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Name: CHEN LU

Date of Degree: DECEMBER, 2017

Title of Study: SPARSE DATA-DRIVEN MODELING FRAMEWORK FOR NON-
LINEAR FLUID FLOWS

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: Although fluid flows have been successfully modeled using the Navier-

stokes equations, there exists only a limited class of flows for which exact analytical or

numerical solutions are feasible at this time. For many practical flow situations, exact

models are hard to find which makes the collection of data from experiments valuable.

Consequently, there is a great demand for data-driven approaches that can predict

the evolution and shed light on the flow physics when (a) the underlying knowledge

of the dynamical system is non-existent and (b) the measurement data is sparse, but

streams in over time. Such data-driven models are especially useful for control of

dynamically evolving systems and online decision making for achieving improvement

in performance and efficiency of many engineering problems such as drag reduction,

mixing enhancement for combustion, and unmanned system navigation. The broad

scheme of data-driven modeling comprises of three major components: development

of reduced-order model from full data, reconstruction from sparse data to full data

to analyze fine-scale flow features, and the ability to update the models online when

the system is dynamically evolving in time. Although the above components have

been studied in detail, integrating them into a practically usable tool has rarely been

addressed. Hence, the overall goal of this research project is to develop an integrated

dynamic data-driven modeling framework that leverages sparse streaming data with

application to non-linear fluid flow systems. In this dissertation, the three major

components of the data-driven modeling framework are developed, the various tech-

niques explored and finally specific algorithmic advances for improved performance of

prediction and reconstruction are reported as enumerated below. Firstly, a sparse gen-

eralized convolution framework is developed which is capable of predicting non-linear

fluid flows such as flow past a cylinder and Boussinesq flow accurately and efficiently.

Secondly, sparse reconstruction techniques based on L2 and L1 minimization, and

statistical interpolation methods are investigated to recover incomplete data for flow

past a cylinder and turbulent channel flow. The feasibility of incremental singular

value decomposition is also examined so that the sparse convolution framework may

be updated dynamically to improve non-equilibrium flow predictions.
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CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Fluid flow problems are ubiquitous in many engineering applications such as trans-

portation, energy systems, combustion processes, pipe and duct flow in HVAC sys-

tems, just to name a few examples. The common goal in such studies involves (a)

identifying and understanding the fundamental physics of flow systems and (b) de-

velop predictive models for (a) or (c) to design control strategies for improving effi-

ciency. For instance, the ability to predict and control the wake behind a bluff body

is beneficial for drag reduction, mixing and heat transfer enhancement (Cohen et al.

2003).

Many fluid flows are non-linear, multi-scale, and high-dimensional complex dy-

namical systems which are difficult to model directly. Even with the most accu-

rate numerical methods, solving the governing partial differential equations are often

too complex due to the computational effort required and lack of specification of

realistic boundary and initial conditions. On the other hand, reduced-order model-

ing techniques have evolved rapidly in the past few decades with the development

of efficient linear algebra libraries and provided reduced computational complexity.

For example, Galerkin (Noack et al. 2011, Holmes 2012) projection of the governing

equations onto a set of optimal orthogonal basis such as proper orthogonal decomposi-

tion(POD) (Lumley 2007) allows us to convert the set of PDEs to a set of ODEs which

drastically reduces the computational cost of model prediction. Although it is widely

applied (Kunisch & Volkwein 2002, Rapún & Vega 2010, Akhtar et al. 2012, San &
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Borggaard 2015), projection-based methods require the knowledge of lower dimen-

sional manifold (POD basis space) in addition to the governing equations, boundary

and initial conditions. Note that precise boundary and initial conditions are not al-

ways straightforward for many complex flows, e.g.atmospheric flows (Blocken et al.

2007, Wu & Porté-Agel 2011, Dandou et al. 2017). The focus of this dissertation is to

build a computational framework for modeling non-linear fluid flows that is (a) data-

driven; (b) equation-free; (c) workable with sparse measurements and (d) capable of

dynamic modeling as new data is available.

Dynamic mode decomposition(DMD) (Schmid 2010) is a popular choice within

the fluid dynamics community as a purely data-driven method. In contrast with

the POD-based methods, DMD provides information of the coherent structures as

well as their associated temporal information, including the growth/decay rate and

frequency. DMD has been extensively applied for extracting physical insights and

underlying structures as shown in Schmid et al. (2011), Schmid (2011), Pan et al.

(2011), Seena & Sung (2011), Muld et al. (2012), and Grosek & Kutz (2014). The

DMD idea is used to build a dynamical model of a system and is based on learn-

ing a linear transition operator between snapshots of the dynamical system in time.

However, instead of dealing with the higher dimensional state vector, this method

essentially takes advantage of a similarity transformation of the transition operator

using singular vectors of the data matrix. DMD has connections to linear system iden-

tification approaches that are prevalent in the controls community and well-known

methods in machine learning such as kernel machines, Gaussian Processes(GP) re-

gression amongst others that combine linear operator learning with kernel regression.

A particular class of such methods is the Evolving Gaussian Processes(E-GP) frame-

work that utilizes sparse GP kernels for modeling dynamical systems (Kingravi et al.

2015, 2016) in an evolving environment. The similarity of these methods such as

DMD and E-GP is that they intrinsically involve learning a linear model in the trans-

2



formed space for modeling the dynamical system. For long, many such methods were

considered unique approaches. However, recent interest (Mezić 2005, Rowley et al.

2009, Williams et al. 2015) in the pioneering work from Koopman (Koopman 1931)

has allowed these methods to be cast in a different light. The work of Koopman es-

sentially states that under an appropriate mapping from the state space to a feature

(Hilbert) space, the non-linear dynamics of a system can be transformed into linear

at the cost of dealing with an infinite dimensional system. This explains the success

of the predominantly linear class of methods to work reasonably well for predicting

select nonlinear dynamics. Motivated by this thinking, extensions to DMD have been

proposed which are more promising for modeling non-linear systems (Williams et al.

2015, 2014). Known as extended DMD or EDMD (Williams et al. 2015), these meth-

ods include a non-linear mapping to a feature space for building the linear model.

However, the computational cost of EDMD increases dramatically as the dimension

of the system increases. This curse of dimensionality of EDMD can be overcome by

using the kernel trick (Williams et al. 2014). The above class of pure data-driven

methods achieves model reduction by mapping to a feature space that (a) reduces

dimensionality and (b) allows the Koopman-based modeling of a non-linear system.

This dissertation aims to place all these different established data-driven techqniques

into an unified Sparse Generalized Convolution Framework where the ultimate goal

is to realize a finit-dimensional approximation to the Koopman observable space such

that the dynamics can be adequately represented using a linear operator. A major

contribution from this thesis work is the exploration of different strategies to build

nonlinear convolution maps to the feature space that is optimal for the physics of in-

terest. It is anticipated that this approach might prove to be more robust as against

building complex nonlinear regression models such using artificial neural netwroks.

A common issue with data-driven models is that the data is often sourced from

sparse measurements. While one can build a dynamical model as above from sparse
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data, the resulting predictions will still be in a sparse space and not sufficient for iden-

tifying the relevant flow structures of interest. Consequently, sparse reconstruction is

a critical component in data-driven approaches for modeling and analyzing non-linear

dynamical systems. The earliest known work on recovering the missing data was de-

veloped by Yates (1933) using least-squares estimates. In the field of geology, local

Kriging has been an effective statistical technique to estimate spatial data using least-

squares approach. Venturi & Karniadakis (2004), Gunes et al. (2006), and Gunes &

Rist (2008) have adopted local kriging to interpolate fluid flow systems with success.

On the other hand, reconstruction in a sparse POD basis space using least-squares

method, also known as ”gappy POD (GPOD),” has emerged in the image processing

community to recover marred faces (Everson & Sirovich 1995). Later, Bui-Thanh

et al. (2004) successfully applied GPOD for compressible external aerodynamic flow

problems to reconstruct missing data and also for inverse airfoil design. In recent

years, compressive sampling as a signal reconstruction techniques has also been ex-

plored in the fluid community. Brunton et al. (2013, 2014, 2016), Bai et al. (2017),

and Kramer et al. (2017) have integrated compressive sampling strategies (Candès

et al. 2006, Tropp & Gilbert 2007, Needell & Tropp 2009) with dynamical modeling

techniques such as DMD to build a sparse system identification. In particular, Bright

et al. (2013) utilized compressive sampling to characterize the flow around a cylinder

with limited pressure measurements and Bai et al. (2014) reconstructed airfoil data

using such strategies. Hence, sparse reconstruction is an integral component of data-

driven modeling of practical non-linear fluid flows. Exploiting sparse reconstruction

techniques can greatly reduce the cost of collecting and analyzing fluid flow data.

For real-time decision making and control, refining the data-driven model online

is critical and often desired. This is needed to avoid rebuilding the entire model for

systems that have high dimensions and will not be feasible within the time-constraints

and on a low-memory onboard computer. Thus, the real-time model generation is
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imperative for dynamical systems that are evolving and/or operating in environments

that are rapidly changing with new information streaming in. In particular, the online

update strategies relevant to this thesis are those that allow to incrementally build

reduced-order models by incorporating new information as in Peherstorfer & Willcox

(2015) and Peherstorfer & Willcox (2016). These techniques can also incorporate

sparse or partial data to evolve the model and potentially extendable to building

models from large amounts of data that cannot be handled in bulk. Matsumoto &

Indinger (2017) have incorporated incremental singular value decomposition method

in DMD to reduce memory consumption while extracting the dominant structures

from an unsteady flow. Furthermore, Oxberry et al. (2017) have integrated adaptive

method for basis selection which circumvents the offline training of reduced order

models. Thus, online updates methods also contribute towards developing effective

and efficient dynamical models from large amounts of data.

In summary, data-driven modeling comprises of three main components:

• non-linear reduced-order models from sparse/fine data;

• sparse reconstruction from incomplete data;

• online updates for dynamically evolving systems.

This thesis presents the exploration into various strategies and the generated advance-

ments to accomplish the above three aims. The uniqueness of this work is that the

above goals were explored together with the ultimate aim of integrating these dif-

ferent components. Such integrated efforts are rarely pursued due to the associated

complexity. Notably, the research group at MIT (Peherstorfer & Willcox 2015, 2016)

are the only other research group that has explored along similar ideas. However,

their research interests focus predominantly on inverse problem design for structural

system while this study investigates highly non-linear fluid flow systems. To this
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extent, the ultimate goal of this research is to fill the gaps in knowledge by devel-

oping dynamic data-driven models from sparse measurement data with applications

to turbulent flow systems where the exact governing equations, boundary and initial

conditions may not be available.

1.2 Contribution

In chapter 2, the main contribution is the generalization of the data-driven techniques

mentioned previously including DMD (Schmid 2010), E-GP (Kingravi et al. 2015),

and EDMD (Williams et al. 2015). The underlying idea of these methods is to identify

a mapping to feature space which is strongly related to the Koopman operator theory.

This work presents a Koopman-based, generalized sparse convolution framework that

allows for physics-specific mapping into a feature space using convolution operator.

Thus, the emphasis here is that the key to modeling non-linear fluid flow systems from

data depends on the choice of convolution and not on nature of the transition operator.

Potential choices for convolution operator that are considered in this work include

POD modes and GP kernels so that they can be related to DMD and EGP class

of methods. Furthermore, the proposed framework is also extended to multi-layer

convolution such as layering GP with POD, POD with transfer functions (Rowley &

Dawson 2017), and POD with kernel functions (Williams et al. 2014).

In chapter 3, the focus is on the evaluation of the various sparse reconstruction

techniques such as L2 (Everson & Sirovich 1995, Bui-Thanh et al. 2004) and L1-based

minimization (Brunton et al. 2014) for fluid flow systems. The major contribution

here is the development of a unified sparse reconstruction framework that combines

ideas from compressive sensing, Kriging and Gappy reconstruction procedures that

are popular in the signal processing, geosciences, and image processing communities

respectively. This framework is developed with potential application to nonlinear fluid

flow systems. In particular, turbulent channel flows investigated in this work, while
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not the ideal sparse dynamical system, is used a case study for such class of methods

so that the precise limitations can be identified and addressed in future. Similar

recommendations of applying reconstruction techniques to wall-bounded flows are

also suggested by Gunes et al. (2006). Therefore, the performance of these methods

are examined, and potential issues for high-dimensional systems are identified. The

other major contribution of this work is to extend this unified sparse reconstruction

framework for situations when the exact low-dimensional basis space is not known.

In this context, this work integrates the ideas of progressive method (Venturi &

Karniadakis 2004) and kriging (Gunes et al. 2006) into L2 and L1-based iterative

methods, and the impact of these improvements is explored.

In chapter 4, online low-rank singular value decomposition updates are investi-

gated, and the major contribution is to generalize the rank-1 updates algorithms (Pe-

herstorfer & Willcox 2015, Oxberry et al. 2017, Matsumoto & Indinger 2017) to

variable rank, i.e., rank-K updates. This implementation is validated by comparing

the reconstructed error, updated singular vectors and singular value. More impor-

tantly, the developed incremental SVD updates can be integrated into the generalized

convolution framework presented in chapter 2 for modeling systems that evolves in

time. In contrast with rank-1, rank-K updates are more efficient when the model is

allowed to update with every K snapshots of new data.

The overall contribution of this dissertation is to advance the development of

dynamic data-driven models that can handle sparse data using a three-pronged focus

as discussed above. Such capability is potentially useful for many practical flow

science applications where only sparse data information is available.

1.3 Scope of Study

The primary scope of this thesis is to explore and advance each of the components

mentioned above so that they can be subsequently integrated to build a dynamic
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data-driven modeling platform capable of handling realistic non-linear fluid flows.

Consequently, the structure of this thesis is aligned as follows.

In chapter 2, a sparse convolution framework is developed as a generalization for

modeling the dynamics of non-linear fluid flows. This framework relies on the ideas

of the convolution and sparse representation build accurate and efficient dynamical

models. Next, sparse reconstruction techniques are investigated to recover full field

data from incomplete data with random sensor placement in chapter 3. This capa-

bility is useful for physics-based investigation of the predictions from the dynamical

models developed in chapter 2 to analyze sparse data. The strategies for online up-

date of the data-driven convolution filter, i.e., online singular value decomposition in

a dynamical setting where recently collected data can be leveraged to improve the

data-driven model are explored in chapter 4. In each chapter, we will motivate the

efforts, present the objectives and delineate the contribution from this dissertation.

Also, the underlying methodology and the key results will be discussed in necessary

detail. As a wrap, the future research directions to evolve from this work will be

presented in the concluding chapter.

1.4 Physics Case Studies

To demonstrate the viability, efficiency, and accuracy of the explored methods in

each chapter, standardized test problems that include fluid flows across different flow

regimes including bluff body, mixing and wall-bounded turbulent flows are adopted.

The selected flow dynamical systems for the analysis exhibit varying levels of com-

plexity, i.e., from periodic (limit-cycle) to transient (non-limit-cycle) system, from

low-dimensional to very high-dimensional complex turbulent flow system. The de-

veloped data-driven modeling techniques are tested and validated using data from

the numerical simulations for flow past a cylinder at different Reynolds numbers,

buoyancy-driven mixing flow (Boussinesq), and turbulent channel flow. Our ultimate
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goal is to develop data-driven techniques capable of handling three-dimensional tur-

bulent channel flow with high spatiotemporal complexity and large-scale separation.

In the following section, the data generation and collection process are detailed.

1.4.1 Flow Past a Cylinder

Flow past a cylinder has been well-studied using laboratory and numerical exper-

iments as a generic substitute for bluff body wake flows(Roshko 1954, Williamson

1989, Noack et al. 2003, Rowley & Dawson 2017). This flow system is rich in its

physics content and encompasses many of the non-linear phenomena such as wake

instability and mixing that are prevalent in many bluff body wakes. For this study,

we intend to explore data-driven models for two different flow regimes: the periodic

phase with repeated vortex shedding and the transient phase that includes the onset

of vortex shedding. The former exhibits classical limit cycle behavior, whereas the

transient phase represents the evolution towards a limit cycle.

To generate two-dimensional cylinder flow data, the spectral method (Cantwell

et al. 2015) are utilized to solve incompressible Naiver-Stokes equations, as shown in

Equation 1.1, in our simulations.

∂u

∂x
+
∂u

∂y
= 0, (1.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν∇2u, (1.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν∇2v, (1.1c)

where u and v are horizontal and vertical velocity components. P is the pressure

field, and ν is the fluid viscosity. The rectangular domain used for this flow problem

is −25D < x < 45D and −20D < y < 20D, where D is the diameter of the cylinder.

For the analysis, a reduced domain, i.e., −2D < x < 10D and −3D < y < 3D, is

investigated, and the corresponding mesh configuration for Re = 100 case is shown

in Figure 1.1.
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Figure 1.1: The reduced domain of mesh configuration used for flow past a cylinder

at Re = 100.

For the case of Re = 100 the grid includes 24,000 points whereas for Re = 1000

the grid is refined to include 95,000 points for the sample flow region. Because

Re = 1000 has a thinner shear layer compared to Re = 100, the near-wall resolution

has been increased. The mesh is designed to have resolution concentrated in the

region around the cylinder as well as the wake of the cylinder to accurately capture

the relevant dynamics. The no-slip boundary condition is applied to the cylinder

wall, and a homogeneous Neumann boundary condition is applied at the far-field.

At the inlet boundary, the flow velocity vector is specified as a Dirichlet boundary

condition. The sampling rate for output of snapshots of data is chosen as ∆t = 0.2

second, and the time unit for each iterative computation is 0.0008 second to satisfy

numerical stability criteria.

1.4.2 Unsteady Buoyancy-Driven Mixing (Boussinesq)

The second test flow considered is an unsteady Boussinesq mixing flow (Weinan &

Shu 1998, Liu et al. 2003, San & Borggaard 2015), also known as lock-exchange

problem (San & Borggaard 2015), which exhibits strong shear and Kelvin-Helmholtz

instabilities driving the dynamics. This flow has strong similarities to atmospheric

boundary layer flows where shear and buoyancy-driven turbulence interact to deter-

10



mine the dynamics. Compared to the cylinder flow which has limit-cycle behavior,

the Boussinesq flow is highly convection driven and does not display a limit-cycle

type dynamics. Such a flow will serve as a useful test for data-driven methods that

rely on the limit amount of data in space and time.

To generate the data, the dimensionless form of incompressible Boussinesq equa-

tions (San & Borggaard 2015), as shown in Equation 1.2 is solved on a 2-D rectangular

domain that is 0 < x < 8 and 0 < y < 1.

∂u

∂x
+
∂u

∂y
= 0, (1.2a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+

1

Re
∇2u, (1.2b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+

1

Re
∇2v +Riθ, (1.2c)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

RePr
∇2θ, (1.2d)

where u, v, and θ are the horizontal, vertical velocity, and temperature components,

respectively. The dimensionless parameters Re, Ri, and Pr are the Reynolds number,

Richardson number, and Prandtl number, respectively. In this study, Re = 1000,

Ri = 4.0, and Pr = 1.0 are used to generate the numerical data. The grid size is

chosen to be 1024 by 128. Initially, fluids at two different temperatures are separated

by a vertical wall at x = 4. The surrounding walls are adiabatic and have no-

slip boundary condition. A fourth-order compact finite difference scheme is used to

compute the derivatives in Equation 1.2 to obtain an accurate flow representation.

1.4.3 Turbulent Channel Flow

For the complex end of the flow system test bed, a turbulent channel flow at a

moderate Reynolds number is chosen. Study of near-wall boundary layers provides

statistical and structural characteristics (Kim et al. 1987, Moser et al. 1999) that are

important for many of the engineering problems, including drag reduction (Du et al.
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2002), oil and gas transportation, and heat convection, just to name a few. However,

the physics of wall-bounded flows has not been completely understood because they

exhibit a broad range of length scales which are associated with one another (Smits

& Marusic 2013). In this thesis, such a fully-developed turbulent channel flow data

from direct numerical simulations are incorporated into the test bed to assess the

effectiveness of the sparse reconstruction models developed in chapter 3.

To generate high fidelity data, the skew symmetric form of the incompressible

3-D Navier-Stokes equations is solved on a rectangular box that is 0 < x < 12.6,

0 < y < 1, and 0 < z < 1. For simplicity, the 2-D version of the equations is shown

as follows.

∂u

∂x
+
∂u

∂y
= 0, (1.3a)

∂u

∂t
+

1

2

[∂(u2)

∂x
+
∂(uv)

∂y
+u

∂(u)

∂x
+v

∂(u)

∂y

]
= −1

ρ

∂P

∂x
+ν
[∂2(u)

∂x2
+
∂2(u)

∂y2

]
+fx, (1.3b)

∂v

∂t
+

1

2

[∂(uv)

∂x
+
∂(v2)

∂y
+ u

∂(v)

∂x
+ v

∂(v)

∂y

]
= −1

ρ

∂P

∂x
+ ν
[∂2(v)

∂x2
+
∂2(v)

∂y2

]
+ fy, (1.3c)

where u, v, are the stream-wise and wall-normal velocity components. fx and fy

are the body forces. Re = 4200 and Reτ = 180. For time integration process, a

third-order Adams Bashforth scheme is used. For computing the first and second

order derivatives, a sixth-order compact finite difference scheme is employed. Peri-

odic boundary conditions are applied to the inlet and outlet of the channel. Two

simulations are performed: a low resolution case with grid size chosen to be 128 by

129 by 84 and a high resolution case with grid size chosen to be 256 by 257 by 168.

The grid points are equally spaced in both stream-wise and span-wise direction. How-

ever, a non-uniform grid system is used in the wall-normal direction where the grid

is stretched from both wall to the middle. For the purpose of analysis, the snapshot

range of the data-set has been chosen carefully to ensure that the flows are fully

developed.
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CHAPTER 2

SPARSE CONVOLUTION MODELS FOR NONLINEAR DYNAMICS

2.1 Motivation and Review

Model reduction techniques have evolved rapidly in the past few decades with the ris-

ing need for identification, control, and optimization of complex systems. In particu-

lar, low-dimensional models that can accurately and efficiently identify the underlying

dynamics for high-dimensional fluid flow systems is often desired. This becomes chal-

lenging when building the predictive models using highly sparse measurements with-

out knowledge of the governing equation and/or boundary conditions. Consequently,

the desired methods need to be primarily data-driven, handle nonlinear dynamics

and offer robust performance when the measurements are sparse. The most widely

used class of data-driven models are linear such as DMD (Schmid 2010). Although

these methods appear to be unreliable for modeling non-linear systems as pointed out

in Taira et al. (2017), they can be linked to the Koopman operator theoretic frame-

work (Koopman 1931), which makes them promising for modeling non-linear systems.

