THE UNTVERSTTY OF OKLA4OMA GRADUATE COLLEGE

THE SHBTEERBETA PROJECT IN THB SOUTHERN GREAT PLATNS--1934-1970 - A GEOGRAPHIC AFPRATSAL

A THESIS
SUBMTRTE TO THE GRADUATE FACULIY
in partial fuifjllwent of the requirements for the
\[\begin{aligned} \& derree of
\& MASTBR OF ARCS \end{aligned} \]

By
JAMES R. LANG
Norman, Oklahona.
1970

```
LI
42-
.85
42535
cop,"z
```

Dedicated to
Jane and Matt

THE SHELTERBEIT PROJECT IN THE SOUPHERN GREAT PLAINS--

$$
\begin{gathered}
\text { 1934-1970 - A GEOGRAPHIC APPRaISAL } \\
\text { A THESIS }
\end{gathered}
$$

APPROVED FOR THE DEPAPTMENT OF GEOGRAFHY

ACKNONLEDGMENTS

The research for this paper has been based in part upon library research, but primarily upon records of the U. S. Forest Service and Soil Conservation Service, personal observations, and interviews. The writer is indeed most grateful to those who willingly and patiently sat through interviews, aided in field work, and read and reread this thesis.

I am indebted to G. A. Tidwell, Oklahona State Conservationist, Soil Conservation Service, and Clyde W. Graham, Texas State Conservationist, Soil Conservation Service for preparing letters of introduction to the District Conservationists in the counties in the study area; N. E. Rowley, Oklahona State Resource Conservetionist, for securing records of the Oklahoma plantings and for sharing his experiences in this work; and Albert Engstrom, Oklahoma Director, State Forestry Division, for his insights about the program and sme alternatives for shelterbelt plantings today. I am especially frateful to Ralph A. Read for generously opening the Prairie States Forestry Project historical files and to Paul H. Roberts, for allowing me to read his yet unpublished "History of the Shelterbelt Project," for sharing his Sheltcrbelt experiences, and for his financial aid.

I am also indebted to all of the District Conservationists of the Soil Conservation Service in the count ies of the study area
who generously gave of theix ijne in arranging interviews and locating possible study sites.

There are always those people who give of their ine and effort to help others without expecting to receive anything in return. To these men, Ron Carroll, John Frank, and David Busby of John Roborts, Inc., my sincere thanks for the printing of this thesis.

As in the case of all boginning researchers, the writer is most grateful for the guidance of his thesis committee: Professors Arthux: 4 . Doerr, Chaiman; Ralph E. Olson, and Harry E. Hoy. Also, I would Like to thank Professors John W. Morris and James M. Goodman for tnejr helo in this endeavor.

TABLE OF CONTPNTS

Page
ACKNONLEDGMENTS iv
LIST OF TABLES viii
LIST OF ILUUSTRATIONS ix
Chapter
I. INIRODUCTION 1
Statement of Problem 2
II. THE PHYSICAL ENVIRONIENT 6
Climate 6
Precipitation 8
Temperature 14
Evaporation 15
Winds 16
Soils 19
Terrain 22
Natural Vegetation 23
III. SOCTAL ENVIRONMENT 28
Pattern of Settlement 28
Early Tree Planting 32
Willingness of the Farmers to Cooperate 38
fand Use Near the Sheltorbelts 39
IV. THE HISTORY OF THE SHELTERBEET FROJECT 41
The Scone and Philosophy Behind the Project 41
The Initiation and Development of the Project 45
The Program 63
Summary of Project's Planting Seasons 78
V. THR SHEITERPEIT PROJECT - A VIEA PROM 35 YPARS APTERWARD 91
The Work of the Soil Conservation
Service 91
Shelterbelts in Oklahoma and Texas 98
Success (or Failure) of Sheiterbelts 123
VI. PROSPEGOS AID RECOM MENDATIONS FOR THE FITURE 150
BIBLIOGRAPHY 155
APPENDICES 271

LIST OF TABLLS

TABLE Page
I. Stock Purchased fron Commercial Nurseries 62
II. Record of Plantings by States and Accumulative Total of Annual Shelter- belt Planting 80
III. Field Windbreaks Planted in the Great Plains 89
IV. Farmstead and Livestock Windbreaks in the Great Plains 97
V. General Characteristics of Soils of the Southern Section of the Shelter- belt Zone 101
VI. Record of Planting by Counties: Oklahoma and Texas 115
VII. Abandonment: Oklahona and Texas 119
VIII. Recommended Tree and Shrub Species 141
IT1ustration Page

1. Average Annual Rainfall 11
2. Average Wind Velocity 17
3. Soil Types 20
4. Principal Vegetative Zones 24
5. Shelterbelt Zone 60
6. Cross-section of a typical shelterbelt 68
7. Leeward distance of wind protection 73.
8. Zones of reduced wind velocity leeward of barrier 73
9. Zones of reduced wind velocity 75
10. Where the Shelterbelts were planted. 113
11. Crop sapping 125
12. Counties in the Study Area 129
13. Run-down condition of shelter- belts 132
14. Run-down condition of shelter-- belts 132
15. Shelterbelt planted on sendy soil 135
16. Shelterbelt planted on tighter soj.l 3.35
17. Appearance of gams because talier trees dying out 237
18. Shclterbelt with a good stand of cedar 137
19. Shelterbelt with a good stand of Osage-orange 138
20. Shelterbelt with a rood stand of Osame-orange 138
21. Shelterbelt showine effects of livestock grazing 147
22. Shelterbelt showing effects of livestock grazing 147
23. Shelterbelt used by ircigation
farmer 149
24. Shelterbelt used by imrigation
farmer 149

THE SHELTERBELT PROJECT IN THE SOUTHERN GREAT PLATNS - 1934-1970

CHAPTER I

INTRODUCTION

In the early $1930^{\circ} \mathrm{s}$, conditions throughout the Great Plains, particularly in the "Dust Bowl" area, were such that some plan of action was needed to help stabilize the physical environment and to provide relief for the region's inhabitants. Drought, wind, and crop failures were creating havoc within the region. To compound these problems, the nation was in the grip of a financial depression. Many farmers were in particularly dire straits. The drought and wind were causing videspread crop failures, and where the farmer could not produce a crop, he was in danger of losing his land. Even where crops were produced, the prices were so low that the farmers could barely meet the payments on their debts. Winds were blowing topsoil as far east as Washington, D.C. and, on occasion, even onto ships out in the Atlantic. Many farmers abandoned their farms and headed west or moved to more favorable areas in the humid east, leaving behind their farms, once quite productive, but now buried under an ever-shifting sea of dust. The adverse veather conditions prohibited the vegetative growth necessary to provide a cover to hold the soil in place during the high winds of spring. Farmers who stayed behind stood by helplessly watching their precious topsoil blow from their farms. All they could do was hope for a míracle to alleviate their suffering.

President Franklin Roosevelt had long been aware of the plight of the Great Plains farmer, and the problem was brought right to his doorstep when a layer of fine, red dust settled over the capitol--dust blown in from the Great Plains. One of the programs he chose to bring relief to the Great Plains was an enormous tree planting scheme known as the Shelterbelt Project, a program which was destined to become one of the most controversial ones of the New Deal. This Shelterbelt Project is the subject of this study.

Statement of Problem

What is the present status of the Shelterbelt Project (officieliy, the Prairie States Forestry Project), started in 1934 as one of several governmert schemes to stabilize the soil and the economy of the Great Plains and to change this drought-stricken area into a more productive agricultural region? Thirty-five years have elapsed since the beginning of the Project. Most of the Shelterbelt vegetation has had an opportunity to reach maturity, and a proper evaluation of the success or failure of the project can be made. The stated objectives were to assist in stabilizing those portions of the Great Plains adapted to tree planting and to provide employment for the people of the area. Though these were its declared purposes, perhaps it had hidden objectives and consequences equally as important. Was this project really designed just to provide jobs through government work? Was the sale of trees and shrubs by commercial murseries a means to add money to the nation's depressed economy? Are there any microclimatic effects of the shelterbelts? If so, what is tho rolation of these microclimatic effects to making the environment more habitable for people? Has wildlife conservation beon fostered
or deterred by the presence of shelterbelts? Was the project successful in carrying out its goals? If so, were the goals of 1934 the same as those of 1970? If the injtial goals were not achieved, what factors contributed to their failure? To what extent has the land once used for shelterbelts been diverted to non-forest uses? These and other questions will be assessed in an analysis over time and space. Although a sumary of the whole Shelterbelt program will be given, the greatest emphasis in this thesis wjll be placed upon those parts of it that are in Oklahoma and Texas.

Although this study is to be a geographic one, the literature in the field of professional geography is somewhat restricted as far as the Shelterbel.t Project is concerned. Although some articles were found in geographic journals, most of those used were published by the forestry profession. There were numerous articles published in the November and December 1934 issues of the Journal of Forestry that dealt with professional criticism which arose over this controversial program. In the same issues, there were also rebuttals by those who felt the criticism unwarranted. These writers attempted to explain the program and to correct some misconceptions concerning it. In addition to the acadenic magazine articles, many popular ones of the time have been used. Theix number is a good indicator of the seneral public's interest in the project.

Several books were used to get a general urderstanding of the Great Plains and the conditions of the times. Some of the more important of these Here Carl F. Kraenzel's The Great Plains in Transition, Wilmon H. Droze's 'The New Deal's Shelterbslt Project, 1934-192.2," a chapter in Essays on the Mew Deal (a good treatment of the political problems Involved in the Iroject), and Lawrence Svobida's An Bupire of Dust (one
man's account of how he battled the drought and finally gave up). Edgar B. Nixon's Franklin D. Roosevelt and Conservation, 1911-45, (two volumes) was especially important because it provided an insight into FDR's thinking along the lines of the project. Three other sources of information valuable to this study were E. L. Perry's "History of the Prairie States Forestry Project" (an unpublished report for the U. S. Forest Service), Fred Floyd's "A History of the Dust Bowl" (an unpublished Ph.D. dissertation, University of Oklahoma, Department of History, 1950), and Paul H. Roberts' "History of the Shelterbelt Project" (an unpublished manuscript).

The richest source of materials for this study was found at the Pocky Mountain Forest and Range Experiment Station, Jincoln, Nebraska. Here the historical files of the Prairie States Forestry Project are stored. These files were generously opened for use by the writer.

The records of the plantings of the Shelterbelt Project now held by the Soil Conservation Service at Vernon, Texas, for the Texas plantings and at Fort Worth, Texas, for the Oklahoma plantings were also used, along with several county soil surveys published by that agency. The records provided much insight into some of the problems faced by the project workers. The Possibilities of Shelterbelt Planting in the Plains Resion provided a great deal of technical information about the Shelterbelt Froject.

From available Soil Conservation Service records, a spatial pattern of the shelterbelts in the southern Great Plains was determined. Then, using aerial photogeaphs of the period and others of more recent times, a randon sampling of areas was conducted to choose selected sections for more intonsive study. Once areas were selected, fieldwork began.

In the field, still other areas were examined so that comparisons could be made. Interviews were conducted with personnel of the Soil Conservation Service and Forest Service as well as with landowners in the study areas. Using these tools and methods, an evaluation of the Shelterbelt Project has been attempted.

THE PHYSICAL ENVIRONMEIVI

Climate

Within the continental United States the Great Plains region includes all or part of twelve different states and comprises about 30 per cent ${ }^{l}$ of the total area of the country. It can be divided appropriately into two sub-regions, the tall-grass prairjes in the east and the short-grass plains in the west.

During the 1930° s disaster struck the Great Plains. The persistent and pervading drought, called for immediate action for the relief of the people and for control of wind erosion. One such action plan was the Shelterbelt Project with which this study is concerned. Before discussing the project, however, it is necessaxy to examine the various aspects of the physical environment of the Great Plains in order to understand better the impact of the prolonged dry period.

The various physical geographic factors, such as climate, topography, and soil fertility, working together in a variety of combinations or separately, can influence the agricultural conditions of a region. Of these factors, Kincer says that climate is the "most
${ }^{\text {IRaphael Zon, "What the Study Discloses," Possibilities of }}$ Shelterbelt Plantine in the Plains Rocion (Washington, D.C.: Government Printing Office, 2935), p. 3 .
fundamental, unalterable, and important, not oniy in influencing the distribution of particular crops, but also in determining the suitability of land for agricultural purposes. $:^{2}$ So it is with the climate of the region under discussion.

Some authoxities describe the climate of the Great Plains as being unique. ${ }^{3}$ Whether plainsman or outsjder, one must realize this particular point if he is to undexstand the Plains rogion and its peculiar problems. This climatic uniqueness has a special importance to this study, because understanding it will help to elaborate the problems affecting the whole Shelterbelt Project. A brief general summary of the physical environment, it is hoped, will illustrate the need for sone means to help hold this land and to control soil blowing.

Kraenzei, in describing the Giveat Plains, said it is a region that is "not an erid land" for, if it were, its place could reacily be understood. Likewise, the Plains are not a humid or subhumjd iand, because if they were they would stand shoulder to shouicer with such areas as the Midwest, the South, and the East in benefiting fully from "the preponderantly urban and industrial civilization in the United States today. ${ }^{4}$

Zon, speaking of the clinate of the Great Plains, calls it a "trancition Gone between the humid region to the east and the semjarjd

2Joseph 3. Kincer, "The Clinato of the Great Plains as a Mactor in their Utilization." Annals of the Association of American Gengraphers, XIII (June, 1923), 67.

3Carl F. Kraenzel, The Great Flains in Transition (Norman: University of Okiahoma Press, 1955), p, 12; John R. Borehext, "The Climate of the Central North American Grassland," Annals of the Association of American Geonraphers, XT (March, 1950): p. 14.

4Kraenzol, The Great Plains in Pransition, 12.
region to the west, embracing all the gradations between the two." 5 If the region cannot be described as semiarid or subhumid, what would be the best term for the Plains' climate?

Again, Kraenzel provides some insights by further expanding on what Zon said. The Great Plains are a "semiarid land, not in the sense that they are halfway between humid and arid." They are not half dry and half wet. He explains the climate of the Plains in three patterns: in some years, they are dry, even arid, while in others they are very wet, and in still other years they are wet or dry at the wrong times "in terms of agricultural production and yields." This "undefinable aspect of semiaridity" gives the region its distinctiveness. 6

Both of the authors just quoted have described the Great Plains climate in rather broad, general terms. Now the task is to examine some of the major characteristics which go to make up its "uniqueness" or "distinctiveness."

The location of the region contributes to this unique climate, whose overall character is continental. Its interior position, its distance from large water bodies, and its relation to the north-south trending mountains to the west influence its major weather components: precipitation, temperature, evaporation, and winds.

Precipitation

The first of these factors, precipitation, is of extreme importance to the people and the economy of the Plains. As mentioned earlier, the moisture in this area varies from year to year and from

5Zon, "What the Study Discloses," 3 .
GKraenzel. The Great Plains in Transition, 32.
month to month. So, whenever one discusses precipitation, particularly rainfall in the Great Plains, he must talk about its variability as well as the annual "average" precipitation.

The moisture received in the Plains is dependent upon three major air masses and their relation to each other.? The air masses of Arctic origin are generally cold and dry, those coming off the Rocky Mountains are usually dry and warm, and those coming from the Gulf of Mexico and South Atlantic areas are warm and moist in nature.

Of the three air masses, the Guilr-South Atlantic air mass is of most importance as a carrier of moisture to the Great Plains region. It is this dependence upon one source and southeasterly winds which is largely responsible for the limited quantities received in the most northern and western portions of the Plains, for the great variability in precipitation in the southwest part of the area, and for the frequent recurrence of droughts. Together with this factor, dependence on one moisture source, is the southerly course of some cyclonic storms during the winter, which results in extremely low precipitation in the North, with the ratio of winter moisture to the annual amount increasing southward.

The two remaining air masses supply the Great Plains with little precipitation, mainly because moisture from the Pacific is largely cut off by the Pacific ranges and the Rockies. Facific moisture is drawn
$7_{\text {For nore }}$ noxtensive coverage of this subject, see: C. G. Bates, "Climatic Characteristics of the Plains Region," Possibilities of Shelterbolt Planting in the Plains Region (Washington, D.G.: Government Printing Office, 1935), pp. 87-88; Borchort, "The Clinate of the Ceniral North American Grassland," 21-23; Glenn T. Trewartha, The Earth's Problen Climates (Madison: The University of Wisconsin Press, 1966), pp. 259-66; Goorge R. Rumney, Climatolory and the Vorld's Climate (London: The Macnitlan Company, 1968), pF. 355-62; Kraenzel, The Great plains in Transtition, 12-13.
from the winds as they ascend the mountain barriers, and as the winds descend on the lee side, they are dried and warmed, allowing only desiccated Pacific air to arrive in the Great Plains. As for the Arctic air, because of its cold nature, as it enters the drier interior grassland, it is even less likely to add any appreciable moisture. Whenever there is a collision between two of the three air masses, especially if one is the maritime tropical air mass, precipitation of ten results.

Figure I^{8} shows the arerage annual rainfall for the Great Plains for a forty-year period, from 1895 to 1934 . However, since this study has to do only with that strip of it known as the Shelterbelt zone, the average annual precipitation for that area is more meaningful. In the northern portion of the zone it varies from 24 to 16 inches, whereas in the southern half it is 29 to 22 inches, ${ }^{9}$ decreasing in each case from east to west. Average precipitation figures, however, do not tell one much about this zone or about the Great Plains as a whole because records for all stations throughout the region show that there are significant annual fluctuations in precipitation. What the records do not show, and perhaps this is of greater significance, is the variability of rainfall within the year. ${ }^{10}$ It is this element of rainfall which determines if a particular year will have a suitable growing season.

In the Great Plains, the bulk of the year's rainfall normally comes during the growing season, from spring through summer. This moisture

[^0]

Figure 1. Average annual precipitation in inches for the 40-year period 1895-1934.
arrives at a critical period in the scheme of life on the Plains, bocause soil moisture has been largely depleted during the dxier winter monthe. If the year's precipitation has been adequate and the soil still has some moisture remaining, then the spring rains will replenish existing stores. If the precipitation was much below normal in the preceding year, the soil moisture deficit may be so low as to preclude adequate replenishment by spring rains for the sribsequent summor growing season. In the Great Plains, it is not uncommon to find one or two months wjithout any rain, ox only a trace, followed by sevexal rainy months. Then the variability of the monthly rainfall becomes a limiting factor in the agricultural production of the region.

The variabjlity of the annual total of rainfall is allso quite pronounced in this region. Joerr and Sutherland pointed out that even In the dry decade of the $1930^{\circ} \mathrm{s}$, in the humid years of the $1940^{\circ} \mathrm{s}$, and in another dry period of the 1950's, there were "many small variations in clinatic conditions" which occurred durins the dry or humid decades. For example, during the 1930° s, the worst years were 1933 , 1934 , and 1936 , whereas relatively humid conditions existed at the beginning and the end of the decade. Those living in the Great Plains have had to adjust to these climatic varigtions and leam to live within the extremes inposed upon them by such variations, ${ }^{11}$

[^1]The warm season concentration of precipitation becones especially important in the northern section of the Creat Plains where the growing season is shorter than in the southorn half and in the western part where the total anmual rainfall is less. In both the northern and western areas a "high degree of coincidence between rainfall and the growing season is essential."12

Another important factor of rainfall is intensity. As Thomthwaite puts it:

The higher the intensity of the rajnfall, the lower is its effectiveness. For stations in the axea where records of excessive rainfall exist, we find that the rainfall of a single hour has brought 12 to 16 per cent of the moisture of the entire year. Three inches of rain in one hour, when the year's total is only 18 inches, is clearly not a satisfactory distribution. 13

The intensity of the rainfall varies with the season and the type of storm, from slow drizzling rains to heavy tormential thunderstoms.

Although a rain's effectiveness is lowered by a high intensity rainfall, there are also other factors to be considered. Runney lists the following circumstances which influence the amount of moisture in the soil available for plant use, after evaporation and run off:
...the kind and condition of the veretative cover, depth, and porosity of the soil, temperature of the soil, temperature of rain as it falls, speed and persistence of the wind, duration and intensity of solar radiation, saturation deficit of the atmosphere, and air temperature, before, during, and after precipitation. 14
${ }^{12}$ Glenn T. Trewartha, "Climate and Settlement of the Subhumid Lands," Glimate and Man, Yearbook of Aoriculturc. 1941 (Washington, D.C.: Government Printing Office, 1941), p. 170.

13c. Warsen Thornthwaite, "Climate and Settlement in the Great Plajne," Cijnato and Man, Yoarbook of Agriculture, 7047 . Washington, D.C.: Government Frinting Office, 1941), p. 205.

14 Pumerey, 07imatology and the World, Climatos, 350 .

Temperature

Another of the major elements in the unique climate of the Plains, and one which has a direct bearing on the effectiveness of the rainfall, is temperature. Anyone familiar with the Great Plains region is well aware of the great extremes in temperature found here. The winters are relatively cold, and the temperature range between the northern and southern portions can be as much as $50^{\circ} \mathrm{F} .15$ Conditions become increasingly colder northward, with January being the coldest month throughout the entixe region. Temperatures at the freezing point or below persist for from more than half the year in eastern Montana and most of North Dakota to less than ten days in the Plains' extreme southern limit.

During the summer, the mean monthly Fahrenheit temperatures range from the $60^{\prime \prime}$ s in the north to the $80^{\prime} \mathrm{s}$ in the south. Extremes of heat prevail though, especially in the southerr section, where the daytime temperature may remain above 100° for days, especially in Texas and Oklahoma. The duirnal range is quite large, ranging from 25° or less in the eastern prairies to 30° or more in the western plains.

It is the wide fluctuation in seasonal temperature, along with the extremes and the always uncertain rairfall, which creates problems for the human inhabitants and their land-use practices. The temperature range between the extreme sumner maximum and the winter minimum at a given place can be as much as 100° and in some cases even larger. Rumney attributes this wide variation in temperature to the great severity of the winter cold, especially in the northern sections. Using official

[^2]data, he reports that:
The lowest recorded temperature reading in North Dakota is -60°, in central Nebraska -47°, and in central Texas -23°, whereas the highest. July temperatures of record are nearly the same from North Dakota to Texas, being 121° in the former and 120° in the latter, and at most points between the values range from 118° to 121°. ${ }^{6}$

As mentioned before, temperature plays an important role in rainfall effectiveness. This is reflected in the length of the growing season, which ranges from 200 to 230 days in Texas and Oklahoma to only 100 to 120 days in the northern states. Since the growing season is shorter in the north, the moisture supplied to it is used more effectively, mainly because of cooler temperatures and less evaporation. In Texas and Oklahoma, the higher temperatures and consequent higher evaporation rates tend to decrease the effectiveness of whatever rainfall comes.

Evaporation

Temperature and rainfall do not alone contribute to the distinctiveness of the Plains' climate. Another important element in this regional patterr is evaporation. However, like all of the elements of weather, evaporation cannot alone contribute to the region's unusual weather. The rate of evaporation reflects not only the temperature, the relative humidity of the atmosphere, and the prevailing rate of wind movement, but also the condition of the soil and the amount of moisture present there. As with the pattern of the other climatic factors in the Great Plains, the rate of evaporation during the warm season increases from a little more than 30 inches per year in the north to about 60 inches in the south. The actual difference in available moisture supply between

[^3]rorth and south has been estimated to equal abont 10 inches of annual rainfall. Evaporation decreases the effectiveness of precipitation from north to south. It is because of this factor that the necessary require.ments for soil moisture to support either tall or short grass development, as well as crops, are met in spite of the distinctive decrease in normal precipitation northward.

Winds

The Great Plains region is well known for its windiness, and this condition is probably due only in a small measure to local factors (the exception, being during the summer, when many storms are of local origin). The high winds are due more to the fact that the Plains are made up of primarily unbroten topography and are relatively free of obstacles which might tend to impede the free sweep of the wind. The velocity of the wind here averages higher than in other parts of the United Slates, with the average being between 10 and 12 miles per hour over most of the Plains. (Figure 217).

The prevailing wind direction for most of the region is from the northwest in the winter and from the south or southeast during the summer. Docasionally a southwest wind will occur and prove to be quite damaging, mainly because of its dryness and its heat.

The persistent wind, combined with the other factors of temperature, precipitation, and evaporation, often causes trouble for the Great plains farmer. The difficulties may begin in the winter season when soil moisture

17C. Wamen Thornthwaite, "The Groat Plains," in Migration and Economic Ogmontunity, Cartor Goodrich, ed., (Philadclphia: University of Pennsylvania. Iress, 1936), p. 238; also Groat Plains Committee, The Future of the Creat Plains, 29.

deficits have been carried over longer than usual and the fall-sown crops must depend on the immediate supply of moisture available. This moisture supply becomes crucial immediately but may prove fatal if the spring rains do not come in time to replenish the moisture supply before the spring winds come along with higher temperature and highex evaporation. Other unusual facets of the Great Plains climate which its inhabitants must face are the cold waves or "northers," the blizzards, and the chinooks, all of which may cause great difficulty for the Great Plains farmer and rancher.

The major climatic factors all contribute to the effective semiaridity of the region. Of these factors, two, however, were and are especially important in determining the need for a conservation plan such as the Shelterbelt Project, i.e. wind and drought. ${ }^{18}$ The tendency for the precipitation record to show several years of fairly abundant rainfall followed by periods of prolonged moisture aeficiency has already been discussed. When this periodic low rainfall is combined with the almost constant free sweep of winds and the consequent drying out of the soils, the results are drought.

Kellogs, in describing the conditions in the spring of 1934, illustrates this combination of circumstances, by saying that the specific cause for that spring's dust storms was not hard to find. Several stations in the Plains had been reporting cumulative rainfall deficiencies along with rising summer temperatures. At the same time the soils were becoming increasingly dry to the point of using up the subsoil reserves. This
$18_{\text {Hayes, }}$ "The Shelterbelt Zone: A Brief Geographic Description," 12.
general condition was intensified the following spring by continued rainfall deficiency. As a result, those soils susceptible to blowing were in a loose, dry state, and as a further result of the drought had little or no protective covering. 19

Soils

Soils of the Great Plains are potentially quite productive, but they must be protected from the ravages of erosion. Bennett said of them that they have a "superficial appearance of uniformity, particularly on the more level lands." Their productivity, however, varies widely even within a small area. They are generally considered fertile, although they exhibit wide diversity in their texture, depth, and water holding capacity. In wet years, almost any of them will produce fairly good crops, but in dry years, only those that "absorb and hold large quantities of water and resist wind erosion can be farmed successfully, "20

Figure $3^{2 l}$ shows the various types of soil that are found throughout the Great Plains region. Although the soils appear to be somewhat uniform, their productivity varies in relation to crops. This aspect created problems for tree planting also. However, this situation will be

19Charles E. Kellogs, Soil Blowing and Dust Storims, U. S. Department of Agriculture, Miscellaneous Publication No. 221 (Washington, D.C.: Government Printing Office, 1935), p. I.

20 John B. Bennett, F. R. Kenney, and W. R. Chapline, "The Probien: Subhumid Areas," Soils and Men, Yearbook of Agriculture, 1938 (Washington, D.C.: Government Printing Office, 1938), p. 69.

21 Kraenzel, The Great Plains in Transition, 26-27; Arthur N. Strahler, Introduction to Physical Ceorraphy (New York: John Wiley \& Sons, Inc., 1965), p. 180; Roy I, Donohue, Soils: An Introduction to $\frac{\text { Soils and Elant Growth (Englewood Gliffs, N. J., Prentice-Hall., 1958), }}{\text { pp. }}$

Figure 3. Soil types in the Great Plains.
discussed in a later section on the shelterbelt plantings and their problems.

Basically, there are two factors which distinguish Creat Plains soils from those to the east or west. As a result of the deficjent rainfall combined with a high rate of evaporation, and the consequent upward movement of soil moisture, a layer of lime at the bottom of B horizon is concentrated near the surface. A second difference is the deep, dark color, usually a chocolate-brown in the more mature soils. 22 The fertility of the soils results from the fact that leaching is at a minimum here. Their potential for being the most fertile in the country is limited only by inadequate precipitation.

The soils of the Great Plains, then, are products of a semiarid climate. If they are to be used to their fullest agricultural extent, this factor must be realized and reckoned with. Any program to control soil blowing is not so much one to prevent decreasing fextility, but, rather to "insure maintenance of the thin topsoil." 23 Retention of the topsoil insures proper conditions for plant support and anchorage, a means for holding the plant's roots, and for stoxing the limited available moisture.

In the southern section of the Plains, principally in Oklahoma and Texas, the soils are mostly the reddish-chestnut type, with some areas of lithosols. At the time the Shelterbelt Project was undertaken, the areas most Cavomable for tree planting were on the lighter soils ranging

[^4]from sands to sandy loams. The plantings on heavier soils were subject to failure or to only partial success, and usually had only stunted growth.

