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Abstract: Numerous groundwater springs bubble, yet the flow and transport of gases are 
not well understood in hydrogeology. An understanding of the processes by which gases 
enter, migrate, and are liberated from groundwater is required. A quantitative conceptual 
model of gas migration in groundwater will allow an understanding of what informative 
aquifer signals may be present in gas data, as well as what information signals may be 
masked or diminished by phase changes. Through analysis of existing published 
literature, seven facies of groundwater bubbles were developed to provide a framework 
for research in these specific categories of gas transport. In order to better understand 
these multiphase bubbling springs, an instrument was designed and deployed over the 
discharge of a spring in southern Oklahoma that measured the total gas flux, ebullative 
and diffusive. By measuring the water discharge from the spring too, a 
hydropneumograph of gas and water mass flux over time can be produced. In addition to 
the mass flow rates of the two phases provided by the hydropneumograph, water and gas 
samples were collected for compositional analysis. By combining the compositional data 
of exsolved and dissolved gas with the mass flow rates from the hydropneumograph, 
estimation of the quantity of light noble gases is radically changed (60% for He, 45% for 
Ne) which provides improvements in the calculation of recharge temperature of 4 to 25% 
depending on the model selected. These improvements in the understanding of the 
physical hydrogeology of bubbling springs provide an additional avenue for researchers 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

Motivation 
 
 

The mechanisms leading to the formation of bubbles in springs and wells have 

received minimal attention beyond composition and causation. Free phase gas transport 

quantification provides insight into a range of topics, from hazards that need to be 

managed, prediction of earthquakes, to the economic value of soda waters. The presence 

of free-phase gas or vapor bubbles in groundwater provides valuable information about 

the subsurface flow system. Additionally, free-phase gas or vapor bubbles may strip 

dissolved gasses from solution and introduce error into the assessment of gas composition 

in springs. These errors affect analyses such as recharge temperature and groundwater 

apparent age, thereby altering results related to paleoclimate and global climate change. 

Finally, an understanding of the free gas phase in groundwaters may provide insight into 

water quality and improve drinking water supply management. 

Current Science 
 

 
The presence of bubbles in groundwater has a long history in scientific 

commentary, dating back to at least 15 B.C.E with Vitruvius (Pollio/Rowland c. 15 
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B.C.E/1999). Darcy credits Vitruvius with providing the early understanding of springs 

(Darcy/Bobeck 1856/2004), though his work does not include free phase gas. Meinzer’s 

(1927) classification of springs by discharge rate provides an early contemporary source 

for understanding springs in the United States. Following Meinzer’s system of 

classification, bubbling springs may be classified by type, or facies. 

Descriptions of bubbling springs are sparse, but sufficient literature exists to 

classify distinct facies. Organizing the facies by the depth below the surface where the 

gas process occurs provides structure for the classification system. Starting with near-

surface phenomenon, biological processes from microbes generate the gas for Type I 

bubbles with early work by Blesson (1832) related to the ignition of swamp gasses and 

later quantification of the gas species responsible for spontaneous ignition by Comas et 

al. (2008).  

Two types of bubbling springs occur in shallow aquifers, most typically in karstic 

aquifers, from the entrainment of air, Type II, and the degassing of water through 

velocity effects, Type III. Air entrainment was first postulated as a syphon effect by 

Gavrilović (1967) while observing bubbles turning on and off in a karstic spring. Type III 

degassing springs, which are not effervescent, are sparsely described in groundwater 

literature (Thomas et al. (2002). However, the phenomena is described in water treatment 

literature (Scardina, 2004) (Scardina & Edwards, 2006) and is caused by a velocity 

induced pressure drop, following Bernoulli’s principle, and degassing slightly over 

saturated gas from water. 

Soda springs, Type IV, represent the most classic type of bubbling springs. Soda 

springs have received much attention from the early works of Anderson (1890) regarding 
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trace minerals and economic vitality of mineral waters. Recent works (Lewicki, et al., 

2013) explore the importance of soda springs in the global carbon cycle and global 

climate change, including sequestration of carbon dioxide in deep aquifers. These springs 

bubble due to the dissolution of carbonates at depth resulting in several atmospheres of 

excess pressure, which manifests as the familiar effervescence of soda water. 

Waters that encounter petroleum deposits may uptake flammable gasses and 

transport them to the surface where bituminous bubbles may evolve and pose a health and 

fire risk.  These flammable bubbles provided an early method for the location of 

carboniferous formations, including coal deposits. Presently, the evolution of Type V 

bubbles, and the study of their composition (methane and hydrogen sulfide), is providing 

insight into sub-surface lithologies and processes in Greece (Etiope, et al., 2006) (Etiope, 

et al., 2013). 

The last two deep facies have either direct (Type VI) or indirect (Type VII) 

contact with gases from depths reaching the mantle. Type VI bubbles are water vapor 

from the result of groundwater in contact with sufficient heat from a geothermal source to 

boil at or near the surface, as present in the Yellowstone Heart Lake Geyser Basin 

(Lowenstern, Bergfeld, Evans, & Hurwitz, 2012). Type VI bubbles may also contain 

mantle derived gasses typical of Type VIII mantle bubbles, the boiling action 

overwhelms the physical detection of mantle bubbles and only chemical analysis would 

reveal the mantle-gas connection. Mantle bubbles are the most well represented facies in 

the literature from a compositional perspective with significant work provided by Mazor 

& Wasserburg (1965) and Bräuer et al. (2013) related to the determination of gasses from 

the mantle. 
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In addition to the hydrogologic literature, albeit sparse, on the types and 

abundance of free-phase gasses in groundwaters, the geochemical literature on the 

dissolved gas phase in natural waters is abundant. The solubility of noble gasses in 

natural waters is dependent upon the temperature and pressure of equilibration and the 

solubility of each noble gas varies according to temperature (Weiss R. F., 1970) (Weiss 

R. F., 1971) (Weiss & Kyser, 1978) (Clever, 1979).  

The solubility of noble gasses in natural waters as determined by Weiss and by 

Clever applied only to air-equilibrated water (rain, lakes, etc.). Analysis of dissolved 

noble gasses in groundwater shows that the quantity of gas in groundwater far exceeds 

that of air-equilibrated water. Heaton and Vogel (1981) coined the additional quantity of 

dissolved gas as “Excess Air” and provided a model for its formation related to bubble 

entrapment in the soil matrix below the surface of the groundwater and the subsequent 

equilibration at higher pressure. 

By using the relationship of temperature and solubility and continuing the work of 

Andrews and Lee (1979) and Heaton and Vogel (1981) on excess air, Stute & Schlosser 

(1993) developed a paleothermometer that on combination with their groundwater dating 

technique (Schlosser, Stute, Sonntag, & Münnich, 1989) allowed the determination of the 

recharge temperature and age of groundwaters emerging at springs. This technique led to 

improved estimations of the cooling of tropical Brazil (5˚C) during the last glacial 

maximum (Stute, et al., 1995) and established the science of climate reconstruction using 

groundwater data. The modeling of paleotemperature was then later refined by 

Aeschbach-Hertig et al. (2000) into the form widely used today. 
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Dissolved gas content has shown to be valuable in the determination of 

groundwater apparent age and recharge temperature. However, the extant literature on 

groundwater temperature and age reconstruction is void of discussion of bubbles at the 

discharge sites where the water samples are collected. Literature in both the 

hydrogeologic and chemical engineering fields (White, Hem, & Waring, 1963); (Baird, 

Bottomley, & Taitz, 1979); (Patoczka & Wilson, 1984); (Lucchetti & Gray, 1988); 

(Vroblesky & Lorah, 1991) (Mariner, Evans, Presser, & White, 2003) (Daniel, 2018) 

acknowledge the effects of bubbles on dissolved gas content. Dissolved gases will 

migrate into bubbles based upon the gas species’ Henry’s Air-Water Partitioning 

Coefficient (Kaw) and their diffusivities (Holocher, et al., 2002).  

 
Objective and Relevance of the Research 

 
 

Based upon the understanding of the physical mechanisms of bubble-facilitated 

transport, the abundance of bubbling springs, and the omission of observations of bubbles 

in pertinent temperature and age reconstruction research, there is a clear need to quantify 

the errors related to the estimation of these parameters in bubbling springs. By 

quantifying the errors in parameter estimation through physical measurement, the 

assumptions about the error based on the governing theoretical principles may be tested. 

In doing so, existing data may be re-evaluated in light of the possible errors and updates 

may be made to existing recharge temperature and age data. Additionally, these error 

estimates will provide future researchers with a basis for determining when the 

quantification of the free gas phase at a bubbling spring may be necessary to achieve the 

desired accuracy of parameter estimates. 
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Research Design 
 
 

In order to enable greater accuracy in the determination of the mass discharge of 

gas and water-gas ratios (WGR) in groundwater from springs, a field-deployable 

instrument using commercially available components has been developed to 

independently measure the gas and water mass flow rates in springs with bubbling 

mixed-phase flow. By installing a phase separator at the spring discharge, a thermal mass 

flow sensor is utilized to measure the gas flow rate (ebullition + diffusive flux) generated 

from a spring. The water flow rate is determined by a standard weir. Field performance of 

the device was tested on a spring discharging from the Arbuckle-Simpson aquifer near 

the town of Connerville in south-central Oklahoma, USA. 

