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Abstract: The purpose of this study is to examine whether genetic variation in CYP1A2 (-

163A>C, rs762551) influences the effects of acute caffeine supplementation on 

neuromuscular function of the lower body at rest and in response to a fatiguing work 

bout. Forty-two young, healthy males completed the entire study protocol and were 

genotyped for CYP1A2 enzyme. Subjects were then classified as AA (FAST: n = 26) or 

AC/CC (SLOW; n =16). This study consisted of 3 separate visits to the laboratory, a 

familiarization session and 2 experimental sessions: caffeine (CAF; 6 mg/kg/bw) or 

placebo (PLA). During each session, neuromuscular function, including motor unit 

behavior, muscle activation, spinal and supraspinal excitability, and muscle contractile 

properties were assessed. Additionally, each experimental visit ended with repeated, 

intermittent submaximal contractions at 50% of the subject’s maximum effort to fatigue. 

The main findings from this investigation were the overall lack of ergogenic effects of 

caffeine on neuromuscular function of the lower body musculature. Specifically, no 

significant alterations in motor unit behavior, muscle activation, or spinal or supraspinal 

excitability were found from pre- to post-testing in either condition. However, the present 

data suggest that caffeine may augment the decline seen in muscle contractile properties 

in the placebo condition. The present data also suggests a limited role, if any, for the 

CYP1A2 genotype in mediating the effects of caffeine on neuromuscular function.  
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CHAPTER I 

 

 

INTRODUCTION 

1.1 Introduction 

Caffeine (1,3,7-trimethylxanthine) is the most widely consumed, central nervous 

system stimulant in the world. Its primary mechanism of action is thought to be as an 

adenosine receptor antagonist, preventing the decline in wakefulness seen throughout the 

day. Caffeine can also affect muscle activation, potentially through peripheral, spinal, 

and/or supraspinal pathways (Fimland et al. 2010; Kalmar 2005) , as adenosine receptors 

are located throughout a variety of tissues (Reppert et al. 1991). At the spinal level, 

caffeine has been reported to increase motor neuron excitability (Kalmar et al. 2006; 

Walton et al. 2003)  and increase the self-sustained firing rate of motor units (Walton et 

al. 2002). Additionally, another potential mechanism is a change in calcium handling and 

kinetics following caffeine supplementation, which has been supported previous work 

showing an increase in muscular twitch force and twitch time (Bazzucchi et al. 2011; 

Lopes et al. 1983). Despite the lack of clear mechanism (Allen et al. 2008; Penner et al. 

1989) and caffeine’s widespread use as an ergogenic aid, its effects on muscle function, 

and specifically muscle strength, have been relatively mixed. For example, a meta-

analysis by Warren et al. (2010) showed a modest effect for caffeine on maximal 

voluntary contraction strength (effect size = 0.19). However, other studies have
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reported no change (Behrens et al. 2015b; Fimland et al. 2010) or even a decrease (Bond et 

al. 1986) in muscular function following caffeine supplementation. Interestingly, these 

effects may be muscle specific (Mau-Moeller et al. 2013), as the majority of positive changes 

in strength have been seen in the quadriceps femoris, with largely equivocal effects observed 

in the triceps surae musculature.  

In terms of maximal strength, Bazzucchi et al. (2011) saw a significant increase in 

MVIC of the biceps brachii an hour after caffeine supplementation, with no change seen 

following placebo ingestion, as did Behrens et al. (2015a) in the quadriceps. These results are 

supported by numerous other investigations (Behrens et al. 2015a; Goldstein et al. 2010; 

Jacobson et al. 1992; Kalmar and Cafarelli 2006; Kalmar and Cafarelli 1999; Kalmar et al. 

2006; Park et al. 2008). However, several other investigations suggest that caffeine has 

minimal to no effect on MVIC. For example, Fimland et al. (2010) and many others 

(Astorino et al. 2008; Behrens et al. 2015b; Bond et al. 1986; Jacobson and Edwards 1991; 

Tarnopolsky et al. 1989; van Duinen et al. 2005) have reported no change in MVIC strength 

following caffeine ingestion. Interestingly, however, Behrens et al. (2015b) did report a 

significant improvement normalized electromyography (EMG) and  rate of torque 

development (RTD), which led the authors to suggest that caffeine may have altered the 

excitability of the spinal -motor neurons at the onset of contraction. Another potential 

explanation could be that caffeine increased corticospinal excitability during the initial phase 

of contraction and in turn, enhanced muscle activity of the triceps surae at the 0-100 and 0-

200 time intervals, which is indirectly supported previously by Kalmar and Cafarelli (1999), 

who reported an increase in voluntary activation with no change in h-reflex, suggesting 

corticospinal mechanisms. Further support for this hypothesis is found in the work of 
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Behrens et al. (2015a), who reported a significant increase in MVC strength during eccentric, 

concentric and isometric muscle actions following caffeine administration, which the authors 

concluded was due to an increase in voluntary activation. The authors also saw an increase in 

RTD (0-200), which the authors attributed to increased neural drive. Based on the above 

described studies, Behrens et al. (2015a) suggested that caffeine is most likely exerting its 

effect centrally, as opposed to influencing in excitability of spinal -motor neurons.  

It has been shown that central adenosine a2a receptor agonists depress the firing of 

cerebral cortical neurons and lead to hypoactivity, depression of locomotor activity and 

impairment of coordination (Phillis et al. 1979). Thus, caffeine may improve force 

production via antagonism of the adenosine a2a receptors. In support of this hypothesis, 

Bazzucchi et al. (2011) observed an increase in biceps brachii EMG amplitude following 

caffeine administration, which the authors attributed to greater recruitment high-threshold 

MUs, as previously proposed by Kalmar and Cafarelli (1999). Behrens (Behrens et al. 2015a; 

Behrens et al. 2015b) reported increased neural drive following caffeine supplementation, 

which was evidenced by increase EMG amplitude during the onset of torque production. 

Moreover, Bazzucchi et al. (2011) observed increases in torque across the torque-velocity 

relationship, supporting their hypothesis of increased capacity to recruit higher-threshold 

MUs with caffeine supplementation. However, they did not observe a change in EMG 

amplitude during non-explosive contractions. Thus, this may support the conclusions of 

Warren et al. (2010), who reported that the most likely mechanism for the modest 

improvement in MVC reported from their review was due to increased voluntary activation. 

In contrast, however, Fimland et al. (2010) reported no changes in EMG amplitude following 

caffeine. This is supported by the work of Greer and colleagues (2006), who found no change 
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in Wingate performance or EMG parameters (mean power frequency, integrated EMG 

amplitude, etc.) following caffeine supplementation (5 mg/kg), when compared to placebo. 

However, it is also interesting to point out the potential muscle and/or contraction specific 

effects of caffeine. For example, the contribution of cortical and spinal centers differ based 

on contraction type and may be partly responsible for the differences observed (Duchateau 

and Baudry 2013). This is supported by previous work, where H-reflexes and motor evoked 

potentials were smaller during eccentric contractions, when compared to isometric or 

concentric contractions (Duclay and Martin 2005; Gruber et al. 2009). Additionally, the 

review by Warren et al. (2010) showed the largest effect of caffeine on voluntary activation 

in the quadriceps femoris (ES = 0.67), which is likely because voluntary activation is often 

lower for the knee extensors than for other lower body musculature or muscle groups in the 

upper extremity (Mau-Moeller et al. 2013).  

While the literature on the effects of caffeine on neuromuscular function are largely 

equivocal, the H-Reflex and V-Wave (volitional wave) responses to caffeine are quite 

uniform. H-reflex and V-wave can be used to analyze modulations at the spinal level 

(Aagaard et al. 2002; Zehr 2002). H-reflex reflects the activation of the -motor neurons by 

the I afferent pathways (Schieppati 1987), whereas the V-wave reflects the descending 

neural drive from the -motor neuron to the muscle (Aagaard et al. 2002; Schieppati 1987; 

Seynnes et al. 2010). While Walton and colleagues (2003)found an increase in normalized h-

reflex following caffeine administration, the vast majority of investigations consistently 

report no change in H-reflex at rest (Behrens et al. 2015a; Behrens et al. 2015b; Kalmar and 

Cafarelli 1999) or during weak contractions (Behrens et al. 2015a; Kalmar and Cafarelli 

1999), although these authors have suggested that the lack of change in the soleus may be 
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due to a relatively high activation at rest (Del Balso and Cafarelli 2007; Racinais et al. 2008). 

Similarly, an unchanged V-wave (Fimland et al. 2010) response prior to and following 

caffeine-administration has also been reported. It is worth noting that the H-reflex and V-

wave are influenced by presynaptic inhibition, reciprocal inhibition, and recurrent inhibition 

(Crone and Nielsen 1994; Hultborn and Pierrot‐Deseilligny 1979; Zehr 2002). Therefore, 

neural drive could have increased but inhibitory factors could have increased as well. 

However, the lack of change in EMG amplitude and/or the modulation of evoked spinal 

reflex responses because of alterations in presynaptic inhibition seem unlikely.  

Finally, peripheral mechanisms cannot be excluded as potential explanations for 

caffeine’s effects, although most of the evidence points towards a CNS-related mechanism. 

In vitro evidence has suggested that caffeine increases intracellular calcium release from the 

sarcoplasmic reticulum (Allen et al. 2008), potentially due to the interaction of caffeine and 

the ryanodine receptors of the sarcoplasmic reticulum (Penner et al. 1989). Caffeine could 

also increase performance due to increased calcium mobilization and increased sensitivity of 

myofibrils to calcium (Nehlig and Debry 1994), and/or slower reuptake of calcium to the 

sarcoplasmic reticulum, leading to greater intracellular calcium availability (Allen et al. 

2008). Bazzucchi et al. (2011)found significant changes myoelectric and mechanical 

responses of the biceps brachii, which they attributed to increases in muscle contractility and 

conduction velocity following caffeine supplementation. As conduction velocity could 

potentially reflect changes in MU recruitment strategies, changes in contractile properties, 

and/or excitability of the sarcolemma (Andreassen and Arendt-Nielsen 1987; Solomonow et 

al. 1989), although the authors hypothesized that sarcolemmic excitability was the most 

likely to be influenced by caffeine.  



6 
 

As mentioned previously, much of the data suggest that caffeine’s effects on 

neuromuscular function occurs via changes in the CNS, specifically as an increase in 

voluntary activation following caffeine supplementation (Behrens et al. 2015a; Meyers and 

Cafarelli 2005; Plaskett and Cafarelli 2001; Tarnopolsky and Cupido 2000). It has been 

suggested that the central activation ratio (CAR) and interpolated twitch technique (ITT) are 

not appropriate to distinguish between supraspinal and spinal activation (Behrens et al. 

2015b). However, the overall lack of change in the H-reflex, along with the general increase 

in voluntary activation, points towards modulation at the supraspinal level (Kalmar and 

Cafarelli 1999). This is supported by later work from Kalmar and coworkers (2006), who 

found that motor-evoked potentials and cortically evoked twitches of the VL during weak 

isometric contractions were increased following caffeine ingestion, which confirmed the 

hypothesis of Phillis et al. (1979). This hypothesis is also potentially supported by the 

antagonist effects of methylxanthines on adenosine and the adenine nucleotides enhanced 

spontaneous firing rates of cerebral cortical neurons (Phillis et al. 1979). 

Similar to the data describing the influence of caffeine on force production, 

conflicting evidence on the influence of caffeine on the manifestation of fatigue exists. For 

example, Fimland et al. (2010) saw no difference between placebo and caffeine in 

physiological parameters (MVIC, M-Wave, V-wave, EMG amplitude) immediately 

following and during recovery from a fatiguing protocol. Caffeine also did not improve time 

to fatigue (Fimland et al. 2010). However, Meyers and Cafarelli (2005) found a significant 

increase in time to fatigue during submaximal isometric contractions to fatigue, despite no 

changes in whole muscle activation. They found that the amplitude of evoked twitches and 

the instantaneous relaxation rate were significantly correlated in both the placebo and 
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caffeine conditions, indicating that the increase in time to exhaustion may have been due to 

caffeine’s effect on calcium reuptake and subsequent twitch force (Meyers and Cafarelli 

2005). In support of this, previous work by Kalmar and Cafarelli (1999) saw a 25.8% 

increase in time to fatigue during sustained MVC’s following caffeine. The authors attributed 

the increased neural drive with caffeine and thus, slight increases in strength, with the 

increased time to fatigue (Kalmar and Cafarelli 1999; Plaskett and Cafarelli 2001). Meyers 

and Cafarelli (2005) demonstrated significant increase in time to exhaustion in “responders” 

following caffeine, but not in “non-responders”, suggesting that the responses to caffeine are 

probably subject dependent (Kalmar 2005). Interestingly, the dosage in most of these 

investigations was similar (i.e. 5-8 mg/kg/bw) and thus is probably not due to insufficient 

caffeine dosage. As mentioned previously, it has been hypothesized that these differences 

may be due to muscle tested and/or individual differences in the subject’s caffeine 

metabolism.  

Recently, the literature has hypothesized a potential role of genetic polymorphisms in 

caffeine metabolism, providing a genetic link to the “responder/non-responder” classification 

laid out previously by Meyers and Cafarelli (2005). Since 95% of caffeine is metabolized by 

a single nucleotide polymorphism (SNP) at intron 1 of the cyctochrome P450 enzyme 

(CYP1A2), several investigations have examined the effects of the CYP1A2 genotype on 

caffeine metabolism and subsequent exercise performance (Algrain et al. 2016; Giersch et al. 

2018; Guest et al. 2018; Puente et al. 2018; Salinero et al. 2017; Womack et al. 2012). 

Interestingly, those who have an A allele in position 734 of the CYP1A2 genotype have 

increased enzyme activity and experience faster caffeine metabolism when compared to 

those with a C allele in the same position (Han et al. 2001; Sachse et al. 1999). Therefore, 
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those with a homozygous A allele are considered ‘fast-metabolizers’, with those with the 

AC/CC alleles are considered ‘slow metabolizers’. This provides a potentially interesting 

physiological rationale for the divergent responses reported in a large portion of the caffeine 

literature and on an individual subject level (Pickering and Kiely 2018). Further, there is 

evidence to suggest that those who possess the slow genotypes may be at a greater risk for 

cardiovascular related events following caffeine administration (Cornelis et al. 2006; Sachse 

et al. 2003; Sachse et al. 1999), providing a potentially useful clinical utility to CYP1A2 

genotyping.   

1.2 Study Purpose  

The purpose of this study is to examine whether genetic variation in CYP1A2 (-

163A>C, rs762551) influences the effects of acute caffeine supplementation on 

neuromuscular function of the lower body at rest and in response to a fatiguing work bout.  

1.3 Research Questions & Hypotheses 

1.3.1 Does acute caffeine supplementation improve neuromuscular function?  

HO1.3.1: There will be no difference in neuromuscular function following either caffeine or 

placebo.  

HA1.3.1: Acute caffeine supplementation will significantly improve neuromuscular function 

when compared to placebo.  

1.3.2 Does CYP1A2 genotype influence the changes in neuromuscular function following 

acute caffeine supplementation?  
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HO1.3.2: There will be no difference in neuromuscular function following acute caffeine 

supplementation between CYP1A2 genotypes.  

HA1.3.2: Those with the homozygous A (AA) CYP1A2 genotype will exhibit more 

pronounced improvements in neuromuscular function than those with a C CYP1A2 genotype 

following acute caffeine administration.  

1.3.3 Does acute caffeine supplementation influence the fatigability of the knee extensors? 

HO1.3.3: There will be no differences in the fatigability of knee extensors between the caffeine 

and placebo conditions.  

HA1.3.3: Caffeine will delay the onset of fatigue in the knee extensors, when compared to 

placebo.  

1.3.4 Does CYP1A2 genotype influence the changes in fatigability following acute caffeine 

supplementation?  

HO1.3.4: There will be no difference in fatigability following acute caffeine supplementation 

between CYP1A2 genotypes.  

HA1.3.4: Those with the homozygous A (AA) CYP1A2 genotype will exhibit a more 

pronounced delay in fatigue of the knee extensors than those with a C CYP1A2 genotype 

following acute caffeine administration.  

1.4 Significance of Study  

The present investigation has the potential to elucidate the divergent neuromuscular 

responses to caffeine widely reported in the literature to date. Additionally, the findings of 
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this investigation have the potential to help create more accurate and robust caffeine 

recommendations for improved exercise performance.  

1.5 Delimitations 

1. Approximately 42 young, healthy males participated in this investigation.  

2. Only participants between the ages of 18 and 35 years of age were be recruited for this 

investigation.  