Terrain

The general surface upon which the soils of the Great Plains developed is best described as a broad, nearly level to somewhat hilly plain which slopes gently eastward from the Rocky Mountains. The slope is a gradual ones descending from altitudes of 5,000 or 6,000 feet in the west to about 2,500 feet along the eastern margin. This slope averages about 10 feet pex mile. Most of the mantle covering the Plains was laid down in the past by the action of either glaciers, wind, of water. The Plains are dissected by a number of major streams flowing in an easterly or southerly direction, including the Missouri, James, Niobrara, Platte, Arkansas, and Canadian rivers. All of these rivers have carved rather deep valleys. Together with their tributaries, the rivers have left many areas of rough land. The widely held view that the Great Plains is monotonously flat is not borne out in fact on the surface.

In the southern section of the Gxeat Plains, the topography of the Shelterbelt Zone differs little from the general picture of the Plains as a whole. The High Plajns of Texas were not included in the zone; however, the area known as the rolling plains, lying several thousand feet below the High Plains and to the east of them, was included. The High Plains and rolling plains are separated by a sieeply sloping and extremely gullied escarpment, known as "the breaks." East of the escarpment the land is marked by numerous drainage ways. Here the surface is best described as rolling to billy, with the same gradual slope eastward. In most places, prolonged exosion hess removed tho thick Tertiary doposits and their
underlying formations down to the "Rod Eeds" of Triassic and Permian age. These consist mainly of red, limey, soft sandstones and sandy shales, in some places containing thick gypsum beds. The Red Beds lie at such shallow depths over a large area that they give the land a characteristic reddish color. In many places, the finer materials have been removed from the surface of the Red Beds by wind and water, and the "residual sands have been piled by the wind into hills and ridges," thus creating a topography similar to the sand hills of Nebraska but lesser in extent. ${ }^{24}$

NaturaI Vegetation

When the first white man reached the central part of this newfound continent, he found a vast land of tell waving grass extending from Texas northward into Manitoba. To this grassland, with its wide assortment of grasses and wild flowers, he ascribed the name "prairie." Further to the west and beyond this grassland was "on even more extensive but drier and sparser grassland" which reached to the Rocky Mountains. This drier land became known as the Great Plains. 25

As with the other elements of the physical environment of the Plains region, the natural vegetation has had to adapt to its semiaridity in order to survive. Within this vast expanse of grassland, two principal plant associations dominate: along its eastern margin is the tall-grass prairic, and along its western edge is the short-grass plains, with a

[^5]\[

$$
\begin{aligned}
& 25 \mathrm{~J}: \text { E. Weavex, North American Prairie (Lincoln, Nebraska: } \\
& \text { Johnsen Publishins Company, } 1954 \text {), p. } 3 \text {. }
\end{aligned}
$$
\]

Figure 4. Principal vegetative zones of the prairie-plains region.
transition zone of mixed prairie grasses between the two. These can be seen in Figure $4 .{ }^{26}$

The dividing line between the principal associations is the 20 inch isohyet, which in the northern plains is approximately along the ninety-eighth meridian and in the southern section is slichtly west of that meridian. ${ }^{27}$

The associations of grasses which are found here have been able to evolve for two primary reasons. First, they have had to adapt so that they can make use of whatever precipitation is available. Second, they have had to form on soils which are effective in absorbing and holding any moisture that falls on them. The proper combination of these factors required for the tall grasses, such as is found in the east, occurs when the conditions are right for a high moisture content available in the soil for a relatively long time through spring and summer. As for the short grasses, they are adapted to the more difficult situation that is found in the west.

Although the 20 -inch isohyet represents the approximate dividing line between the vegetation of the prairie and the short grass plains, it is quite ixregular, as noted above. In reality, it is a north-south zone where the precipitation, decreasing westward, occurs in just the "requisite marginal amounts" to insure the growth of both the tall and short species of grasses in association or mixture; this may occur as a "commingling of

[^6]individuals or of limited tracts or patches, as determined by local variations of soil."28

Within the confines of this irregular mixed-prairie zone, the soils vary from "clay or silt through a series of loams to pure sard, either fine or coarse, with the silt or loam predominating;" along its western border, the exclusively short-grass country, there are extensions of the more continuous heavy western soils. Its eastern border becomes a. little more regular because soij differences axe somewhat equalized as climatic factors become more favorable. 29

In the final location of the shelterbelt zone, the determination of the boundaries of the mixed prairie zone was an important factor because the shelterbelts had to be placed far enough west to protect those predominantly agricultural aceas, and "yet not too far to insure success in growing trees." East of the mixed prairie, there is a higher percentage of farm land, but this zone represents the "westward extent in the central region of land which may be considered predominantly actual or potential farm land...." Also the presence of well-established tall grasses in the grassland cover indicates a more favorable depth of water penetration than the shallow depth found in the short-grass plains along the zone's western margin. 30

For the most part, trees are absent from the prairie-plains except along the waterways of both the large and small streams. Wherever trees are found in places other than these areas, it is because the early settlers transplanted them on their farmsteads. It was also found at an

[^7]29 Tbid.
30 2bid.
early date that trees could be planted in other areas on the prairje-plains if they were grown from seeds and if proper care was administered to insure survival. Naybe it was the work involved which caused many landowners not to plant trees. Possibly, it took all of their energy to produce a living from this fickle land, and they just did not have the time to give proper care to the trees. Whatever the case may have been, early critics of the project were quick to point out that trees could not be grown on the plains, not really investigating the mattex as closely as they should have.

Briefly, then, this is a look at the Great Plains' physical environment and some of its peculiar problems which helped to bring on the Dust Bowl conditions of the 1930 's. The problem which faced the region during this era was soon to be taken over by the National Government in an attempt to alleviate suffering. Some progran was needed to help control the terrible soil blowing taking place in the Great Plains, The President had an idea, and it was left to the Forest Service to come up with a plan of action. ${ }^{31}$ Over a vast area of over 500,000 square miles, Forest Service personnel were to pick a strip 100 miles wide and 1,150 miles long for the new tree plantings. Relating the story of the implementation and development of the Shelterbelt Project is one of the purposes of this study.

3I Interview with Mr. Paul H. Roberts, former Director of the Prairie States Forestry Project. Prescott, Arizona, September, 1969.

SOCIAL ENVIRONMENT

Pattern of Settlement

The Great Plains region has always occupjed a special place in the history of the United States, and its settlement is no less unique. For many years after the United States acquired this territory in the Louisiana Purchase, explorers were telling their contemporaries that the area now known as the Great Plains was unfit for those seeking to make a living in agriculture. One such explorer, Major Stephen H. Long, sent back such a report, and on the accompanying map, he designated the Plains area as "The Great American Desert." This label had the effect of retarding settlenent for decades to come.

In a sense, the productivity, or potential productivity, of the Plains region was discovered accidentally. The Prairie-Plains, in the minds of most early adventurers, was only an area to be crossed so that they could achieve fame and fortune in the areas beyond the great mountain barrier. The Prairie-Plains were only for the Indians or the brave-hearted loners, the mountain-plainsmen. It was eventually through the activities of these sroups, however, that the potential of the region came to light.

[^8]Because of the Indians, troops sent out to protect the westward-bound attlers established forts. The furs and hides which took the nountainInsmen into the area created the need for trading posts. These blishments, along with the stage stations, became the first hints of permanent white settlement. So it was that, while many supplies could be transported in, the few resjdents present began to raise crops in an attempt to become somewhat moxe self-sufficient. The settlement of the Plains had begुun.

However, permanent settlement as it was known in the East was still a long way off for the Plains. The primary difference was, as Kxaenzel suggests, that the Plains, bejng a "frontier beyond a humid area," were settied as the result of "individual initiative."2 The lone trader or trapper moved further from the humid area, thus extending the frontier westward, later to be followed by one or two pioneexing families, and finally ∂, x ising tide of settlers.

Another factor which retarded settlement of the Great Plains was the attitude of the early settlers. Besides being from humid areas and not really knowing how to cope with the rigors of this vast semiarid land, they felt that the cleared forest arcas were more fertile than those treeless prairic-plains. Webb said of these people, "They were bound for the land where the simple plow, the scythe, the ox, and the horse could be used according to the tradition that had been worked out in two centuries of pioneoring in a wooded country. 13 They proferred the familiar and shunned the unfamiliar, in this case the Prairie-Plains.

$$
\begin{aligned}
& \text { 2Kraenzel, The Great Plains in Transtition, } 70 \text {. } \\
& \text { 3Webb, The Great Plains, J49. }
\end{aligned}
$$

-

When settlement reached westward beyond the forest, it was first into that zone of transition between the forest and prairie. Trewartha has called it the area of the "oak openings." Here the timber "not only surrounded these local prairies," but there were "excellent trees" which "dotted the openings," thereby giving the area the "appearance of an orchard." Thus there was timber to meet the settlers' needs, and the prairie sod was not as hard to plow as further out on the prairie. 4 Still the open prairie remained unsettled. After 1850, however, settlement began to move out onto the open grassland, but only by way of the region's river valleys. Later settlers spread out between these valleys on the open, grassy areas. It is at this juncture that they began to encounter the problems which would cause them to have to change thejr farming practices and modes of living. Some of these problems were the lack of timber and water, the heavy prairie sod, and the difficult lines of transportation and communication. Of course, there were others such as low precipitation, winds, blizzards, and grasshoppers, to mention only a few.

However, using a bit of "Yankee ingenuity," the hardy settlers endured the hardships the Prairie-Plains placed upon them. Several inventions helped life become somewhat more tolerable in this region. Anong these were barbed wire, the windmill, the sod house, and the steel plow. The railroads also had their part in opening the Prairie-Piains to settlement. However, this story is too familiar to be repeated here.

The first agricultural pursuit in the Great Plains was not the production of crops but rather that of raising cattle and later sheep.

[^9]The exploits of the cattleman and sheep-herder are well-known, as much has already been written about them, so they will not be discussed here except to say that many of the lessons learned by these men in their struggle with the Plains environment helped farmers who would later follow them. First of all, if a living were to be made from this area, the land unit would have to be quite large. Second, the plainsmanfarmer or rancher would have to develop a flexibility in agricultural endeavor, thereby allowing him to be able to carry on through the periods of hard times as well as prosperous times. These lessons would not be learned all at once; most came only with experience.

By the 1860° s and $1870^{\circ} \mathrm{s}$, agricultural settlement had been extended into the Prairie-Plains region, only to stop east of the ninetyeighth meridian where rainfall was still fairly abundant and the land was quite productive. It was during this period of gradual occupance that the Government enacted legislation to encourage settlement. Under the Homestead Act of 1862, settlers could acquire holdings of 160 acres "free of all charges" except for a minor filing fee. In order to insure per-manent settlement, the law stated that before title to the land was given to the settler he had to reside on the clain for five years. 5 It was the Homestead Act which furnished the prime impetus to what may be called "a mass movement of westward settlement."6 At the close of the Civil War, many veterans moved into the region to claim land given them as bounties for their military service. The timing and progress of settlement is

[^10]indicated by the dates of the creation of territories, the admission of territories as states, and the organization of counties.?

Within the Great Plains region, one plan of settlement has persisted down to the present. When a farmer or a rancher was unable to make a living on his land, either because it was too small or because of drought, the land was absorbed into a larger unit owned by a more prosperous farmer. Such acquisitions added insurance to the latter's own operation.

Early Tree Planting

Following the Homestead Act, in 1873, the Federal Government embarked on a plan to encourage tree planting in this treeless land. The plan came about through the passage of what has been called "the nost conspicuous act" in tree planting history. ${ }^{8}$ It was recognized that what little timber there was in the region was being rapidiy depleted, and the Timber Culture Act, was passed in order to replenish the supply. Its most important provision was that title to a quarter section could be obtained for the planting of trees on forty acres of that quarter. Only one quarter in any section could be obtained in this way. 9 In 18\%4, the Timber Culture Act was amended to include smaller tracts and required only a "proportionate amount" of trees to be planted, "according to the acreage filed on." It was amended again in 1876 to permit planting in "four separate tracts,"

[^11]and the amendment required replanting if the trees failed to grow or if they were destroyed by grasshoppers. 10

In 1878, new provisions were added to the Timber Culture Act which called for planting "not less than 2,700 trees per acre." Final ownership certificates would be issued on the showing of " 675 living and thrifty trees" on each acce. Most of the timber-entry planting done during this period was carried out under those newest provisions, which were in effect ducing the settlement boom of the seventies and eighties. ${ }^{11}$

Already between 1862 and 1873, the pioneers moving into the Plains region had planted a considerable number of trees in the form of groves and shelterbelts in an effort to break the force of the wind, and to provide themselves with much needed wood products. In some areas, they planted Osage-orange (Toxylon pomiferum Ra.f.) hedges to serve as fences. It was not until the passage of the Timber Culture Act (known also as the Timber Claim Act) that tree planting became more widespread. This act, repealed in 1891, was not considered to have been successful. However, it did have the effect of bringing to the public mind the importance and value of trees on the Plains. Because of the new awareness of trees, commercial nurseries in the Great Plains began to obtain proper planting stock for the region.

Following the Homestead Act and the Timber Culture Act, along with their various amendments and revisions, were several other federal acts which, elthough not dealing specifically with tree planting, were

[^12]11 Ibia.
important in showing that the Government realized that this vast area could not be farmed or settled like the more humid regions. Among the more important ones were: the Desert Land Act of 1877, allowing title to 640 acres per settler, with the possibility of irrigating some or all of it later; the Enlarged Homestead Act of 1909 ("Dry Facming Act"), giving 320 acres as a homestead and stipulating that one-fourth of it would be cultivated; the Stock Raising Act of 1916 and the Kincaid Act which recognized the "transitional nature of the Plains between a strictly agricultural status and more extensive forms of use;" and the Taylor Act of 1934 which recognized the difficulty of prescribing homestead acreages as a basis of land use on the more arid plains and pointed out the need for the regulation of such uses in the interests of the western grazing industry. ${ }^{12}$ These acts were to be effective in parts or all of the states and territories in the western section of the United States.

While the above acts were being enacted, certain other measures were being carried out to put more trees on the Prairie-Plains. The first of these occurred in 1902 when Theodore Roosevelt established the Nebraska National Forest as "the largest demonstration of sand-hill planting of conifers" in a western state. The following year a similar tree-planting experiment was made in a somewhat similar area in southwestern Kansas, where it was hoped that another national forest could be established, but that effort was abandoned in 1915. 13

In 1913 Congress, in its appropriations for the Department of Agriculture, granted to the Bureau of Plant Industry permission to

[^13]establish the Northern Great Plains Field Station at Mandan, North Dakota. Part of the field station's responsibility was "growing, distributing, and experimenting with trees suitable to that region." Between the years of 1916 and 1934, this station distributed over $6,000,000$ trees, 14 which represented more than 2,700 demonstration shelterbelts. ${ }^{15}$ When in later years the Forest Service was trying to establish a workable plan for its Shelterbelt Project, it depended quite heavily upon the records of this station for information on species, methods, and conditions for planting. 16 The Bureau of Plant Industry also established field stations at Woodward, Oklahoma, and Cheyenne, Wyoming, for the southern Great Plains and the central Great Plains respectively.

On June 7, 1924, Congress passed the Clark-McNary Act, which provided for cooperation between the federal government and state governments, and the landowners in promoting Plains forestry. It provided for: 1) the protection of forest land from fire, 2) the study of existing tax laws and the devising of new tax laws to promote forest conservation, 3) the procurement and distribution of the forest-tree seed and planting stock, 4) the establishment and renewal of wood lots, shelterbelts, and other forms of forest growth, and 5) the development and improvement of timbered and denuded forest land through acquisition and control by the federal government. Of these provisjons, Section 4 was to become quite

$$
14 \text { Ibid. }
$$

15U. S. Forest Service, Prairic States Forestry Project, Forestry $\frac{\text { for the Gceat Plains }}{1937 \text {), p. 5. Typewritten Report, Lincoln, Nebraska, September 15, }}$ 16Ibid. ; Interview with Paul H. Roberts, September, 1969.
important in the region where the Prairie States Forestry Project was to be initiated. ${ }^{17}$ Under this section, the farmer could receive nursery stock for the purpose of planting windbreaks or wood lots, usually at a flat rate charge. The responsibility for the planting and caring for the trees was assumed by the farmer.

Along with the federal government, the Plains States had encouraged tree planting, some before the Timber Culture Act was passed and some after its passage. Many state laws were later superseded by the Clarke-McNary program. Some of the more jmportant programs were the establishment in Nebraska of Arbor Day on April 10, 1872, and the proclamation of the Nebraska National Forest on April 16, 1902; the passage of a Tree Bounty law in South Dakota in 1919 and its revision in 1920; and the adoption of a forestry law allowing some adjustments in taxes for tree planting in Kansas in 1887.

The results under these acts were varied. For example, there were numerous cases of fraudulent attempts to claim free land under the Timber Culture Act. On the whole, though, these attempts represented only a small fraction of those applying. In the case of the great majority of the applicants, the settlers wanted trees and were willing to comply with the letter of the law to get them. However, minimal compliance with the laws and desire were often not enough; the actual growing of the trees presented mariy difficulties. Many times the trees selected for planting were chosen more by reason of the individual's personal preference than for the hardiness of the species. The stock was often purchased from

[^14]comercial nurseries outside the Plains, and many species were not adaptable to the region's environment. Likewise, the planting sites were not always compatible with the growth of trees. As things worked out, the experience of growing trees had to cone from the farmer hinself, and much time was lost in the process of gaining this experience.

In the fall of 193'4 the Forest Service emberked on what has been called the most talked-about program of the New Deal era--the Shelterbelt Project. Some felt that the reputation of the Forest Service was being placed on the line, but there was a growing optimism among a small group of government foresters, who were to become the Plains foresters, that trees could be made to grow in the Great Plains. The basis of their optimism was that some trees had been grown there successfully, and with proper selection of species and proper care, it was felt, they could be grown in large numbers. So as the fall of 1934 became winter, they began to gather information to prove their point. Considerable supporting information was to come from the Bureau of Plant Industry's Field Station at Mandan, North Dakota, which had carried out much experimentation in the area of shelterbelt planting. In addition, the results of the various Plains States' own experiment stations were used. At the same time, seeds were being collected within the region so that by spring the actual planting could begin. The rosult of the first season's work was published in a report, early in 1935, called Possibilities of Shelterbelt Planting in the Plains Region. The scope of the report is found on its title page:

A study of tree planting for protective and ameliorative purposes as recently begun in the Shelterbelt Zone of North and South Dakota, Nebraska, Kansas, OkIahoma, and Texas by the Foxest Servjco; together with information as to clinate, soils, and other conbitions affectins land use and tree growth in the Region.

Armed with this technical knowledge and the past experience of growing trees in the Plains, the Forest Service was ready to begin planting in the spring of 1935. However, before getting into the actual workings of the project, there are additional matters of imnediate concern.

Willingness of the Farmers to Cooperate

First, the attitude of the farmers and their willingness to cooperate with the program had to be accurately assessed. Although many of the earlier settlers had attempted tree plantings, about as many failed as succeeded. The failures caused many of them to give up the idea and become accustomed to a treeless environment. Marginal environmental conditions and defeatist attitudes at the beginning of the Shelterbelt Project, along with the accompanying criticism of some of the foresters, the general lack of endorsement from the agricultural colleges, and the widespread unfavorable publicity of the newspapers and magazines, provided the intellectual milieu within which the farmers had to make their decision to support or fight the project. Many farmers believed that the amount of land to be taken up by the belts and the efforts to be expended in establishing and maintaining them did not justify the benefits, and, as a result, they would not and did not cooperate. Othexs took the belts "merely because they liked trees rather than because they felt the belts would be of economic importance to them."I8 Nevertheless, there were farmers who wexe willing to try the program because they were tired of seeing their crops being blown out before they were well estabiished. Whatevor the reasons, there were many who were willing to cooperate

[^15]with the program, and at the end of the first planting season there were over 129 miles of shelterbelts planted on 263 Tarms. 19 This may have been a small start, but it represented the begirning, and support from the farmers would come.

Irand Use Near the Shelterbelts

Another matter of importance to the success of the progran was that of existing land use practices. At the time that the Forest Service proposed to put the Shelterbelt Project into effect, there were large areas which had been abused either through the cropping of short grassland which should have remained in sod, or by over-grazing. In such places as these, shelterbelts were intended to help control the blowing soil and to return the land to some useful purpose. If in certain areas land was too far gone for cropping, it was considered a good policy to return it to pasture and let it recuperate under the cover of grass.

As far as the shelterbelts affecting the land use of a particular area--either past or present--by their presence, this was not to be the case. The various sections of the Great Plains were pretty much set in their agricultural use before the belts were planted. The belts did help the farmer, especially, because he could plant his crop without fear of its blowing out of the ground before it had time to germinate. They did allow for some divorsification, such as orchards and kitchen gardens, which had been difficult to establish prior to the planting of the belts. The fixller discussion of the benefits of sholterbelts, however, will be reserved for the next chapter. At this particular point in the history

[^16]of the Plains, with the drought and the depression, a farmer might have to turn a plot of ground for one or two crops in hopes of surviving until times got better. Such a farmer might not be able to practice conservation farming, even if he wanted to. Wilson said it was for this reason that "controlled land use was unavoidable."20 It was during the era of the 1930's that the Government attempted programs which would control speculative farming within the region. One such program was that of the Agricultural Adjustment Administration, which paid allotments to farmers for keeping 15 per cent of their total average acreage out of production. ${ }^{21}$ Thus shelterbelts were meant to help hold the soil blowing and make the land more useful for the crops already there and not necessarily to introduce new uses for the land.

An attempt has been made in Chapters II and III to show the need for some sort of conservation program for the Great Plains, given the physical and social environment prevailing there in the mid-1930's. One of the programs chosen for this particular time was the Shelterbelt Project with its immediate and long term plans for relief.
${ }^{20}$ Wilson, "Economics and Social Aspects of Agriculture in the Plains Region," 82.
${ }^{21}$ Lawrence Svobida, An Empire of Dust (Caldwell, Idaho: The Caxton Printers, Itd., 1940), p. 45; John D. Hicks, George E. Mowry, Robert E. Burise, The American lation (Boston: Houghton Nifflin Company, 1963), pp. 578-79.

CHAPTER IV

THE HTSTORY OF THE SHELTERBELT PROJECT

The Scope and Philosophy Behind the Project

Iate in 1932, while campaigning for the Presidency, Roosevelt's train had been halted by a wreck near Butte, Montana, All along this stretch of the journey the train had been buffeted by winds. Now because of the heat and lack of air conditioning as he disembarked and observed the barren countryside, the candidate remarked that he would plant areas such as these in trees if elected. There were those in his entourage who felt it was a joke or possibly another campaign promise to be forgotten once in office. ${ }^{1}$ Thus the idea was born which would eventually develop into the Shelterbelt Project.

To Roosevelt, however, it was neither a joke nor a to-be-forgotten promise. While serving as Governor of New York, he had urged afforestation as a soil erosion measure and saw no reason why trees could not perform the same function in the open Plains area. ${ }^{2}$ Once in office, he contacted the Forest Service as to the possibility of establishing a tree planting scheme for the region. Through a series of conferences between FDR and the Forest Service, and in various memoranda, the idea was tossed about

RRoberts, "History of the Shelterbelt Froject," $1 .^{\text {I }}$
2"Poosevelt and the Great Plains Sholtorbelt" (Draft for an Article), p. 2. From Fijes of Prairio States Forestry Project, Linooln, hebraska, n.d.
to find out exactly what the President had in mind. It seems that some other types of planting, such as blook planting, were discussed at first before the forest strips were finally decided upon. 3 Once the shelterbelt idea became prominent, the President asked for an estimate of the cost of such a program; evidently the estimate was more than he wanted to spend. This, plus the pressures of other matters, temporarily postponed the tree planting program. ${ }^{4}$

During the interim, however, the Forest Service continued to investigate tree planting possibilities in the Plains and to gather information on windbreak plantings in this country and foreign countries. 5 This preliminary work was to lay the groundwork for the research to be carried out during the fall and winter of 1934. As work continued, though, the conditions in the Great Plains became steadily worse, and relief was needed immediately. Various programs were being devised by the government for this relief and among those, the scheme for tree planting was being reconsidered.

On July 11, 1934, the President signed the Executive Order which authorized the release of funds from the U. S. Treasury to the Secretary of Agriculture to implement a project for the planting of protective forest strips in the Great Plains region. 6 News of this authorization was not
$3_{\text {Roberts, }}$ "History of the Shelterbelt Project," 16; Edgar B. Nixon, ed., Pranklin D. Roosevelt and Conservation, 1911-45, I, (New York: General. Scrvices Administration, National Archives and Records Service, Franklin D. Roosevelt Library, 1957), p. 199.

4"Roosevelt and the Great Plains Shelterbelt," 2; Nixon, FrankTin D. Roosevelt and Conservation, 1911-45, I, 199-200, 205-206.

SIntervion with Paul H. Roberts, September, 1969.
Gperry, "llistory of the Preirie States Forestry Project, 12; Appendix I for toxt of Executive Onder.
released until July 21, 1934, at which time a great stir resulted, not only in the public ranks, but among the professional foresters as well. The stated objectives of the newly proposed Shelterbelt Project were to stabilize the Great Plains by means of planting a series of windbreaks to break the force of the wind, thereby reducing evaporation and conserving moisture, and to provide employment for the Plains people.? It was felt that through this progran it would be possible not only to stabilize the physical environinent but assure the region's social and economic welfare as well. Although these were the Project's main objectives, it had other purposes which were also important. Some of these were to prevent crop losses through "burning" or seeds being blown out of the ground prior to germination, to provide a haven for wildlife, to provide the region with trees for utility purposes as well as for their aesthetic values, to prevent soil exosion, and to trap snow to keep it off the roads and add it to the overall moisture supply.

The idea of planting continuous windbreaks, 100 feet wide, through Texas, Ok]ahoma, Kansas, and Nebraska originated with the President. As proposed by Roosevelt, these belts would be located approximately five miles apart and would consist of six parallel belts. The suggestion had been carefully considered by the Forest Sexvice, and a plan gradually evolved which called for extensive planting of windbreaks not only for the permanent benefit and protection of the Great Plains, but also for its

7Jerome Dahl, "Progress and Development of the Prairie States Forestry Project," Journal of Forestcy, XXXVIII (April, 1940), 306; U. S. Forest Service, Handuook of the Division of Timber Manacement For the Prairie States Porestry Project, Lincoln, Nooraska, 4; Jim Roe, "The Wind Reets Its Masbor," Successful Fannine, August, 1046, p. 49; Raphae] Zon, "Sheitestelts.... Mutile Drean or Workable Plan," Sóponce, JXXXI (Arcil. 26, 1935), p. 392; Perry, "listory of the Prairie Statos Forestry Project, Ih-15.
immediate drought relief. ${ }^{3}$
The salient points of this tentative plan were: 1) a belt 100 miles wide extending from Canada to Mexico would be planted in windbreaks; 2) the windbreaks would run north and south along the quarter-line fence of a section, each break 7 rods wide, making 14 acres per section; 3) within the $100 \sim$ mile belt, there would be about 100 parallel windbreaks a mile apart; 4) in all, some 1,820,000 acres of windibreaks would be planted in the sjx Great Plains states; 5) the land was to be purchased or leased for 99 years, with the purchase price employed as drought relief; 6) the costs would be: for land-- purchase or lease, \$9,100,000 and for preparing ground, planting, fencing, $\$ 61,880,000$, with a total of $\$ 70,980,000$ or $\$ 39.00$ per acre; 7) over 90 percent of this cost would go to the farmer for purchase of land and for the labor expended in the establishment and care of the plantation. The remaining 10 per cent would go for technical supervision. It wa.s estimated that about 25 per cent of the entire expenditure would be made in the course of the next 12 to 18 months, with the whole area being planted in the next 10 years or about 180,000 acres per year. 9 As can be seen from this plan, the area originally suggested by the President was expanded to include the two northern Great Plains states. According to Roberts, the author of this plan was optimistic because the zone of planting was still tentative, and the plan itself had little resemblance to the final program developed during the latter part of 1934. However, its importance lay in that it

EPerry, "History of the Prairic States Forestry Project," 10-11; Nixon, Frank?in D. Ronsovelt and Conservation, 1911-45, I, 198-99;

$$
\text { 9perry, "History of the Prairio States Porestry Projoct," } 11 .
$$

provided as a basis for the Executive Order issued on July 11, 1934. ${ }^{10}$ The program to be proposed was indeed envisioned for the immediate relief of the drought-stricken Great Plains and for its long range relief as well. This can be seen in the fact that the Forest Service had already started preparations for the planting to start in the spring of 1935 and from its estimate of the total cost of the project..... $\$ 75,000,000$ to be spent over a ten-year period. ${ }^{11}$

The Initiation and Development of the Project

As soon as the announcement was released, the Iines were drawn, and both professional people and private citizens began to choose sides in their relation to the project. The wording of the press release had been carefully worked out, yet there were those who picked out key words or phrases upon which they could base their criticism of the undertaking. 12

Roberts said that the program stirred up so much debate partly because of its boldness to plant so many trees undex such adverse conditions ${ }^{13}$ and in a region where trees were alleged not to be able to grow. Perry said, in regards to this initial criticism, that much of it was based on misconception of one or more features of the program, not necessarily the type of publicity released by the Forest Service. ${ }^{14}$ However, he felt that since it was advanced as a "project" rather than
$10_{\text {Roberts, }}$ "History of the Shelterbelt Project," 25 .
$11_{\text {Perry, }}$ "History of the Prairie States Forestry Project," 15;
Wilmon H. Droze, "The New Deal's Shelterbelt Project, 1934-42" in Essays
on the New Deal , ed. by Herold M. Hollingeworth and Willian F. Holmes
(Austin, Texas: The University of Texas Eress, 1969), p. 23.