 Dissolved gas data were determined by water and free gas sampling and analysis 

by mass spectroscopy. Compositional results are combined with physical measurements 

to determine accurate gas concentrations than are then used in computational modeling of 

recharge temperature and apparent age. The modeling results are compared between 

water only and water+gas results to quantify errors associated with the omission of the 

free gas phase. 

Dissertation Organization 
 
 
 This work begins with a broad review of the existing literature that discusses the 

presence and types of bubbles in groundwater. Through this review, seven bubble facies 

(or types) are defined. These facies allow for a chemical and mechanistic understanding 

of the various ways groundwater may become gassy, how the dissolved and free gas is 

transported in aquifers, and the mechanisms for the evolution of bubbles at the discharge 
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point. At present, several terms related to gas in groundwater are used either informally, 

interchangeable, or both. In order to facilitate the scientific discussion of gas/water 

phenomenon, specific terms are defined and summarized in a glossary. 

 Discussed in the methods chapter is the measurement of the free gas phase 

discharge from bubbling springs. Outside of some commercially viable soda springs, 

quantification of the gas flux, or volumetric flow, from bubbling springs is virtually 

absent in the scientific literature. Described in this work is an instrument for capturing the 

ebullitive (bubbling) and diffusive gas flux at a spring discharge, combined with a 

standard weir to measure the flow of the discharging water of a bubbling spring in south-

central Oklahoma. The resulting two flow rates are plotted versus time to create a 

hydropneumograph. The hydropneumograph provides a new tool for the understanding of 

aquifer dynamics.  

 The fourth chapter combines the bulk gas and liquid flow data with dissolved and 

free gas chemical analysis to provide a total gas composition of the waters of the aquifer. 

This analysis provides two data sets, dissolved gas and dissolved+free gas, for use in the 

determination of recharge temperature and apparent age through modeling software. By 

comparing the dissolved gas to the dissolved+free gas content, and estimation may be 

made for the error in ignoring free gas when computing recharge temperature and 

apparent age. This work shows that error is in fact introduced into the estimation of 

recharge parameters (age and temperature) if the free gas phase is ignored in ebullating 

springs. The error in the estimation of excess air leads to a modest error in predicted 

Nobel Gas Temperature (NGT) of nearly 2%, proportional to the difference in the He/Ne 

ratio. The difference between the errors of He and Ne quantity are proportional to the 
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difference in dimensionless Henry’s Air-Water partitioning coefficient (KAW) in He and 

Ne and therefore drive a proportional error in the estimation of apparent age. 

 Finally, in the concluding portion of this work, the implications of the results are 

provided along with potential future work that is a natural extension of the findings. First, 

the error associated with the estimation of recharge temperature and age has implications 

for the field of paleotemperature reconstruction and subsequent modeling of earth climate 

and understanding of global climate change. Second, the hydropneumograph 

demonstrated that the free phase gas generation rate may increase prior to a 

corresponding increase in groundwater flow. This phenomena may be useful in predicting 

changes in groundwater quality. For large springs that are used as a drinking water 

supply, and that may be susceptible to a decrease in water quality from surface water 

incursion during storm events, an increase in gas flow may be an a priori indicator of 

diminished water quality and allow for intervention. 
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CHAPTER II 
 
 

LITERATURE REVIEW 
 

Why Springs Bubble: A Framework for  
 

Gas Discharge in Groundwater 
 

Article Publication: Published in Groundwater (Agnew & Halihan, 2018), used here in 

accordance with the Wiley Publishing Services Copyright Transfer Agreement – 

Permitted Uses By Contributor. 

Authors: Robert J. Agnew and Todd Halihan 

 

Two important questions when evaluating the discharge of gas in groundwater 

include, “Are free phase gasses significant?” and “What does free gas tell us about the 

groundwater system?” A classification system for gas discharge in groundwater fosters a 

better understanding of bubble and spring dynamics. For example, an oil seep, a water 

spring, and a volcano are all liquids discharging at the surface, but they are not the same. 

The differences in bubbles issuing forth from groundwater provide a valuable dataset for 

the evaluation of groundwater flow. By providing a classification system for gasses 

emanating from groundwater, several benefits emerge for the research community  
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including, better utilization of gas phase data for economics or hazard evaluation, 

interpretation of groundwater flow paths, and a consistent set of terminology for 

developing research questions. 

The economic impact of free phase gases in groundwater provides both profits 

and losses. Sparkling water sales in 2016 for just the United States, amongst the top five 

brands, totaled $1.3 billion (Statista 2016). Maintaining the gas phase chemistry of the 

sources of these fluids is just as important as the fluid phase chemistry for this use; 

Perrier collects water and carbon dioxide separately and combines them during bottling 

for product consistency (Nestlé 2016). The mixed phases of oil and gas in petroleum 

exploration are a significant economic challenge for producers as the bubbling of gas 

from the crude may take an extended period and may damage pumps if not separated 

properly (Lavenson, et al. 2016). For CO2 sequestration, loss of CO2 from disposal zones 

coming back to the surface determines the long-term effectiveness of the technique. 

Shipton et al. (2005) examined bubbling CO2 in Paradox Basin, UT as a proxy for 

potential leakage. For tertiary hydrocarbon production, loss of CO2 is actually costly for 

production budgets and these systems consider storage as a loss. 

Gas discharges may also pose health and environmental risks. In 1986 the soda 

spring fed (Clarke 2001) Lake Nyos, Cameroon underwent massive exsolution of CO2, 

engulfing the nearby villages in a blanket of CO2 gas and killing an estimated 1,250 

people (Freeth 1992; Clarke 2001). Additional lakes in the region, including Lake 

Monoun, have similar gas saturation build-up and present a risk to public safety. Through 

intervention, engineered systems have reduced the risk level using controlled degassing 

techniques (Kusakabe et al. 2008). 



 

11 
 

Methane discharging in springs is common due to hydrocarbon deposits or near-

surface methanogenesis frequently occurring with groundwater. Discharging flammable 

gas may lead to a deflagration risk if the concentration is sufficient. Flammable gas 

discharge at springs and swamps may contain trace gases that increase the likelihood of 

spontaneous ignition. The Rev. John Mitchell (1829) provided an early hypothesis of the 

substance responsible for the Ignis Fatuus, phosphuretted hydrogen i.e. phosphine, PH3. 

Mills in, Will-o’-the-wisp revisited (2000), provides an additional hypothesis on the 

spontaneous ignition of methane with variants of phosphine. Mills comments that legends 

of Will-o’-the-Wisps killing wayward travelers originate because phosphine is deadly at 

the low concentration of 0.5 mg/l. S. Morgenstern (1973) colorfully describes the legends 

of the deadly phenomenon of the Ignis Fatuus as a “Fire Swamp,” referring to the 

location in Guilder. 

Bubbles can also facilitate contaminant transport and may appear in and around 

spring discharges from the natural decay of surface organic matter. Vroblesky and Lorah 

(1991) describe the decomposition of organic sediment in a creek in Maryland producing 

methane from anaerobic decomposition and the presence of chlorinated volatile organic 

compounds (VOCs) in the free gas phase. The methane production in the creek was 

acting to strip VOCs from the contaminated groundwater. Methane production can induce 

ebullition-facilitated transport of tar deposits from contaminated sediments to the surface 

of the water (McLinn and Stolzenburg 2009). Tar in the river sediment is not particularly 

harmful, but when transported to the surface of the water it travels to the shoreline and 

creates a nuisance for beachgoers.  
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The presence and composition of free phase gas discharging from aquifers are 

valuable data for investigating aquifer characteristics, even though White et al. (1963) 

concluded that a free phase gas is uncommon. A good example of the usefulness of free 

phase gas data is the work of Sugisaki and Sugiura (1986) who noted evidence of gas 

anomalies in He/Ar, N2/Ar, and CH4/Ar ratios at mineral springs before earthquakes. 

Additionally, the gas-water ratio in a bubbling spring can estimate the water flow rate in 

the aquifer (Taran 2005). The presence of bubbles may also act to mask information if 

not properly considered. Failing to account for the free gas phase may introduce 

significant errors in determining the total gas present if only the dissolved phase is 

analyzed. Surficial bubbles (typically biogenic in origin) may act to strip out dissolved 

gases, which would introduce error into a dissolved gas analysis (White et al. 1963; Baird 

et al. 1979; Patoczka & Wilson 1984; Lucchetti & Gray 1988; Vroblesky and Lorah 

1991; Mariner et al. 2003). This work describes that bubbles may also indicate biological 

activity, void spaces, petroleum deposits, high groundwater velocity, mineral 

composition, petroleum deposits, and other geochemical and geophysical phenomena. 