3. All participants were healthy and free from any neuromuscular or musculoskeletal 

conditions at the time of participation.  

4. The participants performed both voluntary and involuntary (i.e. evoked) contractions. 

5. Data was only be collected from the musculature of the right leg.  

6. All data was collected in the seated position.  

7. All muscular contractions collected in this investigation were isometric.   

8. Only active males were recruited to participate in this investigation. Thus, activity levels 

and exercise status may vary within the sample.  

1.6 Limitations  

1. The recruitment process will not be truly randomized, as participants were recruited by 

word of mouth.  

2. The data presented from this investigation are from a rather homogenous sample, thus, the 

applicability to other populations may be limited.  
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3. As the study design involves a number of maximal contractions and a submaximal fatigue 

protocol, differences in motivation levels between subjects may influence results. 

1.7 Assumptions 

1. All participants abstained from caffeine during the duration of the investigation.  

2. All participants provided accurate information on their health and exercise status.  

3. All equipment used in the investigation was calibrated and functioning.  

4. All data testing procedures, data entry, and data analysis were performed correctly and 

without errors. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

The following literature review will include previous research studies that are 

relevant to the purpose of this study. Each study will be summarized and the results of the 

study will be provided along with the interpretations of the authors. The aim of this 

review of the literature is to focus on the neuromuscular responses to caffeine and the 

influence of the CYP1A2 genotype, and the potential changes in the variables assessed in 

the methods section.  

2.1 CYP1A2 Genotype & Caffeine  

Algrain et al. (2016)  

The purpose of this study was to determine if a polymorphism in the cytochrome 

P450 CYP1A2 gene impacts performance following caffeine supplementation in 

recreational cyclists. Following either caffeine or placebo chewing gum, serum blood 

samples were taken at baseline, during the warm-up and immediately before and after the 

trial. The authors found no improvement in performance between conditions, as well as 

no effect for genotype, defined as AA allele carriers or C carriers. CYP1A2 genotype did 

not influence the ergogenic effects of caffeine, nor the circulating caffeine concentrations 

of caffeine.  
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Cornelis et al. (2006) 

The purpose of this investigation was to determine whether the CYP1A2 

genotype modifies the association between coffee consumption and the risk of acute 

nonfatal myocardial infarction. The authors found that fifty-one percent of those that had 

a nonfatal myocardial infarction and fifty-four percent of controls (i.e. no myocardial 

infarction) were carriers of the slow allele (*1F). The authors reported that there was an 

increased risk of myocardial infarction with increased coffee consumption, but only in 

those who were carriers of the *1F allele. 

Giersch et al. (2018) 

The purpose of this investigation was to determine whether CYP1A2 

polymorphism affects caffeine metabolism and subsequent exercise performance between 

the difference genotypes. Sixty minutes following the ingestion of either 6 mg/kg of 

bodyweight or placebo (all-purpose flour), subjects completed a 3 km cycling time trial. 

Subjects were then divided into slow (AC heterozygous or CC homozygous) or fast (AA 

homozygous) metabolizers. Slow metabolizers exhibited significantly higher serum 

caffeine 1-hour post-ingestion. However, no significant differences in measured caffeine 

metabolite, metabolite: caffeine ratio or paraxanthine:caffeine ratio was seen. Caffeine 

resulted in a significant decrease in time trial performance (7.1 ± 13.9 s.), with no 

significant differences between groups. Thus, genotype variation appears to effect serum 

caffeine metabolism but not exercise performance.  
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de Souza Gonçalves et al. (2017) 

The purpose of this study was to investigate of habitual caffeine intake on aerobic 

exercise performance responses to acute caffeine supplementation. Participants were 

allocated into 3 groups based on habitual caffeine intake: low (58 ± 29 mg·d-1), moderate 

(143 ± 25 mg·d-1), and high consumers (351 ± 139 mg·d-1). Participants then completed 3 

cycling time trials following the ingestion: caffeine (6 mg/kg of bodyweight), placebo, 

and no supplement. Results showed that caffeine significantly improved time trial 

performance, when compared to both placebo and no supplement conditions. 

Furthermore, the results showed no effect of habitual caffeine intake on exercise 

performance. The authors suggested that benefits of caffeine on time trial performance 

are not influenced by habitual caffeine intake.  

Guest et al. (2018) 

The purpose of this study was to determine whether CYP1A2 gene variation 

modifies the ergogenic effects of caffeine in a 10-km cycling time trial. Subjects 

completed 3 10-km time trials under the following conditions: 0, 2, or 4 mg/kg of 

bodyweight of caffeine. Results showed a 3% decrease in performance following 4 

mg/kg of caffeine. However, those with AA homozygous (i.e. fast metabolizers) 

genotype exhibited a 4.8% and 6.8% decrease in performance with 2 and 4 mg/kg of 

caffeine, respectively. Those with a CC homozygous (i.e. slow metabolizers) genotype 

exhibited a 13.7% increase when compared to placebo. No effects were seen in those 

with AC heterozygous genotypes. The authors suggested that CYP1A2 genotype plays a 

significant role in potential effects from caffeine supplementation.  
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Pataky et al. (2016)  

The purpose of this investigation was to examine the efficacy of a caffeine mouth 

rinse on cycling performance, as well as to determine whether its efficacy was influenced 

by CYP1A2 genotype. The results of this study indicate that only those with an AC 

heterozygous genotype of the CYP1A2 gene received a significant increase in 

performance following 6 mg/kg/bw of caffeine ingestion, although both AA and AC 

genotypes significantly improved performance following caffeine ingestion plus a 

caffeine mouth rinse, with no significant differences between AA and AC. Interestingly, 

the authors reported that both caffeine and caffeine plus caffeine mouth rinse elicited 

greater improvements before 10:00 am, when compared with after 10:00 am. The authors 

concluded that both genotype and time of day can influence the efficacy of caffeine to 

improve time-trial performance.  

Puente et al. (2018)  

The purpose of this investigation was to examine the influence of the CYP1A2 

gene polymorphism on the ergogenic effects of caffeine in elite basketball players. Sixty 

minutes following the ingestion of either caffeine (3 mg/kg of bodyweight) or placebo, 

subjects completed a jumping and agility tests, as well as a 20-minute simulated game. 

Subjects with the AA homozygous genotype improved jump height by 2.9 ± 3.6% 

following caffeine ingestion, while the CC homozygous group did not improve jump 

performance. Caffeine did not improve agility in either group, but improved the number 

of impacts during the simulated game in both groups. Interestingly, the AA group 

experienced self-reported insomnia following caffeine, while the CC group reported no 
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side effects. The authors thus reported a moderate beneficial effect from caffeine in those 

with the AA genotype.  

Sachse et al. (1999)  

The aim of this investigation was to determine the amount of variability of 

CYP1A2 activity is explained by a gene polymorphism in intron 1. Following the 

ingestion of 100 mg of caffeine, a population of 185 healthy and 51 smokers were 

determined as 46% homozygous for variant A, 44% were heterozygous, and 10% were 

homozygous for variant C. Significant differences between genotypes in the 5-hour 

plasma 17X/caffeine ratios were only found in those who were smoker. The authors 

found that, while no significant differences in CYP1A2 metabolic activity between 

genotypes were found between non-smokers, smokers exhibiting the homozygous A 

genotype exhibited a 1.6-fold higher metabolic activity than heterozygous or 

homozygous C genotypes. The authors concluded that the A/A genotype may be a direct 

cause of increased CYP1A2 genotype or may be genetically linked to other 

polymorphisms conferring high inducibility following caffeine administration.  

Sachse et al. (2003) 

The purpose of this investigation was to examine the influence of CYP1A2 for 

allele frequencies, linkage disequilibrium and caffeine metabolism in colorectal patients 

and healthy controls. In the most germane finding of this investigation, the authors found 

lower caffeine metabolic ratios were detected in colorectal patients than controls, but 

only in those who were smokers. The authors also found no association between 

CYP1A2 genotype and caffeine phenotype, based on the caffeine metabolite ratio.  
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Salinero et al. (2017) 

The aim of this investigation was to determine the influence of the CYP1A2 

genotype on exercise performance following a moderate dose of caffeine. Participants 

ingested either 3 mg/kg of caffeine or a placebo, following which they completed a 

Wingate test. Visual attention and side effects were also measured. Subjects were 

grouped based on CYP1A2 genotype. Acute caffeine ingestion increased peak power 

output, with no significant differences between groups. No significant differences in 

reaction times were seen between caffeine and placebo conditions. Interestingly, 31% of 

subjects exhibiting the CC allele exhibited nervousness following caffeine ingestion, 

while none of the subjects in the AA experienced an increase in nervousness. The authors 

concluded that although caffeine ingestion improved Wingate performance, the effects do 

not appear to be dependent on CYP1A2 genotype.  

Soares et al. (2018) 

The purpose of this study was to examine if the influence of CYP1A2 genotype 

on the blood pressure response to caffeine ingestion was affected by physical activity 

status and habitual caffeine consumption. Subjects were classified as fast metabolizer 

(AA genotype) or slow metabolizer (AC) based on their CYP1A2 genotype. Subjects 

were also stratified based on their physical activity level (i.e. sedentary or physically 

active) and habitual caffeine consumption (i.e. non-habitual or habitual). Results showed 

that those classified as slow-metabolizers had increased basal diastolic blood pressure 

and post-caffeine systolic blood pressure compared to fast-metabolizers. Additionally, 

physical activity only modulated the acute blood pressure responses to caffeine in slow-
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metabolizers. Further, results showed a significant increase in diastolic blood pressure of 

heavy caffeine users only in those classified as slow metabolizers. These results lead the 

authors to conclude that basal and post-caffeine blood pressure responses are modified by 

physical activity and habitual caffeine usage.  

Womack et al. (2012) 

The purpose of this investigation was the determine the influence of a (C/A) 

single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2) genotype 

on 40-kilometer time trials on a cycle ergometer in trained male cyclists following acute 

caffeine (6 mg/kg/bw) supplementation. Caffeine resulted in a significantly greater 

reduction in time trial performance in the AA homozygous group, when compared to C 

carriers. The authors concluded that caffeine may have a greater ergogenic effect in AA 

allele carriers, when compared to those with a C allele.  

2.2 Neuromuscular Responses to Caffeine 

Bazzucchi et al. (2011)  

The purpose of this investigation was to examine the effects of caffeine on 

neuromuscular function during elbow flexion exercise. Fourteen male subjects 

volunteered to participate in this randomized, repeated measures, double-blind (6 

mg/kg/bw of caffeine or placebo) investigation. Maximal voluntary strength, evoked 

maximal twitch and maximal isokinetic contractions of the elbow flexor musculature was 

measured both before and after each condition. The results of this investigation found an 

enhancement in the torque-angular velocity curve, along with an 8.7% increase in 

conduction velocity, following caffeine supplementation. Additionally, the authors found 
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a significant increase in peak torque and area under of the curve of a maximal twitch 

following caffeine, when compared to placebo. The authors concluded that caffeine 

improves performance during maximal dynamic contractions of the elbow flexor 

musculature. The authors also hypothesized that caffeine has an effect on motor unit 

recruitment, as evidenced by the increase in conduction velocity seen post caffeine 

supplementation.  

Behrens et al. (2015a) 

The purpose of this study was to examine the effects of caffeine (8 mg/kg/bw) on 

maximal voluntary strength and voluntary activation of the quadriceps musculature 

during isometric, concentric and eccentric muscle actions. Further, surface 

electromyography, h-reflex and v-wave were measured. Fourteen subjects volunteered to 

participate in this randomized, controlled, counterbalanced, double-blind cross over 

design in which neuromuscular function was assessed prior to and 1-hour following 

either caffeine or placebo ingestion. The authors found a significant increase in maximal 

voluntary strength in all contraction types, along with an increased voluntary activation, 

following caffeine supplementation. The authors also found an increase in explosive 

voluntary strength and voluntary activation at the onset of contraction following caffeine 

administration. The authors concluded that while caffeine does not appear to alter spinal 

reflexes, the increases in maximal voluntary strength are most likely due to increases in 

voluntary activation of the musculature.   
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Behrens et al. (2015b) 

The authors aimed to examine the effects of acute caffeine supplementation on 

neuromuscular function of the plantar flexors. Thirteen subjects volunteered to participate 

in this randomized, controlled, counterbalanced, double-blind investigation, in which rate 

of torque development, maximal voluntary isometric torque, h-reflex, v-wave, and neural 

drive were measured prior to and one-hour post caffeine supplementation. No change in 

evoked potentials or maximal voluntary torque were seen between conditions. However, 

the authors reported an enhanced neural drive to the plantar flexors, along with an 

increase in rate of torque development in the 0-100 ms and 100-200 ms windows 

following caffeine administration. The authors concluded that only caffeine 

supplementation increased explosive voluntary strength through enhanced neural 

activation.  

Fimland et al. (2010) 

The purpose of this investigation was to examine the effect of caffeine on 

recovery following intermittent, fatiguing isometric contractions of the plantar flexors. 

Electromyography, maximal voluntary strength, and evoked v-waves of the 

gastrocnemius and soleus were measured in 13 males prior to, immediately following, as 

well as 10 and 20 minutes following fatigue after the ingestion of either caffeine (6 

mg/kg/bw) or placebo. Following both caffeine and placebo conditions, there was a 

substantial reduction in strength with a gradual return towards baseline in the latter time 

points, with no significant differences between conditions in any measure at any time 
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point. The authors concluded that caffeine does not offer enhanced recovery following 

intermittent, fatiguing isometric contractions of the plantar flexors.  

Greer et al. (2006) 

The purpose of this investigation was examine the effects of caffeine on Wingate 

performance and neuromuscular parameters following either placebo or caffeine (5 

mg/kg/bw). Eighteen young males volunteered to participate in this investigation. Peak 

power, mean power, and percent decline, as well as surface electromyographic 

parameters of the vastus lateralis and gastrocnemius were measured. The authors found 

no significant differences in peak power, mean power, and percent decline during the 

Wingate test in either condition. Furthermore, the authors found a significant decrease in 

mean and median power frequency of both muscles in all trials, with no significant 

differences seen between conditions. The authors concluded that caffeine 

supplementation does not improve neuromuscular drive, frequency of decline in 

electromyography, and power output variables, when compared to placebo.  

Kalmar and Cafarelli (1999) 

The purpose of this investigation was to examine the effects of caffeine on 

neuromuscular function of the plantar flexors. Eleven males completed 3 conditions: 

control, placebo, or caffeine (6 mg/kg/bw), in which surface electromyography was 

collected during h-reflex of the tibial nerve, voluntary activation through the interpolated 

twitch technique, a maximal voluntary strength test, 6 submaximal isometric 

contractions, and a submaximal isometric contraction to fatigue at 50% of the subject’s 

max. Additionally, intramuscular recordings of motor unit behavior were collected during 
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the submaximal contractions. The authors found an increase in voluntary activation 

during maximal voluntary contractions, with no change in h-reflex, force-

electromyographic relationship, or motor unit behavior. Time to fatigue was significantly 

increased during the caffeine trial, with no significant change during either the control or 

placebo conditions. Interestingly, the authors reported that the increased time to fatigue 

was accompanied by an attenuated decline in twitch amplitude during the caffeine 

condition. The authors concluded that the increase in maximal strength was most likely 

due to supraspinal factors, while the lack of decline in twitch amplitude following fatigue 

was most likely due to a peripheral mechanism.  

Kalmar and Cafarelli (2004) 

 The purpose of this study was to examine if the fatigue-related decline in surface 

electromyography and motor evoked potentials could be attributed to central mechanisms 

and if so, if this could be offset by caffeine supplementation. Seven volunteers underwent 

two experimental conditions (6 mg/kg/bw of caffeine or placebo), in which central 

excitability was measured via transcranial magnetic stimulation and surface 

electromyography, voluntary activation was measured via twitch interpolation before, 

during, and after fatigue, and a maximal m-wave was elicited to monitor peripheral 

transmission. The fatiguing protocol of the first dorsal interosseous consisted of 4 sets of 

10 finger abductions at 75% of the subject’s max, with 2 seconds of rest between 

contractions and 12 seconds between sets. The authors reported an increase post-

activation potentiation of the motor evoked potentials following caffeine administration, 

with a decline in motor evoked potential, maximal electromyography, and peripheral 

transmission with fatigue in both conditions. The authors stressed that the estimates of 
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central fatigue were greatly reduced when normalized to maximal m-wave, thus, when 

estimating central fatigue, peripheral transmission must be accounted for. The authors 

concluded that caffeine may induce increases in post-activation potentiation and could 

provide utility in the measure of central fatigue.  