For example, Rowley & Dawson (2017) have evolved the original DMD framework

based on the Koopman framework to successfully capture the transient growth of the

flow instability in the wake of the cylinder. In comparison, DMD as a linear model is

insufficient for capturing such transient dynamics. The essential idea of the Koopman

theoretic framework is that under an optimal basis transformation to so-called ob-

servable function space, a finite-dimensional but non-linear dynamical system evolves

as an infinite-dimensional linear system in that Hilbert space (Koopman 1931, Mezić

2005, Rowley et al. 2009). The Koopman theory implies that non-linear systems can
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be modeled as a linear one if the appropriate set of observable functions can be iden-

tified. However, obtaining the correct observable functions is rather challenging if not

impossible since the information about the underlying dynamical system is not al-

ways known. In this chapter, a sparse generalized convolution framework is presented

as a means to mapping to the Koopman observable space that can be leveraged for

data-driven modeling of nonlinear fluid flow systems.

2.2 Objective and Contribution

The objective of this study is to model and predict nonlinear fluid flow dynamical

systems accurately and efficiently from data. The contribution from this disserta-

tion is a generalized convolution framework that allows one to potentially map from

the state space to the Koopman observable space. The underlying principle of this

convolution framework is that complex mappings can be represented, at least in the-

ory, by layer multiple convolution operators on top of each other. In this study, the

focus is primarily on convolution operators based on POD bases and Gaussian ker-

nels. The Gaussian Processes (GP) convolution is inspired by the E-GP (Kingravi

et al. 2015, 2016) framework in the machine learning community, and the matlab

toolbox for learning E-GP algorithm can be found in Evolving Gaussian Processes

and Kernel Observers (n.d.). Such multi-layer convolution operators can potentially

allow for the prediction of the non-linear dynamics in complex flow systems. In con-

junction with the convolutions, the strategies for optimal sparse representation based

on the user-defined criteria are developed. The POD basis functions are derived

from the constraint that they capture most of the energy content in the data. Other

studies (Chen et al. 2012, Wynn et al. 2013, Jovanović et al. 2014) have focused on

applying different user-defined constraints to compute the optimal basis which is not

the focus of this research effort. For Gaussian Processes convolution, the Gaussian

kernels are constructed at centers that are learned from different methods: k-means
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clustering (Bishop 2007) with divided domains, k-means clustering combined with lo-

cal variability, and Sparse Online Gaussian Processes (Csató & Opper 2002). These

methods will be explained in detail in the subsequent sections.

The content of this chapter can be structured as follows. In the following section,

the Koopman operator theory and its connections to the sparse convolution frame-

work will be discussed. In section 2.4, a generalized sparse convolution framework

is presented. In section 2.5, the strategies for modeling the dynamical system is ex-

plored using different sparse representation. In section 2.6, the effectiveness of the

proposed framework for modeling the cylinder and Boussinesq flows is examined.

2.3 The Koopman Operator Theory

In this section, the Koopman operator theory is briefly introduced and explained for

modeling non-linear system. Consider a discrete-time dynamical fluid flow system:

y = F(x), (2.1)

where x and y are N -dimensional state vectors, e.g., velocity components, and sep-

arated by an appropriate unit of time ∆t. The operator F is non-linear and finite-

dimensional which evolves state x to state y in time. Note that the continuous-time

formulation can be equivalently represented. From the Koopman theory (Rowley

et al. 2009), an infinite-dimensional but linear operator K is acting on the observable

function g as:

Kg(x) = g(y), (2.2a)

Kg(x) = g(F(x)). (2.2b)

K is called the Koopman operator that governs the linear evolution of the observable

function g, which is a scalar valued function of x or y. As pointed out by Williams

et al. (2014) and many others (Williams et al. 2015, Rowley & Dawson 2017), the

Koopman operator maps the observable function g(x) to g(y), not the state vector

15



x to y. Function g(x) can be represented as a linear combination of the Koopman

eigenfunctions (φj) and eigenmodes (vj) as shown in Equation 2.3. Furthermore, com-

bined with the Koopman eigenvalues (µj) which are often referred to the Koopman

tuples, they enable to predict the observable function in the future time as shown in

Equation 2.4. The eigenmodes represent the spatial structures of the dynamical sys-

tem, whereas the eigenfunctions provide the weighting coefficients that are required

to reconstruct the observable function g(x). The eigenvalues contain the temporal

information that allows evolving g(x) in time.

g(x) =
∞∑
j=1

φjvj (2.3)

g(y) = Kg(x) =
∞∑
j=1

φjvjµj (2.4)

As mentioned before, current methods for approximating the Koopman tuples are

limited and based on DMD and its derivatives EDMD, and KEDMD. For the detailed

discussion on the Koopman theory, tuples, and approximation techniques, the readers

are encouraged to explore a vast amount of articles (Rowley et al. 2009, Schmid 2010,

Mezić 2013, Williams et al. 2014, 2015).

The key to accurately capturing the system dynamics using a linear model relies

heavily on knowing the observable function g. Ideally, one can choose an infinite-

dimensional set of observations of the state vectors and use them to obtain a perfect

model. However, the computation will be intractable. Then the question is how to

identify an appropriate finite set of observable functions that can capture the relevant

dynamics. One approach is to build g using a rich choice of basis functions of the

state vector x, e.g., polynomials such as x, x2, or more complex functions such as

sin(x), ex, etc. The hope is that such functions may be sufficient to capture the

dominant underlying dynamics. However, for systems that are highly non-linear,

building appropriate g while not impossible is extremely challenging and problematic

because of the need to identify ’magic’ functions. Not any observable functions would
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suffice for learning the Koopman operator K that is linear and yet can describe the

non-linear dynamics. With this brief introduction to the Koopman theory, the central

focus of the research presented in this chapter is to identify a framework for building

observable functions in the form of a convolution operator, which is a mapping to the

feature (weights) space. To this end, a generalized sparse convolution framework is

proposed for modeling non-linear fluid flow systems in the following section.

2.4 A Generalized Sparse Convolution Framework

2.4.1 Basic Formulations

To describe this framework, the notations from section 2.3 are adopted as much as

possible. Given pairs of snapshot data: X = [x1, x2, ..., xM ] and Y = [y1, y2, ..., yM ],

where X, Y ∈ RN×M . N is the total number of dimensions, and M is the total

number of snapshots for the data. To approximate the true non-linear operator F ,

which governs the time evolution from xi to yi (i = 1, 2, 3, ...,M), a operator A

is mapping the snapshot data X to Y in time. The approximated model can be

represented as below:

AX = Y. (2.5)

Similar to the model in Equation 2.5, the Koopman theory states that for an appro-

priate observable functions g that acts on X and Y :

Kg(X) = g(Y ), (2.6)

and a linear and infinite-dimensional operator K is evolving g(X) to g(Y ). By com-

paring Equation 2.5 and 2.6, the Koopman representation is mapping X and Y to an

observable function space. Equation 2.6 is the ideal dynamical model that one can

obtain. However, the observable function space is infinite dimensional and therefore

computationally intractable. To overcome this, an alternative approach is to come

up with an appropriate finite-dimensional representation in the form of a convolution

17



operator. The underlying principle being that the observable function space g can

be approximated by a finite-dimensional convolution operator. The accuracy and

generality of this approximation needs to be evaluated for the nonlinear physics of

interest. To accomplish this, a convolution operator C ∈ RN×K is defined as follows.

X = CX̄, (2.7)

Y = CȲ , (2.8)

where X̄ ∈ RK×M and Ȳ ∈ RK×M are the associated convolved weights for X and Y ,

and K is the number of weights. Equation 2.5 can be written as:

ACX̄ = CȲ . (2.9)

Pre-multiplying with the pseudo-inverse of C, Equation 2.9 can be rearranged as:

C+ACX̄ = Ȳ . (2.10)

Next, Ā = C+AC is defined as the convoluted system operator such that:

ĀX̄ = Ȳ (2.11)

where Ā ∈ RK×K , X̄ and Ȳ are the finite approximation forms of the Koopman

operator, the observable function g(X), and g(Y ), respectively. Equation 2.11 is the

foundation of this convolution framework. In principle, if these approximations of

the observable functions g(X) and g(Y ) are appropriate for the dynamics of inter-

est, the convolved linear system operator Ā will be an accurate approximation of the

Koopman operator K. Moreover, the choice of the convolution operator allows for

dimensionality reduction (when the state vector X ∈ RN is high-dimensional) which

makes the resulting system operator Ā ∈ RK×K . In the convolved space, the compu-

tational cost to learn Ā is greatly reduced if K is considerably smaller than M and

N . The key aspect of this approach is to choose convolution operator C such that the
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convolved system operator Ā captures most if not all of the relevant system dynam-

ics. Particularly, for complex fluid flows, choosing the correct form of this operator is

essential for capturing the various non-linear dynamics such as bifurcation, instability

modes, shock formations, and turbulence. Hence, the optimal choice of convolution

operator could be problem dependent.

2.4.2 The POD Convolution as DMD

Dynamic mode decomposition is a popular method for learning the Koopman operator

that employs a linear convolution operator as first developed by Schmid (2010). In

the DMD algorithm, Schmid efficiently employs the SVD as a ’POD convolution’. It

is important to note that computing the SVD does not require subtracting the mean

component out of the system as is done in the traditional POD method. The DMD

technique can be introduced by first computing the SVD of X as:

X = UΣW T (2.12)

and similarity transformation of A to map from physical space into low dimensional

space:

UTAU = UTYWΣ−1, (2.13)

Define a reduced operator Ã = UTAU , Equation 2.13 becomes:

Ã = UTYWΣ−1. (2.14)

Rearrange Equation 2.13:

ÃΣW T = UTY (2.15)

where ΣW T and UTY are equivalent to X̄ and Ȳ in Equation 2.11. The connection

between DMD and the generalized convolution framework presented here is that the

reduced operator Ã above is equivalent to the convolved system operator Ā. The con-

volution operator C used in this example is the left singular vector U , which represent
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the POD modes if the mean of the data is taken out during the SVD computation.

Because of the connection of these singular vectors to the more common POD modes

in the fluids community, this approach is referred to as the POD-convolution. The

benefits of using SVD or POD modes are two-fold. The first is it generates low-

dimensional basis that captures optimal energy content of the given data-set as long

as the system is sparse in this basis. For many common fluid flows, e.g., flow past a

cylinder, the POD basis is typically sparse. Furthermore, one can employ truncation

of the modal basis to reduce the dimensionality. With POD-convolution, the dimen-

sion K is the number of the POD modes retained. Secondly, since the modes are

orthogonal one can build exact deconvolution operator C+ through a simple trans-

pose, i.e., C+ = CT or U+ = UT . A downside to this method is that these POD

modes (singular vectors) are data dependent and normally includes only a subset of

the feature space that is represented in the training data. However, the convolution

framework is not limited to using the singular vectors or POD modes. Other op-

erators can be built using kernels such as Fourier functions, wavelets and Gaussian

Processes (GP) which is introduced in the following section.

2.4.3 Gaussian Processes Convolution

In the machine learning community, kernel-based regression, such as those using Gaus-

sian Processes (GP) (Bishop 2007, Kingravi et al. 2015, 2016), Random Kitchen

Sinks(RKS) (Rahimi & Recht 2009), and Fastfood (Le et al. n.d.), are commonly

used as convolution operators to build predictive models for dynamical systems. More

importantly, these kernel functions can be generalized within this convolution frame-

work. However, their suitability for capturing fluid flow dynamics is not established.

In this study, the primary focus is on Gaussian functions (kernels) as employed within

the convolution framework. The GP-convolution is presented in Equation 2.16.

Cij = C(zi, z̄j) = exp
−||zi − z̄j||2

2σ2
, (2.16)
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where C ∈ RN×K , i.e., i = 1, 2, ..., N and j = 1, 2, ..., K. In the above formulation, z

is a vector of spatial locations where all the state information of the flow system is

available, i.e., x = x(z, t), and z̄ is a vector of predetermined spatial centers. σ is the

hyper-parameter that determines the width of the GP kernels. To summarize, GP-

convolution is a kernel regression of the state vector representing spatiotemporal data

at predetermined locations in space, called centers, with pre-specified hyperparameter

σ.

The centers z̄j are identified by analyzing the available snapshot data and can be

viewed similarly to identifying locations for measurement probes in lab experiments.

There are many well-known techniques to identify the location of the centers including

those that use POD-modes (Cohen et al. 2003), k-means clustering (Bishop 2007),

Sparse Online Gaussian Processes (Csató & Opper 2002), amongst others. If the

system is well known, one can choose the centers where the interesting dynamics

occur, e.g., maxima or minima of the POD modes (Cohen et al. 2003). However,

that requires computing the gradient of the POD modes, which can be non-trivial

at times if the structure of the data is not known in advance. On the other hand,

k-means clustering is a statistical technique that identifies the centers by minimizing

the distance between all the physical points and the chosen centers (Bishop 2007)

and is iterative. It is well known that the centers computed with this method tend

to be biased towards the regions with a higher density of the data. Typically, the

number of centers(weights) K is chosen to be much smaller than the dimension N

which allows for a low-dimensional and sparse representation of the state vector. It is

beneficial if one deals with a high-dimensional system. Compare to POD-convolution,

GP-convolution does not require computing an eigen-decomposition, which is time

efficient if the number of snapshots M is larger than N . The disadvantage of using

GP-convolution is that the choice of the centers and the hyperparameters may cause

errors during deconvolution, called the aliasing effect. Specifically, the convolution
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operator C could be singular and may not have an exact inverse. Hence, applying

regularization techniques to solve C+ tends to alter the convolved weights and distort

the flow field. Illustrative examples will be provided to demonstrate the aliasing effect

in section 2.6.

2.4.4 Multi-layer Convolution

The convolution proposed in this dissertation is not restricted to POD modes or GP

functions. In fact, the novelty of this work lies in the realization that convolution

operators can be built in a variety ways as follows. An easy approach is to replace

z, the spatial locations in Equation 2.16 with x, the state information which could

be velocity or pressure or temperature components. This implies that an non-linear

convolution operator C is built, where Cij = C(xi, xj). However, building a convolu-

tion operator correctly is a challenging task since the representative mapping, which

is effective for capturing the dynamics of interest, is not always known in advance. A

more generalized way for building convolution operator is to recursively layer multiple

convolution operators such as:

X = CL...C3C2C1X̄, (2.17)

Y = CL...C3C2C1Ȳ . (2.18)

Similarly, substituting Equation 2.17 and 2.18 into Equation 2.11:

ACL...C3C2C1X̄ = CL...C3C2C1Ȳ . (2.19)

Pre-multiplying the pseudoinverse of each convolution operator: C1, C2, C3, ..., CL,

Equation 2.19 can be rearranged as:

C+
1 C

+
2 C

+
3 ...C

+
LACL...C3C2C1X̄ = Ȳ (2.20)

with a convoluted system operator represented as:

Ā = C+
1 C

+
2 C

+
3 ...C

+
LACL...C3C2C1. (2.21)
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Equation 2.21 can be further simplified with Cl = C+
1 C

+
2 C

+
3 ...C

+
L and Cr = CL...C3C2C1,

where Cl and Cr are the ”global” convolution operator. The above formulation rep-

resents the idea behind the generalized convolution framework where layers of con-

volution operators are expected to replace the ’magic functions’ needed for effective

modeling. As examples, one can layer both POD-convolution and GP-convolution to

form a two-layer convolution. A GP-POD-convolution can be built such that C1 is

GP-convolution operator, and C2 is POD-convolution operator. Similarly, a POD-

GP-convolution is possible by reversing the order of the operators. In this thesis, the

focus is on GP-POD-convolution instead.

The multi-layer convolution can also include nonlinear transfer functions (TF),

especially if prior knowledge of the underlying physics is available. For example,

Rowley & Dawson (2017) propose an innovative idea to generate appropriate ob-

servable functions by first performing POD-convolution on the flow states to extract

POD weights, i.e., X̄ = [x̄1 x̄2 , ..., x̄R]T and Ȳ = [ȳ1 ȳ2 , ..., ȳR]T . In order to

model the non-linearity existing in the system, they build a sufficiently rich vector

of basis functions by combining the linear and quadratic-non-linear terms of POD

weights into X̄ and Ȳ such that: X̄ = [x̄1 x̄2 , ..., x̄R x̄1x̄1 x̄1x̄2 , ..., x̄Rx̄R]T and

Ȳ = [ȳ1 ȳ2 , ..., ȳR ȳ1ȳ1 ȳ1ȳ2 , ..., ȳRȳR]T . This approach can be related to the frame-

work above as an example of a non-linear convolution operator without explicitly

specifying C2 which can be viewed as POD-TF-convolution (POD with transfer func-

tions). This approach performs well if the dynamical system requires the inclusion

of quadratic nonlinearities. However, if the dynamics are unknown, a generalized ap-

proach such as the one proposed in this section may be more reasonable. It is worth

noting that this generalized approach has similarities to artificial neural networks in

deep learning where multiple hiddlen layers are used to improve predictions of complex

nonlinear data. Furthermore, the rich set of basis functions required to sufficiently

approximate the dynamics of interest can become too large such that the compu-
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tation becomes intractable. Possible solution is to employ the kernel trick (Bishop

2007) which is essentially equivalent to adding an extra convolution layer implicitly.

This approach has been tried by Williams et al. (2014), and who demonstrate suc-

cess by using polynomial kernel function as shown in Equation 2.22. Alternatively,

radial basis function kernels shown in Equation 2.23 can also be employed to build

the mapping. However, this requires specification of a hyper-parameter β which acts

as a regularizer. In section 2.6.2, the performance of a polynomial kernel function

with POD-convolution, termed as POD-PolyK-convolution, is demonstrated.

f(x, y) = (1 + yTx)α (2.22)

f(x, y) = exp
−||x− y||2

2β2
(2.23)

2.4.5 Computing the Approximated Koopman Operator

Having developed the above framework, the Koopman operator Ā in Equation 2.11

can be approximated as follows. Recall that ĀX̄ = Ȳ where Ā ∈ RK×K and X,Y ∈

RK×M . The key to compute Ā depends on the dimensions M and K. Taking the

transpose of Equation 2.21:

X̄T ĀT = Ȳ T (2.24)

If K < M , an overdetermined system for which Equation 2.24 becomes a least-squares

problem is obtained. To solve such a problem, pre-multiplying by X̄ as shown below:

X̄X̄T ĀT = X̄Ȳ T . (2.25)

In Equation 2.25, X̄X̄T becomes a square matrix of size K ×K that is invertible if

it is full rank. Then pre-multiply Equation 2.25 with the inverse of X̄X̄T to get:

ĀT = (X̄X̄T )−1X̄Ȳ T , (2.26)

where Ā can be obtained from taking the transpose of Equation 2.26. When K > M ,

an underdetermined system that has infinite number of solutions is obtained. In this
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case, a M ×M matrix X̄T X̄ is generated which can be inverted if it is full rank. The

corresponding approximated Koopman operator can be solved found Equation 2.27.

ĀT = X̄(X̄T X̄)−1Ȳ T (2.27)

Note that the approximations for Ā in Equations 2.26 and 2.27 may require some

form of regularization for matrix inversion. In this study, a Tikhonov regularization

method with parameter γ is exploited as shown in Equations 2.28 and 2.29.

ĀT = (X̄X̄T + γI)−1X̄Ȳ T , (2.28)

ĀT = X̄(X̄T X̄ + γI)−1Ȳ T (2.29)

2.5 Sparse Representation

In this section, the strategies of sparse representation to reduce the computational

complexity of modeling dynamical systems are presented. For POD-convolution, spar-

sification occurs in the basis space by optimizing the energy capture for the training

data. A straightforward approach is to retain the POD modes with higher energy con-

tent and truncate the ones with very little energy. However, energy-based truncation

can be unreliable when the low energy modes are dynamically important. However,

if energy capture is not the primary goal, other techniques for optimal mode selection

in the basis space can be employed. For instance, Chen et al. (2012) propose an opti-

mized basis selection framework that relates the number of modes to minimize error

in each data snapshot. This method is advantageous if one intends to retain fewer

mode but has no clear knowledge on how to truncate the basis in a more complex

system. Similar to Chen et al. (2012), Wynn et al. (2013) have also attempted to

minimize the error in each data snapshot by constructing optimal singular vectors

and transformed low dimensional system matrix using matrix manifold theory (Absil

et al. 2009, Edelman et al. 1998, Goulart et al. 2012). As a result, they have achieved
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a better approximation of both synthetic and experimental data as compared to

DMD by extracting more accurate eigenvalues and modes. Moreover, this method

is particularly useful for the system that contains high-frequency contributions, e.g.,

turbulent flows. Jovanović et al. (2014) optimize the amplitude of the DMD modes

by introducing a user-specified regularization parameter that accommodates mode

truncation and approximation accuracy using convex optimization techniques (Boyd

& Vandenberghe 2004, Boyd et al. 2011). The optimization method that Jovanović

et al. (2014) used has proved to be effective in identifying the dominant structures for

various fluid flow systems with limited sparsity. Although these sparse basis selection

techniques have demonstrated their success and usefulness in many of the fluid flow

applications, the focus on the energy optimization is to employ truncation method

for POD-convolution in the following discussion.

In contrast to the basis optimization in POD-convolution, Gaussian Process re-

gression provides a framework for sparsification in the physical space. This idea

originates from the need to deal with sparse measurement data or generate quick

on-demand models from very few sensors for fast online decision making. In GP-

convolution, the optimal sparse representation is achieved by identifying optimal sen-

sor locations in space where data is made available with a sufficient number of sensors.

The resulting model built from GP-convolution can hopefully provide an accurate and

efficient representation of the overall field in a least-squares sense. The performance

of this approach depends heavily on the choice of centers, i.e., both location and

quantity of the sensors, and the user-specified hyper-parameter. The research per-

formed for this dissertation adopts three different algorithms for learning centers:

k-means clustering with divided domains, k-means clustering with local variability,

and Sparse Online Gaussian Processes (Csató & Opper 2002). The terminology cho-

sen is as follows: GP-convolution with centers learned from k-means clustering with

divided domains as GP-k-convolution, centers learned from k-means clustering with
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local variability as GP-kv-convolution, and centers learned from Sparse Online Gaus-

sian Processes algorithm as GP-sv-convolution.

For the k-means clustering with divided domains, the idea is to apply the k-means

algorithm on the divided domains. The k-means algorithm can be found in Bishop

(2007), and Algorithm 1 summarizes the detailed procedure. K-means algorithm is

basically to locate k number of points that have the minimum spatial distance to the

associated grid points. To divide the domain, more centers are placed in the region

where the important dynamics are observed. For flow past a cylinder, the wake

of the cylinder is the region that exhibits the most interesting dynamics - vortex

shredding and thus garners the most centers as shown in Figure 2.1. Specifically, the

domain is divided into three regions: the wake of the cylinder(250 centers), around

the cylinder(30 centers), and top and bottom side(20 centers).

Figure 2.1: Centers placement from the k-means clustering algorithm with divided

domains for cylinder flow at Re = 100. 300 centers is chosen in this case.