12 See hppendix II for text of press release.
${ }^{13}$ Roborts, "History of the Shelterbelt Project," 2 .
14tperry, "History of the Pratrie States Forestry Project," 21.
as a "program," it had greater significance because what the public saw was a proposal to spend $\$ 75,000,000$ at a time when the nation's economy was already on rock bottom, rather than a conservation program designed to rehabilitate the Great Plains. ${ }^{15}$ Whatever the reasons, the tree planting scheme was subjected to much early criticism,

It seems obvious now that the Forest Service was never fully committed to a series of rigidly regimented belts running north and south, as outlined in the early plan, but rather were more interested in fitting a feasible plan to the President's suggestion. ${ }^{16}$ Chief Forester Silcox stated that one big Shelterbelt was neither planned nor started. That idea was "the fantasy of over-active imaginations." The problem facing the Forest Service was not as simple as "planting a solid wall of trees."17 Even earlier than this statement was a memorandum for the Forester, dated October, 1933, which stated the position of the Forest Service in regara to strip planting:
(1) The Forest Service should make a sincere attempt to follow the President's wishes, looking upon the proposed strip planting as a relief measure to a region where there are available only limited forms of other Federal aid, and as a large experiment.
(2) That the program be so handied that planting can be cione by any feasible method using any available method such as woodlots in some places, windbreaks in others, shelterbelts about farmsteads where that only is possible, but attempting insofar as possible to follow the broad idea of strip planting. 18

Another memorandum dated September 4, 1934, further stated that
15Tbid., 9 .
16Ibid., 21; Dahl, "Progress and Development of the Prairie States Forestry Project, 301.

17P. A. Silcox, "What's Happened to the Sheltexbelt?" (Radio addross deltivered over National Broadcasting Company network, October 12, 1938), pu, 1-2.
the purpose of planting shelterbelts alone arbitrary straight lines was merely an idealized scheme simply to illustrate the idea of continuous and evenly spaced windbreaks. Administratively, its main value was to avoid as much as possible the complications of property division and segregations. It was realized that to have the greatest physical effectiveness, the scheme would be modified and in some locales, the belts' placements would be governed largely by topography. 19 In fact, there was nevex any attempt to plant any long north-south belts. Also the Forest Service's main concern was with the individual farm unit and the system of windbreaks developed was based on obtaining the maximum benefits for these units, 20 but only in its relation to the over-all plan for the whole community. The plannexs were not interested in a string of isolated farmsteads surrounded by windbreaks, but rather in a more economical and more effective plan to control wind erosion and to secure crop protection. 21 Thus, they developed the concentration area, of which more will be said later. The Forest Service knew that conmercial forestry had little place in the Great Plains because the land is too valuable for agricultural purposes and growing timber would be too costly. However, farm forestry is of prime importance as a conservation and an agricultural improvenent measure, and is a factor in making the Plains a more Iivable region. ${ }^{22}$ It was never the intent of the Forest Service or

19 Ibid.

${ }^{20}$ Dahl, "Progress and Development of the Prairie States Porestry Project," 301.
27."Sheltorbelts," Handbook of the Division of Timber Kanagement for the Proirie States Forestry Frojoct, 13.
22. Dahi, "Progress and Development of the Prairje States Forostry Project," 302.
the project to withdraw any considerable portion of the Plains area from agriculture or to transiform it into a forest region. The sole purpose was to plant shelterbelts in such a manner that "they will contribute to the increased productivity of the land so protected."23

The debate continued until the populace had a better understanding of the policies and aims of the project. $2^{L_{r}}$ This understanding came about by the leading proponents of the project going out to the people to explain, mostly in the form of speeches, exactly what the program hoped to accomplish. Others used the written word to accomplish the same thing. One of the best articles on the Shelterbelt appeared in the December, 1934, issue of the Journal of Forestry. 25 Carlos Bates, of the Iake States Forest Experiment Station, answered the professional foresters' criticism found in the November issue of the same journal, by describing cormpletely the plan of action to be followed. The details of their criticism can be found in the following references and will not be discussed within this study. 26

After the Presj.dent had given an indication of what he wanted and where he wanted the program, in the Forest Service, in a memorandum

> 23 U . S. Forest Service, "Forestry for the Great Plains," 3 . 24 Interview with Paul H. Roberts, September, 1969 . 25 Carlos G. Bates, "The Plains Shelterbelt Project," Journal of Forestry, XXXII (December, 1934), 978-91.

26 See: H. H. Chapman, "The Shelterbelt Tree Planting Project," Journal of Forestry, XXXII (Novomber, 1934), 801.. 1 Disest H. H. Chanman, "Digest of Opinions Received on the Shelterbelt Project," Journal of Forestry, XXXII (hovember, 1934), 952-72; William I. Hall, "he Grand Sheiterbeit Froject," Joume? of Forectry, XXXII (Fovember, 1934), 973-74; and Elisworth Hurtington, "iarginal Iand and the Sheitexbelt," Journa? of Foresticy, XXXII (November, 1934), 80't-12.
prepared for Roosevelt (in 1933) by E. N. Munns, 27 indicated the program needed to carry out an effective windbreak plan. This early concept is quite similar to the actual program developed for the Shelterbelt Project. Munns stated that to be most effective in protecting crops, the strips should be at least 100 feet wide, with 10 to 20 rows of trees. This width and spacing would permit the development of forest conditions under the belts. By use of slow growing, shrubby trees on the outside and of taller, more rapidly growing trees in the center, the foliage could develop to maximum density and the greatest possible height could be attained.

He goes on to say that for the purposes outlined, the strips should be not more than a mile apart in either direction ars for maximum benefits, they should be about half a mile apart. Since the local roads in this area ordinarily follow section lines and are usually a mile apart, it appeared that widening their rights~of-way across a "broad belt of country would make possible the development of a well-spaced system of forest strips that would furnish protection benefits to a large section." If the right-of-way could be doubled, these strips could be developed as part of a highway plan.

According to the Munns plan, trees planted in 100-foot strips along the section lines, either north and south or east and west, in a belt 75 miles wide across the plains would approximate in total area a 3-mile wide solid forest block. Such a plan for planting and caring for the strips would cost more than the solid block, but there would be cextain advantages, such as easier replacement of trees and ready fire-protection

[^17]by road-maintenance crews. Any necessary additional work could be handled by local personnel. Also other operations, i.e., nursery, planting, and management, could be handled in the local area.

Besides all of the above purposes, the belts were foreseen to have certain aesthetic values, such as providing shade for any highway traveler and could be so planned as to constitute forest parks in an area where their occurrence is rare. The trees would increase the bird and small game population. There were also expected certain climatic effects in and around the strips' immediate vicinity.

Munns further stated that "a forest planting such as originally proposed would take a large area of farm land out of cultivation." It was estimated that the 3 -mile wide and 1,500 miles long forest block would require nearly three million acres. The cost of such a plan would be high, but the farm land lost could be tied into the general plan to reduce crop acreage. On marginal lands, a program of forest strips might help diversify farming somewhat, because with protection and more available moisture, a greater variety of crops could be grown. Shelterbelts might make some crop production possible on poorer lands so exposed to the desiccating winds that crop losses were greater than yields. 28

Once the Forest Service had a plan, tentative though it was for the time being, the next step was the selection of those to direct the project. The Chief Forester and some of his aides had worked with the President in developing and seeking a feasible program, but in order for it to be successful, it hed to have the best leadership available. This factor, accorbing to Roherts, was one of the great strengths of the project.

In this case, the best leadership meant experience as well. Those placed in charge of the project were all drawn from the Plains States--men who knew the conditions as they existed on the Plains. 29 The project represented to these foresters a unique challenge, and from it grew a great amount of enthusiasm for the whole program. There develoved among them an "espirit de corps", which was carried throughout the life of the Shelterbelts. 30 The Regional Administrative office was established at Lincoln, Nebraska, and the Technical headquarters was set up at St. Paul, Minnesota. Each of the six Plains states involved had a State Director with his office located within or near the planting zone.

On September 29, 1934, a directive from the Chief of the Forest Service outlined his feelings regarding the conduct of the Shelterbelt Project. The leiter stated, in part, that the one million dollars made available enabled the Forest Service to proceed rapidly with its project. It further said,

The job is a new one and the Forest Service is entering a region where it is largely unknown and an informed, intelligent support for the Project is needed before it can be contimued permanently. I want all members of the organization to approach this work enthusiastically, but with a thoroughly sane recognition that the Project represents a progressive experiment by man to ameliorate adverse natural condjtions, the full results of which cannot now be definitely stated or ascertained.

The directive also set up sone of the general objectives of the administrative phases of the project and made a tentative allocation of the one million dollars available to it. 31
${ }^{29}$ Interviow with Paul H. Roborts, September, 1959; Dah], "Progress and Development of Prairic States Forestry Project," 301.
${ }^{30}$ Interview with Paul H. Roberts, September, 1969; Interview with Sid Purton, Septomber, 1969.

$$
\text { 37 Roberts, "History of the Sholtericolt Project," } 19 .
$$

Carlos Bates in his November, 1934 article describing the project
said:
It is not an undertaking in which slip-shod mothods will succeed: it represents a challenge to the technical skill of the profession and will require that our coming foresters develop the technical skill and a love for the soil which has not been much in evidence in the past.

He went on to say that there was not a single job in the undertaking of any importance which would not require a fairly comprehensive knowledge of the entire physjcal problem and the steps necessary to meet the problem. 32 This understanding of the peculiar problem of the Great Plains region made it absolutely necessary that the project recmit its leaders from within that area. The misunderstanding of the same problem was the basis of much of the professional criticism anong non-Plains foresters in regard to the Shelterbelt. As seen by the work accomplished during late 1934, the Forest Service did not mean to employ "slip-shod" methods with its Shelterbelt Project.

Once the organizational work was completed, the active work was begun. The remainder of the fall and winter of 1934 was spent in continuing the investigations started earlier. The exploratory and investigative task was assigned to the Lake States Forest Experiment Station. Together with the Bureau of Chemistry and Soils and the Bureau of Plant Industry, this Station conducted soil surveys, studied weather records, examined many earlier windbreaks to learn more of the factors which spelled success or failure for them, initiated studies on the effect of the wind barriers on wind velocity, and continued crop-influence studies. 33 At the same time,

$$
{ }^{32} \mathrm{Carlos} \mathrm{G} . \text { Bates, "The Plains Shelterbelt Project," p. } 978 .
$$

33"piend Office for the Shelterbelt Project," Science, IKXX (Avgust 24, 1934), 180; Dah7, "Progress and Doveloment of ths Prairie States Forosi.ry Froject." 302.
the Froject's administrative porsonnel began investigative and administrative studies. From these studies, infoxmation was obtained that would furnish the additional technical and basic information to be used for guidelines on which the project would build its policies and standards. 34 The results of all their work was published in the reports, mentioned earlier, Possibilities of Shelterbelt Plantins in the Plains Region. However, the research did not stop here. As the program progressed and more and more information became available, the workers compiled a guide for shelterbelt planting--the Handbook of the Division of Timber Management. This handbook was in a constant state of revision from the time it was first processed. Roberts said of all the New Deal relief programs, the Shelterbelt was the most researched, as evidenced by these two publications. This research, combined with the leadership and the spirit in which the whole Project was carried out, contributed to its ultimate success. 35 The fact that so much research was conducted on this program separated it from other relief schemes which were put into action strictly as make-work projects.

Besides carrying on its administrative studies, the administrative division was also doing its part to prepare for the 1935 spring planting season. Some of its more important work involved collecting its own seed, usually within a 100 miles or so radius of the proposed planting sites; negotiating for land for the belts; working out agreements with commercial murseries for planting stock; and, in general, trying to sell the progran to the people within the region whom it aas designed to help.

34Dahl, "Progress and Development of the Pxairie States Forestry Project," 302.

[^18]During the first planting season, many of these tasks as well as others were to become problems to the project directors. Among the leading problems were the trouble over finances, the controversy over whether to plant the belts on privately-owned or government-owned lands, the farmers' cooperation, the physical problem--drought, the actual planting zone, and the trouble encountered with the rogion's commercial nurseries. An analysis in depth of these problems and the others encountored by the project is beyond the scope of this study, so they will just be mentioned. briefly.

The first major crisis which faced the project was securing the necessary financial funds for its operation. The President had authorized the Secretary of the Treasury to release $\$ 15,000,000$ from the Emergency Relief Act to the Secretary of Agriculture for the program. However, the Comptroller General, Joh r . MoCaxl, refused to release the funds because he said that such funds were to be used for immediate relief and not for a "project that at best can efford rclief from drought conditions only ycars hence."36 His objections also stemned from the proposed purchase of lands which according to McCarl, called only for the possibility of leasing, not purchasing the lands for the project. 37 However, a compromise was reached, and tho Comptroller General finally authorized the release of $\$ 1,000,000$ to the Forest Service for its tree planting program for the

[^19]1935 Fiscal Year. ${ }^{38}$ The money was to be used for immediate relief in employing Great Plains farmers to do the spring planting and for the initial investigations for future planting. 39 According to Perry, this amount was all that the Forest Service could use advantageously during the 1935 planting season. 40

This first year's financial difficulty was to continue throughout the life of the project. While there were some Congressmen who favored the project and its aims, it could never muster enough Congressional support to obtain the regular appropriations needed to carry out its objectives. Even after the Foxest Service had completed its investigations and had the technical proof that trees could be grown in the Great Plains, the promoters were still unable to gain the Congressional support they needed. However, the President was not to be deterred, and in the project's second year, he again used funds from emergency relief appropriations, this time from the newly-created Works Progress Administration. From that time until the Project's termination in 1942, it was funded from the WPA appropriations. Congress made only one direct outlay of funds for the project--that in 1937 for $\$ 170,000$ to be used for its liquidation. 41 This money was never used by the Forest Service.

The relationshin between the Forest Service and the WPA remained good throughout the Shelterbelt's existence nainly because they both found

[^20]a need in each other. The project received the much-needed funds for its program, and the WPA had a work outlet for many unemployed. There were some minor irritations, though these mainly resulted from the WPA regulations which maintained that there had to be a 90 to 10 ratio in the expenditure of funds and in the hiring of laborers and supervisors. The majority was spent for labor and the remainder for the project's overhead costs. For the project leaders, this restriction meant that they had to make use of their present equipment or improvise if they needed some new equipment. Once the project caught on, many of the communities in the planting zone donated such things a.s trucks, office space, warehouses, and other things which the planters needed. 42

It should be stated at this point that although the Shelterbelt Project was associated with the WPA and possibly suffered some rejection by the public because of this association, it was not just a work scheme devised by the government or WPA administrators. 43 The Forest Service, as has been noted, had a definite program in mind long before its association with the WPA. The two complemented each other mainly because of their common needs--the one, money and the other, work.

Another of the project's early problems, evident even in the planning stage, was whether to plant the belts on privately-owned or on government-owned lands. As seen above, there was strong opposition to the

[^21]purchasins of lands. Nany of the forestors, though, were in favor of such a proposal; they could, it was felt, better control the belts and insure the forest conditions they desired and also test the feasibility of the plan, thereby guaranteeing, at least, reasonable success of the plantations. 44 Various methods, besides purchasing, were proposed to acquire the needed lands, such as lease with option to buy, donation, and cooperative agreements. However, just as the purchasing of lands was impractical and costly, so were many of the other proposals. Since the funds available were to be used mainly for labor, there was little left for the necessary surveying needed to carry out the other methods. 45 Finally it was decided that the lands should be donated jf they were to be planted in sheltexbelts. This had long been Roosevelt's thinking on this subject since the planning days of the project. 46 The donation of lands came in the form of cooperative agreements between the farmers and the government, with the farmer retaining complete ownership of the land. As the preliminary work was proceeding in preparation for the 1935 planting season, the project personnel encountered perhaps their biggest obstacle for that year--the farmer. From its studies, the Forest Service was convinced that trees, with proper species selection, could be grow in the region and that it had a feasible plan for carrying out the tree planting scheme. As was pointed out in an earlier chapter, the farmer still remained somewhat skeptical, in part because the program was new.

[^22]It took some hard convincing to get enough farmers to cooperate that first year, even though there was only a small amount of planting stock available.

There were also physical difficulties involved. First of all the planting was not accomplished under the most ideal conditions the project leaders had hoped for. 47 The drought of 1934 had been quite severe, and available soil moisture was deficient in all of the states except North Dakota. The species planted had been picked because of their hardiness in withstanding extreme dry conditions, but because of the severity of the moisture deficiency, the trees in many states were watered for the first and last time. 48 Dust storns plagued the planters and, on those days, most planting operations ceased until the storms passed. The sites where the planting took place, while not classified as unfavorable to tree growth, were considered, in later appraisals, as more difficult than the project personnel considered desirable. 49

Secondly, if the Shelterbelt were to accomplish its aims, it had to be placed properly. This element had been considered in the preliminary planning and was now imperative. The location and limits of the tree planting had to be established. The varying climatic and soil conditions greatly influenced tree growth in this region, and if the belts were placed too far to the east they would not be practical; too far to the west and the trees would not survive. Therefore, the planting zone's Iocation was based on one critical test---the possibility of growing trees.

[^23]Hayes said:
The adaptation of the project to a practicable geographic framework was therefore a matter of primary and urgent imporiance, involving intensive studies or special surveys of certain conditions--soil, climate, topography, ground water, vegetative growth, and others--.throughout the general area in which shelterbelt planting was and is desirable; all to the end that the zone delimited for operations should present a satisfactory working balance between needs and possibilities, such as would insure optimum results for the undertaking as a whole. 50

The zone initially selected extended from the Canadian border of North Dakota to a line just north of Abilene, Texas. (Figure 5.51) Its width was 100 miles and its length was approximately 1,150 miles. Within the proposed zone was 174,700 square miles of land; of which 57 per cent was favorable to trees, 39 pex cent would be difficult to plant, and only 4 per cent was urfit. 52 This zone was to be the cause of a great deal of trouble and was to be abandoned later. From a practical and administrative standpoint, the idea was quite sound; however, two objections made its creation a mistake. It excluded a lot of land which needed and was adaptable to tree growth, and it had a bad public relations effect. Nost of the planting which was carried on was done so within the original Iimits, but following its abandonment in 1937 the Forest Service was able to take advantage of utilizing locations "outside its boundaries which were adapted to the purpose, and also placed selection of specific planting sites on the basis of physical conditions rather than the accident of geographical location." 53

[^24]

Figure 5. Location of the shelterbelt zone, with factors limiting its westward extension.

The Forest Service encountered troubles in its dealings with the comercial nurseries in the Plains states. The planting stock was to be purchased from the commercial nurseries as long as it was feasible or until it became necessary for the Forest Service to establish its own nurseries. However, the first planting season the project received the bulk of its planting stock from these comercial nursexies, even though the Forest Service had collected much of its own seed and seedings. There arose a conflict between the two principals. Its basis was twofold. First, the commercial nursexies were opposed to the establishment of federally-owned nurseries because of their possible encroachment on commercial sales and because nurserymen felt the axea served by them was too small to justify their establishment. Secondly, the financial setup of the project, based on year-to-year appropriations, did not help the situation. The nurserymen were reluctant to make the outlay necessary to provide the stock and then take a chance on not being paid for it because money was not available.

These differences lasted throughout the life of the project. Periodically conferences were held between the comercial nurserymen and project personnel to work out their differences. Finally, it was decided that bids would be taken both for land with nursery facilities and land without facilities, resulting in the establishment of project nurseries, most of which were not located on land controlled by commercial nursery firms. During 1935 and 1936 , twenty nurseries were in operation by project personnel. By its termination in 194, the number had been reduced to six. However, the Forest Service continued to work with and buy from the commercial firms, as can be seen fron

Table I, $5^{\prime} 4$ but the number of trees bought and the money thereby put into the region's economy was not as much as it might have been when compared to the project's total cost and total number of trees planted.

TABLE I

STOCK PURCHASED FROM COMMERCIAL NURSERIES

1935 to 1942, Inclusive

Year

Number of Trees
Total Cost

1935	$1,430,675$	$\$ 24,769.20$	$\$ 17.31$
1936	$2,539,599$	$19,873.08$	7.83
1937	55,750	260.75	4.68
1938	$1,198,760^{*}$	$7,818.84$	6.52
1939	$1,107,845^{* *}$	$5,551.57$	4.91
1940	75,000	400.00	5.33
1941	50,000	$\ldots \ldots .00$	5.50
	\ldots	\ldots	\ldots
Totals	$6,457,530$	$\$ 58,838.44$	$\$ 9.11$

*Includes 304,510 trees purchased from S. W. McDarty, Vernon, Texas, on which the Forest Service had paid lease costs for one year and which were left in the nursery as property of the Lessor when the lease was abandoned.
**Includes 354,500 trees of plum purchased from Yaeger Nurseries, Fremont, Nebraska, which were purchased "in field" and on which the Forest Service paid the digging costs, etc.

These were not the only problems which the project directors had to face, but they were some of the more important ones. Some of the others which would be solved as the actual work began on the planting were the ideal width of shelterbelts, orientation and distribution of belts, practical spacing standards for the various species and regions, species most desirable for shelterbelt planting, methods of planting, seed and nursery practices, adaptability of various soils, and determination of effect of shelterbelts on wind and crops.

[^25]So it was with the project's beginning--it had encountered uncertainty, unfavorable publicity, lack of cooperation from those it was desisned to help, and unfavorable planting conditions. However, the trees had been planted and now, with some anxicty, tho project leaders awaited the outcome of the first season's planting.

The Program

Although the Shelterbelt Project personnel were interested in the total program of farm forestry within the Great Plains, their action program was restricted to the use of field shelterbelts. This specialized type of planting combined the values of demonstration and education; stimulating or reviving interest in trees; working out problems of tree establishment peculiar to the Plains Region, as well as contributing in various vays the multiple uses of trees for the farming area. The 1935 program of shelterbelt planting was intended to accomplish far more than these stated objectives. It represented a major direct action program designed to aid in the solution of national and local problems. 55 The Forest Service knew that the shelterbelts did not represent a panacea to these problems but just one step toward their solution, and the biggest problem of the moment in the Great Plains was to protect a natural resource--.the soil.

The ultimate goal, as stated earlier, was adequate protection for the individual farm unit. But in 1934 and 1935, the general objective was the establishment of the basic pattern of shelterbelts, in hopes that once their value was realized the individual farner would undextake, on his own initiative, the planting of more belts connecting with the basic belts to

[^26]give his farm additional protection. 56 The project Jeaders also hoped that he would be able to influence his neighbors to do the same thing, thereby developing a concentrated area of field shelterbelts which would eventually contribute to the general welfare of the whole farming community.

The aim of this basic shelterbelt pattern was to establish at least two mile-long, basic windbreaks with each square mile. These basic belts were to be parallel, at intervals on one-half mile, and were to be located on land survey lines. 57 The Forest Service's prinary interest lay in providing protection for those large areas within the planting zone of each state, where the deep, sandy soils with high water tables were the most susceptible to erosion when placed in cultivation. Fortunately these same areas were also the most favorable for the establishment of trees. Most of these belts were oriented in an east-west direction to give protection from the spring winds from the south and the winter winds from the north-northwest.

From their studies and field investigations, the Forest Service realized that a project covering 15 degrees of latitude, with its varying climatic and soil conditions, could not have a rigid scheme applicable to all areas and a.ll situations. Therefore, the final program had built into it a flexibility which could be adapted to a particular situation in light of new evidence from the earlier plantings or from the past season's
${ }^{56}$ Ibid.; "Forestry for the Creat Plains," 6.
57"General Policies," Hancibook of the Division of Timber Manasement For the Prairie States Forestry Pro,ject, 2; Ralph A Read, The Great Plains Shelterbslt in 1954 (Publication No. 16 of the Great Plains Asricultural Council, Lincoln, Nebraska, 1958), p. 12.
planting. This tloxibility insured that the next season's plantations would profit from the total accumulated knowledge.

The basic design of the field shelterbelt was of utmost importance because the effectiveness of its influence depended upon the structure's capacity to diffuse and divert aix currents. 58 If this design served its purpose, the results would be the mechanical retardation of the wind velocity. Contrary to public opinion at the time, the rejuction of the velocity of the wind would have only local effect and not have a broad region-wide effect. This fact is supported by scientific records as well as evexyday experience in working with shelterbelts. Also the shelterbelts were not designed to change the climate of the Great Plains, another popular misconception. This particular idea received much more attention from many news writers than other important aspects of the program.

Therefore, in late 1934, the Foxest Service in a joint press release with the U. S. Weather Bureau issued the following statement to clarify the influence which the shelterbelts would have on the region's climate:

Meteorologists agree that the physical conditions of the air and the eacth, which camnot be altered appreciably by human agencies, basically control the climates of the various regions of the world. Extensive climatic controls are changed only through the slow processes of nature operating leisurely through many centuries. The shelterbelt will not appreciably change the climate of the Great Plains Region.

No claim has been made by the sponsors of the project that the planting of trees will change the ciimatic conditions as a whole, but rather that many unfavorable features of existing conditions, such as dust storms during periods of severe drought, will be alleviated or

[^27]modified, principally through the diminution of the surface velocity of the wind by the successive forested strips. 59

The mechanical retaxdation of the wind velocity results in a whole series of effects or benefits. Zon summed then up by saying that the evaporation from the soil immediately adjoining the shelterbelts is lessened, the transpiration from crops growing under their protection is reduced, the soil blowing is prevented, and snow is kept from being blown off the fields into gullies. He went on to say, "The aggregate effect is the more complete utilization of the precipitation."60 It must be remembered that such modifications of the existing conditions are the primary results sought rather than any appreciable change in the climate as measured by the conditions of temperature, sunshine, rajnfall, or other such factors. 61 The amount and extent of wind reduction so that these modifications can be brought about, depends upon several characteristics of the shelterbelts. These will be discussed belon.

In order to insure the above mentioned maximum effectiveness, the Forest Service planted the belts, in most cases, as follows: the outside rows were of low-growing shrubs, the next rows were of slowergrowing trees of intermediate height, and the center cows of fastergrowing tall trees. In the belts, the composition of the species was

59U. S. Forest Service, Weather Bureau Press Release, "Climatic Effect of the Great Plains Shelterbelt," October 22, 1934, I page. (From files of Prairie States Forestry Project, Lincoln, Mebraska).
${ }^{60}$ Zon, "Shelterbelts--Futile Dream or Workable Plan," 393; also see Ralph A. Read, Tree Windbreaks for the Contral Great Plains (Agriculture Handbook No. $2 \overline{50}$ of the U. S. Department of Arriculture, Washington, D.C.: 1954), pp. 3-10 for nore on how windbreaks offect the enviroment.

61"Climatic Effoct of the Groat Plains Sholterbelt."
designed to serve a multiple purpose, that is to have the fast growing tall trees for early effectiveness, spocies of longer life for permanence, conifers for year-round protection, and species of special value for hood products. Most of the belts contained at least six to eight different species of trees and shrubs. The belts were not made up of every species found in each state, but only those that had been extensively pianted and found satisfactory in earlier shelterbelt plantings. Although some species were found throughout all six states, many of the trees were selected because of their adaptability to the varying soil types and site conditions found in a particular area of the planting zone within the individual states.

During the first two planting seasons, the number of rows within these basic belts varied from 17 to 21, differing from nowth to south, primarily with the wider belts in the north. The purpose of the wide belt was not that it would necessarily offer better protection than a narrow one, but that width was necessary for proper growth and permanence, 62 The spacing varied with the species and region. The project personnel, however, found it desirable to use a uniform spacing and later, where possible, to narrow the belts. The width of a 2l-row belt was 165 feet from fence to fence, and its length varied from a quarter-mile to one mile. (Tigure 6.63) Thus, for a belt of this width and a length of one mile, 20 acres of land was taken out of production and put into trees. To many farmens, this recommended acreage ropresented too much of a loss from their crop production and they refused to have belts put on their land.

62"poxestry for the Great Plains," 6.
63\%. S. Department of Aericulture, Forest, Sorvice, The Benefits of Shelterbelts (Mimeographed report, Lincoln, Nehraska, October, 1935), p. 14.