Kalmar and Cafarelli (2006) 

The purpose of this investigation was to examine whether declines in central 

excitability contribute to the central fatigue post exercise and if this potential decrease in 

central excitability could be counteracted with caffeine supplementation. Eight men 

completed two experimental sessions in which knee extensor torque, voluntary activation, 

peripheral transmission, contractile properties, and central excitability were measured 

prior to and after caffeine (6 mg/kg/bw) or placebo following an initial hour of rest. 

Finally, a fatigue protocol consisting of sets of 10 4-s knee extension contractions, in 

which the first and last contraction were maximal and the middle 8 were 50% of max, 

was completed until a 35% drop in maximal voluntary torque was seen. The authors 

found a significant increase in central excitability, as exhibited by an increased pre-

fatigue motor evoked potential and cortically evoked twitch, following caffeine 

administration. The authors also found that caffeine potentiated the motor evoked 

potential early in the fatigue protocol and offset the sharp decline seen in the placebo 

condition. However, this was not associated with an increased voluntary activation during 

fatigue or recovery. The authors thus concluded that caffeine improves central 

excitability and that changes in voluntary activation are not mediated by central 

excitability.  
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Kalmar et al. (2006)  

The purpose of this investigation was to examine the potential role of reduced 

spinal excitability in central activation failure and if this reduction could be mediated by 

acute caffeine supplementation. Ten male subjects volunteered to participate in two 

experimental sessions (6 mg/kg/bw of caffeine or placebo), in which contractile and 

electrical properties of the plantar flexors. Spinal excitability was measured as the ratio of 

h-reflex to maxima m-wave, while voluntary activation maximal electromyography and 

interpolated twitch. Both conditions saw a significant reduction in maximal voluntary 

strength and voluntary activation. However, caffeine offset the reduction in spinal 

excitability observed during the placebo condition. Interestingly, the decline in spinal 

excitability was correlated with a decline in maximal electromyography amplitude, but 

not with decline in maximal voluntary strength or voluntary activation. The authors 

concluded that the decline in spinal excitability did not limited maximal activation of the 

plantar flexors following a fatiguing protocol.  

Lopes et al. (1983) 

The purpose of this investigation was to examine the effects of caffeine on 

voluntary and electrically stimulated contractions of the adductor pollicis muscle. Five 

healthy adults completed a series of voluntary and electrically evoked contractions prior 

to and immediately after caffeine (500 mg) and placebo. The authors reported no 

difference in maximal voluntary strength prior to either supplement. However, in fresh 

muscle and after fatigue, the authors reported higher muscle tensions at lower frequency 

stimulation following caffeine supplementation, resulting in a leftward shift of the 
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frequency-force curve. The authors concluded that 500 mg of caffeine alters muscle 

contractile properties in both a fresh and fatigued state.  

Meyers and Cafarelli (2005)  

The purpose of this investigation was to examine whether the previously reported 

increase in time to task-failure following caffeine supplementation was a function of 

increased firing rates of active motor units. Ten male volunteers completed a fatigue 

protocol consisting intermittent quadriceps contractions at 50% of maximal strength 1-

hour after the ingestion of either caffeine (6 mg/kg/bw) or placebo, in a randomized, 

double-blind, repeated-measures design. The authors found a significant increase in time 

to fatigue in the caffeine condition, when compared to placebo. However, this increase 

could not be explained by increase motor unit firing rates or other neuromuscular 

parameters. Interestingly, in the caffeine condition, the amplitude of evoked twitches and 

their maximal instantaneous firing rate of relaxation did not decline to the same degree as 

the placebo condition. The correlation with these variables and the increase in time to 

task-failure led the authors to suggest that caffeine effects on calcium reuptake and twitch 

force may be the primary mechanisms for increased time to fatigue following caffeine 

administration.  

Mora-Rodríguez et al. (2012)  

The purpose of this study was to examine the efficacy of caffeine to counteract 

the decline in neuromuscular performance during the morning hours associated with the 

circadian rhythm. Twelve resistance-trained males volunteered for this double-blind, 

repeated measures design in which a neuromuscular function was assessed under 3 
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conditions: 1) morning with caffeine (3 mg/kg/bw); 2) morning with placebo; 3) 

afternoon with placebo. Bar velocity during 75% 1-repetition maximum bench press and 

back squat, as well as maximal voluntary contraction strength and electrically evoked 

contractions of the right quadriceps were measured prior to and post-supplement 

consumption in each condition. Dynamic strength and power output were significantly 

enhanced in the afternoon when compared to the morning placebo condition. However, 

during the morning caffeine condition, participants exhibited significantly higher 

muscular strength and power output, with the exception of bench press velocity, then the 

morning placebo condition. Additionally, evoked measures were significantly higher in 

the morning caffeine condition, when compared to the morning placebo. The authors 

concluded that morning caffeine administration can bring neuromuscular performance to 

afternoon levels. Additionally, the authors suggested that due to the increase in evoked 

contractions, the performance increases most likely occur at the muscle level.  

Morse et al. (2016) 

The purpose of this investigation was to examine whether a low-dose of caffeine 

would delay the onset of the electromyographic fatigue threshold in the superficial 

quadriceps musculature. Ten physically actives males completed 1-hour of single-leg 

cycling in which electromyographic signals were recorded from the vastus medialis, 

vastus lateralis, and rectus femoris following either caffeine (200 mg) or placebo in a 

randomized, double-blind, repeated measures design. The authors found a significant 

increase in maximal power output and electromyographic fatigue threshold following 

caffeine, when compared to placebo. The authors concluded that acute low-dose caffeine 

supplementation delays neuromuscular fatigue during single-leg cycling.  
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Pereira et al. (2010) 

The purpose of this investigation was to examine the effects of acute caffeine 

supplementation on anaerobic performance and fatigability. Fourteen (7 males and 7 

females) recreationally active volunteers completed a Wingate test following either 

caffeine (6 mg/kg/bw) or placebo in this randomized, double-blind, repeated measures 

study. Wingate power output variables and median power frequency of the vastus 

medialis, vastus lateralis, and rectus femoris were recorded during the testing. The results 

of the investigation showed no improvement in relative peak power, relative mean power, 

fatigue index, or peak power instant, nor in median power frequency of any quadriceps 

muscle. The authors concluded that caffeine offered no benefit to the Wingate 

performance parameters measured in the present investigation.  

Pethick et al. (2018) 

The purpose of this investigation was to examine the effects of acute caffeine 

consumption of muscle torque complexity of the knee extensors. Sixty minutes after 

caffeine consumption (6 mg/kg/bw) or placebo, 11 healthy participants completed 

intermittent (6 s. work/4 s. rest) isometric contractions at 50% of their maximal voluntary 

torque in this randomized, double-blind, repeated measures design. Torque complexity 

and fractal scaling of the torque were measured throughout the fatigue protocol and 

global, central, and peripheral fatigue (through peripheral nerve stimulation) were 

measured prior to and immediately post-fatigue. Caffeine significantly increased time to 

fatigue and complexity significantly decreased as global, peripheral, and central fatigue 

developed in both conditions. Interestingly, the rate of decrease in complexity, as well 
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and the rate of development of central and global fatigue were significantly slower 

following caffeine supplementation. However, there were no differences in the rate of 

peripheral fatigue between conditions. The authors concluded that caffeine delayed the 

accumulation of fatigue and loss of torque complexity leading to an increase in time to 

task-failure, which are most likely due to centrally-mediated mechanisms.  

Pires et al. (2018)  

The purpose of this investigation was to examine the effect of caffeine and 

caffeine-perceived placebo on motor performance during a maximal incremental cycling 

test. Nine participants completed three incremental cycling tests (control, placebo, or 

caffeine) in a randomized, double-blind, repeated measures design 60 minutes following 

the ingestion of the substance. Prefrontal cortex oxygenation, motor cortex activation and 

vastus lateralis and rectus femoris muscle activity were measured throughout each test. 

Both placebo and caffeine significantly increased rectus femoris muscle activity at 

maximal effort and enhanced peak power output and time to exhaustion, when compared 

to control. At 80% and 100% duration of the test, both placebo and caffeine exhibited 

increase prefrontal cortex deoxygenation, but not motor cortex activation, when 

compared to control. The authors concluded that both caffeine and a caffeine-perceived 

placebo can improve motor performance, despite the lack of change in motor cortex 

activation and a decrease in prefrontal cortex deoxygenation.  

Plaskett and Cafarelli (2001) 

The purpose of study was to examine the effects of caffeine on neuromuscular 

parameters during submaximal isometric contractions. In a randomized, double-blind, 
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repeated measures design, 15 subjects completed repeated 50% maximal effort isometric 

contractions of the knee extensors to failure 1-hour following the ingestion of caffeine (6 

mg/kg/bw) or placebo. Time to task-failure was significantly increased after caffeine 

when compared to placebo. Interestingly, changes in contractile properties of the 

quadriceps, motor unit activation and m-wave amplitude could not account from the 

changes seen with caffeine administration. The authors reported a reduced “force 

sensation” during the first 10-20 second of the contraction in the caffeine condition, when 

compared to placebo. The authors thus suggested that caffeine exerts its effects due to 

neural factors and stated the increase in time to task-failure may have been caused by “a 

willingness to maintain near-maximal activation longer because of alterations in muscle 

sensory processes.”   

Walton et al. (2002) 

The purpose of this study was to examine the effect of caffeine on the self-

sustained firing of motor units of the tibialis anterior. Seven caffeine naïve male ingested 

either caffeine (6 mg/kg/bw) or placebo in this randomized, double-blind, repeated 

measures study. Maximal voluntary contractions, surface electromyography and 

intramuscular motor unit recordings were recorded prior to and 1-hour following the 

ingestion of each supplement. The authors found a significant increase in the occurrence 

of self-sustained firing of motor units in the tibialis anterior following caffeine ingestion.  

Walton et al. (2003) 

The purpose of this investigation was to examine whether acute caffeine ingestion 

would cause an increase in spinal excitability and h-reflex amplitude. Seven subjects 
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completed 2 experimental visits in this double-blind, randomized, repeated measures 

design. An h-reflex recruitment curve was recorded through tibial nerve stimulation 

immediately prior to and 1-hour post-caffeine (6 mg/kg/bw) or placebo ingestion. The 

authors found a significant increase in the slope of the h-reflex (normalized to m-wave) 

following caffeine administration. The author thus concluded that caffeine can effectively 

increase spinal excitability following a dosage of 6 nmg/kg/bw. 

. 
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CHAPTER III 

 

 

METHODOLGOY 

3.1 Participants  

Forty-two young, healthy males completed the entire study protocol and were 

genotyped for CYP1A2 enzyme. Subjects were then classified as AA (FAST: n = 26) or 

AC/CC (SLOW; n =16). Table 1 contains the data for descriptive statistics (presented as 

mean ± (SD), along with the results of the independent samples t-tests. All participants 

voluntarily participated in each testing session, which took place in the Applied 

Neuromuscular Physiology Laboratory at Oklahoma State University. This study was 

approved by the Oklahoma State University Institutional review board for human 

participant research (Approval #: ED-17-88) prior to any data collection. Prior to any 

testing, all participants completed an informed consent, pre-exercise health questionnaire, 

caffeine consumption questionnaire, and a brief exercise history survey to quantify their 

habitual caffeine consumption and physical activity. Participants were included in the 

study if they met the inclusion criteria and were free from any musculoskeletal 

dysfunctions or circulatory/edema pathologies involving the hip, knee, or ankle joints. 

Participants also reported being free from any neurological disorders. 
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 FAST SLOW Sig. 

Age  22 ± 3 yrs 24 ± 4 yrs p = 0.204 

Height  176.0 ± 6.8 cm 179.6 ± 5.0 cm p = 0.075 

Weight  89.0 ± 15.0 kg 87.0 ± 10.6 kg p = 0.653 

Avg. Caffeine Intake 290.6 ± 295.1 mg/day 324.7 ± 276.3 mg/day P = 0.715 

Table 1. Mean ± SD and p-values for descriptive variables between CYP1A2 genotype 

groups.  

3.2 Experimental Design  

This study consisted of 3 separate visits to the laboratory, a familiarization session 

and 2 experimental sessions. The familiarization session lasted approximately 1 hour, 

while each experimental session lasted approximately 3 hours. Each experimental session 

was separated by 6 ± 1 days and took place at approximately the same time of day (±1 

hour).  Additionally, every effort was made to begin experimental sessions in the 

morning, as caffeine has been shown to have potentially dampened ergogenic effects in 

the afternoon (Pataky et al. 2016). Participants were instructed to refrain from any 

structured lower body exercise 48 hours prior to each testing session and abstain from 

caffeine consumption throughout the duration of their enrollment in the study (i.e. 2 

weeks)., Thus participants were withdrawn from caffeine for a minimum of 5 days prior 

to the first experimental visit. On the first visit, following the explanation of all study 

procedures, the signing of the informed consent and the completion of the required 

paperwork, the participant’s height and weight were measured. Each participant was then 

seated in the dynamometer and completed several practice contractions required during 

future testing sessions, which upon completion, completed the familiarization session. 

For each experimental condition, participants were instructed to arrive at the laboratory in 

a fasted state. Upon arrival, participants were instructed to lie in a supine position for 5 

minutes. Following this 5-minute period, body composition was measured via 
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Bioelectrical Impedance Spectroscopy (BIS; ImpediMed, Inc., Carlsbad, CA, USA) in 

order to quantify each individual’s fat mass (FM) and fat free mass (FFM). Following the 

assessment of body composition, ultrasound (US) images of the right thigh were 

performed to quantify the size, and quality of each participant’s rectus femoris (RF) and 

vastus lateralis (VL). All body composition measures and US images were obtained 

while the participant remained in the supine position. Participants were then seated in a 

dynamometer in for all neuromuscular function assessments. Specifically, h-reflex and 

m-wave of the soleus and m-wave of the quadriceps musculature were measured via 

peripheral nerve stimulation. Evoked twitch properties of the quadriceps musculature 

were assessed in incremental steps, culminating in the measurement of the compound 

muscle action potential (CMAP). These previously mentioned evoked involuntary 

measures occurred prior to any warm-up (Folland et al. 2008). Following a brief warm-

up, subjects then performed maximal voluntary isometric contraction (MVIC) testing, in 

which the subject’s maximal voluntary torque (MVT) was recorded. Additionally, 

voluntary activation (%VA), resting doublet, and potentiated doublet twitch properties 

were assessed via the interpolated twitch technique (ITT). Finally, subjects completed 2 

MVIC ramp contractions at 30%, 50%, and 70% of their MVIC force in order to record 

motor unit (MU) behavior. Approximately 2 minutes of rest was given between each 

ramp contraction. Following the completion of neuromuscular function testing, subject’s 

consumed either 6 mg/kg/bw of caffeine anhydrous (CAF) or flour placebo (PLA), which 

was provided in gelatin capsules. Participants then remained seated in the dynamometer 

for one-hour of rest following the consumption of the supplement. One-hour post 

consumption, neuromuscular function was again completed in the manner described 
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above. Following the completion of post-consumption testing and a 5-minute washout 

period, subjects completed repeated 50% MVIC ramp contractions to fatigue, followed 

by an additional ITT to quantify fatigue. MU behavior, muscle activation and torque 

variables were analyzed during the first, middle and last repetitions of the fatigue 

protocol. Upon the completion of the fatigue protocol, the experimental visit was 

completed. Torque and electromyographic (EMG) signals were recorded continuously 

during all quadriceps measurements. Each experimental visit (i.e. CAF or PLA) was 

identical in procedures and the order was randomized for each participant. Below is a 

summary of each visit in Table 2: 

Time Point Measures Completed  

 

 

Pre-Supplementation 

1. Body Composition 

2. Ultrasound Measures 

3. Evoked Measures of Soleus  

4. Evoked Measures of Quadriceps 

5. Voluntary Strength Measures  

6. Voluntary Activation  

7. Motor Unit Recordings 

Administration of Caffeine (6 mg/kg/bw) or Placebo (6 mg/kg/bw of flour) 

 

 

1-hour Post-Supplementation 

1. Evoked Measures of Soleus  

2. Evoked Measures of Quadriceps 

3. Voluntary Strength Measures  

4. Voluntary Activation 

5. Motor Unit Recordings 

5-minutes of rest 

Fatigue Protocol (Repeated 50% MVIC contractions to fatigue ) 

Post-Fatigue  1. Voluntary Activation  

Table 2. Overview of study procedures.  
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3.3 Instrumentation and Procedures 

3.3.1 Ultrasonography 

 Cross-sectional area (mCSA) and echo intensity (EI) of the right VL and RF 

musculature were obtained using a portable brightness mode (B-Mode) 

diagnosticultrasound imaging device (GE Logic S8, Milwaukee, WI, USA) with a linear 

array probe (model ML6-15-D, 4-15 MHz, 50-mm field view) via transverse images. All 

US images were taken with the participants laying on their left side on an adjustable 

padded plinth with their legs completely relaxed and knees bent at approximately 10°. All 

US images were taken at 50% of the distance between the right greater trochanter and the 

lateral femoral epicondyle. During each panoramic US scan, the probe was placed 

perpendicular to the skin and advanced laterally along the skin above the musculature in a 

slow, consistent manner, with great care taken to ensure minimal and consistent pressure. 

