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PREFACE

This study is concerned with the optimal routing of large scale
marine seismic mapping operations. The purpose of marine seismic
exploration is the detection of oil reserves beneath the floor of the
ocean. Included in this operation is the scheduling of the geophysical
recording ships which collect seismic information at a particular
prospect. Computational algorithms developed in this study can be used
to schedule a single-ship through single-prospect problem, a single-ship
through multi-prospects problem, and a multi-ships through multi-
prospects problem. The algorithms developed are very effective with
respect to core storage requirements and computation times.

Although the primary result of this dissertation will be the
reduction of the managerial decision making diffiéulties involved in
scheduling geophysical ships, the result cén also be extended to the
solution of constrained traveling salesman probléem and the machine
sequence scheduling problem.
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CHAPTER I
INTRODUCTION
Statement of the Problem

In recent years, offshore exploration and production of oil and gas
has increased sharply due to the scarcity of energy resources on the
continent. There are three major geophysical methods for oil and gas
exploration, i.e., gravity, magnetic, and seismic [34]. .Among them, the
seismic reflection method is the most inexpenéive and effective. It is
commonly used in detecting the oil and gas reserves beneath an ocean
floor,

To collect data by the seismic reflection méthod, several shot
points beneath the ocean floor are explored aléng the prospects survey
lines,iand the magnitudes of the noise reflections are recorded by a
series of sensitive devices. These sensitivédevices are located at equal
intervals on a seismic mérine cable which is towed by a ship. This
cable, usually from one-half of a mile to two miles in length, must be
aligned with the ship's movement as data is collected. |

A "prospect" is a geographical location to be searched for
oil or gas reserves. A prospect consists of a configuration of N
straight lines which indicates the paths that a ship will cover while
collecting the seismic data. The number of lines N at a given prospect
might be anywhere from two to two dozen, with individual line length

ranging from five miles to one hundred miles, To collect the required



data by a single-ship through single-prospect, a ship must leave a known
port Pl and travel to the prospect, traverse each of the N lines one-way
collecting data, then return to a known port P2 (Figure 1). The ship
should be routed through such a path-configuration so as to collect the
required data efficiently. For a large geophysical company, it is some-
times necessary to route a single-ship through multi-prospects or multi-

ships through multi-prospects. A problem of this type is a large scale

ggifﬂig*miggiggfgroblem and the routing procedure is more complicated.

Since the number of feasible paths that could be selected (for a
single-ship through single-prospect with N lines there are ZNN! possible
paths) is extremely large and the maintenance of a geophysical crew is
very high, it is economically desirable that an effective technique for

determining optimal ship routings for seismic mapping be developed.
Research Objectives

The objectives of this research are two fold. The first objective
is to develop algorithms that can be used to determine the minimum cost
‘route for the single-ship through single-prospect problem, and that
improve upon a previous algorithm developed by Willard [66] in the
areas of execution time and storage requirements. The second objective
is to extend the best of the above algorithms to develop an algorithm
that can solve the large scale seismic mapping problem (e.g., the multi-
ships, multi-prospects operation). The primary result of this research
will be the reduction of the managerial decision making difficulties
involved in scheduling geophysical ships. In addition, the results from
this research can be extended to the solution of constrained traveling

salesman problems and machine sequence scheduling problems.
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Research Procedure and Methodology

The development of algorithms in this research is done in two

phases:

Phase I

Phase II

1'

Study the applicability of the dynamic programming approach to
the problem. Develop an improved algorithm for solving the
single-ship through single-prospect problem by this technique.
Study the applicability of the branch and bound approach to
the problem. Develop an algorithm for solving the single-ship
through single-prospect problem by this technique.

Study the applicability of the graph theory approach to the
problem. Develop an algorithm for solving the single-ship
through single-prospect problem by this technique.

Conduct the performance comparisons of execution times and
storage requirements for above developed algorithms for
different prospect path-configurations with various number of

lines.

Using the best approach from Phase I, possibly in some
required combination, develop a new algorithm for solving the
single-ship through multi-prospects and the multi-ships
through multi-prospects problem.

Test the performance of the algorithm considering execution

times and storage requirements for different prospect



path-configurations with various number of lines.

3. Document all computer algorithms and develop a user's guide.

In the dynamic programming approach, a recursive search dynamic
programming method is studied and appliéﬁ,to the problem. An algorithm
is developed based on this approach, and the effectiveness of the
algorithm is then compared to the effectiveness of the conventional
dynamic programming method considering the storage requirements and
computation times.

In the branch and bound approach, two methods, Little's sequential
tour-building method and Eastmanfs subtour elimination method are
studied and applied to‘the problem. Two algorithms are developed based
on these two methods. A modification of Little's sequential tour-
building method is selected finally for a further research in the single-
ship through multi-prospects and the multi-ships through multi-prospects
problem.

In the graph theoretic approach, the shortest spanning tree and
shortest Hamiltonian chain concepts are studied and applied to the
problem. An algorithm is developed based on the combination of these
two concepts. The application of this algorithm to a machine sequence

scheduling problem is also studied.



CHAPTER II
LITERATURE REVIEW

After an extensive literature search, it was determined that very
little has been published pertinent to this specific problem. However,
thére is a similarity between the problem in this research and the

i
classical traveling salesman problem. In the traveling salesman problem
it is assumed that there are N towns with known distances between any
two of them. A salesman wants to start from a given town, visit each
town once, and then return to his starting point. The objective is to
minimize his total traveling time. A seismic mapping problem with an
N line seismic path-configuration can be thought of as a traveling
salesman problem with 2N + 2 cities and the restriction that cities be
visited in specified pairs. The unconstrained traveling salesman
problem has been treated by a number of persons using a variety of
techniques.

One of the earliest investigations was made by Dantzig, Fulkerson‘J
and Johnson [14) in 1954, Their papers published in 1954 and 1958
outline a linear programming approach to the problem. Their approachi
starts with an arbitrary solution, then employs the standard Simplex
method to improve the basis. A link in the basis is replaced by a new
link in each iteration. Since a link which has been removed can be
reintroduced at a later iteration, the approach is highly inefficient.

Because of the additional constraints that would need to be imposed,



a linear programming formulation of the problem would be very large.

In 1956, Flood [22] related the traveling salesman problem to
personnel-assignment problems. The traveling salesman problem is
different from the assignment problem only in that the allowable permu-
tation of N persons and M jobs must be a cycle. In the paper, Flood
illustrated how the assignment method could be used effectively in the
initial preparation of a traveling salesman problem for subsequent
computations. Some techniques that are useful in seeking good approxi-
mate solutions are given. Also, in 1956, Kruskal [38] pointed out a
possible relation between the traveling salesman problem and shortest
spanning tree problem. At about the same time, Barachet [4] reported
a graph theoretical approach for the solution of traveling salesman
problem., Both concepts have been extended by many authors [10, 32, 33,
47] in later years.

Croes [12] developed a tour to tour improvement approach in 1958
to solve the traveling salesman problem. Croes' solution generation
scheme is a rule for finding a better tour that is a neighbor of the
present tour. The results of this procedure are approximate and the
procedure is inefficient for a problem with a large number of cities.

Eastman [19] originated the branch and bound approach. Eastman's
method capitalizes on the fact that every solution to the traveling
salesman problem is also a feasible solution to the corresponding
assignment problem. The optimal solution to the assignment problem is
therefore a lower bound to the solution of the traveling salesman
problem; and if the solution is cyclic, it is also the optimal solution
to the traveling salesman problem. If the solution is not cyclic, one

or more subtours must exist. Eastman chose the subtour having the



minimum number of arcs and created a set of new problems by eliminating
arcs from the subtour, one at a time. In later years, Bellmore and
Malone [8] extended Eastman's subtour elimination method. Miller,
Tucker, and Zemlin (44] formulated the traveling salesman problem as an
integer programming problem. Using this technique an N-city problem
required NZ-FN ;onstraints and N2 variables. The authors concluded that
the integer programming procedure was highly inefficient.

Bellman [5] and Held and Karp [31] independently applied the
dynamic programming method to obtain the optimal route for the traveling
salesman problem. Using this approach the traveling salesman was
formulated as a multi-stage decision problem. The optimal path segments
obtained from a particular stage are retained and used in obtaining the
optimal segmental routes in subsequent stages. The drawback of this
method is the large computer storage requirement for solving a problem
with a large number of cities.

Subsequently, Little, Murty, Sweeney, and Karel (42] developed a
branch and bound algorithm for the traveling salesman problem. This
algorithm divides paths into two categories; paths that contain a
directional link connecting two particular cities and all remaining
paths that exclude the selected link. At every stage where this
separation of paths or "branching'" occurs, a lower bound is calculated
for each of the sets of paths within each of the above categories.

At each branching stage, the directional link is selected in such a
manner that the lower bound for the set of paths not containing the
link in question will be as large as possible. The optimal route is
determined once a circuit is found where the total distance required to

be traveled is smaller than the lower bound of each of the other path



segments.,

Because of the obstacles faced by optimal seeking procedures for
the traveling salesman problem with a large number of cities, Karg and
Thompson [37] approached the problem by heuristic procedures. The
method begins with a randomly selected pair of cities, constituting a
tour of length 2. Then a third city is inserted in order to minimize
the resulting three-city tour; then a fourth city is inserted, and so
on, until a complgte tour has been constructed. The heuristic approach
has been extended by Lin and Kernighan (a1].

Obruca [47] observed that the majority of lines appearing in a
shortest spanning tree for any network also correspond to those in the
solution of a traveling salesman problem with the same network. The
technique developed by Obruca is to manipulate the tree by means of
deletions and additions of lines into a chain and hence obtain a
feasible solution. In applying this procedure, Obruca points out that
among 460 sets of randomly generated cost matrices with N varying from 5
to 11 cities, only 50% of the solutions were identical with the optimal,

In 1970, Christofides [lO] combined the shortest spanning tree and
branch and bound algorithm to develop two new algorithms to solve the
traveling salesman problem. The first algorithm is based on a decision-
tree search with lower bound used to limit the search. The second
algorithm is a fast iterative procedure based on simple transformations
of the cost matrix of the graph, ensuring at each step that the relative
cost of all Hamiltonian chains stay unchanged. At about the same time,
Held and Karp [32] approached the symmetric traveling salesman problem
by the l-tree concept, which is a slight variant of spanning trees.

A l-tree is a tree together with an additional vertex connected to the
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tree by two edges.

Since the traveling salesman problem was studied by Dantzig,
Fulkerson, and Johnson [14], most of the subsequent algorithm were
developed to deal only with the single traveling salesman problem.
Svestka and Huckfeldt [61] investigated an M-salesman traveling
salesman problem in 1973. The multiple salesman traveling salesman
problem can be defined as : Given M salesmen and N cities, find M
sorties such that every city (except the home:(city) is visited exactly
once by exactly one salesman, so that the total distance traveled by all
‘salesmen is minimum. The authors applied the Eastman's subtour elimi-
nation algorithm to solve an M-salesman traveling salesman problem.

Some computation experience has been reported by the authors.

Besides the traveling salesman problem, the recursive search method
of dynamic programming has also been studied in this research and the
réview is presented in the following. Most of the work on allocation
problems with integer solutions has been accomplished with dynamic
programming. However, the fact that the computer memory requirement
increases exponentially with the increasing size of the problem has
limited its usage. Williams [67], in solving an allocation problem, has
proposed a recursive search method of dynamic programming to overcome
the limitations of conventional dynamic programming. With this
technique, only a limited number of states and decision variables in
each stage require investigating, so that computational times and
computer memory requirements are significantly reduced.

The most significant contribution to this research of marine
seismic mapping operation problem was that of Willard [66]. Willard

used a dynamic programming method to approach the single-ship through
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single-prospect problem, Although this attack is effective in execution
time, the algorithm was faced with a storage problem for an arbitrarily
large number of lines. The algorithm developed by the author using the
FORTRAN IV computer language, required a computer memory capacity of
approximately 250 K bytes for a ten line path-configuration. The
dynamic programming approach of Willard to the proposed problem is a
starting point and provides a spring board for the research reported in

the following chapters.



CHAPTER I1II

ALGORITHM FOR THE SINGLE-SHIP THROUGH
SINGLE-PROSPECT PROBLEM USING A
RECURSIVE SEARCH DYNAMIC

PROGRAMMING APPROACH

Willard (66) used the dynamic programming method to solvé the
single-ship through single-prospect problem. The algorithm developed by
Willard was faced with a storage problem for an arbitrarily large number
of lines. The algorithm, using the FORTRAN IV language, required a
computer memory capacity of approximately 250 K bytes for a ten line
configuration. This research investigates a possible method
that can reduce the memory storage with some trade-off of computation
time, while the concépts of the dynamic programming approach are still.
maintained.

After reviewing various search techniques, it is believed that the
recursive search dynamic programming method can considerably reduce
the computer storage, but would require some additional computation
time. Basically, the recursive search technique, starting with a
feasible solution, searches over each of the recursive relationships
until an optimum solution is reached, With this technique, limited
numbers of state and decision variables in each stage are generated when
needed, so that the computer memory requirement is significantly

reduced,

12
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Description of the Recursive Search

Dynamic Programming Method

For a N lines problem with a starting port and ending port, we can
connect the two ports and hence change the problem to a N+ 1 lines
problem, The problem of selecting the shortest route that covers the

N+ 1 lines can be stated mathematically as follows:

Minimize:
N+1 2 N+l
N R
D= ) Z /. /), dli,j,m,n) « X(i,j,m,n) (3-1)
i=1 j:l m=1 n=1
Subject to:
N+1 2 N+1 2
S v \
/. /, X(i,1,myn) + S /o X(i,2,p,q) =1
mZi m=1 n=1 p#i p=1 q=1
N+1 2 N+1 2
v Vv a .
L & X(m,n,i,j) + Z Z X(i,j,p,a) =1
mfi m=1 n=1 p#i p=1 g=1
where
i=1, 2, 3, vaa, N+l j=1, 2
and
X(i,j,m,n) = 0 or 1
given
d(i,j,m,n) = distance from line i, end j to line m, end n
X(i,j,myn) = 1 if line i, end j is linked to line m, end n

O otherwise

i
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For a N line configuration, there are ZNN! possible routes that
would have to be considered for exhaustive enumeration. To solve
Equation (3-1) by the dynamic programming method, 1et.the Kth stages of
the usual dynamic programming formulation correspond to the selection of
(K+1)th lines to ending port P2 that traverses K lines. For example,
the firstbstage corresponds to the selection of a second line after
covering first line before return to P2° The decision variables are
then the seléction of an alternative route at each stage. The state
corresponds to the route line which remains to be selected., For
example, at first stage, the decision variables are the selection of an
alternative route for covering first line before return to Pz. The
state variables are the possible selection of a second line covering
previous first line before return to P2.

The following notation will be used in formulating the dynamic
programming model of the problem:

Pl(m,n) = the distance from starting port P, to line m, end n.

1

d(i,j,m,n) = the distance from line i, end j to line m, end n.

P2(m,n) = the distance from line m, end n to ending port Pg.

gk(i,j,m,n,lk) = the distance of path segment from line i, end j,
to line m, end n, covering k lines and then

return to ending port P 1, denotes a unique

2° k
combination of k lines from N lines.,
f;(i,j,lk) = the shortest distance of path segment from line i,
end j, covering k lines and then returning to P2.
F;(PI,PZ) = the shortest distance of a complete route (path) from

starting port P. to ending port P covering N lines.

1 2’



The dynamic programming principal of optimality is then implemented by

utilizing the following recursive relationship for each stage:

Stage 1

* -
£,(i,3,1,) = Minimum [d(i,j,ll,n) + Pz(ll,n)]

‘n=1,2

;1:3—]’1

for the following states:

Stage 2

Let

, .
gz(i,j,m,n,ll) = d(i,j,m,n) + fl(m,n,ll)

where n = 1, 2 n = 3-n
then
* 13 . . . . .
f2(1,3,12) = Minimum gz(l,J,m,n,ll)
m=1,2,...,N m#£l
n=1,2
all ll
for the following states:
i=1,2, «e0y N
J = 1, 2
Stage K TN

Let

* -
Qk(i,j,m,n,lk) = d(i,j,m,n) + fk-l(m,n,lk;l)

15
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where

j=1, 2
n = i, 2
n = 3=n
then
* .
fk(i,j,lk) = Minimum gk(i,j,m,n,lk_l)
m=1,2,..., N m #£1
vn=1,2
all lk—l
for the following states:
i=1, 2, eeey N
j=1, 2
Stage N

* : .. * .
FN(Pl’Pz) = Minimum [Pl(l,J) + fN_l(l,J,lN_l)]

i=1,2,...,N

Using the conventional dynamic programming method, it is necessary
to determine the optimum value of each decision variable for each

feasible input state, before calculations are commenced for the

N i-1
next stage. This requires storing approximately 2 X T (N-j) values,
i=1 j=O

so that a problem with a modest number of lines can easily exceed the

memory capacity of the largest computer.
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Now assume a starting solution X = [X(i,j,m,n)], for i = 1, 2,
evey, N+1, j =1, 2, 1 £ n, such that X satisfies the constraints given
in Equation (3-1). Although X defines a feasible solution, it is not
necessarily the optimum solution. The recursive search technique
provides a method of generating the state variable needs one at a time
to improve the iﬁitial solution until optimum is reached. For example,
in a three line configuration (four lines if plus two ports), at first
stage, twelve state variables must be generated and stored for the
conventional dynamic programming method, while only four state variables
are needed to be generated and stored for the recursive search dynamic
programming method. A comparison of storage requirements for the
conventional dynamic programming method and the recursive search
dynamic programming method for a four line configuration is shown in

Table I.

TABLE I

A COMPARISON OF VECTOR STORE FOR A
FOUR LINE CONFIGURATION PROBLEM

Method Conventional Recursive
Search
st Vector
a9€  store D.P. D.P.
1 48 L
2 2k 6
3 8 8

Total 80 18
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In general, the difference in computer memory storage requirements

for N-line configurations is:

2 .E;

i=1 J

i-1 N

i - - ) 2"

=0 m=2

It is obvious that the reduction of storage requifements by using this
technique is a trade off with computational time increasing at about

the same rate that the computer memory storage is reduced.
Programmed Algorithm

The recursive search dynamic programming algorithm is programmed
in the FORTRAN IV language. The logic flow chart of the program is
presented in Figure 2. The programmed algorithm will select the optimal
route for a configuration of 8 lines or less and requires a computer
memory capacity of approximately 62 K bytes. The time required to
obtain the optimal path through a N-line prospect configuration is
approximately (Z.BS)N(O.OOI) minutes when executed on the IBM 360/65
computer,

Execution times and storage requirements for selecting the optimal
route using conventional dynamic programming method by Willard [66] and
using the recursive search dynamic programming method of this research
is compared and shown in Figures 3 and 4. 1In Figure 3, the execution
times for both methods will increase‘sharply after 9-line configuration.
In Figure 4, the core-storage requirements for both methods will also
increase exponentially after 9-line configuration.

The result on both conventional dynamic programming method and

recursive search dynamic programming method have shown that using
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Figure 2. The Logic Fiow'Chdrt“ofﬂthe]Recursive
‘ Dynamic Programming Method
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dynamic programming approach to solve a ship routing problem is limited
to a small 9-1ihe configuration on the IBM 360-65 computer. The problem
beyond a 9-line configuration, will either exceed computer memory a
availability or require a huge amount of computation time. It is
concluded from this research that it is not practical to use the dynamic
programming approach (either the conventional method or the recursive
search method) as a further research tool for a large scale ship routing

problem.



CHAPTER IV

ALGORITHMS FOR THE SINGLE-SHIP THROUGH
SINGLE-PROSPECT PROBLEM USING A

BRANCH AND BOUND APPROACH

As mentioned in the previous literature review, branch and bound,
or tree=search teChniques, have been used to solve the traveling
salesman problem. Among the tree-search algorithms, Little's sequential
tour-building method and Eastman's subtour elimination method have shown
the greatest promise. FEastman's subtour elimination concept has been
extended by Shapiro [59], Bellmore and Malone [8], and Garfinkel [23].
These two methods are studied in this dissertation. The objective is to
investigate the applicability of the branch and bound technique to the
ship routing problem which can be considered as a constrained traveling

salesman problem,
The Constraints of the Problem

The ship routing problem for marine seismicimapping operation is
similar to a constrained traveling salesman problem, The constrained
traveling salesman problem is defined in this research as follows: Given N
citiesinwhich certain cities are grouped together andif one of the cities
within a group is visited, then all the other cities in the same group
must be visited sequentially find the shortest route that starts at a

home city, vigits each city once and returns to the home city. Figure 5

23
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shows an example of a coﬁstrained traveling salesman problem. One
wisheé to determine a route which starts from a home city, covers three
regions and returns to the home éity. In the ship routing problem, the
constraint is that each seismic line where the seismic data is actually
collected (productive line) has to be traversed as a whole segment.

