o for u<2o©
Fc(u) = G(u-S+6-u) + G(u-S-6+y) for 0 <u < S-R
1 for u > S-R (2.3)

where G(+) is the cumulative standard normal distribution function, and

u is a standardized value. Figure 4 is a plot of Fc(u):

F ()

G(u-% +97(A)+§'(0('5'9 tAL)

l : ,
}I’G{‘R+B;a)-q(-n-9tlu

G(=StO-M)+G (-5 -0+4)

)
h\
-

Figure 4., The c¢.d.f. of One Linear Coverage
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'The p.d.f. of C is then

0 for u<0
G(-S+6-p)+G(-S-6+u) for u=20

£.(u) = g(u-S+6-1)+g(u-S-6+y) for 0 < u < S-R
1-G(-R+6-1)-G(-R-6+y)  for u = S-R
0 for u > S-R (2.4)

where g(-) is the standard normal density function.

Figure 5 below is a graph of fc(u):

?(uos+9;u)f}{u-$-6rﬂ)
I 4

(~$48 M) +6 (-5-8% / .
& A+ (50 t_‘r(-RTa_M)_&(-R-O*/M)

E \

0 SR

Figure 5. The p.d.f. of One Linear Coverage
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To conclude, we have derived the c.d.f. and the p.d.f. of one
linear coverage in Formulas (2.3) and (2.4). We note that this random

variable is neither continuous nor discrete, but a mixture of both.



CHAPTER III
THE DISTRIBUTION OF ONE RECTANGULAR COVERAGE

In this chapter, we shall consider the distribution of one rec-
tangular coverage insfead of one linear coverage which was treated in
Chapter II. |

First we shall obtain the joint p.d.f. of C and C', the linear
coverages in the range direction and the deflection direction respec-
‘tively. Once the joint p.d.f. of C and C' is obtained, we can find
the c.d.f. of the rectangular coverage Z, by noting the fact that
2 = C-C' and accordingly using the so called '"Distribution Function
Method.'* We now proceed to do exactly that.

If we consider the notation defined above, i.e., LT’ B, LP’ u, etc.

as being in the range direction, then expression (2.4) can be considered

as the p.d.f. of C, the linear coverage in the range direction. Now if

we use the same notation with a prime added to each of them to denote

the same thing in the deflection direction, then the p.d.f. of C', the

linear coverage in the deflection direction, can be similarly obtained

as.:

* See, for example, Ash (1970, p; 59)

12
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( 0 for u' <0
G(-S'+0"-u")+G(-S"-6"+u") for u' =0

£ (') = f gu'-S'+o'-p")+g(u'-S'-6'+u') for 0 <u' < S'-R!
C'

1-G(-R'+6'-u')-G(-R'-8'+y')  for u' = S'-R

_ 0 for u' > S'-R. (3.1)

Now the joint p.d.f. of C and C' is simply the product of fc(u)
and fC,(u'). This is due to the fact that Y and Y' were assumed to be
independent, that C is a function of Y only, and that C' is a function

of Y' only. It is given as follows on next page:
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(0 for u < 0, or u>S-R, or u' <0, or u'>S'-R
[G(-5+9-u)+G(-S-9+u)]'[G(~S'+9'-u')+G(-S'-6’+u')]
for u=0 and u' =0
[G(-S+6-u)+G(-S-6+1)] - [g(u'-S'+0"-u")+g(u'-S"-6"+u")]
for u=0 and 0 <u' < S'-R'’
[G(-5+6-u)+G(-S-6+n)]+ [1-G(-R'+6"-u")-G(-R"-6"+n")]
for u= 0 aﬁd u' = S'-R'
[g(u-S+6-u)+g(u-S-6+u)] - [G(-S'+6'-u")+G(-S'-6"+u")]
for _O <u<S-R and u' =‘0 ,
f,cr@uM = [g(u-S+6-1)+g(u-S-6+u)]- [g(u'-S'+6" -u')+g(u'-S'-6'+y")]
for b <u<S-R and 0 <u' < S'-R'
[8(u-S+6-1)+g (u-5-8+1) ] - [L-G(-R'+8"~u') -G(-R' -6 +u")]
for 0 <u< S-R and u = S'-R'
[1-G(-R+6-p) -G(-R-6+u)] < [G(-S'+6'-u')+G(-S'-e'+u")]
for u=S-R and u'=0 |
[1-G(-R+6-1) -G(-R-6+1)] - [g(u'-S"+8 " " ) #g (' -S' -8 '+ ") ]
for u=S8-R and 0 <>u' < S§'-R!

[1-G(-R+6-1) -G (-R-6+u) ]+ [1-G(-R'+6" ') -G(-R'-8"+n") ]

L ’for u=3S-R and u' = S'-R',
‘ (3.2)

Again this is an example of a 'mixed" p.d.f. This means that the
£ anp P

probability mass of this p.d.f. is concentrated on four points, areas

Qg'féur "walls'" and the volume in the middle. This is illustrated by

the graph of fC C,(u, u') in Figure 6:
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'FCC'(M) [’(l) |
A

‘f‘LL suyface of this oper YecTangk /S
» [ztu_s+e:g)+§(u-s*etaﬂ.LE(LU—§+6Q¢r)+3(uﬁs‘w¥+AV)1

Figure 6. The Joint p.d.f. of Linear Coverages
in Range and Deflection Directions
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If we sum up the functional values of the four points (O,'O),(O, S'-R"),
(S-R, 0), (S-R, S'-R‘), and areas of the four ''walls' whose base lines
are {(u, u)ju=10, 0 <u' <S'-R'}, {(u, u)|u=S8-R, 0 <u' < S'-R'},
{(u, u")|0 < u < S-R, u' = 0}, {(u, u")|o % u < S-R, u' = S'-R'}, and
the volume whose base is {(u, u") |0 <u<S-R, 0 <u' < S'-R'} in the
diagram on Figure 6, we shall get one, the whole probability mass of
this joint p.d.f. .
Once the joint p.d.f. of C and C' is obtained in (3.2), we can
derivevthe c.d.f. of the rectangular coverage, Z =CC', by using the
: ”Distributioh Function Method." In applying this method here we simply
realize that Pr(Z fyv) = Pr(C+C' < v) which can be found for any
specified v value by first summing over the prcbability mass of the
points, areas, and volume whose ''base' is inside the lower right corner

in Figure 7, and then to subtract this sum from one. (Note that the

value v has been standardized.)

’ /// {s-R, s-R')

Figure 7. Using 'Distribution Function Method" to
Obtain the c.d.f. of the Rectangular
Coverage
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Now let us carry this out.

For v < 0, Pr(Z < v) = 0.

For v > (S-R)(S'-R"), Pr(z < v) = 1.
For 0 < V< (S-R)(S'-R"),

Pr(z < v) |

= 1-{ [1-G(-Re0-4) -G(-R-0+)] - [1-G(-R'#8"-u") -G(-R" -6 ' +u")]

S-R
+f [g(u-S+6-p)+g(u-S-6+u) ]+ [1-G(-R'+6'-u') -G(-R'-6"+u") ]du
‘V/(S'-R') . :
S!_R'
+f [1-G(-R+6-u) -G(-R-6+n)] - [g(u'-S"+6'-u")+g(u'-S'-6"'+u') Jdu'
V/S-R) '
S'-R' S-R V
+ ~]~ [g(u-s+e-u)+g(urs—e+u)]-[g(u}—su+euu0+gor-suewu0]dudu}
V/S-R) “v/u'

= 1-{[1-6(-R#0-1)-G(-R-6+) ]+ [1-G(-R'+0" ") -G(-R' -6 "+u")]
+ [1-G(-R'+6"-u") =G(-R'~6"+u") ]+ [G(-R#0-1) -G (V/ (S-R") -S+8-1)
+G(-R-6+1) -G(V/(S'-R") -S-6+) ]
+ [1-G(-R#0-u) -G(-R-8+1) ]+ [G(-R'+8"-") -G{V/(S-R)-§'+8" -u")
| 4G[-R"-8"+u")-G(V/ (S-R)-S"-6"+u") ]
+ [G(-Ro-J+G(-R-0+u) ]+ [G(-R'+6"-u")-G(V/(S-R)-S'+6" -u")
‘ +G(-R'-8"+u")-G(v/ (S-R) -S'-6"+u")]
. S'-R! |
-0/~ [g(u'-S'+9'-u')+g(u'-S'-é'+u')]'[GCV/U'-S+9-u)fG0¢u“S*%ﬂﬂdu}
V/S-R) _
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[G(V/(S'-R')-S+8-1)+G(v/(S'-R")-S-8+1) ] - [1-G(-R'+0 " -u")-G(-P'-0"+p")]

+

G(v/(S-R)-S'+6'-u")+G(v/(S-R)-S'-6'+u")

S'-R' .
./i [g(u’-S'+e'—u')+g(u'-S'-ef+u')]-[G(V/u'-S+e—u)+G(v/u“{}B+quf
v/ (S-R) |

+

To summarize, we have the following c.d.f. of the rectangular

coverage, Z:

0 for v<0
[G(v/(S'-R")-S+6-u)+G(v/(S'-R")-S-0+u)]-
[1-G(-R'"+8'-u")-G(-R'~6"+u")]

*G(v/(S-R)-8"+8'-u")+G(v/(S-R)-5'-6"'+u")

B, (v) = S'-R"
f [g(u-8"+8" -y +g(u' -8~ "+u")]
v/ (S-R)
[G(v/u'-S+6-u)+G(v/u'-S-6+u) ]du’
for 0 < v < (S-R)(S'-R")
1 for v > (S-R)(S'-R").

(3.3)
We must give a warning immediately. When v = 0, the term V/y in
expreséion (3.3) must be defined to be 0. Otherwise, V/y' is
undefined at the lower limit of the integration when v = 0.

The approach we used here to derive Ifzﬁa in (3.3) is entirely dif-
ferent from that used by Gay and Weeks (1973). It is interesting to note
that when we assume the target center (6, 6') = (0, 0) and the aimpoint
(v, u') = (0, 0), expression (3.3) will reduce to expression (3.4)
below, which is equivalent to the c.d.f. found in Gay and Weeks (1973,

pp. 20-21) except that we have a more compact and unified form here, ie,
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0 for V <0

[2G(W/(S™-R")-S) ]+ [1-2G(-R") ]+2G(VA(S-B-S")

Sl_Rl
F(v) = +f 4g(u'-S") G(v/u'-S)du' for 0<v<(S-R)(S'-R")
2z . :
VAS-R) )
1 for v > (S-R)(S'-R').
(3.4)

The p.d.f. of Z, the rectangular coverage, is derived by taking
derivatives of (3.3) and taking account of the "jumps" at v=0 and
v = (S-R)(S'-R'). Leibnitz Rule i_s used in this differentiation. After

simplification, we obtain:

(0 | ~for v<0orv> (S-R)(S'-R")
[G(-S+6-1)+G(-S-0+4) 1+[G(-S'+8" -1 )+G(-S" -6 "+u")]

~[G(-5+6-1)+G(-S-0+1) ]+ [G(-S'+6" -1')+G(-S' -8 +y") ]
| for v = 0
[1-G(-R'+8'-u")-G(-R'-8"+u") ]+ [g(VAS' -RY) -S+8-1)

g (VS -R) -S-0+1)]+ [1/(S'-R)]+

[1-G(-R+6-1) -G(-R-6+1.) ] + [g(V/ (S-R) -S'+6 " ~")

Fz () - < +g(V/AS-R) -8 -6"+y,") ]+ [1/ (S-R) ]+

S'_Rl
f [g(u'-S'+6"-u")+g(u'-S'-6"+u") ]+ [g(V/u'-S+6-p)

VAS-R) -
. +g(v/u' -S-6+u)](1/u")du’

Cfor 0 < V< (S-R)(S'-R")
[1-G(-R+6-1)-G(-R-8+1) ]+ [1-G(-R'+6" ') -G(-R"'-8"+y1")
for V= (S-R)(S'-R"),
k‘ | , (3.5)
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A graph of fZ(v) is as given in Figure 8.

£

Figure 8. The p.d.f. of One Rectangular Coverage

In this chapter, we have derived both the c.d.f. and the p.d.f.
of one rectangular coverage. In the next two chapters we shall deve-
lop the joint distribution, i.e., the joint c.d.f. and the joint p.d.f.

of two linear coverages.



CHAPTER IV

THE JOINT C.D.F. OF TWO LINEAR COVERAGES

AND ITS EXTENSION
1. The Joint c.d.f. of Two Linear Coverages

We shall make use of the same notation defined in Chapter II with
subscript ""1" or "2" added to LT’ B, T, 8, S, and R to differentiate
between Térget 1 and Target 2.