A generous amount of water-soluble transmission gel was applied to the skin to enhance 

acoustic coupling (Wilhelm et al. 2014). In order to maintain consistency between 

subjects and visits, the gain and frequency settings were recorded and held constant, at 50 

dB and 12Hz, respectively. Depth was also held constant between each participant and 

visit to keep the pixels per cm standardized. Panoramic US images were captured until 

three uniform scans with acceptable image quality were collected and recorded for future 

analyses (Jenkins et al. 2015b). 

A single experienced investigator performed all US scans in order to minimize the 

inter-rater variability. All recorded US images were analzyed using Image-J software 

(National Institutes of Health, USA, Version 1.50i) and were performed by a single 

experienced investigator. Each image was individually calibrated from pixels to cm using 
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the straight-line function available in Image-J. VLmCSA, VLEI, RFmCSA, and RFEI of the 

three images were analyzed by defining a region of interest by including as much muscle 

as possible, without including any bone or fascia, using the polygon function available in 

the Image-J software. EI for each muscle was quantified using computer-aided gray scale 

analysis using the standard histogram function and was recorded in arbitrary units (au) 

with values ranging from 0 (black) to 255 (white). All VLmCSA, VLEI, RFmCSA, and RFEI 

were recorded, stored, and used in the final analysis. 

3.3.2 Evoked Measures  

Evoked measures of the quadriceps and soleus musculature were assessed in the 

present investigation. During all testing, participants were seated with straps securing the 

trunk and hips on a calibrated isokinetic dynamometer (Biodex System 4; Biodex 

Medical Systems, Inc. Shirley, NY, USA) with the axis of rotation of the dynamometer 

head aligned with the lateral epicondyle of the subject’s right femur. For all quadriceps 

muscle actions, the lower right leg was secured to the dynamometer lever arm 

approximately 3 cm above the lateral malleolus. Additionally, all participant’s hip and 

knee angle was held constant at approximately 90° and 120°, respectively, which was 

held constant throughout all testing. 

Maximal M-wave of the soleus (SOLM) musculature was assessed via 

transcutaneous electrical stimulation of the tibial nerve. Briefly, the stimuli were 

delivered via a cathode-anode arrangement using high voltage (maximal voltage = 400 V) 

stimulus from a constant-current electrical stimulation cart (Cadwell Sierra Summit, 

Cadwell Industries, Inc., Kennewick, WA, USA). The anode and cathode of the probe 

(Cadwell Stimtroller Plus, Cadwell Industries, Inc., Kennewick, WA, USA) were placed 
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on either side of the tibial nerve, with a recording electrode placed on the muscle belly of 

the soleus, a reference electrode on the Achilles tendon, and a ground electrode on the 

medial malleolus. The optimal stimulation probe position was determined by delivering 

single low-voltage exploratory stimuli (20-30 mV) with the cathode probe. Final probe 

location was selected based on visual inspection of the CMAP amplitudes. Once the 

optimal probe position was obtained, the spot was marked with permanent marker and 

used for both SOLM and soleus h-reflex (SOLH) assessments. This mark was maintained 

throughout the duration of the investigation to obtain consistent probe placement across 

visits. For all m-wave assessments, incremental increases in intensity were made until a 

plateau in the CMAP was found. Following the successful measurement of the CMAP, a 

baseline measure where no m-wave was present was located and recorded. Once this was 

recorded, a step-wise increase (i.e. 5 mV) from baseline back to CMAP was completed in 

order to obtain a recruitment curve for each subject. The muscle activation and the torque 

produced by each incremental evoked twitch were recorded. Following the CMAP 

plateau, two supramaximal (i.e. 120% of maximal CMAP stimulation) stimulations were 

delivered, if possible. Throughout the duration of the protocol, 10 seconds were given 

between each stimulation to ensure complete neuromuscular recovery. The mean m-wave 

peak-to-peak (MMAX) amplitude of the two stimulations was defined as the maximal m-

wave or SOLM. SOLM was used for the normalization of the voluntary EMG variables 

and SOLH.  

Following the completion of the SOLM assessment, SOLH was assessed in a 

similar manner. Briefly, the subject was seated and relaxed in the dynamometer, with 

their head resting on the cushion and eyes closed to further facilitate the reflex. The 
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polarity of the probe was reversed and stimulation width increased to 1k. Incremental 

increases in stimulation were applied to the tibial nerve until a maximal SOLH was 

achieved, as visually observed in real time. An additional SOLM was then measured and 

recorded. M-wave of the RF (RFM) and VL (VLM) were then assessed via transcutaneous 

electrical stimulation of the femoral nerve, with the procedures remaining consistent from 

the SOLM. The recording electrode was placed on the belly of the VL, with the reference 

electrode on the distal quadriceps tendon and the ground electrode remaining on the 

medial malleolus. However, RFM, VLM, and EMG variables were recorded through 

separate bipolar electrodes (discussed further in section 3.3.4). Torque and EMG were 

recorded continuously throughout the protocol and further analyzed offline The cathode 

of the probe was placed in the femoral triangle, with the anode (40 x50mm, Technomed 

Medical Accessories, Amerikalaan 71, Netherlands) on the greater trochanter of the right 

femur. The placement of the cathode was marked with permanent marker in order to 

ensure consistent placement between visits  

Evoked twitch properties measures included resting peak twitch torque (pTT), 

resting peak rate of twitch torque development (+dt/dt), resting peak rate of twitch 

relaxation (-dt/dt), resting doublet peak twitch torque (pTTD), potentiated doublet peak 

twitch torque (pTTPOT), resting doublet peak rate of twitch torque development (+dt/dtD), 

potentiated double peak rate of twitch torque development (+dt/dtPOT), resting doublet 

peak rate of relaxation (-dt/dtD), and potentiated doublet peak rate of relaxation (-

dt/dtPOT).  
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3.3.3 Maximal Strength and Voluntary Activation  

 For all voluntary isometric testing, participants were seated with straps securing 

the trunk, and hips on a calibrated isokinetic dynamometer with the axis of rotation of the 

dynamometer head aligned with the lateral epicondyle of the subject’s right femur, with 

the lower right leg was secured to the dynamometer lever arm approximately 3 cm above 

the lateral malleolus. Each participant’s hip and knee angle were held constant at 120°, 

respectively, which were held constant throughout all testing. Participants completed a 

submaximal isometric warm-up by performing 3, 3-second contractions at 25%, 50%, 

and 75% of their perceived effort, with approximately 30 seconds of rest between 

contractions. Following the warm up and 1 minute of rest, 2 separate 3-5 second MVICs 

of the knee extensors were performed. One minute of rest was given between each 

attempt in order to avoid any undue fatigue. For each MVIC contraction, the participant 

was instructed to kick out “as hard as possible” during the entire contraction (Tomko et 

al. 2018). MVT was defined as the highest instantaneous torque produced during a 1000 

ms epoch of the MVIC contractions and recorded to normalize force during the MU ramp 

contractions. 

Finally, an additional MVIC was performed in order to assess %VA via ITT. 

Specifically, prior to the contraction, a doublet stimulus was applied to the femoral nerve 

in order to obtain a resting doublet twitch. The subject then completed an MVIC, in 

which another doublet stimulus was applied during the force plateau of the contraction 

(i.e. ITT), with an additional doublet stimuli applied 3 to 5 seconds following the 

completion of the contraction (i.e. potentiated twitch). %VA was calculated as (1- 



40 
 

[superimposed twitch/potentiated twitch])*100 (Behm et al. 1996). Loud verbal 

encouragement was given during each voluntary contraction.   

3.3.4 Surface Electromyography 

 Surface EMG signals were collected from bipolar bar electrodes (Delsys, Inc., 

Natick, MA, USA) placed over the VL and RF of the right leg using a 16-channel 

Bagnioli acquisition system (Delsys, Inc., Natick, MA, USA). EMG variables analyzed 

included normalized (to VLM) EMG amplitude (VLAMP), VL median power frequency 

(VLMDF), VL integrated EMG (VLiEMG), normalized (to RFM) EMG amplitude (RFAMP), 

RF median power frequency (RFMDF) and RF integrated EMG (RFiEMG). Additionally, 4 

channels of EMG were recorded from a specialized five-pin array that was placed over 

the distal portion of the VL in accordance with the recommendations set forth by Zaheer 

et al. (2012). In order to minimize skin impedance and improve signal quality, the skin 

was shaved, abraded and cleansed with isopropyl alcohol prior to the placement of the 

surface electrodes (Beck and Housh 2008). Each sensor was secured to the skin with 

hypoallergenic tape directly and was placed over the muscle belly in line with the muscle 

fiber orientation in a bipolar fashion (Lieber and Friden 2000) in accordance with 

SENIAM guidelines (Hermens et al. 1999). A reference electrode (Dermatrode; 

American Imex, Irvine, CA, USA) was placed over the spinous C7 process. All sensor 

locations were marked with permanent marker to ensure consistent placement between 

visits.  
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3.3.5 Motor Unit Decomposition 

MU behavior was recorded through the 4 channels of raw EMG signal recorded 

from the 5-pin array placed over the distal portion of the VL. In order to record MU 

behavior, isometric ramp contractions were completed in a randomized order at 30%, 

50%, and 70% of each subject’s previously recorded MVT. Two contractions were 

completed at each intensity and 2 minutes were given between each contraction to 

minimize the effects of fatigue. Each contraction featured a 10% MVT/s ramp up to the 

target torque level, a hold at the target torque, and a 10% MVT/s ramp down to baseline 

(Colquhoun et al. 2018b). All recorded signals were stored on a personal computer and 

decomposed offline using the Precision Decomposition III Algorithm first described by 

De Luca et al. (2006) and improved upon by Nawab et al. (2010). Following the 

decomposition process, only MUs demonstrating at least 90.0% accuracy, as determined 

by the Decompose-Synthesize-Decompose-Compare test, were retained and utilized in 

the final analyses. Additionally, as the purpose of these recordings was to characterize 

MU behavior at rest, all MUs recruited during the plateau of the contraction were 

excluded from final analysis (Miller et al. 2019). Finally, only contractions following the 

recommendations set forth by Colquhoun et al. (2018b) were utilized in the final 

analyses.  

All MU firing rate curves were smoothed prior to calculation by low-pass filtering 

each MUs impulse train with a 2-second Hanning window. Custom-written LabVIEW 

programs were used to analyze all of the MUs that met the inclusion criteria described 

previously. The MU properties calculated by the LabVIEW programs from each 

contraction were those previously described by Colquhoun et al. (2018a; 2018b). 



42 
 

Specifically, these variables included: [1] Recruitment threshold (RT), which is defined 

as the relative force (% MVIC) at which the MU first discharged; [2] Mean firing rate 

(MFR), which was calculated of as the average firing rate (pulses·s-1 (pps)) during the 

plateau in each individual MU’s firing curve; and [3] MU action potential amplitude 

(MUAP) , defined as the average peak-to-peak amplitude (mV) of the waveforms across 

the 4 EMG channels. MU behavior was expressed as a function of RT and MUAP. For 

the MFR vs. RT relationship, linear regression was utilized (Colquhoun et al. 2018a; 

Colquhoun et al. 2018b). For all other relationships, exponential regressions were run 

(Miller et al. 2019). 

3.3.6 Fatigue Protocol  

During both experimental conditions, subject’s completed an isometric fatigue 

protocol consisting of repeated 50% MVT isometric ramp contractions until failure. Each 

ramp contraction began and ended with a 3 second quiescent period, with a 5 second 

ramp to target torque, a 10 second hold at target torque, and a 5 second ramp back to 

baseline. Contractions were repeated until the subject if not longer able to maintain at 

least 45% of MVT for at least 80% of the plateau (Pethick et al. 2018). During the 

fatiguing exercise protocol, average torque (TQAVG), standard deviation of torque (TQSD), 

coefficient of variation of torque (TQCV), and torque impulse (TQIMP) were quantified.   

3.4 Torque and EMG Signal Processing 

EMG and Torque signals were recorded simultaneously during all voluntary and 

evoked isometric contractions of the quadriceps described previously and analyzed using 

custom-written LabVIEW programs (LabVIEW 2017; National Instruments, Austin, TX, 
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USA). The torque and EMG signals were preamplified with a common mode rejection 

ratio of 110 dB min and an impedance of 2M Ω and sampled at 20 kHz with through the 

Bagnioli acquisition system. The signals were zero-meaned and digitally filtered using a 

zero-phase shift 4th-order Butterworth filter with a band pass of 10 – 499 Hz. The torque 

signals were zero-meaned, low-pass filtered using a zero-phase shift 4th-order 

Butterworth filter with a 15 Hz cutoff. Torque and EMG onset were manually detected 

from the filtered signals to provide a more accurate analysis of torque and EMG variables 

(Folland et al. 2014; Tillin et al. 2013). All onsets were manually determined by the same 

investigator to avoid inter-rater reliability bias. Further, all recorded signals were stored 

on a personal computer and processed off-line with a custom written LabVIEW program. 

All analyses were completed using only filtered signals. 

3.5 Saliva Analysis  

Saliva samples were collected from each participant on the last experimental visit 

to quantify their CYP1A2 genotype, among others. Saliva samples were collected using 

an Oragene ON-500 saliva collection kit (DNA Genotek, Ottawa, Ontario, Canada) for 

DNA analysis. All DNA samples were shipped to the University of Toronto for analysis 

and were stored at -80⁰C until final analyses. Briefly, genotyping was performed using 

the iPLEX Gold assay with mass-spectrometry-based detection on the Sequenom 

MassARRAY® platform (Agena Bioscience, San Diego, CA, USA) as previously 

described by Guest et al. (2018). Further detail on DNA analysis can be found in Jenkins 

et al. (2018).  
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3.6 Statistical analysis 

 Descriptive statistics of the participants are displayed in Table 1 as means ± 

standard deviations to describe the between-subject variability. Body composition and 

US measures for individual subjects were averaged across days and independent samples 

t-tests were run to quantify and potential differences between genotypes. All statistical 

analysis was performed using SPSS v. 24 (SPSS Inc., Armonk, New York, USA) and the 

type-I error rate was set a-priori at 5%.   

 Separate two (Condition) x 2 (Time) x 2 (Genotype) mixed-model anaylsees of 

variances (ANOVs) were run to examine resting changes in MVT, SOLM, SOLH, RFM, 

VLM, %VA, pTT, +dt/dt, -dt/dt, pTTD, pTTPOT, +dt/dtD, +dt/dtPOT, -dt/dtD, -dt/dtPOT, 30% 

MFR vs. RT slope, 30% MFR vs. RT y-intercept, 30% MUAP vs. RT A term, 30% 

MUAP vs. RT b term, 30% MFR vs. MUAP A term, 30% MFR vs. MUAP b term, 50% 

MFR vs. RT slope, 50% MFR vs. RT y-intercept, 50% MUAP vs. RT A term, 50% 

MUAP vs. RT b term, 50% MFR vs. MUAP A term, 50% MFR vs. MUAP b term, 70% 

MFR vs. RT slope, 70% MFR vs. RT y-intercept, 70% MUAP vs. RT A term, 70% 

MUAP vs. RT b term, 70% MFR vs. MUAP A term, and 70% MFR vs. MUAP b term. 

Additionally, separate 2 (Condition) x 2(Time) x 2 (Genotype) mixed-model ANOVAs 

were utilized to examine potential changes from post-supplementation to post-fatigue in 

%VA, pTTD, pTTPOT, +dt/dtD, +dt/dtPOT, -dt/dtD, and -dt/dtPOT..In order to quantify 

changes during the fatiguing protocol at the first, middle, and last repetition, separate 2 

(Condition) x 3 (Time) x 2 (Genotype) mixed-model ANOVAs were run to analyze 

TQAVG, TQSD, TQCV, TQIMP, VLiEMG, VLMDF, VLAMP, RFiEMG, RFMDF, RFAMP, MFR vs. 