In other words, the two end points of a seismic line must be traversed
sequentially. This problem is similér to the constrained traveling
salesman problem in which each group;contains;only two cities. Figure 6

_shows an example of a ship routing problem of 3-line configuration.

Central
Region

Figure 5. An Example of Constrained Traveling
Salesman Problem
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Figure 6. An Example of Ship Routing Problem
with 3-Line Configuration

Sequential Tour-Building Algorithm For

Ship Routing Problem

Description of the Algorithm

“The basis of Little's algorithm is to divide the set of all the
possible tours into smaller and smaller subsets and to calculate for
each subset a lower bound on the cost of the best tour therein. The
object of calculating a bound is two fold:

1) it may be used as a guide for the partitioning of the subsets,
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and
2) it limits the search and also identifies the optimal tour (the
optimal tour is a tour whose cost is less than or equal to the
lower bounds on all the incompletely searched subsets).
In order to apply Little's sequential tour-building concept to thé ship
routing problem, the following principle is defined:
Principle: Considering two seismic lines in a prospect
configurgtion, one line having end points Xl, X

2

and the other line having end points Y1, Y , if the

21

ship does not go from X1 to Yz, then she can go

from X1 either to X2 and from there to any point

(including Yz) or to any other point.
to Y either from any other point or from any point

(including Xi) to Y, and from Y, to Yz.

1
The algorithm is explained below. It is convenient to represent the
partitioning as branching of a tree, where the nodes represent the
subsets of tours.

We start with the original cdst matrix C, with dimensions 2(N + 1)
by 2(N+ 1), The first two columns and rows are P, and P2. All
diagonal elements are set to infinity. Since P1 is considered the
starting port and P2 the ending port, all the cost elements on

the row of P2 and the column of P, are sget to infinity. A reducing

1
process is then performed on each row and column. In contrast to
Little's original method, the reduction process of this algorithm
is accomplished by considering pairs of rows (columns), each pair
consisting of the two rows (columns) corresponding to the same

line with different end point (say‘ X,y X,y or Y, Yz). The minimum

2’



27

cost in the two rows r, (columns 1j) is subtracted from all entries in
/

these rows (columns). The resulting matrix C is then said to be

reduced, that is, it contains at least one zero in every row and column

pair. The sum of reducing constants is:

If Z'(t) refers to a tour cost for the reduced matrix Cf, and Z(t) to

a tour cost for the original matrix, and K to the sum of all costs of
productive lines where the seismic data is actually collééféd, then
z'(t) + K= Z(t) + K - b,. Since K is a constant, we can eliminate it
from all calculations by setting all productive line costs equal to
infinity in the original cost matrix (i.e., XX, =2 XX = YY ==
Y)Y, = @, ..., etc.) and hence z'(t) = 2(t) - b, Since all the
elements in the reduced matrix are non-negative, it is clear that

z'(t) 2 0, and hence 2(t) 2 b, i.e., b, is a lower bound on the cost of
any tour of the original matrix.

One can now form a tour by selecting one of the links in the
reduced matrix which has a zero cost. Rather than selecting one of
these links at random, one selects the link whose cost under the reduced
matrix is zero and whose penalty is the largest. This penalty cost

1

ex Y (the cost incurred by not going from X1 to Yz) for this algorithm
172

is determined as follows:

9 =6 +6
X1,Y2 X1 Y2
where
6}(‘1 = minimum entry in rows X1 and X2, not including X1Y2, and
6Y = minimum entry in column Y1 and Yz, not including X1Y2.
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Suppose link (X1,Y2) is chosen in this way. The total number of
tours is now divided into two subsets, those that include link (Xi,Yz)
and those that do not. These subsets are represented diagrammatically

as nodes (X Y ) and (X Y X.,Y.) in Figure 7.

Figure 7. Decision Tree for Branch and Bound
Method '

The bound for all tours représented at a node is shown marked at

the node. Thus since ex ,Y is the minimum penalty that has to be paid
2

for not including link (X Y ), the bound on node (X Y ) is b + ex -
172"
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The inclusion of link (Xl,Yz) implies a partial tour consisting of

X X *YZ%Y

2 1 Y

Therefore, no other link can emanate from Xz, Xl, o

1.

or finish at Xl, Y., Y Thus the row of X2, X, Y and the column of

2, 1' 1°? 2’

X1, Yz, Y1 can be deleted from the reduced matrix as they will no longer

be needed. Also, since the link (Yl,Xz) is no longer possible as it
would create a small subtour, the cost element in the cell (Yl,Xz) is
set to infinity thereby preventing it from being subsequently selected.

Y_  and the column of X Y Y

The deleting of the row of Xz, X1, 5 1 Yoo Yy

produces a matrix with dimensions [2(N+1)-3] by [2(N+1)—3). This matrix
is subject to reduction in the same way as the original matrix with the
sum of the reducing constants denoted as b1. If the matrix cannot be
reduced, that is, if there exists at least one zero at each row and column

pair, then b1=0. At this point one obtains é lower bound of all tours

containing link (X1,Y2) as b +b,.

A new branching is now in order. Again, new penalties of all the
zero elements of the new matrix are calculated for each row and column
pair, and a link, say (Wi,Zz), is selected as the next node. The lower

bound for node (Wl,Zz) is b0+b1+eW1,22 and the lower bound for node

(Wl,Zz) is b +b1+b2, where b, is the sum of the reducing constants of

o

the matrix obtained after deleting the row of Wz, ) Z2 and the column

1’

of W Z

10 %oy 2y (in addition to the row of X2, X

19 Y2 and the column of

Xl, Y2, Y1 which have already been deleted). It should be noted that in‘
some cases the rows and columns subject to deletion at one stage of a
branch might overlap with a previously deleted row and column of a prior
stage. This is in contrast to Little's original method where if a link

"is included, the matrix is always reduced by one row and one column.

Infinities are again inserted in the appropriate place in the matrix to
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prevent subloops from ever being formed. In this particular case,

since the link (W1,Z2) does not join with the previous link (Xi,Yz), the
cost element of the link (W&,Zz) is set to infinity. However, if two
links form a chain, say the link (Yl,Zz) and the link (Xl’YZ)’ then- the
cosf element of the link (Zl,Xz) is set to infinity.

The branching can be continued until the selected links (Xl’YZ)’
(Wi,zz), eesy etc., form a tour of cost say ZO' If the lower bounds
on all the nodes where branching is possible (i.e., the 'free" nodes
fromvwhich branching has not occurred) are greater than or equal to ZO’
then this is the optimal tour. If not, then any one of the nodes with
a bound less than Z0 can be chosen for further branching.

The choice of which node from which to branch will affect both
computing times and computer storage requirements to a very great
extent, Two alternative strategies for choosing the node can be used:

1) Branch from the "free' node which has the least bound.

2) Branch from the "free" node nearest to the present node,

proceeding upwards in the tree.

In this dissertation, three separate computer programs for the
above two strategies are developed to compare the difference of compu-
tation times and storage requirements. The detail of these computer
programs will be described in the next section of this chapter.

The sequential tour-building algorithm for ship routing problém
using the modification of the Little's original method is illustrated

by the following simple example.



Example 4-1: Consider the 3-line configuration ship routing problem,

where the cost matrix C is given in Figure 8:

: }
P, P, Al A, B, B, C, C,
! !
P, - 41 11 Lo * 43 1';6 11 34
. : § vt
P, L1 - 30 11 4 16 35 35 16
i . ! i
L T ‘
; A 11 | 30| - (2032 | | 7| 2
N
a }
1
1
-

A, Lo 11 29 - 5 30 32 8
li e .

B, 43 16 32 5 | - G@ 3 9
’ 'l

B, 16 35 11 30 | 32 - 5 23

c, 11 | 35 7 | 32 | 3 5 | - @

1 . i
c 3. | 16 | 23 8 | 9 | 23 | 24 -

1!

'
i

' Figure 8. Original Cost Matrix of Example 4-1

[

Original Cost Matrix Operation (See Figure 9)

1) Calculate the sum of all productive line K.
K = (Al,AZ) + (31,132) + (C1’Cz) = 85
2) Set all productive liné equal to infinity.

3) Set all the elements in P, row and P, column to infinity.



Sub-problem 1 Operation (See Figure 10)

- 30 - - 32 11 7 23
- u | - - 5 | 30 | 32 8
- 16 | 32 5 - - 3k 9
- 35 | 11 | 30 - < 5 | 23

. ) ’ '\{v
Figure 9. Reduced Cost Matrix-1 ig X N

1)

2)

3)

k)

5)

Reduce the matrix. Total cost reduced = 32. The bound for

sub-problem 1 = 32.

Calculate Gk 1 (shown at top-right for each zero cell).
1°7j
Select Max ek.,l. = (A2,P2? as the branch node.
all i * -
all j

For sub-problem 2 (AZ’PZ)’ delete row: Al’Az’Pz and column:
] - &

AZ’PZ’Pl’ set P1A1 = @, |

For sub—pr?bleij(Az,Pz), set'AZP2 = ®

The bound for sub-problem 3 = 32 + 5 = 37.

32
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5

- 5 27 o | - - 29 L
o) 5

- 2L 6 25 - - 0 18

2

- 24 2 27 29 0 - -
5

- 5 18 3 1 &4 18 - -
6 v 0 : 0 0 ,r,’f -

Figure 10. Reduced Cost Matrix-2

( N1 )\”L). '

Sub-problem 2 Operation (See Figures 11 and 12)

1)

2)

3)

k)

5)

Impose all necessary constraints.

Reduce matrix. Total cost reduced = 2. The bound for

sub-problem 2 = 32 + 2 = 3k.
Calculate Max Gk 1. = (Cl’Al) as the next branch node.
N
a1 it 9
all j

A%

33

For sub-problem 4 (P1,C1), delete row P1,C1 and column Cl,C2

- oo
set C2P2 = ®,

For sub=problem 5 (P1,C1), set P.C, = ® The bound for

sub-problem 5 = 34 + 5 = 39,



cbprib & ( Az, r) !

A1 B1 B2 C1 02 A1 B1 B2 C1 02
5
P1 - 32 5 0 23 P'1 - 32 5 0 23
0
By 27 | - - | 29 4 | B, |25 | - - | 2 I
4 O
- - ' - - 8
B2 6 0 18 B2 L 0] 1
! L L
- - ' C o} 2 0 - -
C1 2 29 (0] Dt 9
‘ : 0
C2 18 L 18 | - - C2 16 L 18 - -
v 2 0 0
‘Figure 11, Reduced Cost Matrix-3 . Figure 12, Reduced Cost Matrix-l4

Sub-problem 4 Operation (See Figures 13 and 14)

1) Impose all necessary constraints.,
2) Reduce matrix., Total cost reduced = 9. The bound for

sub-problem 4 - 34 + 8 = L2,

3) Select a sub-problem with least bound which is the sub-problem 3.

Al Bl BZ Ai Bl B2
B, | 25 - - B, | 21 - -
L
B - - - -
B, L B2 o
A L
c, 16 L 8 | - C, 12 0 L
0 (0]
Figure 13, Reduced Cost Figure 14, Reduced Cost

Matrix-5 Matrix-6



Sub-problem 3 Operation (See Figure 15)

1)

2)

3)

L)

Impose all necessary constraints.

C
alculate ek.,l.

Select Max ek = (AZ’B1) as the next branch node.

ol
a1 i * Y i
all j

For sub-problem 6 (A2,B1), delete row: A, Az, B, and
column: Az, B1, B2, set B2A1 = @,
For sub-problem 7 (Az’Bl)T set A,B, = =
The bound for sub-problem 7: = 37 + 2 = 39.

P1 P2 A1 A2 Bl B2 C1 C2

(0] [o]
- - 0 29 32 5 o 23
- 14 - - 27 6 2 | 18
2
- - - - 0 25 27 3
o _ 0
- 0 27 0 - - 29 b
0]
- 19 6 25 - - 0] 18
0]
- 19 2 27 29 0 - -
(o)

- o | 18 3 b 18 - -

Figure 15. Reduced Cost Matrix-7
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Sub-problem 6 Operation (See Figure 15)

1)

2) .

3)

4)

Impose all necessary constraints,
Calculat . Select =
alculate ek.,l. elect Max ek,,l. (CZ’PZ) as the next

i’ 3 _ .1
branch node. all %
all j

For sub-problem 8 (CZ’PZ)’ delete row: C,, C,, P, and

o y . ™
column: Cz, P2, P1 set P1C1 = @,
For sub-problem 9 (C2,P2), set C2P2 = ®,

The bound for sub-problem 9 = 37 + 19 = 56.

P, P, A C, C,
0 0

P, - - 0 o | 23

P, - - = - -
18

B2 - 21 - (6] 18

(6]
c, - 19 0 - -
19
c, - o | 16| - -

Figure 16, Reduced;Cost Matrix-8

Sub~problem 8 Operation (See Figure 17)

1)
2)

3)

AL C
Impose all necessary constréints, Py o | -
Reduce matrix, Total cost reduced =0, B o o
The bound for sub-problem 8 = 37. 2
Choqse PiA1 and B201 to form a tour. Figure 17. Regggid

Matrix-9
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Since the bounds of'all other sub-problems are greater than
the cost of tour in the sub-problem 8, we reach the optimal

solution of this example.

The decision tree of this example is shown in Figure 18. The logic flow

chart for this algorithm using the modification of Little's branch and

bound method is shown in Figure*ﬁ9.using_branching strategy (2). The

function of the variousiboxes in this figure are explained further below:

1)

2)

3)

4)

5)

6)

7)

8)

Read in the coordinates for all lines and ports.

Calculate distances for productive lines and for non-
productive lines.

Calculate the sum of all productive lines K and then set the
cost entries in matrix C for all productive lines equal to‘
infinity. Delete P, row (ending port) and P, column
(starting port).

Set Z (the cost of the best tour so far) to infinity, and
number the node $¥as 1 for all tours.

Reduce matrix C. Set bO = sum of reducing §onstants.

Set W(X) (the lower bound on node X) = bo.

Choose link (Ki’Lj) (line K, end i to line L, end j, where
K=1,2,00e,N; L =1,2,00.,N; i =1,2;J=1,2; KZL) ==

called node Y -~ to branch to, so that GK [ o is the largest
L,

N
of all the penalties.

Branch to the exclusive node Y and set its.bound

W(Y) = W(X) + SK',L'.
1]
Branch to Y, delete row K./, K., L, and column K,, L., L./,
1 1 J 1 J J
where i’ = 3-i and j, = 3-j. Place infinities in the matrix C

to prevent subloops from being formed. Reduce the matrix C
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Figure 19, The Logic Flow Chart of the Algorithm for

Ship Routing Problem Using the

Modification of Little's Branch and
Bound Method
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9)

10)

11)

12)

13)

1k)

15)

Lo

and find b the sum of the reducing constant. Set the bound

Y’
on node Y as W(Y) = W(X) + by.

If all lines have been traversed, a tour has been obtained,
go to (10). Otherwise, go to (12).

If the cost of this tour W(Y) is less than ZO’ go to (11).
Otherwise, go to (12).

Record the new tour and update ZO. Go to (12).

Select the next node X from which to branch, as that node
with the lowest bound W(X).

If all the bounds are greater than ZO’ the branching is
completed, the stored tour is optimal, go to (14); otherwise,
continue to (15).

Add the K value to ZO and stop.

The matrix C must be updated and set up to correspond to node
X as follows. Copy the original cost matrix into thematrix C.
Find T = Z(Ki,Lj), going from the top of tree to node X. For
each such link (Ki’Lj)’ delete row Ki/, Ki’ Lj and column Ki’
Lj’ le of the matrix C, and set infinities into the
appropriate cells in the matrix C to prevent subloops. For
each exclusive node in the chain from the top of the tree to
node X, set the corresponding element in the matrix C to

infinity. Reduce the matrix C and set a new bound on X as

W(X) = T + the sum of the reducing constants. Go to step (6).

Programmed Algorithm

The algorithm for the single-ship through single-prospect routing

problem using the modification of Little's sequential tour-building
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o
programmed in the FORTRAN IV lafiguage. Two separated programs were
coded for strategy (2) of this algorithm, which branches a sub-problem
from the "free" node nearest to the present node, proceeding upwards in
the tree. The first version program of the strategy (2) uses N of
N by N arrays to store the information needed at each branching point so
that the branches that have been searched can be thrown away. The
second version program of the strategy (2) uses only one N by N array
and two other one-dimensional arrays to store the information needed.
The information is packed when it is stored and unpacked when it is
retrieved, in these two one-dimensional arrays. In addition, one
program was coded for strategy (1) which branches a sub-problem from the
"free" node with least bound. The procedure to store the information
needed in this program is the same as the second version program on the
strategy (2).
A comparison of execution times and storage requirements on the

IBM 360/65 computer for these three programmed algorithms is shown in
Figure 20 and Table II. The second version prégram of strategy (2) is
utilized in this algorithm since it takes shorter computation time than

the strategy (1) and requires less core storage than the first version

of strategy (2).

Subtour Elimination Algorithm

for Ship Routing Problem

The idea of Eastman's subtour elimination method is based on the
fact that every solution to the traveling salesman problem is also a
feasible solution to the corresponding assignment problem. The optimal

solution to the assignment problem is therefore a lower bound on the
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Figure 20. A Comparison of Compuzation Times of Three Programmed

Algorithms

TABLE II

" A COMPARISON OF CORE STORAGE REQUIREMENTS AND COMPUTATION
TIMES OF THREE PROGRAMMED ALGORITHMS

Core

Time and | . Approximate Maximum
Storage Computation Storage of
Method Time (min.) | (K Bytes) Lines
N v
Version' 1 (2.05)" «
o 2 14
Stradégy (2) ~ . (0.001) 9
Version 2 (2.06)N .
. 2 kL
Strategy (2) (0.001) 6 1%
(2.08)" .
62 14

Stragegy (1)

(0.001)

——



43

solution of the traveling salesman problem; and, if the solution is
cyclic, it is also the optimal solution to the traveling salesman
problem, If the solution is not cyclic, then one or more subtours must
exist. Special methods are used to eliminate the subtours by joining
‘them to form one tour that passes through all the N points.

If one applies Eastman's subtour elimination method to the ship rout-
ing problem difficulties might arise from the fact that the assignment
problem procedure assumes the independence of each entry in cost matrix.
The modification of the assignment problem procedure to include the
dependence of entries in a cost matrix is beyond the scope of this
research. The authorf's research work in this approach is concentrated
on the development of a procedure which, when incorporated with the
assignment problem procedure, can be used to solve the ship routing
problem,

One attempt of this approach is to set the entries for each line
pair (i.e., AA,, AA, BB, BB, ..., etc.) in the original cost
matrix equal to infinity. It is hoped that with this kind of set-up,
the final optimal solution will include at least one entry out of each
line pair so that the feasibility of the solution is maintained. The
cost matrix of Example 1 in the previous section with this kind of

set-up is in Figure 21,



Py P, 1 Ay By B, €4 <,
P, - 0 11 4o 43 16 11 34
P, 0 - 30 11 16 35 35 16
Al 11 30 - 0 32 11 | 7 23
A, Lo 11 0 - 5 30 32 8
B, 43 16 32 5 - 0 3k 9
B2 16 35 11 30 0 - 5 23
C, 11 35 7 32 34 5 - 0
C, 34 16 23 8 9 23 0 -
Figure 21, The Cost Matrix of Example 1 with Special

Set-Up for Line Pair
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Unfortunately, it can be shown that both entries of a line pair can

Description of the Algorithm

row where the line pair is. located.

discussed in the following section.

included in the final optimal solution.