Suppose we have two 1ineaf targets. Target 1 has length 2T1 with
center at 61=2. Target 2 has 1éngth ZTZA with center at 62. (Let
us adopt the convention that we always denote the target on the left
as Target 1 and assign zero as the coordinate of its center). A linear
pattern of length 2P aimed at point p is delivered on them. The distri-
bution of Y, the 1anding point of the pattern center is assumed to be
normal (u, 1) as before.

The linear coverage of Target 1, Cl’ is again a function of Y. So
is C,, the linear coverage of Target 2. That is:
0 for. -y < -§;
Si+y for. -5 <y <-Ry
C1=h1(y) = S;-R for —R1 <.y < R1
Sl—y for R1t< y < Sl
0 for y> Sy (4.1)

and

21
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0 for y < —SZ+02
Sz—ez+y for —SZ+02 <y 4.—R2+02
C2=h2(y) = ﬁ SZ—RZ for -R2+62 Ty < R2+(J2
SZ+62-y for R2+e.2 <y < Sz+e2 |
0 - for y > 5+8,. (4.2)

These two functions, (4.1) and (4.2), can be graphed on the same
axis. One possible configuration of targets and pattern is shown on
the diagram in Figure 9. We note again the maximum that the coverage

C1 can attain is

S, -R

1Ry = mln(ZTl, 2P),

and the maximum that the coverage C2 can attain is

S,-R

Ry = m1n(2T2, 2P).

$1-Ry = Min (2T, 2P ¢

. \ . fa-Ryxmmin (3T 2P)

I
. |
)
ul//ﬂ /// | '
' d ’ F—t 3N x >Y
=% T T b0 T we, B T.w.'\ 5 T 5216,

W5 Ur=5;18, S0 5

Figure 9. The Functional Relationship between
Ci» Gy, and Y
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Now let us proceed to find the joint c.d.f. of C1 and CZ’ namely,
Fcl,Cz(ul’ uz) = Pr(C1 <y, C2 < uz). Since Pr(C1 <y, C2 < uz) will
have different expressions, corresponding to the possible values Uy and

u, méy assume, we first break the U U, plane into five disjoint

1
regions:

(1) up < 0 or u, <0

2
(2) Uy S1 - R1 and u, > S2 - R2
(3) wu

v

S; Ry and 0 <u, <S5, -R,

Uy < S1 - R1 and u, > S2 - R2

up < S1 - R1 and 0 < u, < S2 - RZ' (4.3)

Vv

(4) 0

A

(5) o

LIVAN

- We can find the Pr(C1 <y, Cy < uz) ‘region by region as follows:

For Region (1): wu, <0 or u, <0,

1 2
Pr(C1 < U, C2 < uz) =0
since coverages are non-negative.

For Region (2): u > S, -R

2SRy and wy 2 Sp7Rys

1 2
Pr(C1 < Mg C2 < uz) =1
since (Sl—Rl) and (SZ-RZ) are the maxima of C1 and C2
respectively.

For Region (3): u; > S;-R; and 0‘5 u, < S,-Ry,

Pr(C; <uy, G, <u)) = Pr(C, <u,)) =1-Pr(C, > u,)

S,-u,+6

279272
1- f gly-u)dy

u2-82+e2

= 1—[G(Sz-u2+ez-u)—G(u2—82+62-u)].
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Y
n
=

For Region (4): 0 < u; < $4-R; and u, > S,-R,,

ul) = 1-Pr(C1 > ul)

itA

Pr(C1 <up, C2 < uz) = Pr(C1

S

1™
1- g(y-u)dy
u, -S

171

1-[G(Sl—ul—u)-G(ul-Sl-u)].
For Region (5): 0 < up < Sl—R1 and 0 < u, < SZ-RZ, we have more
than one case to consider. Before we consider the possi-

ble cases, let us first adopt the following notation:

Let A1 = ul—S1 (the '"'rear foot" of C1 curve)
B1 = Sl—u1 (the "front foot" of C1 curve)
Az = u2—82+62 (the "'rear foot'" of C2 curve)
B2 = Sz—u2+e2 (the '"front foot'" of C2 curve), (4.4)

Since Sl-u1 and Sz—u2 are positive numbers, we have the rela-

tionship that A.1 < B1 and A2 < B2'

With these two restrictions, there are six possible arrangements

of these four values in Region (5):

Case 1: A} <A, < B <B,
Case 2: A < B; <Ay <B,
Case 3: A, <A <B, <B
Case 4: A2 < B2 < A,1 < B1 :
Case 5: A <A, < B, < B
Case 6: A, < B, <B

A, < B <B, (4.4a)

To prove that some of the above cases are impossible cases, we .

need the following lemmas:



Lemma 1: It is impossible that Ay < A
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A,

Proof: Suppose A, < A;. By definition, we have
U,-S,*6, < uy-8;, which implies

—Sz+e2 < (Sl—Rl) - S1 since 0 < up < Sl-R1 and
‘ 0 <u, < SZ-RZ.
This implies ‘

-T,-P+T +T, < —|T1-P| since 6, > T +T,.
Hence,

T,-P < -|T1—P|, which is impossible,
Thus, we have proved Lemma 1 by contradiction.

It is impossible that B, < B,

By definition, we have

Lemma 2:

Proof: Suppose B2 < Bl‘
Sy-u,+6, < S1-ug, which implies

2 72 "2
Sz~(Sz-R2)+e2 < SI' 0 < Uy < Sl-R1 and
0 < u, < S,-R,.
This implies
|T2-P|fT1+T2 < Ty*P since 6, > T +T,.
Hence,
|T2-P| < P-T2
that is

|P—T2| < P-T,, which is impossible.

Again, we have proved Lemma 2 by contradiction.

.

Therefore, we can rule out Case 3, Case 4, and Case 6 by Lemma 1;

and Case 5 by Lemma 2. There are only Cases 1 and 2 left as possible.
Furthermore, we note from Figure 9'that the problem of finding

Pr(Cy < u, C, f u2) | is real;y a problem of finding Prly $(A1, Bl)u
(AZ’ Bz)] , which in turn can be solved by finding 1-Pr[ye (Al, Bl)U(Aé’BZ) 1
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We proceed now to find Pr(C1 < up, C2 < uz)

Under Case 1, the union of (A, B)) and (A,, B)) is (A}, B)), i.e.

in Region (5):

(ul—Sl, Sz—u2+62). Hence

Pr(C1 <, C2 < uz) = 1-[G(Sz-u2+ez—u)—G(ul-Sl-u)]

- and under Case 2, (Al, Bl) and (AZ’ Bz) are disjoint, the union of

them is then (ul-Sl, Sl-ul) and (uZ—Sz+ez, Sz-u2+62). Hence

PZ(C1 <up, C2 < u2) - 1—[G(Sl—ul-u)—G(ul—Sl-u)+G(Sz-u2+ez—u)
-G(u2-82+92-u)] .

To summarize, we have the following c.d.f. of C1 and CZ’ the linear

coverages of Target 1 and Target 2, when a linear pattern is delivered

on them:
Fey, o wp) = Pr(Cy < uy, € < uy)
/0 for u; <0oru, <0 (Region (1))

1 for u; > S;-R, and u

1 171 2
l-g(Sz-u2+62-u)+G(u2-Sz+62-u)

> SZ—R2 (Region (2))

for u; > S.-R; and 0 < u, < SZ-R2 (Region (3))

1 171

, 1-G(Sl-u1-u)+G(u1-Sl-u)

\ for 0 < up < Sl-R1 and u, > SZ-R2 (Region (4))

1-G(Sz-u2+92-u)+G(u1-Sl-u)

for 0 <u; < $;-Ry

1 SAy <Bp B

lfG(Sl-ul-u)+G(u1-SlTu)—G(Sé-u2+62-u)+G(u2-82+62-u)-

for 0 < U < §;-Ry and 0 < u, < S,-R,

\_ and A1 < B1 < A2 < B2 (Region (5), Case 2)

and 0 < u, < S,-R,

and A (Region (5), Case 1)

(4.5)
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where A, By, A,, and B, are defined in (4.4).
Therefore, F(ul, uz) assumes the same form in Regions 1, 2, 3 and

- 4; but in Region 5, it may assume different forms depending on the order-

ing of the values of A, Bl’ AZ’ and BZ'

Because of the different expressions in Region (5), this distribu-
tion function of two linear coverages is not easy to graph. In Figure
10,the diagram is given for the special case exemplified by the diagram

in Figure 9, where the order of arrangement is always A1 <A, <B <B

2 1- 72
(Case 1) when (ul, uz) is in Region (5).

/T-( u'lul) y /'L"M
e ),,6\(.
»
Ry
! e
© |-Gt -4 *,&‘f‘; ff.-;o
. 4 l'q(;;fﬁfﬂ)f &Gﬂ,—.«)
(53165 ) 46 (-5 g .
N—_ £
W
—A =
2 II \ S6-x,9 Y
A o
. l 7
I-G(ﬂ,+o;m)¢aes,m) i e ' /— h\— ——";———**._J
% “
(0, 5o . l ‘ '
| - at” 2 A
'l' Q(’wa\'u)f(,( F"'Q )
. / |
4 P 7 : I'G('l;’r&-,u)*é(,ﬂrﬂ) |

Figure 10. A Distribution Function of Two
Linear Coverages
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2. Some Extensions

In practice, when a linear pattern is delivered on two linear
targets, a more interesting question is: 'What is the joint probabi-
lity of covering Target 1 at least Uy and cévering Target 2 at least
uz?" That is Pr(C1 > ul; C2 > uz).' This question can be answered
by finding Pr{ye[Al, Bl]f\LAZ, BZ]} in Figure 9. Expression (4.6)

below answers this question for different (ul, uz) values:

/0 for u; > S;-Ry or u, > S,-R,
1 for u; <0 and u, <0
G(Sz—u2+62-u)—G(u2-82+62—u)

for u; <0 and 0 <u, < S, R,

Pr(C, > uy, Cy> u,) = i G(S;-uy 1) -G(uy-S;-u)

for 0 < U; < S;-R; and u, <0
G(sl-ul-u)-G(uz‘-sz+ez-u)
for 0 < U; < S;-R; and 0 < u, < SRy
and A} <A, < By < B,
0 for 0 < ui <S4Ry and 0 < u, < S;-Ry
\ and Ay < By <Ay < By,

(4.6)

Furthermore, we can answer this question for any number of linear
targets. Suppose, for example, we have four linear targets with a

linear pattern delivered on them, then

Pr(C; > ups Gy 2 u,y, Cg > Uz, Gy > uy) = Pr(C; > uy, Cp 2 uy)
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provided that uy > 0 and u, > 0, and u, < T, and u, < 2T

2 3 - 773

These restrictions appear to be reasonable ones. The reason that we

can ignore the statements about C, and C3 in the above is that once

2
the statements about C1 and C4 are satisfied, Target 2 and Target 3

must be covered completely, which means the statements about C, and

2
Cy are automatically satisfied.
In general, we have
Pr(Cl >up, G2 uy, wal,C 2 un) = Pr(Cy > up, C, > un)

provided that u, > 0 and u, > 0, and u; < 2Ti for i=2, 3,...n-1.

1
Once we reduce the problem of n linear coverages to a problem of
two linear coverages, we can find the joint probability according to
expression (4.6).
vIn_next chapter, we shall derive the joint p.d.f. of two linear

coverages from the c.d.f. of two linear coverages obtained in this

chapter.



CHAPTER V
THE JOINT P.D.F. OF TWO LINEAR COVERAGES
We first realize that the p.d.f. of two linear coverages is
- neither continous nor discrete, but a mixture of them. There are four
points which have positive probabilities. They are the points (0, 0)

(0, SZ—RZ), (Sl—Rl, 0), and (Sl—Rl, SZ-RZ). The probabilties of these

four points can be found as follows:

Pr(u1=0, u2=0)

Pr(u1 < 0, u, < O)—Pr(u1 <0, u, < 0)—Pr(u1 <0, u, <0)

2

+Pr(u1 <0, u, < 0)
= F(0, 0)-F(0,07)-F(0~, 0)+F(0~, 07)
,.
where F(0, 07) = ;. F(0, 2)
lim
F(0", 0) = 0 F(t, 0)
F(0-, 07) = [ F(z, K).
>0~

According to (4.5),

< =S +8, < S, < S_+0o

F(0,0) = l_G(SZ+92—u)+G(—Sl-u); for -S 2%9, 1329279

1
or
F(0, 0) = 1‘G(51'U)+G(‘51‘U)‘G(SZ+92'U)+G('SZ+92‘U)a

for —S1 < S1 < —Sz+e2 < SZ+62,
Hence,

30
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) = =
Ir(u1 0, u, 0)

= [1-G(Sz+ez-u)+G(-S1 -u)1—0-0+0 = 1-G(Sz+ez-u)+G(—Sl-u)

+0,,

for -S5.<-S,+6, < S, < S,+6,

1- 72 "2 1
or

= 1_G(SI'U)+G('81'U) -G (Sz+62_U)+G(_SZ+62_U)

- -S
for -§; < Sy < -S,%6, < Sz+§2.