RT slope, MFR vs. RT y-intercept, MUAP vs. RT A term, MUAP vs. RT b term, MFR 
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vs. MUAP A term, and MFR vs. MUAP b term.  Significant interactions were 

decomposed with follow up, lower-order ANOVAs and Sidak corrected dependent 

samples t-tests on the simple main effects.  Simple main effects that were not involved in 

the interaction were analyzed with Sidak corrected dependent samples t-tests on the 

marginal means. Finally, simple linear regression analyses were performed to quantify 

the relationship between twitch variables and change in MVIC across conditions. The 

partial eta-squared effect sizes were calculated for each ANOVA. 
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CHAPTER IV 

 

 

RESULTS 

 

4.1 Body Composition & Ultrasonography  

Table 3 presents the body composition and US data, along with the results of the 

independent samples t-tests. All data are presented as mean ± SD. 

 FAST SLOW Sig. 

Rectus Femoris Cross-Sectional Area (RFmCSA) 11.6 ± 3.2 cm2 11.8 ± 1.9 cm2 p = 0.852 

Rectus Femoris Echo Intensity (RFEI)  37.9 ± 5.3 au 40.6 ± 5.3 au p = 0.115 

Vastus Lateralis Cross-Sectional Area (VLmCSA)_ 35.3 ± 5.1 cm2 32.4 ± 9.0 cm2 p = 0.179 

Vastus Lateralis Echo Intensity (VLEI)  45.6 ± 7.3 au 50.2 ± 5.0 au p = 0.032* 

Fat-Free Mass (FFM) 73.6 ± 10.1 kg 75.1 ± 8.3 kg p = 0.635 

Fat Mass (FM) 14.2 ± 8.4 kg 17.7 ± 8.8 kg p = 0.213 

Table 3. Mean ± SD and p-values for ultrasound and body composition measures 

between genotype groups.  

*Indicates significant difference between groups  

 

The results of the independent samples t-tests indicated a significantly higher VLEI in 

SLOW when compared to FAST (50.2 ± 5.0 au vs. 45.6 ± 7.3 au; p = 0.032). 

4.2  Neuromuscular Function: Pre vs. Post Supplementation 

The following results represent data examining changes in neuromuscular function 

prior to- (PRE) and 1-hour following (POST) caffeine (CAF) and placebo (PLA) 

supplementation.  Neuromuscular changes associated with the fatiguing exercise protocol 

are discussed later in the section 4.3. 
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4.2.1 Maximal Voluntary Isometric Contraction (MVIC) Strength   

A significant Condition × Time interaction (F1,37 = 7.563; p = 0.009; η2 = 0.170) 

was observed. Follow-up analyses indicated that there was a significant decrease in 

MVIC strength from PLAPRE to PLAPOST (295.6 ± 65.2 Nm vs. 268.7 ± 73.5 Nm; p = 

<0.001), but not from CAFPRE to CAFPOST (295.7 ± 68.9 Nm vs. 286.6 ± 75.4 Nm; p = 

0.094). There were no other main effects or interactions (all p > 0.05). This data is 

visually depicted below in Figure 1 

. 

Figure 1. Individual plots of Maximal Voluntary Torque (MVT) obtained during 

Maximal Voluntary Isometric Contractions (MVIC) prior to and following caffeine 

(CAF) and placebo (PLA) ingestion. The orange bars represent the mean MVT during 

each condition.  

*Indicates significant decrease in MVT from PLAPRE to PLAPOST (p = <0.001). 

 

4.2.2 Motor Unit (MU) Behavior  

The following results represent data examining the relationship between mean 

firing rate (MFR), recruitment threshold (RT), and MU action potential (MUAP) 

amplitude at PRE and POST in each condition. Twenty-six subjects met the MU criteria 
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for all 3 contraction intensities and were utilized in the following analyses. The genotype 

breakdown was: FAST (n = 15) and SLOW (n = 11). Changes in MU behavior during the 

fatiguing exercise protocol will be discussed separately in section 4.2.1.  

4.2.2.1 30% MVIC  

The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize MU behavior at 30% MVIC can be found below in 

Table 4. The average number of MUs analyzed per subject were: CAFPRE: 20.9 MUs 

(95% CI: 18.7-23.2 MUs), CAFPOST: 22.2 MUs (95% CI: 20.1-24.2 MUs), PLAPRE: 21.0 

MUs (95% CI: 18.8-23.2 MUs), and PLAPOST: 21.9 MUs (95% CI: 19.9-23.9 MUs). The 

mean RT range (% MVIC) for analyzed MUs were: CAFPRE: 4.9-23.5%, CAFPOST: 6.7-

25.1%, PLAPRE: 5.2-24.4%, and PLAPOST: 5.6-25.3%. Significant main and interaction 

effects are discussed below.  

 MFR vs. RT MUAP vs. RT MFR vs. MUAP 

 Slope Y-Int A b A b 

Condition 0.231 0.986 0.474 0.192 0.297 0.336 

Condition x Genotype 0.290 0.646 0.033* 0.254 0.432 0.427 

Time 0.627 0.758 0.492 0.280 0.356 0.748 

Time x Genotype 0.951 0.680 0.626 0.924 0.836 0.325 

Condition x Time 0.055 0.063 0.134 0.172 0.895 0.574 

Condition x Time x Genotype 0.573 0.676 0.139 0.530 0.825 0.574 

Genotype 0.737 0.652 0.094 0.491 0.245 0.273 

Table 4. P-values for interaction and main effects for motor unit behavior at 30% MVIC 

pre- and post-supplementation. 

*Indicates significant interaction  

 

There was a significant Condition × Genotype interaction (F1,24 = 5.122; p = 

0.033; η2 = 0.176) for the A term in the MUAP vs. RT relationship. Follow-up 

independent samples t-tests indicated that the A term (collapsed across condition) was 

significantly greater in the SLOW versus FAST metabolizers (43.5 ± 21.1 mV vs. 29.0 ± 
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11.9 mV; p = 0.036) in the PLA condition. No other significant differences were 

observed (all p = 0.106-0.563).  

4.2.2.2 50% MVIC  

The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize MU behavior at 50% MVIC can be found below in 

Table 5. The average number of MUs analyzed per subject were: CAFPRE: 20.6 MUs 

(95% CI: 18.3-22.9 MUs), CAFPOST: 22.7 MUs (95% CI: 20.4-25.0 MUs), PLAPRE: 22.3 

MUs (95% CI: 20.4-24.2 MUs), and PLAPOST: 21.0 MUs (95% CI: 18.3-23.6 MUs). The 

mean RT range (% MVIC) for analyzed MUs were: CAFPRE: 10.8-41.6%, CAFPOST: 

12.6-42.0%, PLAPRE: 11.8-41.3%, and PLAPOST: 13.9-40.4%. Significant main and 

interaction effects are discussed below.  

 

 MFR vs. RT MUAP vs. RT MFR vs. MUAP 

 Slope Y-Int A b A b 

Condition 0.014† 0.022† 0.402 0.049† 0.335 0.498 

Condition x Genotype 0.196 0.646 0.366 0.870 0.229 0.427 

Time 0.065 0.022† 0.055 0.266 0.288 0.394 

Time x Genotype 0.691 0.657 0.567 0.998 0.383 0.467 

Condition x Time 0.622 0.648 0.069 0.019* 0.141 0.544 

Condition x Time x Genotype 0.566 0.908 0.322 0.838 0.434 0.338 

Genotype 0.211 0.645 0.086 0.739 0.057 0.317 

Table 5. P-values for interaction and main effects for motor unit behavior at 50% MVIC 

pre- and post-supplementation. 

†Indicates significant main effect  

*Indicates significant interaction 

 

There was a significant main effect for Condition (F1,24 = 7.007; p = 0.014; η2 = 

0.226) for the slope of the MFR vs. RT relationship. Follow-up t-tests revealed that the 

slope was significantly lower (-0.51 ± 0.20 pps·RT-1 vs. -0.45 ± 0.17 pps·RT-1; p = 0.014) 

and that the y-intercept was significantly greater (27.5 ± 7.2 pps vs. 25.6 ± 5.8 pps; p = 
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0.022) in the PLA versus CAF condition. Additionally, there was a main effect for Time 

(F1,24 = 6.027; p = 0.022; η2 = 0.201) the y-intercept of the MFR vs. RT relationship. Post-

hoc t-tests indicated that the y-intercept was significantly greater at POST than at PRE 

(27.7 ± 6.3 pps vs. 25.5 ± 5.5 pps; p = 0.018), when collapsed across conditions. Finally, 

a significant Condition x Time interaction (F1,24 = 6.344; p = 0.019; η2 = 0.209) was 

observed for the MUAP vs. RT b term. Post hoc t-tests found significantly higher b term 

of the MUAP vs. RT relationship in the PLAPOST condition, when compared to CAFPOST 

(0.055 ± 0.017 mV vs. 0.046 ± 0.017 mV; p = 0.005). 

4.2.2.3 70% MVIC  

The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize MU behavior at 70% MVIC can be found below in 

Table 6. The average number of MUs analyzed per subject were: CAFPRE: 22.5 MUs 

(95% CI: 20.1-24.8 MUs), CAFPOST: 24.7 MUs (95% CI: 21.9-27.5 MUs), PLAPRE: 22.7 

MUs (95% CI: 20.1-25.3 MUs), and PLAPOST: 22.3 MUs (95% CI: 19.9-24.8 MUs). The 

mean RT range (% MVIC) for analyzed MUs were: CAFPRE: 21.3-58.9%, CAFPOST: 

21.0-55.5%, PLAPRE: 22.4-58.4%, and PLAPOST: 23.6-56.6%. No significant interaction 

or main effects were found for any relationship (all p = >0.05).  

 MFR vs. RT MUAP vs. RT MFR vs. MUAP 

 Slope Y-Int A b A b 

Condition 0.093 0.053 0.907 0.832 0.694 0.872 

Condition x Genotype 0.195 0.571 0.764 0.459 0.107 0.468 

Time 0.243 0.470 0.198 0.152 0.611 0.191 

Time x Genotype 0.613 0.350 0.721 0.636 0.704 0.472 

Condition x Time 0.210 0.268 0.463 0.535 0.321 0.875 

Condition x Time x Genotype 0.876 0.626 0.313 0.102 0.322 0.573 

Genotype 0.416 0.660 0.127 0.353 0.251 0.102 

Table 6. P-values for interaction and main effects for motor unit behavior at 70% MVIC 

pre- and post-supplementation. 
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Figure 2. A-C) Mean firing rate (MFR) vs. recruitment threshold (RT) relationships 

across contractions intensities at pre- (CAFPRE) and post-caffeine (CAFPOST), as well as 

pre- (PLAPRE) and post-placebo (PLAPOST). D-F) Motor unit action potential amplitude 

(MUAP) vs. RT relationships across contractions intensities at CAFPRE, CAFPOST, 

PLAPRE, and PLAPOST. G-I) MFR vs. MUAP relationships across contractions intensities 

at CAFPRE, CAFPOST, PLAPRE, and PLAPOST. 

 

4.2.3 Muscle Activation & Spinal Reflexes 

The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize muscle activation & spinal reflexes can be found 

below in Table 7. Significant main effects are discussed below.  

 %VA VLM VLRMS RFM SOLM SOLH 

Condition 0.653 0.354 0.692 0.514 0.725 0.265 

Condition x Genotype 0.998 0.747 0.936 0.866 0.652 0.571 

Time 0.792 0.131 0.726 0.146 0.067 0.068 

Time x Genotype 0.225 0.410 0.452 0.748 0.842 0.512 

Condition x Time 0.406 0.991 0.931 0.504 0.541 0.563 

Condition x Time x Genotype 0.234 0.139 0.107 0.053 0.117 0.762 

Genotype 0.003† 0.593 0.302 0.287 0.149 0.450 

Table 7. P-values for interaction and main effects for muscle activation and spinal 

excitability from pre- to post-supplementation. 

†Indicates significant main effect  
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4.2.3.1 Voluntary Activation (%VA) 

There was a significant main effect for Genotype (F1,33 = 10.692; p = 0.003; η2 = 

0.256) for %VA. Post-hoc analyses revealed a significantly greater %VA in the SLOW 

metabolizers when compared to FAST metabolizers (96.4 ± 3.0% vs. 93.9 ± 2.6%; p = 

0.003). No other significant interactions or main effects were found.  

4.2.3.2 Vastus Lateralis (VL) M-Wave (VLM)  

No significant interaction or main effects were found (p = >0.05).  

4.2.3.3 Normalized VL Electromyographic Amplitude (VLAMP)  

No significant interaction or main effects were found (p = >0.05).  

4.2.3.4 Rectus Femoris (RF) M-Wave (RFM)  

No significant interaction or main effects were found (p = >0.05).  

4.2.3.5 Normalized Soleus H-Reflex (SOLH)  

No significant interaction or main effects were found (p = >0.05).  

4.2.3.6 Soleus M-Wave (SOLM)  

No significant interaction or main effects were found (p = >0.05).  

4.2.4 Muscle Contractile Properties 

The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize muscle contractile properties can be found below in 

Tables 8-10. Due to difficulties with recording, only thirty-five subjects (FAST = 22; 

SLOW= 13) exhibited useable data at all time points (PRE, POST, and FATIGUE) for 

both conditions and were utilized in the final analyses. Significant main effects are 

discussed below.  
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 pTT +dt/dt  -dt/dt 

Condition 0.072 0.579 0.728 

Condition x Genotype 0.903 0.710 0.223 

Time 0.033† 0.007† 0.419 

Time x Genotype 0.339 0.157 0.445 

Condition x Time 0.384 0.576 0.507 

Condition x Time x Genotype 0.723 0.761 0.347 

Genotype 0.191 0.303 0.672 

Table 8. P-values for interaction and main effects for evoked singlet properties pre- and 

post-supplementation. 

†Indicates significant main effect 

 

4.2.4.1 Singlet Peak Twitch Torque (pTT)  

There was a significant main effect for Time (F1,33 = 4.927; p = 0.033; η2 = 0.130) 

for pTT. Post-hoc paired samples t-tests found a significantly higher pTT at PRE when 

compared to POST (48.4 ± 11.1 Nm vs. 44.5 ± 12.4 Nm; p = 0.033), when collapsed 

across condition. No other significant interaction or main effects were found (p = >0.05). 

4.2.4.2 Singlet Peak Rate of Torque Development (+dt/dt) 

There was a significant main effect for Time (F1,33 = 8.318; p = 0.007; η2 = 0.201) 

for +dt/dt. Post-hoc paired samples t-tests revealed a significantly greater +dt/dt at PRE 

when compared to POST (794.3 ± 298.3 Nm·s-1 vs. 700.9 ± 270.3 Nm·s-1; p = 0.007), 

when collapsed across condition. No other significant interaction or main effects were 

found (p = >0.05). 

4.2.4.3 Singlet Peak Relaxation Rate (-dt/dt) 

No significant interactions or main effects were found (p = >0.05).  
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 pTTD +dt/dtD -dt/dtD 

Condition 0.003† 0.002† 0.017† 

Condition x Genotype 0.907 0.904 0.651 

Time <0.001† 0.025† 0.088 

Time x Genotype 0.655 0.718 0.945 

Condition x Time 0.864 0.357 0.029* 

Condition x Time x Genotype 0.651 0.027* 0.143 

Genotype 0.253 0.612 0.117 

Table 9. P-values for interaction and main effects for evoked resting doublet properties 

pre- and post-supplementation. 

*Indicates significant interaction effect  

†Indicates significant main effect 

 

4.2.4.4 Resting Doublet Peak Twitch Torque (pTTD) 

There was a significant main effect for Condition (F1,33 = 10.560; p = 0.003; η2 = 

0.242) for pTTD. Post-hoc paired samples t-tests found a significant greater during CAF 

when compared to PLA (53.4 ± 12.3 Nm vs. 49.7 ± 13.0; p = 0.003), when collapsed 

across time. There was also a significant main effect for Time (F1,33 = 16.362; p = 

<0.001; η2 = 0.331) for PTTD. Paired samples t-tests found that PRE was significantly 

greater than POST (54.8 ± 12.5 Nm vs. 48.3 ± 13.5 Nm; p = <0.001), when collapsed 

across condition. No other significant interaction or main effects were found (p = >0.05). 