" be forced away, and hence none of the entries on a line pair will be
This situation will occur when
some zeroeé are generated in a later iteration in the same column or

A more effective proéedure to

explicitly impose the sensitibility constraints of the problem are

This algorithm starts with an original cost matrix C which has
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2(N+1) by 2(N+1) elements in it. All diagonal elements of this matrix
are set to infinity. The cost CKi,L. is interpreted as the cost of
traveling from line K, end i to lineJL, end j. The cost matrix C is
then restructured as C/, containing only (N+1) by (N+1) elements, by
selecting the minimum cost from the four combinations of each two line

pair, i.e.,

Min. C for K

1,2,.0,,N+1

1,2,00.,N+1 K £ L

i=1,2 L
j=1,2

The purpose of restructuring the cost matrix C to the cost matrix C’ is
to definitely include the productive line in the final solution
"implicitly". The algorithm then determines the optimal solution
utilizing the cost matrix C,. If the solution to the assignment problem
is a tour, then this is the optimal solution of the ship routing problem.
If the solution to the assignment problem is not a tour, then it must
consist of several

1)  subtour lines and/or

2) overlapping linkages.

For these cases special procedures are developed to eliminate the sub-
tour lines and overlapping linkages.

Example 4-1 from the previous section is used to illustrate this
procedure., Figure 22 shows the reduced cost matrix c’ of this example,
The letter on the top-left corner of each cost cell indicates the end
points of a seismic line where the minimum cost is chosen. For instance,
in AB cell, 21 means the 5 is the cost of traveling from line A, end 2

to line B, end 1, which is the smallest among the four combinations of

AB pair.
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A B c
] 12 I
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" 16 ]
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Figure 22, The Reduceq Cost

Matrix C of
Example 4-1

The solution of assignment problem for the cost matrix ¢’ is shown

‘below with one subtour line and one overlapping linkage.

PA

AP
BC

CB

 SUBTOUR LINES

* OVERLAPPING LINKAGES



L7

The procedure of eliminating subtour lines and the procedure of
eliminating overlapping linkages is discussed in detail in the

following two sub-sections.

The Procedure of Eliminating

Subtour Lines

To eliminate a subtour, Eastman [20] chose one of the subtours
having minimum number of linkages, and created a set of new problems
for eliminating linkages from subtour., Bellmore and Malone [8]
summarized Eastman's approach into the following statement:

The elimination of any given subtour S of length K

can be accomplished by impoging the constraint
Z(i,j)ES/ Xijs K-1, where S 1is the ordered-pair

representation of S,
Bellmore and Malone [8] extended Eastman's subtour elimination method to
a more effective way. Their extension is summarized in the
following statement:
The elimination of any given subtour S of length K

can be accomplished by imposing the constraint
L .. Z.=X.,2 1, where S is the set of cities on the
i€S Tj€s i

subtour, and S is the complement of S.
Garfinkel [23] develops a branching scheme for partitioning the feasible
set which has proved to be better than Bellmore and Malone's method
in computation times. Therefore, in this research, Garfinkel's method
is used to eliminate subtour linkages. Garfinkel's method, which'is
based on vertex partition, has been extended in this dissertation to a
method which can be used to partition edge, The detail and proof of
optimality of this method will be discussed in Chapter V. We will

briefly review Garfinkel's method [23) as follows.
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For a graph ek - (V,EK), the subset of tours at VK of the
enumeration tree is denoted by SK, To separate SK, choose any vertex
set 8 € V (there exist aF least two), which corresponds to a subtour.
If © = {il’ seey iP} and 6 is its complement, we impose the constraint
Ziee Zjee xij 2 1 by separating Sg into P subsets. Each subset cor-

. K
responds to a graph having some of the edges of E deleted. For an

arbitrary vertex i€8, define:
{(i,5)|5€0}  ana 8, = {(i,3)|;€8)

*
Then the edge sets corresponding to the separation SK are:

X _ %9

11 1
K

Ei = EK - 6.’ ™~ ewse ™ e/ - e
2 i i i

Garfinkel's theorem [23] then states:
. . K
Every tour t that is contained in G, = (V, E 1s
contained in exactly one of the graphs Q i (V E
J=1 '..,P.

Garfinkel's method can now be, used to eliminate the subtour lines.

In the previous Example 4-1, suppose the solution of the assignment is:

PA —— PA

o 1™
AP —— AP,
BC —— B,
CB —— CJB,

The subtour linkage are A2P2 & P A and B2C1 & C B The general

procedure of finding a partition subset in order to eliminate the

subtour is stated as follows:
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1) Select a subtour line with minimal length (in this case,
suppose we select P and A). Form ei and 9; as described
previously in Garfinkel's method. (In this case, szz{(PA)};
e; = {(eB),(PC)}; .8, = {(ap)}; a& = {(aB),(ac)1.)

2) For each ei and 9;, assign to it its end point index.

(In this case, assume the end point index for PA is 11,

PB is 12, PC is 11, AP is 22, AB is 21, AC is 11, then

6p = {(PA))]

8, = {(p,B,),(PC)]
8, = {(Azpz)}

e; = {(aB),(ac)]} 2

3) Form the partition subset as described by Garfinkel.

(In this case, .EP =FE - ep

E =E - Bp =8

A .)

A

The decision tree diagram for this example with above procedure is

shown in Figure 23.

CURRENT PROBLEM

PIAI-"Q P Ba= R Cj= AR, = 00

SUB-PROBLEM SUB-PROBLEM
No.1l No. 2
Figure 23. The Decision Tree for a ?artition

Subset of Subtour Lines

.



50

The Procedure of Eliminating

Overlapping Linkages

In the exercise of this algorithm, an overlapping linkage will
occur at the end point where a linkage is entered and another linkage
is exited at same time. For example, if the solution of assignment

problem of the previous Example k-1 is:

P|. .\\ A'
PA —— Fﬂ‘Al ‘NQ:::7--1\2
OR | .
GRAPHICALLY Cz By

BC — B,C;

CZ:’

B,
P,

Overlapping linkages occur at the end point of A1 and Bl' There are
two ways to break the overlapping linkages at the end point of Ai and

B,, i.e., either A1B

11 will not be in the final solution or PlAl and B1C2

1 .
will not be in the final solutiqnff The debision tree diagram for this
example is shown in Figure 2k.
The general procedure for eiiminating an overlapping linkage can be
stated as thevfollowéz
1) Select the subtour with minimum length which contains at

least one overlapping linkage (there may be only one subtour

in the solution of an assignment problem).
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2) Find the overlapping linkage in this subtour,
3) Find a mutually exclusive subset for these overlapping
linkages that can be used to branch the current problem into

more sub-problems.,

CURRENT PROBLEM

P|A| = B| C2=OO

SUB-PROBLEM
No. 1

SUB-PROBLEM
No. 2

Figure 24. The Decision Tree for Partition Subset of
Overlapping Linkages

The algdorithm developed to eliminate a subtour line‘and/or an
.overlapping #inkage for any unsearched sub-problem can now be summarized
as the follows:

_‘l) Consider the solutién of the current assignment problem. If
there exists at least one overlapping_linkage.in the solufion,
go to step (2). If no overlappiﬁg linkages exist but at least
one subtour line is in‘the solution, go to steé (3).

If there exist no overlapping linkages and no subtour lines,
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a tour is found. Store the cost and the linkages of this tour
and continue to next unsearched suﬁ-problem with least bound.

2) Branch the current problem into more sub-problems by using
the procedure of eliminating overlapping linkages, and then
continue to next unsearched sub-problem with least bound.

3) Branch the current problem into more sub-problems by using
the procedure of eliminating subtour lines, and then
continue to next unsearched sub-problem with least bound.

A logic flow chart of this algorithm using the modification of subtour

elimination method is shown in Figure 25.

Programmed Algorithm

The algorithm for the single-ship through single-prospect routing
problem using the modification of subtour elimination method was
programmed in the FORTRAN IV language. The programmed instructions
implement the theory presented in the preceding section.

The algorithm requires a computer memory of approximately 82 K
bytes for a lk-line configuration. The time required to obtain the
optimal path through a N-line prospect configuration is approximately
(2.92)N(0.001) minutes when executed on the IBM 360/65 computer. Since
the execution time increases exponentially as the number of lines
increases, it is found that this algorithm is not an effective one for
solving a large scale ship routing problem. A comparison of this

algorithm with other algorithms is discussed in Chapter VII,
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TOUR 7
FIND PARTITION SUBSET FIND PARTITION SUBSET
FOR SUBTOUR LINES FOR OVERLAPPING
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Figure 25. The Logic Flow Chart of the Algorithm
' for Ship Routing Problem Using the
Modification of Subtour Elimination

Method



CHAPTER V

ALGORITHM FOR THE SINGLE-SHIP THROUGH
SINGLE-PROSPECT PROBLEM USING A

GRAPH THEORETIC APPROACH

The ship routing problem of finding the shortest route starting
from port P1, traversing all lines and returning to port P2 is similar
to findiﬁg the shortest Hamiltonian chain (SCH) of a link-weighted
graph. A Hamiltonian chain (HC) is defined as a line passing through
every vertex of the graph exactly once. If the link joining the two end
vertices of a HC is added, the resulting tour is called a Hamiltonian
circuit.

It had been observed by Obruca [47] that the majority of lines
appearing in a shortest spanning tree for any network also appear in an
optimal solution to the corresponding traveling salesman problem.
Christofides [10] used the same idea to develop an algorithm that finds
a shortest Hamiltonian chain of a graph. 1In this dissertation, it is
proved that the Christofides' algorithm is ineffective because the
partition of a feasible subset is not mutually exclusive. A better
procedure has been developed and proved to be optimal. This procedure
vis then modified and applied to the ship routing of marine seismic

mapping operations.

5k
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Construction of Shortest Spanning Tree

There are two well known methods that can be used to construct the
shortest spanning tree of a graph: Theée.are”Prim'S"method'ESl]vand
Kruskal's method [38]. Since the Kruskal's method fits the requirement
for constructing a '"conditional shortest spanning tree" (which will be
discussed later), Kruskal's method and the Seppanen's [58] programmed
algorithm are summarized below.

Kruskal's method [38] starts with an original cost matrix C, and
first sorts all edges into ascending numerical order. If the cost
matrix C is symmetric, then only upper right triangle of the matrix need
to be considered. The procedure generates a tree B&*iﬁéIﬁdihg the
shortest edge which does not form loops with the edges already in the
tree. This step is performed as many times as necessary until all
edges in the list are exhausted. The spanning tree generated by this
procedure has a minimum cost.

Seppanen [58] gives an efficient computer program for Kruskal's
algorithm. The main concept of this algorithm is described briefly as
follows: At each stage of the algorithm, one ‘édge ‘at:a‘time is
considered from rest list of edges, wherebyi-one of four possible
conditions will arise. If neither of the vertices is included in a
tree, this edge is taken as new tree and its vertices numbered by an
incremented component number. If one vertex is in a tree, the edge will
be added to this tree. If the two vertices are in two different trees,
these will be combined into a single tree by renumbering the vertices of
the other component. Finally, if both vertices are in the same tree,

the edge completes a fundamental cycle of the graph with respect to the
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spanning tree and consequently will not be considered further. At the
end, the indices of edges in the spanning tree are stored in an array.
The procedure will generate a shortest spanning tree of a graph.

The Seppanen's shortest spanning tree computer program, originally
coded in the ALGOL language, is re-coded into the FORTRAN IV language

with modifications for solving the ship routing problem.

A Review and Analysis of Christofides' Method

of Finding a Shortest Hamiltonian Chain

Christofides' method [10] starts with the original cost matrix C
in which all diagonal elements are set to infinity. Then the method
uses Kruskal's [38] algorithm to find a shortest spanning tree. Within
the solution of shortest spanning tree, if the starting and ending
vertices have degree of 1and: all other vertices have degree of 2, then the
problem is solved. Otherwise, those vertices with degree greater than 2
are candidates for branching. Since at least one of the edges
associated with such a vertex must be absent from the final solution,
Christofides selects and branches on the vertex with highest degree
(> 2). The Christofides' algorithm can be summarized as follows:
Step 1:’ Find a shortest spanning tree for cost matrix Cij'
Obtain cost of shortest spanning tree (CSST) which is
the lower bound for the length of shortest Hamiltonian
chain, Go to Step 2.

Step 2: If all the vertices have degree of 2 except the starting
and ending vertex have degree 1, go to Step 3. Otherwise,
select the vertices have: degree 1, go to Step 3. Otherwise,

with it (say m), and branch m sub-problems from the
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current problem by excluding each of these m edges one at
a time from the initial problem. Go to Step 3.
Step 3: If the bound for an existing shortest Hamiltonian chain is
vless than the bound for all other unsearched sub-problems,
stop. Otherwise, select the sub-problem with least bound
and go to Step 1.
An example of this procedure from Christofides' [10] is shown in

Figure 26 through Figure 28,

| 2
3
&
q .
S o | S 4
(a) T(A) COST:22  (b) TB) COST: 23(OPTIMAL)
| 2 o 2
. 3 o 3
6 ' 6<
4 | - 4
5 5
(c) T*(C)COST:24 *  (d) T*(D)COST: 25

Figure 26. The Shortest Spanning Tree



23 24( C )

HC NOT A HC

OPTIMAL

58

(2,5)

20
HC

Figure 27. The Decision Tree Search
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Computational experience with this algorithm has not been:
reported by Christofides. However, in this dissertation, a computer
program based on this algorithm to solve the ship routing problem has
been coded and tested. The results on execution time are not
encouraging. The weakness of this algorithm is that the branching
strategy does not separate the solution spaces into mutually exclusive
subsets. The above example will be used to illustrate this point.

According to the spanning tree in Figure 26(c), there are a total
of eight possible combinations for generating sub-problems from the

three edges associated with vertex 2, namely:

Combination
Index
(2—5)I 1
(2-6)In ?
(2_5)Out 2
(1-2)In
(2-5)In 3
(2—6)Out
(Z-S)Out &
(2-5)In 5
(2-6)In
(Z_S)Out 6
(1'2)0ut
(2=-5)In 7
(2-6)Out
(Z_S)Out‘ 8

where (1—2)In means edge 1-2 will be included in the new sub-problem;
(1—2)0ut means edge 1-2 will not be included in the new sub=-problem.
Using Christofides' algorithm, three sub-~problems are generated and

their partitions are:



Problem D (2-5 = ®) This includes the sub-=-problems with combination
index {2, &, 6, 8}.

Problem C (2-6 = ®) This includes the sub-problems with combination
in&ex {3, Lk, 7, 8}.

Problem B (1-2 = ®): This includes the sub-problems with combination

index {5, 6, 7, 8}.
It is obvious that the partition for each sub=-problem is not

mutually exclusive and hence, the procedure may not be efficient.

Shortest Hamiltonian Chain Algorithm

for the Ship Routing Problem

An Extension of Garfinkel's Method of

Partitioning a Feasible Subset

Garfinkel's method for partitioning a feasible subset deééribed
in the previous chapter is based upon the discrimination of vertices.
In order to apply this method to branch the solution from a shortest
spanning tree, we have to extend this procedure from one of discrimi-
nating vertices to a procedure of discriminating edges. In other
words, instead of partitioning a vertex set, an edge set will be
partitioned to generate mutually exclusive sub-problems. A theorem
which is similar to Garfinkel's is derived. It is proved that the
optimal solution will fall in one of the subsets obtained via the
partitioning of the edge set.

For a graph GK = (V,EK), form a shortest spanning tree for this
graph. Let an edge set of the tree be ET° Choose any vertex i which

has degree of more than two in the tree (there exists at least one if

60
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the graph is not a Hamiltonian chain).

Let 8= {1,000 «oes 1 } (5-1)

E j = 1
where lij € T J

For an arbitrary edge lij €8, define

D
i}

{1ij |1ij €8} £E, (5-2)

D
I}

B B A E
{113‘ ij e} € C
where E. is the edge set of an optimal Hamiltonian chain.

C

%
Then the edge sets corresponding to the separation SK are:

K
Ei1 = Tp - 911
K ’
E, =T.®6, -8,
12 E 11 12
K ’ ’ ’
E; =T.@®6 @6 ...060 -8 (5-3)
1P E 11 12 1Pm1 1P

where TE is the total edge in the matrix C and the (®) sign means eip is
definitely included in the sub-problem.

We define a shortest spanning tree with this property as a
"conditional shortest spanning tree". A detailed discussion of "
"conditional shortest spanning tree'" will be presented in the next
section. We can now state the modified theorem of Garfinkel's Lemma 2
[23]}as follows:

Every Hamiltonian chain that is contained in GK=(V,EK) is

. . K .
contained in exactly one of the graphs Gij=(V,E§ ), j=1,

P
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Proof:

Let EC be the edge set of the optimal Hamiltonian chain. Suppose
/ _ c K K -
that Ecﬂ ei #%, then from (5-3), E.SE’ and ECZ,EL, j=2, cee, P.

J
ne' - ne’ = ]
If E, ei1 % and E, eil,é ®, the ECE Eil, since Ecn eil;é 3. It

K . .
follows that E CE. and E.ZE. , J#2. By the same reasoning, for
Cc i, C i,
. 4 . ’ K
2&rC p, if Ecﬂ 6, = ¢, j=1, ..o, r-1, and E.N eir;é &, then Ec_g_Eir

K J
and ECEEi,’ ifr.

This iew algorithm for finding a shortest Hamiltonian chain can be

summarized as follows:

Step 1: Form a shortest spanning tree for the problem and calcu-
late the lower bound. If the tree forms a Hamiltonian
chain, go to Step 2. Otherwise, select vertex i which
has maximum number of edges P associated with it. Branch
this problem to P sub-problems by using equation (5-3)
above. Go to Step 2.

Step 2: If the lower bound for all the sub-problems are greater
than the lower bound of the Hamiltonian chain, stop.
Otherwise, select the problem with least lower bound and
then go to Step 1.

We will use this'new procedure to solve the Christofides' example.

If we select vertex 2 to form an edge set, the 0 = {(2,1),(2,6),(2,5)]}

*
and the set SK is determined from:

K

E, =T, - (2,1)

21 E

E12{6 - T, @ (2,1) - (2,6)

E‘2< - 1, @ (2,1) @ (2,6) - (2,5)
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The tree is shown in Figure 29,

HC NOT A HC HC

OPTIMAL

Figure 29. The Decision Tree Search

Although for this small problem the computation work of this pro-
cedure is the same aé in the Christofides' method, for a large problem
it results in a faster convergence to the optimal solution. This
conclusion may be verified by comparing the partitioned sub-problems
generated from this procedure with thdse generated from Christofides'
method. Using the same cdmbinat;on index, the partitions of the sub-

problems are:

Problem B (2-1=®): This includes the sub-problems with combination
index {5, 6, 7, 8}.
Problem C (1-2=0.and 2-6=%): This includes the sub-problems with

combination index {3, L3,
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Problem D (1-2-0 and 2-6=0 and 2-5=%): This includes the sub-problems
with combination index {2}.
This procedure is therefore more effective than the Christofides'

method because all partitions are mutually exclusive.

Description of the Algorithm

A "conditional shortest spanning tree'" will now be defined. Given

a set of edges E of a graph, and a subset of edges E, where ES €E, find

S
a shortest spanning tree which will definitely include ES in the final
‘solution., The shortest spanning tree resulting is called a
""conditional shortest spanning tree'!''. The procedure for finding a
"conditional shortest spanning tree' is the same as the procedure of
finding shortest spanning tree, except the entries of the cost matrix

of all the edges in subset E_ have to be pre=set to zero. Therefore,

S

when Kruskal's method is used, all the edges in E_, will be on the top

S
of ascending list and hence, will always be in»the final solution.
We will describe a theorem of Christofides' [10] before presenting
the ship routing algorithm,
Theorem: Let C = [Cij] be the link-cost matrix of the griginal
graph G and let K be a large positive number greater
than the cost of any Hamiltonian chain. Then the

solution of shortest spanning tree with the link-cost:

/
matrix C , wheres
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for all j;éil or i

’ 2
C, . = C + K

12,3 1233

! =C, + K

3112 3112

! c 2K for i and j=1i ;

. = . . Lor =

i,j i3 + _ or i and j=1i, or i,
c C f 11 i, j#i, or i
i, - i,J or a 1y 11 2

is the solution of shortest spanning tree in which the
degree of vertices i1 and i2 is one.

The application of the above theorem will help in forming a
shortest Hamiltonian chain which starts from i1 and ends at i2 or visa
versa. The algorithm for the ship routing problem using graph
theoretic approach can now be described. This algorithm combines the
follo&ing four topics together.

1) The Kruskal's method to form a shortest spanning tree.

2) The "conditional shortest spanning tree" concept described

in this section.