However, the user-defined choice may not alway produce the most accurate rep-

resentation. Therefore, in an alternate approach, k-means is combined with local

temporal variability of the velocity field to identify the optimal centers locations

where the physics varies most over time. Similar to the previous approach, the k-

means algorithm is used to determine centers for the regions around the cylinder, top
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and bottom sections with 30 and 20 locations, respectively. Concurrently, local vari-

ability with velocity components calculated in Equation 2.30 is used to find another

250 centers.

σb =
1

M

1

Nb

M∑
j=1

Nb∑
i=1

(ui,j − ūi)2 b = 1, 2, ..., B (2.30)

where B is the number of bins specified. In this example, the k-means clustering

algorithm is used to compute 400 bins, i.e., B = 400. M is the number of snapshots,

and Nb is the number of grid points in the bth bin. ū is the ensemble average. The

objective is to select the first 250 largest σ from these 400 bins for the centers. This

results in 250 reasonably concentrated centers in the region of the cylinder wake as

shown in Figure 2.2. The detailed algorithmic procedure for local variability is shown

in Algorithm 2. The remaining 50 centers are computed from the k-means algorithm

as mentioned before.

Figure 2.2: Centers placement learned from k-means clustering with local variability

algorithms for cylinder flow at Re = 100. 300 centers is chosen in this case.

Sparse Online Gaussian Processes is an improved algorithm that identifies the

centers in a real-time setting using a field of choice (in this case velocity compo-

nents) such that the linear dependence of the data from one snapshot to another

is minimized. In this study, Sparse Online Gaussian Processes algorithm from the

Matlab toolbox (Evolving Gaussian Processes and Kernel Observers n.d.) is utilized
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for locating the centers, which are shown in Figure 2.3.

Figure 2.3: Centers placement learned from Sparse Online Gaussian Processes algo-

rithm for cylinder flow at Re = 100. 300 centers is chosen in this case.

In subsection 2.6.2, the effectiveness of the center placements from these learning al-

gorithms as well as a different number of centers(300 and 600) for modeling flow past

a cylinder will be explored. All of the above cases are illustrated with 300 centers for

demonstration purposes.

29



Algorithm 1: K-mean clustering algorithm to learn centers

input : Spatial points [X, Y ] ∈ RN×2, Tolerance

output: Center points [X,Y ] ∈ RK×2

1 N is number of spatial points; K is number of center points

2 Randomly choose K centers, X̃ and Ỹ from X and Y

3 while maxdis > Tolerance do

4 for i← 1 to N do

5 for j ← 1 to K do

6 Dij =
√

(Xi− X̃j)2 + (Y i− Ỹj)2

7 end

8 end

9 Npts = zeros(K, 1)

10 for i← 1 to N do

11 Index(i) = j .st. Dij = min(Di:) ; Npts(j) = Npts(j) + 1

12 end

13 X =
#»
0 ; Y =

#»
0

14 for i← 1 to N do

15 XIndex(i) = XIndex(i) +Xi ; YIndex(i) = YIndex(i) + Yi

16 end

17 for j ← 1 to K do

18 Xj = Xj/Npts(j) ; Yj = Yj/Npts(j)

19 end

20 for j ← 1 to K do

21 distancej =
√

(Xj − X̃j)2 + (Yj − Ỹj)2

22 end

23 maxdis = max(distance)

24 end
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Algorithm 2: Local variability algorithm to learn centers

input : Spatial points [X, Y ] ∈ RN×2, Velocity field U ∈ RN×M

output: Center points [X,Y ] ∈ RK×2

1 N is number of spatial points; K is number of centers; M is number of

snapshots; B is number of bins; Nb is the number of spatial points in bth bins.

2 Use k-means algorithm to determine B number of bins

3 Find the ensemble average ū

4 Find the variance for each bins:

5 for b← 1 to B do

6 σb = 0

7 for j ← 1 to M do

8 for i← 1 to Nb do

9 σb = σb + (ui,j − ūi)2

10 end

11 end

12 σb = 1
M

1
Nb
σb

13 end

14 Sort σ and pick the K largest values and their corresponding spatial points in

X and Y as centers [X,Y ].

2.6 Results and Discussion

2.6.1 Koopman Operator Approximation

For the temporal regime considered, the wake of the cylinder shows the cyclical vor-

tex shedding which represents a dynamical system operating on a limit cycle. In

principle, such a system is expected to predicted accurately using a model due to

its repetitive and periodic behavior. Such a cylinder wake flow is considered as a
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baseline case to validate the sparse convolution framework. The data-set chosen

for the analysis is at Reynolds numbers, Re = 100 and Re = 1000. The ideas of

GP-k-convolution, GP-kv-convolution, and GP-sv-convolution are demonstrated by

extracting the leading Koopman eigenvalues and eigenmodes. To prove that GP-

convolutions approximate the Koopman operator, these results are compared with

those from the POD-convolution.

The associated eigenvalues are shown in Figure 2.4a and 2.4b in the form of

real and imaginary parts plotted with a unit circle for Re = 100 and Re = 1000,

respectively.
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Figure 2.4: Eigenvalues computed from Ā for the periodic cylinder flow using POD-

convolution(top left), GP-k-convolution(top right), GP-kv-convolution(bottom left),

and GP-sv-convolution(bottom right)

From Figure 2.4a and 2.4b, it is observed that all of the GP-convolutions are capable

of capturing the leading eigenvalues. For the case of Re = 100, the eigenvalues are

located at the right plane of the unit circle and are accurately captured for the GP-

convolutions as compared to POD-convolution. For the case of Re = 1000, the ones

that reside close to the unit circle from GP-convolutions share similar identities as
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the ones from POD-convolution in Figure 2.4a. The frequency for each eigenvalues

can be computed as f = log(λI)
∆t

. The corresponding Strouhal number(St) is computed

using St = fD
U∞

, where D is the diameter of the cylinder, and U∞ is the inlet velocity.

The resulting St number for Re = 100 and Re = 1000 match reasonbly well with

the simulations from several studies (Roshko 1954, Tritton 1959, Jordan & Fromm

1972, Rajani et al. 2009). The first three dominant eigenvalues and St number in are

tabulated in Table 2.1 and 2.2.

Table 2.1: The first three dominant eigenvalues extracted from POD-

convolution(POD), GP-k-convolution, GP-kv-convolution, and GP-sv-convolution for

the periodic cylinder flows at Re = 100.

Convolution Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

St = 0.1655 St = 0.3311 St = 0.4966

POD 0.9784 + 0.2065i 0.9147 + 0.4041i 0.8115 + 0.5843i

GP-k 0.9784 + 0.2065i 0.9146 + 0.4041i 0.8113 + 0.5841i

GP-kv 0.9784 + 0.2065i 0.9145 + 0.4040i 0.8112 + 0.5841i

GP-s 0.9784 + 0.2065i 0.9146 + 0.4041i 0.8114 + 0.5842i

Table 2.2: The first three dominant eigenvalues extracted from POD-

convolution(POD), GP-k-convolution, GP-kv-convolution, and GP-sv-convolution for

the periodic cylinder flows at Re = 1000.

Convolution Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

St = 0.2367 St = 0.3311 St = 0.4966

POD 0.9561 + 0.2930i 0.8283 + 0.5603i 0.6277 + 0.7785i

GP-k 0.9561 + 0.2930i 0.8282 + 0.5604i 0.6277 + 0.7784i

GP-kv 0.9561 + 0.2930i 0.8282 + 0.5603i 0.6277 + 0.7785i

GP-s 0.9561 + 0.2930i 0.8282 + 0.5603i 0.6277 + 0.7785i
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By correlating the eigenvalues from POD-convolution and GP-convolutions, the

first three leading eigenvalues are accurately extracted by all four approaches for both

Re = 100 and Re = 1000. The first three dominant eigenmodes are also shown in

Figure 2.5, 2.6, 2.7, and 2.8 for Re = 100, and Figure 2.9, 2.10, 2.11, and 2.12 show

the first three dominant eigenmodes for the Re = 1000. The zero mode, which is

the mean mode, is not shown here. It is observed that the eigenmodes computed

from GP-convolutions with different center placements are qualitatively similar to

the results computed from POD-convolution.

The relationship between the DMD algorithm and the Koopman operator has

been well-established in Tu et al. (2013), i.e., POD-convolution approximates the

non-zero eigenvalues and eigenmodes of the Koopman operator. This can be further

extended to argue that the leading eigenmodes and eigenvalues obtained from GP-

convolutions also approximate those of the Koopman operator. This observation

strengthens the connection between generalized sparse convolution framework and

the Koopman theory.

It is worth noting that the eigenmodes computed directly from GP-convolution

produce aliasing errors because the convolution operator C is not exactly invertible.

While inverting the operator C, Tikhonov regularization is applied as shown in sec-

tion 2.4.5 to suppress the near-zero singular values. However, this aliasing effect

can be minimized by choosing the center locations optimally. Out of all three GP-

convolutions, the case(GP-kv-convolution) with centers learned from k-means with

local variability yields the best eigenmodes, i.e., the mode shapes are less distorted

as compared to GP-k and GP-sv-convolution. In Figure 2.2, the resulting centers are

more concentrated in the region of the cylinder wake where the flows are most ac-

tive. For POD-convolution, the truncation method for selecting modes with optimal

energy capture yields efficient approximations.
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Figure 2.5: The first three eigenmodes(from left to right) using POD-convolution for

the periodic cylinder flows at Re = 100

Figure 2.6: The first three eigenmodes(from left to right) using GP-k-convolution for

the periodic cylinder flows at Re = 100.

Figure 2.7: The first three eigenmodes(from left to right) using GP-kv-convolution

for the periodic cylinder flows at Re = 100.

Figure 2.8: The first three eigenmodes(from left to right) using GP-sv-convolution

for the periodic cylinder flows at Re = 100.
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Figure 2.9: The first three eigenmodes(from left to right) using POD-convolution for

the periodic cylinder flows at Re = 1000.

Figure 2.10: The first three eigenmodes(from left to right) using GP-k-convolution

for the periodic cylinder flows at Re = 1000.

Figure 2.11: The first three eigenmodes(from left to right) using GP-kv-convolution

for the periodic cylinder flows at Re = 1000.

Figure 2.12: The first three eigenmodes(from left to right) using GP-sv-convolution

for the periodic cylinder flows at Re = 1000.
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2.6.2 Model Prediction

In this subsection, the focus is on investigating the effectiveness of the sparse con-

volution framework through model predictions for fluid flow systems with varying

complexity. For this particular analysis, the periodic cylinder flow at Re = 100,

transient cylinder flow at Re = 100, and Boussinesq flow at Re = 1000 are cho-

sen. Individually, these flow problems exhibit different levels of non-linearity which

can be utilized to examine the effectiveness of the data-driven modeling framework.

The strategy is to first approximate the convolved system operator Ā with training

data. Subsequently, the transition operator Ā is applied to the first snapshot of the

convolved weights to predict and evolve the system in the weights space. As an illus-

trative example, the prediction for the future snapshot is: x̄i = Āi−1x̄1 i = 2, .., inf if

x̄1 is denoted as the first convoluted weights and i is the snapshot index.

Periodic Cylinder Flow

For the periodic cylinder flow at Re = 100, a non-dimensional time unit as T = tU∞
D

is defined where t represents the physical time for the associated snapshot, U∞ is

the inlet velocity, and D is the cylinder diameter. In this analysis,300 snapshots

(T = 60) of training data are chosen which corresponds to ten cycles of periodic

limit-cycle behavior. To carry out an informative and comparative study, the dif-

ferent methods including POD-convolution, GP-k-convolution, GP-kv-convolution,

GP-sv-convolution, GP-sv-POD-convolution are considered, and the resulting model

is employed to predict up to 2000 snapshots (T = 400). An investigation of GP-

convolutions with a different number of centers(300 and 600) is also conducted for

this flow problem.

To illustrate predictive accuracy for the limit-cycle behavior, the projected weights

and predicted weights for the cases of using GP-kv-convolution with 300 centers and

POD-convolution are compared. The projected weights are computed from the full

37



2000 snapshots of data using the convolution operator. The evolution of the first

three weights (in time) are shown in Figure 2.13 and 2.14, respectively. For brevity,

the weights comparison for other GP-convolutions are not shown here, but they are

also allowed to evolve periodically up to T = 400 as GP-kv-convolution.
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Figure 2.13: The first three projected(red line) and predicted(blue triangle) weights

for the periodic cylinder flow at Re = 100 using GP-kv-convolution with 300 centers.
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Figure 2.14: The first three projected(red line) and predicted(blue triangle) weights

for the periodic cylinder flow at Re = 100 using POD-convolution.
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To quantify the performance of the modeling framework, L2 error norms are com-

puted for the weight prediction as follows.

φj =

√√√√ 1

K

K∑
k=1

(x̄Projk,j − x̄Predk,j )2 . (2.31)

Similarly, to quantify the performance of using different convolutions, L2 error norms

for the prediction of each solution field is computed as:

ψj =

√√√√ 1

N

N∑
i=1

(xTruei,j − xPredi,j )2 , (2.32)

where i and j represent the number of dimension and snapshot for the data, respec-

tively. From Equation 2.31, the projected weights are denoted as x̄Projk,j whereas the

predicted weights are denoted as x̄Predk,j . The true and predicted solution field are de-

noted as xTruei,j and xPredi,j in Equation 2.32. Subscripts i = 1, 2, ..., N , k = 1, 2, ..., K,

and j = 1, 2, ...,M , where N , K, and M are the number of dimension, weights, and

snapshot, respectively.

Table 2.3 and Table 2.4 summarize the numerical values of φT=60, ψT=600, φT=400,

and ψT=400 for all the cases. The corresponding time series of the L2 error norms

for φj and ψj are shown in Figure 2.16 and 2.17, respectively. From both Table 2.3

and Table 2.4, it is observed that the L2 error norms for both the weights(φT=60

and φT=400) and field prediction(ψT=60 and ψT=400) have the same order of magni-

tude irrespective of which center placement algorithm is chosen for GP-convolutions.

The predicted solution field from POD-convolution have the highest accuracy among

others as evidenced in Figure 2.17 and 2.15.

39



Figure 2.15: The stream-wise velocity contour at T = 400 for left: actual solution,

right: predicted solution from POD-convolution.

Table 2.3: The L2 error norms for the prediction of the weights and solution field

from all the cases for Re = 100 periodic cylinder flow

Convolution1 φT=60 ψT=60 φT=400 ψT=400

GP-k 4.9562E-3 1.2920E-1 1.1207E-2 1.2970E-1

GP-kv 5.4338E-3 9.9607E-2 2.1339E-2 9.9893E-2

GP-sv 7.7917E-3 4.7397E-2 2.2470E-2 5.1750E-2

GP-kv-POD2 3.5863E-4 9.9604E-2 1.5987E-3 9.9894E-2

POD3 2.7619E-2 6.2501E-4 1.2729E-1 1.4183E-3

Table 2.4: The L2 error norms for the prediction of the weights and solution field

from all the cases for Re = 100 periodic cylinder flow.

Convolution4 φT=60 ψT=60 φT=400 ψT=400

GP-k 1.6181E-3 7.0818E-2 4.2919E-3 7.0842E-2

GP-kv 3.4440E-3 5.1194E-2 8.3614E-3 5.1272E-2

GP-sv 2.5959E-3 2.7470E-2 6.6308E-3 2.7593E-2

1GP convolutions performed in this table use 300 centers.
2Retain 100 modes.
3Retain 10 modes, greater than 99.99 percent energy.
4GP convolutions performed in this table use 600 centers.
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Figure 2.16: L2 error norms of the weights prediction for the periodic cylinder flow

at Re = 100. Top: GP convolutions with 300 centers. Middle: GP convolutions with

600 centers.
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Figure 2.17: L2 error norms of the solution field for the periodic cylinder flow at

Re = 100. Top: GP convolutions with 300 centers. Middle: GP convolutions with

600 centers.

41



(a) GP-k-convolution (b) GP-kv-convolution

(c) GP-sv-convolution (d) GP-kv-POD-convolution

Figure 2.18: The stream-wise velocity contour of the predicted solution field at T =

400 for the periodic cylinder flow at Re = 100 from GP-convolutions with 300 centers.

For comparison purposes, the stream-wise velocity contour plots for the GP cases

are shown in Figure 2.18. Not surprisingly, the aliasing effect occurs for all of the GP-

convolution methods as the GP-convolution operator is not exactly invertible. On the

other hand, the POD modes are orthogonal vectors and have an exact inverse which

makes the deconvolution exact. Although the L2 error norms for GP-sv-convolution

is smaller as compared to GP-k-convolution and GP-kv-convolution, the wake of the

cylinder is predicted poorly in Figure 2.18. However, both GP-kv and GP-kv-POD

perform extremely well at the regions where the vortex shedding occurs but with

small distortion at the edge of the domain. To support this argument, the L2 error

norms of the solution field shown in Figure 2.19 for a selected domain of 2 < x < 9

and −2 < y < 2, is computed and denoted as ψS. It is observed that the performance

of GP-kv-convolution and GP-k-convolution exceeds that of GP-sv-convolution. If

the domain of interest is in the wake of cylinder regardless of the prediction near

the edge of the domain, using GP-kv-convolution is preferable. While GP-kv-POD-
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convolution produces fairly identical results as GP-kv-convolution, it is still worth

noting that adding an extra layer of POD-convolution helps to reduce the rank of

the system which reduces computational effort while solving the inverse problem for

a smaller matrix.
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S
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Figure 2.19: L2 error norms of the solution field for the selected domain for periodic

cylinder flow at Re = 100. 600 centers are used.

(a) GP-k-convolution (b) GP-kv-convolution

(c) GP-sv-convolution

Figure 2.20: The stream-wise velocity contour of the predicted solution field at T =

400 for the periodic cylinder flow at Re = 100 from GP-convolutions with 600 centers.

As the number of centers used in GP-convolutions increase to 600, both the weights

and field prediction improve notably as shown in Figure 2.16 and 2.17, and the cor-
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responding stream-wise velocity fields are shown in Figure 2.20. In particular, the

aliasing effect is less perceptible as compared to the cases using 300 centers. Com-

paring Figure 2.20 and 2.15, the predicted solution from GP-kv-convolution is nearly

as good as POD-convolution with minor distortions at the left side of the domain,

whereas GP-k-convolution and GP-sv-convolution have shown visible aliasing effect

that covers the majority of the domain. Although GP-kv-convolution and GP-k-

convolution share similar characteristics with respect to center placement, the former

predicts less noisy and more accurate solution field than the latter. These findings

show that the number and the location of the centers are the predominant factors

that impact the performance of the GP-convolution-based model prediction. Ideally,

one would like to place a center at every location where the flow information is avail-

able to capture the system dynamics, but the computational cost would be too high.

Hence, the algorithm for learning centers to accurately and efficiently capture the

flow physics is essential.

Transient Cylinder Flow

As has been pointed out already, the dynamics of a limit-cycle system is relatively

straightforward to model. In this section, the goal is to model the more complex

transient cylinder wake flow. As in the previous study, 340 (T = 68) snapshots from

the cylinder data are used for training such that the first half of the data shows

transient growth of the instability, while the second half shows periodic limit-cycle

behavior. The analysis is performed using GP-kv-convolution, GP-sv-convolutions,

GP-kv-POD-convolution, POD-convolution, GP-TF-convolution, and GP-PolyK to

predict up to 1000 snapshots (T = 200). 600 center locations are chosen for the GP-

convolutions keeping in mind the accuracy of the predictions from the prior study of

periodic wake flow. The L2 error norms for the predicted weights and the predicted

field for each of the cases are shown in Figure 2.21a and Figure 2.21b, respectively.
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Figure 2.21: L2 error norms of the predicted weights(left) and solution field(right) for

transient cylinder flow at Re = 100.

From Figure 2.21, it is observed that POD-convolution performs poorly in both

weights and field prediction as compared to the other convolution methods. This

result is not surprising and has previously been pointed out by Rowley & Dawson

(2017). The transient to periodic bahavior of the cylinder flow is essentially non-

linear growth of the wake instability, and DMD(in our case, POD-convolution), being

a linear method is not capable of predicting the correct dynamics. To illustrate this

argument, the first three projected and predicted weights for POD-convolution, POD-

TF-convolution, POD-PolyK-convolution, and GP-kv-convolution are compared in

Figure 2.22. It is observed that the prediction from POD-convolution does not ac-

curately capture the instability growth and the location of the limit cycle as ob-

served in the evolution of the weights, whereas both POD-TF-convolution and GP-

kv-convolution identifying both transient and periodic behavior with reasonable accu-

racy. The streamwise velocity contours at T = 25, T = 68, and T = 200 are shown in

Figure 2.23, 2.24, and 2.25. Figure 2.26 shows the corresponding stream-wise veloc-

ity contour for the actual field. It is evident that the solution from POD-convolution

does not predict the transitional behavior well. The approach of using POD-TF-
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convolution performs well if prior knowledge of the dynamical system is available as

in this case. In this case, it is well known that the accuracy of the prediction can be

improved by using quadratic terms which is equivalent to constructing a non-linear

model (Rowley & Dawson 2017). Thus, leveraging an user-defined transfer function

is particularly effective for this flow problem.
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(c) POD-PolyK-convolution
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Figure 2.22: The first three projected(red) and predicted(blue) weights for the tran-

sient cylinder flow at Re = 100.

On the other hand, GP-kv-convolution displays comaprable accuracy to the POD-

TF-convolution by capturing the transient evolution of the weights prediction as

shown in Figure 2.21a. Even though the solution field still displays some aliasing effect

from inaccurate deconvolution proceedure, this convolution operator does not rely on
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prior knowledge of the system dynamics as compared to POD-TF-convolution. Simi-

larly, layering a polynomial kernel function with POD-convolution, i.e., POD-PolyK-

convolution, also performs reasonably well as evidenced in Figure 2.21a and 2.21b.

This study highlights the effectiveness of the generalized sparse convolution frame-

work for capturing the correct non-linear dynamics without prior knowledge of the

dynamical system.

Figure 2.23: The predicted stream-wise velocity contour for the transient cylinder

flow at Re = 100 using GP-kv-convolution. Left to right: T = 25, T = 68, and

T = 200.

Figure 2.24: The predicted stream-wise velocity contour for the transient cylinder

flow at Re = 100 using POD-convolution. Left to right: T = 25, T = 68, and

T = 200.

Figure 2.25: The predicted stream-wise velocity contour for the transient cylinder

flow at Re = 100 using POD-TF-convolution. Left to right: T = 25, T = 68, and

T = 200.
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Figure 2.26: The actual stream-wise velocity contour for the transient cylinder flow

at Re = 100. Left to right: T = 25, T = 68, and T = 200.

The predicted stream-wise velocity contour using GP-sv-convolution is shown in

Figure 2.27. In comparison, both GP-kv-convolution and GP-sv-convolution perform

reasonably well in predicting the transient and limit-cycle behavior. For the region

of the cylinder wake, the predicted solution field is reasonably accurate and not as

distorted as in the GP-kv-convolution method even though 600 center locations were

used. This result indicates that center or sensor placement is indeed important for

constructing an accurate and efficient predictive model.