4.2.4.5 Resting Doublet Peak Rate of Torque Development (+dt/dtD) 

There was a significant Condition x Time x Genotype interaction (F1,33 = 95.345; 

p = 0.027; η2 = 0.139) for +dt/dtPOT. Post-hoc paired samples t-tests found a significantly 

greater +dt/dtPOT in FAST during the CAFPRE condition when compared to PLAPOST 

(1040.5 ± 217.5 Nm·s-1 vs. 896.9 ± 209.7 Nm·s-1; p = <0.001). No other significant 

interaction or main effects were found (p = >0.05). 
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4.2.4.6 Resting Doublet Peak Relaxation Rate (-dt/dtD)  

There was a significant Condition x Time interaction (F1,33 = 5.196; p = 0.029; η2 

= 0.136) for -dt/dtD. Post-hoc paired samples t-tests found that PLAPOST had significantly 

slower -dt/dtD than all other conditions (p = 0.002-0.011). No other significant interaction 

or main effects were found (p = >0.05).    

 pTTPOT  +dt/dtPOT -dt/dtPOT 

Condition 0.013† 0.013† 0.004† 

Condition x Genotype 0.446 0.776 0.406 

Time <0.001† 0.002† 0.036† 

Time x Genotype 0.843 0.775 0.447 

Condition x Time 0.825 0.854 0.393 

Condition x Time x Genotype 0.206 0.103 0.427 

Genotype 0.270 0.637 0.252 

Table 10. P-values for interaction and main effects for evoked potentiated doublet 

properties pre- and post-supplementation. 

*Indicates significant interaction effect  

†Indicates significant main effect 

 

4.2.4.7 Potentiated Doublet Peak Twitch Torque (pTTPOT)  

There was a significant main effect for Condition (F1,33 = 6.963; p = 0.013; η2 = 

0.174) for pTTPOT. Post-hoc paired samples t-tests found a significantly greater pTTPOT 

during CAF when compared to PLA (69.1 ± 14.7 Nm vs. 64.6 ± 15.8; p = 0.013), when 

collapsed across time. There was also a main effect for Time (F1,33 = 23.138; p = <0.001; 

η2 = 0.412) for pTTPOT. Post-hoc paired samples t-tests found that PRE was significantly 

greater than POST (71.5 ± 14.3 Nm vs. 62.1 ± 16.8 Nm; p = <0.001), when collapsed 

across condition. No other significant interaction or main effects were found (p = >0.05). 

4.2.4.8 Potentiated Doublet Peak Rate of Torque Development (+dt/dtPOT) 

There was a significant main effect for Condition (F1,33 = 6.844; p = 0.013; η2 = 

0.172) for +dt/dtPOT. Post-hoc paired samples t-tests found significantly greater +dt/dtPOT 
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values during the CAF condition when compared to PLA (1305.0 ± 255.8 Nm·s-1 vs. 

1217.9 ± 282.4 Nm·s-1; p = 0.013), when collapsed across time. There was also a 

significant main effect for Time (F1,33 = 11.581; p = 0.002; η2 = 0.260) for +dt/dtPOT. 

Post-hoc paired samples t-tests found significantly greater +dt/dtPOT values at PRE when 

compared to POST (1318.1 ± 262.7 Nm·s-1 vs. 1204.9 ± 279.1 Nm·s-1; p = 0.002), when 

collapsed across conditions. No other significant interaction or main effects were found 

(p = >0.05).  

4.2.4.9 Potentiated Doublet Peak Relaxation Rate (-dt/dtPOT)  

There was a significant main effect for Condition (F1,33 = 9.364; p = 0.004; η2 = 

0.221) for -dt/dtPOT. Post-hoc paired samples t-tests found a significantly faster -dt/dtPOT 

during CAF when compared to PLA (-701.1 ± 191.8 Nm·s-1 vs. -631.3 ± 178.2 Nm·s-1; p 

= 0.005), when collapsed across time. There was also a significant main effect for Time 

(F1,33 = 4.798; p = 0.036; η2 = 0.127) for -dt/dtPOT. Post-hoc paired samples t-tests 

revealed a significantly faster -dt/dtPOT at PRE when compared to (-691.7 ± 187.1 Nm·s-1 

vs. -640.7 ± 191.7 Nm·s-1; p = 0.005), when collapsed across conditions. No other 

significant interaction or main effects were found (p = >0.05).  

4.3 Neuromuscular Function & Fatigue   

4.3.1 MU Behavior 

The following results represent data examining the relationship between MFR, 

RT, and MUAP amplitude during the first (FIRST), middle (MID), and last (LAST) 

repetition during the fatigue protocol of both the CAF and PLA conditions. The p-values 

for the main and interaction effects from each of the ANOVAs for the relationships used 

to characterize MU behavior during fatigue can be found below in Table 11. The average 
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number of MUs analyzed per subject were: CAFFIRST: 21.8 MUs (95% CI: 19.1-24.5 

MUs), CAFMID: 21.0 MUs (95% CI: 18.2-23.8 MUs), CAFLAST: 19.4 MUs (95% CI: 

16.6-22.2 MUs), PLAFIRST: 21.3 MUs (95% CI: 18.9-23.6 MUs), PLAMID: 19.5 MUs 

(95% CI: 17.1-21.9 MUs), and PLALAST: 18.8 MUs (95% CI: 16.3-21.2 MUs). The mean 

RT range (% MVIC) for analyzed MUs were: CAFFIRST: 14.9-38.4%, CAFMID: 15.0-

39.7%, CAFLAST: 17.5-42.3%, PLAFIRST: 15.1-39.3%, PLAMID: 18.6-43.3%, and 

PLALAST: 18.1-41.5%. Significant main and interaction effects are discussed below.  

 MFR vs. RT MUAP vs. RT MFR vs. MUAP 

 Slope Y-Int A b A b 

Condition 0.794 0.870 0.861 0.253 0.381 0.186 

Condition x Genotype 0.283 0.203 0.102 0.102 0.691 0.808 

Time 0.480 0.748 <0.001* <0.001* 0.101 0.711 

Time x Genotype 0.987 0.627 0.132 0.821 0.758 0.457 

Condition x Time 0.620 0.977 0.468 0.122 0.139 0.204 

Condition x Time x Genotype 0.977 0.867 0.560 0.641 0.345 0.590 

Genotype 0.314 0.227 0.797 0.535 0.370 0.722 

Table 11. P-values for interaction and main effects for motor unit behavior during 

fatigue. 

*Indicates significant main effect  

 

4.3.1.1 RT vs. MFR slope 

No significant interaction or main effects were found (p = >0.05).  

4.3.1.2 RT vs. MFR y-intercept 

No significant interaction or main effects were found (p = >0.05).  
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Figure 3. Mean firing rate (MFR) vs. recruitment threshold (RT) relationship during the 

fatigue protocol during both the caffeine (CAF) and placebo (PLA) conditions.  

 

4.3.1.3 RT vs. MUAP A Term 

There was a significant main effect for Time (F1.4,35.1 = 16.388; p = <0.001; η2 = 

0.396) in the RT vs. MUAP A term during fatigue. Post-hoc paired samples t-tests 

revealed a significantly lower RT vs. MUAP A term during FIRST when compared to 

MID (34.8 ± 27.9 mV vs. 46.1 ± 25.5 mV; p = <0.001), during FIRST when compared to 

LAST (34.8 ± 27.9 mV vs. 58.1 ± 38.4 mV; p = <0.001) and MID when compared to 

LAST (46.1 ± 25.5 mV vs. 58.1 ± 38.4 mV; p = <0.001), when collapsed across 

condition. No other significant interaction or main effects were found (p = >0.05).  

4.3.1.4 RT vs. MUAP b Term 

There was a significant main effect for Time (F2,50 = 9.803; p = <0.001; η2 = 

0.282) in the RT vs. MUAP b term during fatigue. Post-hoc paired samples t-tests 

revealed a significantly greater RT vs. MUAP b term during FIRST when compared to 

MID (0.058 ± 0.022 mV/%MVIC vs. 0.046 ± 0.019 mV/%MVIC; p = 0.001) and during 
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FIRST when compared to LAST (0.058 ± 0.022 mV/%MVIC vs. 0.044 ± 0.019 mV/%MVIC; 

p = 0.003), when collapsed across conditions. No other significant interaction or main 

effects were found (p =0 >0.05).  
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Figure 4. Motor unit action potential amplitude (MUAP) vs. recruitment threshold (RT) 

relationship during the fatigue protocol during both the caffeine (CAF) and placebo 

(PLA) conditions. Significant main effects are discussed above in section 4.1.3.3 and 

4.1.3.4.  

 

4.3.1.5 MUAP vs. MFR A term 

No significant interaction or main effects were found (p = >0.05).  

4.3.1.6 MUAP vs. MFR b term  

No significant interaction or main effects were found (p = >0.05).  
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Figure 5. Mean firing rate (MFR) vs. motor unit action potential amplitude (MUAP) 

relationship during the fatigue protocol during both the caffeine (CAF) and placebo 

(PLA) conditions.  

 

4.3.2 Muscle Activation 

4.3.2.1 %VA  

There was a significant main effect for Time (F1,33 = 9.016; p = 0.005; η2 = 0.231) 

for Voluntary Activation. Post-hoc paired samples t-tests revealed a significantly lower 

VA post-fatigue (89.9 ± 7.5% vs. 94.8 ± 3.8%; p = 0.005) when collapsed across 

conditions. No other interaction or main effects were found (p = >0.05).   

4.3.3 Muscle Contractile Properties 

 The p-values for the main and interaction effects from each of the ANOVAs for 

the relationships used to characterize muscle contractile properties can be found below in 

Tables 12-13. Significant main interactions and effects are discussed below. 
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 pTTD +dt/dtD -dt/dtD 

Condition 0.226 0.137 0.008† 

Condition x Genotype 0.788 0.349 0.378 

Time <0.001† <0.001† <0.001† 

Time x Genotype 0.176 0.361 0.069 

Condition x Time 0.029* 0.010* 0.014* 

Condition x Time x Genotype 0.915 0.598 0.580 

Genotype 0.132 0.873 0.399 

Table 12. P-values for interaction and main effects for evoked resting doublet properties 

pre- and post-fatigue. 

*Indicates significant interaction effect  

†Indicates significant main effect 

 

 

4.3.3.1 pTTD 

There was a significant Condition x Time (F1,33 = 5.208; p = 0.029; η2 = 0.136) for 

pTTD. Post-hoc paired samples t-tests revealed pTTD was significantly greater at 

CAFPOST when compared to PLAPOST (50.1 ± 14.2 Nm vs. 46.5 ± 13.9 Nm; p = 0.007), 

CAFFATIGUE (50.1 ± 14.2 Nm vs. 20.2 ± 11.4 Nm; p = <0.001) and PLAFATIGUE (50.1 ± 

14.2 Nm vs. 21.4 ± 12.3 Nm; p = <0.001). Analyses also revealed significantly higher 

pTTD at PLAPOST than CAFFATIGUE (46.5 ± 13.9 Nm vs. 20.2 ± 11.4 Nm; p = <0.001) and 

PLAFATIGUE (46.5 ± 13.9 Nm vs. 21.4 ± 12.3 Nm; p = <0.001). No other significant 

interaction or main effects were found (p = >0.05).  
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Figure 6. Individual subject plots for resting doublet peak twitch torque (pTTD) prior to- 

and post-fatigue in the caffeine (CAF) and placebo (PLA) conditions. The orange bars 

represent the groups mean at that time point.  

*Indicates significantly greater pTTD at CAFPOST when compared to CAFFATIGUE 

# Indicates significantly greater pTTD at PLAPOST when compared to PLAFATIGUE 

† Indicates significantly greater pTTD at CAFPOST when compared to PLAPOST 

 

 

4.3.3.2 +dt/dtD 

There was a significant Condition x Time (F1,33 = 7.534; p = 0.010; η2 = 0.186) for 

+dt/dtD. Post-hoc paired samples t-tests revealed +dt/dtD was significantly greater at 

CAFPOST when compared to PLAPOST (955.0 ± 234.6 Nm·s-1 vs. 875.4 ± 234.1 Nm·s-1; p 

= 0.004), CAFFATIGUE (955.0 ± 234.6 Nm·s-1 vs. 426.0 ± 214.5 Nm; p = <0.001) and 

PLAFATIGUE (955.0 ± 234.6 Nm·s-1 vs. 445.9 ± 234.8 Nm·s-1; p = <0.001). Analyses also 

revealed significantly higher +dt/dtD at PLAPOST than CAFFATIGUE (875.4 ± 234.1 Nm·s-1 

vs. 426.0 ± 214.5 Nm·s-1; p = <0.001) and PLAFATIGUE (875.4 ± 234.1 Nm·s-1 vs. 445.9 ± 
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234.8 Nm·s-1; p = <0.001). No other significant interaction or main effects were found (p 

= >0.05).  

 

Figure 7. Individual subject plots for resting doublet peak rate of twitch torque 

development (+dt/dtD) prior to- and post-fatigue in the caffeine (CAF) and placebo (PLA) 

conditions. The orange bars represent the groups mean at that time point.  

*Indicates significantly greater +dt/dtD at CAFPOST when compared to CAFFATIGUE 

# Indicates significantly greater +dt/dtD at PLAPOST when compared to PLAFATIGUE 

† Indicates significantly greater +dt/dtD at CAFPOST when compared to PLAPOST 

 

 

4.3.3.3 -dt/dtD   

There was a significant Condition x Time (F1,33 = 6.729; p = 0.014; η2 = 0.169) for 

-dt/dtD. Post-hoc paired samples t-tests indicated significantly faster -dt/dtD during 

CAFPOST when compared to PLAPOST (-447.5 ± 134.5 Nm·s-1 vs. -389.5 ± 119.0 Nm·s-1), 

CAFFATIGUE (-447.5 ± 134.5 Nm·s-1 vs. -173.9 ± 83.3 Nm·s-1), and PLAFATIGUE (-447.5 ± 

134.5 Nm·s-1 vs. -167.8 ± 86.9 Nm·s-1). Analyses also revealed significantly faster -dt/dtD 

at PLAPOST when compared to CAFFATIGUE (-389.5 ± 119.0 Nm·s-1 vs. -173.9 ± 83.3 
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Nm·s-1) and PLAFATIGUE (-389.5 ± 119.0 Nm·s-1 vs. -167.8 ± 86.9 Nm·s-1). No other 

significant interaction or main effects were found (p = >0.05).  

 

Figure 8. Individual subject plots for resting doublet peak rate of relaxation(-dt/dtD) prior 

to- and post-fatigue in the caffeine (CAF) and placebo (PLA) conditions. The orange bars 

represent the groups mean at that time point.  

*Indicates significantly faster -dt/dtD at CAFPOST when compared to CAFFATIGUE 

# Indicates significantly faster -dt/dtD at PLAPOST when compared to PLAFATIGUE 

† Indicates significantly faster -dt/dtD at CAFPOST when compared to PLAPOST 

 

 pTTPOT  +dt/dtPOT -dt/dtPOT 

Condition 0.223 0.170 0.013† 

Condition x Genotype 0.672 0.420 0.973 

Time <0.001† <0.001† <0.001† 

Time x Genotype 0.202 0.376 0.142 

Condition x Time 0.026* 0.019* 0.010* 

Condition x Time x Genotype 0.818 0.788 0.694 

Genotype 0.561 0.909 0.316 

Table 13. P-values for interaction and main effects for evoked potentiated doublet 

properties pre- and post-fatigue. 

*Indicates significant interaction effect  

†Indicates significant main effect 



65 
 

 

4.3.3.4 pTTPOT 

There was a significant Condition x Time (F1,33 = 5.436; p = 0.026; η2 = 0.141) for 

pTTPOT. Post-hoc paired samples t-tests revealed pTTPOT was significantly greater at 

CAFPOST when compared to CAFFATIGUE (64.1 ± 17.2 Nm vs. 23.3 ± 12.4 Nm; p = 

<0.001) and PLAFATIGUE (64.1 ± 17.2 Nm vs. 24.3 ± 12.8 Nm; p = <0.001). Analyses also 

revealed significantly higher pTTPOT at PLAPOST than CAFFATIGUE (60.2 ± 17.6 Nm vs. 

23.3 ± 12.4 Nm; p = <0.001) and PLAFATIGUE (60.2± 17.6 Nm vs. 24.3 ± 12.8 Nm; p = 

<0.001). No other significant interaction or main effects were found (p = >0.05).    