This work does not intend to provide an exhaustive understanding of bubble 

formation and the physics behind bubble nucleation, growth, detachment, and 

coalescence. For an in-depth review of bubble physics see Lavenson et al. (2016). The 

formation of bubbles at nucleation sites has been established using four mechanisms as 

described by Jones et al. (1999), but they are not included in this work. Finally, an 

understanding of gas solubility in water is derived from Henry’s Law and the associated 

Henry’s Law Constants (Henry 1803;Sander 1999). As this work is focused on free phase 
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gas from groundwater, this basic physics is excluded except where needed as part of the 

classification scheme. 

The lack of proper use of technical terms in existing literature and site names 

contributes to the difficulty in discussing free phase gas in groundwater.  The simpliest 

example is “boiling” spring to describe a spring with churning water at temperatures 

below boiling.  These systems may or may not have free phase gas, but the temperature 

and gas condition is not clearly described. A glossary is provided in this work to clarify 

the terminology used for describing phase changes in hydrogeologic systems.  

This framework for the classification of gases in groundwater systems proposes 

seven categories or facies. The proposed framework will allow a more robust use of 

language related to the measurement, modeling, and prediction of the flow of gases 

phases in groundwater. Supporting the framework is a literature review of the historical 

and contemporary research for each free phase gas facies (Table 2). Each section on 

individual facies provides examples of the type spring and implications for the aquifer. 

An additional section discusses factors where multiple facies may be present. The facies 

are categorized by the underlying phenomenon generating the free phase gas, and each 

facies is numbered in the order of relative depth of the underlying mechanism most 

commonly encountered. 

 
Classification System for Free Phase Gas Discharge 

 
 

While there are a number of frameworks to describe and categorize springs and 

groundwater based upon water type and origin (Bryan 1919; Meinzer 1927; Alfaro and 

Wallace 1994), a systematic categorization and review of the free phase gas discharge in 

groundwater is lacking. The categorization, naming, and description provided here uses 
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seven common manifestations or facies, Types I-VII, (Table 1) based upon a) how the 

groundwater becomes gas charged and b) how the gas comes out of solution. The 

categorization also considers c) gas composition and d) implications for aquifer 

dynamics. For consistency, a formal naming process is needed to distinguish between 

gases discussed informally and ones following this framework. A free phase gas 

discharge or bubble with a specific origin is expressed in this system by stating the facies 

name followed by a corresponding Roman numeral (e.g. Biogenic (I) bubbles). These 

facies are divided into shallow (facies I-IV) and deep (facies V-VII) origins, based on 

their common occurrence. 

The seven facies presented in this work represent the unique sources and 

mechanisms of bubbles in springs described in existing peer reviewed literature. The 

name of each facies type corresponds to the most commonly used reference to the 

hydrogeologic setting or literature name. For example, Biogenic (I) discharges originate 

from microbial metabolic processes such as methane generated by the biotic 

decomposition of organic matter, typically near the surface. These may also form from 

methanogenesis at depth. While both cases generate methane, the key component of the 

facies is active biological production, not the gas itself. Biogenic methane is distinct from 

methane related with petroleum features, which do not involve an active biological 

process; these are Bituminous (V) bubbles. Carbon deposit is the determining feature of 

the facies, not methane; hydrogen sulfide bubbles coming from a petroleum deposit 

would also be Bituminous (V) bubbles.  
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Table 1: Bubble Facies by Relative Depth 
 

Bubble 
Facies

(shallow to 
deep)

Common 
Name

General
Spring Type Type Spring Characteristic 

Gas(es) Gas Source Mechanism of 
dissolution

Implications 
for Aquifer

I Biogenic Bog Caribou Bog,
Maine, USA

Methane
(δ13C -68% to -
91% w/o ethane:
Modern Carbon)

Biogenic 
Decomposition

Gas 
concentration 
increases 
beyond 
saturation via 
microbial 
production

Generally a 
surface 
phenomenon
(may strip 
gasses from 
depth)

II Entrained Air Karst Kojin Spring, 
Serbia

Air                
(Nitrogen, 
Oxygen)

Air Entrainment

False 
dissolution, gas 
stays in gas 
phase

Aquifer void 
space

III Bernoulli Fracture/Karst Byrds Mill 
Spring, Ada, OK Nitrogen Atmospheric 

absorption
Velocity 
pressure drop

Locally high 
velocity at the 
spring orifice

IV Soda Mineral/Soda Perrier Spring, 
Vergeze, France Carbon Dioxide

Mineral 
dissolution 
(Decarbonation 
of marine 
carbonates)

Pressure drop 
as water rises 
from depth

Underlying 
mineral 
composition, 
aquifer 
temperature

V Bituminous Various Kaiafas Lake 
Spring, Greece

Methane
(δ13C -25.4% to -
76% w/ ethane:
Dead Carbon)

Bitumen 
Decomposition

Pressure drop 
as water rises 
from depth

Petroleum 
Reservoir 
connectivity

VI Boiling Hot Spring
Heart Lake 
Geyser Basin, 
Wyoming, USA

Water Vapor Ground Water

Phase change 
of water 
(boiling) from 
pressure drop 
as water rises 
from depth + 
temp.

Geothermal 
activity

VII Mantle Gas Various Eifel Volcanic 
Field, Germany Helium Mantle

Pressure drop 
as water rises 
from depth

Deep aquifer 
connectivity

 
 
 

 

 

 



 

16 
 

Table 2: Bubble Facies Literature 
 

Bubble 
Facies

(shallow to 
deep)

Facies 
Number

Early 
Descrip- 
tion of 

Phenom- 
enon

Early 
Descrip-
tion of 
Facies

Contemp-
orary 

Descrip-
tion of 
Facies

Biogenic I Blesson 
(1811) Mills (1829) Comas et al. 

(2008)

Entrained 
Air II Gavrilović 

(1967)

Bonacci & 
Bojanić 
(1991)

Kansou & 
Bredeweg 
(2014)

Bernoulli III Bernoulli 
(1738)

Fairley 
(1881) Krešić (2007)

Soda IV Henry (1803) Anderson 
(1890)

Lewicki et al. 
2013

Bituminous V Vitruvius 
(c. 15 BC)

Geological 
Society of 
Pennsyl-
vania
(1832)

Etiope, et al. 
(2006)

Boiling VI De Luc 
(1772)

LeCont 
(1855)

Lowenstern, 
et al. (2012)

Mantle VII
Mazor-
Wasserburg 
(1965)

Mazor & 
Wasser-
burg (1965)

Bräuer et al. 
(2013) 

Table 2: Bubble Facies Literature

 
 

 
 
 

Shallow Bubble Facies 
 
 

Free phase gas facies of Types I – IV, as shown in Figure 1, tend to occur in 

relatively shallow formations. They include Biogenic (I), Entrained Air (II), Bernoulli 

(III), and Soda (IV) bubbles. For the purposes of this categorization system, shallow 

refers to the aquifer being above the base of treatable fresh water. 

 
Type I – Biogenic 
 
 

Type (I) bubbles are those emanating from a microbial metabolic process 

producing gas, typically methane. While dissolved CO2 may be from a presently living  
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Figure 1. Bubble Facies I-IV. 

 
 
biogenic source, the evolution of bubbles of methane from biogenic decomposition 

proves more common in groundwater. The conceptual model for the presence of 

Biogenic (I) bubbles in groundwater begins with an active metabolic process undertaken 

by living microorganisms. This is in contrast to the dissolution of deposits of formerly 

living marine carbonates common to Soda (IV) bubbles. Biogenic (I) bubbles may 

originate in the deeper sub-surface or surficially depending upon the location of microbial 

activity. Seeps around landfills are commonly associated with bubbling methane 

(Hackley and Panno 2004). Biogenic (I) bubbles are methane with a modern carbon 

signature (δ13C -68% to -91% without the presence of ethane) (Schoell 1980). 
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Major L. Blesson (1832) provided one of the earliest credible accounts of 

Biogenic (I) bubbles in describing the phenomenon of the Ignis Fatuus, or Will-with-the-

Wisp/Will-o’-the-Wisp. Ignis Fatuus or “foolish fire” comes from English folklore and is 

a flame or light appearing over a swamp or bog, which may lure a traveler off the path 

and bring about their demise. Blesson (1832) observed the location of bubbles in a bog in 

Germany in 1811 and returned at night to observe the Ignis Fatuus, establishing the 

connection between the swamp bubbles and the fire like phenomenon. Mills (2000) noted 

reports of the Ignis Fatuus all but disappeared in modern times, but Żychowski (2013) 

reported the phenomenon of Ignis Fatuus over a mass grave in Niepołomice, Poland. 