(

There were cases where the wide belts were not econonically justifiable. After the 1936 planting season, the belts' width was reduced to 10 rows, spaced between 3 and 10 feet apart, with the trees in each row spaced 6 to 8 feet and the shrubs 3 to 4 feet apart. The spacing between the rows was determined by the farmer and the type of equipment he used to cultivate the plantations. ${ }^{64}$ Nany of the farmers were not convinced that the plantations should be clean cultivated anyway and therefore could not be convinced to use two or three pieces of equipment or to rearrange an implement two or three times in order to cope with the varying widths of the rows. 65 So a compromise was reached in which the ideal spacing was abandoned for a width more favoxable to the farmer. Also it was found that narrow windbreaks of moderate density were as effective as wider ones. 66 The spacing in the row itself was dependent upon the species and the stock available at planting time. Usually the closer spacing was considered more desirable, particulaxly in the north where the growth rate is less.

Perhaps more critical to the shelterbelt's effectiveness than spacing and width was the site condition. This factor represented the variations in the texture, depth, permeability, reaction of soils, the depth to water table, and the topography. Large differences in any of these affected the growth and survival of the different species. ${ }^{6}$?

[^28]Therefore, it was necessary for the project directors to select those sites which had a favorable combination of all these factors to insure the maximum growth, effectiveness, and survival. Occasionally shelterbelts were planted on unfavorable sites, resulting in poor belts with stunted trees of uneven height or wi.th numerous gaps where the trees had failed to survive. Shelterbelts such as these were effective to a certain extent, but in reality failed to meet the full requirements for which they were designed. Therefore, when applications were made for the belts, the project workers wanted to make sure the belts would be planted on the proper sites, if at all possible.

There were other technical aspects of the project plantings which should be mentioned, such as height, length, density, and frequency. 68 Of these, height (H) is probably the most important because the distance that protection is extended leeward is proportional to the height of the belt. If the belt is properly constructed and the wind is uplifted on the windward side, then the area of reduced wind velocity leeward may be up to 50 times the H of the trees. However, the actual area protected from wind erosion and crop damage usually lies between the belt and 10 to 20H out on the lee side. For example, the amount of wind reduction differs at leeward distances of 4,10 , or 20 times the average height of the belt, but the per cent reduction at 4H, is the same regardless of baxrier height (Figure 7). There is also some protection on the windward side of the belt. The backwash of the air currents which develop here effectively reduces wind velocity from 2 to 5 from the belt.

[^29]
Wind direction

\qquad

Figure 7. Leeward distance of wind protection is proportional to height of barrier. (After Read, 1964.)
-

The percentage of reduction in wind volocity at any particular Hi distance from a dense windbreak is relabively constant and does not depend upon how hard the wind blows. For example, a windbreak that reduces a 20 -mile-per-hour wind to 10 miles per hour at 84 , will reauce a 40 -mile-per-hour wind to 20 miles per hour at the same point. (Figure 8.) However, this relationship does not hold for windbreaks of a more permeable type. What is more important is the shelterbelt's ability to reduce wind velocity to less than 12 to 15 miles per hour, which is the threshold velocity above which soils begin to move. 69

The length of the shelterbelt is important because the belt itself serves the same purpose a rock or some other obstacle would in a stream. The air current, lite the water current, is diverted around the obstacle and reunites some distance away. Thus the shorter the length, the quicker these currents meet. For belts less than one-half mile in length, it was found that the "wind whipping around the ends will cut off from the sides the air that would otherwise be affected by the height of the barrier." Belts over one-half mile were found to give better protection because their greater length reduced proportionately the protected area lost by the wind whipping around the ends. 70

When gaps allow the wind to pour through the shelterbelts, it has the same general effect as shortening the belts. There are times, however, when gaps are necessary, i.e., at roadways, livestock lanes, and farm equipment crossings. In these cases, the graps should be angled so that the wind does not have a free sweep through the lane onto the field.

[^30] for the Prairio States Torestry Project, 3 .

0		5M	10 H	15H	2 OH
Open field velocity (m.p.h.)		Leeward velocity (m.p.h.) at			
		5 H	10 H	15H	
	20	5 to 10	10 to 14	141016	
	40	10 to 20	201028	28 to 32	

Figure 8. Zones of reduced wind velocity leeward of barrier as percentage of
open field velocity. Examples of actual leeward velocities with open field
winds of 20 and $40 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. Vertical scale exaggerated. (After Read, 1964).

Therefore, except for these accoes gaps, density from the standpoint of the shelterbelt's ability to infiltrate as well as lift the air cuments is important. Through the use of wind tunnel models and actual field exporiments, the following can be said about the density of a shelterbelt. Very dense belts reduce wind velocity in the 0 to 1011 zone more than open ones, but the distance of effective reduction leeward is limited. Barriers of moderate density reduce windspeed over a greater leeward distance than very dense ones (Figure 9C). Shelterbelts with a very perneable lower level do not reduce the wind's velocity as much as dense ones, but the maximum reduction occurs at a greater distance leeward (Figure 9B). Belts which are open or loose, very permeable from top to ground, offex small reductions near the barrier, and practically none beyond 10H (Figure 9A). Of all of these types, generally the best one is a belt of modexate density which can act as a filter rather than as a solid barrier.

The frequency of the sheiterbelts was determined by the height attained by the tallest trees in the belt. For belts with some of the taller trees, i.e., cottonwoods (Populus sargentii Dode) or elms (ulmus parvifolia Jaco. and Ulmus pumila I.), they could be placed up to a quarter-mile apart. If the belt contained trees that attained less height, they were to be placed closer together. However, the most critical factor determining the frequency was the farmer and his willingness to devote the acreage needed for the belts. In some cases, the farmer could see the present importance and future benefits of the belts; therefore, to hin, these two factors justified his having his land crossed and crisscrossed with shelterbelts. In others, the farmer could not justify removing the acceoge from crops for trees, so he refused to heve more than the basic belts or wanted none at all. planted.

Wind direction \longrightarrow

Figure 9. Zones of reduced wind velocity as percentage of open field wind (5 feet above soil) leeward of barriers of various density. Vertical scale exaggerated. (After Soegaard, 1954 and after Read, 1964).

While these technical aspects were being worked out, some of the project personnel were busy trying to recruit sites for the plantings. In order to receive a bolt, the farmer had to asree to certain requiremonts. One of the first requirements was the cultivation of the site before and after the planting. There were several reasons for this cultivation. First, it allowed the farmer to gain an upper hand in his battle to keep weeds out of his belt, thus enabling hin, in the long run, to have to cultivate the bel.t less. Also, this preparation aided in the absorption of water and so reduced runoff. The belt was not planted until the farmer met the requirements.

Cultivation after the planting was necessary to insure the survival of the trees, especially in the Great Plains where trees can not take care of themselves as they could in more humid area.s. Also cultivation afterwards usually meant that the proper forest conditions would develop under the belts, which would aid in increasing moisture absorption and lessening wind erosion. From earlier studies, the Forest Service had determined that neglect and improper care caused the failure of previous plantings, so it made this requirement a must in agreements with the farmers. However, like their predecessors, some of them failed to carry out their contract, and some of the shelterbelts failed.

When the Shelterbelt Project was first proposed, the popular belief was that it was to be oriented in a strict north-south direction; however, in the thinking of the project leaders the belts were to be orientod in such a way that they could benefit the area most. In other rords, in attempting to break or lessen the force of the wind, the belts were laid out so they would be approximatoly at right angles with the
direction of prevailing winds. Therefore, most of the belts were planted with an east-west orientation. However, some of the belts wore planted With a north-south orientation, usually along the west side of the farm to protect it from the west wind.

While the Forest Service prefemed to renain with its basic plan of orienting and locating the shelterbelts where they would give the maximum protection to the individual farm and the whole area as well, the project workers did allow the farmers to place them where they wanted if they could reasonably justify their choice. The sites picked by the Forest Service were based on surveys of each planting site as to prevailing conditions, tree growing feasibility, and in accordance with the project's standards. Generally the farmers followed the Forest Service's recommendations. Usually the farmers preferred to have the belts located on the cadastral survey land lines, and their justification was that they simply wanted the belts out of the way of their farming operations. There were those among the sheltcrbelt workers who felt that the placement of the belts should not rest with the farmer in the first place. ${ }^{71}$ Their reasoning was that it was their job to know where the belt would grow best and do the most good.

Another point which the project directors were strongly in favor of was the fencing of the shelterbelts, Fencing would serve two primary purposes: 1) to keep down the damage from grazing livestock and 2) to avoid damage from the farmer's planting crops too close to the belts. If grazing were allowed with in the belts, cattle would not only damage or destroy the young trees, but also pack the soil in the belts to the

[^31]point where it would lose some of its capacity to absorb moisture. Cropping too close could danage the trees' root systems or inadvextently knock out some of the outside rows. Although these factors were realized by project personnel and many of the farmers, the question of fencing remained a problem. It was the project personnel who had to recede somewhat from their fencing requirement, in part because the farmer had to provide all of the fencing matexials and partly because, in some areas of severe soil blowing, the fences tended to catch the soil and to pile it into great drifts. As the belts grew older, there was plenty of evidence to show that the belts which were fenced did much better than the unfenced belts but, in order to gain community interest and support, a compromise usually had to be made--in favor of the commuity. 72 Later, though, with or without community interest, large numbers of belts, fenced and unfenced, were grazed out.

Wile the various aspects mentioned here were not the only concerns of the total program, they were certainly among the noxe important as the Forest Service attempted to carry out its Shelterbelt Project. However, before concluding this report with a discussion of the various participating agencies, a brief summary of the project's planting seasons will be given.

Summary of Project's Planting Seasons

After the somewhat shaky beginnings, during which the project had gone through its early developmental and organizational stages, had over.come negative criticism with the first year's positive results, and had suffered from laci of Congressional support, resulting in inadequate funding, it had planted jts first tree bolts. These belts vere limited in exient

72percy, "His.story of the Prelrie States Forestry Project," 47-48.
not only by the number of cooperators, but by the availability of planting stock as well. The amount of stock available was small, so the planting operations of 1935 were carried out with greater ease than would be experienced in later seasons because what stock there was then had to be spread over the six Great Plains states.

As the year 1935 progressed, the trees began to establish themselves, thus proving that even under the severe drought conditions of the 1934-35 planting season, trees could be made to grow in the Great Plains region. Skepticism began to lessen. Gradual public acceptance of the program was brought about as misconceptions were clarified, as the news media gave it more favorable support, and as the farmers themselves started to accept it. The latter point was demonstrated by the large number of shelterbelt applications received by the regional offices in the six states after the 1935 season. In the majority of the cases, it was found easier to secure cooperation in the northern states than in the southern states, primarily because of the more severe climatic conditions found thexe. Since early settlement, trees have been looked on in the North to provide protection from the elements. ${ }^{73}$ Table II gives a concise picture of the project's work within each state for the life of the project. 74

Following the 1935 planting season, the actual planting operations were not the main problem faced by the project workers. In most cases, they had more than enough applications for shelterbelis, often exceeding the amount of planting stock. The amount of planting stock also increased as

[^32]
RECORD OF PLANEIINGS BY STATES

States	Miles	Acres	Farins	Trees*
North Dakota	$2,644.9$	34,711	3,954	$38,030,012$
South Dakota	$3,206.4$	44,227	5,820	$41,599,770$
Nebraska	$4,168.8$	51,621	6,944	$45,416,610$
Kansas	$3,540.8$	44,483	5,960	$39,864,221$
Oklahoma	$2,995.7$	37,117	5,092	$29,077,292$
Texas	$2,042.6$	26,053	2,453	$23,340,447$
Totals	$18,599.2$	238,212	30,223	$217,378,352$

*Including Replacements

TABLE ITU
ACCUMULATIVE TOTAL OF ANIUAL SHETAERBELT PLANLING
(Includes basic and intermediate field shelterbelts)
State \&
Year
Miles
Acres
Farms
Trees
Total Trees
NORTH DAKOTA

1935	40.25
1936	222.50
1937	82.00
1938	318.50
1939	551.13
1940	511.75
1941	447.75
1942	471.00
Total	2.644 .88

776	69
4,297	327
890	94
4,495	460
7,328	798
6,763	790
5,373	737
4,789	-679
34,711	3,954

$$
\begin{array}{r}
632,600 \\
3,378,616 \\
604,4148 \\
4,064,887 \\
5,107,683 \\
4,344,336 \\
3,811,007 \\
4,877,470 \\
\hline 26,901,047
\end{array}
$$

632,600
3,577,820
3,922,932
4,911,923
6,437,456
6,4411,903
6,134,208
$\frac{6,021,270}{38,080,012}$
SOUTH DAKOTA

1935	28.12
1936	235.88
1937	148.00
1938	431.75
1939	301.00
1940	659.25
1941	593.88
1942	308.50
Total	$3,206.38$

554	54
4,467	445
1,788	251
6,041	805
11,213	1,448
9,229	1,226
7,333	1,075
$\frac{3,602}{44,227}$	$\frac{516}{5,820}$

417	47
3,009	241
4,086	459
12,759	1,588
12,751	1,733
8,591	1,183
6.294	1,064
$\frac{3,714}{51,621}$	6,929

307,500
$2,217,533$
$2,050,587$
$6,555,050$
$7,363,300$
$4,298,687$
$3,996,436$
$2,629,843$
$29,479,036$

307.500

2,331,575
3,372,307
7,981,238
10,327,523
8,614,858
8,247,360
$\frac{4,234,240}{49,416,610}$

200,000
$3,442,900$
$3,445,821$
$5,567,979$
$8,789,318$
$7,684,885$
$6,367,376$
$4,372,002$
$39,864,227$

State \&
Year Miles Acres Farms Trees Total Trees
OKLAHOMA

1935	14.00	273	38	187,495	187.495
1936	157.25	3,293	281	1,281,694	1,378,900
1937	325.38	3,698	540	1,849,220	3,063,616
1938	1,044.50	14,381	1,664	7,489,898	8,693,209
1939	508.87	6,816	899	3,524,370	6,803,560
1940	498.87	4,917	903	2,981,350	5,144, 160
1943	360.13	2,900	603	1,625,843	3,078,279
1942	94.75	839	164	467,739	728,073
Total	2,995.73	37,117	$\overline{5,092}$	19,407,609	29,077,292

TEXAS

1935	1.00	20	2	13,880	13,880
1936	171.00	3,083	275	1,766,808	1,770,756
1937	225.50	2,561	306	1,340,033	2,622,313
1938	768.00	10,439	813	5,191,200	6,119,610
1939	434.00	5,628	568	3,582,200	6,350,600
1940	250.87	2,636	292	1,477.973	3,382,079
1941	141.00	1,246	143	740,570	2,536,330
1942	51.25	440	54	256,061	544,879
Total	2,042.62	26,053	2.453	14,368,725	23,340,447

PROJECT TOTALS

1935	129.12	2,514	263	1,839,725	1,839,725
1936	1,152.38	22,453	1.936	16,416,451	17,046,261
1937	1,321.76	15,381	1,961	8,802,915	20,475,884
1938	4.265 .87	56,995	6,282	31,980,269	39,272,038
1939	4,085.75	54,161	6,732	32,413,826	46,523,29].
1940	3.191.62	39,809	5,517	22.336,790	38,791,285
1941	2,702.88	28,995	4,696	17,507,328	32,985,104
3.942	$1,740,75$	17,905	2,836	13,055,077	20,444,764
Total	18,599.13	238,212	30,223	144,362,381	271,378,352

In addition to shelterbelt plantings shown on the pervious pages, other types of plantings were carried out as follows:

Farmstead plantings in 1935-36	$\frac{\text { Farms }}{2,798}$	$\frac{\text { Trees }}{4,885,075}$
Highway plant,ings, 1942	8	36,011
Other types of plantings, 1942	$\frac{156}{2,062}$	$\frac{525,782}{5,446,858}$
Totals	30,223	217,378,352
Grand Total (includes shelterbelt plantings listed above)	33,183	22,825,220

[^33]the Forest Service made use of its newly established nurseries as well as commerical nurseries. There was an abundance of labor available, mainly the Great Plains farmers and their sons. However, the Project's biggest problem still remained the lack of Congressional recognition and more adequate financing. The project had received the support of some Congressmen, both Democrats and Republicans, but these few individuals could not convince the whole Congress of its merits. Therefore, the Shelterbelt Project, as previously mentioned, was dependent upon WPA funds throughout its lifetime.

In 1936, a name change from the Shelterbelt Project to the Prairie States Forestry Project was implemented in hopes that by putting a greater emphasis on its relationship with the WPA, the project could receive the desired Congressional recognition. Mainly because Congress refused to accept the tree-planting scheme as a major conservation program, instead of making a direct appropriation for its continuation for fiscal year 1937, it made the aforementioned appropriation of $\$ 170,000$ for its liquidation. Even the use of its new name, the Prairie States Forestry Project, which was meant to imply not oniy a change of name, but also a change of program, failed to convince Congress of its importance to the region. However, from 1936 until its termination, the Shelterbelt Project remained known as the Prairie States Forestry Project.

The decision was made in 1937 not to seek a direct appropriation from Congress and rely on WPA funds for the fiscal year 1938 operations. Even though, the project did not seek a congressional appropriation, one congressman and one senator were looking for a way by which the Congress would finance it. The cesults of their efforts were in the Norxis-Doxey

Act, also known as the Cooperative Farm Forestry Act. Although not mentioning the P.S.F.P. by name, the Act's provisions were broad enough to include the shelterbelt plantings on farms of the Plains farmer. This legislative attempt failed because as soon as its proponents sought funds under the Act, Congress again failed to provide the necessary money on the grounds that no emergency existed in connection with the project's tree-planting scheme. Therefore, the project resigned itself to being a WPA project instead of an independent program with its own budgeting status. 75

For its last three years, the project had to be content with planting trees on a cooperative basis with the farmers, with the latter bearing about 50 per cent of the cost. Previous to this cooperative agreement, the project had borne the brunt of the cost with the farmer receiving everything and giving little in return. Aithough the program now meant that the farmer would bear equal cost, there was no let up in applications for the belts. By now, some benefits of the young sheiterbelts could be seen and the applications kept pouring in.

By 1940 , the problem of funding had reached a critical point, and the Secretary of Agriculture advised the President that abandonment of the project was the only solution. The basis for his recommendation was that the WPA rules were too restrictive for the project's many facets to be carried on under these inflexible regulations. For example, ninety per cent of the funds had to be expended for labor, leaving ten per cent for the supervisory, technical, and research operations, a fraction inadequate for such operations. These matters were fuxther complicated by

[^34]the fact that the labox was only seasonal. 76
When the project sought funds for 1941, the Secretary of Agriculture, then Henry Wallace, again sought for it the status of an independent agency with its own budget. This idea was deemed to be unwise by the President who advised the Secretary to begin transfer of the project to the Soil Conservation Service, which had organized numerous conservation districts in the Great Plains states. The money to carry on its operation was again received fron the WPA.

However, neither the Secretary of Agriculture nor the Forest Service made any effort to implement the President's suggestion to merge the project with the Soil Conservation Service. In 1941, the attempt was again made to seek independent status for the project; this too failed. The feeling now, especially on the part of the Director of the Budget, was that there was no further need for the Forest Service and the Soll Conservation Service to engage in duplication and overlapping of functions.?? Although money was received to continue operations for the remainder of that season, the end of the P.S.F.P. as a Forest Service program was near.

Many factors contributed to the final decision of the new Secretary of Agrioulture, G. R. Wickard, to transfer the Prairie States Forestry Project from the Forest Service to the Soil Conservation Service. Chief among these factors were the uncertainty over future funding, resistance from the Bureau of the Pudget, inattention from a President busy with foreign affairs, and an expanding program of the SCS in the Great plains.?

$$
{ }^{76} \text { Inid. }
$$

$$
\text { 7? Inid., } 44 \text {. }
$$

${ }^{78 \text { Tbid. }}, 45$.

So, on July 1, 1942, with Presidential approval, the Prairie States Forestry Project (Shelterbelt Project) ceased to exist as a separate program and was merged into a larger scheme to conserve the soils of the Great Plains region from wind and water erosion. 79

Among the Forest Service personnel and proponents of the project, this transfer meant that the tree planting program would suffer, as other measures would be substituted for tree planting. When the project was transferred, many of its personnel went along with it, partially in hopes of seeing to it that their work would not be wasted, and partly to try to keep tree planting an important aspect of the over-all conservation progran for the Great Plains. Those project workers who did not transfer to the SCS were given other jovs wjithin the Forest Service.

If the Shelterbelt Project (Prairie States Forestry Project) were said to accomplish but one thing in its brief eight-year life, it would be that it proved beyond any doubt that trees, if properly selected and properly cared for, can grow in the once treeless Great Plains area. However, it proved that and much more. In 1944, a Forest Service team made a survey of the project's belts and found that "in terms of meeting the main purpose for which the belts were established, that of protection against wind, the project was a success." 80 They put the survival rate for the area as a whole at 78 per cent. The growth rate of the trees during their first ten years was striking. Although the belts were only

[^35]a decade old, their owners were receiving numerous benefits. Among them were landscape improvement, control of wind erosion, increased cover for wildilife, creation of snow traps along the highways, and many others. 81

During the summer of 1954, another Forest Service team was sent out to re-examine the tree belts, as it had been twenty years since the first trees had been planted. Their evaluation revealed that over 220,000,000 trees had been planted on 30,000 farms, creating a total of 18,600 linear miles of shelterbelts during the life of the project. This team was somewhat moxe critical of the tree planting program than their predecessors. They contended that the belts planted in the 1930's would have been more effective if the design of the windbreaks, their species compositions, and the spacing and arrangement of the trees within the belts had been changed. Other criticisms included the charge that the early planters failed to adhere to the primary goal--that of planting to produce effective wind barriers. Some :ere planted to obtain wood products or fruit and even for aesthetic values. They also pointed out that the early belts were too wide, lacked enough evergreen stock, and in many cases, planted too close to roads. Farmers were criticized for allowing livestock to graze in the belts, which resulted in their destruction, especially in Texas and Oklahoma. The trees were continuing to grow, and in 1954 their survival rate was judged at 70 to 80 per cent. 82 However, the tean's report was not restricted to criticism; the investigators felt that more research was needed in some areas to insure that future plantings would be more successful.

[^36]Although the Shelterbelt Project has been over for nearly thirtyfive years now, there are still numerous field shelterbelts left throughout the six Great Plains States, with more in the northern states. Of course, one determined to drive until he found all these belts would be in for a lot of driving unless that individual had instructions as to where to go. Table III shows the number of field shelterbelts planted in the region from 1935-1966. ${ }^{83}$ This table bears out an earlier statement that shelterbelts are considered of greater importance in the northern states than in the southern states.

The Shelterbelt Project was conceived in a period of immediate danger as far as the Great Plains economy was concerned, and although it was only one of several programs designed to help relieve that danger, its relative success is a tribute to the various organizations which helped put it together. Of course, the Forest Service was charged with the responsibility of injtiating and developing the progran and then with carrying out that program. This branch of the Department of Agriculture was aided by several other branches of the same department. Among them were the Bureau of Plant Industry and the Bureau of Chemistry and Soils. These groups also had the cooperation of the various state forestry organizations with their experiment stations, and state agricultural colleges.

During the last years of the project, it was necessary to make use of Civilian Conservation Cricps personnel, due mainly to the labor shortage caused by the war. The Forest Service had made extensive use of this orgamization in other areas, but had not used the CCC boys

[^37]TABLE III
Field Windbreaks Planted in Great Plains States. Units: Miles of 2.11 types (widths range from 1 to 20 zows) -: No record available from S.C.S. or F.S. (Modified)

Year	ND	SD	Nebr.	Kans.	Okla.	Texas	Tota.1* Miles
1935	40	28	21	25	14	1	129
1936	222	236	151	215	157	17.	1152
1937	82	148	338	202	325	225	1322
1938	319	432	1007	697	1045	768	4266
1939	551	801	1010	781	509	434	4086
1940	512	659	679	600	491	251	3192
1.941	448	594	591	569	360	141	2703
1942	471	308	373	452	95	51	1750
1943	50	15	-	-	-	-	65
1944	45	27	62	27	95	1	264
1945	40	8	47	14	-	20	130
1946	81	44	115	26	31	14	331
1947	151	61	152	43	49	12	527
1948	207	77	165	58	5	5	694
1949	255	69	151.	59	40	3	636
1950	437	98	133	78	49	27	863
1951	373	126	169	77	88	15	888
1952	411	131	137	54	93	6	$86 ?$
1953	502	168	124.	48	35	19	1006
1954	496	146	85	39	159	3	949
1955	418	129	48	21	44	4	676
1956	591	184	267	118	39	8	1221
1957	813	248	206	33	37	2	1391
1958	121.7	234	119	45	14	16	1804
1959	3051	235	140	21	19	,	3315
1960	2953	275	332	23	13	1	3774
1961	2147	273	131	24	55	10	2812
1962	2580	229	146	10	-	30	3060
1963	3060	290	160		2	-	3664
1964	2620	410	140	12	3	-	3379
1965	2768	408	141	11	4	1	3469
1966	2356	480	$\underline{109}$	11	4	$\underline{1}$	3146
Total	30,068	7571	7449	4401	387/4	2244	57,531.

* Includes Total Miles for New Mexico, Colorado, Wyoming, and Montana.
much on the Shelterbelt Project. ${ }^{84}$ Their limited use was in part due to the widespread nature of the work, and in part because of the local relief situation. However, in fiscal year 1942, when the labor situation became acute, two camps were established, one in North Dakota and the other in Oklahoma. When the CCC was shifted from conservation to defense work in 1942, these camps were disbanded. The CCC did an excellent job and filled a real need for that spring's planting. 85

As mentioned earlier, the Forest Service had to relinquish control of its shelterbelt progran in 1942. The agency assigned the responsibility of continuing the program was the Soil Conservation Service. In the final chapter of this study, its work will be discussed to show what happened to the Shelterbelt Project, to see if the original objectives of the project changed, and to see how the project was carried out in Oklahoma and Texas.

Much more could be said about the work of the personnel on this project as well as about the project itself. The real proof of its success is not in how much one writes about the program; it is in driving through those areas in the "treeless Plains" where the shelterbelts were planted and letting them speak of the success of those workers and their tree-planting program.

84"A CCC Symposium," Journal of Forestry, XXXIV (December, 1934), pp. 930-51; Darrel Miller, "The Heritage of the Old CCC," Oklahoma's Orbit, November 9, 1969, pp. 26, 28-29.

85perry, "History of the Prairie States Forestry Project," 58a.

CHAPTER V

THE SHELTERBELT PROJECT - A VIEN FROM 35 YEARS AFTERWARD

The Work of the Soil Conservation Service

After eight years, 1934-1941, during which the Forest Service had planned, implemented, and carried out its tree-planting scheme, another agency was to take over the program, once considered to be one of the most controversial of all the New Deal programs. Actually the change-over had started as far back as 1938, when the Secretary of Agriculture had placed the responsibility for developing and coordinating farm forestry activities upon the Soil Conservation Service. The action was taken because "farm forestry and other agricultural problems are intimately related; farm forestry is, first, a farm problem, and second, a forestry problem." The assignment of this responsibility to the Soil Conservation Service did not exclude other interested agencies from working with farm forestry. I It will be remembered that the Forest Service had implemented its tree-planting project as an emergency measure, and now the crisis had passed. Also, it is important to note that while the Forest Service mas interested in all aspects of plains forestry, the sole concern of its Shelterbelt Project had been the planting of field shelterbelts.

[^38]For these reasons and those mentioned in the previous chapter, in late 1941, the Forest Service stanted the transfer of the program to the Soil Conservation Service. The project personnel had learned much about plains forestry and how to use it to benefit not only the individual farmer but also the whole region. These lessons would be quite valuable to the Soil Conservation Service as that organization aitempted to carry on the program. Not only did the Forest Service transfer the program but any project staff member who desired to make the move. These men were in a position to be of important service to their new organization, But, as Perry stated:

The only remaining danger lies in whether or not the Soil Conservation Service will want to develop tree planting, and particularly shelterbelt planting, as a necessary part of the rehabilitation and stabilization program of the Gceat Plains Region. At this time the Soil Conservation Service is largely dominated by agronomists who, by and large, have a tendency to believe that any conservation end that can be achieved with trees can be better and more cheaply done by agronomic methods. ${ }^{2}$

Foresters, by their own admission, felt that they would be badly outweighed by the agronomists and agricultural engineers in the new organization, and therein was a danger, for even with the best intentions, the Plains forester might be gradually diverted to other work. It had happened to other foresters in the SCS in the past. 3 This situation would be repeated now, especially if there were insufficient funds to carry on the present program.

As the Soil Conservation Service began to take over the project Where the Forest Service had left off, it must be pointed out that the Shelterbelt Project was not the SCS's first attempt at tree planting.