Pr(u1=0, u2=Sz-R2)'

= Prﬁﬁ‘f 0, u, < SZ~R2)—Pr(u1 <0, u, <5,-R))-Pr(u; <0, u, <S,-R

2

+ Pr(u1 <0, u

2

2 < 5;7R,)

= F(0, S,-R,)-F(0, S,-R,”)-F(0; S,-R,)+F(0; S,-R,")
where, according to (4.5),

F(0, SZ~R2’) = 1—G(R2+62—u)+G(—Sl—u) for —S1 < -R2+62 < S1 <R

+0,

2 72

or
F(0, §2'R2-) = 1-6(S;-1)*G (-5, -1) -G(Ry+6,-1)+G(-R,+8,,-1)

for —S1 < S1 < -R2+e2 < R2+92-

Hence,

Pr(u1=0, u2=Sz-R2)

[1_G (Sl—U)+G(_Sl_U) ] - [1—G(R2+ez'U)+G(-Sl'U) ] -0+0

G(R2+62-u)-G(Sl-u) for -S, < -R+6, < S, < R_+0

1 - "2 72 1-"2"72’
or

[1-6(S1-#)+G (-5 -) - [1-6 (S 1) +G(-5; 1) -G (Ry#6,-) +6 (-Ry#8,-1) ]

G(R2+62-u)—G(—R2+62-u), for -S1 < S1 < —R2+62 < R2+62.

(5.2)
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Pr(u1=Sl—Rl, u2=0)

]

Pr(u; < S1 Ry, u, < 0) - Pru; < Sl—Rl, u, < 0)

—Pr(u < S1 Rl’ <0) + Pr(u < S

= E(S;-Ry, 0)-F(S;-Ry, 07)-F(S;-

1"Ry> Uy <0)

1Ry O)+F(S Ry, 07)

where, éccording to (4.5),

F(S,-R,", 0) = l-G(SZ+92-u)+G(—R1-u) for -R, < -S,+8, < R, < S_+o

1°1° 1 - 2 2 1 -"2 "2
or
F(S;-R;™, 0) =‘1-G(R1—u)+G(—R1-u)—G(Sz+ez-u)+G(¥Sz+62-u)
| for -R; < Ry < -S5,%6, < S,+6,.
Hence,

Pr(u1=Sl-R1, u2=0)

[1-G(S,+6,-u)+G(-S,%6,-u)1-0- [1=G(S,*+6,-1) +G(-R; -u) 1+0

1]

G(-S *8," u)-G(—Rl-u) for —R1 < —Sz+e2 < R1 < Sz+ez,

or

[1-6(5+0,7)46(-5,#9,71)]- [1-6(Ry 1) 46 (-Ry ) -GS0, G817 )]

G(Rl-u)+G(-R1-u). for -R, < R, < -S.+0, < S_+0.

1 1 - 7272 2 7
(5.3)
Finally,
Pr(u S1 Rl’ u2=S —RZ)
= Pr(u < S1 Rl’ 5 < SZ—RZ)—Pr(u1 < Sl-Rl,.u < S RZ)

—Pr(u1 < Sl-Rl, u, < SZ-R2)+Pr(u < Sl—Rl, u, < S Rz)
= F(S1-Rys S;-R)-F(S;-Ry, S,-Ry)-F(S1-Ry ™, S,-R)+F(S)-Ry ™, S)-R))
where, according to (4.5),

F(S,- 1-G(R,*6,,-1)+G(-R; 1)

1 1 > )

for "Ry < -Ry*6, < Ry < Ry*6,,

or
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F(S;-Ry ™, Sy7Ry7) = 1-G(Ry-u)+G(-Ry 1) -G(R,+6,-u)+G(-R,*6,-1)

for —R1 < R1 < —R2+e2 < R2+62.

llence,

Pr(u1=Sl—R1, u2=Sz-R2)

Il

1-[1—G(R2+62—u)+G(—R2+ez—u)]—[1—G(Rl—u)+G(—R1—u)]
*+[1-G(R,+0,-u)*G(-R; -u) ]
G(Rl-u)-G(-R2+62-u) for -R, < -R,+6, < R, <R

+0,,

1- "2 °2 1 2 72

or

1-[1-G(Ry*8,-u)+G(-Ry+6,=1) ] - [1-G(R -u)*+G(-Ry-w) ]

+ [1_G(R1—U)+G(_R1'U) "G(R2+92'U)+G(_R2+62'U)]

=0 ‘ for -R; <Ry f'-R2+82 < Ry*6,.
(5.4)

Besides these four points, whose probabilities were obtained in
(5.1), (5.2), (5.3), and (5.4) above, the remaining probability is

concentrated on four open intervals:

{(uy, u2)|u1=0, 0 < u, < S,-R,}
{(u, u2)|0 <uy < Sy-Ry, u,=0}
{(u, u,)|u=S;-R}, 0 < u, < S,-R,}
{(uy, uZ)IO <uy < S;-Ry, u,=5,-R,}.

The probability mass concentration on these four open intervals can be
obtained by following a similar argument by which we obtained expressions
(5.1), (5.2), (5.3), and (5.4). We decline to do it because of the
following reasons: Firstly, for each open interyal, we shall have three

alternative expression depending on the order of arrangement of Al’ AZ’
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Bl,‘and BZ’ Secondly, these probabilities are not essential in de-
riving the joint p.d.f. of two linear coverages.

Apart from these four points and four open interval, the remaining
portion of the U1U2 planewcontributes no probability to the joint
distribution function F(ul; uz). In other words, the joint p.d.f.
for the remaining portion is 0. This can be shown by taking defivatives
twice Sn F(ul, uz) with respect to Uy first and then with respect to
u,.

Since this distribution function is a mixture of continuous and
discret distributions, the values of the function F(ul, uz) come
from the p.d.f., f(ul, uz), by summing over (1) the probabilities of
the points which have positive values and belong to the region
{(x, y)Ix'f U, ¥ < uz}; and (2) the areas of the ''walls'''whose ''base
lines'" belong to the region {(x, y)|x < U, ¥ < uz}. There are four
walls built around the rectangle {(x, y)|0 <'x < S;-Ry» 0 <y < S,-Ry ).
The value of F(ul, uz) on these four base lines (open intervals) are

obtained from (4.5) to be:
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F(ul, uz)

/1—G(sz-u2+ez—p)+c(-sl-p)

for u;=0, 0 <u, <S5, R, and -S; < U,-5,%8, < S) < S,-uy*6,

1-G(Sl-u)+G(—Sl—u)-G(Sz-u2+82—u)+G(u2-Sz+62—u)

for u,=0, 0 <u, < S,-R

1 2 2 72
1-G(Sz+82-p)+G(u1—Slfu)

and -S; < 8y < U,-S,+0, < Sy-uyte,

S, < -S,+6, < S.-u, < S,+6

for 0 < up < SFR; u,=0 and u )

1772 1°1 = °272 11
- { 1-G(sl~u1-p)+G(u1~sl-u)-q(sz+ez-u)+e(-sz+e2-u)

1771

for 0 <uy < S;-Ry, u,=0 and  u -5, < 85-uy < -S,%8, < S,%8,
1—G(Sz-u2+62-u)+G(u2—Sz+§2—u)

for u1=Sl—R1, 0 < u, < SZ—R2

1-G(Sl-u1—u)+G(u1-Sl-u)

\ for 0 <u

<S.-R,, u

1 < S17Rys uy=5; Ry (5.5)

2

We can now proceed to derive the p.d.f. of (Cl, CZ), f(ul, uz).
As we have indicated before, all the probability mass is concentrated
on the four points and four open intervals. The values of f(ul, uz)
on the four points have been obtained in (5.1), (5.2), (5.3), and (5.4).
~ What follows will give us the values of f(ul, uz) on the four open
intervals.

2 < SRy

can be obtained by directly taking the derivative of F(ul, uz) from

The value of f(ul, uz) in the open interval ‘ul=0, 0 <u, <S

(5.5) with respect to u,. Namely:
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f(ul’ uz) = = [1-G(Sz_u2+92'U)+G('Sl'U)] = g(sz_u2+62_U)
ou :
2 .
for u,y=0, 0 <u, < S,-R, and -S; < u,-S,+8, < 51 < Symu,e,,
or
£(uy, u,) = az [1-G(sl-u)+c(-sl-u)-G(sz-gz+e2-u)+G(u2-sz+ez—u)1
5 _

= g(5,-u,*+0,-u)+g(u,)-S,+6,-u)

and -S1 < S1 < u2-82+92 < SZ-u2+82.

(5.6)

for u1=0, 0 < u, < SZ-R2

The value of f(ul, uz) in the open interval 0 < u < Sl—Rl, u2=0 is

similarly obtained by taking the derivative of F(ul, uz) with respect

to U
f(u1’ uz) = = [l'G(SZ+62'U)+G(u1'Sl"U)] = g(ul'sl‘U)
au -
1
for 0 <u; < Sl-Rl, =0 and u -S; < -5,%6, < S -uy < Sy+6,,
or

f(uy, u,) = az [1-§(sl-u1-u)+G(u1-sl-u)-G(sz+ez-u)+c(-sz+ez-p)]
1 | g
= g(Sl’ul'u)+g(u1'Sl'U)

for 0 <wu; <S4Ry, u,=0 and wuy-5; < SR §I-Sz+e2 < Sy+0,.

(5.7)
As.for the open interval u1=Sl—R1, 0 < Uy < SZ—RZ, we must be
more careful. Taking the derivative of F(ul, uZ) -with respect to
u, will not give us the correct f{ul, uz) in this open interval.
Beforé we present the correét way to find f(ul, uz) in this interval,
let us také a closer 160k at the nature of F(ul, uz) in this interval.

Figure 11 shows how the value of F(ul, uz) increases when u., moves

2
. . + - -
along this interval from (u1=Slle, u,=07)  to (uy=S)-Ry, uy=(5,-R,J):
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‘H’)C OP‘”I f'nhrm/
L=0, 0<l< 5K, the sperc mferval

U=5-K o<u,zs, -

Uy

Figure 11. When u, Increases Along the Interval

U = Sl-Rl, 0 < u, < SZ-R2

As u, increases along this interval, the value of F(ul, uz) will
increase too. The point we are trying to make here is that the in-
creasing of the F(ul, uz) value does not merely come from the pro-
bability mass of the interval u1=Sl—R1, 0 < uy < SZ-RZ, bqt it also
comes from the probability mass of the interval u1=0, 0 < u, < SZ-RZ.
Therefore, before we take the dgrivative of F(ul, uz), we have to
subtract this extralcontributioh of probability mass coming from the

interval u1=0, 0 < u, < SZ-RZf Let us do this.
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[F(ul, uz) in the interval u1=Sl-Rl, 0 < u, < SZ-RZ]—

fF(ul, u2) in the interval u1=0, 0 < u, < SZ—RZ]

[1-G(S -u)+G(u,-S,+6 '-u)]-[1-G(Sz-u2+62-u)+G(-Sl-u)]

27Up*%; 27929,
= G(u,-5,%0,-u)-G(~S-u)

-u,+6

for -5; < u,-Sy+6, < S 27 Uy*85,

1 2 72 1

[1-G($2-u2+62-u)+G(u2-82+62-u)]

-[1-G (Sl'u)+G(‘Sl9u) “G(S,-uy*8,-u)*G(uy=S,+6,-1) ]
G(Sl‘u)"'G('Sl‘U)

1

< S

or

13

for -S < S

1 < u,-S5,+6, < S,-u *+0,.