3) The Christofides' theorem on a Hamiltonian chain for a

specific starting and ending point.
.4)  The extension of Garfinkel's method of partitioning feasible
sets., |
The algorithm can be stated as follows:

Step 1: Add a large positive number to the row and the column of

P1 and P2 in the original cost matrix. Go to Step 2.
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Step 2: Use the ''conditional shortest spanning tree!'" concept and
-use Kruskal's method to form a shortest spanning tree.

If the shortest spanning tree is a Hamiltonian chain,
go to Step 3. Otherwise, select the vertex of highest
degree, and use the extension of Garfinkel's method of
partitioning a feasible subset in order to branch the
current problem into sub-problems.

Step 3: If the cost of the best shortest Hamiltonian chain
generated is less than or equal to the cost of all
unsearched sub-problems, stop. Otherwise, select the
sub-problem with least cost and then go to Step 2.

The logical flow chart of this algorithm is shown in Figure 30.

Programmed Algorithm

The algorithm for the single-ship through single-prospect problem
using the modification of the shortést Hamiltonian'chain method was
programmed in the FORTRAN IV language. The programmed instructions
implement the theory presented in the preceding section.

The algorithm requires a computer memory of approximately 60 K
bytes for a 14-line configuration. The time required to obtain the
optimal path through a N-line prospect configuration is approximately
(2.67)N(O.001) minutes when executed on the IBM 360/65 computer.

Although the computation time required by this algorithm is
larger than the algorithm using the modification of Little's sequential

tour-building method, it is found that only this algorithm can solve

the problem with an unspecified starting point and ending point. An AN

example of this type of application is presented in Table III.

N
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Example 6-1:

68

Suppose that a process line manufactures four types of
gasoline: racing fuel, premium, regular, and leadfree.
In a fuel production cycle, the amount of non-production
time (i.e., setup time) depends on the sequence in which
these fuels are manufactured. The matrix of setup time
Sij might resemble the one shown in Table III. The
problem is to find an optimal production sequence for

three periods of the fuel production cycle.

TABLE III

THE MATRIX OF SETUP TIMES Sij

(1) (2) (3) (L)

Racing . (1) - 30 50 90
Premium (2) 40 - 20 80
Regular (3) 30 30 - 60
Leadfree (4) 20 15 10 -

If the assumption is made that a cyclic plan is always followed,

then the problem can be solved by the Little's sequential tour-building

method. The optimal sequence for each cycle is the same for each

period as shown in Figure 31 and the total cost is 370.
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C, =130 Cp =130 C3 =110

Figure 31. The Optimal Sequence Using Branch and
Bound Method

However, it is impractical to assume that the'production sequence
will_be cyclic. It is obvious that if the first sequence of the current
cycle maintains the same as the last sequence of the previous cycle, the
setup time between these two cycles can be eliminated. To solvs the
problem under this condition, only the algorithm based on the shortest
Hamiltonian chain can be appligd. The optimal sequence for each cycle
might be different (as shown in Figure 32) and the total cost is 230.
Therefore, the shortest Hamiltonian chain method will result in a cost
saving of 140 over branch and bound method.

The comparison of execution times and storage requirements between
this algorithm and the algorithms bassd on other approaches will be

discussed in Chapter VI,
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Figure 32. The Optimal Sequence Using Shortest
Hamiltonian Chain Method
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CHAPTER VI

SUMMARY OF ALGORITHMS FOR THE SINGLE-~-SHIP

THROUGH SINGLE-PROSPECT ROUTING PROBLEM
Summary of Algorithms

In the research work of Phase I, four algorithms were developed
using different approaches to solve the single-ship through single-
prospect problem. A total of seven separate computer programs imple-
menting the theories developed, were coded into the FORTRAN IV language
on the IBM 360/65 computer.

Table IV shows: 1) approximate computational times, 2) memory
storage requirements, 3) maximum number of lines in programmed
algorithm, and 4) total number of data sets tested. The most effective
algorithm developed to solve the single-ship through single-prospect
problem is the algorithm based upon the modification of Little's
sequential tour-building method. The computer program for this
algorithm requires only 60 K bytes to solve a 14—line‘configuration
problem while the Willard's algorithm [66] takes 150 K bytes to solve
a 10-line configuration problem. The computation time for this
algorithm is only slightly higher than Willard's.

A drawback of this algorithm is that for a small portion of
test problems with lines numbering over 13, the algorithm might

converge to optimal solution very slowly. This is a common obstacle
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THE COMPARISON OF PERFORMANCE FOR VARIOUS ALGORITHMS

TABLE IV

72

Comparison Approx.* | Memory Maximum | Total
Computat.| Storage’ |No. Line Number of
Method tems | Time Requirem. | In Porg. Data Set
(minutes){ (K Bytes) |Algorithm | Tested
. N
Conventional (1.8L4)
Dynamic (66) 152 8 6
Method (0.001)
Programming
Recursive N
(2.35)
Approach Search 62 8 6
(0.001)
Method
Strategy N
Modifi- (1) and | (2.09)
cation Version 62 14 12
(1) (0.001)
B
ranch of Strategy y
. (2) and (2.05)
)
And Little's Version 92 14 12
1 .001
Branch (1) (o )
Strategy
B B
ound & Bound 1 oy and | (2.07)Y
Version 62 14 12
Method (2) (0.001)
Approach
Modification of N
(2.92)
Subtour Elimination 60 14 5
(0.001)
Method
Graphic Theory Approach- N
(2.67)
Modification of Shortest 62 14 10
(0.001)
Hamiltonian Method

*

The approximate computation times for N lines is an average of
execution time of test problems which excluded the problems that
converge to optimal solution very slowly.
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faced by optimal seeking procedures for the combinatorial problems
having large numbers of entries. To overcome this potential difficulty,
an effective strategy for obtaining a heuristic solution has been
developed and incorporated into this algorithm. The detail of this

strategy is described in the next section.

Modification of Optimizing Algorithm

With Heuristic Solution Features

As mentioned previously, the difficulty faced.by optimal seeking
procedures for large scale combinatorial problems is that computation
time increases exponentially with the number of entries N. This fact
was experienced when the algorithms developed in the previous chapters
for the single-ship through single-prospect routing problem were tested.
For this reason, a heuristic solution approach is studied in this
dissertation. The purpose is to develop an effective heuristic solution
strétegy to incorporéte into the optimizing algorithm so that a near-
optimal solution can be obtained whenever the seeking of optimal

solution is difficult.

Bounds of the Problem

The quality of the lower bound is a vital factor in determining
the effectiveness of the branch and bound algorithm developed in the
previous two chapters. A good quality lower bound is also useful when
establishing a reference point against which one can compare the

results of heuristic solution methods.



Christofides [21] suggest three ways of calculating lower bounds

for traveling salesman problems. All are easy to calculate, and the

computation time is negligible when compared with the total solution

time of the traveling salesman problem. These three ways can be

described briefly as follows:

1)

2)

The Shortest Spanning Tree (SST)

The traveling salesman problem can be represented by a
graph of N nodes and N(N-1) possible links which completely
interconnect these nodes. A spanning tree of such a graph is
any set of (N-1) links that connect all of the N nodes. If
a link is removed from a Hamiltonian circuit, then the graph
becomes a Hamiltonian chain.‘ A Hamiltonian chain is a i
particular case of a spénning tree and is thus limited from
below by the length of the SST., Instead of removing any link
from Hamiltonian circuit, Christofides suggested removing the
longest one which will yield a better bound for the traveling
salesman problem. This implies the following equation for the

lower bound to the optimal traveling salesman tour.

BSST = CSST + Méx (djz)
J
where C

is the cost of the SST and d,_ is the cost between
SST ja ‘
the jth city and the second nearest of its neighboring cities.
The Assignment Problem (AP)

The traveling salesman problem can be treated as a
classical problem with the extra requirement that the solution

of assignment problem must be a tour., Thus the solution to

the assignment problem which does not necessarily yield a
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valid tour is a lower bound for the optimal traveling
salesman tour.
3) The Sum of the Shortest Link (SL)
In a graph that depicts a traveling salesman tour, two
links emanate .from each node. Thus, é valid lower bound for

the cost of the traveling salesman tour is the quantity

N
= 1/2 )
By, = 1/2 321 (dJ.1 + djz)

and d,_ are the shortest links and the next

where d. ;2

j1
shortest links that can emanafe from city j, fespéctively.
The factor 1/2 is necessary because'each city is coﬂsidefed
twice as '"go-to'" and "come-from',

Various experiments have been performed to test the‘ioﬁér bound;
suggested above by Christofides. Ten travéling salesman prbblems Witﬁ
10, 20, etc., up to 100 cities were randomly generated. The problems
were solved by 3~optimal method (a tour is defined to be 3-optimal if
no improvement can be obtained by replacing any r of its links by any
other set of r links). Bounds were calculated for the problem without
‘any attempts to improve them and the results as reported by Christofides
are shown in Figure 33,

The bounds from the SST are seen to be the best for all ten
problems with an average value of about ten per cent below the costs of
the conjectured optimal tour. Next best are the’bounds BSL and BAP’
with average values of 14 per cent and 19 per cent, respectively, below

the optimal tour costs. Based upon this result, the bounds generated by

the SST concept which are the tightest among the three lower bounds,
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will be used to develop an effective heuristic solution strategy that

can be incorporated into the optimizing algorithm.
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Figure 33. A Comparison of Lower Bounds in Ten
Traveling Salesman Problems from
Christofides' [21] Paper

Description of Optimizing Algorithm

With Heuristic Solution Feature

The optimizing algorithm with heuristic solution feature developed
in this section uses the lower bound generated from the shortest
spanning tree problem to stop the optimal seeking procedure and obtain

a near-optimal _s'olution when the computation time exceeds a specified
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limit., The algorithm can be stated as follows:
Step 1: Pre-determine an execution time limit of the program, As.
The limit As will be used to stop the optimal seeking pro-
cedure of the algorithm if the difference between the
best cost yielded and the cost of shortest spanning tree
(SST) is less than or equal to As. Calculate the cost
of SST of the problem, CB.
Step 2: Check the total execution time against the execution time
limit of the problem. If the total execution time is less
than the execution time limit, go to Step 4. Otherwise,
go to Step 3.

Step 3: If the best solution yielded C satisfy the following

T!
condition:.

- <
cT cb As

then indicate the last solution is an approximation and

stop. Otherwise, go to Step 4.
Step 4: Use the optimizing algorithm based upon the modification
of Little's sequential tour-building method to search
each sub-problem. If the cost of all unsearched sub-
problems is greater than or equal to the cost of the best
solution yielded so far, stop. Otherwise, find the next
problem to be searched and to to Step 2.

The optimizing algorithm with the heuristic solution feature for

the single-ship through single-prospect routing problem was programmed
in the FORTRAN IV language. The algorithm requires the same computer

storage of version (2)-strategy(2) of the algorithm using the
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modification of Little's sequential tour-building method. Several
prospect path-configurations have been used to test the computation
performance of the algorithm., It was found that the algorithm will
produce a good near-optimal solution whenever the conditions prohibit
convergence to the true optimal solution. This algorithm is used in

the further research of phase II.
Extension of the Algorithm

The programmed algorithm developed in the previous section will
select the optimal path or near-optimal path of the problem based upon
the distance matrix calculated from the coordinates of all seismic lines
and starting and ending ports. However, in practice, the operational
aspects of the ship which collecés the data on seismic lines must be
taken into consideration before an initial penalty matrix is generated.

When the recording ship is in port, the seismic cable is wound
on a reel aboard the ship. When collecting data on a line, this
cable must be laid out in the water and towed by the ship. The axis
of the cable must be aligned with the line being traversed as data is
being gathered. 1In order to cover the entire seismic line, a ship must
travel to a further position from the end point of the line so that when
the ship arrives at the end point, the cable will be in the ¢orrect
position. To lay out or pull in é cable requires approximately one
to three hours, depending on the cable length and the mechanical
equipment installed on the ship. With the cable aboard the ship,
an average ship can travel approximately ten to fifteen knots per hour.
If the cable is towed, thé ship's speed is reduced approximately

five knots per hour because of the severe drag. Since there is a
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difference in speeds with the cable in or not, a,decision must be
made on whether to leave the cable in the water and change line at the
slower speed or pull. in the cable and travel to the next line faster.
A break-even distance where it is equally advantageous to both alter-
natives can be calculated and used to make a favorable decision. To
take into consideration the operational aépects described above,
Willard [66] suggested that a penalty matrix represeﬁting travel time
is more appropriate than distance. Willard's method of. generating a

penalty matrix of travel time is summarized as follows:

Define: T.

in = time required to pull cable in.
Tout = time required to lay cable out.
S, = speed with cable in.

in

s = speed with cable out.

out
L = the length bf cable.

The calculation of the penalty'fdf changing lines from B1 to A1 is:

’
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1) Calculate new co-ordinates A; for A1

Distance from A1 to Ai = 2L

2) Calculate distance D from B_ to Ai

3) Calculate break-even travel distance D* by

D* = (T, + Tout)/[(l/sout) - /s, )]

4) If D < D* Time travel from B, to A

1 1= /8

out

2 Db Tiue )
D Time travel from B, to A, _([D/sin] + T 4T

also Time travel from P, to A. = [(distance from P, to Al)/S. ]
1 1 1 1 in

+ Tout )
Time travel from A, to P, = [(distance from A, to P2)/Sin]

+ T.
in

The capability of routing the ship by time suggested by Willard is
incorporated into the optimizing algorithm with the heuristic solution
feature described in the previous section. This additional information

will aid management in.effectively utilizing the ship. .



CHAPTER VII

ALGORITHMS FQOR LARGE SCALE SHIP

ROUTING PROBLEM

In today's marine seismic mapping operations, situations that
require a ship to cover multi-prospects or multi-ships to cover multi-
prospects are common. The number of feasible paths that can be selected
is much larger than the single-ship through single-prospect problem.

It is economically desirable that an effective algorithm be developed
for such large scale mapping operations. For this reason, the Phase I
research work of the previous chapters is extended in this chapter
which considers the study and development of algorithms for the single-
ship through multi-prospects problem and the multi-ships through multi-
prospects problem. The development of algorithms in this chapter is
concentrated on heuristic solution approaches.

The research work of Phase II is accomplished in two parts: 1) the
development of algorithms and 2) the development of a multi-purposes

computer program.
The Development of Algorithms

Algorithm for the Single-Ship Through

Multi-Prospects Problem

To develop an algorithm for the single-ship through multi-prospects

81
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problem, the location of each prospect and the lengths of the seismic
lines in each prospect have to be carefully examined. Figure 34 shows
three examples with different kinds of layout. In Example 1, the
locations of the propsects are apart from each other. The average
length of the seismic lines in each prospect is comparatively smaller
than the distance between the prospects. In Example 2, the locations
of the prospects are close to each other, and the average lengths of the
seismic lines in each prospect are also very similar.to each other. . In
Example 3, the locations of the prospects are also close to each other,
but the average length of the seismic lines of one prospect is compara-
tively larger than the average line lengths of the other two prospects.

Example 1 is a representative layout of current marine seismic
mapping operations. FEach prospect is far away from the other prospects
and the average lengths of the seismic lines in each prospect vary.
Therefore, the development of the algorithm for solving the single-ship
through multi-prospects problems will be concentrated on this type of
problem.

To route a ship through all the prospects like this type, the best
sequence of the prospects which start at P1 and end at P2 can be deter-
mined first before the routing process for each prospect begins. The
extent of variation from true optimal solution resulted from the pre-
determined sequenc? and can be minimized since the average length of
the seismic lines in each prospect: is much smaller than the distances
between the prospects.

To determine the best sequence of prospects, a center for each
prospect is first calculated by averaging the coordinates of the end

points of each line within a prospect. A second point is then created
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Figure 3L4.

-No.3

Examples of the Single-Ship Through
Multi-Prospects Problem

83



8L

at a position near the previous point and a line between these two
points is drawn. With this kind of formulation, the problem of routing
the sequence of four prospects is now the problem of routing a prospect
with four seismic lines, and the algorithm developed in Phase I can be
applied.

To route a single ship through N prospects, the procedure is
baéed’upon the idea that the best sequence can be pre-determined as
above. The algorithm developed for the singlé-ship through single-
prospect problem can then be repeatedly applied for N times until the
total problem is solved. However, the starting point and the ending
point for each iteration of a prospect routing is different and has to
be determined before application of the algorithm. For the first pros-
pect in the best sequence, the starting point is equal to the starting
port in the total problem. For the last pfospect in the best sequence,
the ending‘point is equal to the ending port in the total probiem. For
the prospect in the middle of the best sequence, the starting point is
gqual to the ending point of last seismic line of previous prospect
routing and the enqing point is equal to the center of the next prospect
in the best sequenée.

The algorithm developed for solving the single-ship through multi-
prospects problem can be summarized as follows:

Step 1: Determine the best sequence of all N prospects for

the ship to be routed by

1) Calculate the center of each prospect.

2) At each prospect, create a second point which
varies only slightly from the center of each

prospect.
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i

3) Join the line between the boint in 1) and 2).

4) Apply the best algorithm developed for the
single-ship through single-prospect problem to
obtain a best sequence of N prospects.

Step 2: If all N prospects have been routed, stop, Otherwise,
determine the starting point and the ending point for
the ith prospect in the sequence to be routed by
1) If i=1, the starting point is equal to P.

Otherwise, the starting point is equal to the
ending point of (i - 1)th prospect in the
sequence.

2) If i=N, the ending point is equal to Py.
Otherwise, the ending point is equal to the center
of the (i+1)th prospect in the sequence. Go to
Step 3.

Sfep 3: Apply the best algorithm developed for the single-
ship through single-prospect problem to obtain optimal
solution for the prospect, if possible. Obtain a
heuristic solution for the prospect if the optimal
solutioﬁ is not able to reach. Go to Step 2.

For the type of problem in Example 2 and Example 3 of Figure 3k,
the application of the procedure which pre-determines the sequence of
prospects of the problem before routing must be done very carefully. It
is possible that the sequence which would resulf in a true optimal
solution for the problem is different from the best sequence determined
by using the center of prospects. For this reason, it is strongly sug-

gested that if there exists a solution which appearé to be better
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instinctively, this solution should be routed and the result compared to
the result obtained from that nrocedure so that the most favorable
decision can be made.

The computer program for the above procedure, including the option
of user specified route, is a part of the multi-purposes computer

program which will be described in the next section of this chapter.

Algorithm for Multi-Ships Through

Multi-Prospects Problem

In routing multi-ships through multi-prospects, the characteristics
of each ship, such as tonnages, capacity, equipment, etc., might be
different, In addition, the locations of the prospects might have some
restrictions to certain ships due to the depth of ocean floor or the
current of the sea at avparticular time. For these reasons, it is not
practical to seek an optimal procedure which will include the above
described conditions for multi-ships through multi-prospects problem.

In this dissertation, amore flexible procedure which enables a user to
select certain prospects to be routed by a certain ship is developed.

The algorithm developed for solving the M ships through N prospects
problem can be described as follows:

1) A user will assign a selection of the N prospects to

be routed by a particular ship.

2) The algorithm developed for solviné the single-ship

through multi-prospects problem is used to route each
assignment for all ships.

3) If the result obtained is unsatisfactory, or if more data

are needed for comparison purposes, a user can revise the
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assignments and implement the process again.

The computer program for the above procedure is also a part of the

multi-purposes computer program which will.be described in the following

section.

T

The Development of a Multi-Purposes

Computer Program

A well documented multi~-purposes computer program which includ%ﬁ the

extension of the algorithm of Chapter VI and the procedures discussed in

the previous two sections of this chapter is given in this disserta-

tion.

1)

2)

3)

4)

5)

This program provides the following options for a user:

To route the single-ship through single-prospect problem
a) either by distance

b) or by time

To route the single-ship through multi-prospects problem
a) either by distance

b) or by time

To route the multi-ships through multi-prospects problem
a) either by distance

b) or by time

The program has a built-in capability for routing ships
through any user assigned path. The purpose of this
capability is to provide a user a way of comparing the
result obtained from his assigned route and the result
obtained from the algorithm.

The program has a built-in capability for overriding

any entries in the distance matrix.
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The computer program with the above options was coded into the
FORTRAN IV language. The ﬁrogram takes approximately 98 K bytes of
computer memory storage and is very fast in computation time. The pro-
gram can seolve the following sizes of problems:

1) It can foute an unlimited number of ships.

2) For each ship, it can solve five maximum prospects with

each‘prospect having up to 14 lines.

The capability of solving a larger size of problem can be achieved
very easily by increasing the dimensions in the ¢omputer program. = A
_1ogic flow chart of this muiti—purposes computer;program'is.éhown-in
Figure 35. A list of the source program with necessary documentation is
included in the Appendix.