> 2perry, "History of the Prairie States Forestry Project," 7l
> 3Ibjo.

It had been using tree planting as a practical erosion control measure since 1933. SCS technicians had assisted farmers in the six Plains states in planting more than 51,000 acres up until 1947. They had used this practice, along with "fifty to sixty other conservation measures, according to the capability and needs of each area. 14

It is possible that the Soil Conservation Service would have planted more shelterbelts, since by $19 \prime 2$, the project's value had been firmly established in the minds of many of the plainsmen, and the SCS had plenty of applications for the belts. However, when the transfer was made, it was wartime, and since there was no transfer of funds, the whole procedure was "an empty gesture."5 So the Prairie States Forestry Project (The Shelterbelt Project) was officially terminated, but the idea and value of the shelterbelts continued. Some plantings were made during the war years, but labor shortages and limited amounts of planting stock restricted these operations.

Since 1942 the planting and management of windbreaks has been integrated with other soil and water conservation practices "in connection with the plaming and application of a coordinated farm conservation program in the soil conservation program" of the soil conservation districts. Realizing the mistakes and shortcomings made in the planting of many millions of troes in so short a period of time, the Soil Conservation Service was able to correlate these successes and failures with recognized land use capabjlities and to axrive at a practical program whereby it

[^39]could nake routine use of tree windbresks "to alleviaie wind danage to soil and crops and to protect farmsteads from wind and drifting sand. "6 It was at this juncture that the objectives of the old Shelterbelt Project began to change, just as the project personnel had feared. The sole purpose of the Forest Service program was the planting of trees for wind erosion control. Now with this responsibility shifted to the Soil. Conservation Sorvice, the tree planting was incorporated into the overall land conservation prozram as stated above. Whenever trees were planted by the SCS, they were in the form of farmstead and livestock windbreaks rather than field shelterbelts. Read says that this difference in outlook between the two agricultural agencies was due to the fact that the SCS had few foresters to undertake the jobs which many foresters in the Forest Service had previously handled.? The few sheltexbelt forestecs who transferred to the SGS tried to keep field shelterbelts as the primary type of tree planting, but they fought a losing battle, ${ }^{8}$ In the final analysis, the agronomists and agricultural engineers won out because they were not convinced of the belts" benefits.? As one former Shelterbelt
${ }^{6}$ U. S. Departnent of Agriculture, Soil Conservation Service, Regional Porestry Division. "Tree Winabreaks for the Southern Plains," Fort Worth, Texas, September, 2947, p. 1. (Mimeographed.)
${ }^{7}$ Iettex from Ralph A. Read, Reseerch Porester, Rocky Mountain Forest and Range Experiment Station, IincoIn, Nebraska, July I, 1969.
$8_{\text {Interviews with Sid Burton, September, 1969; Howard Carleton, Jr., }}$ former Shelterbelt Assistant, P.S.F.P., Perkins, Oklahona, July, 1969; Relph A. Rea3, Research Forestor, Iincoln, Nebraska, September, 1963; Paul \%, Rokerts, Septenber, 1969.

Tletter from Ralph A. Read, Juily 1 , Jo69; Interview with Albert Engstrom, Directox, State Forestry Division, Oklahoma City, Oklahoma, August, 1969.

Assistant stated, they were only interested in "terracing and grasses."10 As a result of this shift in emphasis from exclusive attention to tree planting to a plan of subordinated tree planting, the care of the existing bolts dropped off, particularly in the Southern Great Plains. At the same time, in the Nowhem Great Plains, especially in the Dakotas, the planting of windbreaks was greatly accelerated and has remained at a high level since that time. ${ }^{11}$ Engstrom attributes this difference to the differing viewpoints of the Sas worters in the Northern and Southern Great Plains. He says that in the north there is more interest in the belts and also that it is a well planned operation--complete with good advance publicity of the planting schedule, equipmert movements, and species available. Here also all of the concerned agencies work together to accomplish the desired groal. 12

It seems here that those SOS workers who are interested come from those areas where shelterbelts have been most benoficial. They tend to be the older men who have experienced the dust storms of the $1930^{\circ} \mathrm{s}$. But it is as Cawleton said about his sheltembelt experience, "Ons man in one diatrict can not convince everyone of the beneffits of the belts," 13 especially if they did not experience the "black blizzanas" of the $1930^{\circ} \mathrm{s}$. Eren today, those fer individuals can not convince the many either. All they can do is work in their respuctive districts

10 Intexview with Howasd Carleton, Ir, July, 1069 ,
17 Interview with Elmen Foxthington, Soil. Conservation Service Woodland Specialist, conducted for this researchor by Charles A. ivans, State Conservationist, Jismarck, North Dakots. Information transmitted In letter, ipril. 16. 1960.

> 12Interfiew with Albert Bngstrom, August, 1969 .
> 13Inbervjos with Howard Carleton, Jr., July, 7069 .
and try by action to demonstrate the usefulness of shelterbelts. Rowley, in further explaining this regional difference, says that another reason why the project did not catch on as well in the South, and even now why Oklahoma and Texas are so slow in keeping up with their northern counterparts' planting accomplishments, is that in the North the shelterbelts offer protection not only from the wind but act as snow traps as well. ${ }^{14}$ The snow, when it melts in the spring, is an additional source of moisture. He also said that in the early 1940° s the SGS perfected methods of harvesting and planting native grasses in this shelterbelt area of Oklahoma. For example, the SCS harvested one million pounds of grass seed and distributed it through its soil conservation districts in the upper end of the Washita. Rowley added, "This did much to alleviate the blowing problem and was generally accepted by the farmers of the area than were the shelterbelts." 15

A comparison of Tables III and IV showing the mileage of field shelterbelts and the acreage of farmstead and livestock windbreaks from 1935 to 1966 is a graphic demonstration of this difference between the two sections of the Great Plains.

Since 2956, those Great Plains farmers or ranchers who desire windbreaks of any kind have been able to receive assistance from the Great Plains Conservation Program. The program's major emphasis is "to bring about the conversion to permanent vegetation of cropland unsuitable for sustained cultivation" under the peculiar climatic conditions of the Plains. 16
${ }^{2} 4$ Interview with N. E. Rowley, State Resource Conservationist, Sojl Conservation Service, Stillwater, Oklahoma, July, 1969.

15Tetter from 17. E. Rowley, June 30, 1070 .
I6nsummany of Promress, Fiscal yonr $7968, "$ Soil Conservation, XXXIV (Febmary, 1969), 162.

Farmstead \& Livestock Windbreaks Planted in Great Flains Statos. Units: Acres of all types, -: no record available fron SaS or FS. (Modified).

Year	ND	SD	Nebr,	Kans.	OR? ${ }^{\text {a }}$	Tevas	Total* Acres
1935	-	-	-	.-	-	-	-
1936	-	-	-	.	-	..	.-
1937	-	~	-	-	--	-	-
1938	-	.-	..	-	~	-	-
1939	-	-	-	-	_	-	_
1940	-	--	-	_	-	-	.
1941	-	-	-	-	-	-	-.
1942	63	170	556	57	18	15	879
1943	-	253	-	-	-	-	253
1944	488	434	436	292	-	5	1723
1945	572	554	300	335	-	325	2140
1946	994	900	500	345	-	96	3167
1947	1995	1853	939	84.1	-	105	6330
2948	2167	1953	912	847	-	15	6611
1949	3052	2898	1296	1359	-		9359
1950	34.62	3683	1754	1464	-	-	11082
1951	4092	$406 ?$	1897	3.679	-	-	12471
1952	4664	3614	7834	1386	-	-	12356
1953	4398	4237	1940	1359	-	-	12819
1954	4028	2937	1643	1213	-	-	9976
1955	3196	2586	1616	824	-	-	9201
1955	37.04	3756	955	849	-	31	8377
1957	2932	3138	1031	800	-	175	9265
1958	2713	3565	1503	1171	-	405	10683
1959	31.27	3675	21.5	1053	-	331	21555
1960	3630	$440 ?$	6537	1181	\because	113	17598
1961	3315	4175	2730	920	40	200	12770
1962	4070	14.435	3000	815	,	68	12940
1963	3200	4252	37.2	600	214	52	1314 ?
1964	4834	4142	3659	505	114	233	13195
1965	2365	38809	2051	579	15	28	9512
1966	2322	41768	3057	509	. 21	25	$\underline{10515}$
Total	68763	73001	45052	20983	422	2072	228014

*Includes Total Acreage for New Mexico, Colorado, Wyoming, and Montana.
Source: A. T. Ferben 8: Ralph A. Read: "Fiold Windbreaks Planted In Great Plains States," and "Farnstead \& Tivestoci Windbreaks In Great Plains States" (Compiled in Lincoln, Nebracka, July, 1967).

The landowner is provided with long-term assistance and shares the cost for the installation of conservation measures that help control wind and water erosion and improve the land. Again, windbreaks are just another conservation measure. From 1956 to 1968, this organization planted 22,660 acres to windbreaks within the ten states participating in the progran. ${ }^{17}$ The Great Plains Conservation Program has paid up to 80 per cent of the cost of installing the windbreaks. 18

Even though the old Shelterbelt Project has long been terminated, the Soil Conservation Service, while changing that program's objectives, is still carrying on its own tree planting program. In its "Summary of Progress, Fiscal Year 1969," the SCS reported 43,058 acres of farmstead and feedlot windbreaks with a total of 593,206 acres as of June 30, 1969, and 3,950 miles of field windbreaks with a total of 90,303 miles as of the same date. 19 According to Mergen, one published SCS report, "Soil and Water Conservation Needs Inventory, " calls for an additional I.l million acres of new shelterbelts and windbreaks by 1975, mainly in the Northern Plains and Lake States. ${ }^{20}$ Many of these acres could be effectively used in the Southern Great Plains States as well.

Shelterbelts in Oklahoma and Texas

When the Shelterbelt Project finally got its planting season under way in 1935, Oklahoma had the distinction of having the first

[^40]20 Letter from Katharine Mereen, July 23, 1969.
shelterbelt planted in the United States. It was established on March 18 on the H. E. Curtis farm near Granite, in Greer County. The belt is still there, but it is in rather poor condition today. The Chamber of Commerce of Mangum has placed a sign commemorating the event on the main highway, U.S. 283. For anyone looking for the beit, it is not the one located behind the sign, but rather one five miles east and one mile north of where the sign was placed.

Generally speaking, the shelterbelts that remain in Oklahoma and Texas, particularly those observed for this study, are in rather poor condition. The main reason for this deterioration is the general lack of care. More will be said on this subject later in this chapter. However, first a brief description of the general area and climate of the two states will be given.

As previously mentioned in an earlier chapter, the shelterbelt planting zone in Oklahoma and Texas was concentrated in the western part of Oklahoma, a narrow sector of the Texas Fanhandle, and a portion of the northwestern section of Texas known as the rolling plains. The High Plains of Oklahoma and Texas are generally unsuited for field shelterbelts because of low annual precipitation and generally unfavorable soils. However, in the southern portion of the High Plains, there are areas with soils somewhat favorable to tree growth. With the rainfall so low, however, it was considered too hazardous to plant the shelterbelts there. So, the High Plains area was excluded from the planting zone of Oklahoma and Texas. The western boundary of that zone approximates the 2l-inch isohyet and mus in a line just east of the following cities: Lipscomb to Pampa to Floydada. The eastern boundary of the area in Oklahoma is Highxay 81.

The cJimate of Western OkJahoma and Western Texas can be described as middle-latitude continental. In these states, their lower latitude and proximity to the Gulf of Mexico causes the temperature range between summer and winter to be less pronounced than in their northern counterparts. Erratic temperature changes are common, though, particularly during the winter, when "northers" may cause fluctuations of as much as 50° or 60° within a few hours. The mean annual precipitation decreases westward from 29 to 22 inches. The mean annual temperature is about $60^{\circ} \mathrm{F}$, and during the summer, the free-water evaporation is approximately 53 inches. The soil freezes intermittently during the winter, but only for short periods and usually to a depth of not more than about one foot. The soils of Oklahoma and Texas in the planting area are described in Table V in theix relation to tree growth.

During the period of the early 1930^{\prime} s, when the Shelterbelt Project was trying to start its program, the personnel experienced some of the worst weather conditions possible for tree planting. In 1934, Oklahoma and Texas, as well as the other Plains states, were going through one of the vorst droughts in years. Moisture deficiency, combining with high winds, had left the land without any vegetative cover and, as a result, dust storms roared through the states. The storms, usually described as "black blizzards," brought everything to a standstill including the shelterbelt planting. Somehow, though, the planting got underway in Oklahoma early in March, and by April it had been completed. However, there were periods of one or two days when a.ll planting operations had to cease, mainly because of the poor visibility and the general discomfort of the plantecs. Damage to planting stock by the dust storms was difficult
TABLE V - GENERAL CHARACTERISTICS OF SOILS OF THE SOUTHERN SECTION OF THE SHELTERBELT ZONE

Abilene (fine-textured types)	Rolling plains of Texas and Oklahoma.	Oklahoma, 10.00; Texas, 6.00.
Abilene (sandy types)	Rolling plains of Texas and Oklahoma.	Oklahoma, 2.04; Texas, 0.57.
Amaxillo (fine-textured types)	High plains of southern Panhandle of Texas.	Not stated.
Amarillo (sandy types)	High plains of southern Panhandle of Texas.	Not stated.
Calumet	Rolling plains of Texas and Oklahoma.	Not stated.
Enterprise (dune phase)	Chiefly rolling plains of Texas and Oklahoma.	Oklahoma, 7.65; Texas, 3.71.
Foard	Rolling plains of Texas and Oklahoma.	Oklahoma, 5.00; Texas, 3.00.
Hollister	Rolling plains of Texas and Oklahoma.	Oklahoma, 2.26; Texas, 1.65.
Lincoln	Texas and Oklahoma.	Oklahoma, 2.00; Texas, 0.01.
Miles Enterprise (sandy types)	Rolling plains of Texas and Oklahoma.	Oklahoma, 8.59; Texas, 28.58.
Miller	Texas and Oklahoma.	Oklahoma, 1.00; Texas, 0.01.
Mutual (Provisional correlation)	Rolling plains of Texas and Oklahoma.	Oklahoma, 7.00; Texas, 1.40.
Potter	High plains and margins in Texas and Oklahoma.	Oklahoma, 3.00; Texas, 1.50.

Soil	Principal occurrence	hern sect
Pratt	Oklahoma and Kansas.	Oklahoma, 3.96.
Pullnan	High plains of Texas, Oklahoma, and Kansas.	Oklahoma, Not stated. Texas, 0.15 .
Randall	High plains of Texas and Oklahoma.	Oklahoma, Not stated. Texas, 0.02 .
Richfield (fine-textured types)	High plains of Texas, Oklahoma, and Kansas.	Oklahoma, 0.05; Texas, Not stated.
Rough broken land	Texas and Oklahoma.	Oklahoma, 15.72; Texas, 21.22
Spur	Texas.	Texas, 0.02.
St. Paul	Rolling plains of Texas and Oklahoma.	Oklahoma, Not stated. Texas, 1.00.
Sumrnit	Rolling plains of Oklahoma and Kansas.	Oklahoma, Not stated.
Til1man	Rolling plains of Texas and Oklahoma.	Oklahoma, 4.00; Texas, 2.00.
Vernon	Rolling plains of Texas, Oklahoma, and Kansas.	Oklahome, 19.81; Texas, 28.00
Woodward (Provisional correlation)	n) Rolling plains of Oklahoma and Kansas.	Oklahoma, 6.00.
Yahola	Texas and Oklahoma.	Oklahoma, 0.59; Texas, 0.01.
Zita	High plains and margins in Texas and Oklahoma.	Oklahoma, 1.93; Texas, 0.55.

Approximate minimum depth of
water table

Abilene	Nearly level to undulating well-drained upland.	Short grasses.	100

Approximate
minimum
depth of
water table water table +
0
(1)
(1) n
n
n
n 100 100
$5-130$ $5-130$
$30-100$
100
$30-100$ $30-100$ $5-150$ 100
$50-100$ Native Vegetation
Tall grasses; trees and
shrubs.
Bunch and short grasses.
Bunch, short, and mixed
grasses.
Bunch, short, and mixed
grasses.
Short grasses.
Short grasses.
Bunch and short grasses.
Bunch and short grasses; sunch and shoru grasses:
some
Tall grasses; trees and
shrubs.
Short grasses.
Tall and mixed grasses Physiography and drainage
Nearly level bottom lands; drainage
variable.
Nearly level to undulating well-drained
upland.
Rolling to steeply sloping upland; surface
drainage excessive.
Nearly level to hummocky or dune-like
upland; under-drainage good.
Nearly level to gently undulating
uplands; surface drainage good to slow.
Poorly dralned hard land basins.
of passaxdop κ Thustis xo TənəT κ TueəN gently rolling lands; surface drairage good to slow.
Severely eroded upland.
Nearly level bottom lands; drainage
variable.
Undulating to rolling well-drained upland.
Nearly level to hilly, well to excessively drained upland.
Rough broken land
Spur
St, Paul
Summit
Soil
Approximate depth of
water table

Short grasses.
Bunch and short grasses.
Bunch and short grasses.
Tall grasses; trees and
shmbs.
Bunch and short grasses.
Undulating to rolling upland; slow
underdrainage.
Rolling to hilly, well to excessively
drained upland.
Nearly level to undulating well-drained
upland.
Nearly level bottom lands; drainage
variable.
Undulating to rolling upland; surface dxainage good to excessive.

Abilene	Brown to chocolate brown; friable, loamy to sandy, 8 to $14^{\prime \prime}$ thick.	Brown to pale reddjsh brown; friable, loamy to clayey, 20 to $30^{\prime \prime}$ thick.
Abilene	Brown to chocolate brown; coherent to moderately loose, sandy, 10 to $16^{\circ \prime}$ thick.	Yellowish to pale reddish brown; friable, loamy to sandy, 22 to $36^{\prime \prime}$ thick.
Amaxillo	Chocolate to reddish brown; friable, loamy to clayey, 4 to $10^{\prime \prime}$ thick.	Red; crumbly, clayeys 10 to $20^{\prime \prime}$ thick.
Amaril 10	Reddish brown; friable to modexately loose, loany to clayey, 10 to $18^{\prime \prime}$ thick.	Red or reddish brown; friable sandy clay, 15 to 25° thick.
Calumet	Light-brown; moderately compact, silty to clayey, 4 to $10^{\prime \prime}$ thick.	Brown to very dark brown; dense clay (claypan), 15 to 25° thick.
Enterprise	Light-brown incoherent sand, $1 / 2$ to $5^{\prime \prime}$ thict.	Yellowish brown or reddish yellow incoherent sand, 10 to $15^{\prime \prime}$ thick.
Foand	Dark to very dark brown compact clay, 6 to $8^{\prime \prime}$ tnick.	Very dark brown to nearly black dense clay (claypan) 20 to $25^{\prime \prime}$ thick.
Inincoin	Brown; coherent to moderately loose, loamy to sandy, 10 to $15^{\prime \prime}$ thick.	Light gray brown; moderately loose to conerent, sandy, 24 to $30^{\prime \prime}$ thick.
	Graydeh brown to redulsh brohn; cohewent to moderately loose, loamy to sandy: 10 to $25^{\prime \prime}$ thick.	Red to reddsh brown; friable sandy clay, 25 to $40^{\prime \prime}$ thick.
Miliex	Dark chocolate red; friable to moderately compact; texture and thickness variable.	Chocolate red; moderately compact, loamy to sandy, 20 to $30^{\prime \prime}$ thick.
Mutual	Brown; friable, loamy to sandy, 10 to 1.6" thick.	Dark brown; friable, clayey, 10 to $40^{\circ \prime}$ thick.

Soil

Potter	Brown to grayish brown; friable, loamy to clayey, 4 to $8^{\prime \prime}$ thick.	Grayish brown to light yellowish brown; friable, clayey, 6 to $12^{\prime \prime}$ thick.
Pratt	Brown; loose to moderately coherent, loamy to sandy, 10 to $18^{\prime \prime}$ thick.	Light brown to reddish on yellowish brown; friable, loamy to sandy, 18 to 24" thick.
Pullman	Brown; friable, loamy to clayey, 10 to 18" thick.	Dark brown to brown crumbly clay over reddish-brown crumbly clay; 18 to $40^{\prime \prime}$ thick.
Randa 11	Dark brown to black compact clay, 4 to 10' thick.	Gray to bluish-gray dense clay (claypay). 30 to $48^{\prime \prime}$ thick.
Richfield	Brown to dark brown; friable, loamy to clayey, 10 to 18" thick.	Dark brown to brown crumbly clay to loam, 18 to 40' thick.
Rough broken land	Not stated.	Not stated.
Spur	Light bruwn to dark, chocolate brown; friable; texture and thickness variable.	Light brown to light chocolate brown; friable; texture and thickness variable.
St. Paul	Brown; friable, silty to clayey, 10 to 14" thick.	Brown: moderately compact, clayey, 35 to $40^{\prime \prime}$ thick.
Summt	Black; silty to clayey, friable, 10 to 14." thick.	Very dark grayish-brown to black moderately compact clay, underlain by yellowish--brown firable clay; 20 to $36^{\prime \prime}$ thick.
Tillman	Brown; friable, silty to loamy, 8 to 12" thick.	Reddish brown; moderately compact, clayey, 30 to $35^{\prime \prime}$ thick.
Vernon	Red to reddish brown; friable, loamy to sandy, 2 to $10^{\prime \prime}$ thick.	Red; friable, loamy to sandy clay, 10 to $14^{\prime \prime}$ thick.

Soil

So	Upper portion of soil profile	Lower portion of soil profile
Woodward	Red to reddish brown; friable, loamy to sandy, 8 to $12^{\prime \prime}$ thick.	Red to brown red; loamy, 14 to 20" thick.
Yahola	Chocolate red to red; friable, loamy to sandy; thickness variable.	Red; moderately loose to incoherent, sandy 20 to $30^{\prime \prime}$ thick.
Zita	Brown; friable, loamy to sandy, 7 to 12" thick.	Brown to yellowish brown; friable, clayey, 12 to $18^{\prime \prime}$ thick.

Soil
Good.
Good.
Good.
Good.
Difficult.
Fair to Good.
Difificult.
Unsuited.
Fair to difficult.
Variable.
Soil

to determine at the time, but after a few weeks it was observed that there was some cutting at the base of the red cedars (Juniperus virginiana I.) and Austrian pines (Pirus nigra austriaca Schneid.); also, particularly in the northern counties, there was damage to the leaves of catalpas (Catalpa speciosa Warder) and Chinese elms (Ulmus parvifolia jacq.) caused by wind whipping. ${ }^{21}$ However, by the end of the season, fourceen miles of shelterbelts had been planted in Oklahoma. These belts avexaged a half mile in length, were about 132 feet wide, and contained seventeen to twenty-one rows of trees, ranging in height from eighteen jnches to two feet. Eight to ten different species of trees were used in each belt, with the fast, tall-growing trees being placed in the center rows. Evergreens were placed on each side of these hardwoods, and the slower growing shrubs were planted to aid in starting the lift of the wind over the belt and to prevent the loss of forest litter by the wind, once the belts were firmly established. The majority of these belts were oriented in an east-west direction for protection against the hot summer winds from the south and the cold winter winds from the north. 22 Meanwhile the first planting season in Texas was not having as much success, mainly because those responsible were slow in organizing the planting program. However, there were planted two one-half mile belts in the state by Oklahoma Shelterbelt personnel. 23
21_{U}. S. Forest Service. Historical Files of Frairie States Forestry Project. "Oklahoma Planting Report, 1935," Lincoln, Nebraska, 1935, p. 4. (Mimeographed.)

22 Droze, "The New Deal's Shelterbelt Project, 1934-42," 34. 23percy, "History of the Prairie States Forestry Project," 41.

Besides having a limited amount of planting stock, Carleton attributes the lack of more plantings in Oklahoma and Texas to minimal farmer acceptance of the program. In his work as Shelterbelt Assistant for the Mangum district, he says that he would get the farmer lined up for a shelterbelt and tell him to come in to his office to sign the agreement the next time the farmer was in town. Many times, he relates, the farmer would not come in, mainly because in the interim he might have talked to too many opponents of the program or had read too much of the adverse publicity in the newspapers and magazines. To combat this problem, Carleton persuaded his planting foreman's wife to become a notary public and accompany them on these recruiting tours. Then, once the farmer agreed to plant a shelterbelt, she would notarize the agreement on the spot. 24

Texas supervisors had a similar problem, and to solve it they recruited farmers, usually prominent members of the community who had planted shelterbelts and who were convinced of their values, to help solicit new applicants. ${ }^{25}$ Both procedures apparently worked because with them ard more favorable publicity as the project progressed, the applicants increased in the two states.

To carry out the planting operations, the states were divided into districts, each administered by a Shelterbelt Assistant, his foreman, and planting crews. Oklahoma had four districts and Texas had three (Figure 10.26). The map only shows two for Texas but the northern district as shown was

[^41]26"The Sheqterbelt Comes True," Business Week, April 6, 1940, p. 24.

Figure 10. Where the Shelterbelts Were Planted.
divided into the Shamrock district and the High Plains district. In both states, regional offices were established outside of the actual planting zone. Oklahoma City served as the regional office for Oklahoma and Wichita Falls for Texas.

Once the project was established, more landowners became interested in it and more and more shelterbelts were planted. By 1938 the trees had survived the severe droughts of 1934 and 1936, and some value was seen in the belts. That year was also the record planting season for both Oklahoma and Texas, with 1045 and 768 miles planted, respectively. The project planners had figured it would take five years for the trees to reach sufficient height before any benerits could be realized. But, to their amazement and delight, some of the belts were tall enough after fifteen to eighteen months to stop some of the soil drifting and to let the farmers plant their seed without fear of its blowing out before it had time to become established. All of these activities were watched over by the public, press, and especially the Great Plains farmers and ranchers. When success was indicated, it resulted in the aforementioned greater interest of the landowners, and then more belts were planted.

Ultimately, the P.S.F.P. personnel planted nearly 3000 miles of shelterbelts in Oklahoma and over 2000 miles in Texas (Table VIa-c. 27). Unfortunately, not all of the belts survived--some failed because of physical reasons, such as poor site conditions, poor planting stock, or adverse climatic factors, while others were lost through abandonment. It is the

27U. S. Forest Service. Prairie States Forestry Project. Record of Plantings By Counties and Accumulative Total of Annual Shelterbelt Plantine, Lincoln, Nebraska, 1942.
TABLE VIa - RECORD OF PLANTING BY COUNTIES: OKLAHOMA

Miles

 * Denotes Counties Visited in this Study.
County 193519361937

NNin in oino m mavi

TABLE VIb - RECORD OF PLANTINGS BY COUNTIES: TEXAS

ACCUMULATIVE TOTAL OF ANNUAL SHETFERBELTP PLANTING: OKLAHOMA

| State
 \&Year | Miles | Acres | Farms | Trees | Replacements | Total
 Trees |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1935 | 14.00 | 273 | 38 | 187,495 | \ldots | 187,495 |
| 1936 | 157.25 | 3,293 | 281 | $1,281,694$ | 97,206 | $1,378,900$ |
| 1937 | 325.38 | 3,698 | 540 | $1,849,220$ | $1,214,396$ | $3,063,616$ |
| 1938 | $1,044.50$ | 14,381 | 1,664 | $7,489,898$ | $1,203,311$ | $8,693,209$ |
| 1939 | 508.87 | 6,816 | 899 | $3,524,370$ | $3,279,190$ | $6,803,560$ |
| 1940 | 490.87 | 4,917 | 903 | $2,981,350$ | $2,162,810$ | $5,144,160$ |
| 1941 | 360.13 | 2,900 | 603 | $1,625,843$ | $1,452,436$ | $3,078,279$ |
| 1942 | 94.75 | 839 | 164 | $-1467,739$ | 260,334 | 728,073 |
| Total | $2,995.75$ | 37,117 | 5,092 | $19,407,609$ | $9,669,683$ | $29,077,292$ |

ACCUMULATIVE TOTAL OF ANNUAL SHEITTERBELT PLANTING: TEXAS

State \&Year	Miles	Acres	Farms	Trees	Replacements	Total Trees
1935	1.00	20	2.	13,880	--	13,880
1936	171.00	3,083	275	1,766,808	3,948	1,770,756
1937	225.50	2,561	306	1,340,033	1,282,280	2,622,313
1938	768.00	10,439	813	5,291,200	923,410	6,119,610
1939	434.00	5,628	568	3,582,200	2,768,400	6,350,600
1940	250.87	2,636	292	1.4777 .973	1,904,106	3,382,079
1941	141.00	1,246	143	740,570	1,795,760	2,536,330
1942	51.25	440	54	$\ldots 56,063$	288,818	544, 879
Total.	2,042.62	26,053	2,453	3.4,368,725	8,971,722	23,340,447

contention of some that the Forest Sexvico planted belts only where it could find cooperation, especially in the early years of the project, and well it might be, because each Sheltexbelt Assistant had a quota to be filled for his district. To a certain extent, the fact is borne out by the failures of belts in these districts due especially to poors site conditions, i.e., belts planted in areas of frecuent flooding, on sand ridges which could not be cultivated, in root rot areas, or in shimexy. However, once the project's importance was realized, its success encouraged. farmers to apply for the belts, and from these applications better sites could be and were chosen.