4.3.3.5 +dt/dtPOT  

There was a significant Condition x Time (F1,33 = 6.033; p = 0.019; η2 = 0.155) for 

+dt/dtPOT. Post-hoc paired samples t-tests revealed +dt/dtPOT was significantly greater at 

CAFPOST when compared to CAFFATIGUE (1245.7 ± 268.6 Nm·s-1 vs. 493.9 ± 235.9 Nm·s-

1; p = <0.001) and PLAFATIGUE (1245.7 ± 268.6 Nm·s-1 vs. 506.9 ± 252.9 Nm·s-1; p = 

<0.001). Analyses also revealed significantly higher +dt/dtPOT at PLAPOST than 

CAFFATIGUE (1164.1 ± 318.2 Nm·s-1 vs. 493.9 ± 235.9 Nm·s-1; p = <0.001) and 

PLAFATIGUE (1164.1 ± 318.2 Nm·s-1 vs. 506.9 ± 252.9 Nm·s-1; p = <0.001). No other 

significant interaction or main effects were found (p = >0.05).  

4.3.3.6 -dt/dtPOT   

There was a significant Condition x Time (F1,33 = 7.496; p = 0.010; η2 = 0.185) for 

-dt/dtPOT. Post-hoc paired samples t-tests indicated significantly faster -dt/dtPOT during 

CAFPOST when compared to PLAPOST (-680.6 ± 215.4 Nm·s-1 vs. -600.7 ± 191.5 Nm·s-1), 

CAFFATIGUE (-680.6 ± 215.4 Nm·s-1 vs. -197.3 ± 105.4 Nm·s-1), and PLAFATIGUE (-680.6 ± 

215.4 Nm·s-1 vs. -190.8 ± 98.4 Nm·s-1). Analyses also revealed significantly faster -
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dt/dtPOT at PLAPOST when compared to CAFFATIGUE (-600.7 ± 191.5 Nm·s-1 vs. -197.3 ± 

105.4 Nm·s-1) and PLAFATIGUE (-600.7 ± 191.5 Nm·s-1 vs. -190.8 ± 98.4 Nm·s-1). No 

other significant interaction or main effects were found (p = >0.05). 

 

Figure 9. A/B) Relationship between % Change in MVIC and % Change in peak resting 

doublet twitch torque (pTTD) from pre- to 1-hour post-supplementation in the caffeine 

and placebo conditions, respectively. C/D) Relationship between % Change in MVIC and 

% Change in peak resting doublet peak relaxation rate (-dT/dtD) from pre- to 1-hour post-

supplementation in the caffeine and placebo conditions, respectively. 

 

4.4 Time-Course of Fatigue  

4.4.1 Average Torque (TQAVG)  

There was a significant main effect for Condition (F1,26 = 8.645; p = 0.007; η2 = 

0.250) for TQAVG. Post-hoc paired samples t-tests indicated a significantly greater TQAVG 

during CAF when compared to PLA (140.1 ± 36.0 Nm vs. 131.7 ± 38.7 Nm; p = 0.007), 

when collapsed across time. There was also a significant main effect for Time (F2,52 = 
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6.585; p = 0.003; η2 = 0.202) for TQAVG. Follow-up paired samples t-tests found a 

significantly higher TQAVG at FIRST versus LAST (136.5 ± 36.7 Nm vs. 135.0 ± 36.6 

Nm; p = 0.010), when collapsed across condition. No other significant interaction or main 

effects were found (P = >0.05).  

4.4.2 Torque SD (TQSD)  

There was a significant Condition x Time interaction (F1.3,34.7 = 3.644; p = 0.033; 

η2 = 0.123) for TQSD. Follow-up paired samples t-tests revealed significantly lower TQSD 

values during CAFFIRST when compared to CAFLAST (3.4 ± 1.2 Nm vs. 4.8 ± 1.7 Nm; p = 

0.001) and during CAFMID when compared to CAFLAST (3.3 ± 0.9 Nm vs. 4.8 ± 1.7 Nm; p 

= <0.001). Follow-up analyses also revealed a significantly lower TQSD during PLAFIRST 

when compared to PLALAST (3.1 ± 1.0 Nm vs. 5.6 ± 2.2 Nm; p = <0.001) and during 

PLAMID when compared to PLALAST (3.6 ± 1.3 Nm vs. 5.6 ± 2.2 Nm; p = <0.001). 

Analyses also found significantly lower TQSD during CAFFIRST when compared to 

PLALAST (3.4 ± 1.2 Nm vs. 5.6 ± 2.2 Nm; p = <0.001), CAFMID when compared to 

PLALAST (3.3 ± 0.9 Nm vs. 5.6 ± 2.2 Nm; p = <0.001), and PLAFIRST when compared to 

CAFLAST (3.1 ± 1.0 Nm vs. 4.8 ± 1.7 Nm; p = <0.001), and PLAMID when compared to 

CAFLAST (3.6 ± 1.3 Nm vs. 4.8 ± 1.7 Nm; p = 0.001). No other significant interaction or 

main effects were found (p = >0.05).   

4.4.3 CV Torque (TQCV)  

There was a significant Condition x Time interaction (F1.3,34.4 = 3.818; p = 0.048; 

η2 = 0.128) for TQCV. Follow-up paired samples t-tests found a significantly lower TQCV 

at CAFFIRST when compared to CAFLAST (2.5 ± 0.8% vs. 3.7 ± 1.8%; p = 0.001) and at 

CAFMID when compared to CAFLAST (2.4 ± 0.7% vs. 3.7 ± 1.8%; p = <0.001). 
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Significantly lower TQCV values were found during CAFFIRST when compared to 

PLALAST (2.5 ± 0.8% vs. 4.5 ± 1.8%; p = <0.001), CAFMID when compared to PLALAST 

(2.4 ± 0.7% vs. 4.5 ± 1.8%; p = <0.001), PLAFIRST when compared to PLALAST (2.5 ± 

0.9% vs. 4.5 ± 1.8%; p = <0.001) and PLAFIRST when compared to CAFLAST (2.5 ± 0.9% 

vs. 3.7 ± 1.8%; p = 0.001). No other interaction or main effects were found (p = >0.05).  

 

Figure 10. Visual representative of the mean torque coefficient of variation (TQCV) ± SD 

at the first, middle, and last repetition of the fatigue protocols in the caffeine (CAF) and 

placebo (PLA) conditions.  

†Indicates significantly lower TQCV at CAFFIRST when compared to CAFLAST 

*Indicates significantly lower TQCV at CAFMID when compared to CAFLAST 

#Indicates significantly lower TQCV at PLAFIRST when compared to PLALAST 

 

4.4.4 TQ Impulse (TQIMP)  

There was a significant Condition x Time interaction (F2,52 = 5.501; p = 0.010; η2 

= 0.163) for TQIMP. Follow-up paired samples t-tests found a significantly greater TQIMP 

at CAFFIRST when compared to PLALAST (2086.6 ± 547.0 Nm·s vs. 1913.6 ± 569.4 Nm·s; 
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p = 0.001), CAFMID when compared to PLALAST (2069.0 ± 525.5 Nm·s vs. 1913.4 ± 

569.4 Nm·s; p = 0.003) and PLAFIRST when compared to PLALAST (1985.0 ± 584.6 Nm·s 

vs. 1913.6 ± 569.4 Nm·s; p = 0.002). No other significant interaction or main effects 

were found (p = >0.05).  

 

Figure 11. Visual representative of the mean torque impulse (TQIMP) ± SD at the first, 

middle, and last repetition of the fatigue protocols in the caffeine (CAF) and placebo 

(PLA) conditions.  

*Indicates significantly greater TQIMP at PLAFIRST when compared to PLALAST 

 

4.4.5 VL Integrated EMG (VLiEMG) 

There was a significant main effect for Time (F1.1,27.7 = 57.72; p = <0.001; η2 = 

0.689) for VLiEMG. Post-hoc paired samples t-tests indicated that VLiEMG was significantly 

lower at FIRST when compared to MID (1.44 ± 0.58 µV vs. MID: 1.74 ± 0.68 µV; p = 

<0.001), at FIRST when compared to LAST (1.44 ± 0.58 µV vs. 2.11 ± 0.90 µV; p = 

<0.001), and at MID when compared to LAST (1.74 ± 0.68 µV vs. 2.11 ± 0.90 µV; p = 
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<0.001), when collapsed across condition. No other significant interaction or main effects 

were found (p = >0.05). 

 

Figure 12. Visual representative of the mean vastus lateralis integrated 

electromyography (VLiEMG) ± SD at the first, middle, and last repetition of the fatigue 

protocols in the caffeine (CAF) and placebo (PLA) conditions.  

*Indicates significantly lower VLiEMG at FIRST when compared to MID, when collapsed 

across condition. 

†Indicates significantly lower VLiEMG at MID when compared to LAST, when collapsed 

across condition. 

#Indicates significantly lower VLiEMG at FIRST when compared to LAST, when 

collapsed across condition. 

 

4.4.6 VL Median Power Frequency (VLMDF)  

There was a significant main effect for Time (F1.2,31.7 = 41.936; p = <0.001; η2 = 

0.617) for VLMDF. Post-hoc paired samples t-tests found significantly higher VLMDF 

values at FIRST when compared to MID (80.5 ± 17.5 Hz vs. 76.6 ± 16.4 Hz; p = <0.001), 

at FIRST when compared to LAST (80.5 ± 17.5 Hz vs. 69.8 ± 16.8 Hz; p = <0.001), and 

at MID when compared to LAST (76.6 ± 16.4 Hz vs. 69.8 ± 16.8 Hz; p = <0.001), when 
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collapsed across condition. No other significant interaction or main effects were found (p 

= >0.05).  

 

Figure 13. Visual representative of the mean vastus lateralis median power frequency 

(VLMDF) ± SD at the first, middle, and last repetition of the fatigue protocols in the 

caffeine (CAF) and placebo (PLA) conditions.  

*Indicates significantly greater VLMDF at FIRST when compared to MID, when collapsed 

across condition.  

†Indicates significantly greater VLMDF at MID when compared to LAST, when collapsed 

across condition. 

#Indicates significantly greater VLMDF at FIRST when compared to LAST, when 

collapsed across condition. 

 

4.4.7 VLAMP  

There was a significant main effect for Condition (F1,26 = 4.754; p = 0.038; η2 = 

0.155) for VLAMP. Post-hoc paired samples t-tests found significantly higher VLAMP 

during CAF when compared PLA (0.074 ± 0.053 µVs-1 vs. 0.051 ± 0.032 µVs-1; p = 

0.038), when collapsed across time. There was also a significant main effect for Time 

(F1.0,27.2 = 48.237; p = <0.001; η2 = 0.650) for VLAMP. Follow-up paired samples t-test 
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found that VLAMP was significantly lower at FIRST when compared to MID (0.050  ± 

0.036 µVs-1 vs. 0.062 ± 0.044 µVs-1; p = <0.001), FIRST when compared to LAST 

(0.050 ± 0.036 µVs-1 vs. 0.076 ± 0.055 µVs-1; p = <0.001), and MID when compared to 

LAST (0.062 ± 0.044 µVs-1 vs. 0.076 ± 0.055 µVs-1; p = <0.001), when collapsed across 

time. No other significant interaction or main effects were found (p = >0.05).  

4.4.8 RF iEMG (RFiEMG)  

There was a significant main effect for Time (F1.1,28.1 = 41.478; p = <0.001; η2 = 

0.615) for RFiEMG. Post-hoc paired samples t-tests indicated significantly lower RFiEMG 

values at FIRST when compared to MID (1.26 ± 0.63 µV vs. 1.54 ± 0.74 µV; p = 

<0.001), FIRST when compared to LAST (1.26 ± 0.63 µV vs. 1.88 ± 0.99 µV; p = 

<0.001), and MID when compared to LAST (1.54 ± 0.74 µV vs. 1.88 ± 0.99 µV; p 

<0.001), when collapsed across condition. No other significant interaction or main effects 

were found (p = >0.05).   

 

Figure 14. Visual representative of the mean rectus femoris integrated electromyography 

(RFiEMG) ± SD at the first, middle, and last repetition of the fatigue protocols in the 
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caffeine (CAF) and placebo (PLA) conditions.  

*Indicates significantly lower RFiEMG at FIRST when compared to MID, when collapsed 

across condition. 

†Indicates significantly lower RFiEMG at MID when compared to LAST, when collapsed 

across condition. 

#Indicates significantly lower RFiEMG at FIRST when compared to LAST, when collapsed 

across condition. 

 

4.4.9 RF MDF (RFMDF)  

There was a significant main effect for Time (F1.2,32.1 = 29.139; p = <0.001; η2 = 

0.528) for RFMPF. Follow-up paired samples t-tests indicated significantly greater RFMPF 

at FIRST when compared to MID (76.7 ± 15.7 Hz vs. 72.8 ± 13.6 Hz; p = 0.002), FIRST 

when compared to LAST (76.7 ± 15.3 Hz vs. 66.1 ± 14.3 Hz; p = <0.001), and MID 

when compared to LAST (72.8 ± 13.6 Hz vs. 66.1 ± 14.3 Hz; p = <0.001), when 

collapsed across condition. No other significant interaction or main effects were found (p 

= >0.05). 
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Figure 15. Visual representative of the mean rectus femoris median power frequency 

(RFMDF) ± SD at the first, middle, and last repetition of the fatigue protocols in the 

caffeine (CAF) and placebo (PLA) conditions.  

*Indicates significantly greater RFMDF at FIRST when compared to MID, when collapsed 

across condition.  

†Indicates significantly greater RFMDF at MID when compared to LAST, when collapsed 

across condition. 

#Indicates significantly greater RFMDF at FIRST when compared to LAST, when 

collapsed across condition. 

 

4.4.10 Normalized RF EMG AMP (RFAMP)  

There was a significant main effect for Time (F1.1,28.4 = 36.946; p = <0.001; η2 = 0.587) 

for RFAMP. Post-hoc paired samples t-tests indicated significantly lower RFAMP values at 

FIRST when compared to MID (0.041 ± 0.028 µVs-1 vs. 0.051 ± 0.034 µVs-1; p = 

<0.001), FIRST when compared to LAST (0.041 ± 0.028 µVs-1 vs. 0.062 ± 0.045 µVs-1; 

p = <0.001), and MID when compared to LAST (0.051 ± 0.035 vs. 0.062 ± 0.045; p = 

<0.001), when collapsed across condition. No other significant interaction or main effects 

were found (p = >0.05). 
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CHAPTER V 

 

 

DISCUSSION 

The purpose of this investigation was to examine whether genetic variation in 

CYP1A2 (-163A>C, rs762551) influences the effects of acute caffeine supplementation 

on neuromuscular function of the lower body at rest and in response to a fatiguing work 

bout. The main finding from this investigation was an overall lack of ergogenic effects of 

caffeine on neuromuscular function of the lower body musculature. However, the present 

data suggest that caffeine may augment the decline seen following rest in the placebo 

condition. These findings are fully discussed below at rest (section 5.1) and immediately 

following fatigue (section 5.2). 

5.1 Neuromuscular Function: Pre vs. Post Supplementation   

 

Caffeine has been widely studied for its proposed ergogenic effects, especially prior 

to exercise. While several proposed mechanisms exist, caffeine’s primary mechanism of 

action is thought to be through adenosine receptor antagonism. As adenosine receptors 

are located in a variety of tissues throughout the human body (Reppert et al. 1991), it has 

been hypothesized that caffeine may impact skeletal muscle through peripheral, spinal, 

and/or supraspinal mechanisms (Fimland et al. 2010; Kalmar 2005). Therefore, a variety 

of measurements were employed in the present investigation to elucidate the potential 

physiological mechanisms associated with caffeine supplementation. 



76 
 

In terms of exercise, caffeine is commonly used as an ergogenic aid and has been 

purported to increase muscular function, especially prior to resistance exercise (see 

review by (Grgic et al. 2018). However, to date, much of the data has been conflicting, 

especially in terms of muscular strength. For example, several investigations have 

reported no change in maximal strength (Behrens et al. 2015b; Fimland et al. 2010) 

following caffeine supplementation, with one investigator even reporting a decrease in 

maximal strength (Bond et al. 1986). On the contrary, a meta-analysis by Warren et al. 