2792792 < 0T i
(5.8)

Now we can take the derivative of (5.8) with respect to u, and get

f(ul, uz) in this open interval:

( g(u2'82+62‘11)

for u1=Sl-R1, 0 < u, < SZ—RZ, and

-S, < u,-5,+6

1 S Uy Sy, < S

< S,-u,*+6

1 2 72 72
f(uP u2)= { 0

for u1=Sl—R1, 0 < u, < SZ-RZ, and

. (5.9)
The same precaution must be taken when we derive f(ul, uZ) for the
open interval 0 < up < Sl-Rl, u2=Sz-R2. Following a similar argument,
we take the derivative of

[F(ul, uz) in the interval 0 < uy < Sl-Rl, u2=SZ—R2]—
[F(ul, u2) in the interval 0 < up < Sl—Rl, u2=0}

and get:



/’g(sl-ul'U)

171 -

f(ul,uz)‘= < 0

(5,9) and (5.10) together. Expression (5.11) below gives the joint

for 0 < u1

u

L 1

u,-S, < -§

1

1

—S1 < S, -u

< S, -R

1

for 0 < u < Sl-Rl, u2=SZ—R2,

28y < S;7up < S

1> U =S,-R

2722

N 'sz

2

+6

+62 < Sz+e

and

2

and

2

" To summarize, we put (5.1), (5.2), (5.3), (5.4), (5.6), (5.7),
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(5.10)

probability densify-function of two linear coverages, which is a mixed

p.d.f:

f

/

c1, c; (%10 Up) =

1-G(S,+0,-)+G(-S; -)

for u1=0, u2=0, and —S1

< -S§.+86. < S

2 72 1

l_G(Sl'U)+G('Sl—U)_G(SZ+62_U)fG(-SZ+62+U)

for u1=0, u2=0, and -S1
G(R,*6,-u)-G(S;-u) - |
~ for u1=0, u2=Sz-R2, and
G(R2+92-u)-G(—R2+92-u)

for u1=0, u2=Sz—R2, and
G (-Sz+92'-u) ~G(-R;-u)

for u1=Sl-R1,.u2
G(Ry -u)+G(-Ry-u)

for u1=Sl-R1,

=0, and

u2=0, and

< S. < -S_+8

1- 7272

<R, < -5

< S

2

+6

< S.+6

+6

2

2

1A

1A

2
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G(Rl'U)'G('R2+ez'U)

for u1=Sl—R1, u2=Sz—R2, and -R1 < —Rz+e'2 < R1 < R2+e2

| ’ for u1=Sl—R1, u2=Sz-R2, and -‘R1 < Rl < -R2+62 < R2+e2
8(S;7uy*0pw) |

for u1=0', 0 <u, <S,-R,, and -‘Si < Uy-S,t6, < Sp < S)-uyte,
8(S,U,0,-u)+g (Uy-S,+0, 1)

for u1=0,-0 <u, < SZ-RZ, and -S1 < S1 < u2~SZ+e2 < Sz—uz+e2
85, )

for 0 < up < Sl-Rl, u2=0, and ul—S:l < —Sz+ev2 < Sl-ul < Sz+e2

g(ul_sl_u)fg(sl-ul—u)

for 0 < uy < Sl-Rl, u,=0, and up-Sy < Sqmuy < -S,*8, < Sy*6,

g(uzfsz+62'U)

for u,=S,-R,, 0 < u, < S,-R

17°17R”y» 2 < S;7Ry, and  -S; < u,-S,+0, < §; < S;us,

1A

for u1=Sl-R1, 0 < u, < SZ-RZ,

g(sl_ul-n)

and' -S, < S1 < u2—82+62< Sz—vu2+62

for 0 <u; < 5;-Rj, u,=5,-R,, and vy-S; < -S,*6, < S;-uy <559,

for 0 < Uy < Sl-Rl, u2=SZ-R2, and ul-S1 < Sl—u1 < -Sz+e2 <Sz+e2

\ 0 otherwise.

(5.11)

In Figure 12, we give a diagram to show how this p;d.f . may look like.

Again this diagram is a special case where' the order of arrangement is

always ' Al < A2 < B1 < B2 “when (ul, uz) is in region (5).



'jﬁ(u]_ ’ uz)

1 4+
l—G(Sz"'ez“U)"'G(“S]_'U) ‘
g(S,-u,*+6,-u) g(u,-S;-u)
2tz T G(sz+ez 1) -6 (-R;-1)
(0 0) (51 R, 0 7V,
G(R,+6,-1) ~G(Syu) 0 g(u,-S,+6,-u)

G(Rl-u) G(-Ry+6,-u)
(;-Ry» Sp7Ry)

g (Sl-u]_ U)

Figure 12. A p.d.f. of Two Linear Coverages

v
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After we have obtained the joint c.d.f. and the joint p.d.f. of
two linear coverages, the natural extension is to consider the joint
c.d.f. of two rectangular coverages. The mathematical expression for
it will be obtained in next chapter, however, unfortunately, this expres-

sion is of little practical usage as will be seen shortly.



CHAPTER VI
THE JOINT C.D.F. OF TWO RECTANGULAR COVERAGFS

1. An Attempt to Use the Joint p.d.f.

of Two Linear Coverages

In this chapter, we shall consider the situation where a rectan-
gular pattern is delivered on two rectangular targets. To find this
joint c.d.f. of two rectangular coverages, our first temptation 1s to
make use of the joint p.d.f. of two linear targets which we have de-
rived in Chapter V.

If we consider fcl’ CZ(ul, uz) in expression (5.11) as the

joint p.d.f. of two linear coverages in the range direction, we may

then use a similar argument to obtain the joint p.d.f. of two linear

. . . . . , ’
coverages in the deflection direction, fCl" Cz,(u1 » Uy ). Due to

the fact that the two random vectors (Cl, C2) and (Cl', CZ') are
independent, we shall have the joint p.d.f. of (Cl, Cz, Cl', CZ') as
the product of them, i.e.,
f y(uy, u,, uy', u,') = £ (u,, u,)f~ , (u', u,).
: Cl’ CZ’ Cl', C2 1> 722 "1 "2 7 Cl’ C2 12 72 Cl , CZ 1’72

(6.1)

Now lettlng Zl, Zz

Target 2 respectively, we shall have the following relationships:

bte the rectangular coverages of Target 1 and

43
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o0
1= 04

el
2 C2 C2 .

(A
1]

2

Theoretically, the joint p.d.f. of Zl and Zz can be obtained by

integrating (summing) the joint p.d.f. in expression (6.1) over the pro-
per regions that is

F (Vl’ VZ) Pr(Z

2, 2, Vi By 2 V)

de(ul’ 2’ 1 b uz')
(u,, u '35}3 CRAE |

(6.2)
where A = {u, 1[0 cu <8-Ry, 0 <y’ < Sl'—Rl'}
-{(u u')|—-‘-’—1——-— < < S, - V1 <u.' <S.'"-R, '}
Ul cm SR R oo SR
Ur
Sl'Rj /
// /,\Lza,-tt,
'SA"R: e i
andﬁ = {(u,, u2')|0 Suy <SRy, 0 2w, <SR}
-{(u u')l—v-z—- u, < S.-R __‘12___ < ' < S 'R '}
2> U M 2 = %272 TSR, W 29y TRy e
U, '
N : /
SL'RJ_ \ {"V—a: U;; 8%
/ > U/

[N
-SL“RJ.
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Although the joint p.d.f. of (C;» C,5 C;"5 C,') can be obtained
explicitly for (6.2), to carry out the integration in (6.2) is by no
means an easy task. First of all, the joint p.d.f. of (Cl, CZ’ Cf ,CZD
in (6.1) is a multiple-faceted function defined in four-dimensional
space. To make things worse, this is a joint p.d.f. of a mixed random
vector. This means that when we integrate over the proper region, we
have to sum up the probability mass of some points, some areas, and
some volumes in this four-dimensional space. If this is not impossibile,
it is certainly not feasible.

In the next section, we shall consider another approach.
2. An Alternative Approach

Another way to look at this problem of finding thé joint c.d.f. of
two rectangular coverages is to find the right region on the two-dimen-
sional plane such that the event 1(21 < vl‘and 2, < vz) will be satis-
fied when the center of the pattern falls within that region. This
approach was used by Gay and Weeks (1973) in their derivation of the
c.d.f. of one rectangular coverage. In the case of one rectangular
target, the region corresponding to the event (%2 < v) for

0 ¢ v<(8-R)(S'-R') 1is the complement of D in Figure 13 on next page.



{en_Rv in < g'+R!

- v
RIS
f\—A-\

D

6-R <y < 6+R ' 6-R <y < 6+R
.1 ’ €« . g '

y' =0t gpy y' =018 g gy
(6, o")

—
L7

{6'-R' f)" < 9'+R!

- alalV
y 8-S+ /(S'-R')

all the curves at the four corners are defined as

|y-6l«ly'-6'|-8'|y-6]-S|y'-6"[+5-5" = v.

Figure 13. The Region Corresponding to the Event
(2 <V) o |
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The boundary of the region D consists of two segments in the
range direction (] I), two segments in the deflection direction (__ ),
and the curves at the corners ((}). An expression defining the: four

curves may be obtained if we realize that (2.2) can be simplified to

0 when y < -S+6 or y > S+6
C=h(y) = { S-R when -R+6 <y < R+8
S-ly-9o] when -5+8 <y < -R+8 or R+8 < y < S+g

and that

v=CC" = (S-|y-8])(S'-|y'-8"]) = |y-6|-|y'-6"|-S"|y-6]-S|y'-6"|+S-S".

The definition of the boundary used in Figure 13 is equivalent to that
used by Gay and Weeks (1973, p. 10, Table 5).

Thus the way they obtained the c.d.f. of a rectangular coverage

A

for 0 < v < (S-R)(S'-R') was essentially

= Pr[Z < v] = Pr[(Y, Y')¢D]

- _[fo(y, Yy dy

where D is defined in Figure 13 and f(y, y') 'is defined in (2.1).

1
AN
~
<
—
I

For v <0 and v > (S-R)(S'-R"), the Vglues of FZ(V) are 0 and 1
respectively.

If instead of one target, we have two targets under consideration,
we certainly can construct two regions around Target 1 and Target 2
in exactly the same way that we constructed the D region illustrated in
Figure 13. The diagram for two fargets‘may look like what is shown in

Figure 14.
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///”
|
\.

e e .

Figure 14. The Region Corresponding to the Event
() 2vys By V)

The bounderies of D1 and D2 can be obtained by subscripting the R, S,
6, and v in Figure 13 with "1'" and '2".

It is clear from this diagram that the joint p.d.f. of two rec-
tangular coverages for 0 < vy < (Sl—Rl)(Sl'-Rl') and
0 < v, < (SZ-RZ)(SZ‘-RZ'), can be thained by integrating over all the

plane outside le)Dz, that is,
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= 1
21, ZZ(Vl’ v,) = PrZ; < vy, &, < v,] = Pri(Y, ¥ )¢ D;UD,]

1-Pr[(Y, Y')e D;UD,]

1[/ff(y,y)dydy'+fff(y, ') dy dy' - f_[f(yy)

1]

D f\D
dy dy']
for 0 < vy < (Sl—Rl)(Sl'—Rl') and
0 < v, < (SZ—RZ)(SZ'-RZ')
(6.3)
For (vl, VZ) values other then that defined above, we have:
Fa1, 2,012 V)
0 for vy < 0 or v, < 0
1 for vy 2 (Sl—Rl)(Sl'-Rl')
and vy 2 (SZ-RZ)(SZ'-RZ')
- 31 '~f /f(y, y') dy dy' for O < vy < (Sl-Rl)(Sl'-Rl')
D1 .
- 1 _ '
and v, 2 (SZ RZ)(S2 R2 )
; //f(y, y') dy dy'  for vy > (S;-R)(S;'-R;")
D,
- - 1
and 0 < v, < (S2 RZ)(SZ' R2 )
(6.3a)

We hote that in (6.3) and (6.3a) ,

fy, y') dy dy' = Pr(Z; > v;) = 1-Pr(2, < v;) = 1-F, (v;)
foy 17" 1<V 2,1

which is, by expression (3.3),
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1-[G("l/(sl._Rl.)-sl-u)+G("1/(Sl._Rl.)-sl+u)] +[1-G(-Ry"-u")-G(-R; "+u")]

3 1oyt v -G Tgq!
" 60 (5, p )51 OO (5 g Sy )

S I_R 1
1 1
| [g(u'-S, " -u)+g(u'-8, +u") 1+ [6(V1/,1 -5, -w)+G (V1/ S rilldut.
V1
/(Sl-Rl)
(6.4)
Similarly,
[ [0, yay oy
)
can be expressed explicitly as
-16¢V2 - - V2 -S._ - .
]- [G( /(SZV_RZV) SZ+62 U)"’G( /(SZV_RZV) Sz 62+U)]
[1—G(—R2'+62'—u')—G(—RZ'—62'+u')]
- G2 - -u')-c(V2, g t_g.t
SZ'—RZ'
_f [g(uv_Szv_,_ezl_Ul)_,_g(uv_szv_ezv_,_UV)],
V2
(60727 40-85+0,-m)+G(V2/1-S,0+u) Idu' .
(6.5)

However, the term

f f f(y, y') dy dy'

Dlr]Dz

in expression (6.3) is the one which causes a lot of trouble. The dif-
ficulty arises because there are so many possible shapes which the

region D1F1D2 may take that, a systematic treatment by a computer



51

program is almost impossible. In Figure 15 below, we give a few shapes

that D,MND

11D, may assume:

Figure 15. Some Possible Shapes D1r1D2 May Take.