Yet, some of these same enthusiastic farmers were the cause of the second factor of Ioss--abandonment. It was the policy of the projoct not to abandon a planting unless there was absolutely no way of saving it. The biggest reason for abandonment was lack of care of the belt--both in preparation prior to planting and afterwards. It has been stated beforehand that if trees are to survive in the Great Plains, particularly in the Southern Plains, where greater evaporation tends to offset the effect of precipftation, they must be cultivated for as much as five years in order to insure the proper establishment of the planting. In Oklahoma and Texas, nany of the farmers were willing to carry out this operation, as lons as it was feasible, so they would heve a successful planting, but some did not. Table VII ${ }^{28}$ shows the total abandonment of shelterbelts in Oklahona and Texas as of June 1942.

28p.S.R.P. Records of Texas Plantings, Soil Conservation Semice Office, Vernon, Texas; P.S.F.P. Records of Oklahoma Plantings, Soll Conscrvation Regional Offics, Foxt Worth, Toxas.

TABLE VII

Oklahoma:
Total abandoned previously
Total abandoned this fiscal year Total to date

Miles
$1121 / 8$
151 6/8
263 7/8

297 4/8
307
8 2/8
18
306 6/8 325

These figures represent only a small fraction of the totals for these states, but the reasons for the abandonment of the belts are important because they reflect the attitudes of the owners, and also these indirectly affected the condition of those belts remaining today. The attitudes of the owners and/or tenants were not the sole reason for abandonment. There were also physical factors, namely those mentioned above. From the records of the P.S.F.P., the following samples reflect the concern of the landowner after the plantings were made:
"Useless to replant as he (owner) is old and tenants won't care for belts."
"Tenant has belt fenced in, using it for pasture. Says he intends to plon jt up this fall (1938) as it has been stunted through lack of cultivation during first two years...."
"Tenant was afraid of poison blocks." (for rodents, provided free of charge by P.S.F.P.)
"Neighbor farmer lets his farm blow. Neighbor is stubborn individual who doesn't like trees."
"Tenant says he doesn't have time to take care of trees. Owner trying to replace him."
"Cooperator going out of tree business."
"Hostile attitude of tenant towand shelterbelt. Iandlord
doesn't care either."
"Poor condition due to change in tenant and absence of landIord." 29

Other examples cited were belt destroyed by coner, lack of cooperation and ownership changed. These were only a few of the problens the Forest Service had to Cace in Oklahoma and Texas as well as the other Plains states as it carried out the tree planting program.

For many of the landowners, though, the shelterbelts were serving their purpose in the late thixties and early forties, and they did what was necessary to see that they contirued in the same vein. However, as conditions improved and the economy became atuned to the war: the sheltexbelts began to be neglected. There were more important things to do--crops to plant and to harvest-..and, after all, the trees were estabilished now and they could take care of themselves. Then came the drought of the fifties, and the landowers saw just how well the trees were established. In Oklahona and Texas, belts that had been planted during the severe drought of the thirties now failed. It was during this period also that many belts were being taken out in these two states. One reason for this move was, of course, the drought. Another reason, and probably more important, was a change in aititude--the belts wero planted during a time of crisis and now that it had passed, there vas no furtier noed for the boltis. The xesult was the plowing up of many of the sheltorbeits in OkIahoma and Texas.

[^42]In attempting to analyze this change in attitude, several factors begin to emerge. The first of these usually given, particularly by the landowners, is the changing methods of farming. The farmers say that because of the equipment they have now, they can cover larger areas in shorter time than before and still hold the land when it starts to blow. They point to improved farming techniques, i.e., deep plowing, crop residue, strip plowing, and others as being better in holding the land than methods used in the thirties which brought on the "Dust Borl" days. Therefore, to these farmers the shelterbelts have served their purpose and they are not needed anymore.

A second factor is the failure to follow up the project with a program of education and selling the landowners on the benefits of the sheiterbelts. ${ }^{30}$ This may have been the iault of the agencies involved, but it must also be remembered that at the time of the projects official termination and transfer to the Soil Conservation Service, the nation had gone to war and all efforts were concentrated in winning it, However, after the war, it appears little effort was made to start such a program. The farmer could have a shelterbelt if he wanted it and could have help in planting it, but usually he was the one who had to initiate the action.

Thirdly, farmers and ranchers like to see a return on their work and, to mary of those who took out their belts (or would like to take them out), the land planted to trees could best be used for cropland or some nore profitable use. As a result of this way of thinking, the

[^43]belts usually came out. As one conservationist put it, if the farmer has not seen any benefits after 10 or 7.5 years, he is not going to. So, he said, the SCS does not try to dissuade him from removing the belts. ${ }^{31}$ The fourth factor is that of not having lived through the "black blizzards" of the thirties, one can not imagine just how bad they really were and how any method which could bring relief was a blessing to the suffering landowner. In order to alleviate their problems, the landowners at that time were willing to experiment with strip plowing, listing, shelterbelts, and anything else, in order to hold their land. Now these landowners have turned over their farms to thejr sons and grandsons. Since these have not gone through the "black blizzards" and are not really understanding or being able to see the benefits of the shelterbelts, they want them out. So, while the older men want to keep them, the younger continue to seek to take them out, until they win. 32 Another reason is with both state and federal programs, i.e., grass seeding programs or the Soil Bank program, designed to remove submarginal lands from cultivation and return them to grass, many feel there is not any need for shelterbelts. If belts remain on these lands, when they are removed from such programs, they are usually used as shade areas for livestock.

Also, there is a difference in regional attitude, not just landowner's attitude. As previously mentioned, in the Central and

[^44]Northern Great Plains states, the belts served a dual purpose, for reducing wind velocity and for acbine as snow traps, in other words, as an extra source of moisture. There is snow in the Southern Plains, but not to the extent and duration as in the noxth. Therefore, ths feeling is that the belts use moisture necessary for crops, particularly along the western limit of what was the shelterbelt zone. In these regions, for example, Roger Vills, Bllis, and Harper counties in Oklahoma, and Hemphill and İpscomb counties in Texas, belts were hard to establish and many djed because of lack of moisture and care. However, where belts were able to be established in these areas, they have been of great benefit in protecting livestock from the northers that invade the area.

Another factor mentioned is that shelterbelts harbor insects which are injurious to crops, especially cotton. Studies were conducted in Wilbarger and Foard counties, Texas and foom them it was determined that boll weevil populations were heaviest in shelterbelts, chinabexry, and plum thickets. ${ }^{33}$ The district conservationist sajd this caused quite a. stir among landowners with shelterbelts, resulting in the removal of numerous belos. 34 Fowever, one entomologist with the Oklahoma Dopariment of Agriculture said that the holl weevil population may be a significant

> 33 Intervicw with Prank I. Duncan, District Conservationist, Soil Consexvation Service, Vernon, Wilbarger County, Texas, August, 1069; Interview with N. T. Drake, County Agent, Vernon, Wilbarger County, Texas, August, $1969 ; \mathrm{B}$ 。P. Boring, III, N. T. Drake, and H. P. Hill, "OverWintering Boll Yeevil Survey in Wilbarger and Foard Counties--1969" (Mimeographed report, 1969), p. 2.

$$
34 \text { Intexriow vith Frank I. Duncan, August, } 1969 .
$$

factor in those counties but that the weevils wonld be there regardless of the presence of the shelterbelts. He further stated, "he would hate to say that is sufficient reason for their removal." 35

Along the same vein, some landowners object to the presence of shelterbelts because of the wildlife found in them. For example, one Greer County, Oklahoma, resident did not like the belts because they made it easier for coyotes to kill her ducks, geese, and chickens. 36 Another resident in Roger Mills County, OKlahoma, was in the process of removing her belts because deer used them to move from one area to another. The results were that hunters on the road would shoot at the deer and, at various times, had killed several of her cows. Another of her objecijons was that some of her cattle had eaten the fruit of the Osage-orange and had died. 37

Finally, another factor which is important in analyzing the landowner's attitude is that of the moisture sapping and shading effect that the belts have on the area adjacent to them. (Figure 11.) This problem is especially noticeable as one goes from north to south. There are several conditions that influence the spread of a tree's root system, but some of the more important are: 1) species of trees, 2) lack of rainfall, 3) light and infertile soils, and 4) competition from other

35Interview with Clyde Bower, Chief of Regulatory Service, State Department of Agriculture, Okiahoma City, Oklahoma, kugust, 1969.

36 Interview with Mrs. Frank Babok, Greer County, Oklahoma, resident, July, 1969.

37 Interview with Mrs. K. Taylor, Roger Mills County, Oklahoma, resident, September, 1969.

Figure 11. Crop sapping effect of a shelterbelt can be seen as the strip between
trees competing for soil moisture. 38 The seriousness of crop sapping is small, Plainswide, ${ }^{39}$ but to the farmer who can see as much as 10 to 12 rows of his crop sapped, it is indeed a serious problem. And, in some cases, this is enough of a reason to remove the belt. Several remedies have been suggested to, at least, control sapping; amons the more important ones are chiseling (deep plowing designed to cut the extended roots), planting of grasses over the sapped area, usually rye (Secale cereale), alfalfa, (Medicago sativa), and sand love grass (Eragrotis trichodes), or using the area for a road or turn around for farming equipment. One conservationist felt that the area taken up by the belt was better occupied by "a useful tree crop than by the usual stand of weeds or brush." 40 It should also be stated at this point that there are some farmers who feel that the benefits received from the shelterbelts more than offset the loss due to sapping or shading, primarily in greater yields over the remaining crop land.

So, whatever the reason, whether it is newer and better methods of farming, failure to have a follow-up education program, failure of farmers to see a return from their shelterbelts, not having lived through the "black blizzards," removal of land from cultivation and put to grass, difference in regional viewpoint, harboring of undesirable insects or wildlife, or sapping and shading effect of the shelterbelt,

38 Carlos G. Bates, "Windbreaks: Their Influence and Value." USDA Forest Service Bulletin 86 , 1911, p. 35.

39R. E. Ramig, "Windbreak Crop Sapping" (Typewritten report from Files of Prairie States Forest Project, Iincoln, Nebraska, n.d.), p. 3 .
${ }^{40} \mathrm{~J}$. H. Stoeckeler, "Shelterbelt Planting Reduces Wind Erosion Damage in Western Oklahoma," Joumal of the Imerican Soczety of Arronomy, XKX (November, 1938), 928.
if the landowner wants the belt taken out, he will. He will even be willing to pay the $\$ 50$ to $\$ 100$ an acre it costs to have the trees bulldozed out. This is particularly evident in Oklahoma and Texas.

The above analysis was not meant to show that all farmers and ranchers want the belts removed, because they do not. Several of the landowners and conservation workers interviewed for this study stated this fact. To them the belts were still beneficial, and they would not remove them if they could. Among their reasons for leaving their shelterbelts were that the belts still kept their topsoil from blowing, kept the wind from blowing out their newiy planted seeds, that the trees break the monotony of the Plains area, provide a habitat for insect-eating birds as well as game birds, and in some cases, increase the crop yields. Some of the landowners allow hunting in their belts and are investigating the possibility of charging a fee to hunt in them, thus gaining for themselves a small monetary return from their belts. The urban hunter is usually willing to pay for his hunting if he is assured of getting his quarry. While these farmers still see the benefits of their belts, they have one major objection: the belts are too wide and, as a result, many have taken out several rows, not reducing their effectiveness, just their width. One conservationist suggested another reason why many landowners might not remove their belts. With the region's history of drought, even though farming techniques have improved and climatic conditions are better now, in the mind of the older farmers particularly, they might feel that "dust bowl" conditions conld return. 41 While the tree belts will not prevent such conditions if they return, together with other practices the belts could help prevent the severe loss of the soil.

$$
\text { 4]. Interview with Janes B. McBridc, July, } 1969 .
$$

Success (or Failure) of Shelterbelts

During the late summer and early fall of 1969, fieldwork was conducted in 23 counties in Oklahoma (12) and Texas (11) to determine the status of those sheltexbelts remaining in the two states. (Figure 12.) From this survey, several general conclusions were drawn about the condition of the belts examined, which led to the statement at the beginning of this chapter in regard to their generally poor condition. Also, as important to the survey as the actual examination of the shelterbelts were the interviews conducted. When it was feasible, these interviews were made with the original owner or a tenant who had lived in the area during the thirties. fttempts were made to interview conservation personnel who had lived through the same perjod. The younger conservationists did not know what it was like during the "Dust Bowl" days, and they could not know how beneficial the belts were in retarding wind velocity and slowing up the soil blowing. However, a number of younger owners and conservation workers were also interviewed to see how opinions of the belts had changed over the 30 or so years since the initiation of the project.

In addition to the tools and methods mentioned in the introductory chapter, two other tools proved to be invaluable. The first of these was county maps for Oklahoma and Texas used by the Forest Service investigative team in 1954. They were color coded so at a glance one could determine the time each belt was planted. The other tool was the printed soil surveys for many of the counties used in this study. The aerial photographs in them proved to be of great help in locating the presence of belts not found on the 1954 maps. These two tools complemented each other quite well.

Counties in Study Area

APPROXIMATE SCALE
\qquad

Figure 12.

As in any study of this scope, there were certain limitations placed on it. The first of these was the interviews of landowners. It was desired by this researcher to talk with as many landowners as possible so that a good consensus of opinion could be determined as to their attitudes and feelings toward the shelterbelts and their value. Several farmers and ranchers were interviewed, and from these and interviews with conservation workers of both the Soil Conservation Service and Forest Service, the conclusions presented here were reached. The fact that many of the farms have changed hands, possibly several times since the project started, and that many farmers have moved to town and have become "sidewalk farmers," reduced the chances for interviews.

Secondly, this study was not approached in the technical sense that a soil scientist or forester might, nor was this intended. Although a certain amount of technical knowledge was necessary, and more was gained as the study progressed, it was to be more of an evaluation of the reasons why the shelterbelts had remained, if they had, and what the attitudes were of those who benefited or did not benefit from them.

Finally, it was found that the actual planting records of the Prairic States Forest Project included a wealth of information such as site condition, location of shelterbelt on the farm, species planted, and reasons for failure or abandonment; however, they were of limited value because they were stored in a central location (Vernon for Texas and Port, Worth for Oklahoma). Had it been possible to have each county's records at the SCS office in the county, it would have been easy to pull the reconds for farmers still living on their farms for interviews, This was done in the case of Wilbarger County (Vernon), Texas and it
proved to be a successful method. However, it was impossible to pick a random number of farmers' names from the records and hope that they would still be there when the fieldwork was done in the home county. Prior to beginning the necessary fieldwork to determine the above stated objectives and those outlined in the first chapter, some method of determining the condition of the shelterbelt was needed. After talking with personnel of the Forest Service and Soil Conservation Service, it was decided that for this study the following items would be looked for: I) density and continuity of the belts, 2) height (if possible to determine), 3) condition of the interior of the belts (have or have no forest litter, have or have not been grazed, or have or have no weeds), and 4) species of the trees.

Most of the conclusions reached about the shelterbelts remaining in Oklahoma and Texas are applicable to all counties visited. If there are any exceptions, these will be especially noted in the discussion.

One of the first things that is quite noticeable about all of the shelterbelts seen even in the belts that were in good condition was the general lack of care and the consequent run-down condition. (Figures 13 and 14.) The amount of cultivation received prior to and after theix planting appears to be very important. Those farmers who took the time to carry out this operation have the better belts today. Those who did not have reaped the benefit of their labor--poor belts.

In those belts where all but two, three, or four rows out of ten are left, several factors are quite evident. Either 1) they had never been planted (occasionally this happened and the rows were to be planted later but for one reason or another, they never were);

Figure 13.

Figure 14.
Shelterbelts showing lack of care and general run-down condition. (Upper: Jackson County and lower: Greer County, Oklahoma.)
2) they had failed to survive because of adverse weather, rodents, poor stock, or weed competition; or 3) they had been grazed out (usually this reason was most prevalent, especially in Oklahoma and Texas). The most conspicuous feature in these belts was the lack of any evidence that the rows had been cut down. These facts were confirmed by the planters' reports at the time or later surveys of the plantings. Generally, if these belts were located in areas of cultivation and grazing was not allowed, the belts were heavily weeded. If they were adjacent to pastures, usually they were grazed down and sometimes were heavily weeded.

However, one other factor must not be overlooked. There were instances when the farmer took out several of the rows. From interviews, it was found that their reasons varied; often they did not like a. particular species, usually Chinese elm and sand plum, or because of the sapping effect, or they wanted to return the area to cropland.

Even those belts which could still be considered in good condition now reflect a general lack of care. Usually these belts have all or most of their rows left, with an occasional gap, but are still effective. Most of the time their interior is quite trashy, with dead or dying trees, fallen or standing, dead limbs, and a dense growth of weeds. If the belts had not been grazed and their shrub row was still intact, then there is a good layer of forest litter. If the reverse is true, most of this cover is gone and the bare soil is exposed. In such cases, especially where the soil has been packed by grazing animals, little gullies have formed because the ground has lost some of its rapid absorption capability.

Another feature of the belts, which even the untrained person can detect, is the soil texture. On the sandy soils, the belts are generally
more numerous and have taller, more vigorous trees. (Eigure 15.) Conversely, those belts planted on the tighter, more finely toxtured sojls have belts usually stunted, with the larger percentage of the trees gone. (Figure 16.) For example, in Greer County, Oklahoma, those belts in the northeastern portion of the county reflect the former condition and those in the southern part the latter. The soils in the southern part of the county have never been fully developed and have a more salty nature than those in the noxtheast. 42

In most of the counties, the tall-growing species, particularly elm and cottonwood, have begun to die out, and in some areas are completeiy absent from the belts. Where they remain, the tall trees usually have outgrown the intexmediate trees and there appear gaps at this level Figure 17 demonstrates this feature. Belts which still have some of the tallest, trees in then (some 40 to 50 feet tall) can still be found in Kingfisher County and Washita County, OKlahoma and Cottle County, Texas. One of tho most common features in belts which have been heavily grazed is the lack of shrub rows, thus exposing the lower level to the sweepims action of the wind, resulting in the above mentioned loss of forest Irtex. In these belts, where the cattle have browsed through then, they have eaten the leaves off the low hanging limbs, causing them to die. Later the cattle break them off. So, when the shrub row is removed and these branches are broken, the gap at the lower level is as much as four feet. This gap, of course, reduces the effectiveness of the belt.

In those bells which have a good stand of reai cedax (Juniverus virgintara I.), Osage-orange (Toxylon paniferum Raf.), or mulberry

[^45]

Figure 15. Shelterbelt planted on sandy soil in Blaine County, Oklahoma.

Figure 16. Shelterbelt planted on tighter, more finely textured soils. (Greer County, Oklahoma.)
(Morus rubra L. and Morus alca tatarica L.), and in some cases, catalpa (Catalpa speciosa Warder), they remained in fair to good condition. (Figures 18, 19, and 20). These specjes were usualiy planted in the outer rows, and because of their dense folliage they provided good density at the lower and intermediate level (unless they have been heavily grazed). In belts, which had the Osage-orange and/or mulberry and had been planted in reasonably good sites, their height is usually between 25 to 30 feet. The mulberry is particularly effective at this level because of its peculiar ability to fill the gaps left by the taller trees.

One feature which is quite evident as one approaches or walks through the shelterbeits in all of the counties in both states is the abundance of wildlife. There are numerous species of songbirds, hawks, and game birds, especially quail and dove. Some observers have reported the presence of turkeys and pheasants. Deer also use the protection of the belts as they go from one area to another. Squirmels and cottontails make extensive use of the shelterbelts. Wildlife conservationists were glad when the shelterbelts were planted because they knew they would provide natural habitats for many of the above species, which were nonexistent at the time. In fact, the planners of the project had this idea in mind when they undertook the operation and even chose several species of trees which would provide food for wildlife. This objective was to help make the Plains a more habitable place. Now these same conservationists and others interested in the preservation of wildilie hate to see the belts being taken out for fear that it will again destroy the habitat of some of these species. 43

Figure 17. Gaps appear at upper level because the taller trees are dead or dying out. (Blaine County, Oklahoma).

Figure 18. Shelterbelt with a good stand of cedar. (Alfalfa County, Oklahoma).

Figure 19.

Figure 20.
Shelterbelts showing good density at lower level because of Osage-orange. (Upper: Wheeler County, Texas and lower: Hall County, Texas).

Some of the belts which have been reduced to one or two rows, either through natural processes or by the landowners, lack any worthwhile density at the Jower level. In sone cases, they are no more than just a row or two of trees. Their effectiveness as shelterbelts is greatly reduced because they lack the means of starting the wind up and over. In Oklahoma and Texas especially, these belts lose more of their effectiveness when gaps appear in them. Many times these belts were made up of only elm or cottonwood.

Throughout Oklahona and Texas, many belts have a great amount of locust and, in some, elm left jn them. Both of these trees are aggressive and, as a result, they are trying to regenerate themselves. At this time, there can be found numerous sprouts of both species of various ages and heights. It is doubtful that this regeneration will attain the height of Iongevity of the first crop because of "exhaustion of the deeply stored (6 to 25 feet) subsoil moisture by the first tree crop. ${ }^{\text {nit }}$ Alhough these sprouts do not have any pacticular pattern, Which is to be expected, they may continue to serve their present purpose, that of filling in gaps where the seeds have happened to fall and started to gron.

Where the belts were planted on rangeland, they encountered another problem--shimory (range vegetation where dwarf oaks are dominant). In many counties, Greex and Jackson in Cklahoma and Cottle, Yotley, Wheeler, and Hall in Texas, they were invaded by and sometimes kilied cut by shimery. Also in those areas where mesquite is predominant, the sholtorbelts also suffered.

4/tstoeckeler, "Shelterbelt Plariting Reduces Wind Erosion Damage in Wesicem Oklahoma," 931.

One of the disappointing aspects of this study was the inability to gather information on the effects of shelterbelts on crop yields. There were studies conducted in the 1940^{\prime} s, and some work is continuing today, but it is a costly operation. In Oklahoma and Texas, most farmers have not kept records to show the difference between lands protected by belts and those which are not protected. In areas where the land is not protected by shelterbelts, they have used several methods of holding the land; chief among them is strip planting. Usually these areas show some topsoil loss from blowing. In some cases the plants do not seem to be as tall as those planted behind shelterbelts.

One other observation about the remaining shelterbelts in Oklahona and Texas is that large numbers of them are planted around and in pastures. Some were originally planted there, but with the present trend of returning cropland to grass, many are there for that reason.

These, then, axe the findings of this study as to why the shelterbelts are still in Oklahoma and Texas and why the majority of those remaining are in a general run-down and poor condition. There are times when it seems that the shelterbelts are just there and have become an accepted part of the enviconment until someone asks "why are they there?" Before concluding this section, a word should be said about the predominant species left in the shelterbelts.

Most of the species planted in the shelterbelts were originally picked because of their hardiness to withstand the drier climate in the western part. of Oklahoma and the adjacent part of Texas. (Table VIII) Today the trees which are left have had to survive the droughts of the 1930° s and the 1950° s. Some of those which survived the former could
TABLE VIII - RECOMMENDED TREE AND SHRUB SPECIES,
THEIR ARRANGEMENT IN SHELTERBEITS, AND THEIR ADAPTATION TO SOILS

Group and Species	Seq.	Approximate height and position in shelterbelt								
	$\begin{gathered} \text { of } \\ \text { rows } \\ \hline \end{gathered}$	-15 ft.	$\begin{aligned} & 10- \\ & 25^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 40^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 30- \\ & 50^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} + \\ 50^{\prime} \end{array}$	$\begin{aligned} & 30- \\ & 50^{\circ} \end{aligned}$	$\begin{array}{r} 20- \\ 40^{1} \\ \hline \end{array}$	$\begin{aligned} & \hline 10- \\ & 25^{\circ} \\ & \hline \end{aligned}$	-15
Arizona cypress (Cypressusarizonica	22	-	-	x	-	-	-	x	-	-
Eastern red cedar (Juniperus virginiana t.)	23	-	-	x	-	-	-	x	-	-
Rocky Mountain red cedar (Juniperus sconulomu Sarg.)	24	-	-	x	-	-	-	x	-	-
Ono-seed Juniper (Juniperus monosperma (Engelm.) Sarg.)	25	-	-	x	-	-	-	x	-	-
Redberry juniper (Juniperus pinchofii Sudx.)	26	-	-	x	-	-	-	\times	-	-
Oriental arborvitae (Thuja orientalis L.)	27	-	x	-	-	-	-	-	x	-
Tall shrubs: Apricot (Prunus sp.)	28	-	x	-	-	-	-	-	x	-
Redbud (Cercis canadensis L.)	29	-	x	-	-	-	-	-	x	-
Western soapberry (Sapindus drumnondii H. And A.)	30	-	x	-	-	-	-	-	\times	-
Gum elastic (Bumelia lanuginosa (Michx.)	31	-	x	-	-	-	-	-	x	-
Texas pistache (Pistacia texana Swingle)	32	-	x	-	-	-	-	-	${ }^{x}$	-
Russian-olive (Elaeagnus angustifolia L.)	33	-	x	-	-	-	-	-	x	-
Roughieaf dogwood (Cornus asperifolia Michx.).	34	-	x	-	-	-	-	-	x	-
Low shrubs:										
Desert willow (Chilonsis linearis (Cavanilles de Candolle).	35	x	-	-	-	-	-	-	-	x
Tamarisk (Tamarix gallica L.)	36	x	-	-	-	-	-	-	-	x
Lilac (Syringa sp.)	37	${ }^{x}$	-	-	-	-	-	-	-	x
Hawthorn (Crataegus sp.)	38	x	-	-	-	-	-	-	-	x
Chickasa, plum (prunus angustifolia Marsh.)	39	x	-	-	-	-	-	-	-	x
Sunac (Rhus sp.)	40	\times	-	-	-	-	-	-	-	x
Coralberry (Symphoricarpos orbiculatus Muench.)	41	Nors	,	-	-	-	-	-	-	

Group and Snecies

 Pedbud

Group and Species	Adaptation to soil classes						
	Uplands				Terraces		
	A	B	C	A	B	C	D
Western soapberry	G	G	F+	G	G	G	G
Gum elastic	-	-	-	F	F	F	E
Texas pistache	E	E	E	E	E	E	E
Pussian-olive	$\mathrm{F}+$	G	G	G	G	G	G
Roughleaf dogwood	E	E	E	F+	$\mathrm{F}+$	F+	E
Low shmubs:							
Desert willow	E	G	G	E	G	G	-
Tamarisk	G	G	G	G	G	G	G
Ljlac	F+	G	G	G	G	G	E
Hawthorn	E	E	E	E	E	E	E
Chickasaw	F-	F	F	F+	F+	F+	E
Sumac	E	F	F-	G-	$\mathrm{G}+$	$\mathrm{F}+$	E
Coralberry	-	E	E	E	$\mathrm{F}+$	$\mathrm{F}+$	E

A - Sands, includes sands, loamy sands, and loamy fine sands.
B - Sandy loams, includes sandy loams and fine sandy loams. C - fine textures soils, includes all soils of finer texture than the above; i.e., very fine sandy loams, loams, silt loams, silty clay loams, clay loams, clays. D - Low wet soils. 1-From center line of shelterbelt outward, any species having a larger number in this column will be planted in 1 or more rows outside the row or rows of any species having a smaller number. Ordinarily one or more species will be selected from each of the 4 groups indicated in the first column.
G - good adaptation to soil indicated F - fair
E - experimental use in very small amount - poor, do not use

+ or - is somewhat better or poorer than letter rating. Smal1 letters refer to remarks. c
It is assumed that the following soils will be avoided, except experimentally: Coarse gravel
soils, undrained basins (buffalo wallows), shale-derived clays, alkaline basins, claypan soils.
Remarks:

$$
\begin{aligned}
& \text { Cottonwood: a - Use } 3 \text { rows throughout Oklahoma part of shelterbelt zone. } \\
& \text { Dwarf Asiatic elm: Subject to cotton-root rot infection. } \\
& \text { Russian mulberry: Subject to cotton-root rot infection. } \\
& \text { Black locust: a - Can be used on uplands if water table is within } 15 \text { feet. } \\
& \text { very prevalent. } \\
& \text { Ailanthus: Suckering sometimes objectionable. } \\
& \text { Ponderosa pine: Ordinarily use not over one row. } \\
& \text { Iastern red cedar: Keep south of latitude of Wellington, Texas. } \\
& \text { Texas pistache: Subject to cotton-root rot infection. } \\
& \text { Lilac: Subject to cotton-root rot infection. }
\end{aligned}
$$

Source: Possibilities of Shelterbelt Planting in Plains Region, 22.
Borer damage
not live through the 1950° s. Although this list is not complete nor is it meant to be, there are certain trees which can be found throughout both states, and many times these are all that is left in the belts. In others, they make up part of the belt while the remainder is made up of trees indigenous to that particular part of the state. Therefore, these species are Osage-orange, mulberry, honey locust (Gleditsia taiacarthos I.), black locust (Robinia pseudoacacia L.), and if conditions are right, Chinese (Siberian) elm. In those counties in both states south of Highway 66, there is a predoninance of hackberry (Celtis reticulata Torn.) and even some chinaberry (Melia azedarach L.). As for conifers xenaining, the red cedar is about the only one left. In some belts, the red cedar is jojned by oxiental arborvitae (Thuja orientalis L.). Other conifers have failed. Briefly, some of those which have failed to survive in Orlahoma and Texas are green ash (Razinus pennsylvanica lanceolate (Borkh.) Sarg.), desert willow (Chilopsis linearis (Cavanilles) D.a.) and Russian olive (Blaeagnus angustifolia L.).