Figure 2.27: The predicted stream-wise velocity contour for the transient cylinder

flow at Re = 100 using GP-sv-convolution. Left to right: T = 25, T = 68, and

T = 200.

The L2 error norms for both weights and field prediction are tabulated in Ta-

ble 2.5 at T = 68 and T = 200. Instead of performing convolution on the transient

cylinder data, this case sudy uses the POD modes from the periodic cylinder data

for modeling the system. The corresponding case is termed as ”POD-PeriBasis” as

shown in Figure 2.28. It is observed that the behavior from transient to limit-cycle

is not occurring within the training data, i.e., T < 68. This observation not only

emphasizes that an appropriate basis or convolution operator is required to capture
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the nonlinear system dynamics but also indicates that the periodic cylinder data does

not contain the necessary growth mode for triggering the instability.

Table 2.5: The L2 error norms for the prediction of the weights and solution field

from all the cases for transient cylinder flow Re = 100.

Convolution5 6 φT=68 ψT=68 φT=200 ψT=200

GP-kv 2.3826E-1 5.2452E-2 3.0967E-1 5.4405E-2

GP-kv-POD 7 2.1352E-1 5.1747E-2 2.7648E-1 5.3024E-2

GP-sv 4.0995E-1 4.1658E-2 4.1864E-1 6.2778E-2

POD 4.7785E01 1.2272E-1 5.3785E01 1.3400E-1

POD-TF 2.0760E-1 4.2751E-3 9.1273E-1 1.7732E-2

POD-PolyK 1.6431E-1 3.6741E-3 2.1288E01 4.7402E-2

POD-PeriBasis 4.4731E01 1.2168E-2 3.7053E01 1.1148E-1

Figure 2.28: The predicted stream-wise velocity contour for the transient cylinder

flow at Re = 100 using POD-PeriBasis-convolution. Left to right: T = 25, T = 68,

and T = 200.

Boussinesq Buoyancy-Driven Mixing Flow

The third problem considered as part of our test bed is a Boussinesq buoyancy-driven

mixing flow, which represents highly convective dynamics. Because Boussinesq flow

does not settle into a limit-cycle (as against cylinder flow), predicting its evolution is

5GP convolutions performed in this table use 600 centers.
6POD convolutions performed in this table retain 50 modes.
7100 POD modes are retained.
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rather challenging. In this analysis, different convolution operators such as GP-kv,

GP-kv-POD, POD, and POD-TF-convolutions that performed the best for thge limit

cycle case from the earlier study are explored. 400 snapshots(t = 8s) of training data

are used to predict up to 800 snapshots(t = 16s). Since the optimal number of centers

has not been explored, an ad hoc choice of 1500 centers is used. The L2 error norms

for the weights and field prediction are shown in Figure 2.29a and 2.29b, respec-

tively. Similar to that observed for the cylinder wake flow, the POD-TF-convolution

performs better than GP-convolutions and POD-convolution in the prediction of the

weights. However, the L2 error norms for both weights and field prediction increase

substantially beyond the training region, i.e., t > 8s, for all the cases. To illustrate,

the temperature fields are compared for GP-kv-convolution and POD-TF-convolution

as shown in Fig 2.30 and Figure 2.31. This is because, the POD mdoes obtained from

data in the training region and employed in the construction convolution operator is

not optimal for the data to be predicted beyond the training set.
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Figure 2.29: L2 error norms of the predicted weights(left) and solution field(right) for

Boussinesq flow. Right: the predicted solution is compared with true solution.
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(a) Reconstruted Solution (b) Actual Solution (c) Predicted Solution

Figure 2.30: Temperature field for Boussinesq flow using GP-kv-Convolution.

(a) Reconstruted Solution (b) Actual Solution (c) Predicted Solution

Figure 2.31: Temperature field for Boussinesq flow using POD-TF-Convolution.

Also shown are the reconstructed solution fields computed from the convolution op-

erator and convolved weights. In principle, the best possible prediction with such

a framework is the exact reconstruction from the convolution operator. For GP-kv-

convolution, the field prediction performs well within the training region but deviates

outside the training region. However, the reconstructed solution is close to the actual

solution as expected. This implies that this convolution operator can potentially cap-

ture the dynamics. The predicted and projected weights are presented in Fig 2.32a.

It is observed that the weights match well only within the training region. On the

51



other hand, the predicted and projected weights for POD-TF-convolution presented

in Fig 2.32b show reasonable comparison even beyond the training region.
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Figure 2.32: The first three projected(red), true(green), and predicted(blue triangle)

weights for Boussinesq flow using GP-kv(left) and POD-TF-convolution(right).

The issue with POD-TF-convolution is that the projected weights are not consis-

tent with the true weights. Explaining further, the true weights for the POD-TF-

convolution are computed by using the POD modes learned from all 800 snapshots of

the data instead of 400 in Figure 2.32b. The reconstructed solution also appears to be

a bad representation as compared to the actual solution in Figure 2.31. The reason is

that the convolution operator(in this case, the POD modes) evolves dynamically as

the system changes, and this complicates the modeling and prediction for such sys-

tems. However, it is worth mentioning that the dynamics within the training region

are correctly predicted as evidenced in Figure 2.30 and 2.31. Table 2.6 and 2.7 summa-

rize the L2 error norms for both predicted weights and solutions at t = 4s and t = 8s.

For completeness, the predicted weights for POD and GP-kv-POD-convolution are

shown in Figure 2.33a and 2.33b, respectively. The predicted solution field for POD

and GP-kv-POD-convolution are shown in Figure 2.34 and 2.35, respectively.

In summary, the key to the sparse presented convolution framework capturing the
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Table 2.6: The L2 error norms for the prediction of the weights and solution field

from different convolutions for Boussinesq flow at t = 4s.

Convolution φt=4s ψt=4s

GP-kv 1.1440E-1 4.2218E-2

GP-kv-POD 9.7056E-2 4.1251E-2

POD 1.0828E01 9.4090E-2

POD-TF 8.0980E-2 5.2347E-3

Table 2.7: The L2 error norms for the prediction of the weights and solution field

from different convolutions for Boussinesq flow at t = 8s.

Convolution φt=8s ψt=8s

GP-kv 1.6342E-1 4.6276E-2

GP-kv-POD 1.1282E-1 3.9037E-2

POD 1.1360E01 1.0789E-1

POD-TF 5.9375E-2 6.7019E-3

correct system dynamics is the identification of the appropriate convolution opera-

tor and sparse representation. To highlight this point, different POD-convolutions

and GP-convolutions are investigated with various sparsification (center learning)

algorithms(GP-k, GP-kv, and GP-sv) using different numbers (300 and 600) of cen-

ters. For the periodic cylinder flow, the favorable center placement(GP-kv with 600

centers) is identified for the most accurate model among all the cases using GP-

convolution. Additionally, the aliasing effect observed in GP-convolutions can be

related to the center placement algorithm. When the local temporal variability of

the velocity field is exploited to determine the location of the centers, the predicted

solution improves significantly and accurately captures the physics of the cylinder

wake. Thus, the choice of the center placement is a critical component for accurate
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model prediction in the GP-convolution.

When encountering more complex flows, e.g., the transient cylinder flow, the

choice of the convolution operator is critical for predicting dynamical behavior. For

example, the single-layer convolutions such as POD and POD-PeriBasis have failed

to capture the transitional behavior. However, the idea of multi-layer convolution

performs reasonably well as highlighted by the results from POD-TF, and POD-

PolyK-convolution because the prior knowledge of this flow system has been utilized.

As a result, the quadratic nonlinearity has been incorporated into these two convolu-

tions for model prediction. On the other hand, GP-convolutions are also capable of

predicting the transient dynamics correctly even without including transfer function

or kernel function. The underlying reason has not been investigated yet, but this im-

plies that GP convolution is advantageous than POD-convolution in case of unknown

flow physics.

The computational time and L2 error norms ψ of the predictive models for both

periodic and transient cylinder flow are summarized in Table 2.8 as compared to the

DNS data. For brevity, only the best cases are summarized below. For the periodic

cylinder flow, the models are allowed to predict up to T = 400. The total time to

compute the DNS data is approximately 204 minutes whereas both predictive models

from POD and GP-kv-convolution require less than 2 minutes. This results in a

ratio of more than 100 for the total time saved which is significantly remarkable.

Similarly, the total time saved for the transient cylinder flow is comparable to the

periodic cylinder flow, i.e., ratio of ∼ 100. The models predicted in this case are

allowed to evolve up to T = 200. It is worth noting that the amount of resources

to collect high-fidelity DNS data is extremely demanding which the cylinder data in

both cases are generated using 16 standard computer nodes in a parallel computing

environment. On the other hand, the predictive models developed for the cylinder

flows were performed on a regular desktop computer which saves a significant amount
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of computing resources.

For both flow systems, POD-convolution(POD-TF-convolution) appears to out-

perform GP-kv-convolution regarding efficiency and accuracy due to three reasons as

follows. Firstly, the inverse of the operator C from POD-convolution can be com-

puted directly by taking the transpose which a significant amount of time can be

saved. For GP-convolutions, the pseudo-inverse of C is computed to build the pre-

dictive models which require more computational effort. Secondly, determining the

center locations is needed to build the convolution operator for GP-convolutions, and

hence it is more computationally expensive than POD-convolution. Last but not

least, operator C from GP-convolutions is not exactly invertible, and the resulting

predictions will introduce the aliasing effect. This implies that GP-convolutions is

inherently less accurate than POD-convolution even though an appropriate convolu-

tion is used. However, the predicted solutions from GP-kv-convolution appears to

be more stable than POD-TF-convolution as evidenced in Figure 2.21b. The reason

is still not fully understood at this time, and further investigation is needed in the

future.

Table 2.8: The computational time(minutes) and error of the predictive models for

both periodic and transient cylinder flows.

Periodic cylinder flow

DNS POD-convolution GP-kv-convolution

Time (minutes) 204 0.3 1.5

L2 error(ψT=400) - 1.42E-3 5.13E-2

Transient cylinder flow

DNS POD-TF-convolution GP-kv-convolution

Time (minutes) 105 0.5 1.25

L2 error(ψT=200) - 1.77E-2 5.44E-2
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The dynamics of Boussinesq flow while challenging to predict from data, can be

accurately captured within the training region using the correct convolution, e.g., GP-

kv and POD-TF-convolutions. Beyond the training region, the predictions become

erroneous. For POD type of convolution, the relevance of the POD basis to the data

being predicted changes as the system evolves. In other words, the computed POD

basis from 400 data snapshots is different from the ones computed using 800 data

snapshots. For the system that evolves significantly in time, dynamic updates to

POD basis may lead to accurate model. Hence, this becomes the primary motivation

to explore the ideas of online updates in chapter 4. For GP-convolution, the various

data-driven predictive models have failed to capture the evolving physics outside the

training region although the convolution operator kernels themselves remain relevant.

This indicates that the center locations may need to be modified as the physics evolves

in time. The discussion of computational effort for this flow system is highlighted here

because the flow physics has not been predicted correctly.

A disadvantage of such data-driven approaches is the need for ad-hoc regular-

ization parameter for obtaining accurate and stable model predictions. This makes

the modeling framework less self-consistent, but it is a common flaw in almost all

data-driven approaches.
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Figure 2.33: The first three projected(red), true(green), and predicted(blue triangle)

weights for Boussinesq flow using POD(left) and GP-kv-POD-convolution(right).

(a) Reconstruted Solution (b) Actual Solution (c) Predicted Solution

Figure 2.34: Temperature field for Boussinesq flow using POD-Convolution
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(a) Reconstruted Solution (b) Actual Solution (c) Predicted Solution

Figure 2.35: Temperature field for Boussinesq flow using GP-kv-POD-Convolution
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CHAPTER 3

SPARSE DATA RECONSTRUCTION FOR NON-LINEAR FLUID

FLOWS

3.1 Motivation and Review

In many practical flow applications, sparse measurement data is often utilized to de-

cipher the underlying system dynamics, especially when the underlying models are

not known. An example is the case of data collected using unmanned aerial sys-

tems (UAS) over a spatial domain of interest. This data is invariably sparse, and

UAS measurements are often leveraged to learn the structure of microscale geophys-

ical flow phenomena such as pollutant/scalar transport, forest fires, and atmospheric

turbulence. However, Billions of measurements are required to accurately measure

atmospheric turbulence whereas hundreds of UAS is more realistic. In the labora-

tory, particle image velocimetry(PIV) (Adrian 2005, Kim et al. 2016) is one of the

widely used methods to study complex flows. Although PIV can provide accurate

quantitative flow measurement, the resolution of the data can be insufficient, or the

data (image) quality can be unreliable in pockets for high fidelity analysis due to

various experimental challenges including insufficient illumination, shadowing, ob-

structed view, and low seed density (Gunes & Rist 2008). As a consequence, the

resulting data can be sparse, under-resolved, gappy and almost always noisy. Mea-

suring the high dimensional state data for such flow systems is mostly impractical

and too expensive. It is common that the resulting measurements are often limited in

spatial resolution (Bui-Thanh et al. 2004). To correctly understand the flow system,

the full state is often required to extract dominant mode structures such as POD and
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DMD modes. Although recent advancements have focused on extracting dynamical

modes from sparse measurement (Brunton et al. 2013, 2014), recovering the full high

dimensional state from sparse data is still attractive (de Baar et al. 2014, Lee et al.

2015, Saini et al. 2016, Moreno et al. 2016). Consequently, sparse reconstruction is a

critical component in data-driven approaches for analyzing non-linear fluid flow sys-

tems. Lastly, the aliasing effect resulting from the GP-convolutions from chapter 2 is

associated with de-convolution not being exact, which again is a sparse reconstruction

problem. The methods presented in this chapter will help to alleviate this issue.

Sparse reconstruction technique such as ”gappy POD (GPOD)” based on L2 min-

imization was originally proposed by Everson & Sirovich (1995) to recover marred

faces in image processing. The fundamental idea of GPOD is to utilize the POD

basis to approximate the coefficients that minimize the reconstruction error in L2

sense. For sparse data with no knowledge of POD basis, GPOD can be extended to

an iterative deconvolution procedure (iterative inverse filtering) that approximates

both POD basis and coefficients. Naturally, this approach is less efficient and ac-

curate compared to the non-iterative framework when the basis is known. Since its

inception, GPOD has proven to be a beneficial method for data recovery as evidenced

in many practical applications. For examples, Bui-Thanh et al. (2004) have utilized

the knowledge of the computed aerodynamics or measured flow data to construct the

entire flow field information, with successful extensions to inverse airfoil design from

data. Similarly, Venturi & Karniadakis (2004) reconstructed accurate representations

of velocity field for cylinder wake from data with different sparsity levels. Saini et al.

(2016) have employed GPOD to recover missing data in PIV measurements for the

studies of gas turbine combustor flows. The success of the GPOD lies in the POD

basis being a sparse representation of the data.

In recent years, compressive sensing (Candès et al. 2006, Tropp & Gilbert 2007,

Candès & Wakin 2008, Needell & Tropp 2009) has been popular as sparse reconstruc-
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tion framework based on L1-minimization. This approach has also been leveraged

for fluid flow applications (Brunton et al. 2013, Bright et al. 2013, Bai et al. 2014,

Brunton et al. 2014, Bai et al. 2017, Kramer et al. 2017). The goal of compressive

sensing is to use a limited amount of data to identify a sparse set of coefficients

using L1 minimization. For a sparse system, one can throw away the majority of

the coefficients and retain only a few to represent the system. Compressive sensing

identifies the combination of sparse coefficients that work best. In contrast, GPOD

tries to approximate with equal fidelity, all the coefficients used to model the system.

Both these approaches have their inherent advantages and disadvantages, and their

success is very problem dependent. Many studies have focused on integrating ideas of

compressive sensing into fluid flow modeling. Using this L1 minimization framework,

there exist two strands of effort - compressive sampling and compressive sensing. The

former refers to the existence of a higher dimensional data set from which a sparse-

sampled data-set is generated for efficient computation. This is not that dissimilar to

the sparse convolution ideas in the earlier chapter. Once the sparse data is generated,

a sparse reconstruction method is employed to map back to the high-resolution flow

field. In contrast, the compressive sensing approach involves purely sparse measure-

ments (without knowledge of the high dimensional state vector) which are then used

to reconstruct the full flow field. Bright et al. (2013) have utilized compressive sam-

pling to characterize the flow around a cylinder with limited pressure measurements,

and Bai et al. (2017) have exploited sparse sampling to provide efficient measurement

and characterization of a fluid system which reduces the effort to obtain valuable

data. Bai et al. (2014) have compressed and reconstructed turbulent airfoil data us-

ing strategies from compressive sampling. Kramer et al. (2017) proposed a sparse

sensing framework based on DMD algorithm to identify flow regimes, ranging from

steady to chaotic flow, and bifurcations in large-scale thermo-fluid systems.

Local kriging has also been an effective method to interpolate to the unknown
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values using the known data, especially in the field of geology (Oliver & Webster

1990, Deutsch & Journel 1998, Marinoni 2003). Kriging has strong connections to

GP regression. Over the past few decades, the use of kriging to recover sparse data

has gradually emerged for modeling fluid flow systems as evidenced in Venturi & Kar-

niadakis (2004), Gunes et al. (2006) and Gunes & Rist (2008). In particular, Gunes

et al. (2006) have utilized kriging to reconstruct flow past a cylinder and suggested

that kriging performs better with data that has high gappiness or low temporal res-

olution as compared to the results from L2-based reconstruction technique. For a

sensitive region, i.e., the region with absolute instability, Gunes et al. (2006) have

shown that kriging-based interpolation is an effective method to repair the missing

data. Also, Gunes & Rist (2008) have used kriging to eliminate or alleviate the

incorrect and missing data in PIV measurements of a separated transitional flat-plate

boundary layer. de Baar et al. (2014) have provided an improved reconstruction of

the experimental velocity data obtained from PIV using kriging based regression as

compared to the traditional methods.

In summary, L2 minimization, L1 minimization and kriging-based methods have

all shown promising results for practical fluid flow applications. However, their effec-

tiveness depends on the physics to be modeled. In this study, their performance will

be compared for different classes of fluid flows.

3.2 Objective and Contribution

Insufficient data is often encountered in many practical applications, and sparse recon-

struction methods help recover the full-field solution. The major goal of this study is

to explore reconstruction techniques which can be potentially integrated into the con-

volution framework developed in chapter 2 for modeling non-linear fluid flow systems

using sparse data. Additionally, the tools developed can be leveraged to analyze the

physics contained in sparse measurement data for many practical flows. The primary
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contributions of this work include the exploration, implementation, and evaluation of

three techniques that were mentioned previously for sparse data reconstruction. The

first method is L2-based reconstruction with POD basis(GPOD). Secondly, a L1-

based reconstruction, which uses compressive sampling matching pursuit(CoSaMP),

is exploited as an alternative method for data recovery. Thirdly, local kriging, a sta-

tistical method, is utilized to interpolate the unknown values from the known data.

The detailed procedure for these methods are discussed in section 3.4 and section 3.5.

The focus of this study is to evaluate the performance of the techniques mentioned

above for three different classes of reconstructions, namely as:

1. Sparse reconstruction with known basis, i.e., the POD basis are learned from

the full field data.

2. Sparse reconstruction with known but inexact basis, i.e., the POD basis are

learned from the related flow data at different temporal regime or the low-

resolution data.

3. Sparse reconstruction with unknown basis, i.e., the basis functions are learned

from the sparse data.

The questions to be answered in this study are summarized as follows.

1. What is the minimum amount of sparse data needed to recover an accurate

solution?

2. What is the optimal rank for sparse recovery of a particular system?

3. Which of the three methods performs the best?

4. For unknown basis, how many modes can be accurately captured?

To effectively answer these questions, the reconstruction techniques are applied to

three fluid flow systems including (a) flow past a cylinder at Re = 100, which is a
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low-dimensional system, (b) 2-D turbulent channel flow (Re = 4200 and Reτ = 180),

which is a high-dimensional system, and (c) 2-D reduced channel flow (Re = 4200

and Reτ = 180), which zeroes in on the near-wall flow and is a moderate-dimensional

system. A low-dimensional system is one which can be described effectively with a

small number of basis (be it POD or other basis functions) whereas a high-dimensional

system requires a large number of modes for accurate representation as the higher

modes can have non-negligible energy content and important low-energy structures.

3.3 General Theory

The L2 and L1-based methods introduced in this study have conceptual similarities to

inverse filtering ideas such as approximate deconvolution(AD) which require repeated

application of the filter to obtain its inverse. However, in AD the exact form of the

filter is not known and is usually guessed. As a result, the quality of the reconstruc-

tion depends on the choice of filter kernel employed. In the sparse reconstruction

methods considered in this chapter, the filter kernel is mostly known from data in

the form of POD basis. The primary focus here is the L2 and L1-based minimiza-

tion framework which relies on manifold learning (POD bases) from data instead of

adopting a functional filter kernel for sparse reconstruction.

The general theory of sparse reconstruction from data can be outlined as fol-

lows. Consider a set of sparse data X̃ ∈ RP×M , it can be described by a filter or a

measurement matrix C ∈ RP×N as:

X̃ = CX, (3.1)

where X ∈ RN×M is the full field representation that is needed to be recovered. P ,

N , and M are the number of measurements, full field grid dimension, and snapshots

of data respectively. The left pseudo-inverse of C can be applied to Equation 3.1 to
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recover the reconstructed field as:

C+X̃ = X. (3.2)

The challenge in Equation 3.2 is to find the pseudo-inverse of the measurement ma-

trix C that is usually ill-conditioned. This results in solving an ill-posed and un-

derdetermined problem for P << N . Consequently, C+ is non-unique and requires

regularization which is mostly ad hoc. To improve the conditioning of C, the full

field data can be represented using a low-dimensional basis Φ ∈ RN×K and coefficient

a ∈ RK×M as:

X = Φa. (3.3)

Equation 3.1 can also be rewritten as:

X̃ = CΦa. (3.4)

Then the sparse reconstruction problem becomes:

a = (CΦ)+X̃. (3.5)

In comparison to matrix C, the conditioning of (CΦ) is greatly improved when K

is in order of P , i.e., (CΦ) is closer to a square matrix. Therefore, solving for the

coefficient a is more effective and robust. Equation 3.4 is a generalized framework

that is applicable to both L2-based and L1-based techniques(compressive sampling).

In this study, POD basis represent the only sparse basis used in both approaches.