Żychowski (2013) provides a plausible chemical reaction between groundwater, soil, 

bacteria, organic and mineral matter, and the atmosphere fitting the descriptions of Ignis 

Fatuus, corroborating the spontaneous ignition hypothesis. 

Biogenic (I) bubbles are commonly found in peat bogs. Comas et al. (2008) 

discusses the biogenic gas phenomenon in peat bogs in Maine, describing the methane 

flux and the observation of a two-meter diameter methane bubble trapped in ice during 

the winter. Gas discharges from these and similar peat bogs may be of increasing interest 

due to their correlation with increased gas production and warming climate (Comas et al. 

2008). This site would be a useful type location for the Biogenic (I) facies. Blesson 

(1832), Mitchell (1829), Mills (2000), and Żychowski (2013) all describe surficial 

Biogenic (I) bubbles, whereas Bräuer et al. (2005) describes rare Biogenic (I) bubbles 

from the sub-surface. Methane production on the surface and at depth is the result of 

metabolism of methanogens, single celled Archaea (Chapelle et al. 2002). Pedersen 
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(1999) and Chapelle et al. (2002) discuss a hydrogen driven deep biosphere that 

metabolizes mantle-derived hydrogen to produce CO2 and methane.  

 
Type II – Entrained Air 
 
 

The conceptual model for the Entrained Air (II) facies is a siphon effect that 

entrains air from a cave conduit into the aquifer flow path and then emerges as bubbles in 

spring discharge. There is no mechanism of exsollution as the entrained air never enters 

the dissolved phase. Karst formations provide favorable conditions for the development 

of the Entrained Air (II) facies as they are recharged by surficial water containing 

atmospheric gas and form cavities, which may accumulate pockets of gas (Bonacci and 

Bojanić 1991; Panno et al. 2001). 

Some rhythmic springs appear with intermittent Entrained Air (II) bubbles as 

described by Gavrilović (1967) in the Dinaric Karst region, notably Kojin Spring, Serbia. 

Additionally, May Spring in Southwestern Illinois has been documented to discharge 

large volumes of air (Panno et al. 1996). Modeling of the siphon effects of springs 

through qualitative reasoning have been conducted to quantify the effect at Fontestorbes 

spring (Kansou and Bredeweg 2014) but show that for this spring a simple siphon model 

may be incomplete. 

 
Type III – Bernoulli 
 
 

The conceptual model for the presence of Bernoulli (III) free phase gas discharge 

in a spring begins with air dissolving into meteoric water and then transported into an 

aquifer. The dissolved oxygen is consumed by subsurface reactions, largely biotic, 



 

20 
 

leaving primarily nitrogen and other atmogenic gasses in the water (Davis & DeWeist 

1966) that come out of solution as bubbles due to the pressure drop at the discharge site 

(S. V. Panno 2001). The water in the aquifer moves relatively slowly due to the large 

cross-section of the aquifer. The water accelerates through converging flow lines or a 

small orifice or gravel bed close to or at the spring discharge, causing an increase in the 

velocity near the end of the flow path resulting in choked flow and a pressure drop 

following Bernoulli’s Principle. The pressure drop results in gas coming out of solution 

and forming bubbles, most commonly composed of nitrogen. Bernoulli (III) bubbles 

follow the similar well-documented phenomenon of degassing of CO2 and the 

precipitation of calcite in the formation of advancing waterfalls and / or tufa due to a 

change in the partial pressure of the solute due to the increased stream velocity (K. C. 

Hackley et al. 2007). 

Bernoulli (III) free phase gas discharge arises from the phenomenon of a drop in 

partial pressure induced by an increase in fluid velocity (velocity pressure or kinetic 

hydraulic head). As the velocity pressure drops, the partial pressure of a dissolved gas can 

exceed the pressure of the environment and ebullate. Bernoulli’s treatise Hydrodynamica 

(1738/1968) established the relationship between a moving fluid and pressure-drop, 

giving rise to the Bernoulli Principle and the Venturi Effect. This relationship was used 

by Fairley (1881), who was among the first researchers to describe “Blowing Wells,” 

water wells that have a perceptible gas flow at the top of the bore. Fairley (1881) used 

Boyle’s law to estimate the size of a rock cavity as a correction for degassed flow, 

showing a correlation with increased gas flow and decreased atmospheric pressure.  
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Literature from the water treatment industry illustrates how the change in the 

velocity pressure of the water, and therefore the partial pressure of the dissolved gas, 

induces a phase change and the evolution of bubbles in filter beds made of sand (Scardina 

2004; Scardina & Edwards 2006). Heaton and Vogel (1981) describe water containing 

“Excess Air,” water with a greater amount of dissolved nitrogen and argon than would be 

expected from atmospheric equilibrium. Additionally, Klump et al. (2008) and Solomon 

et al. (2011) describe the development of excess air in groundwater from the rising and 

falling of the water table in porous media. A mathematical model and a laboratory 

experiment explaining the mechanism for the development of excess air, or nitrogen, in 

springs was developed (McLeod et al. 2015). This facies differs from the Entrained Air 

(II) facies in that the gas becomes dissolved in the water, and then comes out of solution 

to form Bernoulli (III) bubbles.  

Some of the most relevant research related to the formation of nitrogen bubbles 

from the action of velocity pressure, including mathematics of mass transfer to dissolved 

gas, comes from the water treatment field (Scardina 2004; Scardina & Edwards 2006). 

Scardina (2004) reports the degassed nitrogen attaches to flocculants, inhibiting the 

settling process. A water treatment facility provides easier observation and modeling of 

velocity induced bubble formation; but a filter bed made of sand is an analogous process 

to a natural spring discharging through porous media at the spring outlet. Scardina (2004) 

and Scardina and Edwards (2006), discuss how water accelerating through filter media 

(sand) causes air binding, where the degassed nitrogen adheres to the filter media, 

blocking the pores. The same bubble obstruction phenomenon occurs near wells in 

aquifers (Davis & DeWeist 1966). Additionally, the gas bubbles in aquifers have been 
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found to form an aquitard, mirroring the results of the work on sand filters in water 

treatment systems (Ryan et al. 2000; Amos & Mayer 2006). 

A suitable mathematical approximation of the local pressures in a turbulent flow 

regime may be obtained using a multiphase version of Darcy’s equation, the Navier-

Stokes equation, mass balance, and the SIMPLE algorithm (Semi-Implicit Method for 

Pressure). This system of equations requires numeric methods to solve with the 

application of fluid dynamics modeling such as TOUGH2 EOS3 (Pruess et al.1999). This 

numeric model suitably calculates two-phase conditions of air dissolved in water. By 

creating a model aquifer in TOUGH2 that includes a high permeability outlet (simulating 

a karst tube or fracture), the pressure of the groundwater can be seen to decrease in the 

conduit and, correspondingly, the dissolved air changes to free phase. 

Numerous springs around the world exhibit a discharge of nitrogen bubbles. 

Krešić (2007) provides an illustration of pressure-drop bubbles in Honey Creek, Ann 

Arbor, MI (282). Various springs in the Arbuckle-Simpson aquifer, including Byrds Mill 

Spring and Nelson Spring near Ada, OK, produce nitrogen bubbles (Christenson et al. 

2009) that may be of this type. Many springs with nitrogen bubbles occur in karst 

formations, but it is not a prerequisite. Notably, mound springs, including one known as 

The Bubbler in South Australia, exhibit regular bubble discharge from the Bulldog Shale 

(Thompson & Withers 2002). 

 
Type IV – Soda 
 
 

The conceptual model for the presence of Soda (IV) bubbles begins with 

groundwater in the presence of heat and / or pressure. The heat and pressure drive the 
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chemo-physical process of gas super saturation as well as the facilitation of chemical 

reactions with minerals e.g. marine carbonate dissolution to CO2 (Lewicki et al. 2013). 

The heat and pressure allow for dissolution of the CO2 into the water in quantities above 

the saturation concentration at atmospheric pressure. The result is bubbles in the form of 

semi-persistent effervescence when these supersaturated waters reach the surface at a 

spring discharge. 

Mineral springs contain dissolved mineral matter in sufficient quantity to impart 

definite taste (American Geosciences Institute 2016). Soda springs are a sub-set of 

mineral springs, but are not well defined in the literature and absent in the American 

Geosciences Institute Glossary. Soda Springs take their name from dissolved sodium 

bicarbonate; when super saturated, the waters effervesce carbon dioxide gas (Crook 

1899). Effervescing water will continue to bubble (for a time) when removed from the 

spring, unlike Bernoulli (III) bubbles. Henry (1803) provided the first major treatise on 

the physical phenomenon of the solubility of gases in water and is the namesake of 

Henry’s Law. While all free phase gas discharges require super-saturation, the 

effervescence of a soda spring is a defining characteristic of this discharge. 