A representative example of a seismic configuration with three
prospects.is shown in Figure 36, The above described multi-purposes
computer program is used to route this example by both distance and
time. In the case of routing the ship by distance, only the identifica-
tion of the route and the total distance of this route is printed. The
output indicates the solution type; i.e., optimal solution, near-optimal
solution, or solution of user assigned route. In addition, the identifi-
cation of the starting point and the ending point of each prospect
routing is indicated in the path information.

In the case of routing the ship by time, the output also includes
the position of the cable duringiegch line change that minimizes the
line change time. Mileages and times are printed for both the individual
path segment énd for the total prospect. The total times and distances
are divided into productive and non-productive portions. Productive

time is the time when the crew is actually collecting the seismic data,
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Figure 36. An Example of One Ship Through Three
Prospect Problem
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while non-productive time is the elapsed time going both to and from
prospects and changing lines within prospects. Although the identifi-
cation of the route is the information that is of primary importance,
the additional information will aid management in effectively utilizing
the ship. . The output of this example, routing by time, is shown in

Figure 37 through Figure 40.



O/Onc‘Nt‘cqooo-ctDt’.nuctttbttlontttOO'UOOOA#»U.-A

* .
. - -
® 1.5 IPS THHYUGH 2=p2SPLCTS KOUTINHL FRAOBLEM &
- . ' 1]
L] -
I R T Y Y P YT T

SHIP NiD: 1
FOLRIBUBINEAPEER AL ENILA NN PR CIEO IS RO REITEUEIREES

SHIP PARAMETERS
CADLE LENGTH = 1474 FEET

SCALE = 1.00 UNITS/MILE

HIP SPLED (CARLE GUT) = 6400 MPIE
SHIP SPTFD (CABLE (M) - 15.00 MPH

CABLE HANOLING TIML- (LAY CUT) = 1425 HOURS
CABLE MANLLING TIMO (PuLL IN) = 1.7% HOURS
T T T T T T LY T P T T v

PORT CAO-~URODIMATES

D5 EES & T gl X2

P 48. 89, 0. 28,

[ EETAAEANS L IR IE NI NS NSRS LRSS Rt

PRCSPECT NO: 1

-l XYl CooLX2L _Y2_
A 38. A0, 22. 70.
8 42, 8. 28. 66,
C 44, 14, 32. 624
0 2R, 0. 48, 68,
£

24, 76, 40, LY

IEFE YR RSN ER RIS AENARR SRR R AR R R LR L]

PROSPECT NG: 2

D § SRR ¢ 9 _%2. _X2_
A 38. 50. 28 . 38.
f 42, 5Cs 34. 34,
C 46, 48, 4Q. 34,
0 30. 50, 44 30.

AARNUN A AP AAGK AP H OB A I DNRE KA I AN TR 2SRk Qe kK

PROSPECT NO: 3

0.5 DU 4 O . VSR, 73
A 10. 62, 2e S5he
<] 12, a1, be 50.
< 1d. 60, 10. KN
0 4. €0, 13, 52,
8 2. 98, 149, 464

»

.
L4
.
L ]
.
.
L]
»
-
»
-
-
«
»
.
»
*
.
L]
*
»
»
[ ]
.
»
L]
L
L]
»
-
»
»
“
¥
-
*
L]
*
»
»
*
*
-
-
¥
>
.
.
.
*
-
.
E]
-
*
»
*
.
*
»
'Y
*
»
n
»
*
-
"
¥
RPN NR DI RNERAE IR EEONAN R IR NI I PN LRV ERE N

Figure 37. Output Data-1

LA AR S IR R R SR R N L BE AT BE-TE S 2 2R NE B AR IR N K R IR AR AR AR JECEE BN SEEE AR R B E BR-SE BE ERAR BE BE N B B X K IR NE SUEEIE 2 IR A K 2 F N B RN SR )



PENALTY MATRIX FOR PRUSPECT HO: 1

P2 Al A2 al B2 cl - c2 D1 D2 €1 €2
FEARRRANN RN R B ER LA ERZ IR A I IR R R R NSO HE REEE R AL P X IR A BUA RS L XN PR BRI D EH

P1L 1 1 3 1 3 2 3 2 2 3 3
Al * 4 kekx 3 1 3 1 “ 2 3 3 3
A2 * 3 3 kRE# 4 1 4 2 2 5 1 4
81 4 1 4 wRER 3 1 4 3 2 3 3
82 » 3 3 1 3 krkx 3 1 3 4 2 2
Cl »* 3 1 4 1 3 Ak 3 3 2 4 2
c2 * 3 3 2 4 1 3 AxxE 3 ‘ 3 -3 2
Ol » 4 2 2 3 3 3 3 Exxx 4 1 4
€2 * 3 2 5 2 4 3 3 4 krsx 5 2
ElL ¢ 4 3 1 3 2 4 3 1 5  hukg 4
E2 * 3 3 4 3 2 2 2 4 2 4 kxRN

NCTE: P2 1S AN ARTIFICAL ENDING PORT.

FRCSPECT NO: 1
AR R I R AR N AR KRR U RN AT KA RFER R PR R ROk

*x
* *
] OPT IMUP PATE INFCRMATION *
X *
» &
*  ERCH 10 CABLE MILES . LOWRS *
® . *
* Pl - 21 IN 12. 1. *
* o *
* Bl - 82 cutT . 18, 3, *
* . *
* B2 - A2 cuT 1. 1. .
x *
* A2 - Al outT .- 19, 3 *
* . L =
» Al - C1 cuT il .. 1. *
* ., o . | *
* €l - c2. . cur 17, 3. *
* . . M . *
* €2 - E2 - (s1V) g 12, 2. *
* . : *®
o E2 - El our 21, 4o *
. ’ : *
* €1 - D1 cut 8, 1. *
* . *
* 01 - D2 auT 23. 4, *
x *
* 02 - #2 IN 29. 3. *
* *
® . *
WRR D RER T ARk Rk ek koA kR ok Xox ok R Rk Rk RGR
* : *
» *
* BAURS HILES *
LJ ' &
» PRCOUCTIVE .16, 99. *
L - . . [
¥ NON=-PROGUCTIVE —fa -4 *
L : *
* TO 1AL S 22, 153, *
* *
* &*
**vtt**kt#%{ﬁ*t*fmt#t#*t#t#*0#&#4****#**#**‘#!

Figure 38. Output Data=-2



P2 Al A2 Bl B2 cl c2 D1 D2
‘*#it“tt##titl#t."‘i.l‘t‘.t“ti‘ttt.t*ttl’tt#tv"“t!t
PL* 1 2 3 2 3 2 3 2 3
Al # 3 ks 2 0 2 1 3 1 3
A2 ¥ 3 2 whex .3 1 3 2 2 3
BL* 3 ] 3 sosx 3 0 3 2 3
B2 » 3. i 3 wEkk 3 1 2 1
Cl » 4 3 0 3 kxi3 3 2 3
c2 » 4 2 3 1 3 Ak 3 [}
DL * 3 2 2 2 2 3 ke 4
D2 * & 3 3 1 3 0 4 wrex
NOTE: Pl IS AN ARTIFICAL STARTING PORT AND P2 IS AN ARTIFICAL EMNDING

PENALTY MATRIX FOR PRCSPECT NO: 2

PRASPECY NO:

2

EARE KRR BT RS R EERE R RN R R AR KRR TR AR AR RREy

.
*
*
»
*
* E
*
»
*
]
*

*
»
*
»
*
*
*
x
L ]
n
*
*
*
*
*
*
®
*
¥
*
*
»
L
*
*
»
»
*

RCN

#1 -
Al ~
A2 -
82 -
81 -
c1 -

c2 -

02

o1 -

PRODLCTIVE

OFTIMUM PATH INFORMATIGON

I0
Al
A2
82
Bl
cl
c2
D2
Dl

#3

CABLE

IN
ouT
cut
ouT
out

cur

ouT .

ouT

IN

NON-PROCUCT IVE

TOTAL

Ha

MILES

21.

Y-

18.
4a
19.
4
24,

21,

UgS

13,

—da

16,

4.

3.

M1LES

77

—-2ba

113.

Figure 39. Output Data-3

BRAEERAERAIEIEIILXRRRIRRTRRRRMR AR KRR BT NRE

FREEURERFINRF AL AA RN RR TSR RN AP RO R

"
*
*
*
*
*
*
*
*
x
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
®
*
x
*
*
*
*
*

PORT.

9k



PENALTY ﬁATRlX FOR PROSPECT NO: 3
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CHAPTER VIII
CONCLUSIONS AND RECOMMENDATIONS

This chapter includes a summary of how the research objectives set
forth in Chapter I were accomplished, a summary of the results, and

suggestions for future research.

—

Conclusions

The literature which relates to this research was surveyed exten-
sively and described in Chapter Ii of this dissertation. The research
work of this dissertation was done in two phéses. Phase I research work
concentrated on the development of algorithms, to select the minimum
cost route for the single-ship through single-prospect problem that
improve a previous algorithm developed by Willard (66) upon execution
times and/or memory storage requirements. Phase II research work con-
centrated on the extension of the results in Phase I to the development
of an algorithm for large scale seismic mapping operations which includes
the single-ship through multi-prospects problem and the multi-ships
through multi-prospects problem.

The research work of Phase I consisted of three sub-objectives.

The first sub—objectivé of the Phase I research work was to study the
applicability of the dynamic programming approach and develop
an improved algorithm for solving the single-ship through single~prospect

problem. Chapter III of this dissertation described the development of
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a new algorithm using a recursive search dynamic programming method.
This method starts with an initial feasible solution, At each stage, a
state variable one at a time is generated when it is needed. The
resulting solution is used to improve the initial solution until the
optimum solution is reached. This procedure is different from the con-
ventional dynamic programming method which is required to determine the
optimal Yalue of each deciéion variable for each feasible input state.
The comparisbn of this new algorithm with the Willard's algorithm [66]
shows that the computer memory storage requirement can be reduced with
a frade off of increasing computation time at about the same rate.

The second sub-objective of the Phase I research was to study the
applicability of the branch and bound approach, and to develop an
algorithm for solving the single-ship through sihgle—prospect problem.
Two methods, Little's sequential tour-building method and Eastman's
subtour elimination method, were studied. The development of two new
algorithms based>upon modifications of the above two methods are
described in Chapter IV of this dissertation. The algorithm using the
modification of Eastman's subtour elimination was shown to be ineffective
when applied to this particular problem. However, the algorithm using
the modification of Little's sequential tour-building method was shown
to be very effective in computation time and required only a small
amount of computer memory storage.

The third sub-objective of' the Phase I research was to study the
abplicability of the graph theoretic aéprdach and to develop an
algorithm for solving the single-ship through single-prospect problem.
Chapter V of this dissertation described the development of a néw

algorithm based upon a modification of the shortest Hamiltonian chain
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method. Although the algorithm developed is ineffective when compared
to the other algorithms, it does have other important applications such
as the machine sequence scheduling problem with unknown starting and
ending entries.

The comparison of execution time and storage requirement for all
algorithms dev;loped in the Phase I research work is described in
Chapter VI of this dissertation. Some modifications of the optimizing
algorithm to include heuristic solution features and other extensions to
include operational aspects of seismic fecording ships are also
described.

The objective of the Phase II research was to extend the results
of Phase I to develop a new algorithm for solving the single-ship
through multi-prospects problem and the multi-ships through multi-
prospects problem. Chapter VII of this dissertation describes the
development of a new algorithm for this type of problem, and described
the development of a multi-purposes computer program. An example and
the outputs of the multi-purposes computer program were also included.

The research results in this dissertation can‘be summarized as
follows:

1) Five algorithms were developed in the Phase I research

work. Seven separate computer programs were coded and tested.
The best algorithm developed to solve the single-ship |
through single-prospect problem is the algorithm based

upon the modification of Little's sequential tour-

building method. The computer program for this algo-

rithm takes only 60 K bytes to solve a 1li4-line configura—

tion problem while the Willard algorithm takes 250 K
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bytes to solve a 10-line configuration problem. The
computation time for this algorithm is only.slightly
higher than Willard's.

2)  An algorithm for solving the shortest Hamiltonian chain
problem was develobed in this dissertation, and proved
to be better than an existing algorithm in the current
literature. The algorithm developed can be applied to a
general machine sequerice schedulingrproﬁtem'withfunkﬁown
starting and ending entries.

3) An algorithm was developed in the Phase II research work
to solve both the single-ship through multi-prospects
problem and the multi-ships through multi-prospects
problem. A multi-purposes computer program was also
coded which will provide a user several varieties of

option.
Recommendations

There are three major areas for future research in the area of large
scale marine seismic mapping operations.

The multi-purposes compﬁter program developed in this dissertation
was coded in the FORTRAN IV language. Various amounts of computer
memory are required to use ‘this compufer program. Since many seismic
ships are equipped with small memory digital computers, it is highly
recommended that the computer program is re-coded into the Conversation
Program System (CPS) language. The CPS language could be PL/1 language
oriented, BASIC language oriented, or FORTRAN language oriented, The

CPS language will enable a user to transmit, possibly through a remote
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communication facility, the input data from the terminal on the ship to
a large memory computer on the mainland where the best route of a ship
is determined. Then the result can be dispatched back to the ship.
Another reason for re-coding the computer program into the CPS language
is that the decision of routing a large scale marine seismic mapping
operation might require the communication between the party manager
aboard ship and the office executive manager. The CPS language can
service this purpose.

The second area of research should be the modification of the pro-

cedure of calculating penalty matrix which is based upon the X and ¥
coordinates of gach line to calculation based upon the longitude and the
létitude of each line. Since the longitude and latitude are used for
navigational purposes, it is suggested that a subroute whiCh can convert
the input data of longitude and latitude directly into penalty matrix
shall be developed and included in the.multi-purposesicomputer program
in the future. |

The third area of research should be directed toward developing

algorithm that yields the optimal routing of the large scale ship mapping
problem. As mentioned in Chapter VII, a heuristic algorithm has been
developed in this dissertafion for this problem. Since the sequence of
prospect is predetermined before the routing process for each prospect
begins, the algorithm may not reach an optimal solution. If all the
prospects are apart from each other, an optimal solution is likely.
However, if all the prospects are close to each other, a ﬁon-optimal
(but near-optimal) solution is quite possible.

Although the primary result of this dissértation will be the

reduction of the managerial decision making difficulties involved in
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scheduling geophysical ships, the result can also be extended to the
solution of constrained traveling salesman problem and the machine

sequence scheduling problem.
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[aNeYs]

290

300
304
305

310

315
325

321
46
49

45
320

MULTI-PURPOSE'COHPUTER‘PRDGRAH FOR SHIP ROUTING PROBLEM

IMPLICIT INTEGER (A-V,Z)

REAL SORT,TMsSR,CABLE,SPIN,SPOUT,CABOUT,CABIN,SCALE

COMMON /ML/B(3415,2415,21/¥2/ LINF(2000), 1PROB(2000)

COMMON /V1/T1IKEY(15) yJJKEY(15) yKKKEY(15) 4 LLKEY(15)

COMMON /S1/MyMMyNyRySyBOUNC/S2/ MAXy ICOST yKCOSTs LK TB,GCOST,BCAST

COMMON /53/TM, SR

COMMON /RL/WX(5415,2)sWY{5,15,2)/R2/WXP(2) +WYP{2) /R3/XC(5,2),
YC(S542)/RG/XXPU542) s YYP( 5y 2)/R5/NL{S)PATH(5)

COMMON /R6/MAP ,CABLE 4 SPIN,SPCUT,CABOUT yCABIN,SCALE [P, 1S, IPP

COMMCN /R9/JOVER(5) ,OLL1S,7)40E1(5,7),0L2(547),0E2(5,7) yXDIST(5,7)

1PP=0 '

READ{5,290) My SCALE » TMy SR

FORMAT (110,3F10.3)

READ(5,300) [S,0PT

"FORMAT(2110)

DO 1000 1G=1,1S

READ(5:3C4)MAP,IP

FORMAT (2110)

[PP=IPP+IP
READ(5+3C5)CABLESPIN,SPOUT yCABCUT yCABIN
FORMAT(5F10,3) )
READ(5-310)HXP(1).WYP(I)-WXP(Z):WYP(Z'
FORMAT(4F10,3)

00 320 I=1,IPF

K=1

NLIT)=1
R:AD!S.BZS)HX(I.K.l).HY(I'Kol).HX(l.K,Z).HY(I.K.Zi.KBTA
FORMAT(4F10.3,1I10)

IF(KBTA«EQ.991GO TO 321

NLUI)=NL(I)+]

K=K+1

GO TO' 315

J=1
READ(5t40)JBTAQDL1(IIJ,IOEI(IIJ,'OLZ(IIJ"OEZ(IOJ,OXDIST(IIJ'
FORMAT(5110,F103)

IF(JBRTALEQ.99)GO TO 45

J=J+1

GO TO 46

JOVER({1)=4-1

CONTINUE

CALL OTPUTI(IG)

IFI{OPT 4EQ.2)GO TC 3000

XXP{1,1)=WXP(1)

YYP(ls1)=HYP(L1)"

IF(IP.EQ.1)GO TO 550

CALL SPATH

DO 500 KA=1,IP .

KAA=PATH (KA) "
IF{KALEQ.IPIGO TO S44

LINEL=NL(KAA)+]

KAl =KA+1

KG=PATH{KAL) v

XXP(KA,2)=XCI(KGy1)

YYP(KA2)=YC(KG,1)

GO TO 545
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544
545

500

550

3000
3501

2001

2002

2500

2000
1C00

XXP (KA »2)=HWXP(2)

YYP(KA,2)=WYP(2}

CALL MATRIX(KAA,KA)

CALL ROUTE(KAA.1l)

CALL OTPUT2(KAA,KA,1)
IF(KALEQ.IPIGO TO 500
I1=TIKEY(LINEL)-1
XXP{KAL,1)=WX{KAA,I1l,JJIKEY (LINE]1))
YYP({KALy 1) =WY(KAA,I1+JUKEY(LINEL))
CONT INUE

GO TO 1000

XXP( 1y 2)=UXP(2)

YYP(L,2)=WYP(2)

CALL MATRIX(1,1)

CALL ROUTE(1,1)

CALL OTPUTZ2(1,1,1)

GC TO 1000

REABUS5435CL){PATH(K) sK=1,IP)
FORMAT(10110)

DO 200C I=L.IP

READI542001)XXPUI41)aYYPII»1) o XXP(I #2)sYYP{I,2)
.FORMAT(4F10.3)

KAA=PATH(I)
LINES=NL(KAA)+]
00 2500 J=1,LINES

READ(5,20C2) IIKEY(J) yJIKEY (J) yKKKEY (J) s LLKEY (J)

FORMAT(415)

CONT INUE

CALL MATRIX{KAA,I)
CALL OTPUT2(KAA,:1,2)
CONTINUE

CONTINLUE

. STOP

END
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99

100

SUBROUTINE OTPUT1(KG)
IMPLICIT INTEGER (A-Vy1)
REAL SGRT-CABLEoSPINvSPOUTpCABOUT-CABINoSCALE
DIMENSION 2L (20)
COMMON /RL/WX(591592)9WY(541592)/R2/WXPL2) yWYP(2)/R3I/XC(5,:2),
1 YC(542) /R4/XXP(S5,2) sYYP(5,42)/R5/NL(5),PATH(5)
COMMON /R6/MAP,CABLE,SPIN,SPOUT ,CABOUT,CABIN,SCALE,IP,IS,IPP
DATA ZL/1FA41HBy1KHCy1HCy1FEy LHFy LHGy 1HHy LHIy 1hJy 1Ky LHL 4 LHM, 1HN
1 1HO s IHP y 1HQ » IHR y LHS s 1HT/

INT ROUTINE ~ COORDINATES AND PARAMETERS

WRITE( &€y99)
FORMAT (1H1.,/77/)
WRITE(6,100)

FORMAT (1H 14X, 43H*#***#**********#**#*********************x*****#

1)

~ WRITE(&,101)

101

102 FORMAT (1H 414Xs1H¥*y13,14H~ SHIPS THROUGH 124 26H~PROSPECTS ROUTING P

360

361

362

363

364

365

366

WRITE(Ey 101)
FORMAT. (1H 14Xy LH*y46Xy1H*)
ARITE(6+102)ISIPP

1RCBLEM,2H #*)

WwRITE(6,101)

WRITE(6,4101)

WRITE(6,100)

WRITE( 6, 303)KG

FORMAT(LH +//77/7+34X,8HSHIP NOQ:,13///)

IFIMAP.EQ.1)GO TG 754

WRITE( &, 3€0)

FORMAT (15X y 48 H% 3 35 fle A 3 o ke 3 o oo e e s ok s sl sk e e ofe ek ol e e s e e el deoe e ik )
WRITE(6,361)

CFORMAT( 15X, LH* y 46X, LH*)

WRITE(69361)

WRI TE(6,362) :

FORMAT{ 15X, LH*y 16Xs LSHSHIP PARAMETERS ;15X 1H*)

WRITE (64361)

WRITE (6,361)

KCABLE = CABLE

“WRITE (64363) KCABLE . '

FORMAT(15X, 1H*, 11X, 14HCABLE LENGTH = 4 I5, 5H FEET, 11X, LlH*)
WRITE (6y364) SCALE . . .
FORMAT(15X,y LH¥*y, 11X, BHSCALE = 4, F5.2, 1lH UMITS/MILE, 11X, 1H*)
WRITE (6,361) , '
WRITE (6,365) SPOUT v

FORMAT(L5X, LH*, 6X, 25HSHIP SPEED (CABLE OUT)
1 6X,y 1H*) :

WRITE (6,366) SPIN '
FURMAT (15X, LH*, 6X, 25HSHIP SPEED (CABLE IN)
1 6Xy 1H¥*)

WRITE (4+361)

y F5.2¢y 4H MPH,

sy F5.2, 4H MPH,
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367
368

754

155

760

767

299

1765
51

50

60

790

WRITE (6,367) CABOUT . : '
FORMAT(15X, 1H*, 2X, 32HCABLE HANDLING TIME (LAY OUT)

= 4y Fhe2y
1 9H HOURS *)
WRITE (6,368) CABIN
FORMAT{15X, lH¥*, 2X, 32HCABLE HANDLING TIME (PULL IN) = , F4,.,2,

1 9H HOURS *)

WRITE (64361)

WRITE (6,361)

WRITE (64360}

WRITE(6,361)

WRI TE(€E,361)

WRITE( &y 750)

FORMAT (15X s 1 H¥, 15X, 1 THPORT CO-OROINATES; 14X, LHX)

WRITE(64361)

WRITE(64361)

WRITE (54+755) .