Other possible choices of basis include Fourier functions or wavelets. In particular,

the L2-based method with POD basis is also known as GPOD, and was developed

by Everson & Sirovich (1995) to solve a minimization problem in Equation 3.6. The

details of the GPOD procedure are discussed in section 3.4.1.

min
∣∣∣∣∣∣X̃ − CΦa

∣∣∣∣∣∣2
2
. (3.6)
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Alternatively, in the compressive sensing frameworks, the goal is to solve the sparse

coefficient a with L1 minimization as shown in Equation 3.7.

min
∣∣∣∣∣∣X̃ − CΦa

∣∣∣∣∣∣2
2

& min ||a||1 . (3.7)

In this study, the CoSaMP algorithm (Needell & Tropp 2009) is employed to solve the

above minimization problem which requires a combinatorial search. This method is

an improved version of the orthogonal matching pursuit algorithm(OMP) (Tropp &

Gilbert 2007) with several modifications that accelerate the convergence and provide

numerical stability (Needell & Tropp 2009). The details of the CoSaMP algorithm

are discussed in section 3.4.2.

3.4 Sparse Reconstruction with Known Basis

3.4.1 L2-based Minimization

In this subsection, the mathematical steps of the original L2 minimization algorithm

using POD basis or GPOD procedure (Everson & Sirovich 1995) are introduced for

reconstructing sparse data. The reader is assumed to possess knowledge of POD and

SVD as well as their computations. Given a complete data vector, one can obtain

the POD basis φk(z) and coefficient ak as:

x(z) =
K∑
k=1

akφk(z). (3.8)

The masking of data refers to blanking out elements at the chosen spatial locations.

As a result, the masked data X̃(z) and mask vector m(z) are related as:

x̃(z) = m(z)x(z). (3.9)

The elements of the mask vector are either 1 or 0 depends on the availability of the

data. Relating with the general theory from previous section, the mask vector is

equivalent to the measurement matrix C, but of a different dimension. In fact, one

66



can compute the full measurement matrix C for the given mask vector in GPOD

if memory storage permits. For practical implementation, point-wise computation

using the mask vector is much more computationally efficient than computing matrix

C. The goal of the GPOD procedure is to recover the masked (inaccesible) data by

approximating the POD coefficient ā from the unmasked data:

x̃(z) ≈ m(z)
K∑
k=1

ākφk(z). (3.10)

Unlike the traditional POD framework, the coefficient vector ā cannot be computed

directly from the inner product, e.g., from equation 3.8, ak = 〈u, φk〉. To obtain the

”best” approximation of the coefficient ā, one can minimize the error in an L2 sense:

error =

∣∣∣∣∣
∣∣∣∣∣x̃(z)−m(z)

K∑
k=1

ākφk(z)

∣∣∣∣∣
∣∣∣∣∣
2

2

, (3.11)

By denoting the gappy basis function as φ̃(z) = m(z)φ(z), Equation 3.11 can be

re-written as:

error =

∣∣∣∣∣
∣∣∣∣∣x̃(z)−

K∑
k=1

ākφ̃k(z)

∣∣∣∣∣
∣∣∣∣∣
2

2

. (3.12)

To minimize the error, Equation 3.12 can be rearranged using the property of Forbe-

nius norm with matrix notation in Equation 3.13.

error = tr[(x̃− Φ̃ā)T (x̃− Φ̃ā)]. (3.13)

By expanding Equation 3.13 and applying the basic property of trace tr(a + b) =

tr(a) + tr(b):

error = tr(x̃T x̃)− tr(āT Φ̃T x̃)− tr(x̃T Φ̃ā) + tr(āT Φ̃T Φ̃ā). (3.14)

By applying additional trace property for a product tr(ab) = tr(ba):

error = tr(x̃T x̃)− tr(x̃āT Φ̃T )− tr(Φ̃āx̃T ) + tr(Φ̃T Φ̃āāT ). (3.15)

Differentiate Equation 3.15 respect to ā:

∂

∂ā
[error] =

∂[tr(x̃T x̃)− tr(x̃āT Φ̃T )− tr(Φ̃āx̃T ) + tr(Φ̃T Φ̃āāT )]

∂ā
. (3.16)
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Using matrix calculus (Traa n.d.), each term in Equation 3.16 can be expressed as:

∂[tr(x̃āT Φ̃T )]

∂ā
= Φ̃T x̃,

∂[tr(Φ̃āx̃T )]

∂ā
= Φ̃T x̃, and

∂[tr(Φ̃T Φ̃āT ā)]

∂ā
= 2Φ̃T Φ̃ā. (3.17)

Consequently, Equation 3.16 is simplified by substituting Equation 3.17:

∂

∂ā
(error) = −2Φ̃T x̃+ 2Φ̃T Φ̃ā. (3.18)

By setting Equation 3.18 to zero, a linear system of equations are obtained as:

Mā = f, (3.19)

where Mi,j = 〈φ̃i, φ̃j〉 and fi = 〈x̃, φ̃i〉. Then the full field data isreconstructed as:

x̄(z) =
K∑
k=1

ākφk(z). (3.20)

It is important to note that the final form of the repaired data requires one to substi-

tute the original known data. Algorithm 3 summarizes the procedure of the GPOD

with the knowledge of full data ensemble, i.e, the access to the POD basis function

(φk) is available.
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Algorithm 3: L2-minimization with known basis

input : Full data ensemble X ∈ RN×M

Incomplete data vector x̃ ∈ RN

the mask vector m ∈ RN .

output: Approximated full data vector x̄ ∈ RN

1 Option: take out the temporal mean of the ensemble X.

2 Compute SVD of X to obtain the POD basis function Φ.

3 Decide on number of modes to retain.

4 Build a least square problem: Mā = f .

5 Compute gappy basis function: Φ̃ = mΦ with point-wise multiplication.

6 Compute matrix M = Φ̃T · Φ̃.

7 Compute vector: f = Φ̃T · x̃.

8 Solve ā from the least squares problem: Mā = f .

9 Reconstruct the approximated solution x̄ = Φā.

10 Substitute the gappy data back to ū:

(a) x̄i = x̄i if mi = 0

(b) x̄i = x̃i if mi = 1

11 Output the approximated full data vector x̄.

3.4.2 L1-based Minimization

In compressive sensing methods that leverage L1 minimization ideas, the approach is

to employ a combinatorial matrix Θ ∈ RP×K , which is mathematically equivalent to

CΦ ∈ RP×K in Equation 3.4.

X̃ = Θa. (3.21)

Different from the GPOD procedure introduced in previous section, the compressive

sampling strategy is to solve for coefficient a subject to a specified sparsity level that
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best fits Equation 3.21 in L1 sense as shown in Equation 3.22.

min
∣∣∣∣∣∣X̃ − CΦa

∣∣∣∣∣∣2
2

& min ||a||1 . (3.22)

There are two restrictions for this method. First, the data should be adequately rep-

resented in a low-dimensional space, i.e., most of the elements in a are zero. Secondly,

to form an appropriate matrix Θ, the measurement matrix C and the basis function

Φ must be incoherent to each other. In other words, Θ(CΦ) needs to satisfy the

restricted isometry principle (RIP) for sparse coefficient a (Brunton et al. 2013):

(1− δ) ||a||22 ≤ ||CΦa||22 ≤ (1 + δ) ||a||22 , (3.23)

where δ is a restricted isometry constant, and s is the sparsity level of coefficient a.

Sparsity level s indicates the number of the elements in coefficient a are non-zero.

Solving Equation 3.22 requires a solution of a combinatorial problem that is a non-

deterministic polynomial time problem. Greedy algorithms such as OMP (Tropp &

Gilbert 2007) and CoSaMP (Needell & Tropp 2009) have advantages of requiring less

computational time and samples as compared to the convex relaxation (Daubechies

et al. 2004) and combinatorial algorithms(Gilbert et al. 2002, 2007, Needell & Tropp

2009). In this study, the CoSaMP algorithm from Needell & Tropp (2009) is chosen.

CoSaMP is a greedy iterative procedure, which is a modified version of the OMP

method to identify the columns of Θ that are strongly correlated with the sparse

measurements X̃. With the combined matrix Θ, sparse data X̃, and target sparsity

level s, each iteration of CoSaMP consists of the following five steps (Needell & Tropp

2009):

1. Identification: compute the sample proxy, which is a vector that is highly corre-

lated with the current sample, and locate the largest components of the proxy.

2. Support Merger: unite the set of identified components with the set of compo-

nents in the current approximation.
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3. Estimation: solve a least squared problem to approximate the targeted sparse

coefficient.

4. Pruning: produce a new approximation by retaining only the largest compo-

nents of the newly solved sparse coefficients.

5. Sample update: update the samples by computing the residual between the

current samples and approximated samples.

The detailed algorithm for sparse reconstruction with the known basis is summa-

rized in Algorithm 4 and 5. To recover the sparse coefficient ā, a sparsity level s is

required as one of the inputs for computation. According to Needell & Tropp (2009),

a simple strategy is to deduce s from the number of measurements K: s ≈ P/(2logK),

which is reasonable in particular for high dimension data, i.e., K >> P . It is impor-

tant to note that the transformed basis and coefficient in low-dimensional space are

utilized. Therefore, the size of the coefficient a is equivalent to the number of mea-

surements in this context, and it is different than how the measurements are normally

viewed as spatial points or degree of freedoms. The second approach is rather brutal

but could be easy in some situations: running CoSaMP with a range of sparsity levels

and selecting the best approximation obtained, say s = 1, 2, 4, 8, ..., P .

A most straightforward way to stop the iterative process of the CoSaMP algorithm

is to specify a maximum number of iterations. Alternatively, the normalized residual

||v||2
||X̃||

2

(Needell & Tropp 2009) can be computed to see whether it is smaller than the

tolerance ε, which is pre-specified before the algorithm. In this study, the POD basis

functions are chosen for the L1 method. Fourier or wavelet basis can also be used to

construct sparse samplings (Candès et al. 2006, Candès & Wakin 2008)
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Algorithm 4: L1-minimization with known basis part I

input : Full data ensemble X ∈ RN×M

Incomplete data vector x̃ ∈ RN .

Mast vector m ∈ RN .

Sparsity level: s.

halting tolerance: ε.

output: Approximated full data ensemble h ∈ RN×M .

1 Compute the POD basis Φ from X.

2 Compute matrix Θ from mask matrix m and Φ.

3 Set iterative variable k = 0 and coefficient āk = 0.

4 Compute the current sample, v = X̃, where v ∈ RP×1.

5 while Halting is false do

6 Form the sample proxy: y = Θ∗v, where ∗ is complex conjugate.

7 Identify the large components from the proxy: Ω = supp(y2s).

8 Merge supports: T = Ω ∪ supp(āk−1).

9 Solve a least squares problem: b|T = Θ+
T X̃.

10 Find the first s largest and nonzero elements: āk = bs .

11 Update the samples: v = X̃ −Θāk and check halting criterion.

12 end

Algorithm 5: L1-minimization for known basis part II

13 Compute the approximated solution: h̄ = Φā.

14 for i=1 to N do

15 hi,j = h̄i if mi,j = 0 or hi,j = x̃i if mi,j = 1

16 end
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3.5 Sparse Reconstruction with Unknown Basis

3.5.1 L2-based Minimization

In the case of unknown basis function, both Φ and a are solved using an iterative

framework (Everson & Sirovich 1995). The lack of knowledge of the basis puts much

more strains on the quality of the sparse data to identify the correct POD modes.

The complete high-dimensional data is needed to compute the initial guess for the

POD basis which requires one to fill in the missing elements with some regression

procedure. The incomplete data ensemble X̃ ∈ RN×M and the corresponding mask

vector ensemble n ∈ RN×M can be expressed as:

n(z, t) =


0, if X̃(z, t) is missing or incorrect.

1, if X̃(z, t) is known.

(3.24)

A possible approach to fill in the missing elements is to use the temporal mean of the

sparse data. For instance, the initial complete data for starting iteration is denoted

as h0:

h0(z, t) =


X̃(z, t), if n(z, t) = 1.

xavg(z), if n(z, t) = 0.

(3.25)

x̄avg,i =
1

Qi

M∑
j=1

X̃i,j, Qi =
M∑
j=1

ni,j. (3.26)

However, this method breaks down if the data information is missing at all time as

pointed out by Gunes et al. (2006). Another suggestion for the initial guess is to

use Kriging as discussed in section 3.5.4. Once the initial guess of the full data is

constructed, the iterative procedure can be started by computing the POD basis:

h0(z, t) =
K∑
k=1

ak(t)φk(z). (3.27)

The gappy basis function is denoted as φ̃k(z) = n(z, t)φk(z) for each data snapshot

at time t. Similar to before, a least-squares problem is solved to approximate the
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coefficient ā by minimizing Equation 3.28:

error =

∣∣∣∣∣
∣∣∣∣∣X̃(z, t)−

K∑
k=1

āk(t)φ̃k(z)

∣∣∣∣∣
∣∣∣∣∣
2

2

. (3.28)

Subsequently, it leads to the linear system of equations:

Mā = f, (3.29)

where Mi,j = 〈φ̃i, φ̃j〉 and fi = 〈Ũ , φ̃i〉. Important to note, if M numbers of sparse

data snapshots are used, Equation 3.29 is to be solved for M times in each iteration,

one for each data snapshot. The repaired solution at the first iteration for each

snapshot can be computed as:

h1(z, t) =
K∑
k=1

āk(t)φk(z). (3.30)

Furthermore, h1(x, t) can be used for improving the solutions in the next iteration

by repeating Equation 3.27-3.30. The iterative process should be repeated until the

maximum number of iterations is reached or until the algorithm has converged for

the eigenvalues and eigenvectors. The iterative procedures for repairing incomplete

data are summarized in Algorithm 6 and 7.
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Algorithm 6: L2-minimization with unknown basis part I

input : Incomplete data ensemble X̃ ∈ RN×M .

Mask matrix m ∈ RN×M .

Maximum number of iteration: iter.

output: Approximated full data ensemble h ∈ RN×M .

1 Initialize the iterative variable: l = 0.

2 Compute the initial iterative guess h by filling the missing elements with

average values

(a)Sum the mask matrix for each dimension i: Qi =
∑M

j=1 mi,j.

(b)Compute the temporal mean for the incomplete data:

xavg,i = {
∑M

j=1 X̃i,j}/Qi.

(c)Compute the initial guess: hli,j = X̃i,j if mi,j = 1 or hli,j = xavg,i if mi,j = 0.
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Algorithm 7: L2-minimization with unknown basis part II

3 while l < iter do

4 Compute the POD basis Φ from hl

5 Decide K numbers of modes to retain.

6 l = l + 1

7 for j=1 to M do

8 for k=1 to K do

9 for i=1 to N do

10 Compute gappy basis function: Φ̃i,k = mi,jΦi,k.

11 end

12 end

13 Compute matrix : M = Φ̃T Φ̃.

14 Compute vector: f = (Φ̃)Thl−1
:,j .

15 Solve ā from a least squares problem: Mā = f .

16 Compute the approximated solution: h̄ = Φā.

17 Update the repaired data for only missing elements:

18 for i=1 to N do

19 hli,j = h̄i if mi,j = 0 or hli,j = hl−1
i if mi,j = 1

20 end

21 end

22 end

3.5.2 L1-based Minimization

The iterative procedure from the L2-based approach can be adopted for the L1-

minimization framework. The algorithm is summarized in Algorithm 8 and 9. The

complete data is still required to compute the POD basis for initiating the iterative

process. As the first solution is approximated, it can be used as the new condition
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to compute the POD basis. The difference between L2 and L1-based techniques is

that the former constructs a least-squares problem for solving ā as shown in Algo-

rithm 7, and the latter employs greedy matching pursue algorithm to find the sparse

coefficients as shown in Algorithm 9. For both approaches, a maximum number of

iterations is specified to stop the iterative procedure, e.g., iter = 100. Once again,

the choice of using L1 or L2 minimization depends on whether one expects to find a

realistic sparse solution or not.

Algorithm 8: L1-minimization with unknown basis part I

input : Incomplete data ensemble X̃ ∈ RN×M .

Mask matrix m ∈ RN×M .

Maximum number of iteration: iter.

Sparsity level: s.

halting tolerance: ε.

output: Approximated full data ensemble h ∈ RN×M .

1 Initialize the iterative variable: l = 0.

2 Compute the initial iterative guess h by filling the missing elements with

average values.

(a)Sum up the mask matrix for each dimension i: Qi =
∑M

j=1mi,j.

(b)Compute the temporal mean for the incomplete data:

xavg,i = {
∑M

j=1 X̃i,j}/Qi.

(c)Compute the initial guess h: hli,j = X̃i,j if mi,j = 1 or hli,j = xavg,i if

mi,j = 0.

3 Choose number of mode retained.
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Algorithm 9: L1-minimization with unknown basis part II

4 while l < iter do

5 Compute the POD basis Φ from hl and l = l + 1.

6 for j=1 to M do

7 Compute matrix Θ from mask matrix m and Φ.

8 Set iterative variable k = 0 and coefficient āk = 0.

9 Compute the current sample, v = X̃, where v ∈ RP×1.

10 while Halting is false do

11 k = k + 1

12 Form the sample proxy: y = Θ∗v, where ∗ is complex conjugate.

13 Identify the large components from the proxy: Ω = supp(y2s).

14 Merge supports: T = Ω ∪ supp(āk−1).

15 Solve a least squares problem: b|T = Θ+
T X̃.

16 Find the first s largest and nonzero elements: āk = bs .

17 Update the samples: v = X̃ −Θāk and check halting criterion.

18 end

19 Compute the approximated solution: h̄ = Φā.

20 for i=1 to N do

21 hli,j = h̄i if mi,j = 0 or hli,j = hl−1
i if mi,j = 1

22 end

23 end

24 end

3.5.3 Improvement: Progressive Method

The original GPOD method developed by Everson & Sirovich (1995) has several

downsides as discussed by Gunes et al. (2006) and Venturi & Karniadakis (2004). The
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method breaks down if the matrix M is singular or if the data information is missing

at all time as mentioned previously. The optimal number of modes for repairing the

sparse data depends on the sparse measurements, initial guess, and dimensionality

of the underlying physics. To overcome the dependency on the initial guess and

improve the accuracy of the repaired solution, Venturi & Karniadakis (2004) have

extended the original algorithm to a progressive framework. The novelty is to apply

the iterative procedure recursively with increasing number of modes. For example,

the first iteration procedure will be initiated using only two POD modes. Until the

process has converged with two modes, a second iteration procedure is performed

using three modes. The number of modes retained is progressively increased for a

new iteration process. Although it increases the computational expense significantly,

the progressive method has been shown to improve the accuracy of the reconstructed

solution as compared to the GPOD procedure (Venturi & Karniadakis 2004). The

success of the progressive method is associated with the improved prediction of the

higher energy modes from data as compared to the generic L2 method.

In this study, the progressive method is applied to both L2 and L1-based algorithm.

The extended version for L2 minimization with the progressive method is shown in

Algorithm 10 and 11. Similarly, the extended version for L1 minimization with the

progressive method is shown in Algorithm 12 and 13. In section 3.6, the corresponding

results are presented for both with and without progressive methods.
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Algorithm 10: Progressive L2-minimization with unknown basis part I

input : Incomplete data ensemble X̃ ∈ RN×M .

Mask matrix m ∈ RN×M .

Maximum number of iteration: iter.

output: Approximated full data ensemble h ∈ RN×M .

1 Initialize the iterative variable: l = 0.

2 Compute the initial iterative guess h by filling the missing elements with

average values

(a)Sum up the mask matrix for each dimension i: Qi =
∑M

j=1mi,j.

(b)Compute the temporal average for the incomplete data:

xavg,i = {
∑M

j=1 X̃i,j}/Qi.

(c)Compute the initial guess h: hli,j = X̃i,j if mi,j = 1 or hli,j = xavg,i if

mi,j = 0.

3 Choose number of mode retained K = 2.

80



Algorithm 11: Progressive L2-minimization with unknown basis part II

4 while K < Max. mode do

5 while l < iter do

6 Compute the POD basis Φ from hl

7 l = l + 1

8 for j=1 to M do

9 for k=1 to K do

10 for i=1 to N do

11 Compute gappy basis function: Φ̃i,k = mi,jΦi,k.

12 end

13 end

14 Compute matrix : M = Φ̃T Φ̃.

15 Compute vector: f = (Φ̃)Thl−1
:,j .

16 Solve ā from a least squares problem: Mā = f .

17 Compute the approximated solution: h̄ = Φā.

18 Update the repaired data for only missing elements:

19 for i=1 to N do

20 hli,j = h̄i if mi,j = 0 or hli,j = hl−1
i if mi,j = 1

21 end

22 end

23 end

24 l = 0

25 K = K + 1

26 end
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Algorithm 12: Progressive L1-minimization with unknown basis part I

input : Incomplete data ensemble X̃ ∈ RN×M .

Mask matrix m ∈ RN×M .

Maximum number of iteration: iter.

Sparsity level: s.

halting tolerance: ε.

output: Approximated full data ensemble h ∈ RN×M .

1 Initialize the iterative variable: l = 0.

2 Compute the initial iterative guess h by filling the missing elements with

average values.

(a)Sum up the mask matrix for each dimension i: Qi =
∑M

j=1mi,j.

(b)Compute the temporal average for the incomplete data:

xavg,i = {
∑M

j=1 X̃i,j}/Qi.

(c)Compute the initial guess h: hli,j = X̃i,j if mi,j = 1 or hli,j = xavg,i if

mi,j = 0.

3 Choose number of mode retained K = 2.
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Algorithm 13: Progressive L1-minimization with unknown basis part II

4 while K < Max. mode do

5 while l < iter do

6 Compute the POD basis Φ from hl and l = l + 1.

7 for j=1 to M do

8 Compute matrix Θ from mask matrix m and Φ.

9 Set iterative variable k = 0 and coefficient āk = 0.

10 Compute the current sample, v = X̃, where v ∈ RP×1.

11 while Halting is false do

12 k = k + 1

13 Form the sample proxy: y = Θ∗v, where ∗ is complex conjugate.

14 Identify the large components from the proxy: Ω = supp(y2s).

15 Merge supports: T = Ω ∪ supp(āk−1).

16 Solve a least squares problem: b|T = Θ+
T X̃.

17 Find the first s largest and nonzero elements: āk = bs .

18 Update the samples: v = X̃ −Θāk and check halting criterion.

19 end

20 Compute the approximated solution: h̄ = Φā.

21 for i=1 to N do

22 hli,j = h̄i if mi,j = 0 or hli,j = hl−1
i if mi,j = 1

23 end

24 end

25 end

26 l = 0

27 K = K + 1

28 end
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3.5.4 Statistical Method: Kriging

Statistical estimation such as local kriging can be exploited to interpolate the un-

known values using known data (Gunes et al. 2006). The correlogram version of

kriging from Lophaven et al. (2002) and Gunes et al. (2006) is adopted and presented

as follows. Consider a snapshot of the available data is X̃ = [x̃1, x̃2, ..., x̃N1 ] ∈ RN2×N1

at spatial location Z̃ = [z̃1, z̃2, ..., z̃N1 ] ∈ RS×N1 , where N1 is the number of known

data, and N2 is the number of scalar for the known data. The number of S equals to

the dimensionality of the data, i.e., S = 2 in this case. The desired unknown data is

assumed to be x̄ at a particular spatial location z̄ ∈ RS. The formulation of kriging

method is shown in Equation 3.31.

x̄ = f(z̄)µ+ r(z̄)γ, (3.31)

where f(z̄) and µ are the regression function and parameters, respectively. r(z̄) and

γ are the correlation function and parameters. Equation 3.31 is the general form for

the kriging estimation with correlation model.