Anderson provides one of the earliest accounts of bubbling mineral springs, 

including chemical analysis, in his work in California (1890). Anderson describes the 

Bartlett spring as “…continually bubbling up with great force, resembling a boiling 

spring.” (Anderson 1890) However, in 1888 the temperature was found to be 54° F [12.2 

°C] therefore the water was not in fact Boiling (VI) but rather the CO2 was ebullating. 

The phenomenon of effervescence, characterized by the presence of a supersaturated gas, 

provides the context for Soda (IV) bubbles in this categorization system. 
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Perhaps the most famous example of Soda (IV) bubbles comes from the Perrier 

mineral water source spring near Vergèze, France. The Perrier spring produces over 

100,000 liters per hour of carbonated water. Water from the Vergèze spring contains 3.5 

liters of CO2 per liter of water (Fox 1988); therefore the CO2 in Perrier is under ~3.6 bar 

(360 kPa) of pressure and meets the EU definition of sparkling. The head definitions for 

soda water and sparkling wines provide the only literature regarding the hydraulic head 

of free phase gasses. The namesake of soda springs is Soda Springs in Idaho, which 

exhibits CO2 flux from the spring water up to 1,147 g m-2 d-1 (Lewicki et al. 2013). 

 
Deep Bubble Facies 

 
 

Free phase gas facies of Types V-VII, as shown in Figure 2, tend to occur in 

relatively deeper formations The gas discharges of facies Bituminous (V), Water Vapor 

(VI), and Mantle Gas (VII) are associated with depth, where connection with geothermal 

heat sources or gas from the mantle is essential for formation. For the purposes of this 

categorization system, deep refers to the source formation commonly being below the 

base of treatable fresh water. 
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Figure 2. Bubble Facies V-VII. 

 

 
Type V – Bituminous 
 
 

The conceptual model for Bituminous (V) free phase gas discharge is the aquifer 

having contact with deposits of bituminous materials (coal, free oil, oil shales, etc.) 

producing methane or natural gas bubbles originating from the thermal desorption of 

bitumen (Schoell 1988). Bituminous (V) bubbles are methane with a dead carbon 

composition (δ13C -25.4% to -76% with ethane) (Schoell 1980). Marcus Vitruvius Pollio 

described springs of bitumen “…these, though cold, seem, nevertheless, to boil” 

(Pollio/Rowland c. 15 B.C.E/1999) and provided Darcy with seminal knowledge of 

springs (Darcy/Bobeck 1856/2004). The Bituminous (V) discharges are characterized by 
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their fire hazard near the spring orifice, “Methane coming out of solution may accumulate 

and present a fire or explosion hazard.” (Davis & DeWiest 1966 p. 115). This is also a 

hazard for Biogenic (I) discharges. The methane volume produced as Bituminous (V) 

discharges is typically much greater than the volume produced by Biogenic (I) ones.  

Early research in Japan describes that methane above its saturation concentration 

can create bubbles and may strip dissolved nitrogen and argon as they migrate into the 

methane bubbles, thereby altering dissolved gas levels and analysis (Sugisaki 1964). 

Another area of research related to methane is seepage around wells, bubbling in mud or 

water. This has the possibly of contaminating water supplies (Rich et al. 1995). 

Bituminous (V) discharges may manifest in other, more unusual forms. Additionally, 

prehistoric Bituminous (V) bubbles may leave a record as fossil evidence of methane 

vents containing microscopic fossils of methanogens (Kauffman et al. 1996).  

Due to the commercial value of natural gas, seeps and bubbles of methane have 

been of interest to prospectors as well as scientists. An early account in America states, 

“At Rome [PA], eight miles north-east of Towanda, is a fine mineral spring, impregnated 

with sulphur, iron, &c. Inflammable [i.e. highly flammable] gas arises in large bubbles 

from the bottom.” (Geological Society of Pennsylvania 1832 p. 201). This observation 

occurred 27 years before the first U.S. oil well (the Drake Well) was installed in nearby 

Titusville, PA.  

Contemporary research regarding Bituminous (V) bubbles occurs in Greece with 

investigations into methane seepage in the northwest Peloponnesus petroliferous basin 

centering on the Kaiafas Lake Spring, Greece (Etiope et al. 2006), and in the Appalachian 

basin where methane flux in springs has been investigated (Etiope et al. 2013). Another 
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well-known example of Bituminous (V) discharge is the La Brea tar pits in southern 

California and their methane seepage (Farrell et al. 2013). Similar shallow examples of 

the Bituminous (V) category exist, but the facies is evaluated based on the common 

origin of deep bituminous deposits. 

 
Type VI – Boiling 

 
 

The conceptual model for the presence of the Boiling (VI) facies begin with sub-

surface waters contacting rock heated by the asthenosphere to a temperature above the 

boiling temperature of water at atmospheric pressure. Thermal springs, or hot springs, of 

sufficient temperature provide Boiling (IV) gas discharges. Jean-André De Luc (1772) 

provided the first major treatise on the physical phenomenon of thermal bubbles. He 

described the bubbles from dissolved gas as, “petite bulle” (De Luc 1772 p. 48), 

appearing prior to a full boil and producing bubbles of the formerly dissolved gasses. 

However, the defining characteristic of the Boiling (VI) facies is phase change of the 

solvent (i.e. water), not the solute (i.e. nitrogen). Given the pressures at depth, the water 

may stay in liquid phase and be superheated until it travels to a lower pressure region at 

or near the surface where bubbles form. 

Difficulty in establishing early descriptions of this type of bubble originates from 

the variability of terminology in the existing literature. True scientific exploration into the 

phenomenon of Magmatic Waters began in the early 20th Century, as summarized by 

Tanton (1915). Thomas Short described Bingham Well in England as producing “large 

balls or bubbles of heated air” (1734 p. 44). This is not truly a boiling spring since the 

hottest spring in England is Bath at 96 °C at depth (Gallois 2006). Moorman (1867) gives 
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several accounts of thermal springs, referencing the earlier work of Dr. LeConte’s 

Account of some volcanic springs in the desert of the Colorado in southern California 

(1855). LeConte describes “boiling mud” that “ejects steam.” Moorman provides 

commentary on similar formations in Iceland and Crimea, suggesting earlier work on the 

subject. The most prominent example of boiling springs in America is the Heart Lake 

Geyser Basin (HLGB) in Yellowstone National Park. While Cook (1870) provided the 

first scientific description of Yellowstone and its waters, Lowenstern et al. (2012) report 

superheated water at 205 °C in their description of the thermal waters of the HLGB. 

 
Type VII – Mantle Gas 

 
 

The conceptual model for the Mantle Gas (VII) facies begins with a connective 

path for gasses from the mantle (e.g. helium) to the shallow groundwater and eventually 

emerging at the surface. While Boiling (VI) bubbles may occur in conjunction with 

mantle gas, mantle gas bubbles are distinct from thermal bubbles in composition and 

origin. Boiling (VI) requires geothermal heat whereas the Mantle Gas (VII) facies 

originates from depth and may transport sufficient distance to appear without excess heat. 

While helium is not the only, nor the dominant gas from the mantle, it is the characteristic 

gas for this facies. 

Emanuel Mazor and Gerald Wasserburg (1965) provided the first major study to 

indicate the phenomenon of mantle gas discharge. In their study on gas discharge from 

Yellowstone and Lassen, Mazor and Wasserburg (1965) expand on the work of Craig et 

al. (1956), providing a methodology for sample collection and analysis of bubbles. Mazor 

and Wasserburg’s study includes the analysis of a cold ebulating lake, yielding 14.4 ppm 
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of helium of non-atmospheric origin. Craig et al. (1978) continued research on the helium 

connection to the mantle in springs in Lassen and Yellowstone, showing a clear mantle 

connection using Helium isotope ratios (³He/ He). 

Sugisaki and Sugiura (1986) demonstrated a connection in the increased rate of 

bubble generation of endogenic gases prior to a major earthquake in Japan in 1984. 

Sugisaki and Sugiura show a relationship between pore pressure in the crust and changes 

in the gas generation rate and set forth the concept of an earthquake early warning system 

using gas chromatography to measure changes in He/Ar and CH4/Ar ratios. A more 

recent study by Bräuer et al. (2011) in the western Eger Rift in the Czech Republic 

continues with the pore pressure theory and links degassing of endogenic helium with 

earthquake swarms.  

Bräuer et al. (2013) also describe one of the most important examples of springs 

emanating mantle gas bubbles that are in the Eifel area of Germany, where 25 degassing 

locations are present. The researchers were able to show the presence of two distinct 

isotopic signatures from depth; the waters were between 2 °C and 21 °C. The gas analysis 

coupled with the relatively low temperature of these springs indicates a mantle 

connection without the necessity for magmatic proximity. Crossey et al. (2009) found 

free gas phase, as well as dissolved inorganic carbon, indicating an endogenic source for 

CO2 and helium in the Colorado Plateau-Arizona Transition Zone. The research provides 

methodology for determining the contribution of epigenic (meteoric) and endogenic 

(deep) gas in the combined spring discharge. Ricketts et al. (2014) discussed mantle-

derived helium in travertine discharges in the Albuquerque basin, indicating up to 25% of 

the helium came from a deep source. 
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Bubbles with Complex Facies 
 
 

The categorization system defines seven mechanisms for the evolution of bubbles 

in springs and examples of springs that follow these behaviors. However, bubbling 

springs may exhibit more than one distinct facies. This section provides examples of 

mixed facies springs and clarification on the methodology for formally describing the 

facies present. 