To compound the problem, there are so many ways that we may or should
partition the region ''properly" that it is very hard to instruct a
computer to do it. (The dotted lines in the above regions indicate a
possible way of partitioning them.)

To be fair, the problem is not as difficult when the numerical
values of the configuration are given. If we are given specific values
of Tl’ TZ’ P, 6,5 92', M, u', vy and Vys then we can draw a diagram

like the one in Figure 14, and partition the DlﬂD2 region properly
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that we can integrate over i1t. Nevertheless, as far as computer
programming is concerned, this approach again leads us nowhere.

Thus far, we have witnessed the collapse of two attemps to obtain
a computer programmable formula for the joint c.d.f. of two rectangular
coverages although in both cases "mathematical expressions' ((6.2);
(6.3), and (6.3a)) were obtained for it. We shall take up this subject
again in Chapter VIII. 1In the next chapter, we shall confine ourselves
to the investigation of the joint probabilities of some "interesting"
and "useful" events. For example, the joint probability of hitting
both targets, of missing both targets, of achieving the maximum possi-

ble coverage on both targets, etc.



CHAPTER VII

THE JOINT PROBABILITIES OF SOME
INTERESTING EVENTS

1. The Probability of Hitting Both Targets

Although in general wé cannot obtain the joint probability of two
rectangular coverages exactly, it is possible to find the exact joint
probability of some "interesting' events such as the ones given in
Questions (1) through- (5) in Chapter I, Section 1. First, let us take
Question (1) '"What is the probability of hitting both targets?"

Around Target 1, we can construct a shaded rectangle (call it Kl)
such that when the pattern center lands inside it, we shall have some
coverage on Target 1, and when the pattern center lands outside it,
we shall have a completé miss on Target 1. Figure 16 shows the bound-

aries of this rectangle.

The marginal probabilities of hitting and missing Target 1 can be

obtained as Pr(hitting Target 1)

- [ vy ay ey
K

I

[G(Sl—u)-G(-Sl-u)]'[G(Sl'-u')-G(-Sl'-u')]

(7.1)

and
Pr(missing Target 1) = 1 - a, K (7.2)

(Note the closed form of these solutions)

53
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/ "

Pa'HR YL Sl 50

K
I
[
[
[
f
J

Figure 16. The Rectangle Correspondlng to the Event
"Hitting Target 1"

Similarly, we can construct another shaded rectangle (call it KZ)
around Target 2 (with center at (62, 62')). The marginal probabilities
of hitting and missing Target 2 are:

Pr(hitting Target 2)

_/ ff(y, y') dy dy' = [G(6,+S,-u)-G(8,-5,-1)]"
2_ [G(8,"+S,"-u")-G(6,"-S,"-u")] = (7.3)

and
Pr(missing Target 2) =1 - b._

Figure 17 shows both Kl and KZ on the same diagram.
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Figure 17. The Rectangle Corresponding to the Event
"Hitting Both Targets"
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From this diagram, it is not difficult to see that

. 4
Pr(hitting both targets) = f f f(y, y") dy dy'. (7.5)
' KNk, o

The expression given in (7.5) shall again give an answer in closed

form. The actual expression for (7.5) depends on the way K1 and K

2
intersect. A few examples are given in Figure 18.
K,
" Ki ﬂ"kz‘
K

Kl l‘( KL

Kz
Ka

! ,2'*'(.

Ky

Figure 18. Types of Intersection of the Sets

Kl and K2
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For each of the above intersections, the limits of integration for
region Klr\Kz are different. A way to exhaust all the possible ways of
intersection is to consider the linear intersection for each of the
range direction and the deflection direction first and'then,take the
product.

Let us start with the intersection in the‘range direction. We note
first that the extent of the boundary segment in the range direction is

from -S; to S, for Kl’ call this Segment 1, and from 62-82 to 62+S2 for

1 1
KZ’ call this Segment 2. For ease of discussion in what follows, let

us define
L, = —S1 (the '"tail" of Segment 1 in the range direction)
H1 = S1 (the "head" of Segment 1 in the range direction)
L, = 62—82 (the '"'tail" of Segment 2 in the range direction)
H2 = 62+S2 (the "head" of Segment 2 in the range direction), (7.6)

Since both S1 and S, are positive numbers, we have the following obvious

2
relationships:
) L1 < Hl and L2 < HZ'

The definition given in (7.6) and the relationship among Ll’ Hl’ LZ’
and HZ may make one recall Definition (4.4) and the relationship among
Al’ Bl’ AZ’ and B2 in Chapter IV. They are indeed closely ' related.

As a matter of fact, Ll’ Hl’ L2’ and H2 are special cases of Al’ Bl’ AZ’
and B2 when u; = u, = 0. Similar to expression (4.4a), we find the six

ways Segment 1 and Segment 2 intersect to be:

1. L, <L, <H <H

1A
jan
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4. Ly < H2 <L <K
5. Ly <L, <Hy < Hy
6. L, <Lj <H <H,, : (7.7)

Corresponding to the six cases given in (7.7), the intersections are
respectively:

1. [Ly, Hy] = [6,-5,, 5]

2. [Ly, Hy] = [-S], 8,%5,]
3. ¢
4. ¢
5. [L,, Hy] = [6,-5,, 8,+5,]
6. Ly, H] =[S}, Syl (7.8)

- The notation [x, y] is understood as the closed interval from x to y.
If we consider the linear intersection in the deflection direction,

we shall have also six cases:

1. L'« LZ' <H'< HZ'
2. L)' <Ly' <Hy' <H'
5. L' <Hp' < LZ' < Hz'
4. LZ' < Hz' < L' <H'

! ' ' !
5. Ly' <Ly <Hy' ¢H

1 '
6. L," <L;' <Hy' <H! (7.9)

where L,', H;', L,', and H,' are defined similar to (7.6) but in the
deflection direction. We shall have the respective intersection cor-
responding to (7.9) as

1. [Ly', H{'] = [6,'-5,", §;']

2 2 ’

2. [L,', HZ 1= ['Sls 0 "'Sz 1

2
3. ¢

4. ¢



5’.
6.

[L.', H,W

—
=
juni

—

|

Q1 '
[0,'-5,"5 8,"+8,']

- [-Sl" Sl']'
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(7.10)

Now we can find product sets of the six cases in the range direc-

tion with the six cases in the deflection direction. The resultant 36

cases and .the corresponding interséctiqns are listed in TABLE I.

TABLE 1
CASES OF K,nK
o Way of  Way of )
Intersecting Intersecting The
Case in Range in Deflection Resultant Looks -
Number Direction Direction Kll\ K2 Like
5 P R ' - i -
¥ LyslyHysHy | Ly sl Ty T T 8)-5,, Sp1x 3
[6,'-S,"s Sp']
2 " Lytsly'<Hy'dy ' | 18575y, §11 x Ii%i]
[-s,', ez'+Sl'] ,
3 " L1|<H1'5L2'<H21 . ¢ [7—"
4 " L2'<H2'5L1|<Hl' ¢ EE
_ 1 1, 1 1 t 2 Y
5 ' Ly '<L,'<H,"'<H; [62 Sys Sl] X [E‘I]
1 1 1 [ f
[65'-S2"5 8,'+S;']
6 " L, '<Ly "<H; " <H,! [6,-S,, S;] x =]
-85 5]
! ] 4 1 -
7 L,<L,<H,<H; L, '<L,"<H,'<H, [-S15 8,*S,] x '.
[6,'-S.", S.'] L2
2 "2 "1




(TABLE T continued)

T Ly | Sy, 6,88,] x
. [-Sl’ 62'+52']
" . L1'<H1'5L2'<H2' ¢
" L2'<H2'5L1'<H1' b
" 1 1 1 1 -
L1 fLZ <H2 le [ Sl’ 62+Sz] X
[ezl_szl, 82|+SZI] .
"’ Lp'sly My et 05y, 658, ) x
[—Sl" Sl']
L1<H1§L2<H2 L1'§L2'<H1'5H2' ¢
" L2'5L1'<H2'5H1' )
‘/. ||. L1'<H1'5L2'<H2' ¢
1" L21<H215L1|<H1| ¢)
" L1|5L21<H215H1| d)
1" L2|5L1'<H115H21 d)
Lytpcly <ty | Iyl <y Tyt ¢
" L2'5L1'<H2'5H1' )




(TABLE I continued)
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21

22

23

24

25

26

27

28

29

30

31

32

33

Lyslytpshy

"

Al

L25L1<H15H2

"

! ' | 4 '
L "<H;'<L,'<H,

L '<H2'§L '<H.'

2 1 1

L 'EL I<H 'fH '

1-72 2-1

L |SL‘|<H 'fH '

2 -1 71 -2

1] ”' ] \i
L1 fLZ <H1 fHZ

L 'SL >'<H 'fH '

2 -1 2 -1

1 ] ] |
L1 <H1 sz <H2

' ! | '
Lyt<Hy <y Ty

] 1] 1] 1
L1 sz <H2 le

L 'fL '<H 'fH t

2 -1 "1 -72

L va '<H"<H 1

1-"2 "1-72

va '<H 'fH '

Ly'<ky "<y T<Hy

2

L

'<H1'iL2'<H '

1 2

[62'82)
v_Q 1 '
(925" 5]

[ez-SZ,
[-S.', 6

eZ+SZ] X

2 ¥5,"]

Impossible Case
Impossible Case

[-Sl, Sl] X
[05-8;" 517

[—Sl, SI] X

['S"s 62'+SZ']

¢

eZ+SZ] X |

"
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(TABLE I continued)

34 ' " L

"<Ho <L, v<Hv| 6 —
35 " Ly "<L,"<H,"<H, " Impossible Case [ﬁiﬂ
36 " Ly'<Ly '<H; "<H,! Impossible Case {Fﬁﬂ.

We now prove that Cases 29, 30, 35, and 36 are impossible.
Let us take Case 29 first. This case gives the way of intersection as:

: ' 1 ' ' '
L «L, <Hy, <H and L' <L, <H" <H"'.

By definition, this is

1

=S, < 8,-5, < 6,+5, < §

1-"2"72 2 72

- ' L ! 1 ' 1
and Sp' £ 8,'-8,T < 8,8, < 5T

1

(7.11)
The first inequality in (7.11) implies consecutively
=Sy < 6,5, and 62+S2 < S1
“T{-P < 8,-T)-P and 0,+T +P ¢ T;+P (by definition)
-T) < 8,-T, and 04T, < Ty
—T1 <8, and 6, < T1 (smce‘T2 is positive)
IGZ[ <T). (7.12)
Similarly, the second inequality in (7.11) implies
|ez'| < Tl" (7.13)

But (7.13) together with (7.12) means the center of Target 2 is inside
Target 1 area, which is not allowed. Hence Case 29 is an impossible

case.
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Let us take Case 30 next. This case has an intersection given

by:

L1 < L2 < H2 < H1 and L

By definition, this is

75L1!<H1|SH

1]
2 2"
' 1 - t ' ' 1
< S; and 62 S2 < S1 < S1 < 62 +S2 .

-S. < 6,-S, < 9.+S 1
(7.14)

1- "2 72 2 72

The first inequality in (7.14), as we have seen just a moment ago,
implies

_|62! < Ty , ’ (7.15)
The second inequality in (7.14) implies, consecutively,

6,'-S," < -S;' and S;' < 6,'+S,"

2 1 1 2

8,"-T,'-P' < -T;'-P and T1'+P < 62{+T2'+P (by definition)

0,0 < -T;"+T," and T,'-T,' < o,

62' < T1'+T2' and —T1'~T2' < 62' (since Tl' and TZ' are positive)
|ez'| < T1'+T2'. (7.16)

(7.16), together with (7.15), implies that the area of Target 1 and the
area of Target 2 overlap like what is shown in Figure 19. This is again
not allowed. Hence Case 30 is also an impossible case.

The impossibility of Case 35 can be proved by the same reasoning
used for Case 30, and the impossibility of Case 36 can be proved in the
same way as Case 29. It 1s just a matter of reversing Target 1 and
Target 2.

Once the boundaries of Klf\K2 are well defined in TABLE I for all
possible cases, we can proceed to find the joint probability of hitting
both targets. Let us define

c = Pr(hitting both targets).

From Expression’ (7.5) and TABLE I.we have the following results:
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Figure 19.