For the regression model, function f(z̄) is computed using linear and quadratic

terms of z̄ as:

f1(z̄) = 1, f2(z̄) = z1, ... fS+1(z̄) = zS, (3.32a)

fS+2(z̄) = z2
1 , fS+3(z̄) = z1z2, ... f2S+1(z̄) = z1zS, (3.32b)

f2S+2(z̄) = z2
2 , f2S+3(z̄) = z2z3, ... fL(z̄) = z2

S, (3.32c)

where L = (S + 1)(S + 2)/2. The regression parameter µ can be computed as:

µ = (F TR−1F )−1F TR−1Z̃T , (3.33)

where the interpolation matrix Fi,j = fj(z̃i), and the correlation matrix is:

Ri,j =
S∏
k=1

exp(−θ(Z̃k,i − Z̃k,j)2), (3.34)
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where i = 1, 2, ..., N1 and j = 1, 2, ..., N1. θ is the bandwidth for Gaussian correlation

model. The correlation function r(z̄) is computed as:

r1,i(z̄) =
S∏
k=1

exp(−θ(Z̃k,i − z̄k)2), (3.35)

where i = 1, 2, ..., N1. The correlation parameter γ can be computed as:

γ = R−1(Y T − Fµ). (3.36)

The dimensions for each quantity can be summarized in Table 3.1.

Table 3.1: The Kriging Quantities

Name Symbol Dimension

Known data X̃ N2 ×N1

Spatial points for known data Z̃ S ×N1

Unknown data x̄ N2 × 1

Spatial point for known data z̄ S × 1

Regression function f(z̄) N2 × L

Regression parameter µ L× 1

Correlation matrix R N1 ×N1

Correlation function r(z̄) N2 ×N1

Correlation parameter γ N1 × 1

The above formulation is basically a least-squares fit with Gaussian correlation,

and the detailed discussion of its derivation is referred to Lophaven et al. (2002).In-

spired from Gaussian Processes convolution in section 2.4.3, a regression model that

is based on GP function, which is referred as GP kriging, is also presented. The basic

formulation is similar to Equation 3.31 but without the correlation model:

X̄ = f(Z̃, Z̄)µ(X̃), (3.37)
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where X̄ ∈ RN3×1, F (Z̄) ∈ RN3×N1 , Z̄ ∈ RN3×S, and µ ∈ RN1×1. In this formulation,

our regression model is computed as:

f(Z̃, Z̄) = fi,j = exp
−||z̃i − z̄j||2

2σ2
. (3.38)

The regression parameter is computed as:

µ(X̃) = f̃(Z̃, Z̃))−1X̃. (3.39a)

f̃(Z̃, Z̃) = f̃(i, j) = exp
−||z̃i − z̃j||2

2σ2
. (3.39b)

The hyper-parameter σ is user-specified. The difference between the above for-

mulations and GP-convolution is that the unknown data points are assumed to be

the centers in Equations 3.38, and the centers in Equation 3.39 are assumed to be

the known data measurement points. In comparison to the kriging methods shown

in Lophaven et al. (2002), Gunes et al. (2006), the proposed GP kriging employs a

least-squares fit, but much straightforward to understand. In the following section,

the feasibility of GP kriging as compared to the regular kriging is examined for sparse

interpolation of fluid flow data.

3.6 Results and Discussion

3.6.1 Sparse Reconstruction with Known Basis

Flow past a cylinder at Re = 100

The first analysis is to reconstruct sparse data with known basis functions that are

learned from the full-field data. Note that in most real-world problems, the full field

data is not available and so are the POD bases. However, this analysis is useful to

quantify the performance of the reconstruction techniques with the basis that are

known exactly. In this study, flow past a cylinder at Re = 100, which is a low-

dimensional system, is investigated. The POD basis functions are extracted using
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300 snapshots of data, and the associated energy captured for a different number of

POD modes(rank) is shown in Figure 3.1. The number of modes required to capture

95% of the energy content is 4, i.e., K95% = 4.
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Figure 3.1: Energy captured for cylinder flow at Re = 100.

The sparse data is randomly measured from the velocity field with different gappiness

level, which is denoted as p. For instance, p = 0.01 indicates that 1% of the data is

available. The total number of spatial points for the cylinder flow is about 24,000, and

the gappiness level p and the corresponding number of measurements are summarized

in Table 3.2. The reconstruction is performed by retaining a number of modes ranging

from 2 to 70. For L1 minimization, the sparsity level is chosen as half of the modes

retained.

Table 3.2: The gappiness level p and their corresponding number of measurements

for reconstruction with known basis for cylinder flow at Re = 100.

Gappiness level p 0.00025 0.001 0.002 0.005 0.01 1.0

No. of measurements P 6 24 48 240 480 24000

The 30th snapshot from the data ensemble is arbitrarily selected for evaluating

the performance of reconstruction techniques. The accuracy of the repaired snapshot
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is quantified by defining a mean squared error(MSE) as:

MSE =
1

N

N∑
i=1

(uactual
i − urepair

i )2,

where u is a snapshot vector, in this case, the 30th snapshot from the data ensemble. i

is the index for the spatial points N , and N = 24000. The MSE for the reconstruction

from both L2 and L1-based methods with known basis is shown in Figure 3.2. For

(a) L2 Minimization (b) L1 Minimization

Figure 3.2: The MSE of reconstruction with known basis for cylinder flow atRe = 100.

both L2 and L1-based methods, the number of measurements for reconstruction must

be chosen carefully with respect to the number of modes retained, i.e., the chosen P

should be greater than maximum of K and K95%. For example, the MSE appears to

be high when K = 15 and P = 6, and it is low for K = 15 and P = 24 for L2 method.

On the other hand, the MSE appears to be reasonable when K = 15 and P = 6 for

L1 method. To further support these observations, the repaired solution fields for

K = 15 and P = 6 are shown in Figure 3.3 for both methods. For comparison, the

constructed solutions for K = 15 and P = 24 are shown in Figure 3.4. L2 method

fails to reconstruct the data when K = 15 and P = 6 because P < max(K,K95%)

whereas L1 can outperform L2 method because the number of P is close to the

sparsity level chosen(s = 7). The reconstructed solutions match with the actual

solution perfectly for both cases when K = 15 and P = 24.
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(a) L2 Method (b) L1 Method

Figure 3.3: The repaired solution with known basis for cylinder flow at Re = 100.

K = 15 and P = 6.

(a) L2 Method (b) L1 Method

Figure 3.4: The repaired solution with known basis for cylinder flow at Re = 100.

K = 15 and P = 24.

The approximated coefficients are also presented to further illustrate that they are

accurately captured for the L1-based method in Figure 3.5a. The projected coefficient

can be directly computed from the actual solution and the POD basis. When K = 15

and P = 24, both methods perform reasonably well by capturing all the coefficients.

The corresponding results are shown in Figure 3.5b. This analysis proves that P >=

max(K,K95%) is a sufficient condition to obtain an accurate solution for cylinder flow.

In general, L2-based technique performs better than the L1 case. However, exceptions

can be identified when P < max(K,K95%) but P ∼ s for L1 method.
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(a) K = 15 and P = 6 (b) K = 15 and P = 24

Figure 3.5: The coefficient ā approximated from known basis for cylinder flow at

Re = 100.

Channel Flow

In this study, a high-dimensional system, e.g., the channel flow at Re = 4200 and

Reτ = 180, is investigated using both L2 and L1-based methods for the recon-

struction. The 2-D velocity fields at one of the span-wise plane are chosen. 300

snapshots(651 − 950th) of data are utilized to build the POD basis. Different than

the previous analysis, the reconstruction is performed on the entire data ensemble

with P = 0.005, 0.01, 0.1, 0.25, and 1.0. The corresponding stream-wise velocity for

the 651st snapshot is shown in Figure 3.6. The horizontal direction represents the x-

(a) Colored Contour

(b) Lined Contour

Figure 3.6: The stream-wise velocity for channel flow at 651st snapshot.
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coordinate, whereas the vertical direction is given the y-coordinate. The z-coordinate

is not shown since this is a 2D extraction from the 3-D data. Otherwise, the z-

coordinate should be in/out of the page. The length and height of the channel are

12.6 and 2 unit length, respectively. The total number of spatial points are N = 16512

for the 2D plane and the gappiness p is tabulated with the associated number of mea-

surements in Table 3.3.

Table 3.3: The gappiness level p and their corresponding number of measurements

for reconstrcution with known basis for channel flow.

Gappiness level p 0.005 0.01 0.1 0.25 1.0

No. of measurements P 83 165 1651 4128 16512

The energy captured for different the number of modes is shown in Figure 3.7. In

observation, the higher modes contain a significant amount of energy, and the number

of modes required to capture 95% of the energy content is approximately 200, i.e.,

K95% = 200.
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Figure 3.7: Energy captured for channel flow.

In this analysis, the number of modes retained range from 2 to 100. The corresponding

MSE for both L2 and L1 methods are shown in Figure 3.8. The relation between the

number of measurements P and rank K is straightforward. Both methods tend to
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Figure 3.8: The MSE of reconstruction with known basis for channel flow.

reconstruct better solution as the number of modes increases, and the errors are

saturated when P = 1651. In particular, when P = 165, K = 100, and K95% = 200,

L2-based method performs better than the L1 case. As P increases to 1651, the

accuracy resulting from both approaches are comparable.

The approximated solutions for K = 100 with P = 165 and P = 1651 are shown

in Figure 3.9 and 3.10 and compared to the actual solution. The POD reconstructed

solution and the actual solution are shown in Figure 3.11. Similar to MSE, the

reconstructed solution from L2 method seems to be more accurate as compared to

L1 method for K = 100 and P = 165. When K = 100 with P = 1651, both

resonstructed solutions appear to have similar level of accuracy. This is because the

sparsity level in the L1 method is half of K, i.e. s = 50. Consequently, even if L1

predicts the first 50 coefficients better, the quality of the reconstruction is not good

enough when sufficient amount of energy resides in modes higher than fifty.

Figure 3.11: The POD reconstruction for channel flow. K = 100

Comparing the line contour for one snapshot cannot establish the accuracy trends.
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(a) L2 Method

(b) L1 Method

Figure 3.9: The approximated solution with known basis for channel flow. K = 100

and P = 165.

(a) L2 Method

(b) L1 Method

Figure 3.10: The approximated solution with known basis for channel flow. K = 100

and P = 1651.

Hence, the turbulent statistics such as ensemble mean, variance, and co-variance

are computed. The ensemble mean of the stream-wise and wall-normal velocity are

computed as:

ū(y) =
1

M

1

N

M∑
t=1

N∑
x=1

u(x, y, t), (3.40a)

v̄(y) =
1

M

1

N

M∑
t=1

N∑
x=1

v(x, y, t). (3.40b)
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and the associated variances are computed as:

σ2
uu(y) =

1

M

1

N

M∑
t=1

N∑
x=1

{
u(x, y, t)− ū(y, t)

}2
, (3.41a)

σ2
vv(y) =

1

M

1

N

M∑
t=1

N∑
x=1

{
v(x, y, t)− v̄(y, t)

}2
. (3.41b)

The covariance is computed as:

σ2
uv(y) =

1

M

1

N

M∑
t=1

N∑
x=1

{
u(x, y, t)− ū(y, t)

}{
v(x, y, t)− v̄(y, t)

}
. (3.42)

The ensemble mean is normalized as ū+ = y/τu. The ensemble variance is normalized

as σ2
uu

+
= σ2

uu/τ
2
u , and the ensemble co-variance is normalized as σ2

uv
+

= σ2
uv/τ

2
u . The

spatial variable y is normalized as y+ = yτu/ν, where τu = 0.0425 is the wall shear

stress and ν = 1/4200 is the viscosity. The normalized mean, variance, and co-

variance computed from the actual solution(DNS), L2 and L1 approximation, and

POD reconstruction are shown in Figure 3.12 and Figure 3.13 for K = 100 with P =

165 and K = 100 with P = 1651, respectively. From Figure 3.12 and Figure 3.13,

(a) Mean (b) Variance (c) Co-variance

Figure 3.12: The turbulent statistics of reconstruction with known basis for channel

flow. K = 100 and P = 165.

using 165 measurements results in reasonably good predictions of the variance and

co-variance for the L2-based method. This implies that P is not required to be

greater than K95%, but P needs to be greater than K for obtaining a reasonably good
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(a) Mean (b) Variance (c) Co-variance

Figure 3.13: The turbulent statistics of reconstruction with known basis for channel

flow. K = 100 and P = 1651.

reconstruction of the statistics. On the other hand, the turbulent statistics of the

solution approximated from L1 method are not as good as the L2 case as the flow

does not lend itself into a sparse solution. All the modes are essentially important

for reconstructing the flow field, and L1 method only identify s sparse coefficients.

The statistics from both methods have improved when P = 1651. For channel flow,

satisfying condition of P > max(K,K95%) produces accurate reconstruction.

Reduced Channel Flow

The previous case was challenging for sparse reconstruction methods due to the high

dimensionality of the system. In this study, a small localized region from the channel

flow or the reduced channel(0 < y < 0.1), is analyzed using L2 and L1 reconstruction.

This system is considered to be a moderate-dimensional system. The energy capture

with a different number of modes retained is shown in Figure 3.14. From observation,

the number of modes required to capture 95% of the energy content is approximately

48, i.e., K95% = 48. Hence, this system can be characterized as moderate dimensional.
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Figure 3.14: Energy captured for reduced channel flow.

The length and the heights are chosen to be 12.6 unit length and 0.1 unit length,

respectively. Because the domain of interest is reduced, highly refined resolution

data is used for this analysis. The total number of spatial points is 9218, and 300

snapshots (801− 1100th) of data are used to generate the POD basis and reconstruct

the sparse data. The corresponding stream-wise velocity for the 801st snapshot is

shown in Figure 3.15. In this study, reconstructing sparse data with gappiness levels

(a) Colored Contour

(b) Lined Contour

Figure 3.15: The stream-wise velocity for reduced channel flow at 801st snapshot.

of p = 0.005, 0.01, 0.1, 0.25, and 1.0 are investigated. The number of p and the

associated number of measurements are summarized in Table 3.4. The number of

modes retained is ranging from 2 to 70 for recovering the sparse data. The MSE
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Table 3.4: The gappiness level p and their corresponding number of measurements

for the reconstruction with known basis for reduced channel flow.

Gappiness level p 0.005 0.01 0.1 0.25 1.0

No. of measurements P 46 92 922 2305 9218

for both L2 and L1 methods are shown in Figure 3.16. L2-based technique tends
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(b) L1 Minimization

Figure 3.16: The MSE of reconstruction with known basis for reduced channel flow.

to reconstruct accurate and stable solutions when P = 92. On the other hand, L1-

based techniques require more measurements to obtain stable solutions, e.g., when

P = 922. In comparison to the results from channel flow, the order magnitude for

MSE has reduced exceptionally from 10−3 to 10−4. This improvement is expected

since the reduced channel system is lower-dimensional system as compared to the full

channel flow. The error become saturated when P > 922 for both methods. The

comparison between the reconstructed and actual solutions for K = 50 with P = 46

and K = 50 with P = 92 are shown in Figure 3.17 and 3.18. The reconstructed

solutions from both L2 and L1 method are not matching correctly with the actual

solution for K = 50 and P = 46 (i.e. P is less than both K and K95%). From

the analysis for both cylinder and channel flow, reconstructing good solution requires

P > max(K,K95%). When K = 50 with P = 92, both resonstructed solutions have
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improved siginificantly and match qualitatively with the acutal solution.

(a) L2 Method

(b) L1 Method

Figure 3.17: The approximated solution with known basis for reduced channel flow.

K = 50 and P = 46.

(a) L2 Method

(b) L1 Method

Figure 3.18: The approximated solution with known basis for reduced channel flow.

K = 50 and P = 92.

The normalized mean, variance, and co-variance computed from the actual solu-

tion(DNS), L2 and L1-based methods, and direct POD reconstruction are shown in

Figure 3.20 and Figure 3.21 for K = 50 with P = 46and K = 50 with P = 92, respec-

tively. From the statistics, both methods have improved significantly for capturing

variance and co-variance when P = 92 instead of P = 46. Based on the reconstructed

solution fields and statistical results, P > max(K,K95%) is also a required condition
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for reconstructing accurate solutions for reduced channel flow.

Figure 3.19: The POD reconstruction for reduced channel flow. K = 50

(a) Mean (b) Variance (c) Co-variance

Figure 3.20: The turbulent statistics of reconstruction with known basis for reduced

channel flow. K = 50 and P = 46.

(a) Mean (b) Variance (c) Co-variance

Figure 3.21: The turbulent statistics of reconstruction with known basis for reduced

channel flow. K = 50 and P = 92.

In summary, the number measurements P should be chosen wisely for obtaining

accurate reconstruction, i.e., P > max(K,K95%), and K95% is the number of modes

retained so that a sufficient amount of energy content is captured. In general, L2
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method performs better than L1 when P is chosen sufficiently large as compared

to K and K95%. However, L1-based method can be effective than L2-based. For

instance, when P < K but P ∼ s, L1 can identify s sparse coefficients and reconstruct

qualitative good solution whereas L2 cannot. In case of the high-dimensional and

moderate-dimensional system, L2 method is inherently better than L1 because the

low-energy modes are important for reconstructing the physics. L1 reconstruction

loses a significant amount of energy while capturing only s sparse coefficients for the

system.

3.6.2 Sparse Reconstruction with Inexact Basis

Flow past a cylinder at Re = 100

As discussed earlier, the knowledge of the exact POD basis will not be available

in most practical situations and alternate approaches need to be identified. In this

study, the prospects of using known, but ’inexact’ basis that are extracted from the

related flow data at different temporal regime or the low-resolution data. In this

analysis, the performance of L2 and L1 is examined with basis that are learned at

different temporal regimes for cylinder flow. 300 snapshots(1 − 300th) of complete

data are used to extract the POD basis. From the analysis with known basis, K95% is

approximately 4. The sparse data vector is selected to be the 340th snapshot, which is

outside the training data. The location of the measuring points are randomly chosen

with a number of gappiness level p. The corresponding number of measurements P

are tabulated in Table 3.5. The sparse reconstruction is performed by retaining a

Table 3.5: The gappiness level p and their corresponding number of measurements

for reconstruction with inexact basis for cylinder flow at Re = 100.

Gappiness level p 0.00025 0.001 0.002 0.005 0.01 1.0

No. of measurements P 6 24 48 240 480 24000
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number of modes ranging from 2 to 70. For L1 minimization, the sparsity level is

chosen as half of the modes retained. The MSE for the reconstruction from both

L2 and L1-based methods with inexact basis is shown in Figure 3.22. By comparing

(a) L2 Minimization (b) L1 Minimization

Figure 3.22: The MSE of reconstruction with inexact basis for cylinder flow at Re =

100.

Figure 3.2 and 3.22, the MSE are almost identical whether the known basis or inexact

basis are used. The number of P should be chosen greater than maximum of K and

K95% to ensure a good reconstruction. The reconstructed solution fields for K = 15

and P = 6 are shown in Figure 3.23 for both L2 and L1 cases. Similar to the case

with known basis, L2-based method does not perform well when P is is less than K.

For L1 method, the reconstructed solution is qualitatively matching with the actual

solution because of P ∼ s. The reconstructed solution fields for K = 15 and P = 24

are shown in Figure 3.24. Both methods perform reasonably well in recovering the

flow fields which is also observed in case of known basis. In conclusion, the choice of

temporal regime does not necessarily impact the performance of sparse reconstruction

for cylinder flow, which is a low-dimensional and limit-cycle system. Satisfying the

condition P > max(K,K95%) is still required for obtaining accurate reconstruction.
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(a) L2 Method (b) L1 Method

Figure 3.23: The repaired solution with inexact basis for cylinder flow at Re = 100.

K = 15 and P = 6.

(a) L2 Method (b) L1 Method

Figure 3.24: The repaired solution with inexact basis for cylinder flow at Re = 100.

K = 15 and P = 24.

Channel Flow

In this analysis, the performance of L2 and L1 is examined with basis that are learned

at different temporal regime for channel flow, and 300(651− 950th) snapshots of data

are utilized to build POD basis. The incomplete data is chosen as the 990th snapshot,

which is outside the training data. The location of the measuring points are randomly

chosen with a number of gappiness level p. From the study with known basis, K95% =

200. The corresponding number of measurements P are tabulated in Table 3.6. In

this analysis, the sparse reconstruction is performed by retaining a number of modes

ranging from 2 to 100. The MSE for both L2 and L1 methods are shown in Figure 3.25.

The level of accuracy has decreased as compared to the analysis with known basis, i.e.,

from O(10−3) to O(5−2). Similar to the results with known basis, both methods seem
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Table 3.6: The gappiness level p and their corresponding number of measurements

for reconstrcution with inexact basis for channel flow.

Gappiness level p 0.005 0.01 0.1 0.25 1.0

No. of measurements P 83 165 1651 4128 16512

to reconstruct better solution as the number of modes increases, and the errors tend to

be sataurated when P = 1651. Because the reconstructed solution fields do not give
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Figure 3.25: The MSE of reconstruction with inexact basis for channel flow.

meaningful interpretation for the channel flow, the normalized mean, variance, and

co-variance are shown in Figure 3.26 and 3.27 for K = 100 with P = 165 and K = 100

with P = 1651, respectively. Since this analysis recovers only a single snapshot, the

statisics shown in both Figure 3.26 and 3.27 are not smooth. For P = 100 and P =

165, both the variance and co-variance are poorly reconstructed as compared to the

results from known basis. As the number of measurements increase to P = 1651, both

statistical values have improved significantly. Satifying P > max(K,K95%) becomes

important when using the inexact basis that are learned from different temporal region

for channel flow. Both L2 and L1 methods fail to reconstruct accurate solutions if P

is not chosen correctly.
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(a) Mean (b) Variance (c) Co-variance

Figure 3.26: The turbulent statistics of reconstruction with inexact basis for channel

flow. K = 100 and P = 165.

(a) Mean (b) Variance (c) Co-variance

Figure 3.27: The turbulent statistics of reconstruction with inexact basis for channel

flow. K = 100 and P = 1651.
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Reduced Channel Flow

For the reduced channel flow, the low-resolution data is utilized to recover sparse

measurements that are collected from fine-resolution data. The goal of this study is

to explore how the accuracy of the solution can impact the reconstruction. GP kriging

is exploited to map the low-resolution data into fine grid solution, and 300 snapshots

of the low-resolution data are used to build POD basis. The number of modes required

to capture 95% of the energy content is approximately 48, i.e., K95% = 48. The total

number of spatial points for the low and high-resolution data are 2304 and 9218,

respectively.

The number of gappiness p and measurements P are summarized in Table 3.7.