FORMAT{15Xs lH¥*, 16X, 2HXLly 4X, 2HY1l, 8X, 2HX2, 4X, 2HY2, 6Xy LH%*)
WRITE (6,760)

FORMAT (1H+, 30X, 10H____ ____» 6Xy 10H____
WRITE(6,361) .

WRITE(O)TOETINXPLLIyHYPLL) yWXPL2)sWYP(2)
FORMAT(L15X, L1H*,y 5Xy LHPs 9Xs. Foe0y» 2Xs F4.0, 6Xy F4eOs 2Xy F&e 0y

1 5X. 1Hx*)

WRITE(6+361)

WRITE(64361) .

WRITE(6+360)

NG 50 I=1,IP

WRITE(6,y361)

WRITE(6+361)

WRITE{65299)1

FORMAT (15X 1H*, 16Xy 12ZHPROSPECT NO:2,13,15X,1H*)
WRITE(6:361)

WRITE( &y361)

WRITE(6,755)

WRITE(6,760)

WRITE(6,361)

LIMNEL=NL(I)

DO 51 K=1,LINEl

WRITE( 6,765)ZL (K}, NX(I,K 1)1WV(IoKp1)oHX(I,K12l WY (1 ¢Ky2)
FJRMAT(15X,1H*'5X.A119X FheDo2X9sF4a0y6X9Fbe 092Xy F4e095X)LH*)
CONTINCE ’
WRITE(Ey 261)

WRITE(6,361)

WRITE(6+360)

CONT INUE

SCALE THE CO-CRDINATES

D3 60 J=1,2 _

WXP (J) =WXP{J) /SCALE

WYP [ J)=WYP(J)/SCALE

CONT INUE

D0 7C I=1,IP

LINE2=NL ()

DO 70 J=1,LINE2

DO 70 K=1,2
WX(TodsK)=WX(IsdsK)/SCALE
WY (1,doK)=WY(I4J,K)/SCALE
CONT INUE

RE TURN

END
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51
100

25
20
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SUBROUTINE SPATH

IMPLICIT INTEGER (A-=V,2)

REAL SQRT :

COMMON /M1/8(3,1542915,2)/M2/1INF(2000),1PROB(2000)

COMMGN /VL/ TIKEY (15)  JUKEY (15) s KKKEY (15)yLLKEY{15)

COMMON /S1/MyMMyNyRsS+BCUND/S2/MAX, ICOST KCOST yLK,TB,GCCST, BCOST
COMMON /Rl/NX(5o1592)vN!(5115:2)/R2/NXP(2);“YP(Z)/R3/XC(592)0
1 YCU5+2) /R4/XXP(542)4YYP(542)/R5/NLUI5),PATHI5)

COMMON /R6/MAP4CABLE,SPIN, SPOUT yCABOUT 4CABIN,SCALE,IP,IS,IPP
IP1=1P+1

DC 1C I=1,IP

X_T=0.0

YT=0.0

LINEL=NL(I)

00 15 J=14LINE1

XT=XT+WX{1,J,1)+WX(I4J,2)

YT=YT+WY (I yd o 1) +WY (I ,J,2)

CONT INUE

INL=2%NL(])

XC{Ty1)=(XT/ZNL)

XC(I,2)=XClI,1)+1,

YCOI 1)=(YT/ZNL)

YC{Iy2)=YC(1,1)+1,

CONTINUE

DO 51 K=1,IP

WRITE(&,100)XC(Ks1)y YC(K,1)

FORMAT(LHO s ' XC=YC? 4y2F10.3)

Bllslslolel)=M

B(lyly2s1,2)=M
B(lslolyls2)=SORT((WXP(L)=WXP(2))%*2+(WYP(L)=WYP(2))*%2)+0.5
Bllels2s1y1)=B{1ly1l41l,1,2)

D0 20 1=1,IP

Il=1+1

D0 20 J=1,2

DO.20 K=1,1P

K1=K+1

DO 20 L=1,2

IF({I+EQeK)eANDs(J.EQ.L)) GO TO 25
BOLoILloJdsKLpL)=SCRT(OUIXCUI yJ)=XCUKyL)I¥%2)4((YC(I,J) =YC(K,L))*%x2))
1+0. 5 : ’

GO TO 20

BULyI1yJyKlylL)=M

CONTINUE

D0 35 I=1,1P

DO 35 J=1,2

Il=1+1 .
B(lololyIlsyJ)=SQRT({LWXP (1)=XC(TIyJ) ) k2)4((WYP(L)=YC (I,J))%%2))
1+0. 5
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BU1 11 9yJelsl)=B(LlylslyIlyJ) . .
Bllyle2s11eJ)=SQRTIU(WXP(2)=-XCUI»J))**2)+{(UYP(2)-YC(I,J))I*%2))
1+0.5 : :
Bllelledsle2)28(1l41:2+,114J)
35 CONTINUE
.D0 300 I=1.1IP1
DO 300 J=1,2 ' ‘
300 WRITE(&,400)({BLLsT9dsKyL)yL=14s2) oK=1,IP1)
400 FORMAT(1H ,2016) :
CALL ROUTE(IPL,2)
DO 50 I=1,1P
PATH( I )=KKKEY(I)-1
WRITE( 6420001 PATH(I)
200 FORMAT(1rO, ' I-PATH',2110)
50 CONTINUE
RETURN
END
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SUBROUTINE MATRIX{KAA,KA)}
IMPLICIT INTEGER (A-V,2)
- REAL SQRT, CHTlHEgBEDISTvS!DElySIOEZ'TANyCTNvOLINE1T!MEI
1 CABLE,SPIN, SPQUT, CABOUT » CABIN,SCALE
DIMENSION KL{15)
COMMON /M1/8B8(3,15,2+15,2)/M2/1INF(2000),IPROB(2000)
COMMCN /S1/MyMMyNyRyS»BOUND/S2/ MAX, ICOST yKCOST,LK,TB»GCOST,BCOST
COMMON ZR1/HWX{5915,2) yMY(5515,2)/R2/WXP(2) yWYP(2)/RI/XC(5,2)
1 - YC(S5y2)/R4/XXP(5+2)9YYP(542)/RE5/NL(5) PATH(S)
COMMON /R&6/MAP,CABLESPIN,SPQOUT yCABOUT yCABINsSCALE, [P, IS, IPP
COMMON /RT/X(1542)»Y(15,2)4XX(1592),YY(15,2)/R8/TAN(15),CTNI(L5),
1 CLINE(15), TIME(15),BEDIST
COMMON /R9/JOVER(S) +0OLLL{5,47),CEL(5,7), DL2(5!7)90E2‘517’QXDIST(5'7’
DATA KL/ 1HPy 1HAs 1HB y 1HCy1HD 9 1HE ¢ LHF ¢ LHG ¢ 1HH » 1HI ¢ 1HJ» 1HK y1HL 1 HM,
1 1HN/

e e ek ko el e e e e ok ek ol sl e ol ke o okl kool 3k ek o ek o o ok oo ok X 3ok **************
CALCULAT[CN OF NEW CO-ORCINATES
303 e e ol o ol ook Aok o s o 0 Ao o el e R A R ok e ok ook ok o ok ok ook ko
LINES=AL(KAA)
LINEL=LINES+1
DO 21 I=1,LINES
00 21 d=1,2
X{I o J) =WX{KAA,I,J)
Y(I:J)=WY{KAA,I,J)}
21 CONTINUE
XP1=XXP(KA,1)
YPL=YYP(KA,1}
XP2=XXP(KA,2)
YP2=YYP(KA,2)
CHTIME = CABOUT + CABIN
BEDIST = CHTIME/{(1./SPOUT)~(1./SPIN))
CABLE = (CABLE/52804)%2,
[F{MAP.EG.1) GO TO 656
D0 60  K=1,LINES
CIFUIXIK2)eEQe X(Ky1)) GO TO 61
IF(Y(Ky2).EQY(Kyl)) GO TO 62
TAN(K) = (YUKe2)=Y{Ks1))/ZIX(Ke2)=X{Ky1))
SIDEL = SQRT((CABLZx*2, 1/ (Le+ (TANIK) *%2 ")
XX (K, 1) = X{Kyl) + SIDEL
XX{Ky2) = X(Ky2) - SIDE]
IF{X(Ks1)eGT ,X{K,2)) GO TO &0

XX{Kel) = X(Kyl) - SIDEL
XX{Ke2) = XUKy2) + SIDEL
GG TO 60

61 XX(Kyl) = X{Ky1}
XX{Ks2) = X{(Ky2)
YY{Ky1l) = Y(Kyl) - CABLE
YY(X+2) = Y(Ky2) + CABLE

IF{Y(Ks2)4GToYI(K,1)) GO TO 60
YY(Kol) = Y{Ky1) + CABLE
YY(K.2) = Y(K,2) ~ CABLE
GO TO 60 ,

62 YY(Kyl) = Y(K,1)
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60

65

e % e v el Aok i Sk ok e A ke ook ofeoke e ol s ok o e ok e e vl o ok e ot ool sk ok e ke ks ok ok o ol e ok ae ik el e ol ook e K kol I koK

YY(Ky2) = Y(Ko2)
XX(K'I) = X(Kyl) - CABLE:
XX{Ky2) = X(Ky2) + CABLE

IFIX(K,2)eGT«X(Ky1}) GO TO 60

"XX({Kyl) = X{Ks1l) + CABLE

XX{Ks2)
GO T0 60
CONT INUE
0O 65 K=1,LINE

IF(X(Ks2)eEQeX{K,1)} GO TG 65
IF{Y(Ky2)eEQaY(K,1)) GO TO &5

CTN(K) = 14/TAN{(K)

SIDE2 = SQRT{{CABLE**24)/(1le+{CTN(K)*%2 }})
YY(Kyl) = Y(Ko1) + SIDE2

YY(Ke2) = Y{Ky2) -~ SICE2
IF{Y(Ks1l)eGTaY{K,y2)) GO TO 65

YY(Ky1l) = Y(K,1) - SIDE2

YY(Ks2) = Y(Ky2) + SIDE2

CONTINUE

X{Ky2) - CABLE

CALCULATICN OF PENALTY MATRIX

ke gesolooR ok ke ok dolok ok R ok R ORIk AR R Rk ek ok R ok ok

66

41

42

45

- T0

B{lslylelel)=M
R{Llsly2y192)=M

BUL1y1,2,191)=SQRT{(XPL=~XP2) %2 2+ (YP1-YP2)%%2) +0.5

B{lyl,ylyl,e2)=8B{1y1,2,1,1)
IF{MAP.EG.0)GO TQ 70

DO 42 I=1,LINES

Il=1+¢1

00 42 J=1,2

DO 42 K=1,LINES

Kl=K+1

DO 42 L=1,2
IF((IeEQeK)eANDL(J.EQ.L)IGO TO 41

BULyILsdoKLyL¥=SQRT LOEXETyJ)=X(KoL) I RE2) (1Y (I, YUK L D) %%2) ) +0.5

GO 10 42
B(IqII,J.KI.Ll=M
CONTINUE ’

DO 45 I=1,LINES
D0 45 J=1,2
I1=1+1

BOlelslyIlsJd)=SQRTI({XPL~- X([.J))**Zlf((YPl-Y(I'J))**Z))+0 5

B{lyIlsJdelyl)=8(1ly1y1y11,d)

BULoly2y I1oJ)=SQRTLLIXP2=X (1,J) )%%2)+{(YP2=Y (I,J))%%2))+0.5

BllsT10d0102)=8B(1s1s2,11,J)
CONT INUE

GO TO 90

DO 52 I=1,LINES

I1=1+1

DO 52 J=1,2

D0 52 K=1,LINES

Kl=K+1

DO 52 L=1.2
IF((1.EQeK)eANDL{JEQ.L)IGO TO €1

BULlyIL s JeKLsL)=SQRT ({{X(IyJ)= =XX KL ) IE#2)+ LLY(T, J)-Y YK, ) )*x%2})
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o000

1+0.5
IF(1.NEsKIGO TQ 52
DUIMNECI)I=SORT((¢(X(1,1)~ X(102),**Z)fllvll11)—7(102)’**2),
TIME(1)=DLINE(1)/SPOUT
GO TO 52

51 B¢ lplle.Kl.L)=M

52 CONTINUE
DO 55 I=1,LINES
DO 55 J=1,2
I1=[+1
BllylsleIled)= SQRT(((XPI‘XX([oJ),**Z)ﬁ(‘YPI YY‘[;J))**Z))*O:S
B(Ll,yIlsdeleyl)=8{1,1,1,11,J)
BULl92911 yJ)=SQRTUL{UXP2=X(1ysJ) VR*2 )+((YP2=Y(IsJ))%%x2))+0.5
B(1, lllJvle,—B(IOIUZ'IIIJ)

55 CGNTINUE

90 IF{JOVER{KAA).EQ.,0)GO TO 33
IN=JOVER{KAA)
D0 67 I=1,IN
KL1=CL1(KAA,IN)+1
KEL=0E1(KAAy IN)
‘KL2=0L2(KAA, IN)+1

. KE2=0E2(KAA,IN)

- BOLoKL1sKELsKL2,KE2)=XDISTI{KAA, IN)/SCALE

67 CONTINUE

33 IF(MAP.EQ.1)GO TO 32
DO 85 I=1,LINE}
DO 85 J=1,2
WB=B{ 1slslsI,J}
B(341y1s10J)=WB4+CABLE
BU3 21 9Jel91)=8(3,191,1,J)
B(3,192¢1500=8(15142,1,J)
B(3il'Jvlv2)=8(311’2!10J’
W8=B(LlsLls1l,1y4)
BlLlylely Iy J)=WB/SPIN+CABOUT
B{leledolsl)d= B(l,lvlvl.J)
WB= BL1lly241,Jd)
3(lelv2v 1, J)-WB/SP!N*CABIN
B(LyIyJdel2)=B(l,1,2,1, J)

85 CONTINLE
DO 86 I=2,LINEL
DO 86 J=1,2
DO 86 K=2,LINE1l
D0 86 L=1,2
WB =811 ,JsKolL)
B{3sI+JeKsL)=WB+CABLE
IF(I1.EC.K)IGO TO 88
IF(WBe LE.BEDIST) GO TO 87
BlLlyloJeKyL)=WB/SPIN+CHTIME
GO TO 86

87 B(L,T 9JdsKyL)= (WB+CABLE)/SPOUT
GO TO 86

88 IF(J.EC.L)GO TO 86
(1,1 +JeKyL)=WB/SPOUT

86 CONTINUE

'*********###****#****#*******#*******t*t**#***i***t*********#********
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C PRINT ROUTINE = PENALTY MATRIX
C Rk kR KRR IR R R R R R R R AR R oK ok ok ol ik ko Kok ok ok

32 LINE2=LINES=-2
GO TO (314,59647¢8+9,10,11,12,13,14),LINE2

3 WRITE (6,72)
T2 FGRMAT(1lHLs1Xs//177)
WRITE (643331) KAA
3331 FGRMAT (18X, 32H PENALTY MATRIX FOR PROSPECT NO:,12//7)
WRITE (6,3332)

3332 FORMAT (13X, 47H P2 Al A2 Bl 82 cl c2 )
WRITE (6,3333) '

3333 FORMAT (10Xy 109H & ok 2% o e ot ok ofe e o akofe e ok e v abe e afe o d e ke e aleole ol dbe e e vl e A ok e e ok o K
1% )
GO TO 8000

c

4 WRITE (6,72)
WRITE (643341) KAA
3341 FORMAT {24Xs 32H PENALTY MATRIX FOR PROSPECT NG:,12///)
WRITE (653342) ' :
3342 FORMAT (13X, 59H P2 Al A2 Bl 82 Cl c2 0
11 b2 )
WRITE (63343) v
3343 F3RMAT .( 10X, LlO9H ok ko SRR R AR ROk d ek otk ko ko ek ok
Lok sk ki kk ‘ _ )
GO 70 8000

5 WRITE (6,72)
WRITE (6,+3351) KAA .
3351 FORMAT (30X, 32H PENALTY MATRIX FOR PROSPECT NO:,12///)
WRITE (6,3352) :

3352 FORMAT (13X, TIH P2 Al A2 el 82 ClL c2 o

11 D2 €l E2 )
WRITE (64+3353)

3353 FORMAT ( 10X, 109H e e ek o o el 3okl ok e sk ek e ofe o ok ek et Nk e ke ok koK K B kK
T 3 e ok S 3 ok e sk e e sgede o ok Aok e koo )
GO TO.8000 '

c

6 WRITE (6472) .
WRITE (653361) KAA . _
3361 FORMAT (36X, 32H PENALTY MATRIX FOR PROSPECT NO:,[2///)
WRITE (6,3362)
3362 FORMAT (13X, 83H P2 Al A2 81 B2 Cl c2 )
11 - pz2  El E2 Fl F2 )
WRITE (6,3363)

3363 FURMAT (10X, 109H st e ool ol o ok o e ok ko s e o ok ok K o ok Rk o Aok Kok
1 e Aotk sl skl s ek skl ok ok ok ek e 2ok Rk K Aok )
GO TG 38000

O

7 WRITE (6,72)
WRITE (643371) KAA
3371 FORMAT (39X, 32H PENALTY MATRIX FOR PROSPECT NO:y12//7)
WRITE (6,3372) - :
3372 FORMAT (13X, 95H P2 Al A2 Bl B2 €1 €2 O

11 D2 ELl E2 Fl F2 Gl G2 )
WRITE (6,3373) ’
3373 FORMAT (10X, 109H e ie ok ot i el ok e ok ook ok ok o ool el e o ek ol ek ol ek ak ok

1 ek s o e X o Ak ok e e ke el skl e Ko e sl o ol e sieale sk ok e S ok ol ok sl e e o e e e )
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GO Ta 8000

8 WRITE (6,72)
WRITE (6+3381) KAA
3381 FURMAT (45X, 32H PENALTY MATRIX FOR PROSPECT NO:,12/7/7)
WRITE (643382)
3382 FORMAT {13X, 107H P2 Al A2 81 82 Ccl c2 0
11 D2 El E2 Fl F2 Gl G2 H1 H2 )
WRITE (6,3383)