CO2 may act as Bernoulli (III) bubbles when concentrations are near or slightly 

above saturation, as is the case with some mound springs in South Australia (Keppel et 

al. 2011). In the South Australia study, the team concluded deep pools of spring water at 

the surface reduced discharge turbulence and might inhibit CO2 degassing. A potential 

variable is the generation of bubbles through a change in head creating non-Darcian flow 

versus a velocity pressure-drop (Nowamooz et al. 2009). High fluid velocity in a porous 

medium will likely characterize Non-Darcian multiphase flow, i.e. Bernoulli (III) (Zeng 

& Grigg 2006). 

Soda (IV) and Boiling (VI) facies may appear together in hot springs. These 

mixed bubble facies may appear as geysers or mofettes. A mofette is a small opening 

where CO2 is emitted in an area of late-stage volcanic activity (American Geosciences 

Institute 2016). Mofettes and geysers are special cases of bubbling springs where heat 

and pressure drive the exsolution process. 

When investigating springs, the presence of Boiling (VI) bubbles provides clear 

evidence of heated (likely superheated) water and therefore the presence of a geothermal 

zone. A magmatic reservoir may be present in these superheated conditions with the 

possibility of Mantle (VII) discharge. The gas phase will achieve equilibrium with the 
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constituents in the magma and can provide a means of identification of the volatile 

components of the magma through sampling the free gas phase (Ellis 1957; Giggenbach 

1980).  

One of the most famous of thermal springs, Bath, Somerset, England (Cunliffe 

1984) is not a boiling spring as the maximum temperature at depth is 64-96 °C (discharge 

45-46 °C) (Gallois 2006). The presence of hydrogen sulfide (H2S) gas bubbles (Edmunds 

2004) makes Bath an ebulating spring rather than a boiling spring and therefore classified 

as Bituminous (V) bubbles. A true boiling spring in this classification system will degas 

other dissolved gas species, providing for more than steam in the bubbles (De Luc 1772). 

This is the case with carbon dioxide and hydrogen sulfide degassing in Brimstone Basin, 

Yellowstone National Park, Wyoming (Bergfeld et al. 2012). The degassing effect is not 

limited to Bernoulli (III) bubbles.  

Travertine formation at hot springs, including bubble travertine from degassing of 

carbon dioxide, is another factor illustrating the complexity of classifying free phase gas 

facies in some springs (Guo and Riding 2002). Bubble travertine is, “[g]as bubbles coated 

by rapidly precipitated calcium carbonate” (Guo and Riding 2002, 168). However, the 

gas discharge occurring during the formation of bubble travertine arising from mineral 

dissolution is categorized here as the Soda (IV) facies. 

The work of Lewicki, et al. (2013) indicates soda springs may be comprised of 

Mantle (VII) discharge in addition to Soda (IV) discharge. Crossey, et al. (2009) confirms 

endogenic (deep) and epigenic (surface/meteoric) CO2 are commonly found together as 

dissolved inorganic carbon. While both Soda (IV) and Mantle (VII) facies may result in 

supersaturated concentrations of dissolved gas, the origin of the bubble is used for this 
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categorization system. Dissolution of minerals by water characterizes the Soda (IV) 

facies rather than the deep connectivity producing Mantle (VII) discharges. The 

commonality of multiple bubble facies occurring in conjunction adds to the difficulty in 

determining free-gas origin. 

The soda springs in Soda Springs, Idaho are examples of both a well-known Soda 

(IV) spring, as well as a significantly studied spring. Lewicki et al. (2013) provided 

several measurement techniques and reported three sources of dissolved CO2 in the 

spring, Biogenic (I) gas (3%), carbonate mineral dissolution (35%) Soda (IV) gas, and 

deep sourced (62%) Mantle Gas (VII) discharge. Lewicki et al. (2013) also demonstrated 

investigating free phase gas facies requires significant attention to detail as multiple 

facies could occur simultaneously, providing insight into the complex flow lines of the 

aquifer or converging aquifers.  

Another complex phenomenon is seismically triggered microbial methane (Bräuer 

et al. 2005). Unlike the more typical biogenic methane, which is derived from decaying 

organic matter, Bräuer et al. (2005), showed excess hydrogen from the seismic activity 

triggers increased microbial activity. The excess hydrogen forms Mantle Gas (VII) 

bubbles, and the microbial methane forms Biogenic (I) bubbles at depth, producing both 

facies at the spring discharge. 

Mariner et al. (2003) stated excess nitrogen has a possible non-atmospheric 

origin. Typical nitrogen/argon (N2/Ar) ratio values for atmospherically derived nitrogen 

in the range of 40-80, where N2/Ar values for volcanic sources are orders of magnitude 

higher. Microbial denitrification can be a significant source of dissolved nitrogen in 
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surface water sediments (Böhlke et al. 2009). While nitrogen bubbles are typically 

Bernoulli (III) facies, they may be Biogenic (I) facies if caused by denitrification.  

 
Future Work 

 
 

 This proposed classification scheme is an attempt to improve two aspects of free 

phase gas research in groundwater. First, being more precise with free phase definitions 

and usage allows researchers to compare across datasets with a language that is more 

uniform. Second, the scheme provides a similar language to treat the types of free phase 

gas phenomenon that researchers are evaluating in comparison to other locations 

worldwide. 

As with any classification scheme, future work will cause a reevaluation of the 

named free gas facies or the addition of others. For example, the authors left out a 

potential category of glacial bubbles formed by gas introduced during glacial melt 

processes (Anderson, 2004). This was due to a limited amount of existing research at the 

time this review was performed. Additionally, the proposed classification covered the 

minor gases that might emanate with others that could be classified in the existing 

scheme. Future work may demonstrate that the presence of a particular gas composition 

is indicative of a unique groundwater process and need a separate bubble facies. 

 
Summary 

 
 

Early research gave significant attention to bubbling springs using simple 

observations and a curiosity for novel waters. Contemporary researchers have started to 

apply advanced instrumentation to the analysis of collected gas samples. We have offered 

seven phenomena that answer the question, “Why springs bubble?” and provided for a 
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facies categorization system for free phase gas discharge from groundwater based on a 

review of the literature. The facies convention and clarification of terms provides a 

framework to establish a vernacular and facilitate the exploration of this phenomenon in 

springs, in the hope of fostering defined lines of investigation to facilitate the exchange of 

knowledge and advancement of the field. By exploring the free phase gas discharges in  

springs, in addition to the dissolved phase, researchers will gain additional insight into 

the inner workings of aquifers and reduce errors associated with dissolved phase gas 

sampling. 
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CHAPTER III 
 

 
METHODOLOGY 

 

An Instrument for the Determination of A 
 

Hydropneumograph in A Bubbling Spring 
 

Article Publication: Accepted by Groundwater (Agnew et al., 2019), used here in 

accordance with the Wiley Publishing Services Copyright Transfer Agreement – 

Permitted Uses By Contributor. 

Authors: Robert J. Agnew, Todd Halihan, Lantz Holtzhower, and Brian Norton 

 

Numerous springs have been reported to ebullate gas (free phase gas discharge) 

(Woodward 1910; Thompson & Withers 2002; Krešić 2007; Agnew & Halihan 2018). 

Described in this methods note is a field deployable device that is capable of 

economically measuring the gas phase discharge at a bubbling spring. This type of device 

is important for groundwater studies to provide data on gas mass flow rate and 

composition. The ebullition occurring at a spring discharge may act to strip out dissolved 

gases, which would introduce error into a dissolved gas analysis (White et al. 1963; Baird  
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et al. 1979; Patoczka & Wilson 1984; Lucchetti & Gray 1988; Vroblesky and Lorah 

1991; Mariner et al. 2003). Failing to account for the free gas phase may introduce 

significant errors in determining the total gas present and thereby alter measurements of 

interest, such as water age dating (Taran 2005).  

Understanding spring discharge of water over time has provided significant 

insight into groundwater flow, but similar measurements of the gas discharge are 

generally unavailable as temporal data. The proposed apparatus provides a method to 

both capture gas for constituent analysis and to measure the mass flow rate. Combining 

gas mass flow rate with gas constituent analysis allows for proper mass balance in the 

computation of gas ratios. 