Targets Overlapping Implied by Case 30
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Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

11:
12:
ZS:
26:
31:

32:
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. s s,
[ty ey - /J tdy - [ £y
K1F1K2 62-82 62'-82'

[G(SI-U)_G(GZ—Sz'U)]'[G(Sl"u')'G(ez"sz"u')]

51 0,'+5,"
/' £(y)dy - /’ £(y")dy"
9,-5, =)

[6(5;-1)-6(6,-8,-1) 1+ [6(8,'+8,'-u")-G(-5 '-u")]
[G(Sl-u)—G(ez-Sz-u)]-[G(92'+SZ'-u')-G(ez'—SZ'—u')]
[6(5, 1) -G(6,-5,-)1+[6(S5, " -1")-6(-S, "-u")]
[6(0,+5,-4)-G(-5, -]+ [6(S, "-u")-6(6,"-5,"-u")]
[60,#8,4) -G(-51 )]+ [6(6,+5,"-u")-G(-5 '-u")]
[6(6,+5,-4)-G(-5; -1+ [6(0,"+8,'-u")-G(8," -8, ' -u")]
[G(6,+S,-u)-G(-S -1) ]+ [G(S{"-1")-G(-5;"-u")]
[G(8,+5,-1)-G(6,-5,-w) 1+ [6(S "~")~6(8," =S, " -u")]
[60,+5,-4)-G(6,5,-) ]+ [G(6,'+5, " -u")-G(-5 "~u")]
[6(5,-1)-G(-5; -]+ [6(S) ') -6(6,' -8, " -1")]

[G(Sl'U)’G(-Sl'U)]'[G(62'+Sz"U')_G('Sl"u')]'

c= 0 for cases 3, 4, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 27, 28, 33, and 34. Case 29, 30, 35, and 36 are impossible cases.

We shall call all the above expressions of c collectively as formula (717)
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2. A Two-way Table to Find Probabilities

of Some Other Interesting Events

The joint probability of hitting both targets which we obtained
in formula (7.17), together with the marginal probabilities expressed
in (7.1), (7.2), (7.3), and (7.4), will enable us to also answer the
following questions easily: |
(2) What is the probability of hitting Target 1 but missing Target 27
(3) What is the probability of hitting Target 2 but missiﬁg Target 17
(4) What is the probability of missing both targets?

Before answering these questions, we recall that, in expression

(7.1) and (7.3), we have

a = Pr(hitting Target 1)

[G(Sl—u)—G(—Sl-u)]-[G(Sl'-u')-G(-Sl'-u')], and

b = Pr(hitting Target 2)

[G(92+52fu)‘0(92-82-u)]'[G(92'+52Y-u')-G(ez'-SZ'-u')]-

A two-way table can be constructed in the following way: We first
enter the joint probability of hitting both targets, the marginal pro-
babilities of hitting and missing Target 1, and the marginal probabi-
lities of hitting and missing Target 2 in the table. The remaining
three cells then can be filled in by using the principle that the sum
of the row entries equals to the row margin and the sum of the column
entries equals to the column margin. The circled values in Fiéure 20

are filled in by using this principle.
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Marginal
Probabilities

a

Target 2
Hitting Missing

Hitting c a-c
Target 1

Missing b-c % (EEE;E:ET)

_ e
Marginal b 1-b
Probabilities
Figure 20. A Two-way Table of Joint Probabilities

Question (2}, (3), and (4) are then answered by (a-c), (b-c), and

(1-a-btc) respectively. We note that all the answers are in closed

form since a, b, and c are all in closed form.

a two-way table with numerical values as an example:

Figure 21 below shows

Marginal
Probabilities

0.7

0.3

Target 2
Hitting Missing

Hitting 0.5 0.7-0.5=0.2
Target 1

Missing 0.6-0.5=0.1 1-0.7-0.6+0.5=0.2
Marginal 0.6 0.4
Probabilities

Figure 21. A Two-way Table with Numerical Values
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3. An Extention of the Two-way Table Method

The Two-way Table Method illustrated in the last section may also
be extended to the case of n rectangular patterns, identical* or non-
identical. As usual, we assume that all pattefn landing points are
distributed independently.

Let us consider the case of n identical patterns‘first. The pro-
bability that all n patterns miss Target 1 is the product of the pro-
babilities of Pattern 1 missing Target 1, Pattern 2 missing Target 1,
...,and Pattern n missing Target 1. This is nothing but (l-a)n.
Similarly, we shall have

Pr(all n patterns missing Tafget 2) = (1—b)n, and

Pr(all n patterns missing both targets) = (1-a-b+c)n
Thus the two-way table corresponding to the n identical patterns can be
constructed by entering these three values first. Figure 22 gives an
illustration. Again the circled values are filled in by using the ''sum
equals the margin' principle. We note that the probability in the
"Hitting-Hitting" cell in Figure 22 is the probability that Target 1 is
hit by at least one of the n patterns and Target 2 is hit by at least
one of the n patterns.

When we have n non-identical patterns, the procedure is more te-

dious. We have to construct a two-way table for each pattern. Figure

23 shows such a table for the ith pattern.

!

* n patterns are identical if they have same size, same aim point, and
same aiming errors.
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Target 2

s N Marginal
flitting Missing Probabilities

P | -
Hitting (f_a.a)“_ 1-b(1-a-brdy @b)n- (1-a-b+c)"™) | 1-(1-a)"
N——————ee” e

Target 1

MiSSing (/(i'a)n_ (1-a-b+@ (1_a_b+c)n (1_a)n
| N — o
n n
Marginal 1-(1-b) (1-b)
Probabilities

Figure 22, A Two-way Table for n Identical Patterns

Target 2
N Missi Marginal
Hitting S5 Probabilities

Hitting ¢y a;-¢y a;
Target 1

Missing bi-ci 1-ai-bi+ci l_ai

: . 1-b.
Marginal b1 i
Probabilities

Figure 23. A Two-way Table for the iEE-Nonvidentical Pattern

Thus, for i =1, 2,..., n, we have n two-way tables, each is like

the one above. We note that, in general, ai#aj, bi#bj, and ci#c. for

i#].
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A reasoning similar to the one we used to obtain the two-way table
in Tigure 22 will lead us to the construction of the two-way table for n

non-identical patterns. The two-way table given in Figure 24 results.

Target 2
s N Marginal
flitting Missirg Probabilities
n n n n '
1-w(1-a,)-n(1-b.)+ m(1-b.)-m(1-a,-b.+c.)
i=1 ti=1 * i=1 Yi=1 Yt Y g
[Mitting ~ 1-n(1-a.)
n i=1 %
.ﬂ(l-ai—bi"'Ci)
i=1
Target 1 n n n i
."(l_ai)ff(l—ai—bi+ci).E(l-ai_bi+ci)
i=1 i=1 il n
Missing n(l—ai)
| | i=1
Marginal _n ) n _
Probabilities  1;7{17Pj) 1{1by)

Figure 24. A Two-way Table for n Non-identical Patterns

To summarize Sections 2 and 3 of this chapter, we have developed
a procedure, the so called ''Two-way Table Method'",which enables
us to answer Question (1), (2), (3), and (4), specified in Section 1
of Chapter 1, for n identical or non-identical patterns by merely

using formulas (7.1), (7.3), and (7.17).
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4. The Fewest Number of Passes Required to
Achieve a Specified Probability of

Hitting Both Targets

Suppose we have identical rectangular patterns delivered on two
rectangular targets. Another interesting question one may ask 1is,
'"What is the fewest number of passes required to have a probability of
at least, say 0.9 of hitting both targets?'' The answer to this ques-
tion turns out to be rather easy to find. We first obtain values for
a, b, and c¢ from Formulas (7.1), (7.3), and (7.17), respectively. Once
this is done, we use the expression in the "Hitting-Hitting" cell of

the two-way table in Figure 22 and obtain the following inequality:
1-(1-2)"-(1-b)™+ (1-a-b+c)™ > 0.9. (7.18)

Since the values of a, b, and é are known, the smallest value of n
which satisfies the inequality in (7.18) can be found using a simple
iterative procedure.

If we do not know c, the joint probability of hitting both targets,
and use the product of marginal probabilities, a-b, to estimate c,
what would happen to the calculation of the n value? The answer is
that we may sometimes over estimate it and sometimes under estimate it

Consider inequality (7.19) below:
1-(1-a)"- (1-b)™ (1-a-b+ab)™ > 0.9. (7.19)

This is an inequality we could use to calculate n were c not available.
When a-b isigreater than c, the n value obtained from (7.19) will be

smaller than the true n value. On the other hand, when a-*b is
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smaller than c, the n value obtained from (7.19) will be greater than
the true n value. This is true since (1-a—b+x)n is a monotone in-
creasing function of x.

Another related question is the following. Does the fact that an
n value that satisfies both Pr(hitting Target 1) > 0.9 and
Pr(hitting Target 2) > 0.9 imply that this n value will also satisfy
Pr(hitting both targets) > 0.9? The answer is no. The relationship

between the joint probability and its two marginal probabilities is
Pr(hitting both targets) < min[Pr(hitting Target 1), Pr(hitting Target 2]

The reason for the strict inequality is that we theoretically have no
zero values in the Hitting-Missing and Missing-Hitting cells in the
two-way table in Figure 22. As a consequence of this inequality, the
n value which satisfies both Pr(hitting Target 1) > 0.9 and
Pr(hitting Target 2) > 0.9 1is, in general, an under estimate of the
true n value which satisfies Pr(hitting both targets) > 0.9.

One last comment: Everything developed so far in this chapter is
applicable to point targets. A point target is a special case of

rectangular target when T = T' = 0.

5. The Probability of Achieving the
Maximum Possible Coverage

on Both Targets

In this section, we shall answer Question (5) given in Chapter I,
Section 1, namely, '"What is the probability of achieving the maximum
possible coverage on both targets?'" When a rectangular pattern is deli-

vered on two rectangular targets, the maximum possible coverage on
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Target 1, call it MPC1, is'given by
MPCL = min(2T;, 2P)-min(2T;', 2P') = (S;-R))-(S;'-R;"). (7.20)
This relationship is implied in Gay and Weeks (1973). The probability
of achieving MPC1 may be found as follows:
Pr[achieving MPC1]} = Pr[Z = (Sl-Rl)-(Sl'-Rl')] = Pr[(Y, Y')aJl]
- fff(y, y') dy dy' (7.21)
J1

where region Jl is defined in Figure 25,

j;}ﬂ?.

ey

| g

V / A
y=-g' / o //)3"“

g |

NN

Figure 25. The Region Corresponding to the Event
"Achieving MPCI'"



74

We note the similarity between the boundaries of J1 and the boundaries
of K, defined in Figure 16. As a matter of fact, both are limits of
the boundaries of the region D defined in Figure 13. If we set

(6, ') = (0, 0) in Figure 13, then it is not difficult to verify that

Kl is the 1limit of D when v - 0, and J, is the limit of D when

1
v > (Sl—Rl“)-(Sl'-Rl'). Using these as the boundaries of J1 in (7.21),

we have:
R} Ry
Pr[achieving MPC1] = / f(y) dy - / fly') dy!
R, S

[G(Ry-1)-G(-Ry-1) - [G(Ry '~u")-G(-Ry "-u")]

By the same token, we can construct a region JZ for Target 2 and find

%2R,
Pr[achieving MPC2] = //f(y, y') dy dy' = / f(y) dy -
JZ -GZ-RZ
62'+R2|
f Fy') dy'
92'~R2'

= [G(8,*Ry-u)-G(0,-Ry-1) ]+ [G(6,"+R, " -u") -G (8, " -Ry )]
where (62, 62') is the center of Target 2.

Consider now the intersection JlﬂlJ2 of the regions J1 and JZ'

This Jlﬂ J2 region is the one which, when we integrate f(y, y') over
it, will give us the probability of achieving the maximum coverage on

J,, and J,NJ,.

both targets. Figure 26 shows J 2 11,

1’
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‘9 761"'K1

9"0["?;&\‘_} \\\\ / 5= 0, s

R

Qs
W

%4+8,-Rz

) , / / 3 ‘- R:’ ,
< -R,

S
2k

N

Qs
1]

1

»

Figure 26. The Region Corresponding to the Event
: "Achieving MPC on Both Targets"
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Thus,

Pr(achieving MPC on both targets) = ﬁ[f(y, y') dy dy' (7.22)
JIFWKZ

The problem again amounts to finding the correct boundaries for the

1r1J2.

Although we could have followed the same route in finding Klr\Kz

region J

in Section 1 of this chapter, working things out case by case, we would
like to try a different and better approach here.

Let us define

x = max (-R,, ez—Rz), ' (7.23)
w = min (Rl, 92+R2), (7.24)
OP = Overlap of Jq and J2 in-the range direction, , (7.25)
then ( [x, w] if w-x>0
OpP = )
0 if w-x <0 - (7.26)

where [x, w] 1is understood to be the closed interval from x to w.