The number of modes retained is ranging from 2 to 70 for data recovery, and the

Table 3.7: The gappiness level p and their corresponding number of measurements

for the reconstruction with known basis for reduced channel flow.

Gappiness level p 0.005 0.01 0.1 0.25 1.0

No. of measurements P 46 92 922 2305 9218

MSE for both L2 and L1 methods are shown in Figure 3.28. The results show that L2

performs better than L1 when P > 92. As P increases to 922, the errors appear to be

saturated for both methods. The comparison between the reconstructed and actual

solutions for K = 50 with P = 46 and K = 50 with P = 92 are shown in Figure 3.29

and 3.30, respectively. When P < K, the reconstructed solutions from both L2 and

L1 methods do not match the actual solution. When P = 92, the reconstructed

solution from L2 method has improved siginificantly. Although L1 method seems to

improve the reconstruction, the line contour shown in Figure 3.30 does not match very

well with the actual solution. Furthermore, the reconstructed solutions for K = 50

105



10 20 30 40 50 60 70

Number of mode retained

10-4

10-3

10-2

10-1

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

P=46

P=92

P=922

P=2305

P=9218

(a) L2 Minimization

10 20 30 40 50 60 70

Number of mode retained

10-4

10-3

10-2

10-1

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

P=46

P=92

P=922 P=2305

(b) L1 Minimization

Figure 3.28: The MSE of reconstruction with inexact basis for reduced channel flow.

with P = 922 are also shown in Figure 3.31. Both L2 and L1 methods does not

show percetible improvements. The normalized mean, variance, and co-variance are

(a) L2 Method

(b) L1 Method

Figure 3.29: The approximated solution with inexact basis for reduced channel flow.

K = 50 and P = 46.

also computed from the actual solution(DNS), L2 and L1 approximation, and POD

reconstruction in Figure 3.26, 3.27, and 3.27 for K = 50 with P = 46, K = 50 with

P = 92, and K = 50 with P = 822, respectively.

It is observed that for all three cases, the reconstructed statistics are not as good

as the results using the known basis, and the MSE also increased drastically with the

inexact basis. For this last study that employs low-resolution data, the reconstruction

from L2 method for P = 92 improves the variance and co-variance as compared to the
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(a) L2 Method

(b) L1 Method

Figure 3.30: The approximated solution with inexact basis for reduced channel flow.

K = 50 and P = 92.

(a) L2 Method

(b) L1 Method

Figure 3.31: The approximated solution with inexact basis for reduced channel flow.

K = 50 and P = 922.

statistics from low-resolution data. When P = 922, both variance and co-variance

are reconstructed reasonably accurately as compared to the DNS data. For the L1

method, the variance and co-variance are improved when the number of measurements

has been increased to 922, but they are not as accurate as the statistics from L2

method. This analysis has shown that L2 method is advantageous than L1 in case of

inexact basis for systems that are not truly sparse. The reason is that L1 identifies

only sparse coefficients which the important modes cannot be captured. Another
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(a) Mean (b) Variance (c) Co-variance

Figure 3.32: The turbulent statistics of reconstruction with inexact basis for reduced

channel flow. K = 50 and P = 46.

(a) Mean (b) Variance (c) Co-variance

Figure 3.33: The turbulent statistics of reconstruction with inexact basis for reduced

channel flow. K = 50 and P = 92.

significant remark is that L2 method can improve the solution even with the inexact

basis functions that are learned from low-resolution data. The required condition is

that P > max(K,K95%).

3.6.3 Sparse Reconstruction with Unknown Basis

Flow past a cylinder at Re = 100

Sparse reconstruction with the unknown basis is explored in this section. Different

from the earlier analysis in section 3.6.1 and 3.6.2, the basis functions are treated

as completely unknown. Such a system is harder to reconstruct. In this analysis,
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(a) Mean (b) Variance (c) Co-variance

Figure 3.34: The turbulent statistics of reconstruction with inexact basis for reduced

channel flow. K = 50 and P = 922.

the sparse reconstruction is performed with given number of measurements, and the

effectiveness of iterative methods and kriging is investigated. For cylinder flow, a gap-

piness level p = 0.25 has been previously reported in Gunes et al. (2006) for obtaining

accurate reconstruction with unknown basis. Therefore, 6000 measurements are ran-

domly collected from DNS data for sparse reconstruction, and the measured points

for one such snapshot in Figure 3.37a. Since the cylinder flow is a low-dimensional

system, 100 snapshots of data are sufficient for this study. The number of modes

retained is 15, which captures 99.999% of the energy content.

In the absence of prior knowledge of the basis functions, both POD basis and coef-

ficients are solved iteratively. The detailed procedures can be referred to section 3.5.

In this analysis, the iterative methods such as L2, L1, progressive L2, progressive L1,

kriging with L2, kriging with L1, GP kriging with L2, and GP kriging with L1 are

employed for sparse reconstruction. The iterative processes for all the cases stop at

100 which represents convergence for almost all methods. For the progressive method,

the procedure starts from mode 2 to mode 15 with an increment of 1. Each mode

proceeds 100 iterations. The kriging methods are used to generate the initial condi-

tion for starting the iterative procedure. Alternatively, regular ensemble average is

exploited to fill the missing elements for the sparse data.
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Firstly, the performance and convergence of each iterative solution is evaluated

by computing the eigenvalues and eigenvectors from the co-variance matrix of the

solution (Everson & Sirovich 1995). The solution is denoted as X ∈ RN×M which

can be the true solution, reconstructed solution from the POD procedure, or the

reconstructed solution from iterative procedures. The co-variance matrix Z ∈ RM×M

is computed as:

Z = XTX. (3.43)

The eigenvalus and the corresponding eigenvectors of the covariant matrix Z satisfy:

ZψK = λKψK . (3.44)

The inner product between the true eigenvectors should be either 1 or 0 if they are

orthogonal. Hence, the summation of the inner product ΨK for the exact eigenvec-

tors and reconstructed eigenvectors is computed in Equation 3.45. ΨK allows to see

whether the repaired eigenvectors are close to the exact eigenvectors. In the event of

perfect recovery, ΨK should equals to number of modes retained, i.e., ΨK = K.

ΨK =
K∑
i=1

∣∣∣ψrepair
i · ψexact

i

∣∣∣ (3.45)

The eigenvalues for all the cases with unknown basis for cylinder flow are shown in

Figure 3.35, and the corresponding ΨK are shown in Figure 3.36.

From both Figure 3.35 and 3.36, the L1 method captures about 9 modes correctly

whereas the L2 method captures only about 6 modes. The progressive method has sig-

nificantly improved the performance of the L2 method, i.e., all 15 modes are perfectly

captured. When kriging methods are used to obtain initial condition, the number

of eigenvalues and eigenmodes is increased for L2 method. For the L1 method, both

kriging methods do not impact the reconstruction performance. The number of eigen-

values and eigenvectors captured is summarized in Table 3.8 for all the cases. The

reconstructed stream-wise velocity field at iteration 100 are shown in Figure 3.37, and

110



Table 3.8: The number of eigenvalues and eigenvectors captured with unknown basis

for cylinder flow.

Method Eigenvector Eigenvalue

L2 6 6

L1 8 8

Progressive L2 15 15

Progressive L1 9 9

Kriging + L2 10 10

Kriging + L2 10 10

GP kriging + L2 8 8

GP kriging + L1 8 8

all the methods perform well for repairing the cylinder flow except for small discrep-

ancies between L2 and L1 methods. For unknown basis, the pure L2 and L1 methods

can only capture about half of the modes correctly even though a large number of

measurements are obtained. However, capturing six modes results in fairly accurate

solutions because it contains more than 99% of the energy content. The progressive

L2 method works the best, i.e., it almost captures fifteen modes exactly, but the com-

putational effort becomes expensive since each mode requires nearly 100 iterations.
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(a) L2 method (b) L1 method

(c) Progressive L2 method (d) Progressive L1 method

(e) Kriging L2 method (f) Kriging L1 method

(g) GP Kriging L2 method (h) GP Kriging L1 method

Figure 3.35: The eigenvalues the eigenfunction of the reconstructed solution for all

the cases with unknown basis for cylinder flow at Re = 100.
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(a) L2 method (b) L1 method

(c) Progressive L2 method (d) Progressive L1 method

(e) Kriging L2 method (f) Kriging L1 method

(g) GP Kriging L2 method (h) GP Kriging L1 method

Figure 3.36: The computed ΦK of the reconstructions for all the cases with unknown

basis for cylinder flow at Re = 100.
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(a) Measured Field (b) Actual Solution

(c) L2 method (d) L1 method

(e) Progressive L2 method (f) Progressive L1 method

(g) Kriging + L2 method (h) Kriging + L1 method

(i) GP Kriging + L2 method (j) GP Kriging + L1 method

Figure 3.37: The reconstructed stream-wise velocity field for all the cases with un-

known basis for cylinder flow at Re = 100.
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Channel Flow

For the channel flow, the appropriate choice of gappiness level p is not known, so

p = 0.25 is chosen based on observing the cylinder flow. The sparse measurements

are collected from the low-resolution channel flow data. Similar to the reconstruction

with known basis, 300 snapshots of data are utilized to obtain sparse measurements,

and 100 modes are retained. Because a large number of modes are retained, the

progressive method is not computationally feasible as a serial process. Efforts are

being made to address this situation. From prior reconstruction efforts for channel

flow, the L2 method was observed to be advantageous than L1 for a high-dimensional

system. Therefore, L2, statistical kriging with L2, and GP kriging with L2 are used

for the sparse reconstruction. Kriging is employed to generate the initial solution field

that initializes the iterative procedure.

The computed eigenvalues and ΦK from the co-variance matrix of the solution are

shown in Figure 3.38 and 3.39, respectively. The pure L2 method performs poorly

because only about 10 eigenvectors and 5 eigenvalues are captured correctly. In com-

parison, the kriging with L2 method captures about 25 eigenvectors and 10 eigenval-

ues whereas GP kriging with L2 is reconstructing 20 eigenvectors and 10 eigenvalues

correctly. The number of eigenvalues and eigenvectors captured is summarized in

Table 3.9 for all three cases. This analysis emphasizes that retaining 100 modes can

only reconstruct up to 25 modes correctly for a high-dimensional system. In this case,

100 modes represent 86% of the energy for the system, and only 50% of the energy

content are captured. Naturally, this will lead to poor quality of solution reconstruc-

tion. Further, the choice of the initial guess from Kriging plays a critical role in the

quality of the reconstruction.

Even though the initial condition from kriging methods have improved the results
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Table 3.9: The number of eigenvalues and eigenvectors captured with unknown basis

for channel flow.

Method Eigenvector Eigenvalue

L2 10 5

Kriging + L2 25 10

GP kriging + L2 20 10

as compared to the pure L2 method, both eigenvalues and ΦK from iteration 100

are less accurate than iteration 1. The initial solutions from the kriging methods

are shown in Figure 3.40. This indicates that the iterative method does not always

converge into the correct solution and can degrade the reconstruction. Particularly,

the reconstructed solutions appear to introduce noises for all the cases. This is because

the low energy modes that carry significant energy are not accurately captured. The

stability characteristics of this iterative procedure need to be further investigated.

The corresponding turbulent statistics are shown in Figure 3.41, 3.42, and 3.43. On

comparison, the mean, variance, and covariance from all three cases are comparable

with the statistical analysis with the case with known basis. Because the solutions

are very noisy, the statistics from the reconstruction are not as accurate as the DNS

data.
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(a) L2 method (b) Kriging + L2 method

(c) GP Kriging + L2 method

Figure 3.38: The eigenvalues of the reconstructions for all the cases with unknown

basis for Channel flow.
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(a) L2 method (b) Kriging L2 method

(c) GP Kriging L2 method

Figure 3.39: The computed ΦK of the reconstructions for all the cases with unknown

basis for Channel flow.
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(a) Measured Field (b) Actual Solution

(c) L2 method(colored) (d) L2 method(lined)

(e) Kriging L2 method(colored) (f) Kriging L2 method(lined)

(g) GP Kriging L2 method(colored) (h) GP Kriging L2 method(lined)

(i) Initial guess from kriging(colored) (j) Initial guess from kriging(lined)

(k) Initial guess from GP kriging(colored) (l) Initial guess from GP kriging(lined)

Figure 3.40: The reconstructed field for all the cases with unknown basis for channel

flow.
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Figure 3.41: The turbulent statistics of reconstruction using L2 method with unknown

basis for channel flow. (Left to right: mean, variance, co-variance)

Figure 3.42: The turbulent statistics of reconstruction using Kriging + L2 method

with unknown basis for channel flow. (Left to right: mean, variance, co-variance)

Figure 3.43: The turbulent statistics of reconstruction using GP Kriging + L2 method

with unknown basis for channel flow. (Left to right: mean, variance, co-variance)
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Reduced Channel Flow

For the reduced channel flow, a gappiness level is once again chosen to be p = 0.25 to

obtain sparse measurements from the high-resolution channel flow data. Similar to the

analysis with known basis, 300 snapshots of data are used, and 50 modes are retained

which should correspond to 95 percent energy capture. The progressive method is also

too expensive to perform for this case. Therefore, the L2 and L1, kriging with L2 and

L1, and GP kriging with L2 and L1 methods are explored for sparse reconstruction

of this data. Kriging is utilized to obtain the initial reconstruction to initialize the

iterative procedure.

The eigenvalues and ΦK from the covariance matrix are summarized in Table 3.10.

The pure L2 method captures about 20 eigenvectors and eigenvalues correctly. In com-

Table 3.10: The number of eigenvalues and eigenvectors captured with unknown basis

for reduced channel flow.

Method Eigenvector Eigenvalue

L2 20 20

Kriging + L2 25 25

GP kriging + L2 25 25

parison, both kriging and GP kriging with L2 method reconstruct about 25 eigenvec-

tors and eigenvalues. For a moderate-dimensional system such as this, retaining 50

modes(96%) can capture up to 25 modes(96%) with unknown basis. Fifty modes rep-

resent 96% and twenty five modes represent nearly 90% of the energy content for this

system. In comparison to the full channel flow, the sparse construction performs bet-

ter for the reduced channel flow because 90% of the energy content is captured. The

corresponding eigenvalues and ΦK are shown in Figure 3.44 and 3.45, respectively.
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Similar to the channel flow, the iterative procedure does not converge and results in

less accurate solution at later iterations as compared with iteration 1 for all the cases

with kriging. This indicates that the initial condition outperforms both the L2 and L1

methods. For further demonstration, the initial solutions from the kriging methods

are shown in Figure 3.47. All the reconstructed solutions capture the shape of large-

scale structure correctly while containing some noise. In comparison to the channel

flow, the reconstructions are less noisy. Kriging, even in its simpler forms, provide

reasonably accurate reconstruction as compared to the actual solution. However, be-

cause the low-energy modes cannot be accurately captured, the reconstructions from

the iterative procedure introduces noise for all the cases as shown in 3.46. The corre-

sponding turbulent statistics are shown in Figure 3.48, 3.49, 3.50, 3.51, 3.52, and 3.53.

In summary, the L2 and L1 methods are capable of reconstructing sparse data

accurately with known basis. From this analysis, an optimal rank should be chosen

to capture at least 95% of the energy content to ensure accurate reconstructions.

Obviously, the 95% is an ad hoc choice for the flow systems considered and could

depend on the system dynamics. The number of modes retained should be chosen

as large as possible to capture the majority of the energy content for the system.

However, retaining a higher number of modes does not allow constructing an efficient

model. The number of measurements P should be chosen such that it is higher than

the maximum of K and K95%. This tends to make such reconstruction methods

successful for low-dimensional systems. In most situations, the L2 method performs

better than the L1. However, L1 can reconstruct sparse data with fewer measurements

for a system that is highly compressible in the basis space, i.e., p ∼ s. In case

of channel flow turbulence where the low energy modes cannot be neglected, L2

minimization results in better reconstruction for both solution fields and turbulent

statistics than the L1 minimization.
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(a) L2 method (b) L2 method

(c) Kriging + L2 method (d) Kriging + L1 method

(e) GP Kriging + L2 method (f) GP Kriging + L1 method

Figure 3.44: The eigenvalues of the reconstructions for all the cases with unknown

basis for reduced channel flow.

For sparse reconstruction with known but inexact basis, the results for cylinder

flow does not depend on whether the basis functions are learned from the different

temporal region. Both MSE and reconstruction quality are consistent with the results

from the cases with known basis. However, the reconstruction of the channel flow do

not perform as well, and the number of measurements should be chosen such that

123



(a) L2 method (b) L1 method

(c) Kriging + L2 method (d) Kriging + L1 method

(e) GP Kriging + L2 method (f) GP Kriging + L1 method

Figure 3.45: The computed ΦK of the reconstructions of the reconstructions for all

the cases with unknown basis for reduced channel flow.

P > (K,K95%). In particular, the errors have increased as compared to the known

basis, but the turbulent statistics are reconstructed within a reasonably accurate

range. For reduced channel flow, L2 performs reasonably well, but the L1 method

struggles to repair the solution and capture the turbulent statistics accurately.
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(a) Measured Field (b) Actual Solution

(c) L2 method(colored) (d) L2 method(lined)

(e) L1 method(colored) (f) L1 method(lined)

(g) Kriging L2 method(colored) (h) Kriging L2 method(lined)

(i) Kriging L1 method(colored) (j) Kriging L1 method(lined)

(k) GP Kriging L2 method(colored) (l) GP Kriging L2 method(lined)

(m) GP Kriging L1 method(colored) (n) GP Kriging L1 method(lined)

Figure 3.46: The reconstructed field for all the cases with unknown basis for reduced

channel flow.

When the basis functions are unknown, repairing from sparse data shows promise

in obtaining accurate solutions for the low-dimensional system. For example, all the

methods perform reasonably well in reconstructing the cylinder flow. However, for

a high-dimensional system such as the channel flow, the low-energy modes are diffi-
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(a) Kriging(colored) (b) Kriging(lined)

(c) GP kriging(colored) (d) GP kriging(lined)

Figure 3.47: The initial guess from both kriging and GP kriging for reduced channel

flow.

Figure 3.48: The turbulent statistics of reconstruction using L2 method with unknown

basis for reduced channel flow. (Left to right: mean, variance, co-variance)

Figure 3.49: The turbulent statistics of reconstruction using L1 method with unknown

basis for reduced channel flow. (Left to right: mean, variance, co-variance)

cult to capture, e.g., only 50% can be captured while potentially retaining sufficient

modes to capture 86% of the energy content. Also, noises are introduced during the
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Figure 3.50: The turbulent statistics of reconstruction using Kriging + L2 method

with unknown basis for reduced channel flow. (Left to right: mean, variance, co-

variance)

Figure 3.51: The turbulent statistics of reconstruction using Kriging + L1 method

with unknown basis for reduced channel flow. (Left to right: mean, variance, co-

variance)

iteration procedure. The ability to identify correct eigenvalues and eigenvectors have

improved enormously for the moderate-dimensional reduced channel flow, i.e., 90%

of the energy can be captured while retaining sufficient modes to capture 95% of the

energy content. As before, noisy solutions still tend to appear during the iterative

procedure. This indicates that the low-energy modes carry significant energy, which

when predicted erroneously can corrupt the reconstruction. A valid hypothesis is

that the measurement locations can be optimally chosen to excite low-energy modes.

In the real experiment, it could be beneficial for experimentalist if one knows the

minimum number of sensors and where to place them. However, the information of
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Figure 3.52: The turbulent statistics of reconstruction using GP Kriging + L2 method

with unknown basis for reduced channel flow. (Left to right: mean, variance, co-

variance)

Figure 3.53: The turbulent statistics of reconstruction using GP Kriging + L1 method

with unknown basis for reduced channel flow. (Left to right: mean, variance, co-

variance)

sensor placement is not always available and requires further investigation.
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CHAPTER 4

ONLINE UPDATES FOR DYNAMICALLY EVOLVING

CONVOLUTION OPERATORS

4.1 Motivation and Review

In many data-driven problems, the training data is extremely huge or not all available

at any given time. The former typically generates a computational limitation while

the latter is typical of phenomena that are dynamic with data acquired in real-time.

In such cases, building a model in one go is not possible and requires continuous

updates as data streams in. For instance, the data-driven models developed in chap-

ter 2 require continuous evolution to incorporate information from the most recent

data. In this chapter, methods for dynamically updating the singular value decom-

position of the data is explored with the ultimate aim of building dynamic models

that incorporate newer data for faster decision making in real-time simulations.

Rebuilding predictive model from scratch can be computationally prohibitive (Pe-

herstorfer & Willcox 2015, 2016), and it is particularly true for higher dimensional

fluid flow systems. As an example, the Boussinesq problem presented in chapter 2

requires more than 100,000 degrees of freedom for direct numerical simulation. To

analyze three scalar components, i.e., with three times as many grid points (300,000),

the required memory for storing all the data snapshots can quickly overload a regular

desktop computer. Online modeling with dynamic updates allows for resources with

low computational power, memory and storage capacity to be leveraged for build-

ing dynamic models as is often the case in onboard flight systems. In Hemati et al.

(2014), they utilized the idea of online updates to overcome the memory problem
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for large data-set. Practical usage of incremental updates for reducing memory con-

sumption has also been shown in Oxberry et al. (2017), Matsumoto & Indinger (2017).

Additionally, online updates methods are advantageous when computing the eigen-

decomposition of a system with a large number of snapshots, i.e., > 10, 000, because

the computational effort required for solving such problem is very high. These algo-

rithms, consequently, are critical towards developing effective and efficient predictive

models from large data-set.

A second motivation is related to the issue of needing to improve predictive mod-

els of dynamically evolving flows. For example, the Boussinesq flow modeled using

the sparse convolution method proved to be inaccurate as the convolution operator

based on POD modes became outdated as the prediction evolves beyond the training

region. In other words, the POD modes used to build the convolution operator is not

completely relevant to the dynamical system that it is helping to predict over time.

This is consistent with the observations by Peherstorfer & Willcox (2015, 2016) that

offline dynamical models may fail to predict the behavior of the system that changes

online unless they settle into repeatable limit-cycle behavior. To obtain accurate

models, one requires online updates that adapt the model to the evolving system.

Specifically, for the Boussinesq flow, it is expected that dynamically updating the

convolution operator based on the most recent data can capture the evolving physics

better.

4.2 Objective and Contribution

The ultimate objective of this research study is to integrate online update method-

ology with the sparse convolution framework for developing dynamic data-driven

models that can handle sparse data streaming in over time. Dynamic updates en-

able both model adaption and improved prediction for real-time decision making in

a rapidly changing environment. The contribution from this dissertation work is to
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develop an online singular value decomposition(SVD) implementation that allows one

to update the POD basis incrementally when new data snapshot(s) or prediction(s)

are available.