In order to deploy an instrument into the field, it must be reasonably portable and 

capable of measuring the flow rate of both the gas and liquid phases. The apparatus must 

also record environmental data, including temperature and pressure, to provide adequate 

information to detect changes in gas generation rate not attributed to changes in water 

flow or atmospheric conditions. The apparatus must be size scalable to capture gas and 

water mass discharges from various magnitude springs. Finally, it would be useful if the 

apparatus is relatively affordable if it is to be used in the field for an extended duration to 

capture seasonal flow variation. 

For the sake of portability, an instrument that is capable of directly measuring 

bubbly mixed-phase flow would be preferred. Direct bubble measurement is difficult 

(Taran 2005) and requires significant assumptions for mathematical modeling (Brennen 

2005; Lavenson et al., 2016; Daniel 2018). Measuring water flow that contains entrained 

gas introduces error into conventional measuring devices, such as paddlewheel, pressure 
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drop, turbine style, etc. (Hanson & Schwankl 1998); however, water velocity in bubbly 

mixed-phase flow has been successfully measured using an electromagnetic flow meter 

(Leeungculsatien & Lucas 2013). Unfortunately, the electromagnetic flow meter 

designed for bubbly mixed-phase flow is a sensitive piece of equipment that is presently 

only suitable for laboratory measurements. 

Successful bubble-scale measurements of gas in the mixed phase have been 

accomplished in the nuclear industry via ultrasonic void measurement (Aritomi et al. 

2000; Filho et al. 2009). High performance measurement of gas volume in bubbly mixed-

phase flow for natural gas extraction has been accomplished using a four-sensor 

conductivity probe (Pradhan 2010). These bubbly mixed-phase flow instruments are 

designed for use in high-temperature and high-pressure environments making them a 

relatively expensive sensor technology that is more applicable to the non-Darcian 

conditions of natural gas extraction wells (Zeng & Grigg 2006). An intriguing 

developmental method of using acoustics to measure bubble generation is reported by 

Czerski and Deane (2010). Other techniques, including a fiber optic probe (Lim et al. 

2008) are available. Ultimately, all these methods are costly.   

In light of the deficits related to direct measurement of bubbly mixed-phase flow, 

and for the purposes of practicality and economy, a simple device that separates the flows 

of gas and liquid and provides for easy measurement of each separate phase is required. 

Koch et al. (2003) provides an excellent diagram of a phase separation device 

permanently installed on a spring in the Upper Vogtland (Germany) that allows for real-

time collection of the flow of both phases. This permanent installation required pouring 

of concrete and other expensive infrastructure that is not feasible or may not be allowed 
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at a field site. The basic concept of separating the two phases of flow for measurement is 

reasonably achievable in field conditions. 

 The design of a phase separating gas mass discharge logger requires several 

design considerations. First, an estimate of the gas and water mass flow and flow velocity 

is needed in order to size and calibrate the flow measuring devices. Estimates of gas flow 

rates tend to be biased towards the free phase gas bubbles that are visibly present and do 

not accurately include gas flux across the bulk interfacial area of the spring discharge. If 

the supersaturation ratio is known, the flux may be estimated (Wanninkhof et al 2009). 

Failure to properly estimate the total gas flux, and the corresponding sampling tube and 

pressure relief vent could increase the pressure in the device and diminish responsiveness 

to changing gas flow rate, or cause the structure to float and lose containment of the gas 

phase discharge. 

A crude field estimate of gas discharge using a funnel device has been 

successfully used to collect the gas phase from a spring for laboratory analysis (Sugisaki 

& Sugiura 1986; Fox 1988; Mariner et al. 2003; Bräuer et al. 2005; Bräuer et al. 2011). In 

an accurate low flow instrument, the humid gas flow will need to be dried prior to 

measurement. Additionally, the gas mass flow rate may be influenced by differential 

temperaures and pressures between a collection structure (shroud) and the atmosphere, 

known as the stack effect (Atkins & Escudier 2013). Stack effect has been shown to 

affect radon flux (Saiway et al. 2006), transport of vapors and aerosols in buildings 

(Madrzykowski & Kerber 2009), and chemical vapor intrusion into buildings from 

contaminated groundwater (Song et al. 2014). Mitigating the stack effect within the phase 



 

39 
 

separator can be accomplished by covering/insulating the apparatus to prevent solar load 

and minimizing the size of the collection funnel. 

Finally, bubbles in springs do not appear in a steady rhythm, but rather at an 

irregular pace. Many karst springs are known to have episodic or rhythmic water flow or 

siphon effects (Bonacci & Bojanić 1991). These variable springs may have regular or 

non-linear oscillations in flow, and it follows that bubbles generated in karst springs may 

possess a similar variability. Bonacci & Bojanić (1991) summarize the work of many 

researchers and demonstrate the conceptual model of chambers and syphons to create 

episodic flow patterns.  A spring upwelling into a gravel bed may have episodic 

ebullition due to gas accumulating in the interstitial space between aggregates until 

sufficient buoyancy is achieved and a cascade of bubbles emerges. Due to the episodic 

bubble generation rate, a direct correlation between liquid flow and gas flow is infeasible; 

therefore, measurement data for the gas and liquid flow requires some temporal 

averaging.  

A prototype phase-separating gas and water flow-measuring device was 

constructed and deployed at the Little Bubbler Spring located within the Nelson Spring 

Complex. The Nelson Spring Complex is located on the Arbuckle-Simpson Ranch near 

Connerville, OK. The Little Bubbler Spring is a fifth magnitude spring during peak flow 

and a sixth magnitude spring during base flow. The spring is located at 34°27'26.23"N, 

96°40'6.36"W. The spring was selected due to its slightly elevated position related to a 

nearby steam, moderate water flow rate, heavy shade, and its intermittent yet steady 

stream of bubbles. The spring discharges from the fractured and karstic Arbuckle-

Simpson aquifer. The isothermal nature of this spring (16.4 +/- 0.2 ˚C) provides an 
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excellent field site as gas volume dependencies on spring temperature variations are 

nearly eliminated. 

Methodology 
 
 
 The mass measuring devices consist of a weir for determining the mass discharge 

of water and a phase separator for determining the mass discharge of gas.  These 

instruments were installed at the spring orifice. The methods are presented for 

determining the mass flow rate of water followed by the approach to measure the mass 

flow rate of gas. The power supply and data logging apparatus are also described. Next, 

the field deployment of the apparatus is described. Finally, additional features were added 

for sampling gas composition. 

Water Mass Flow Rate 
 
 

Water discharge from the spring is measured using a thin-plate V-notch weir 

(ASTM D5242-2013) (Figure 3). The weir has a V-notch θ of 28.09 degrees, 12 inch 

high, made from 16 ga. (0.063 in, 0.16 cm) steel plate. The hydraulic head and water 

temperature were measured using a Solinst® 3001 Levelogger LT F15/M5 ± 0.3 cm 

(0.05% FS - ± 0.05 kPa) with temperature sensor accuracy of ± 0.05 °C and resolution of 

0.003 °C. Data were recorded every five minutes for the planned 28-day test period.  

The weir head is corrected for local atmospheric pressure using a Solinst® 3001 

Barologger F5/M1.5 (0.05% FS - ± 0.05 kPa) with temperature sensor accuracy of ± 0.05 

°C and resolution of 0.003 °C. Data were processed using Levelogger software version 

4.3.3. 
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Water mass flow rate from the weir flow was then calculated using the 

Kindsvater-Shen equation (U.S. Bureau of Reclamation, 2001) shown in Equation (1). 

Equation (1) 

𝑄𝑄 = 4.28 𝐶𝐶 tan �
𝜃𝜃
2
� (ℎ + 𝑘𝑘)

5
2 

Where: 
Q = Discharge (cfs) 
C = Discharge Coefficient 
θ = Notch Angle (degrees) 
h = Head (ft) 
k = Head Correction Factor (ft) 
 

 
 

Figure 3. Apparatus Installation. 
 

Legend:  Water flow from the spring migrates upward on the photo from the  
shroud to the stream channel past the weir. Gas flow is collected in  
the shroud and is routed to the instrumentation box. 

 
 

As V-notch weirs are subject to obstruction by floating debris such as leaves, they 

must be regularly cleaned. As this weir was installed in a remote location, regular hand 

cleaning as recommended by the ASTM standard was not practical. Therefore, an 
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automated weir cleaning arm was installed. The arm was constructed of an 11-inch long 

metal rod attached to the drive of a waterproof solenoid motor (Fan Model FS-20W) with 

a torque of 16.0 kg-cm (1.16 ft-lbs). The rod swept up and back through the weir notch 

once per hour as controlled by a WitMotion motor controller driver board (adjustable 

relay). Power to the board and solenoid motor was Tobsun EA15 DC converter to 

produce a 5-volt leg on the main 12 V power system. 

 
Gas Mass Flow Rate 

 
 

The gas mass flow rate instrument included a gas capture shroud, solar power 

supply, and electronic instrumentation including a thermal mass flow sensor for gas mass 

measurement. These instruments were installed at the spring discharge. Along with 

enabling the water mass flow measurement, the weir creates a pool for the placement of 

the gas shroud (Figure 4). The gas shroud is connected via tubing to the thermal mass 

flow sensor in a protective field enclosure. 
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Figure 4.  Gas Collection Apparatus Profile View. 
 