Similarly, if we define

x' =max (-R,', 62'-R2‘), (7.27)
w' = min (R ',’62'+R2'), (7.28)
OP' = Overlap of J1 and J2 in the deflection direction, (7.29)
then [x', w'] if w'-x' >0
OP = ‘

’0 . if w'-x' < 0. (7.30)
The intersection of J1 and J2 is the product of the overlap of J1 and
1 and J2 in the deflec-
tion direction. Thus, expression (7.22) becomes

Js in the range direction and the overlap of J
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L}

ff f(y, y') dy dy'

'Pr(achieving MPC on both targets)

N,
= fly, y') dy dy'
OPxOP'
/W w'
f f(y) dy f f(y') dy' = [Gw-u)-G(x-u)]-[G(w'-u")-G(x"-u")]
‘4 X ’ x'
if w-x > 0 and w'-x' > 0
L0 otherwise (7.31)

where w, x, w', and x' are defined in (7.23), (7.24), (7.27), and
(7.28) respectively. Again we have a closed form answer for Question
(5).

Thus we have answered Questions (1) through (5) which are stated
in Chapter I, Section 1. The '""Two-way Table Method'" is a handy device
with which to obtain answer to Questions (2), (3), (4) by using the
answer to Question (1).

In the next chapter, we are going to continue the unfinished task
left from Chapter VI and givén an approximation of the joint c.d.f. of

two rectangular coverages.



CHAPTER VIII

AN APPROXIMATION OF TEE JOINT C.D.F.
OF TWO RECTANGULAR COVERAGES

Recall that the main obstacle we encountered in trying to obtain
the joint c.d.f. there, was the shape of the intersection of regions
D1 and D2 as illustrated in Figure 14. The difficulty arises because
of the curved portions of the boundaries of Dy and D,.

Now suppose we approximate both D1 and D2 with rectangular regions'
by removing the curve from eaéh of the four corners and extending the
four boundary segments on‘each. To illustrate this, we reproduce
Figure 14 with the propbsea apﬁroximations shown in Figure 27. We note
that the intersection of these two rectangular approximations is a
rectangle too. This is the reason why we choose the rectangular
approximation.

Now let the rectangular approximations of D1 and D2 be denoted by

Dl* and DZ* respectively. The approximation we propose is to evaluate
// f(y, y') dy dy' (8.1)
le\DZ

by ff £(y, y') dy dy'. (8.2)
DfﬁD;

78
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This in turn implies that the joint c.d.f. of two rectangular coverages

expressed in (6.3) is approximated by FX (V,.V ) as follows:
Z1, 22°P "2
. ‘
F (v,V)=1—[fff(y,y')dydy'+/ff(y,y')dydy'
Z), Z2, © 17 72
- [ [ ooy &y
* *
D1 ﬂDl
for 0 <

vy < (Sl—Rl) (Sl'-Rl') and

0 < v, < (S,7R,)(S,"-R,"). (8.3)

T A

The terms

JEo. vy e ar ama [0, v oy oy
D D

have been expressed explicitly in (6.4) and (6.5). As for the last temm
in (8.3), the integration is performed over the intersection of the two

rectangles. By using the same approach we used to obtain (7.31) in

Chapter VII, Section 5, we find that

[GQ-1W)-G(E-1)]-[GQ"-u")-G(E'-u")]

£(y, y') dy dy' =
/ Df* O 1) dy & ] if Q-E > 0 and Q'-E' > 0

0 otherwise (8.4)

£
[¢]
La}
(¢}
w3l
]

\2 Vv
max ('S]_"' l/Sl"Rl': 62’82"' Z/Sz'-Rz')
i a ¥ Ca LV
Q = min (bl l/Sl"Rl', 62+SZ Z/Szv_Rzl)
1= - ' v | I 14V .
E'= max ( S1 + 1/81-R1’ 8, S2 + Z/SZ'RZ)

= 3 v ' v :
and  Q'= min (S;' 1/Sl_Rl, 8,'+S," Z/SZ_RZ).
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Thus, the substitution of (8.4) into (8.3) will give us the approx-
imation part of the c.d.f. of two rectangular coverages. This, together
with the exact part of the c.d.f. expressed in (6.3a), gives us the

following:

t3
Fa1, 2,010 Vo)

/1'//1:(}’, y"dy dy' - //f(y, y")dy dy' + [G(Q-u)-G(E-n)]-
Dy D,

[GQ"-u")-G(E"-u")]
for 0 < vy < (Sl—Rl) (Slv_Rlv) and 0 < Vv, < (SZ_RZ)'(SZ'_RZ')

and if Q-E >0 and Q'-E' > 0

[ e yoar ar - f feor, yoay ap
D1 D2

o
A

= < for 0 < vy < (Sl-Rl) (Sl'-Rl') and SV, < (SZ-RZ) (SZ'—RZ')

and if Q-E <0 or Q'-E' <0
l-f[f(y, y')dy dy!
Dl
for 0 < vy < (Sl—Rl) (Sl'—Rl') and vy 2 (SZ-RZ) (SZ'—RZ')

1_-/ [f(y, y')dy dy'
D2

for v (Sl-Rl) (Sl'-Rl') and 0 < v, < (SZ-RZ) (Sz'-RZ')

1V

0 for v, <0 orv2<0

(Sl-Rl) (Sl'-Rl') and 'VZ > (SZ—RZ) (SZ'-RZ')
(8.5)

\1 for v,

1V

where E, Q, E', and Q' are as defined in (8.4).
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We note that

*

Zl’ ZZ(Vl’ Vz) 2 F

F 21, ZZ(vl, VZ).

This approximation, in our opinion, is on the right side of the true

value, since the event "Z. < v. and 2

1 1 2 2
and it is safer to over estimate the probability of an undesirable

< v," is an undesirable event
event than to under estimate it.

It may happen that we are more interested in the joint probability
of covering at least a certain area of Target 1 and covering at least
a certain area of Target 2. This means that instead of
Pr(Z1 <V, ZZ < Vz), Pr(Z1 > Vy, 2y 2 VZ) is the thing that is more
useful for us to find, like Question (6) given in Chapter 1, Section 1.
This probability is evaluated by expression (8.1) and approximated by
expression (8.2) for 0 < vy < (Sl—Rl)(Sl'-Rl') and
0 < v, < (SZ-RZ)(SZ'-RZ'). For (vl, v,) not belonging to this region,
the probability can be obtained in exact form. Together, the following

formula gives us an approximation:
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Pr*(Z1 > Vi, By 2 V)
/ 16(Q-4) -G(E-w)]+ [6(Q"-u") -G(E"-u")]

A

for 0 < vy

1A

(Sy-R)(S1'-Ry") and 0 < vy < (5,7R,)(S;'-R,")

and if Q-E > 0 and Q'-E' > 0
0 for 0 < vy < (Sl—Rl)(Sl'-Rl') and 0 < v,y < (SZ—RZJ(SZ'-RZ')
and if Q-E <0 or Q'-E' <0

[[ f(y, y') dy dy'

ey

for 0 < vy < (8;-R)) (sl'4R1') and v, <0

// f(y, y') dy dy'

D,
for vy < 0 and 0 < v, < (SZ-RZ)(SZ‘—RZ’)
1 for v; <0 and v, <0
\L0 for v > (S;°R)(S;"Ry") or v, > (S,-R)(S,"-R,"). (8.6)

*
Again, Pr (Z1 > vy, ZZ > VZ) > Pr(Z1 > Vs By 2 VZ). However, this
approximation is on the wrong side of the true value. Since the event
"Z; > vy and Z, > v," 1is a desirable event.
To conclude, we have given approximations to both the joint c.d.f.

of two rectangular coverages and the joint probability of the event

T

"Z and Z, > v,.

12V



CHAPTER IX
EXTENTION TO M RECTANGULAR TARGETFS

The résults obtained in all the previous chapters can be extended
to the case of m targets (m > 2). This ' is possible due to the approach
we developed in finding the intersection of two rectangles in Chapter
VII, Section 5. For example, consider the case where a rectangular
pattern is delivered on Ehzgg_rectangulér targets. The probability of
hitting all three targets can be obtained by integrating £(y, y')
over the intersection of Kl’ KZ’ and K3 as shown on the'diagram in
Figure 28. (63, 93') there is the center of Target 3 and
S3 = T3+P, 53' = T3'+P'. We note that the diagram in Figure 28 is an
extension of the diagram in Figure 17.

The intersection, Klf\KZ(\K3, is a rectangle again. This rectan-
gle is the product of the overlap of the three segments in the range
direction and the overlab of the three segments in the deflection di-
rection. In the range direction, the three segments involved are [-Sl,

Sl]’ [92-82, ] +SZ], and [6,- ] +S To find the overlap of them,

3 3’ 3]
we follow the method we used in Chapter VII, Section 5 and define

*

max (-Sl, ez—SZ, 63-83), and :
) +SZ) (9.1)

c\( = min (§;, 8,*5,,
If We let the overlap in the range direction be denoted by OP, then
[%,%] if Y - % >0
op =
0 otherwise. (9.2)
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‘Figure 28. The Rectangle Corresponding to the Event
"Hitting A1l Three Targets"
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Similarly, we can obtain the overlap of the three segments in the deflec-

tiQn directjon, [-S,1', Sl'], [e ', 62'+Sz'] and [63'-83', 93'+83'],
as
[%, 9] if -% >0
op'=
0 otherwise, - (9.3)

where %;and'Y'are defined as the counterparts of ¥ and ¥ for the deflec-
tion direction. Thus we find

Klﬂ KzﬂKS = OP. x OP'

/

;[aé,"\?’]x[a&',"f’] if ¥-%>0 and ' - % >0

0 otherwise.

Returning to our original problem, we find

1]

Pr(hitting all three targets) U/i f(y, y")dy dy' =

K.,NK,NK
1 2 '
3 P/! £y, y') dy &y’
OPx0OP!

[GC Y1) -G(3*-A)]~[G(T-1)-G(X-u"]
if ¥-%>0 and ¥-¥> 0

f% Vfcy)dy S M eomay
*

0 otﬁerwise. (9.4)

The nice thing about this approach is that it can be easily extended
to any number of targets. In the general case of m targets, we only have
to redefine

* = max(-S, , 0,5y, +vv 8-S)

¥ = min(S;, 0,4S,, ... 8 +S ). (9.5)
The rest of the derivation is exactly the same and we still end up with
formula (9.4) as Pr(hitting all m targets)

We recall that the Pr(achieving MPC on both targets) in Chapter VII,
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Section 5, and the approximation of the Pr(Zl > Vs 2, > VZ) in
Chapter VIII were both obtained by integrating f(y, y') over the inter-
section of two rectangles. In the case of m rectangular targets, the
problem also amounts to finding the intersection of m rectangles, the
mechanism of which has been illustrated above. Once the intersection,
always a rectangle, is found, the integration over it causes no diffi-
culty.

To extend the approximation of the joint c.d.f. of rectangular
coverages from two to m targets is a little bit more tedious, but still

feasible. We shall illustrate it by first considering m = 3, Similar

to the diagram in Figure 27, we shall this time have Dl’ DZ’ and D3.
The exact joint c.d.f. is expressed in the following formula:
F(Vl, Vo VS) = Pr(z1 <V Zz S Vo, 23 < VS)
= 1- U/ [ f(y, y') dy dy'. (9.6)
UD,UD,-

1272273
The '"Principle of Inclusion and Exclusion'', can be used to express the

union, D &IDZ\)D as the sum of intersections. That is

1 3?2

DV DU Dy = Dy +D,#D5- (DA D)= (D;AD (9.7)

1Y DU Dg = Dy +D,s - (D,N D)+ (D;AD,AD

3) ,D3)

where the symbol '+'" and '"-'"' are defined in Berman and Fryer (1972,
pp. 60-61). For example, A+B represents the totality of elements in

A and B (with repeats counted).

There are at least two approximations we can use for (9.7):

(1) D *+D,*+Dy*- (D) %D, *) - (D, *ND*) - (D,* AD;*)+ (D * A Dy* ADg*)

(9.8)
or

(2) D #D,+Dg- (D *AD,*) - (D *N DS*)~(D2*/\ Do*)- (D1 *AD,*ND;*) (9.9
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where Ul*, Dz*, and DS* are rectangular approximations of Dys Dy, and
D3 respectively.

When we substitute (9.8) into (9.6), we have

F*(Vl,Vz,V3)=1-[£{+{)[‘+4 - / /-/* - /
1T B 3 D

* ler\Dz* D1 /\DS* DZ*/‘\ 3*

where //is a short hand notation for //f(y, y') dy dy’'.
A A

Now the mechanics of finding the intersection of rectangles can be
ufilized to handle the last four terms in (9.10). An approximation for
the joint c.d.f. of three rectangular coverages is thus obtained.

Since expression (9.8) is equivalent to. Dl*ijz*k}DS*, of

which D1\}D2\ID3 is a subset, we shall have
F*(vl, Vo) V3) va(vl, Vys VS)’

Unfortunately, this approximation is on the wrong side of the true
value.