3383 FORMAT (10X, 111H o Aok oo ol ok Bl oK o o e sk R R e oK
L3 sk e o o e ol o o At el Ko 3 2Rl A kK A O ok R Kok R oROR R R ok AR &)
GO TO 8000

9 WRITE(6,72)
WRITE(643391) KAA
3391 FORMATI23X,32H PENALTY MATRIX FCR PROSPECT NO:,12//7)
WRITE(6,3392)
3392 FORMAT(3X, 83H P2 Al A2 Bl B2 €1 €2 D1 02 El E2 Fl
1 F2 Gl G2 HI H2 I1 1I2 )
WRITE(6,3393)

3393 FORMAT (lH ,  86H o s sole ook ek ok ol ARl R okl il kR kR Kok iRk
1 R ook o kel ook 40K dokskaook ok k g dololor ek sokdok )
GO TO 8000

10 WRITE(6,72)
WRITE( &y 3401) KAA
3401 FORMAT (27X ,32H PENALTY MATRIX FOR PROSPECT NGO:,12///7)
WRITE(64+3402)
3402 FORMAT(3X, 91H P2 Al A2 81 B2 Cl1 C2 D1 02 El E2 Fl
1 F2 61 G2 HL H2 I1 12 J1 J2 )
WRITE( &,3403)

3403 FORMAT (1H , 94H A sk op b ot kol kR oKk KK dek s Aok 36k 2l Aok ok ek Kok ok K
1% v ok ook e ek sk ook ek ek ek ootk ok o A RO SORKR KR KR )
GO TO 8000 :

11 WRITE(6,72)
WRITE(&s3411) KAA
3411 FORMAT-(31X,32H PENALTY MATRIX FOR PROSPECT NO:,12///)
. WRITE(&43412)
3412 FORMAT{3X, 99H P2 Al A2 Bl B2 Cl €2 D1 D2 EI E2 Fl
1 F2 "6l 62 HL H2 I1 12 J1 J2 Kl K2 )
WRITE(&43413)

3413 FURMAT (1H , 102H st e A ol sl ot R ok 3 ek ke e de ol ool e ol B 0
1 st e s et s ol e ok e o oK SRR R ol o ok sk kool ool ol ok ok ok )
GO TO 8000

c

12 WRITE(6+472)
WRITE( 69 3421) KAA
3421 FORMAT(35X,32H PENALTY MATRIX FOR PROSPECT NO:,12///7)
WRITE(6+3422)
3422 FORMAT{3X,107H P2 Al A2 'B1 B2 Cl C2 01 D2 E1l €2 Fl
1 F2 Gl G2 HL H2 11 12 J1 J2 K1 Kz Ll L2 - )
WRITE(643423)

3423 FORMAT (1H , 110H sk e e o e ol ol Rkl e ook e e o sl o ek el skl A ok ROk koK
1 st s e st e e el ol RSl Ao K oo B Aot okt oo e el b ol ok o o ok ok ek ok kb )
G0 TO 8000

c

13 WRITE(6,72)



3431

3432

3433

14
3441
3442

3443

8000

49

91

46°

77
79

71

78
47

180
148
160

149
170

119

WRITEL6,3431) KAA

FORMAT(3GXy32H PENALTY MATRIX FOR PROSPECT NO.pIZIII)
WRITE( 64 3432)

FCRMAT (3X+115H P2 Al A2 Bl 82 Cl C2 DY D2 €1 E2 Fl
1 F2 61 G2 HL H2 I1 I2 J1 J2 Kl K2 L1 L2 M1 M2 }
WRITE(6,3433)

FORMAT (1H , 118H oA Ak Rk ROk A oKk o b ok ok ok

1 okak kel Sk et Rk ROl ol KA AR R RO AR R R A B K ek e ok ok ok ok Rl KK
%) .

GO TO 8000

WRITE(64T72)

WRITE(64+3441) KAA

FORMAT(43X932H PENALTY MATRIX FCR PROSPECT NO:,12///7)

WRITE( 6y3442)

FORMAT(3X,123H P2 Al A2 Bl B8 Cl1 C2 D1l D2 E1l E2 Fl
1 F2 61 G2 Hl H2 I1 12 J1I J2 K1 K2 LI 2 M1 M2 N1
2N2 )

WRITE(653443)

FORMAT (1H , 126H Ak RO B RK R AR O R SR R R SR RN R R Rk R
1 ek e sl dode s et o oot A ook o o ot ok kot kol ok ool A ol o ek sl ek o o okl ok ok k ok
2 vt e ak ok o ke ek )

D0 47 I=1,LINE1l

Lo 47 J=1,2

IF{(1eEQsl) s ANDs (J.EQa2))GC TO 47

IF(LINES.GE.9)GO TO 77

WRITE(6949IKL{TI),yJ
FOPMAT(IHO 12X A1l s11 31 Xy1H*)
WRITE(6+,91)8(1y1,Js1,2)

FORMAT (LH+,16X,14,2X)
WRITE(6s46) ({BULyl sdsKyel)sl=142),K=2,LINEL)

FORMAT (1H+422X,20(14,2X))
GC TG 47

WRITE( &0 79)KL(1),J

FORMAT (1HOy 2XsAl,[1,1X, IH*l

WRITE(6,TL)B(L I vdslo2)

FORMAT (1H+, £X,13,1X) :

WRITE(6+s78)({B(LeTsdsKoL) L=1,2),K= ZvLINEl)
FORMAT(1H+,10X,20(13,1X)) '

CONT INUE

IF(IPEQ.1)RETURN

IF(KA.EQ.1)GO TQO 148

TF(KAL.EQ.IP)GO TO 149

WRI TE(64180) .

FORMATI(1H '////113X1'ACTE- Pl IS AN ARTIFICAL STAKTING PORT AND P2
1 IS AN ARTIFICAL ENDING PORT.!') ]

RETURN

ARITE( 69 160)

FORMAT (1H '////'13X-'NOTE' P2 IS AN ARTIFICAL ENDING PORT.')
RETURN

WRITE( 6,170} ) .

FORMAT (LY +////+13X,'"NOTE: P1 IS AN ARTIFICAL STARTING PORT.')
RETURN

END
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SUBROUTINE OTPUT2(KAA,KA,GFTION)

IMPLICIT INTEGER (A-V,2)

REAL SQRT,CHTIME,BEDIST,SICEL,S IDE2,TAN,CTNsDLINE,TIME,

1 CABLE, SPIN, SPOUT,CABOUT,CABIN,SCALE

DIMENS.ION KL (15),CABPDS(2),NB(5)

COMMON /ML/B(3,1542,15,2)/¥2/11NF(2000),IPROB(2000)

COMMON /V1/YIKEY(15)yJJUJKEY(15) 4KKKEY(15) ,LLKEY(15)

CCMMON /S1/MyMMyNyRySyBCUNC/S2/MAX, ICOST oKCOST, LK,y T3yGCOST#BCAST
COMMON /RL/WX{5351542) sWY (541542} /R2/HXP(2),WYP(2)/R3/XC(5,2),
1 YCU5,2)/R4/XXP(542) s YYP( 592) /RS/NL(5) 4PATH(5)

COMMCN /R6/MAP,CABLE,SPIN,SPOUT +CABOUT»CABIN,SCALE,IP,IS,IPP
COMMON /RT7/X{1542) sY(1542)sXX{15+2) +YY¥Y{15,2)/R8/TAN(15),CTN(L15),
1 CLINE(15),sTIME(15),BEDIST

DATA CABFCS/3HOUT,3H IN/

DATA KL/ 1HP o 1HA, LHB y LHCy LHD y LHE ¢ 1HF ¢ 1HG » L1HH, 1HI 1HJ11HK 1HLolHMc
1 1LHN/ )

DATA NB/2HH#L 92HH#2 y2H#3 4 2H #4 y2H#5/

********#*******#**#*##**#*#**#***t**#**t*****#*#*#***#*#*#*****t****
PRINT ROUTINE = OPTIMUM PATH
*u***‘*************###**#*#*###**********#******#********************
LINES=AL (KAA)
LINEL1=LINES+1
6001 IF({MAP.EQ.0) GO TO 555
WRITE (6,72)
72 FORMAT(LHYy1Xe///7)
WRITE (69724) KAA
724 FORMATA3LX,12HPROSPECT NO:413///)
WRITE (6+6002)
6002 FORMAT (29X, 2 0 Hide sk 3k e o e ke ok ke o ok e ok Kok ek )
WRITE (6,6003)
6003 FORMAT (29X, 1kH*, 18X, 1lH*) -
WRITE (6,6003)
IF(OPT IONLEQ.2)GO TO 1
WRITE (6+6100) ‘
6100 FORMAT (29X, lH%*, 3X, 12HCPTIMU¥ PATH, 3X, 1lH*)
GO 70O 3 :
1 WRITE(642)
2 FORMAT (29X, lH%*, 3X, L2HCFTICN PATH, 3X, 1lH*)
3 WRITE (646200)
0 FORMAT (lH+, 32X, 12H______.___ SN |
WRITE (6,6003) .
6400 FURMAT (29X, 1H*, 5X, Al, Il 4H TO , Al,y Il 5X, 1lH¥)
XB=0.
DO 6703 I=1,LINEL
1IF(IP.EQ.1)GD TO 6706
IF((1+EQel) e AND. (KALNELL))CO TO 6704
IF(I{TeEQeLINEL) s ANDS{KALNELIP)I)IGD TO 6705
GC TO 6706
6705 KA2=KA+1
KR=PATH(KA2) »
WRITE(6,6402 )KLITIKEY(I) )y JIKEY(I),NBIKRY
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FORMAT (29X, 1H%*, 5X, Al, Il, 4H TO , | A2, 5X, LlH*)
GO TC 6703

KAl=KA-1

KG=PATH(KAL)

WRITEL6,6401)NBIKG)  KLIKKKEY{I)), LLKEY (I} .
FORMAT (29X, 1lH*, 5X, A2, 4H TO » ALy I1, S5X, 1lH¥*)
WRITE(6,+6003)
XB=XB+B{1,IIKEY(1) ,JIKEY(I) KKKEY{I),LLKEY (1))

GD TO 6703
WRITE(6+6400)KLITIKEY (1)) JIKEY (1)) KLIKKKEY(I)), LLKEY(I)
WRITE( 6,6003) :

XB=XB+B( Ly ITKEY(I),JIKEY{I),KKKEY(1) LLKEY(]))
CONTINLE .

WRITE (6,6600) XB

FORMAT (29X,s lH¥%, 6X, F5.0, 7X; 1lH¥%)

WRITE (6,6003)

WRITE (6,6003)

WRITE (6,6002)

WRITE (6,72)

RETURN

WRITE (6,72)

WRITE (6,724) KAA

WRITE (6 ,260)

FORMAT ( 16Xy 46 ek de ok s ok e sie 3 3 o ok o s o o o e ok oje e ofe e o o o afe e e e ofeoke e sieofeofe ek skosk ok )
WRITE (6,261)

FORMAT(16Xs LH*, 44X, lhH*)

AR ITE -(6,261)

IF{OPTION,EQ.2)G0 TO 11

WRITE (6.262)

FORMAT (16X, 1H#*, 10X, 24HOPTIMUM PATH INFURMATIOMs 10X, 1H¥*)
GO TO 23

WRITE(6,12)

FORMAT (16X, 1lH¥%, 10X, 24HOPTION PATH INFORMATION, 10X, 1H*)
WRTTE {6,261)

WRITE - (64261)

WRITE (6,263)

FORMAT(L6X, 12H* FROM TO, 5Xy» SHCABLE, S5Xs SHMILES, 5X,
1 SHHOURS *)

WRITE (6,264)

FORMAT (1H#, 19X, BH____ __5Xs SH_____+» S5X» SH_____ y. 5X» SH____
1)

WRITE (6,261)

FORMAT(16Xy 1H*y 4XyAl,11,3H - »Aly Il, 6Xy 3H IN, 6Xy F4.0, 6X,

1 F440, 44Xy, 1HZ)

FCRMAT (16X, 1H%*, 4X, Aly, 1, 3H - , Aly 11, 6X, A3, €Xy Fbe0y 6X
1y F4.0, 44Xy LH%) : : :
FORMAT (16X, 1H*, 4X, Al, T11,3H - ,Als11+6Xs 3H IN, 6X, F4.0, 6X,
1 F440y 4X, 1H¥)"

FORMAT(16X, LH*, 4X, Al, I1l,4 3H - , Al, Il, 6Xy 3HOUT, 6X, F&4.0,
1 6Xs F4e0, 44X, LlHX%)

WB3=B(3, IIKEY(1),JJKEY (1) KKKEY {1},LLKEY(1))

WB1=B{ 1y [IKEY(1l) sJJKEY(1) KKKEY (1) ,LLKEY (1))

IF(IP.EQ.1)GO TO 1500

IF(KA.EC.L)GC TO 1500

KA 1=KA-1

KG=PATH(KAL)
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WRITE(6,1265)NBIKG), KL (KKKEY{1}},LLKEY(1),WB3,WB1
1265 FORMAT (16X, lH*, 4X, A2+43H = 4Al, Il, 6X, 3H IN, 6Xs F4.0y 6X,
1 F4,0, 4X, 1H%*)
GO TO 1501
1500 WRITE(64265)KLITIKEY(L)) yJIKEY {1} sKLAKKKEY (1) ),LLKEY (1), WB3,WB1
1501 LL=3-LLKEY(1) '
WRITE(64261)
[2=KKKEYIL)~1
leTets.zsa)KLthksvtllt.LLKEY(1).KL(KKKEY(1)).LL.
LOLINE(I2),TIME(I2)
WRITE(&y261)
00 500 I=2,LINES
KBETA=1
LL=3-LLKEY(1)
XY 2D= ata.thEY(I).JJKEY(I).KKKEY(l).LLKEY(I))—CABLE
IF(XYZDeGT+BEDIST)KBET A=2 -
WB3=B(3, TIKEY{I),JUKEYII) KKKEY{I),LLKEY(I))
WBL=B(L1ly IIKEY{I))JIKEY(I),KKKEY (1),LLKEY(I))
WRITE( £+266) KLOTTKEY(I)) g JIKEY (1) yKLI(KKKEY{I)),LLKEY LI),
1 CABPOS(KBETA)yWB3,WB1
WRITE(6,261)
11=KKKEY(I)=1
WRITE(6.268)KL(KKKEY(I)),LLKEY(I) KL(KKKEY(I));LL.
LOLINE(IL),TIME(IL)
WRITE( 6y 261)
500 CONTINUE
J=LINE1
WB3=8( 2y ITKEY{J) s JIKEY(J) yKKKEY(J) 4 LLKEY(J) )
WBL=B(1y TIKEY(J) s JIKEY(J) ) KKKEY{J))LLKEY(J))
IF(IP.EQ.1)GO TO 2500
IF (KA, EQs IP)GO TD 2500
KA2=KA+L
KR=PATH (KA2} ,
WRITE( &y 1267)IKLITTIKEY(J))»JIKEY (J) yNB{KR) ,WB3,4B1
1267 FORMAT{1&X, L1H¥, 4X, Aly, I1,3H - , A2, 6X, 3H INy 6Xy F4e0y 6X,
L F4.Cy 4Xy 1H*) ’
GO TO 2501
2500, wRITt(6.257)KL(IIKEY(J)),JJKEY(J).KL(KKKEY(J)),LLKEY(J).
1WB3,W8 1
2501 YMILES=0,
YHOURS =0,
DO 600 I=1,LINEL
IF(IP.EQ.11GO TO 2502
IF{{T1<EQeLINEL) s ANDe (KANELIP))GG TO €00
2502 YMILES=YMILES+B(3,ITKEY( 1), JJKEY(I) KKKEY(T) LLKEY (L))
YHOURS=YHOURS +B {1y IIKEY{ 1), JJKEY(I) KKKEY{I),LLKEY(1))
 CONTINUE
VRITE (64261)
‘WRITE {6 ,261)
WRITE (6,4260)
WRITE (64261)
WRITE (6,261)
WRITE (6,270}
270 FORMAT (16X, 1H¥, 24X, 5HHOURS, 4X, SHMILES, 6Xs l1H¥)
WRITE (6,271)
271 FOFMAT (1lH+, 40X, SH
WRITE (64261}
XHOURS = 0.

o,
©
(=]

_____ v 4Xy SH___.__)
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XMILES = O
DO 876 K=1,LINES ,
XHOURS = XHOURS # TIME(K)
XMILES = XMILES + DLINE(K)
876 CONTINUE
WRITE (64272) XHOURS, XHILES
272 FORMAT (16X, LlH*, 56X, LOHPROCUCTIVE, 8X, FS.0, 4Xy F5.0y 6X, L1H®)
WRITE (6y261)
WRITE (6,273) YHOURS, YMILES
273 FORMAT(L6X, LH%*, 6Xy L4HNCN~-PRODUCTIVE, 4Xy F5¢05 4X, F5.0, 6X,
1 1Hx) :
WRITE (64274)
274 FORMAT (1H+, 40X, SH_____ v 4Xs SH_____)
WRITE (b6,261)
WHOURS = XHGOURS + YHOURS
WMILES = XMILES + YMILES
WRITE (6+275) WHOURS, WMILES
275 FORMAT{(Ll6X, LH%*, 6X, SHTOTAL, 13X, F5.0y 4Xy F5.0, 6X, 1H*)
WRITE (6,261)
WRITE (6,261)
WRITE (5+260)
WRITE (6,72)

e et e e et e fe kol e e e de ke ek ok ko ok R okl ok ol kR ok O ok kAo ok ok ok ek
RETURN’ , .
END
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SUBROUTINE ROUTE(KAA, TYPE)
BRANCH BCUND-LITTLE'S METHOC(STRATEGY 2-NEW VERSION)

IMPLICIT INTEGER (A-V,1)

COMMCN /F1/B{3,41542+15,2)/M2/TINF(2000), IPROB(2300)

COMMON /GL1/ILINK(L15) yJLINK(15),KLINK(15) LLINK(15)

COMMON /S1/M,MMyNsRyS»BOUND/S2/MAXy ICOST,KCOSTLK,TB,GCOST,RCOST
CCMMCN /S3/THM,SR

COMMON /R5/NL(5) 4PATH(S)

INITIATE ALL DATA

GO TO (61,62),TYPE
N=NL{KAA)+1

GO TO €5

N=KAA

8=M

MM=2%M

CasT=0

R=1

CALL ELAPSE(ITIME)
JT IME=0

CALL SULBROUTINE SSTREE TC CALCULATE LCW BOUND US ING SHOPTEST SPANNING TREE
METHOD . '

CALL SSTREE

AOD UP THE PRODUCTIVE DISTAMCE AND ASSIGN THE INFINITE
TO EACH PRODUCTIVE LINE

DO 9 I=1.N
IF(I«NEs1)COST=CCST+BIL,1,1,1,2)
BllsIsleylsl)=M

B(lsTeleIs2)=M

B{lsT+251,1)=M

3(1s09291,2)=M

. CONTINUE

GCOST=COST
ASSIGN ROW OF P2 AND COLUMN OF Pl TO INFINITY

Bl1ly1ls2y191)=MM
BllsyleZyly2)=MM

© SEARCH THE BRANCH

16

[F{R.GT.1)G0 TO 500
S=1
GO TO 15

FIND THE NODE WITH LONGEST {INCLUSIVE LINKAGE,
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MAX==M

E=0

00 50 I=24R
IG=1INF({1)/1000000000
IF(IG.EQ.1)GC TO 50
BV=IPRCB(1)/10000
IF(TB.GT«BV)IGO TO 20
TINF{T)=TINF(I)+1000000000
GO TA 50
INC={TINF(I)=(IINF(I)/1000000000)*1000000000)/10000000
IF{MAX.GE.INC)GO TO S0

E=1

MAX=INC

CONTINLUE

IF THERE IS NO NODE WITH BOUND THAT IS LESS THAN CURRENT OPTIMAL
SOLUTION, STOP. OTHERWISE, FIND THE NODE WITH LEAST BOUND. -

IF(E.EC.0)RETURN
BOUND=IPROB(E) /10000
TINF(E)=TINF(E)+1000000000
S=E ©

RESET THE COST MATRIX FOR THIS NODE TO COORESPOND WITH SOME CONSTRAINTS.

CALL MSET
[F(LK.EQ.N)GO TO 500

REDUCE ThE COST MATRIX - IF NEED.

1C0ST=0
KCOST=0

DG 11 I=1,N
CALL REDUCL(T)
CONTINUE

DU 12 K=1,N
CALL REDUC2(K)
CONTINUE

FIND THE MAXIMUM EXCLUSIVE LINKAGE THATVHILL BE USED TO BRANCH SUB-NODE.