Finally, earlier in this study, the question was asked, 'mo what extont has the land used for shelterbelts been removed from its original purposes?" Mary of the lendowners in Oklahoma and Texas, if they have not taken their belts out completely, have changed how they use them. One of the first new uses, ons which has been mentioned previonsly, is for the protection of livestock. (Figures 21 and 22.) Howover, the planners of the project foresaw this as a benefit of the shelterbelts. They were thinking in terms of the livestock remaining outsice the belt, however, not in them,

> Another use made of shelterbelts today is in swine production. This use is particularly in evidence in Wilbarger Comty, Texas.

Figure 21.

Figure 22.
Shelterbelts showing effects of livestock grazing. (Upper: Greer County, Oklahoma and lower: Wilbarger County, Texas).

Here the swine producer removes the interior rows of his belt and leaves the two outer rows on each side. The crown spread is overlapped in such a way that the swine have ample shade and also have a large area in which to move.

Some conservationists have tried to get the landowners to leave their belts in for the benefit of wildlife and for their esthetic effect in providing a break in the monotony of the Plains landscape. Other uses include storage areas for farming equipment. One belt was even used as a trash dump. So, for good or bad, many of those shelterbelts remaining in Oklahoma and Texas have been removed from their original purposes and have assumed other roles. (Figures 23 and 24.)

Figure 23.

Figure 24.
Shelterbelts can still be used to help irrigation farmers. (Upper: Greer County, Oklahoma and lower: Motley County, Texas).

CHAPTER VI

PROSPECTS AND RECOMMENDATIONS FOR THE FUPURE
This, then, has been an evaluation of the Shelterbelt Project, its goals, its successes, and its failures. It has been looked at from a historical viewpoint in a general way and from a geographic standpoint in Oklahoma and Texas. To those who worked on the project it was a success; to those who came later it failed to measure up to its expectations. To the older farmer on the land it meant he could plant his crops without fear of their blowing out; to the younger farmer, however, it has often meant land which could best be used another way. To the rancher, it means shade for his cattle. So to say that the project was essentially a fajlure is wrong because, first, it did provide employment at a time when it was badly needed; secondly, it did help solve the problem of soil blowing; and thirdly, it proved that trees could be planted in the heretofore "treeless Plains." The agencies concerned made many mistakes, but with each mistake something was learned and improvements were made for the next plantings. What was learned during those eight years of tree planting was and is of benefit to the later tree planters. So it seems that the Shelterbelt Project (Prairie States Forestry Project) did reach the goals it set out to achieve.

The Forest Service knew when it started the program it was not a panacea for all that was wrong with farming in the Great Plains
region, rather, it saw it as one of many renedies offored which could solve the particular problems of that time. Since the project ended, the Soil Conservation Service has integrated the shelterbolts into an overall conservation program, Herein lies the key to the use of shelterbelts and other types of windbreaks--they are and should be used with other conservation practices to hold and control the axable land within the Great Plains region,

Shelterbelts alone cannot do the job, as seen from the experience in Oklahoma and Texas. Here once the people thought they had become established, they left the trees to their own designs to survive in an environment that has always been inhospitable to the growth of trees. The shelterbelts still have a place in these two states because no one can be suxe if or when a drought will return to this area where the farmers need all the crop insurance found in good conservation practices they can get. Many still believe that if treatment of the land is carried out properly, there is no need for trees, and well it may be. But, there are farmers today in Oklahoma and Texas who remove their belts to practice better methods, they say, only to find out too late that they still neod the balte too,

So, what seens to be noeded is a program whereby farmers can be shom that sheltorbelts still have a place in the conservation program of the Great Plains---in particular in Oklahoma and Texas. When asked if he thought the Forest: Service would be interested in handling another project such as the Shelterbelt, Roberts answered "No." He went on to say that the project had heen an emergency program carried out under somewhat adverse conditions, but if a program could be devised where the

Forest Service could take applications and then do nothing but tree planting, then it might be interestod. However, the old problem of the "Dust Bowl" era again axises---the overlapping of two agricultural agencies in the same area. Thus to carry out the planting of new shelterbelts in Oklahoma and Toxas, the tro would have to work together.

A program which might fit the situation in the Southern Plains would be designed at first to educate and demonstrate the value and benefits of shelterbelts. ${ }^{2}$ Such a progran could make use of those shelterbelts already on the land. Belts which are considered in good condition and located in an easily accessible location in each county, so that othor landowners can observe them, should be chosen. These demonstration belits should be cleaned up, with all weeds, dead trees, and limbs removed. Probably the best idea, would be too reduce the number of rows to thooe; in this way the belts would take up less land and moula still be effective.

Once the denonstration belts were established, then a program of educating the younger landowners as to their values and proper care could be ret up ani hanaled jointly by the Soil Gonservation Service and the Forest Gervice. With a coordinated effort such as this, the new program would benefit from more carerul planning, and newer and better supervised techniques conld be cstablished. Such techniques would include the need to look moro closely at the soils and species to be planted. Bach of the two servicos could greatly profit from the Knowledge the other service has in this area of tree planting, and as

[^46]a result a better program could be devised to benefit the Southern Plains.

Of course, the biggest obstacle would be the same as it was during the Shelterbelt Froject days--the farmer hinself. He would have to be shown that the shelterbelt could be a part of the overall conservation program for his farm and not just a bunch of trees put on his land to sap the moisture from his crops. With the research being done today on the effect of shelterbelts on crop yields, the conservationist could show him that the yield is greater in areas out a ways from the belt, and that the sapped area could be planted in grass or used as a turn around or access road to his field. The farmer could aiso be instructed in the proper care of his belt--how to cultivate and how to thin it out when needed. It would be desirable to set up demonstration belts so he could see for himself how the belt would be beneficiai on hjs own land, and so he could talk to the owner of the belt and get his opinions. If properly carried out, such a program could provide the necessary motivation for farmers to plant more shelterbelts.

If such a program or some alternative program is not devised, it seems assured that the sheltexbelts remaining in OKJahoma and Texas will continue to deteriorate until there will be nothing left except shelterbelt remnants. And, those that are remnants today will be completely gone in the next decade or so. It is the considered opinion of many, not only in the Southern Plains, but throughout the whole region, that trees still have a place in the overall conservation program of the Great Plains. The Shelterbelt Project proved that trees could be made to grow here. Now it becones the responsibility of this generation to see that the next
one does not have to go through the anguish of another "Dust Bowl." To achieve this it may possibly have to devise another program such as the Shelterbelt Project.

BIBLIOGRAMHY

Books

Athearn, Robert G. High Country Empire: The High Fiains and Rockies. Bison Books. Lincoln, Nebraska: University of Nebraska Press, 1960.

Brown, Ralph H. Historical Georraphy of the United States. New YorIf: Harcourt, Brace, 1948 .

Bunting, B.T. The Geosraphy of Soil. University Library of Ceography. Chicago: Aldine Publishing Co., 1966.

Collingwood, G, H. and Brush, Warren D. Knowing Your Prees. Washingtor, D.C.: The American Forestry Association, 1964.

Donahue, Roy l. Solls: An Introduction to Soils and Plent Growth. Englewood Gliffs, JoJ.: Prentice-lall, Inc.: 1958.

Dxoze, Wimon H. WThe New Deai's Shelterbelt Project, 1934-1842." Bssays on the New Deal. edited by Harold M. Hollingswouth and William F. Holmes. Austin, Texas: University of Texas Press, 1959.

Hibbora, Benjamin 1I. A History of the Public Land Policies. Her Youk: Mackillan Company, 1224.

Hicks, John D., Mowry, George E., \& Burke, Robert E. The Anerioan hation. Boston: Houghton Mifflin Company, 1963.

Jacks, G. V, and Vhyte, R, O, Vanishine Jands: A Vorld Survey pe Soil Brosion. New York: Doubleday, Doran, \& Co., Inc., 1939.

Iagues, H. B. How to Know the Trees. Dubuque, Iowa: Wm, C. Brom Compary, 19t6.

Kraonel, Garl F. The Creat Platns in Transtition. Norman: Univorsity of. Oklahoma Pross, 2955.

Mattoon, W. R. and Webster, C. B. Porest Trees of Texas, Cullege Station, Toxas: Toxas Porest Sorvice, 1928.

Nixon, Edgar B., ed. Frankiin 2, Roosovelt and Conservation, 1211-45. Vol. I. New Y̌ouk: Goneral Sorvices Adninistration, iationa? Archives and Records Service, Pranklin D. Roosevelt Library, 1957.

Phillips, George R., GiUbs, Frank J., and Mattoon, Wilbur R. Eorest $\frac{\text { Trees of OKlahoma. Oklahona Clty, Oklahome: State Forostry }}{\text { Division, } 1959 \text {. }}$

Preston, Richard J., Jr. Noath American Trees. Cambridge, Massachusctts: The M.I.T. Press, 1966.

Rumney, George R. Climetology and the Horld's Glimates. London: The MacMjillan Company, 1968.

Saarinen, Thomas F. Perception of the Drourht Hazard on the Great Plains. Chicago: University of Chicago, 1966.

Sears, Paul B. Deserts on the March, Norman: University of Oklahoma
Press,
Smith, J. Russell \& Phillips, M. Ogden. North Anerica. New York: Harcourt, Brace \& Company, 1042.

Strahler, Axthur N. Irtroduction to Physical Goormaphy. New York: John Wiley \& Sons, Inc. 1065.

Svobida, Iawrence An Empire of Dust. Caldwoli, Idaho: The Caxton Printers, Itdo, 1940.

Thornbury, Wiliiam D. Regional Geomormhology of the United States. New Vork: John Wiley \& Sons, Inc., 1965.

Thornthwaite, G. Warren. "The Great Plains." Migration and Economic Opportunity. edited by Caster Goodrich \& Others. Fhiladelphia: University of Penrsylvania Press, I936.
Trewaxtha, Glenn T. The Earth's Problem Climatos. Madison: The University of पisconsin Press, 1966. - An Introjuction to Climate. Now Yoxk: MoGraw-will Book

Wehn, Talter P. The Great Plains. Grosset's Uriversal Library. New
York: Grosset \& Drulap, 1931 .
Woaver, J. E. North Americen Prairis. Lincoln, Nebraske: Johnsen Pubiishing Company, 1954.

Reports-Published

Great Plains Comittce, Report of the Great Plains Comittee. The Future of the Great Plains. Washirgton, D.C.: Govemment Printing Office, 1936.

Read, Ralph A. The Great Plains Shelterbelt in 1954. Publication No. 16 of the Creat Plains Agricultural Council. Iincoln, Nebraska, 1958.

Public Documents

Baranyay, J. A. Shelterbelts in the Great Plains Region of the United. States. Foxest Research Lab Information Report AX5. Calgary, Canada, January 1967.

Bates, C. G. The Windbreak as a Parm Asset. Farmers Bulletin 1405 . Vashington, D.C.: Government Printing Office, 1944.

- Windbreaks: Their Influence and Value. U. S. Forest Service Bulletin 86. Vashington, D.C.: Governnent Printing Office, 1911.

Ferber, Arthur E. Windbreales in Conservation Farming. Miscellaneous Publication 1 VO .759 of Soil Consorvation Somice. Washington. D.C.: Government Printing Office, 1958.

Godfrey, Cuxtis I., Carter, Glarence R.. Mokee, Gordon S. Land Resource Areas of Texas. Pubiication B-1070 of Texas A \& M University, Texas Agricultural Extension Service, and Texas Agricultural Experiment Station, College Station, Texas, n. .

Gray, Penton and Galloway, H. M. Soils of Orlahoma. Miscellameoue Fublication MP-56 of the OSU Experiment Station, Stillwater, Oklahoma, July, 1959.

Hatton, John H. "A Review of Farly Tree Planting Activities in the Platins Recion." Possibilities of Snelterbelt Planting in the Plains Region. Washington, D.C.: Government Printing Office, 1935.

Jacksor, A, S. Quail Manascment Handbook for West Texas Rolling Plains. Texas Parks and Wildlife Department Bulletin No. 48., Austin, Texas, n. त.
 $\frac{\text { plains. }}{2966 .}$

Johnson, Fred R. and Cobb, F. E. Tree Plantinc in the Great platns Reston. U.S.D.A. Farmers' Bulletin VO. 1312 . Washington, D.G.: Governmont Printing Offico, April, 1023.

Kellogg, Charies E. Soil Blowing and Dust Scorms. U.S.D.A. Miscellaneous Publication NO. 221. Nashington, D.C.: Govermment Printing Office, Narch 1935.

Read, Ralph A. Bibliography of Great Flains Forestry. Rocky Mountain Forest and Rance Experiment Station Paper No. 58., Fort Collins, Colorado, May, 1961.

- Tree Windbreaks for the Contral Geent Plains. Agriculture Handbook No. 250 of the U.S. Department of Aspiculture. Washington, D.C.: Coverninent Printing Orfice, 1964.

Soil and Nater Consorvation is Everybody's Busincss, Publishod by International Harvester Company with help of Soll Conservation Service, Chicago, Illinois, n.j.

Stoeckeler, J. H. Shelterbelt Influence on Creat Plains Field Envixomnent and Crops. Production Research Report No. 62. Washington, D.C.: Government Printing Office, 1962.

Tree Identification Manual. Nebraska Extension Service Nanual M. C. 1703, Tincoln, Nebraska, n.d.
U. S. Department of Agricuiture, Soil Conservation Service. "Policies and Procedures for the Farm Forestry Program of the Department of Agriculture Under the Cooperative Famm Forestry Act." Washington, D.G. Mey 9, 1939. (Mimeographed).
U. S. Department of Agriculture, Soil Consexvation Service. Soll Suxyey for: Blaino County, Oklahoma (June, 1958) Greer County, Oklahoma (Varch, 1267) Jackson County, Oklahoma (June, 1961) Kingtisher County, OkJahoma (June, 1962) Roger Mills County, Oklahoma (August, 1963) Woodrard County, Oklahoma (November, 1963) Childress County, Texas (Julys 1963) Foard Comby, Texas (INovember, 1964) Hall County, Texas (February, 1967) Wilbarger County, I'exas (September, 1962) Washington, D.C.: Government Frinting Office.
U. S. Depertment of Agriculture, Soil Conservation Service, Regionzl, Forestry Division. "Tree Windbreaks for the Southem Plains," Fort Worth, Texas; September, 19'?. (Mimoographed).
U. S. Dopartment of Commerco, Clinatolo ical Data, Otelahoma Monthly \& Anmual Summoxy, Volunes 50-77. Weshinzton, D.C.: Government Frinting office, 1949-68.
U. S. Department of Commerce. Clinatoiooical Data, Texas Anmal Sumary Volumes 54-73. Washinglon, D.G.: Govermment Prunting Office, 1049-63.
U. S. Forest Service, U.S.J.A. Handbook of the Division of Timber Management for the Prairie States Forcstry Project. Washington, D.C.: Government Printing office, 1930.
U. S. Forest Service, U.S.D.A. Possibilitjee of Shoitorlelt Planting in the Plains Rewion. Washington, D.C.: Govermment Printing OCfice, 1935.
U. S. Forest Service, U.S.D.A. Winds over Hildlands-A Guide for Forest
Manasement, Abriculture Hendbook Mo. 272 . Washington, D.C.: Government Printing Office, 1964.
U. S. Forest Service, "A Survey of Past Plantiness." Posetbilitites of Shelterbelt Planting in the plains Region. Washivgton, D. C.: Government Printing Office, 1935 .

Wells, H. R. "The Status and Use of Shelterbelts in Western Oklahoma." OkJahona Agricultural Experinent Station Bulletin B-295. Stillwater, Oklahoma, 1949, 104-8.

Wilson, M, L. "Economic and Social Aspects of Agriculture in the Plains Region." Possibilities of Shelterbelt Planting in the plains Region. Washington, D.G.: Government Printing Office, 1935.

Woodruff, N. P. Shelterbelt and Surface Barwier Effects on Wind Velocity, Evaporation, House Heating, and Snox-0riftins. Technical Bulletin 27 of Agricultural Spperiment Station, Manhaitan, Kansas, 1954.
_ , Brysear, D. T., and Iylos, Leon. Reaucins Wind Velooity rith Field Shelterbelts. Technical Bulletin 131 of Agricultural Experiment Station, Marhattan, Kansas, 1963.
, Read, R. A. and Chepil, W. S. Influence of a Field Windbreak on Sumner Wind Hovement and Air Temperature. Technical Bulletin 100 of Agricultural Experiment Station, Marrattan, Kansas, 1259.
_ and Zings, A. V. Wind-Tunnel Studies of Fundamental Problems Related to Windbreaks. Washington, D.C.: Government Printing Office, 1952.

Yearbooks

Bennett, John B., Kennedy, F. R., and Chapline, W. R. "The Problem" Subhumid Areas." Soils and Mon, Yearbook of Arriculture, 1938 , Washington, D.C.: Governnent Printine Office, 1933.
Thornthvaite, C. Warren. "Clinate and Settlenent in the Great Plains." Climate and Man, Yearbook of Asriculture, 1241. Washington, D.C.: Government Printing Office, 1941.

Trewartha, Glenn T. "Climate and Settlement of the Subhumid Lands." Climate and Man, Yoarbon's of Aoriculture, 2042. Washington, D.C.: Government Printing Office, 1941.
Articles in Joumals

Barton, Thomas F. "The Great Plains Tree Shelterbelt Project." The Journal of Geography, XXXV (Apri1, 1936), 125-35.

Bates, Carlos G, "The Plains Shelterbelt Project。" Journal of Forestry, XXXIT (December, 1934), 973-91.

Borchert, John R. "The Climate of the Central North American Grassland." Annals of the Association of Anerican Georraphers, XL (Narch,

Butler, Ovid. "The Prairie Shelterbelt." American Forests. (September, 1934), 395-398, 431.
"A C.C.C. Symposium." Journal of Forestry, XXXIV (December, 1934), 930-51.

Chapman, H. H. "Digest of Cpinions Recejved on the Shelterbelt Project." Journal of Forestry, XXYII (November, 1934), 952-72.
\qquad - "The Shelterbelt Tree Planting Project." Joumal of Porestry, XXXII (November, 1934), 801..03.

Cook, David Ir, and Van Haverbeke, David F, "Trees May Help Solve the Traffic Noise Problem." Universjty of Nebraska Quarterly, Volune XVI (1969), 11-12.

Cooke, Morris L. "Shelterbelts--For Dustbowl Control." Survey Crapinic (September, 1947), 472-74, 497-99.

Crossley, D. I. "Fteld Shelterbelts in Prairie Rehabilitation." The Forestry Chronicle, XIII (December, 1937), 479-89.

Dahl, Jerome. "Progress and Development of the Prairie States Forestry Project." Iournal of Forestry, XXXVIII (April, 1940), 301-06.

Docre, Arthur H. "Desert Years in Oklahoma During the $1930^{\circ} \mathrm{s}$ and $1950^{\circ} \mathrm{s}$." Procedings of the Otclahoma Acadeny of Science, XLII (1962), 235-243.

- "Dry Conditions in Oklahoma in the 1930's and 1950's as Delimited by the Original. Thornthwaite Climatic Classification." The Great Plains Journal, II (1963), 67-76.
\qquad - "Orlahona's Climato-..The Dirty Thirties vs. the Filthy Fifties." Proceedings of the Oklahoma Acadeny of Science, XII (1951), I69-72.
\qquad - "Thornthwaite's Original Climatic Classification and Oklahoma's Climate." Proceedings of the OKlahoma Academy of Science, XLII (1961), 231-235.
, and Sutherland, Stephen M. "ifunid and Dry Cycles in Oklahoma in the Period 1930-60." Great Plains Journal. (Spring, 1966), 84-94.
, and Sutherland, Stephen M. "Variations in Oklahoma's Climate as Depicted by the Koppen and Early Thornthwaite Classifications." The Journal of Geography, IXIII (February, 1964), 61-66.

Durrell, Glen R. "Social and Economic Effects of the Great Plains Shelterbelt in Terms of Soil and Human Betterment." Joumal. of Forestry, XXXVII (February 1939), 144-48.
"Establishment of a Forest Shelterbelt." Science, IXXX (July 27, 1934), 91.
"Field Office for the Shelterbelt Project." Science, IXXX (August 23, 1934), 180.

Ford, A. I. "Prairie Face Lifting." American Forests, JXVIII (April, 1962), 48-49.

The Forestry News Digest (February, 1935),
Gastill, Alfred. "Why Prairies are Treeless." The Society of american Foresters Proceedings, I (1906), 158-78.

George, \mathbb{E}. J., Broberg, Don, and Worthington, E. I.. "Influence of Various Types of Field Windbreaks on Reducing Wind Velocities and Depositing Snow." Journal of Forestry (May, 1063), 345-49.

Creb, B. W. and Black, A, I, "Prefects of Windbreak Plantings on Adjacent Crops." Journal of Soil and later Conservation, XVI (SeptemberOctober, 1961): 223-227.
Guthrie, John D. "Trees, People, and Foresters," Journal of Forestry, XI (June, 2942), 477-80.
Hall, William I. "The Grand Shelterbelt Project." Journal of Forestry, XXXII (november, 1934), 973-74.

Huntington, Ellsworth, "Marginal Land and the Shelterbelt." Journal of Forestry, XXXIT (November, 1934), 804-12.
Mincer, Joseph B. "The Climate of the Great Plains as a Factor in Their Utilization." Annals of the Association of American Geographers. XIII (June, 1923), 67-30.

Kunns, E. N. and Stoeckeler, Josoph H. "How Are the Great PJains Shelterbelts?" Journel of Porestry, XIIV (April, 1946).

Pearson, G. A. "Why the Prairies Are Trecless," Ioumal of Porestry, XXXIV (April, 1936), 405-08.
"Pros and Cons of the Shelterbelt." Amoxican Forests, XL (iovember, 1934), 528-29, 545-46.
"Record Survival Made by Shelterbelt Trees." Joumal of Forestry, XI (June, 1942), 456.

Sears, Paul B. "The Great American Shelterbelt." Ecolosy XVII (October, 1936), 683-84.

Selke, Arthur C. "Prairie Fonestry From a Prairie Draller's Viewpoint." Jounnal of Forestry, XXXVTJI (culy, 2940), 545-46.

Shantz, H. L. "The Natural Vegetation of the Great Plajns Rogion." $\frac{\text { Annals of the Association of Anerican Geographers, XIJI (June, }}{1923 \text {), } 81-107 \text {. }}$

Shaw, Blmer W. "A New Look at Shelterbelts." American Forests, IXIIT (Decerber, 3.957), 18-27.
"The Sholterbelt." Chronics Eotenica, VII (Ausust, 1943), 430-37.
"Sheltexbelt Goos on WDA." zournal of Forestry, XXXVI (June, 1938), $547-48$.
"Sheltecinelt plantings for 1939." Journe? of Forestry, XXXVI (June, 3933), 581.
"Sheltorbelt Wimnine Battle of Wind and Dust." Journal of Forestry, XI (Apri1, 1942), 345-45.

Stauffec, Donali E. 'Tweo Phantine in the Sheltocbeld Area: What We have Leamed in Fiftecn Yoars of this Project." Forest Farmer, XIII (December, 1952), 12-13, 22.

Stoockelor, J.ll. "Tho Creat Elains Shelterbelt." Amerioan Nurseryman (September 1, 1946), 7-10.
\qquad - "Shelterbeli Planting Reduces Wind Brosion Damace in Westem Oklahoma." Journal of the American Soctioby of Amronomy, XXX (lovember, 1833), 923-31.
\qquad . "Shelterbelts and Their Berects on Crop Yields in the Great Plains." jonmal of Soti and Vator Conservation, XVIIT, (Tuly.. Angust, 2053), 130-114.
\qquad - "Trees Pay Farm Benefits." Conservation Volunteer (May-June, 1958), 26-31.
"Summary of Progress, Fiscai Year 1968." Soil Concervation, XXXIV (February, 1969), 162.
"Summary of Progress, Fiscal Year 1969." Soll Consenvation, XX/V (January, 1970), 139.

Taylor, E.H. "The Prairies Can Grow Trees." Country Certleman (February, 1942), 13, 52-53.

Tinker, B. W. "What's Happened to the Shelterbelt?" American Forests, XLIV (Janvary, 1938), 7-10, 48.
"U. S. Forest Service Devise Tree Planting Nachine." Journel forestry, YL (January, 1042), 60.

Van Heverbeke, David E. "PMirst-Aid' for Your Shelterbelt." Nebraska Experiment Station quarterly (Summer, 1965). 27-18.

- "Give Your Shelterbelis New Life." University of Nebraska Quartexly, Volume XV (1959), 20-23.
\qquad - "Man and Trees on the Great Plains." University of Mabraska Quarterly, Volume XVI (1969), 9-73.
- "Site Preparation In Renovating Shelterbelts." Pree Planiens" Notes No. 73 (October 1965), 3-7.

Worthington, Elmer J. "Bron "Dust Bowl' to 'Tree Bowl." American Eorests, Volume LXVI (June, 2960), 1-3.

Waight, E. "Some Pathological Problems in Connection with the Development of the Plains Shelterbelt Prosect." Phytopathology, XXVI (1936). 113.

Zon, Raphael. "Shelterbelts--Putile Dream or Workable Plan." Science, LKXKI (April 26, 1935), 391.-93.

Articles in Magazines

Carhant, Arthur H. "Shelterbelts: A 'Pailure' That Didn't Happen." Harper's Masazine (October, 1960), 74-77.
Garroll, Raymond C . "Shelterbelt." The Saturday Evening Post (October 5, 1935), 23, 81-83, 85-86.
Compton, Wilson. "Covernment Versus Desent: The Fallacy of the Sholterbelt." The Bomum (April, 1935) 237-39.
"Buropean Shelterbelts Help Modify Climate." Scientific American (October, 1934), 214.
"Pighting the Drouth." Popular Mechanics liagazine (October, 1934), 483-85.

Johnson, Floyd A. "Covering Nature's Nakedness," Mature Mazazine (November, 1935), 302-03.
"A Land Takes Root." Successful Farming (April, 1938), 12-13.
Miller, Darrel. "The Heritage of the Old C.C.C." Oklahoma's Orbit (November 9, 1969), 26, 28-29.

Mitchell, Johnathan, "Shelterbelt Realities." The New Republic (August 29, 1934), 69-71.
"Planting a Shelter-belt Through Midale of America." Literary Digest (August 11, 2934), 15.
"Preliminary Shelterbelt Plantings." Scientific Anerican (May, 1935), 274.

Pryce, Dick. "Shelterbelt Squirrels." Outdooc Itfe (August, 1969), 52-53, 131-132, 134.

Roe, Jim. "The Wind Meets Its Mastex." Successful Farming (August, 1946), 22-23, 48-49, 97.

Rosenberg, Norman J. "What Windbreaks Really Do." Crops \& Soils Magazine (June-July, 2966).
"The Shelterbelt Comes Tmue." Business Week (April 6, 1940), 20, 21-24.
Silcox, F. A. "Green Belts in Drouth Areas." The Nation's Agriculture (July-August, 1939), 4, 15.

Smith, Wyman. "Trees Ston Drifting Dollars." Successful Farmins (April, 1937), 26.

Stoeckeler, J. H. "The Design of Shelterbelts in Relation to Crop Yield Improvement." World Crons (March, 2965), 3-7. - "Destign of Shelterbelts for Agricultural Lands in Relation to Microclimate and Improved Soil Brosion Control." World Crops (December, 2954), 1.4.

Newspapers

Eaitorial, Chicago Daily Tines (n.d. other than 1940).
"Man Finds Trees Aren't Only His Best Servant But Also Best Eriend." Lincoln Sunday Journal \& Star (May 1, 1938).
"Tree Barriens Reduce Traffic Noise." OkJahona Daily Marcet Report (May 1, 1970).