When we use the second approximation, ekpressed in (9.9), for
D1\ID2L1D3 in (9.6), the relationship'between_F* and F is not at all

clear. We may have

LA

F*(vy, vy, Vg) < E(vy, vy, Va),

*
or F (vl, Vs v3)

Vv

F(vy, vy, V2),

Our inclination is to recommend the second approximation since we have
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a chance to be on the right side in this approximation. That is

* , , = l_ + + - _
e L

* * * *
D *\Dg* D * D,

S A Rt
* * *
le\DZ/\D3
(9.11)
In the general case of m rectangular targets, the joint c.d.f. of

m rectangular coverages is given by

F(vl, Vos wees V ) = 1- / f fly, y') dy dy'. (9.12)
DluDZU ...\JDm

By using the 'Principle of Inclusion and Exclusion'', we can always

express the union as the sum of intersections; namely

m
D,UD, ...yD_= I D.- 1 (D:AD)+ £ [D:AD.AD)- ...
172 L PP S A
+ (™A D,A. AD) . (9.13)
We may use
m
r D. - 1 (D.*ND.*)+ % (D.*ND.*ND, *)- ...
=1t oig ! i<jek 1 J K
_1 il % * *
© (D™ @D LA )

to approximate (9.13) and then substitute it into (9.12) to get
TR
F (vl, Vy e vm).
In the next chapter, we shall have more to say about the possible

future studies based on the results obtained in this chapter.



CHAPTER X

SUMMARY AND POSSIBLE EXTENSIONS

1. Summary

The purpose of this study was to find the joint distribution of
the coverages on two rectangular targets by one rectangular pattern.
Following a natural .order of development, we have derived the c.d.f.
and the p.d.f. of one linear coverage, the c.d.f. and the p.d.f. of one
rectangular coverage, the joint c.d.f. and the joint p.d.f. of two
linear coverages, an approximation of the joint c.d.f. of two rectan-
gular coverages. Also, we have foﬁnd the joint probabilities of some
interesting events, e.g., the probability of hitting both targets;
missing both targets, etc. A Two-Way Table Method was introduced to
find the probabilities of some other interesting events, once the
probability of hitting both targets is obtained. A '"power up" formula
was given to extend the two-way table to n(n > 2) identical or
non-identical patterns. The question of '"'the fewest number of passes
required to achieve a specified probability of hitting both targets'
is investigated, and a formula which can be‘solved iteratively is given
to give the answer to this question.

A way to extend this study to handlé the general case of m rec-
tangular targets is outlined in the last chapter. This is possible due
to the simple mechanism we déveloped to find the overlap of m line seg-

ments.

90



91

2. Possible Extensions

One Target Being-a Subset of

Another Target

All through this study, we have assumed the separation of the two
targets under consideration. The situation that one target is a subset
of another target may arise in the following way. We have a single
target, but a small portion of it is the "heart' of this target. Conse-
quently, we like to treat this portion differently, e.g., we want to have
a higher fractional coverage on this portion than on the rest of the

target. Figure 29 illustrates this situation:

+he heart

+he bbd/

The 'fmgei"

Figure 29. The Heart Is More Important than the Body
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Strictly speaking, we should consider this situation as if we have two

targets, with the '"heart'" being of the shape [_]and the 'body' being

of the shape[:i:jl It can be seen immediately that this sort of rigo-
Tous treatmentvwill vastly complicate the calculation of almost any
joint probability. To avoid this complication, we may approximate the
'""body'" by the whole target. It is in this way that we have two rectan-
gular targets with one being a subset of the other. Of course, this
approximation is good only when the "heart" is a small portion of the
"target.

Once we have two rectangular targets, we can construct rectangies
around them corresponding to the desired joint probability statement
and find (or approximate) the probability just like the way we did it

all along.

More about the Case of m Rectangular Targets

The theory and material about the case of m rectangular targets
developed in Chapter IX can be explored further. For example, when

m =3, we can find

Pr(hitting Target 1 and 2 but missing Target 3)

- )

K f\K K f\K I\K
and

Pr(hitting only two targets)

NI,

KnK K 0Ky K,NK, K OK, 0K,
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In this direction, many useful questions can be asked and answered in
the general case of m rectangular targets. It is even possible to

develop an '™-way Table Method' analogous to the Two-way Table Method
we iilustrated in Chapter VII. We leave this to the hands of future

researchers in this field.

To Increase the Number of Patterns

In the context of '"Hitting or Missing'", there is no problem in
handling the case of n rectangular patterns, as has been demonstrated in
Chapter VII, Section 3. But in the general context.of the c.d.f., it
is very difficult to handle even two linear patterns delivered on one
linear target. For one thing, we have the overlap of Pattern 1 and
Pattern 2 to worry about. For another, there are uncountably infinite
ways that we can combine coverages by Pattern 1 and Pattern 2 to satisfy
the event '"C < u." We believe a different approach other than that

developed in this study is needed.
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©i " APPENDIX

A NUMERICAL EXAMPLE OF THE JOINT PROBABILITY
OF TWO RECTANGULAR COVERAGES

At the end of Chapter VII, we claimed that when the numerical
values of the target-pattern configuration are given, it is straight-
forward but tedious to find the exact joint probability of two rectan-
gular coverages for any specified vy and v, values. In this Appendix
we shall illustrate how this can be done in an example.

Let us consider the following configuration of one rectangular

pattern being delivered on two rectangular targets:

LT1 = length of Target 1 in the range direction = 50

LHi = length of Target 1 in the deflection direction = 20
LT2 = length of Target 2 in the range direction = 50

L%Z = length of Target 2 in the deflection direction = 20
B, = center of Target 2 in the range direction = 0

Bé = center of Target 2 in the deflection direction = 35
Lp = length of the pattern in the_rénge direction = 70

Lp = length of the pattern in the deflection direction = 40
M = aimpoint in the range direction = 0

M' = aimpoint in the deflection direction = 17.5
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¢ = aiming error in the range direction = 20

o' = aiming in the deflection direction = 10:

As usual, we designate the center of Target 1 as the center of the
Cartesian‘coordinate system, (0, 0). Now using the definitions in

Chapter II, we shall have:

Ty - 1.25
Tl' = 1
fz = 1.25
T, =1
6, = 0
62' = 3.5

; P = 1.75
Pt = 2
M = 0
w' = 1,75,

Figure 30, illustrates this situation with all distances standar-

dized by the aiming errors g and ¢'. The standardized areas of Tar-

get 1, Target 2, and the pattern ére indicated in the bottom of each.
They are: ,
The standardized area of Target 1 = ZfleTz = 2,5%2 = 5,
the standardized area of Target 2 = 2T2!x2T2' = 2,5x2 = 5,
and

the standardized area of the pattern = 2Px2P' = 3,5x4 = 14,
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nger 1 'Tav;}ef 2
(0,0) (0,175 (¢35
. /\ -
2.8x2=§ 25228
Paﬂﬂf n ’ _—I

| | |
| (

{ wE x4z 4 !

Figure 30. An Examplé of One Rectangular Pattern
Being Delivered on Two Rectangular
Targets

We note that in this configuration, two targets are of the same
size and their centers line up horizontally. Also the aimpoint is
placed midway between the two target centers. We did this in order to
simplify the calculation of joint probabilities. In a more general
configuration, the joint probabilities can be obtained in a fashion
ksimilar to what is done here in this case. The following values will

also be needed.
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11

TR v =
§;' =Ty +P' =3
Ry = |T1—P| = 0.5

2 72

S,' =T, +P' =3
R, = |T2—P| = 0.5
R," = [TZ'-P'I = 1.

We shall find the joint pfobability of "the fractional coverage on
Target 1 > 1; and the fractional coverage > ¥, for 1,=0, %Z’ %g, %ﬁ,
1 and r2=0, L&, %h, @a, 1. First, we express the fractional coverage

r in terms of a standardized area v. That is

vy = standardized area of Target Ixry = 5r1
v, = standardized area of Target Zxrz = SI‘2

(Recall that the standardized area of both Target 1 and Target 2 is 5)

From this relationship, we have, for example,

Pr(fractional coverage on Target 13%@, fractional coverage on
Target 231/4)

= Pr(z; > 2.5, %, > 1.25)

2

Thus, the pfoblem becomes to find Pr(Z1 > Vs Zz > VZ) for v1=0, 1.25,

2.5, 3.75, 5 and v,=0, 1.25, 2.5, 3.75, 5.

2

Some joint probabilities can be found straightforwardly. For ex-

ample,
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A\
o
-
[\

Pr(Zl > >0) =1

Pr(le_

Vv
<o
-
AN

> 2.5) = Pr(g, > 2.5) = 1-F, (2.5) (A1)
2

The last equation in (Al) is true since Pr(Zz=2.5) = 0. The value

of FZZ(Z.S) can be obtained by using expression (3.3) directly.

Seme of the joint probabilities are found by integrating f(y, y')
over the region DiF\DZ. It is this region that we have to graph care-
fully and partition it before ‘doing the numerical integration. Consi-
der the Pr(Z1 > 1.25, Zz > 3.75), for example. Corresponding to the
event £, > 1.25, we can construct a D, region around the center of
Target 1. Corresponding to the event Zz > 3.75, we can also construct
a D2 region around the center of Target 2. The boundaries of D1 and
D, are wgll defined in Figure 13. Figure 31 shows both Dy and D, and
the way they intersect. Because of the symmetry, we only have to con-
sider thebupper half of le\DZL We partition it into two areas,

Area 1 and Area 2 as shown in Figure 31.

The equation representing the curve on the upper right corner of

the D1 region is, by the defintion in Figure 13,

|Y,_61 Y"el'|‘Sl"l}’"ell'sl'[)’"81'l"'Sl'Sl' = Vl (Az)

Substituting 81=61'=0, Sl=3, Sl'=3, and v1=1.25 into (AZ), we obtain:

y = 3775
y'-3

Similarly, we can obtain the equation representing the curve on the
left upper corner of the D, region:

_ 3y'-5.25
y'-0.5

y
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Figure 31. A Numerical Example of Dln D,
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We can now see that

Pr(Z1 > 1.25, ZZ > 3.75) = ff f(y, y") dy dy'

0N D,
=2 /f f(y, y') dy dy' + ff f(y, y') dy dy'
Area’l Area 2 !
' 3y'-5.25
2575 g —
=2 f g(y) g(y'-1.75) dy dy'
2 0
‘ 3y'-7.75
2.5 _'7'-_"3—-’
+ f f gly) gly'-1.75) dy dy'
2.375 0
2.375
5.25
’ 6% - 6] gly'-1.75) dy’
2.5

(A3)

+ [ 6ELZT3) - 6(0)] gr'-1.75) dy'
375 -

Two numerical integrations are needed to find the values in
expression (A3), which turns out to be 0,096. This is a way to find
Pr(Zl > 1.25, Zz > 3.75), which is Pr(fractional coverage on Target
13141, fractional coverage on Target 2’33/4) .

If we use rectangles Dl* and DZ* to approximate D, and DZ’ then

1
the approximated joint probability is:
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Pr*(Z1 > 1.25, Zz > 3.75) = / f f(y, y') dy dy'’

* *
Dy f\D2
1.125 2.5
= f gly) dy - f gly'-1.75) dy'
~1.125 2

1}

[G(1.125)-G(-1.125)]-[G(0.75)-G(0.25)]

0.129.

In this fashion, we have found both the exact and the approximated
joint probabilities of '"fractional coverage on Target 1 > ry and
fractional coverage > rz” for r1=0, %ﬁ, %ﬁ, %ﬁ, 1 and r2=0, %ﬁ, 7 ’
3&, 1. TABLE II give the exact joint probabilities. FCl in the table
stands for ''the fractional coverage on Target 1'', and FC2 in the
table stands‘for ""the fractional coverage on Target 2." TABLE III

give the approximated joint probabilities. AFCl and AFC2 have the

same meaning as FCl and FC2 except the extra "A" stands for "approxi-

mated."
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THE EXACT JOINT PROBABILITY OF
TWO FRACTIONAL COVERAGES

5. 086 0.0 0.0 0;0  0.0
| 0.269 0.096 0.0 0.0 0.0
0. 491 0.262 0.109 0.0 0.0
0.717 0.457 0.262 0.096 0.0
 1.000 0.717 0.491 0;209 0.086
F%Cl >0 > 1/4 > 2/4 > 3/4 > 1
TABLE III

v

3/4

v

1V

1/4

2/4

THE APPROXIMATED JOINT PROBABILITY OF
TWO FRACTIONAL COVERAGES

0.086 0-.() 0.0 0.0 0.0
0. 269 0129 0.0 0.0 0.9
0.491 0.342 0.182 0.0 0.0
0.717 0.537 0342 0.123 Vel
1.000 0.717 0.491 0..269 0 .086)
>0 > 1/4 > 2/4 > 3/4 > 1
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