Updating the SVD can be traced back to 1970, Businger (1970) proposed a method

that was adapted from QR-decomposition as mentioned by Brand (2006). Bunch &

Nielsen (1978) also developed SVD updates when appending a row or a column or

deleting a row or a column to the initial matrix through rank-one modification of

the symmetric eigenvalue problem. Later, Brand (2006) identified a general iden-

tity for additive modification of an SVD and summarized special cases for rank-1

updates, downdates, and revision. Furthermore, Brand (2006) also developed an ex-

tended decomposition method that aims to reduce the computational effort. This

allows for straightforward procedures for implementing online SVD algorithm as evi-

denced in Peherstorfer & Willcox (2015), Matsumoto & Indinger (2017), and Oxberry

et al. (2017). In this study, the general identity developed from Brand (2006) and a

modified rank-1 update algorithm proposed from Oxberry et al. (2017) are adopted

and combined to implement a modified rank-K updates procedure, which relaxes the

restriction of performing rank-1 updates.

In the next section, the mathematical theory and detailed derivation for a general

online SVD identity will be discussed. In section 4.4, the algorithm for online rank-K

update is shown. The last section of this chapter will present validation results and

assess the computational efficiency.

4.3 Mathematical Theory and Derivation

From Brand (2006), the problem of interest is to compute the updated SVD for a

matrix X ∈ RN×M and new information ABT . The general identity can be expressed

as follows.

X + ABT , (4.1)
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where matrix A ∈ RN×C and matrix B ∈ RM×C . Matrix X and ABT have rank R

and C, respectively. If the SVD of X is USV T , Equation 4.1 can be rearranged:

X + ABT = USV T + ABT , (4.2a)

X + ABT =

[
U A

]S 0

0 I

[V B

]T
, (4.2b)

where U ∈ RN×R, S ∈ RR×R, and V ∈ RM×R. The right hand side of Equation

4.2b has similar identity from SVD results, but matrices

[
U A

]
and

[
V B

]
are

not orthogonal. To obtain an updated SVD, two orthogonal basis P and Q and two

matrices GA and GB are defined such that:

PGA = (I − UUT )A, (4.3a)

QGB = (I − V V T )B. (4.3b)

As mentioned in Brand (2006), Equation 4.3 is similar to QR-decomposition, but GA

and GB need not be upper-triangular or square. By pre-multiplying the transpose of

P and Q on Equation 4.3, GA and GB can be expressed as:

GA = P T (I − UUT )A, (4.4a)

GB = QT (I − V V T )B. (4.4b)

Then the left bracket from the right side of Equation 4.2b can be rewritten as:

[
U A

]
=

[
U P

]I UTA

0 GA

 , (4.5a)

[
U A

]
=

[
U(I) + P (0) UUTA+ PGA

]
, (4.5b)[

U A

]
=

[
U UUTA+ (I − UUT )A

]
, (4.5c)[

U A

]
=

[
U UUTA+ A− UUTA

]
, (4.5d)
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[
U A

]
=

[
U A

]
. (4.5e)

Similarly, the right bracket from the right side of Equation 4.2b can be rewritten as:

[
V B

]T
=

I V TB

0 GB


T [
V Q

]T
, (4.6a)

[
V B

]
=

[
V Q

]I V TB

0 GB

 , (4.6b)

[
V B

]
=

[
V (I)Q(0) V V TB +QGB

]
, (4.6c)[

V B

]
=

[
V V V TB + (I − V V T )B

]
, (4.6d)[

V B

]
=

[
V V V TB +B − V V TB

]
, (4.6e)[

V B

]
=

[
V B

]
. (4.6f)

Equation 4.5a and 4.6a can be substituted into Equation 4.2b as:

X + ABT =

[
U P

]I UTA

0 GA


S 0

0 I


I V TB

0 GB


T [
V Q

]T
. (4.7)

From the right hand side of Equation 4.7, the outer matrices are both orthogonal,

so the remaining step is to compute SVD of the inner matrices. Let Z be defined as

shown in Equation 4.8, and the associated SVD for Z is shown in Equation 4.9.

Z =

I UTA

0 GA


S 0

0 I


I V TB

0 GB


T

, (4.8a)

Z =

S 0

0 0

+

UTA

GA


V TB

GB


T

, (4.8b)

Z = U ′S ′(V ′)T . (4.9)
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The updated SVD for Equation 4.1 now can be written as:

X + ABT =

[
U P

]
(U ′)S ′(V ′)T

[
V Q

]T
. (4.10)

Equation 4.10 can be simplified as:

X + ABT = UnewSnewV
T
new, (4.11)

where Unew =

[
U P

]
(U ′), Snew = S ′, and V T

new = (V ′)T
[
V Q

]T
. Important to

note, the computational expense for SVD in Equation 4.9 depends on the size of

R+ C or less. If the SVD of Equation 4.1 is computed from the regular batch SVD,

the cost would be snapshot dependent. This implies that online SVD is advantageous

for a low-rank system, i.e., the snapshot number is much greater than the rank of the

system.

In their implementations, Peherstorfer & Willcox (2015), Matsumoto & Indinger

(2017), and Oxberry et al. (2017) have utilized rank-1 updates when a new snapshot of

data is available. However, the rank-1 updates can be modified into rank-K updates.

This modification allows relaxing the updating procedure when K snapshots of data

are received. To this extent, the rank-K updates algorithm is presented as a modified

version of rank-1 updates in the following section.

4.4 Modified Rank-K Updates Algorithm

For the modified rank-K updates algorithm, the derivation for matrix Z in Equation

4.8 is adopted from previous section. The key is to compute the matrices UTA and

GA, i.e., Equation 4.8 can be simplified as:

Z =

S UTA

0 GA

 , (4.12)

where Z is a sparse matrix, and its SVD is relatively easy to solve. The updating

procedures can be summarized in Algorithm 14 and 15. Important to note, a modified
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Gram-Schmidt orthogonalization is applied to compute P in rank-K updates which

indirectly increases the computational expense. In a typical rank-1 updates (Oxberry

et al. 2017), this effort can be avoided because only one snapshot is updated at a time.

In particular, Matrix P becomes a column vector, and matrix GA is simplified as a

scalar. For brevity, the detailed algorithm of the rank-1 updates is not shown here, and

research articles such as Peherstorfer & Willcox (2015), Matsumoto & Indinger (2017),

and Oxberry et al. (2017) are strongly recommended for readers who are interested

in its implementation. Regardless of rank-1 or rank-K updates, both approaches

require applying modified Gram-Schmidt orthogonalization at the end to ensure that

the orthogonality of left singular vectors Unew. This step is also suggested in Brand

(2002) and Oxberry et al. (2017) for numerical robustness. Nonetheless, the online

rank-K updates proposed in this study is rank-dependent and more generalized as

compared to rank-1 updates.
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Algorithm 14: Online Rank-k SVD updates part I

input : Left singular vector: U ∈ RN×R

Singular values: S ∈ RR×R

Left singular vector: V ∈ RR×M

Current rank of the inputs: R

Maximum cut off rank: Rmax

New data snapshots: a

Desired rank for updates: K

output: Updated snapshot number: Mnew

Updated rank: Rnew

Updated left singular vector: Unew ∈ RN×Rnew

Singular values: Snew ∈ RRnew×Rnew

Left singular vector: Vnew ∈ RRnew×Mnew

1 Begin

2 Compute matrix g = (I − UUT )a and apply modified Gram-Schmidt

algorithm to compute orthogonal basis P from matrix g.

3 Compute matrix Ga = P Tg.

4 Construct Matrix Z =

S P Tg

0 Ra

.

5 Compute the SVD: Z = U ′S ′(V ′)T .
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Algorithm 15: Online Rank-k SVD updates part II

6 if R >= Rmax then

7 compute Unew = UU ′:,1:R, Snew = S ′1:R,1:R, and Vnew =

V 0

0 1

V ′:,1:R

8 else

9 compute Unew =

[
U P

]
U ′, Snew = S ′, and Vnew =

V 0

0 1

V ′
Rnew = R +K

10 Perform modified Gram-Schmidt algorithm to ensure the orthogonality

of left singular vectors Unew.

4.5 Results and Discussion

In this section, the online rank-K SVD updates are performed as compared to the

online-batch-1 and online-rank-1 updates to illustrate its accuracy and efficiency.

Online-batch-1 updates recompute SVD from scratch whenever a new data snapshot is

received. Online-rank-1 updates are essentially the simplified version of the algorithm

as against to the rank-K updates. The details of online-rank-1 updates can be referred

to section 4.4. For comparison purposes, K is chosen as 5, 20, 50 and 100, and 500

snapshots of cylinder flow data at Re = 100 are utilized to perform online updates.

All the cases are summarized in Table 4.1.

First, the L2 error norms of the reconstructed solution for each updating procedure

are defined in Equation 4.13 to quantify the performance and accuracy of the rank-K

SVD updates.

φ =

√√√√ 1

M

1

N

M∑
i=1

N∑
j=1

(x̄Reconi,j − x̄Truei,j )2 . (4.13)

The corresponding error plot for each case is shown in Figure 4.1. In comparison,

recomputing the SVD from scratch(online batch-1) is around order of magnitude of
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10−9. As the test data is single precision, obtaining an order of magnitude of 10−8 for

the L2 error norms is considered to be fairly accurate. More importantly, the errors

tend to stabilize as the number of new snapshot reaches 200 for all the cases. This

observation proves that the modified rank-K algorithm is performing properly. The

numerical values are also summarized in Table 4.1.
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Figure 4.1: L2 error norms for online SVD updates

Table 4.1: The L2 error norms of the reconstruction for online SVD updates

Cases Cputime(s) Ratio β L2 error norms

Rank-1 924.98 1.00 5.1383E-8

Rank-5 211.69 0.87 5.5182E-8

Rank-20 61.59 0.75 5.6402E-8

Rank-50 30.93 0.60 5.7050E-8

Rank-100 22.04 0.42 5.6711E-8

Batch-1 742.74 - 6.7659E-9

The updated singular values for rank-100 updates are also shown in Figure 4.2. The

updated singular values for both rank-1 and rank-100 updates appear to match rea-

sonably well. In comparison to the results from online batch-1 updates, only the low

singular values appear to deviate. However, this small difference will not affect the

reconstruction errors because the maximum singular value is large as compared to
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the small ones. Due to the fact that the updating procedure may erode the orthog-

(a) L2 Minimization

(b) L1 Minimization

Figure 4.2: The updated singular values for online rank-100 updates.

onality of the left singular vectors Unew (Brand 2006), an orthogonality number ψ is

computed and examined using Equation 4.14.

ψ =
Rnew∑
i=1

(Unew(:, i) · Unew(:, i)). (4.14)

The corresponding ψ for online rank-1, rank-5, and rank-100 updates is also shown in

Figure 4.3. All of three cases are preserving orthogonality for the left singular vector,

and maximum of ψ is approaching to the number of rank retained which is expected.
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Figure 4.3: Orthogonality number ψ for online SVD updates
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After examining the accuracy of the implementations, the efficiency of the online

rank-K updates is investigated. The CPU time in seconds for each update process is

computed and shown for all the cases in Figure 4.4.
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Figure 4.4: CPU time for each updating process.

The required computational time is reasonably stable for rank-K updates. Over a

certain number of snapshots, e.g., 500 snapshots, re-computing SVD from scratch

becomes quite expensive. In time-critical applications, one cannot afford to rebuild

the models from scratch. This implies that the online rank-K updates are more

efficient when encountering a large data-set. Figure 4.5 shows the total CPU time

with the associated rank. As the number K is increased, the required total CPU

time reduces accordingly. An advantage for rank-K updates is that one can afford to

perform the dynamical updates with the desired number of snapshots, i.e., number of

ranks. Performing rank-1 updates may not be the most efficient way if a large number

of data snapshots are received. Instead, the rank-K updates can be performed to save

computational effort as shown in Figure 4.5. However, the rank number K must be

chosen wisely so that the dynamical models can capture the changing dynamics while

maintaining computational efficiency. For Boussinesq flow, the convolutions or POD

basis change completely when the training data are moved from 1-400 snapshots to

1-800 snapshots. Obviously, rank-400 updates would not work for this flow. Hence,

the strategy for identifying an optimal choice of rank number for online modeling
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is not clear, and this choice needs to balance the evolution of the physics with the

computational efficiency of low-rank updates.
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Figure 4.5: Total CPU time for online SVD updates

The relative ratio β of CPU time for the online rank-K updates is computed in

Equation 4.15. to establish the efficiency as against to the rank-1 updates.

β =
CPU Timerank−K

CPU Timerank−1

· 1

K
(4.15)

The corresponding results are shown in Table 4.1. The relative efficiency reduces

as K increases. Ideally, a ratio of 1 is desired regarding memory consumption and

time-saving. As an additional Gram-Schmidt orthogonalization process is needed for

rank-K updates, one cannot achieve the ideal efficiency. However, the total time

saved from this approach is still attractive if the memory storage permits. Thus, the

online rank-K updates presented in this study are more favorable than the regular

batch computation.

In conclusion, a capability for incremental SVD updates is developed in this work.

The online rank-K update procedure is implemented as a generalization to the rank-1

updates that are reported in Peherstorfer & Willcox (2015), Matsumoto & Indinger

(2017), Oxberry et al. (2017). While providing dynamic system modeling, another

advantage of online updates is to bypass the need for storing all the data. This is an

essential component of fast computation and decision making. The errors from the
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reconstruction (using the POD modes) for all the cases are computed and found to

be accurate for all the cases considered. The singular values from online rank-1 and

rank-K updates are also correctly computed from the dynamic update. Further, the

orthogonality number for the left singular vectors is computed, and shown to match

the maximum rank retained for all the cases. Althought the relative efficiency reduces

as K increases, the total time saved for online rank-K updates is still remarkable as

compared to online batch-1 and rank-1 updates. To conclude, the resulting rank-K

updates are correctly implemented as compared to the online batch-1 updates. This

method can be integrated into sparse convolution framework for modeling systems

that evolves in time.
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CHAPTER 5

CONCLUSIONS AND FUTURE RECOMMENDATION

5.1 Key Conclusion

In chapter 2, a sparse generalized convolution framework was presented for modeling

and predicting fluid flow systems based on the Koopman operator theory. This frame-

work employs the ideas of single/multi-layer convolution and sparse representation

for accurate and efficient model prediction. The effectiveness of the framework comes

from the reliance on the type of convolution and sparsification techniques rather than

learning nonlinear operators. To demonstrate the connection with the Koopman op-

erator, the leading eigenvalues and eigenmodes are accurately captured for flow past

a cylinder at Re = 100 and Re = 1000. For model prediction, the convolution frame-

work is capable of capturing the underlying dynamics for both limit-cycle and systems

that approach a limit-cycle, i.e., the periodic and transient cylinder flows. However,

the physics of highly convective problems such as Boussinesq flow are not predicted

accurately due to the fast-evolving nature of the system.

In chapter 3, sparse reconstruction techniques including L2-based, L1-based, and

Kriging methods are investigated to recover sparse fluid flow measurements with

the known basis, known but inexact basis, and the unknown basis for flow past a

cylinder, full channel flow, and reduced channel flow. The number of measurements

that are sufficient to recover sparse data with known basis is related to the number

of ranks retained, i.e., P > max(K,K95%). For unknown basis, the performance of

reconstruction techniques is evaluated to capture the eigenvalues and eigenvectors

of the system. The cylinder flow can be reconstructed successfully with just 25%
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of the data. However, the reconstructed solutions for both channel and reduced

channel flows are less than ideal because the low-energy modes cannot be accurately

approximated. As a result, the reconstructions are corrupted by noise. Thus, further

improvements to the algorithms will be required.

In chapter 4, the ideas of online SVD updates that can potentially enable dynami-

cal convolution updates are explored. The online rank-K updates are implemented in

this work, and the validated results such as reconstructed error, orthogonality num-

ber for left singular vectors, and singular values are shown for flow past a cylinder.

Furthermore, the computational efficiency of online rank-K updates appears to be

justified as compared to online batch-1 and rank-1 updates.

5.2 Future Work and Recommendation

The primary scope of this work is to investigate three major components: developing

predictive models, sparse reconstruction, and online updates. Hence, the ultimate

recommendation is to combine all of these three components for developing dynamic

data-driven models that are capable of handling sparse non-linear fluid flow data.

However, a list of potential problems in each research direction can be pursued for

future advancement as outlined.

5.2.1 Sparse Convolution Model

1. A comprehensive parametric study should be performed for sensitivity evalu-

ation when sparsifying the convolution. For instance, the truncation method

based on the energy content of the POD mode is utilized for POD-convolution.

The ideas of using user-defined constraints (Chen et al. 2012, Wynn et al. 2013,

Jovanović et al. 2014) for selecting optimal basis are strongly recommended

to explore how well they could improve the performance. Similarly, for GP-

convolution, other center placement techniques such as (Cohen et al. 2003,
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Willcox 2006, Yildirim et al. 2009) should also be investigated and compared

whether optimal center locations can be identified for more accurate and ef-

ficient prediction. The impact of hyperparameter σ in GP functions can be

explored in conjunction with determining optimal centers for GP-convolutions.

2. When using GP-convolution for modeling transient cylinder flow, there are

unanswered questions such as: How does the linear GP model capture the

transient behavior of the cylinder flow? What is the source of the nonlinearity

in the model? The GP-convolution also appears to be more stable than POD-

convolution for modeling transient cylinder flow, and the reason has not been

understood yet. The requires further investigation. Both of above questions are

critical to ascertain the capability of GP-convolution and need to be addressed.

3. Identifying the regularization(Tikhonov) parameter for obtaining accurate and

stable model predictions is rather ad-hoc, which makes the modeling framework

less self-consistent. It would be useful to investigate deterministic approaches

to regularize the model from data itself.

4. Another recommendation is tied to the fact that the developed convolution

framework has failed to predict Boussinesq flow beyond the training region. In

particular, the convolution is outdated, and this is the main reason why such

systems are challenging to model. Hence, a potential solution is to perform

dynamical convolution updates whenever a new prediction is available. This

involves using online singular value decomposition for computing POD basis.

To this end, the use of online updates for modeling non-linear system such as

Bousineseq flow is highly recommended. The implementation of online rank-

K updates is validated and can be directly integrated into the convolution

framework.
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5.2.2 Sparse Reconstruction

1. With unknown basis, the number of measurements for both channel and re-

duced channel flows was chosen arbitrarily(25% of the data). This makes such

methods less attractive for practical use. Therefore, the minimum number of

measurements for these two flow systems needs to be identified.

2. The iterative procedure for reconstructing both channel and reduced channel

flows appears to corrupt the solutions by introducing noise. This is because the

low-energy modes cannot be accurately approximated. The next logical step is

to de-noise the solution or improve the methods to prevent the generation of

noise. One possible solution is to identify optimal sensor placement that may

improve the ability to capture low energy modes.

3. Following the previous recommendation, random measurements are used for all

the reconstruction analysis. It would be valuable to investigate the influence

of sensor placement on the performance of data recovery. Determining the

locations using methods such as Cohen et al. (2003), Willcox (2006) and coarse-

graining is worth exploring in the future.

5.2.3 Online SVD Updates

1. The implementation of online rank-K updates from this work is validated for

accuracy and stability. The test problem, i.e., flow past a cylinder, results in a

matrix with a row dimension of 24, 000. However, the study of computational

cost for matrices with different levels of dimensions has not been performed yet.

The orthonormalization processes could be too expensive for a taller matrix,

e.g., Boussinesq flow. As such, the first suggestion is to examine the performance

of online rank-K updates for problems that contain a higher degree of freedom.

If the computation effort is too expensive, an extended decomposition method
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that was proposed by Brand (2006) is highly recommended to improve the speed

of the updating processes.

2. For Boussinesq flow, the strategy for identifying an optimal choice of rank num-

ber for online modeling is not clear, and this choice needs to balance the evo-

lution of the physics with the computational efficiency of low-rank updates.

Hence, another recommendation is to determine an optimal K for updating

Boussinesq flow accurately and efficiently.
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Mezić, I. (2013), ‘Analysis of fluid flows via spectral properties of the koopman oper-

ator’, Annual Review of Fluid Mechanics 45, 357–378.

Moreno, A. I., Jarzabek, A. A., Perales, J. M. & Vega, J. M. (2016), ‘Aerody-

namic database reconstruction via gappy high order singular value decomposition’,

Aerospace Science and Technology 52, 115–128.

Moser, R. D., Kim, J. & Mansour, N. N. (1999), ‘Direct numerical simulation of

turbulent channel flow up to re τ= 590’, Physics of fluids 11(4), 943–945.

Muld, T. W., Efraimsson, G. & Henningson, D. S. (2012), ‘Flow structures around

a high-speed train extracted using proper orthogonal decomposition and dynamic

mode decomposition’, Computers & Fluids 57, 87–97.

Needell, D. & Tropp, J. A. (2009), ‘Cosamp: Iterative signal recovery from in-

complete and inaccurate samples’, Applied and Computational Harmonic Analysis

26(3), 301–321.

Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. (2003), ‘A

hierarchy of low-dimensional models for the transient and post-transient cylinder

wake’, Journal of Fluid Mechanics 497, 335–363.

154



Noack, B. R., Schlegel, M., Morzynski, M. & Tadmor, G. (2011), Galerkin method

for nonlinear dynamics, in ‘Reduced-Order Modelling for Flow Control’, Springer,

pp. 111–149.

Oliver, M. A. & Webster, R. (1990), ‘Kriging: a method of interpolation for geo-

graphical information systems’, International Journal of Geographical Information

System 4(3), 313–332.

Oxberry, G. M., Kostova-Vassilevska, T., Arrighi, W. & Chand, K. (2017), ‘Limited-

memory adaptive snapshot selection for proper orthogonal decomposition’, Inter-

national Journal for Numerical Methods in Engineering 109(2), 198–217.

Pan, C., Yu, D. & Wang, J. (2011), ‘Dynamical mode decomposition of gurney flap

wake flow’, Theoretical and Applied Mechanics Letters 1(1).

Peherstorfer, B. & Willcox, K. (2015), ‘Dynamic data-driven reduced-order models’,

Computer Methods in Applied Mechanics and Engineering 291, 21–41.

Peherstorfer, B. & Willcox, K. (2016), ‘Dynamic data-driven model reduction: adapt-

ing reduced models from incomplete data’, Advanced Modeling and Simulation in

Engineering Sciences 3(1), 11.

Rahimi, A. & Recht, B. (2009), Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning, in ‘Advances in neural information

processing systems’, pp. 1313–1320.

Rajani, B., Kandasamy, A. & Majumdar, S. (2009), ‘Numerical simulation of laminar

flow past a circular cylinder’, Applied Mathematical Modelling 33(3), 1228–1247.

Rapún, M.-L. & Vega, J. M. (2010), ‘Reduced order models based on local pod plus

galerkin projection’, Journal of Computational Physics 229(8), 3046–3063.

Roshko, A. (1954), ‘On the development of turbulent wakes from vortex streets’.

155



Rowley, C. W. & Dawson, S. T. (2017), ‘Model reduction for flow analysis and control’,

Annual Review of Fluid Mechanics 49, 387–417.
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