Unpublished Materials

"A.A.A. to Cooperate With Forest Service in Securing Lands for ShelterbeJt Planting." News release from Files of Prairie States Forestry Project, Lincoln, Nebraska, July I6, 1935.

Boring, E. P., Drake, N. P., and Hill, H. P. "Overwintering Boll Weevil Survey in Wilbarger and Foard Counties--1969." (Mimeographed), 1.969.
"Climatic Effect of the Great Plains." Joint statement by the U. S. Forest Service and the U. S. Weather Bureau, October 22, 1934. (Mimeographed).

Ferber, A. E. "Tree Windbreaks in the Plains-Then and Now." Draft of article sent by A. B. Ferber, 1963.
____ and Read, Ralph A. "Ficld Windbreaks Planted in Great Mlains States" and "Tammeed \& Iivestook Windbroaks in Creat Plains States," Tables conpiled at Lincoln, Nebraska. July, 1967.

Fitswater, J. A, "Prairie-Plains Region Sheltecbelt Project," Type.. Written report from Files of Prairie States Forestry Project, Lincoln, Nebraska, May, 1944.

Floyd, Fred. "A History of the Dust Bowl" Unpublished Ph.D. dissertation. University of OKlahona, 1950.
"General Informetion Regarding the Plan of Shelterbelt Planting." Statement issued by U. S. Forest Service Iron Piles of Prairie States Forestry Project, Lincoln, Nebrasisa.

Johnson, E. W. "Windoreaks for the Southern Great Plains." Woowward, OKlahoma, 1958. (Mimeographed Report.)

Pexry, E. I. "History of the Prairie States Forestry Project." Pypewritten mamuscript for the U. S. Forest Service, IS42.

Thillips, Ceorge R. "The Cooperative Farm Forestry Progran." Typewritten report from Files of Prairie States Forestry Project, Ifincoln, Nebraska.

[^47]"A Plea for Great Plains Forestry." Paper presented at Congressional Joint Committee of Forestry, Madison, Wisconsin, December 19, 1939.
"The Prairie States Forestry Project.-- What it is and What it does." News release by Forest Service fron Files of Prairie States Forestry Project, Lincoln, Nebraska, n.d.

Prairie States Forestry Records of Oklahoma Plantings, Soji Conservation Service, Resional Office, Fort Rorth, Texas.

Prairie States Forestry Records of Texas Plantings, Soil Consesvation Service Office, Vernon, Texas.

Ramig, R. E. "Windbreak Crop Sapping." Feport fxom Files of Prairie States Forestry Project, Iincoln, Nebraska.

Reitz, T. Russell. "Work of the Prairie States Forestry Project." Typewritten report from Files of Praixie States Foresiny Project, Lincoln, Nebraska, Jamuary 15, 1940.

Roberts, Paul H. "History of Shelterbelt Project." IJnpublished manuscript.
"Roosevelt and the Great Plains Shelterbelt." Xerox copy of draft from Files of Prairie States Forestry Project, Lincoln, Nebraska, n.d,

Rosenberg, Norman J. "Windbreaks and Crop Production: Mechanisms of Windbreak Influence on Microclimate, Evaotranspiration and Photosynthesis of the Sheltered Crop." Abstract of Paper presented to the 21st Annual Meeting of the Forestry Forum, Porestry Committee of the Great Plains Agricultural Council, Fort Collins, Colorado, June 24, 1969.
"Shelterbelt Planting Haking Progress." Press release from Files of Prairie States Forestry Project, Lincoln, Nebraska, June 29, 1935.

Silcox, F. A. "What 's Happened to the Sheltexbelt?" Radio address delivered over National Broadcasting Company network, October 12, 1938.

Soil Consenvation Service. Regional Forestry Division. "Tree Windbreaks for the Southern Plains." Fort Worth, Texas. September, 1947. (Mimeographed report).
"The Tree Windbreak as a Conservation Measure," Mineographed report given at Windbreak Srainimg Meeting, Clinton, OkIahoma, November 4 and 5, 1957.
11. S. Department of Agriculture. Forest Service. Igta Anmual Plantines Accomplishment Report. Typewritten report, Iincoln, Nebraska,
U. S. Porest Sorvice. The Benefits of Sheltorbelts, Mimeographed report, Lincoln, lielraska, Oetober, 1935.
U. S. Forest Service. Prairie States Forestry Froject. "Porestry for the Great Plains." Pypewritten Rerort, Lincoln, Nebraska, September, 1937.
U. S. Forest Service. Prairie States Forestry Project. 1942 Annual plantins Accomplishment Report. Mineographed report, Iincoln, Mebraska, June, 1942.
U. S. Forest Service. Weather Bureau. "Climatic Bffect of the Great Plains Shelterbelb." Joint Press Rolease for October 22, 1934.

Intervicus

Babek, Sronk (Mns.), Wie of Greer County, Oklahona farmer, July, 2969.
Babok, Joe, Famer, Greer County, Oklahona, July, 1969.
Bildstoin, Claude, Farmer, Milbarger County, Texas, August, 1969.
Bower, Mydu, Chief of Regulatory Services, State Dopartment of Agriculture, Oklahoma City, Oklahoma, July, 1969.

Brooks, William 3., Distrjot Conservationist, Soil Conservation Service, Wheeler, Wheslex County, Texas, September, 1969.

Burton, Side formor Fiold planning Technician, P.S.F.F., Lincoln, Nebraska, September, 230,

Carleton Jr., Howard, Pormer Sheltexbelt Assistant, P.S.F.P., Perkins, Oxtahona, Ju7y, 1969.

Cobb, C. R., Faxmer, Wivbareer County, Texas, August, 1969,
Drake. N. T., County fgent, Vernon, Wilbarger County, Texas, August, 1969.
Duncan, Frank L., District Conscrvadionist, Soil Conservation Service, Vernon, Willaager Count.y, Toxes: August, 1969.
Engstron, Abbext, Director, Staje Forestiry Division, Oklahoma Uity, Oklahome, August, 1969.
Grass, C. A., Fammex (retired), Canadian County, OkJahoma, August, 1969.
Graporv, Momey D., District Consempationist, Sojl Conservation Service, Momphis, Hall Gomnty, Texas, October 1969.

Hanson, Ralph, Paxt-time SCS omployee, Kingfisher, Kingfishor County, OrIanona, September, 2969.

Harney, Bilily R., District Conservetionist, Soil Conservation Service, Alva, Woods County, Oklahoma, August, 7969.

Horn, Jesse 0., District Conservationist, Soil Conservation Service, Geary, Blaine County, Oklahona, August, 1969.

Moward, Besel J.: District Conservationist, Soil Conservation Service, Freedon, Woods County: Oklahoma, August, 1969.
Hufstedler, Chostex, District Conservationist, Soil Conservation Service, Childress, Childress County, Texas, October, 1969.

Jackson, Donald I., District Conservationist, Soil Conservation Service, Cherokce, Alfalfa County, Oklahoma, August, 1969.

Kapache, Lloyd (Mr. \& Mrs.), Farmer and Wife, Greer County, Oklahoma, July, 1969.

Lamar, Walter L., District Conscrvationist, Soil Conservation Service, Okeene, Blaine County, Oklahoma, August, 1969.

Lowry, Orvis H., District Conservationist, Soil Conservation Service, Sayre, Beckham County, Oklahoma, September, 1969.

Mackey, Carl 3., District Conservetionist, Soil Conservation Sorvice, Port Cobb, Caddo County, DTZahom, September, 1969.

Merklin, E., Parmerwancher, Woodward County, Oklahoma, August. 1969.
Moßride, James R., District Conservationist, Soti Consenvetion Cacrico, Nangum, Greer County, Oklahoma, July and October. 2969.
McFntire, Laxamie E., District Consorvationist, Soil Goncemvetion Gemvice, Canadian, Hemphill County, Texas, October, 1969.

Nelson, Paul I., District Conservationist, Soil Conservation Service, Kingfisher, Kingfisher County, Oklehoma, August, 1.969.

Noyes, Charles R., District Gonsorvationist, Soil Conservation Service, Watonga, Blaine County, Oklahoma, August, 1969.

Oneth, Harry 7., District Conservationist, Soil Conservation Sexvice, Woodvard, Woodward County, Oklahoma, August, 1969.

Perrynan, Thomas E., District Consorvationist, Soil Conservation Service, Cheyenne, Roger Mills County, Oklahoma, August, 2969.
pjekert, Varren, County Asent, Canadian, Hemphill County, Texas, October, 1069.

Read, Ralnh A., Research Porester and Projoct Leador, Lincoln, Nobraska, September, 1969.

Reod, Cary L., District Conservationist, Soil Conservation Sorvice, Wellington, Collingsworth County, Texas, Ociober, 1969.

Rhodes, Clifford E., District Conservationist, Soil Conservation Service, Hinton, Caddo County, Oklahoma, August, 1969.

Roberts, Paul if., former Director, P.S.F.P., Prescott, Arizona, September, 1969.

Rowley, M. E., State Resource Conservationist, Soil Conservation Service, Stillwater, Oklahoma, July, 1969.

Suitor, Matt, Retired SCS conservationist, Cheyeme, Roger Mille County, Oklahoma, August, 1969.

Sowers, Willian M., District Conservationist, Soil Conservation Service, Olarendon, Donley County, Texas, October, 1969.

Sykora, Jerome F., Biologist, Soil Conservation Service, Stillwater, Oklahoma, July, 1969.

Taylor, W. (Mirs.), Whfe of Roger Mills County, Oklahoma farmor, August, 1969.

Tidwell, C. A., State Director, Soil Conservation Service, Stinlwater, Oklahoma, July, i969.

Ward, If. S., District Conservationist, Soll Conservation Service, Pabueah, Cottle County, Texas, October, 1959.

Wiliard, Ervin I., District Conservationist, Soil Conservation Service, Matador, Mot ley County, Texas, October, 1059.

Worthington, Elmer, Soil Conservation Service, Woodland Specialist (retired) conducted by Charlcs A. Evans, State Conservationjst, Bisnarck, North Dakota. Information transmitted in lettor of April, 1969.

Correspondence

Engstrom, Aibert, Director, State Forestry Division, Oklahoma Oity, Oklahoma, July I, 1969, June 29, 1970.

Forber, A. E., Regional. Forester, Soil Conservation Service, Iincoln, Nebraska, April 29, 1969.
Vergen, Katharine, Educational Relations, Information Division, SOS, Washington, D.G., July 23, 1969.
Fesd, Ralph A., Rescarch Forester and Project Jeader, Rocky Mountain Forest and Ramge Experiment Station, Lincoln, Nebraska; July l, 2969.

Rowley, V. E., State Rosource Conservationist, State Office, Soil Conservation Service, Stillwater, Oklahoma, June 5, 1969, June 12,1969 , June $30,1970$.

APPBMDTK I

E. L. Perry, "History of the Prairie States Forestry Project" (Typewritten manuscript, 1942), p. 12.

On July 11, 1934, the Plains Shelterbelt Project was formally authoxized by the President and an Executive Order issued alloting \$15,000,000 of drought relief money to carry it on during Fiscal Year 1935. Tho text of the Bxecutive Order follows:

ALIOCATING FUNDS EROM THE APPROPRIATION TO MEES THE EMERGEICY AND NECESSTTY FOR ReIIEF IN SIRICKEN AGRICUITUPAL AREAS
"By vistue of, and pursuant to, the authority vested in me by the Energency Appropriation Act, Piscal lear 1935, approved June 3.9, 1934 (Public, No. 412, '73d Cong.), appropriating $\$ 525,000,000$ to meet the emergency and necessity for relief in stricken agricultural areas, there is hereby allocated from the said appropriation the sum of $\$ 15,000,000$ to the Secretary of Agriculture for the planting of forest protective strips in the Plains region as a neans of ameliorating drought conditions."
"In carrying out this order the Secretary of Agriculture shall have authority to make all necessary expenditures in the District of Columbia and elsewhere, including but not limited to the employment of such officers, experts, and employees as he may find necessary, to preconibe their authovitios, dutiens responsibilities, and temure, and to fix their compensation, for the procurement and/or production of seed and planting stock, for planting operations, for the purchase and/or leasing of the lands to be planted, fox technical investigations, for fencing, amo for rent."
"The moneys horein made available shall be expended through such agencies, including corporations, as the Secretary of Agriculture may designate; and, with the consent of the State, county, or municipality concerned, the Secretary of Aericulture may utilize such State and Local orficers and employees as it may deen necessary in carrying out this order."

FRANKIIN D. ROOSEVEIT

TYE WHTPR HOUSE, July 11, 1934

APPEMDIX II

SHELTER BELT FRON CANADA TO TBXAS TO BE PLAMED IN DROUCIT AREA

President Allocated $\$ 15,000,000$ to Initiate Porest Project Which Will Permanently Benerit Great Plains

Work on acquiring land and planting a forest shelter belt, one hundred miles wide, and extending more than 1,000 miles through the drought area from the Canadian Border to Texas, will be started at once by the U. S . Forest Service. This announcement was made today by Secretary Wallace and Chief Forester F. A. Silcox, immediately following the release by the White House of President Roosevelt's executive order of July 11, 1934, Which allocated $\$ 15,000,000$ of emergency funds to the Department of Agriculture to initiate the project.

By direction of the President, Secretary Wallace has authorized the Forest Service to make expenditures for the present of only $\$ 10,000,000$ of the total sum provided in the executive order.

Beginning at the Canadian Border, this protection forcst belt will stretch down through the Dakotas, Nebraska, Kansas, OkIahoma, and into the Panhandle of Texas.

The aroa immediaiely affected approximates 20 million acres. Of this, about 1,820,000 acres will be planted to trees. According to the plan of the project, windbreaks xunning north and south will be planted one mile apart, making approximately 100 parallel winobreaks in the 100 mile belt. Each winabreak will be 7 rods wide, covering 14 acres out of each square mile.

The westexn border of this belt will follow approximately the line of 18 inches annual rainfall.
"The Great Plains have been suffering acutely from prolonged drought. The economic and social consequences are extremely serious. The dust storm which recentiy blanketed the country from the Dakotas to the Atlantic seaboard is an ominous reminder of the incipient desert conditions in the Great Plains area."
"Wan camot change all the forces of weather, but he can modify his own sumpoundings. He can ameliorate the effects of weather on a large scale, just as he can around his own home. If the surface velocity of the wind over a, flile area can be broken and decreased oven slightly, soil will be held in place, the moisture of the soil will be conserved, and havens of sholber will be created fox man, beast, and bird."
"This plan aims at permanent benefit and protection of the Great Plains bolt and cast. of it."

Only the land planted to the shelter strips will be acquired by the Government through purchase, lease, or cooperative agreenent, Mr. Silcox explained. The areas in between these sheltor strips will cemain in private ownership and, consequently, farmers on this land will be able to produce crops and livestock under the nost ideal conditions.

Fencing of the windbreaks is essential for protection of the woodands against cattle. In many cases, existing fences will be utilized.

This tremendous project, Silcox explained, is not without precedent. On the contrary, it is based upon the long-time experience of several European countries, notably Italy, Hungary, and Russia. In those countries, where shelter belts have been uscd ovor a period of many years and on an extensive scale, farming enterprises have been stabilized and have succeeded even in the worst seasons when farmers in other areas have suffered serious losses to their crops through adverse weather conditions.
"Furthermore, the planting of sholter belts in the Great Plains region is not an untried undertaking," Silcox added. "Since carly settlement of the prairies, settlers have frequently planted strips of woods to protect their homes and fields from the blistering winds of summer and the cold blasts of winter. In more recent years, the Fedecal and State Governments have cooperated in encouraging windbreak planting by distributing trees from their nurseries. The protective influence of sholter belts has been amply proved both through reseerch and practical dononstration. All of the shelter belt planting, however, even of recent years, has been of a scattered nature."

The ultinate cost of the project is estimated at approximately $\$ 75,000,000$. Over 90 percent of this amount will go to farmers, largely for employment of labor for plowing, fencing, planting, and caring for the trees. It is expected that about 25 percent of the expenditure can be made in the next 12 to 18 months.

One of the first steps will be the establishment of a chain of nurseries where the seedlings will be grown for planting. Seed collection and a limited amount of planting will start this year. Large-scale plantirg of the windbreaks will be under way by 1936, and the entire area, it is expected, will be planted within the next ten years, at a rate of about 180,000 acres per year.

Trees of native origin will be used. One of the best and most adaptable trees of the region is green ash, and this will be supplemented by native forms of hackberry, elm, bur oak, etc., on heavier soils, and on the higher, lighter, and sandy soils, ponderosa pine, and red cedar may be employed. In some cases, Black Hills spruce and native cottonwoods may be utilized.

The Forest Service is preparing to establish a special field office in a. central location for the conduct of the work. Bxisting field stations will also be utilized, especially the Lake Statos forest Experiment Station, which maintains a branch station in North Dekota where experimonts in planting in the semi-arid rection have been eoins on for several years. Close cooperation with the States and with a numbers of other Federal agencies will be necessaxy in many phases of the project.

$$
\text { July 21, } 1934
$$

Source: Press release of unknown source quoted by E. L. Perry, "History of Prairie States Forestry Project" (Typewritten nanuscript, 1942), pp. 13-16.

This volume is the property of the University of Oklahoma, but the literary rights of the author are a separate property and must be respected. Passages must not be copied or closely paraphrased without the previous written consent of the author. If the reader obtains any assistance from this volume, he must give proper credit in his own work.

I grant the University of Oklahoma Libraries permission to make a copy of my thesis upon the request of individuals or libraries. This permission is granted with the understanding that a copy will be provided formananand requestors will be informed of these restrictions. NAME \qquad DATE

A library which borrows this thesis for use by its patrons is expected to secure the signature of each user.

This thesis by \qquad James B. Lang \qquad has been used by the following persons, whose signatures attest their acceptance of the above restrictions.

[^0]: ${ }^{8}$ Bates, "Climatic Characteristics of the Plains Region," 89.
 9F. A. Hayes, "The Shelterbelt Zone: A Brief Geographic Description," Possibilsties of Sholterbelt Planting in the Plains Region (Washington, D.C.: Government Irinting Office, 1935), p. 11.
 ${ }^{10}$ Great Plains Committec, Report of the Great Plains Committce, The Futume of the Gxcat Plains (Washington, D.G.: Govemment Printing office, 1937), p. 28.

[^1]: ${ }^{17}$ Arthur H. Doerr and Stephen M. Sutherland, "Humid and Dry Cycles in Oklahoma in the Period 1930-1960," Great Plains zournal, V (1066), B485. Also see: Mrthur H. Doerr and Stephen H. Sutheriand, "Variations in Oklahoma's Climate as Depicted by the Koppen and Early Thorrthwaite Classifications," Journal of Georraphy, IXIII (February, 1964), 60-66; Arthux H. Doerm, "Dry Conditions in Oklahoma in the 1930 's and 1950 's as Deljnited by the "xiginal Thomenwaite Climatic Claseification," Groet plains Joumal, II (1963), 67-76; and Arthur H. Doorr, "Ok lahoma's Clinate... The Dirty Thirtios vs The Filthy Fifties," Procoedings of the Oklahoma Acadery of Science, XTJ (1967), 169-172.

[^2]: ${ }^{15}$ Trewaxthe, "Climate and Settlement of the Subhumid Lands," 169; Kincer, "The Climate of the Great Plains as a Factor in Their Ut51ization," 74.

[^3]: ${ }^{16}$ purney, Climatology and the World's Climates, 355.

[^4]: 22Thornthwaite, "The Great Plains," 206; Kraenzel, The Great plains in Pransition, 26,28 .
 ${ }^{23}$ Kraenzel, The Great Plains in Transition, 28.

[^5]: ${ }^{24}$ Hayes, "The Shelterbelt Zone: A Brief Geographic Description," 13.

[^6]: $26 \mathrm{~J} . \mathrm{M}$. Aikman, "Native Vegetation of the Region," Possibilities $\frac{\text { of Sheltorbelt Planting in the Plains Region }}{\text { Printing Office, 1035), P. } 157 \text {. (Washington, D. C.: Government }}$ 27Ibid.

[^7]: ${ }^{28}$ IUid., 255

[^8]: TKraonzel, The Great Plains in Transjtion, 61; Walter P. Webb, The Creat Plains, Grosset's Universal. Libraxy (New Yorl: Grosset \& Dun? ap, 1931), p. 147.

[^9]: Irrewertha, "Climate and Settlement of the Subhumid Lands," 173.

[^10]: SBenjamin H. Hibbard, A History of the Public Land Policies. (New York: Macmillan Company, 1924), p. 385.

 6M. I. Wilson, "Economic and Social. Aspects of Asriculture in the Plains Region," Possibilities of Siolterbelt plantinc in the Plains Region (Washington, D.C.: Government Printing Office, 2935), p. 78.

[^11]: 7Paul H. Roberts, "History of the Shelterbelt Project," (Unpublished manuscript), p. 5 .

 8John H. Hatten, "A Review of Early Tree-Planting Activities in the Plains Region," Possibilities of Shelterbelt Planting in the Plains Region (Vashington, D.C.: Government Printing Office, 1935), p. 51.

 9inibhard, A History of the Public Jend Policies, 414.

[^12]: IO Hatton, "A Review of Early Tree-Planting Activities in the Plains Region," 57.

[^13]: 12Wilson, "Economic and Social Aspects of Agriculture in the Plains Region," 78.

 13 hatton, "A Reviaw of Early Tree-Planting Activities in the Plains Repion," 52.

[^14]: 17Hatton, "A Review of Early Tree-Planting Activities in the Plains Pegion," 52; U. S. Porest Sorvice, Prairie States Foxestry Project, Hamiboot of the Division of Timber Manamement for the Prairie States Forestry Projoct (Mimeofruphod, Lincoln, Nebraska, 1939), p. 2.

[^15]: 188. I. Pemy, "History of the Prairie States Porestry Project," (Typerritten xoport for the U. S. Forest Service, Lincoln, Nebraska, 1942), ए. 9.
[^16]: 19U. S. Porest Service, Prairic States Forestry Project, 1942 Annual Plant ins Accorml ishmont Feport, (Mimeorraphos Report, Lincoln, Wobraskn, Junc, 19अन), D. 2.

[^17]: $27_{\text {Roborts, " "History of the Shalberbelt Project," 16; Perry, }}$ "History of the Prixis States Forestry Project," 9a.

[^18]: 35 Intorvioy with Paul H. Robexts, Soptembor, 1969.

[^19]: 36Perry, "History of the Prairic States Porestry Project," 13; Roberts, "History of the Sheliexbelt Project, 5; Droze, "Ihe New Deal's Shelterbelt Project, 1934-42," 29; Fixon, Franklin D. Roosevelt and Conservation, 1911-45, I, 324-29.

 3?"Roosevelt and the Great Plains Shelterbelt," p. 3; Reberts, "History of the Shelterbelt Project," I?

[^20]: 38Droze, 'The New Deal's Shelterbelt Project, 1934-42," p. 29; Pemy, "llistory of the Prairie States Forestry Project," 13.

 30"Roosevelt and the Great Plains Shelterbelt," 3; Perry, "History of the Prairie States Forestry Project, " 13.

 40Jroze, "The New Deal's Sheltorbelt Project, 1934-42," 39.
 41 Ibid.

[^21]: ${ }^{42}$ Interview with Paul H. Roberts, Soptember, 1969; Interview with Sid Burton, September, 1969; John D. Guthrie, "Trees, People, and Foresters," Joumnal of Forestry, XL (June, 1942), 478.
 ${ }^{4} 3$ Interview with Paul. 1. Roberts, September, 1969; Guthrie, "Trees, Frople, and Foresters," 478; Arthur H. Caxtart, "Shelterbelts: A 'Failure' That Didn't Happen," Harper's Magerine, October, 1960, p. 76.

[^22]: ${ }^{14}$ Interview with Paul H. Roberts, September, 1969; Dah1, "Progress and Development of the Prairie States Forestry Project," 301.

 45 Interview with Paul H. Roberts, Septemben, 1969.
 46yixon, Frank in D. Roosevelt and Conservation, 1911.-45, I, 205; Peray, "History of the Frajxie States Forestry Project, 35.

[^23]: 47 Interview with Paul H. Roberts, September, 1969.
 48perry, "History of the Prairie Statos Porestry Project," 4. 40 Ibsa. 40 .

[^24]: 50F. A. Hayes, "The Shelterbelt Zone: A Brief Geographic Description," 11.

 $$
 \text { 512on, "What the Study Discloses," } 6 \text {. }
 $$

 52Zon, "Shelterbelts--Futile Dream or Workable Plan," 392.
 53perry, "History of the Prairie States Forestry Froject," 35 .

[^25]: 54ty. S. Forect Service, 1942 Annual mlanting lecomplishment

[^26]: 55"General Policios." Hanabook of the Division of Timber Managemont for the Pratrie Statee Porostry Jrojoct, 1.

[^27]: 58 Dahl, "Progress and Development of the Prairie States Forestry Project," 304.

[^28]: 64.Dahl, "Progress and Development of the Prairie States Forestry Project," 304.

 65perry, "History of the Prairie States Forestry Project," 47 . 65Read, Iree Windbreaks for the Certral Great Plains, 4. 67Read, The Creat P7ains Shelterbelt in 1954, 3.

[^29]: $68_{\text {Read, Troe Windbreaks for the Central Coneat Plains, }}$ 3-10; "Shelterbelts," Handbool of the Division of Timber Vanagement for the Prairio Statos Porostry Project, 2-3.

[^30]: ${ }^{69}$ Read, Pree Windbreaks for the Central Great Plains, 3.
 70HShelierbolts," Handhook of the Division of fimbor Mansecment

[^31]: ${ }^{71}$ Interview with Sid Burton, September, 1969.

[^32]: 73 perxy, "History of the Praixie States Forestry Project," 68.
 74. S. Porest Sorvice, 2242 Annual Plent ins Accomplishment

[^33]: *Iivestock plantings included in this tabulation to and including 1941.

[^34]: 75 Droze, "The New Deal's Shelterbelt Project, 1934.42," 43.

[^35]: 79Ibid. P Perry, "History of the Prairie States Forestry Project," 69: Nixon, Franklin D. Roosevelt and Conservation, 1917-45, II, 535-38.
 80. N. Munns and Joseph H. Stoeckeler, "How Are the Great Plains Shelterbelts?" Joumal of Forestry, XLIV (April, 19'46), p. 257.

[^36]: ${ }^{81}$ Ibid.
 ${ }^{82}$ Read, The Great Plains Shelterbelt in 1954, 8-10, 77-81, 87-90, 116-125: Droze, "The Now Deal's Shetterbelt Project, 1934-42," 46-47.

[^37]: 83 A. E. Ferber \& Ralph A. Read, "Ficld. Windbreaks Planted in Groat Plains States," and "Farmstead \& Iivestock Windbreaks in Great Plains States" (Compiled in Lincoln, Nebrasita, July 1967).

[^38]: 1_{U}. S. Department of Agriculture. Soil Conservation Service. "Policies and Procedure for the Farm Forestry Prograa of the Depantment of Agriculture Under the Cooporative Pacm Forestry Act," Washington, D.C., May 0, 1939, 1, 2. (Mimeographed.)

[^39]: ${ }^{4}$ Morris L. Cooke, "Snclterbelts - Eor Dustbowl Control," Survey Graphic, September, 1947, p. 499.

 STctter from A. B. Ferber, Repional Forestex, Soil Conservation Sorvice, Lincoln, Nebraska, April 29: 1969.

[^40]: 17Letter from Katharine Mergen, Educational Relations, Information Division, Washineton, D.C., July 23, 1969.

 18Interview with Frank L. Duncan, District Conservationist, Vernon, Texas, August, 1969.

 19"Sunmary of Progress, FiscalYear, 1969," Soil Conservation, XXXY (January, 1970), 139.

[^41]: ${ }^{24}$ Interview with Howard Carleton, Jr., July, 1969.
 25Records on Plantings in Texas, Prairie States Forestry Project, Vernon, Texas.

[^42]: 29Ibid. Parenthosis provided by whiter for clarification.

[^43]: 30 Tnterviow with Thomas E. Perryman, District Conservationist, Soil Consexvation Service, Cheyenne, Roger Mills County, Okiahoma, September, 1969.

[^44]: ${ }^{31}$ Interview with Chester Hufstedler, District Conservationist, Soil Conservation Service, Childress, Childress County, Texas, October, 1969.
 ${ }^{32}$ Interview with Janes B. McBride, District Conservationist, Soil Conservation Service, Greer County, Orlahoma, July, 1969.

[^45]: 42 Intecview with rames B. Molride, Octoher, 1269.

[^46]: $I_{\text {Interview with Paul H. Roberts, September, } 1969 .}$ 2Interview with Alvert Engstron, August, 1969.

[^47]: "Whe Mlains Forester." Mineographed newsletter issued monthly by U. S. Porest Service from Piles of Prairie States Forestry Project, IAncoln, Nebraska, Pebruasy, 1937 lo April 7942.