(2010) reported a moderate effect (ES = 0.19) for maximal strength, which equated to 

roughly a 4% improvement over placebo. Interestingly, the authors performed a separate 

muscle-specific analysis, which indicated that caffeine may have a more potent effect on 

maximal strength in the quadriceps musculature (ES = 0.37), with an estimated 7% 

increase in maximal strength when compared to placebo (Warren et al. 2010). However, 

in the present investigation, we failed to show a significant improvement in quadriceps 

MVIC strength following caffeine administration. Caffeine did, however, offset the 

decline in MVIC seen in the placebo condition (Figure 1). While the present data exhibits 

“responders” and “non-responders” similar to the previous work of Meyers and Cafarelli 

(2005), the vast majority of subjects in the present study would be classified as non-

responders to caffeine supplementation, as 24 out of 35 subjects analyzed had a decreased 

MVT following from CAFPRE to CAFPOST . Thus, caffeine may have a potential utility in 

maintaining muscle function in settings of prolonged rest, such as prolonged traveling to 

events, reserve athletes in sporting events, etc. However, taken as a whole, the results of 

the present investigation do not support the efficacy of caffeine administration for 

improved muscular strength, contrary to much of the previous literature. 
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A large portion of the previous literature has suggested that augmented CNS 

activity is the most plausible explanation for the ergogenic effects reported by previous 

authors (Behrens et al. 2015a; Meyers and Cafarelli 2005; Plaskett and Cafarelli 2001; 

Tarnopolsky and Cupido 2000). More specifically, a number of authors have suggested 

this may be due to an increase in MU recruitment and/or increased MU firing rates 

(Bazzucchi et al. 2011; Kalmar et al. 2006). As the MU is the final pathway of the central 

nervous system and directly integrates with skeletal muscle, it is logical to hypothesize 

the improvements in skeletal muscle function may be facilitated through augmented MU 

behavior. However, our results indicate an overall lack of change in MU firing behavior 

following caffeine administration, when compared to pre-supplement or placebo 

conditions. Although the previous work of Walton and colleagues (2002) found a 

significant increase in self-sustaining firing rates of MUs in the tibialis anterior following 

caffeine ingestion, our results align with those of Meyers and Cafarelli (2005) and 

Kalmar and Cafarelli (1999), who reported no alteration in MU firing behavior following 

caffeine supplementation. Interestingly, each of these previous investigations used the 

same caffeine dosage as the present investigation (i.e. 6 mg/kg/bw). It is worth noting the 

potential for muscle specific alterations in MU behavior, as Walton et al. (2002) 

examined the tibialis anterior, while our work and that of Kalmar and Cafarelli (1999) 

and Meyers and Cafarelli (2005) examined MU behavior of the quadriceps musculature. 

However, it is premature to draw any specific conclusion until more data is available. 

Finally, it is important to acknowledge that in the present investigation, MVT was greater 

at CAFPOST compared to PLAPOST. Therefore, it appears there may be a reduced 

neuromuscular efficiency following PLA, as the same level of excitation to the 
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motorneuron pool, as evidenced by no significant changes in global EMG or MU firing 

properties, was required for a lower absolute force output.  

Since its appearance in the literature by Merton (1954), the interpolated twitch 

technique (ITT) has become a common tool to assess muscle activation, or in simpler 

terms, the percentage of muscle subjects are able to voluntary activate (%VA; (Behm et 

al. 1996). Previous research has reported conflicting results, with several authors (Kalmar 

and Cafarelli 2004; Meyers and Cafarelli 2005; Tarnopolsky and Cupido 2000) reporting 

no change in %VA, and others reporting significant increases (Behrens et al. 2015a; 

Kalmar and Cafarelli 1999; Plaskett and Cafarelli 2001), including a meta-analysis by 

Warren et al. (2010) reporting a large (ES = 0.67) effect for caffeine on quadriceps %VA. 

However, similar to the previously discussed MVIC data, we failed to see any significant 

changes in %VA following either CAF or PLA in the present investigation. While not all 

of the subjects in the present investigation were resistance-trained, the population was at 

least recreationally active and exhibited a high degree of %VA at baseline (95.0 ± 4.0% 

when collapsed across genotype; (Herda et al. 2011). Thus, the potential for an increase 

in %VA following caffeine administration may have been limited. Thus, we failed to 

reported any increases in excitation following caffeine supplementation. Our data also 

indicate that there was no increase in spinal excitability following caffeine. Traditionally 

used as a surrogate for spinal excitability, the H-Reflex reflects the activation of the 

alpha-motorneurons by the Ia afferent pathways (Schieppati 1987). Previous literature 

has shown mixed effects for caffeine on H-reflex amplitude, with several investigations 

finding increased spinal excitability (Eke-Okoro 1982; Walton et al. 2003) and numerous 

reporting equivocal results (Behrens et al. 2015a; Behrens et al. 2015b; Kalmar and 
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Cafarelli 1999). Our results are in line with the later, in which we found no significant 

change in Soleus H-Reflex (when normalized to M-Wave) at any time point. It is 

important to note that no significant change in SOL M-Wave were found from pre- to 

post-testing in any condition, which indicates that the probe placement was not different 

during the SOL M-Wave measurement and a valid M-Wave measurement was achieved 

(Walton et al. 2003). In line with these findings, no significant change in RF M-Wave, 

VL M-Wave or Normalized EMG AMP were found from pre- to post-testing in either 

condition, which is consistent with the findings of (Kalmar and Cafarelli 2006). Thus, our 

data does not support the previous reports of increased neural drive or corticospinal 

excitability following caffeine supplementation.  

The lack of change in spinal and supraspinal properties in the present investigation 

points towards peripheral mechanisms as the logical explanation for the maintained MVT 

following caffeine supplementation. Indeed, several previous investigations have reported 

enhanced skeletal muscle twitch properties following caffeine supplementation 

(Bazzucchi et al. 2011; Kalmar and Cafarelli 2006). However, it is crucial to 

acknowledge the decrease in nearly all evoked twitch properties 1-hour post ingestion of 

PLA. Indeed, the work of Bazzucchi et al. (2011), who utilized a very similar 

experimental design, also reported decreased twitch properties in the post-placebo 

condition. Additionally, while values for twitch properties were not reported, Kalmar and 

Cafarelli (1999) reported a decrease in MVC strength in the placebo condition, which 

may have been attributed to declining twitch properties. Although neither of these authors 

speculated on potential mechanisms for this decreased contractile function, we speculate 

this may be due to a decrease in muscle temperature following the 1-hour rest period, as 
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muscle decreased muscle temperature has been shown to alter muscle contractile 

properties (Davies and Young 1983; Holewijn and Heus 1992). Indeed, this hypothesis 

has been proposed previously by Fowles and coworkers (2000), who reported significant 

decreases in twitch torque following not only maximal passive stretching of the plantar 

flexors, but in the control condition as well. The authors speculated that the decrease in 

evoked twitch torque in the control condition was most likely due to a reduced muscle 

temperature (Fowles et al. 2000). However, muscle temperature was not recorded during 

the present investigation, and therefore, this hypothesis remains speculative. It is also 

important to acknowledge that caffeine supplementation maintained MVIC and 

contractile properties near baseline values, which is consistent with previous work in the 

quadriceps musculature by Behrens et al. (2015a). Thus, our data suggest that while 

caffeine did not significantly improve skeletal muscle function, caffeine clearly exhibited 

an ergogenic effect to offset the decline seen in the placebo condition. This has 

significant physiological implications, as alterations in calcium handling have been the 

most commonly proposed peripheral mechanism of caffeine and has been supported by 

numerous in vitro investigations. For example, in vitro evidence has suggested that there 

is an increase intracellular calcium from the sarcoplasmic reticulum and/or increased 

sensitivity of the muscle fibers with caffeine intake (Allen et al. 2008), potentially due to 

the interaction of caffeine with the ryanodine receptors of the sarcoplasmic reticulum 

(Penner et al. 1989).  While we did not measure intracellular in the present investigation, 

our data provide non-invasive evidence of potential alterations in calcium handling at the 

contractile level, as evidenced by lack of decline in contractile function following CAF 

seen in the PLA condition. This is in contrast to a recent investigation, where authors not 
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only reported a lack of improvement in skeletal muscle twitch properties, but also 

proposed that toxic dosages of caffeine are needed to increase skeletal muscle function 

based on an animal model used in the same investigation (Neyroud et al. 2018). 

However, in the present investigation a particularly interesting change is seen in -dt/dtD, 

where our data suggests a -7.4% slower -dt/dtD at PLAPOST, when compared to PLAPRE, 

and a 0.4% increase in -dt/dtD was found from CAFPRE to CAFPOST. Further support for 

altered twitch behavior can be found in Figure 9, where significant relationships we 

found between the percent change in contractile function and the percent change in 

MVIC. However, it is clear that these relationships are negatively shifted on both the x 

and y axes in the PLA condition. Thus, it seems logical that alterations in Ca2+ handling 

at the cellular level are most likely responsible for the lack of decline in MVT seen in the 

CAF condition. Interestingly, Meyers and Cafarelli (2005) reported a similar hypothesis 

when they reported that caffeine offset the decline in contractile function during fatigue, 

thus increasing time to fatigue. The authors reported the evoked twitch amplitude and the 

maximal relaxation rate were significantly correlated in both caffeine and placebo 

conditions, suggesting that the increase in time of fatigue may be partially explained by 

caffeine’s effects on calcium reuptake and twitch force(Meyers and Cafarelli 2005). 

Finally, another potential mechanism of caffeine proposed by previous authors is 

increased conduction velocity Bazzucchi et al. (2011), which could potentially be a 

byproduct of increased calcium sensitivity at the muscle level. Future research is needed 

to clearly elucidate the mechanism of action before definitive conclusions can be drawn.    
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5.2 Fatigue 

Fatigue, in terms of exercise, is defined as a reduction of maximal muscle force or 

power (Taylor et al. 2000). As skeletal muscle force is modulated through the interplay of 

MU recruitment and rate coding (i.e. firing rate), it is well established during a fatiguing 

exercise bout, larger, higher-threshold MUs are progressively recruited as the smaller, 

lower-threshold MUs fatigue (Contessa et al. 2016; Muddle et al. 2018). This process, 

known as the size the principle (Henneman 1957), sets the foundation for the 

maintenance of force production throughout fatiguing contractions. While there are both 

non-invasive and invasive measures of MU behavior, the surface EMG signal represents 

a global activation of the muscle (Farina et al. 2004; Jenkins et al. 2016). In submaximal 

fatiguing efforts, such as the protocol used in the present investigation, a progressive 

increase in the EMG amplitude and integrated EMG are hallmarks of the fatigue process 

(Cifrek et al. 2009; Jenkins et al. 2015a; Naeije and Zorn 1982). Indeed, the present data 

display significant increases in normalized RFAMP and VLAMP, as well as RFiEMG and 

VLiEMG over the course of the fatigue protocol, independent of condition. Our results 

appear to be consistent with the size principle, as evidenced by the significant, positive 

relationship between in the MUAP vs. RT relationship. Our data also indicate an increase 

in the A term, along with the subsequent decrease in b term, of the MUAP vs. RT 

relationship across the fatigue protocol, indicating the progressive recruitment of larger 

MUs over time. Additionally, no significant differences were seen between conditions, 

indicating that caffeine does not appear to alter this process, or increase the recruitment 

of high-threshold MUs, as previous hypothesized (Bazzucchi et al. 2011). As the A term 

represents the theoretical MUAP of the smallest recruited MU, and the b term represents 
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the MUAP growth per unit of increase in RT (Miller et al. 2019), our data suggest 

progressively larger MUs and a slower growth rate were required to maintain the required 

force production through the fatigue protocol (Figure 4). While only a few exceptions to 

the size principle have been noted in the literature (Bawa and Murnaghan 2009; Bawa et 

al. 2006; Westgaard and De Luca 1999), there is conflicting literature on alterations in 

firing rate behavior during fatigue. For example, previous investigations have reported 

both increases (Contessa et al. 2009; Contessa et al. 2016; Muddle et al. 2018) and 

decreases (McManus et al. 2015; Mottram et al. 2005) in the firing rates of active MUs 

with fatigue. The lack of change in the slope or y-intercept of the MFR vs. RT 

relationship, along with the previously reported increased MUAP amplitude, suggest that 

both MU firing rates and recruitment modulation were utilized to maintain force 

production. Thus, our data provide support for the hypothesis of several previous 

investigators, who suggested an increase in excitation to the MU pool, and thus, higher 

MU firing rates, to counteract the decreasing twitch forces seen with the development of 

fatigue (Contessa et al. 2016; De Luca and Contessa 2015).  

  To further support this hypothesis, our data show significant decreases in twitch 

properties from pre- to post-fatigue, regardless of condition. For example, along with the 

significant reductions seen across time, we saw an approximate 56.9%, 52.4%, and 

59.2% reduction in pTTD, +dT/dTD, and –dT/dTD, respectively, when collapsed across 

conditions. As the doublet stimulations reflect the contractile ability of the muscle by 

removing the series elastic component (Herda et al. 2013), the present data represent 

clear declines in contractile function with fatigue (Dolmage and Cafarelli 1991). 

Consistent with previous fatigue literature, our data indicated a significant decrease in 
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VLMDF and RFMDF over the course of the fatiguing exercise protocol. Previous research 

has suggested that EMG median power frequency (MDF) is altered by fatigue, most 

likely through metabolite accumulation, in which conduction velocity is slowed (Beck et 

al. 2005; Bouissou et al. 1989; Brody et al. 1991; Hill et al. 2016). Thus, the significant 

decrease in EMG MDF seen in the present study supports the decline in skeletal muscle 

function following the fatiguing protocol. In concert with the decline in twitch properties, 

we reported a significant decrease in %VA following the fatigue protocol, independent of 

condition. This may lend support to central activation failure (Kent-Braun 1999) and/or 

locomotor fatigue (Amann and Dempsey 2008), as it appears both central and peripheral 

factors were present.   

Previously literature has suggested that caffeine may increase time to exhaustion 

during submaximal exercise (Kalmar and Cafarelli 1999; Meyers and Cafarelli 2005; 

Pethick et al. 2018; Plaskett and Cafarelli 2001). However, the data in the present 

investigation does not support this, as evidenced by the lack of significant change in 

TQIMP between conditions. Despite TQAVG being significantly higher in the CAF 

condition, this did not manifest into increased time to fatigue or work performed, as 

measured through TQIMP. Thus, our findings are in agreement with Fimland et al. (2010), 

who found no ergogenic benefit during and recovery from a submaximal fatiguing 

exercise protocol. It is interesting to note that Pethick et al. (2018) reported a significantly 

slower loss of torque complexity in the caffeine condition, leading to an approximately 

30% increase in time to fatigue. As TQCV can be considered a crude measure of 

complexity, it is interesting to note that TQCV was significantly lower in the CAF 

condition in the present investigation (Figure 10). However, this did not amount to an 
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increase in time to fatigue or total work performed, potentially due to decrements 

associated with central and/or peripheral fatigue mechanisms previously discussed.  

5.3 CYP1A2 Genotype  

The role of genetics in exercise and nutrition has recently become an area of 

interest for a number of investigations, with the lofty goal of providing a genetic link to 

the variable responses seen in human subjects research. Specific to caffeine, the CYP1A2 

genotype has become the topic of numerous recent investigations. Interestingly, to date, 

the results of these investigations have been mixed, with some authors reporting genotype 

specific performance benefits ((Guest et al. 2018; Salinero et al. 2017; Womack et al. 

2012), with others showing equivocal results (Algrain et al. 2016; Giersch et al. 2018; 

Puente et al. 2018). The results of the present investigation align with the later, as we 

reported no significant performance or neuromuscular differences between CYP1A2 

genotypes. While %VA was significantly different between genotypes, this is most likely 

due to the more homogenous training background of the SLOW group, compared to the 

higher variability in the FAST group. Further, as differences in %VA were not 

attributable to caffeine consumption, there is no logical pathway by which the CYP1A2 

genotype would alter %VA independent of caffeine consumption. Thus, the results of our 

investigation suggest that CYP1A2 genotype does not mediate neuromuscular function 

and fatigability of the quadriceps following caffeine consumption in college-aged males.  

5.4 Conclusions 

In contrast to much of the previous literature, the present investigation provides 

data that 6 mg/kg/bw of caffeine anhydrous provides limited ergogenic benefits to 
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exercise performance. However, our data suggests that caffeine alters peripheral skeletal 

muscle properties, as opposed to mediating muscle activation through spinal or 

supraspinal mechanisms as previously suggested. Based on these data, it can be 

hypothesized that caffeine may act through alterations in calcium handling and/or 

changes in calcium sensitivity at the muscle fiber level, as proposed by previous 

investigators. Additionally, the present data does not support the notion that the CYP1A2 

genotype mediates the acute responses to caffeine in college-aged males. However, more 

data is needed before more definitive conclusions can be drawn. 
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