IF(S«GTa1)GO TO 14
BOUND=COST+ICOST +KCOST
CALL PIVOT

CALL ELAPSE(ITIME)

T T IME=JT IME+IT IME

IF(JTIME.LT. TM)IGO TO 500 .

XCOST=8CAST+GCOST

XTOTAL=TOTAL

XDIFF=({XTOTAL-XCCST) /XCOST

IF(XDIFF.GT.SR)GO TO 500

WRITE(6,4255) .
FORMAT(1HO,9X,*THE LAST SCLUTION ABOVE IS AN APPROXIMATION®)
RETURN :
END '
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SUBROUTINE MSET

SUBROUTE MSET IS USED TO REST THE COST MATRIX FOR SOME PARTICULAR NODE TO
COORESPOND WITH SOME CGNSTRAINTS.

IMPLICIT INTEGER (A-V,2)

DIMENSION KL(15)

COMMGCN /M1/B(3,1542+15,2)/M2/1INF{2000),I1PROB(2000)

COMMON /GL/ILINK(LS) yJLINKELS) oKLINK(15),LLINK(15)

COMMON /V1/TIKEY{L15),JJKEY(15)sKKKEY{15)LLKEY(15)

COMMCN /S1/ M MM, N, R,SyBCUND/S2/MAX, ICOST KCOST,LK,TB,GCOSTyBCOST
DATA KL/1HP,1HA 4 1HB y 1HC yIHL y1HE y LHFy 1HGy LHHs 1HIy 1HJy L EK 4 1 HL » LHM,
11HN/

COPY THE ORIGINAL DISTANCE MATRIX TO OPEPATIONAL MATRIX.

LK=0

DO 1 I=1,.N

D0 1 J=1,2

DO 1 K=1,N

00 1 L=1,2

BI2,TsdeKyL)=B(LlyI,JsK,L)}
1 CONTINUE

TRACE THE INFORMATION BACK FROM CURRENT NODE UPTO ALL TOUR NODE,
UNPACK THE INFORMATION FOR EACH NODE TO OBTAIN LINKAGE AND BOUND VALUE.

IF(S.EQs1)RETURN
I1S=S
50 I0=( [INF(IS)=(IINF{IS)/100000001*10000000) /1000000
3 16=I1INF(IS)
5 LL=1G-(1G/10)*10
KK=(1G-{1G/100C) #1000) /10
JJ=(16-( 16/10000)%10000) /1CC0O
I1=(16~-(16/1000000)%10C0000}/10000

DETERMINE WHETHER IT IS INCLUSIVE LINKAGE OR EXCLUSIVE LINKAGE,

IF(ID.EQ.2)G0 TO 10

LLK=LK+1

TLINK{LK) =1

JLINK(LK)=JJ

KLINK(LK)=KK

LLINK({ LK) =LL

JJI=3-J4J

LLL=3-LL

3(2 +11 4141 ,1)=MM

Bl2,114241,2)=MM

B(2 KKeLLylyLL)I=MM

Bl2,10JJJsIT4JJ)=MM

B2y 1y 1o'KKy 2)=MM

Bl2y1y2,KKy1)=MM

GO TG 20
10 TF(BU2y119JJ,KKyLL).EQ.,MMIGD TO 20

B{2+ITsJJrKK,LL)=M
20-1P=1PROBIIS)-(IPROB({IS)/10000)*10000
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IF(IP.EQ.9999)GO TO 100
1S=1pP
GO TGO 50
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IF ALL LINKAGE FORM A CHAIN OF N LINKAKES, THEN PRINT OUT OPTIMAL ROUTE
AND RETURN. OTHERWISE, CALL SUBROUTINE LINK TO FIND THE LINKAGE THAT WILL

FORM SUBTOUR AND SET THIS LINKACE TO INFINITY,

IF(LKLEQ.N)GO TO 95
CALL LINK

RETURN

IF(TB.LE.BOUND )RETURN
TB=BGUND

SEQUENCE ALL LiNKAGES TO START WITH P1 AND END WITH P2.

TA=1

JA=1

1G=0

I1G=1G+1

IF(1Ge GT4LK)GO TO 25

DO 22 I=1,LK i .
IFC({IAEQeILINK{I)) ANDe(JALEQe JLINK(I))})GO TO 23
CONT INUE

TIKEY(IG)=ILINK(I)
JUKEYUIG)=JLINK(T)
KKKEY ( IG}=KL INK( 1)

LLKEY (IG)=LLINK(T)

TA=KLINK(I)

JA=3-LLINK(I)

TLINK({I)=0

JUINK(I) =0

KLINK(T)=0

LLINK(I) =0

GO -TO 24

WRITE THE OPTIMAL TCUR

' HRITE(b’é)(KL(IIKEV(I))1JJKEY(I).KL(KKKEY(I)),LLKEV(II.I=1'LK)

FORMAT(9XsAl #11,14X,AL,11)

QB=TB-GCOST

WRITE(6,7)TB.Q8

FORMAT(1HO,® TOTAL DISTANCE=',1I5,6X, "NON-PRODUCTIVE DISTANCE="'415,
1/7/7777)

RETURN

END
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SUBROUTINE REDUCLI(I)

SUBROUTINE REDUCL(I} IS USED TO FIND ROMW MIN[NUM IN EACH ROW
AND SUBTRACT THE MINIMUM FRGM THIS ROW

IMPLICIT INTEGER (A-V,27)
COMMCN /M1/B(3415+2415, 2)/"2/IINF(2000)vIPROB(ZOOO)
COMMON /S1/M,MMyN,RyS+BCUND/S2/MAX, ICOST 4KCOST+LK,TB,GCCST, RCOST

FIND RCW MINIMUM
MIN=M

DO 2 J=1,2
[F(B(24+I+J91+J)EQ.MMIGO TC 2

D0 1 K=1,N

00 1 L=l,2

LL=3~L

IFIB(2,14LLsKsL)EQ.MM)GO TO 1
IF(B(241sJsKsL)eLT MINIMIN=C(2y I)JsK,L)
CONTINLE

CONT INVUE

SUBTRACT ROW MINIMUM FRGM EACH RCW

TF(MINLEQWD «ORMINLEQMIRETURN
ICOST=ICOST+MIN

DO 4 J=1,2
IF(B(2+,1sJsLsJ).EQ.NMIGO TO 4
DO 3 K=1,N

DO 3 L=1,2

LL=3~-L
IF(B(2,14LL+KsL)oEQaMMIGO TQ 3
IEF(B(2414JeKsL)EQ.MIGO TO 3
BI2 3T 5JsKeL)=BI2,1,J,K,L)=MIN
CONTINUE

CONT INUE

RETURN

END

128
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SUBROUTINE REDUC2(K)

SUBROUTINE REDUC2(K) IS USED‘TO FIND CCLUMN MINIMUM IN EACH COLUMN
AND SUBTRACT THE MINIMUM FROM THIS COLUMN

IMPLICIT INTEGER (A-V,2)
COMMON /M1/B(3,15,2+15,2)/M2/1INF(2000) ,1PROB(2000)
COMMON /S1/MsMMyNyRySs BOUND/S2/MAX, ICIST yKCOST,LK, TB ,GCOST ,BCOST

FIND COLUMN MINIMUM

MIN=M

DO 2 L=1,2

LL=3~L :

TF{B(24,1 sLLeKyL)+EC.MM)IGO TO 2

00 1 [=1,N

DO 1 J=1,2

IF{B(2+I +Js1,J)¢EQ.MM)GO TO 1

TF(B{ 2+l 9JsKyL)aLTeMINIMIN=8B(24y19JsK,L})
CONT INUE

CONTINUE

SUBTRACT COLUMN MINIMUM FRCM EACH COLUMN

[F{MINSEQ.O.ORsMINLEQs M) RETURN
KCOST=KCOST +MIN

DO 4 L=1,2
LL=3~L
IF{B(2+1,LLyKsL).EQ.MMIGO TO 4
DO 3 I=14N

DO 3 J=1,2
IFIB(2+s1+Js14J).EQ.MM)GO TO 3
TF(B{2+1-9JsKsL)LEG.M)IGC TC 3
B2y I+JsKsL )=B{ 2+ 12K, L)=MIN
CONT INUE )

CONTINUE

RETURN

END

s
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SUBROQUTINE PIVOT

SUBROUTINE PIVOT IS USED. TO FIND THE MAXIMUM EXCLUSIVE LINKAGE
THAT WILL BE USED TO BRANCH SUB-NODE.

IMPLICIT INTEGER (A-V,Z)

DIMENS ION SECROW (20),SECCCL(20),12(60)9JZ{60)sKZ(60),LZ(60)
COMMON /M1/B(3,15,2415,2)/M2/1INF(2000),1PR0OB{2000)

COMMON /G1/ILINK{L15)yJUINK(L5)yKLINK({1S)sLLINK{LS)

COMMCN /S1/MyMMyNyR,SyBCUNC/S2/MAX, ICOST yKCOSToLK,TB,GCCST, BCOST
Q=0

SEARCH FOR ZERG ENTRY IN EACH RGW AND FIND ROW MINIMUM

DC 3 I=1yN

Q1=0

SECROW(1) =M

00 3 J=1,2
IF(B{2+T9JslsJ).EQ.MM)GO TQ 3
DO 2 K=1,N

00 2 L=1,2

Lt=3-L
IF(B(2s1sLLsKoL}oEQeMMIGT TO 2
IF(B(2y1+JyKyL).ER.OIGO TO 1
IF(BI2 31 +JsKoL)oLTSSECROW{I)ISECROW(I)= B(ZvluJ'K'L)
GO TO 2

Q=Q+1

Ql=QL+1

IZ(Ql=1

JZ(Qy=J

KZ(1Q)=K

LZ(Q)=L
IF(CL.EQ.2)SECROW(I)=0
CONTINLE

CONT INUE

SEARGH FCR ZERD ENTRY IN EACH CCLUMN AND FIND COLUMN MINIMUM

D0 9 K=1,N

SECCOL(K) =M

Ql=1

NO 8 L=1,2

LL=3-L
IF(B(2+1+LLyKy L)L EQ.MM)IGO TO 8
00 7 I=1,N

DO 7 J=1,2

TF(Bl2+I4Js11d)eEQaMMIGO TO 7

IF(RI2+1sJyKsLIEC.O0IGO TO 4
TF{B(24I4JsKsL) e LT4SECCOL{KIISECCOLIKI=B{2yIsJsK,yL)
GO T0 7

GO TO (6,5),C1

SECCOL{KI=0

G TO 9

Q1=Ql+1

CONTINUE

CONT INUE

CONTINUE
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SEARCH THE MAXIMUM EXCLUSIVE LINKGAE.

MAX =-1
KEY=0 -
IF(Q.EQ.0)RETURN

30 DO 10 J=1,Q
I=12(J)
K=KZ(J)
SAVE=SECROW(I)+S ECCOL(K)
IF(MAX.GE.SAVEIGO TO 10
MAX =S AVE
KEY=J

10 CONTINUE
R=R+1

BRANCH CURRENT NODE TC TWC SUB-NODE, ONE EXCLUSIVE NODE AND ONE INCLUSIVE
NODE OF MAXIMUM EXCLUSIVE LINKAGE,
TINF(R)= 2000000+{1Z(KEY))*1000C+(JZ(KEY))*1000+(KZ{KEY))*10+
1LZIKEY)+LK*10000000
IF(S.EC.1)GC TC 15
IPROB(R)={(BOUND+MAX) %10000+S
GO TO 20 : ]
15 [PRAB(R)=(BOUNC+MAX)*10000+9999
20 R=R+1
II=1Z(KEY)
JI=JZ(KEY)
KK=KZ{KEY)
LL=LZ{KEY)
JJJ=3-4J
LLL=3-LL
B(2,IT,141,1)=MM
B(Zo[ll2v102’=MM
Bl2 s KKsLLsloLL)=MM
B(241 4JdJJe1JJ)=MM
B(2s1y 1y KKy 2)=MM
B(2+192yKKyl)=MM
LK=LK+1
ILINK{LK)}=]1]
JLINK(LK)=JJ
KLI NK( LK) =KK
LLINK{LK)=LL
CALL LINK
26 [C0OST=Q
KCOST=0
DO 11 I=1+N
CALL REDUCL(I)
11 CONTINUE
DG 12 K=1,N
CALL REDUC2(K)
12 CONTINUE
IINF{R)=- 1000000 +{ IZ{KEY))*10000+{JZ(KEY))*1000+{(KZ(KEY) )*10+
ILZ(KEY)}+{LK+1)*10000000 ’
IF{S«EQes1)GO TO 25
TPAGB(R) ={BOUND+ICOST+KCOST)*10000+S
RETURN : . :
25 IPROB(R)I=(BOUND+ICOST+KCOST)*10000+9999
RETURN

END
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SUBROUTINE LINK

SUBROUTINE LINK IS USEDC TO FINC THE LINKAGE THAT WILL CAUSE CURRENT:
SEGMENT OF CHAIN TO FORM A SUBTOUR. SET THIS LINKAGE TO INFINITY,

IMPLICIT INTEGER (A-V,2)

DIMENSION IV(15)+JV(15)+KV(15),LV(15])

CCMMCON /GL/ILINK(15)¢JLINK{15), KLINK{L15),LLINK(15)

COMMON /M1/B(3+1592415,2)/7M2/11NF(2000),IPROB{2000)

COMMON /S1/M,MM¢N,R,S,BOUND/S2/MAXs ICOST»KCOST,LK,TB,GCOST,BCOST
IF(LKsEQ.Q)RETURN

IF(LKsGE<(N=-1} JRETURN

COPY ALL LINKAGES TO OPERATIONAL ARRAY,

DB 1 I=1,LK
IVID)=ILINK()
JVEI)=JLINKLTD)
KVIT)=KLINK(T)
LVII)=LLINKAT)
CONTINUE

CHECK IS THERE ANOTHER LINKAGE NEEDED TO BE CONNECTED. IF THERE IS NONE,
RETURNs, OTHERWISE SLECT FIRST LINKAGE,

00 2 E=l,LK
IFCIV(E)«EQ.0)GO TQ 2
I=Iv(E)
J=JVIE)
JJ=3-J
K=KVIE)
L=LV(E)}
LL=3-L
IV(E)=0
JY(E)=0
KV(E) =0
LVIE)=0

GO TO S
CONTINUE
RETURN

CHECK 1S THERE ANOTHER LINKAGE CONNECTED TO THE END OF A CHAIN.
IF SOy MAKE NECESSARY CHANGE FOR THE END AND CONTINUE THIS PROCESS.

D0 10 F=1,LK
IFCLIVIF1aEQaK1a ANDe (UVI(F) L EQ.LL)IGO TO 15

. CONTINUE

GO TO 35
K=KV(F)
L=LVIF)
LL=3-L
IVIF)=0
JVIF)=0
KV(F)=0
LV(F)=0
GO TG 5

CHECK IS THERE ANOTHER LINKAGE CONNECTED TO THE B8EGINING OF A CHAIN.
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IF SO, MAKE NECESSARY CHANGE FOR THE BEGINING AND CONTINUE THIS PROCESS.

DO 20 Z=1.,LK
TFUIKVI(Z)eEQeI) o AND. (LV(Z).EQ.dJ))GO TO 25
CONTINUE

SET THE LINKAGE THAT WILL CLOSE A CHAIN TO INFINITY TO -AVOID A SUBTOUR.

IF(B({2,KsLLyI+JJ)EQ.MMIGO TO 50
B(2yKsLL, ToJdJd)=M
GO TO 50

1=1vizZ)

J=J4vi2)

JJ=3-J

Ivizi=0

Jv(z)=0

Kv(Z)=0

Lv{Z)=0

GO TO 35

END
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SUBROUTINE SSTREE

SUBROUTINE SSTREE IS USED TO CALCULATE LOW BOUND Of THE PROBLEM BY
USING SHORTEST SPANNING TREE METHOD.

IMPLIGIT INTEGER (A-V,2)

DIMENSION V(1552)+A01552415,2),ITEMP(30) ,JTEMP(30),KTEMP(30),
1LTEMP(30) '

COMMON /M1/B(3,15,2+15,2)}/¥2/1INF(2000),1PROB(2000}

COMMON /S1/MyMMyN,R,S,BOUND/S2/MAX, ICOSTKCOST,LK,TB,GCGST ,8COST
CGMMCN /S3/TWM,SR

INITIATE ALL DATA,

BCOST=0

C=0

T=0

M=2%N=-1
DO 11 I=1,N
DO 11 J=1.2
V(I,J) =0

COPY THE ORIGINAL COST MATRIX TO OPERATIONAL MATRIX.

DO 9 [=1,N
00 9 J=1,2
DO 9 K=1,4N
DG 9 L=1,2
B(2y14JyKyL)=BllylsJyKeL)

ADD LARGER NUMBER TO THE ROW OF STARTING PORT AND THE CCLUMN OF ENDING
PORT .

DO 50 J=1,2
DO 50 K=1,N
DO 50 L=1,2
BU2y1sJsKsL)=B(2,15J9K,L)+NM/2
DO 55 L=1,2
DO 55 I=1,N
DO 55 J=1,2
Bl2y14dylyL)=B(2,1yd,1)L)#M/2

ASSIGN THE LINKAGE BETWEEN STARTING PORT AND ENDING PCURT A INFINITY TD
FORM A CHAIN,

B{291s1y1,1)=M
Bl2s1y1y1,2)=M
B(Zyl|2'1'1)=M
Bl2y1y201:2)=M

ASSIGN A ZERO TO ALL PRODUCT IVE LINE.

DO 60 I=2,N
DO 60 J=1,2.
DO 60 K=2,N
DO 60 L=1+2
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LL=3-L
[IF({TeEQaK)oAND {JeEQaL) I B2y Iy JsKsL )=M
IF{{1.EQsK)e AND.(J-EQ.LL))B(Z,InJrKfL) =0

CONT INUE

AT EACH STAGE OF SUBROUTINE, ONE EDGE IS CONSIDERED WHERELY ONE
OF FOUR POSSIBLE CONDITIONS WILL ARISE. IF NEITHE OF VERTICES IS
INCLUDED IN A TREE, TEIS ECGE IS TAKEN AS NEW TREE ANC ITS EOGE IS
NUMBERED "BY AN INCREMENTED NUMBER C. IF ONE VERTEX IS IN A TREE, THE
EDGE WILL BE GROWN TO THIS TREE, I[F THE TWO VERTICES ARE IN DIFFERENT
TREE, THESE WILL BE GRAFTED INTC A SINGLE TREE BY RENUMBERING THE VERTICES
OF THE COMPONENT. FINALLY, IF BOTH VERTICES ARE IN THE SAME TREE, THE
EDGE COMPLETES A CYCLE OF THE GRAPH AND CONSEQUENTLY WILL NOT-BE
CONSIDERED FURTHER.

MIN=2%MM

DO 1 I=1,N

DU 1 J=1,2

DO 1 K=1,N

DO 1 L=1,2

IF{MINJLE.BI2,1,JsK,L))GO TO 1

MIN=B(2,1sJsKyL)

11=1

JJ=d

KK=K

LL=L -

CONTINUE

IF(VII1,JJ).NE.OIGO TO 5

TF(VIKKyLL)2NESO)GO TG '15

C=C+1

VIIT,dd)=C

VIKK,LL)=C

GO TO 2

VIIIsJJ¥=VIKKsLL)

G0 7O 2

TF{V(KK,LL) «NE<0)GO TO 25

VKK LL)=V(IT,d3)

G0 TO 2 .

IFIVITI,JJ) «EQaVIKK,LL)}GO TO. 35

IL=V(II,JJ)

K1=V(KK,LL) 3

DO 40 E=1,N

DJ 40 F=1,2

IF(VIE,F)eEQuKL) VIE,F)=I1

CONT INUE

T=T+l

ITEMP{T) =11

JTEMP(TI=JJ

KTEMP{T)=KK

LTEMP{ T) =LL

BCNST=BCOST+B(2, I1,JJsKK,LL)

BU2,I1,JJ,KKyLL) =M

IF( ToLToNM)IGO TO 10

BCOST=BCOST~M

WRITE(6,100)BCCST

FORMAT{1HO+9X,'COST OF SHORTEST SPANNING TREE -'.110)

RETURN
END
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PCRT AND P2 IS AN ARTIFICAL ENDING PORT.
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