Legend:  Blue arrows indicate water flow and green arrows indicate gas flow. 
 

 

 The gas ebullition capture shroud is placed over the point of separate phase gas 

discharge at the spring orafice. The shroud is a round 1.83 meter (6-foot) diameter stock 

tank, 0.6 m (24 inches) tall, with a ¾ inch NPT drain outlet. The drain of the inverted 

stock tank, at the high point of the shroud, acts as the connection for the tubing leading to 

the mass flow sensor. Given the 2.63 m2 surface area of the top of the shroud, the uplift 

force on the shroud equals approximately 4,500 N (1,000 lbf) at the cracking pressure; 

ballast weighing 25% greater than the reactive force was placed upon the shroud. Flow in 

the system is derived from gas accumulating in the shroud, displacing water into the pool 

and creating a water level differential (gas phase head) between the shroud and pool 

(Figure 5). 
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Figure 5.  Instrument Box Layout. 
 

Legend:  Blue arrows indicate water flow for cooling and green arrows  
indicate the direction of gas flow through the system. 

 
 
 

An Aalborg XFM17 thermal mass flow sensor (TMFS) with totalizer is used to 

measure the gas discharge collected by the shroud. A TMFS was selected due to its high 

precision and accuracy at very low flow rates. Other flow measuring technologies are 

available but lack the ability to measure at low flow (e.g. orifice plates). The TMFS was 

factory calibrated using dry nitrogen. 

The nitrogen concentration in the water of Nelson Spring Complex is reported by 

Christenson et al. (2009) as 22.03 ccSTP/kgH2O.  Therefore, nitrogen was selected as the 

reference gas for the TMFS due to nitrogen being the dominant gas in the Nelson Spring 

Complex. A whole gas sample was analyzed by the USGS Noble Gas Laboratory in 

accordance with Techniques and Methods 5-A11 (Hunt 2015) confirming 84.2% by 
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volume N2 in the discharging gas phase, with 11.8% O2, 2.6% CO2, 1% Ar, and the 

balance of trace gases.  

Flow in the system is derived from gas accumulating in the shroud, displacing 

water into the pool and creating a water level differential between the shroud and pool. 

The gas is conducted from the shroud via ½-inch o.d. polyethylene tubing 30 feet to the 

equipment box via a series of bushings and adapters. The tubing is run inside ¾-inch 

nominal diameter flexible metal conduit to protect the tubing from mechanical damage or 

animal tampering. At the connection to the shroud a ¼ turn shut-off valve is provided 

upstream of a pressure relief valve (PRV). The PRV is a 3/8” UCM13-4BP-35-.25 nickel 

plated brass atmospheric relief valve with a Buna seal, polypropylene poppet, fritted dust 

cap, and a cracking pressure of 1700 Pa (0.25 psid, 6.9 in H2O). The cracking pressure 

was determined by doubling the highest recorded pressure on the line of 750 Pa (3 in. 

H2O). The pressure in the system is the result of friction loss in the tubing, conditioning, 

and measuring train.  

In order to prevent thermal effects from sunlight and atmospheric temperature 

variability, the shroud is insulated on top with ½” metal foil backed foam insulation 

board (placed below the ballast). The sides of the shroud are wrapped with two layers of 

3/16” metallized thermal bubble roll. The foil/metalized insulation barrier reflect radiant 

heat from solar load which would otherwise affect the gas pressure in the shroud. 

Temperature in the shroud is also maintained by the constant flow of cold water from the 

spring water discharge. The gas line coming from the shroud to the instrument box is 

wrapped in foam pipe insulation. Insulating the line prevents water condensation in the 
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winter and excess heating in the summer, which can lead to higher humidity in the 

sample gas. 

The instrument box (Figure 5) supports the system power supply, gas 

conditioning systems, thermals mass flow sensor (TMFS) and Data Acquisition System 

(DAC). The TMFS has a calibrated range of 0 – 1 standard liters per minute (sLPM) ±1% 

full scale. The sensor is powered by 11 to 26 volts DC and outputs a 4-20 mA analog 

signal. The principle of operation of the TMFS is based upon heat transfer. Gas flow is 

separated into two paths, the main path and the capillary path. Heat is introduced to the 

capillary path by a precision heater coil and heat transfer is measured downstream by an 

analogous coil. As gas passes the coils, the heat loss is correlated to the specific heat of 

the gas resulting in detection of total mass flow (Aalborg 2016). 

The TMFS has a 10-point factory calibration and includes a certificate of 

calibration that is used to correct flow measurements. The TMFS is fitted with over-sized 

3/8 inch compression fittings to reduce friction loss in this low-pressure system. The 3/8 

inch connectors are coupled to 3/8-inch outside diameter (o.d.) polyethylene tubing. 

Inside the housing, the 3/8-inch tubing is connected to a series of brass valves (Figure ). 

The TMFS is calibrated with dry nitrogen. Correction for water vapor laden gas less than 

70% relative humidity is not needed. Moisture content does not affect the accuracy 

beyond 1% full scale; however, the capillary tube has a small diameter and is subject to 

condensation blockage if the water vapor saturation exceeds 70%.  

The gas sampling line requires gas conditioning to reduce the humidity of the 

incoming gas feed. The gas sampling line conditioning included a gas chiller/moisture 

condenser, phase separator, and a drying column filled with Drierite® desiccant (Figure 
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5). The gas chiller is a heat exchanger made from four-inch square, 12-inch tall by 4-inch 

square aluminum tank with ¼-inch thick walls. A coiled ¼-inch copper tube 20-feet in 

length passes through the chiller box that is filled with water. Water is added through a 

¾-inch NPT opening in which is interested a brass plug with a waterproof thermocouple. 

The chiller box is insulated with two layers of ¾ inch thick Extruded Polystyrene (XPS) 

foam board.  

The heat exchanger is cooled by a Peltier device. The Peltier cooler measures 40 

mm x 40 mm x 3.71 mm providing 53.2 Watts of cooling and drawing 4.8A. The Peltier 

rejects heat to an aluminum water block of the same dimensional area. Water is supplied 

to the block via 7/16” OD tubing connected to an Aubig DC40-1250 Brushless Magnetic 

Drive Centrifugal Submersible Water Pump that provides 500 liters of water per hour. 

The pump is placed in the spring pool and provides 16.5 C water for cooling. Affixed to 

the pump is a filter box to prevent aquatic fauna (leeches) from clogging the impeller.  

The cycled water is returned to the pool as to not affect water level measurement. 

The water lines are covered in an opaque material to prevent algal growth. In order to 

conserve power, the Peltier chiller is controlled by a programmable temperature 

controller W1209 connected to the waterproof thermocouple in the chiller tank. The low 

temperature controller is set to begin chilling at 4° C and turn off at 2° C. A second high 

temperature controller is attached to the water cooling block to detect a loss of water and 

turns off the chiller if the block temperature exceeds 50° C. 

Once the gas flow leaves the gas chiller it enters a phase separator. The phase 

separator is a 16 fl. oz. Nalgene bottle with bulkhead fittings through the threaded lid. 

The phase separator collects condensed water from the gas chiller and passes the dried 
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gas to the drying column extending the service life of the desiccant. The clear PVC 

drying column is 3” in diameter, 22 inches tall, filled with five pounds of 8-mesh 

indicating desiccant. The desiccant is made from calcium sulfate with cobalt dichloride as 

the indicator of moisture breakthrough (Drierite®); the sample line is equipped with a 40-

micron filter after the drying column to ensure dust from the Drierite® does not clog the 

capillary tube of the TMFS. 

Use of the gas drying column extends the ambient operating temperature of the 

TMFS from 0 °C to 50 °C (32 °F to 122 °F) without the column, to -10 °C to 50 °C (14 

°F to 122 °F) with the drying column. The average low temperature in Ada, OK near the 

test location, in the coldest month (January) is -2.8 °C (27 °F); which is in tolerance for 

the TMFS. However, the record low in Ada, OK is -23°C (-10 °F), which required 

monitoring via the built in temperature sensor on the DAC during the development of the 

instrument. The waste heat from the solar charge controller assisted in maintaining the 

ambient temperature inside the equipment box at acceptable levels. 

All the gas measuring components are housed in a Pelican™ polypropylene case 

model 1650-020-110.  The TMFS has an environmental rating per the International 

Electrochemical Commission (IEC) standard 60664-1 (2007) for Installation Level II; 

Pollution Degree II. This device cannot be installed outdoors due to moisture sensitivity. 

The case is designed per IEC 60529 (2013) with an Ingress Protection rating of 67 (IP67), 

which is dust tight and water tight to one-meter depth meeting the IEC standard. 

 Penetrations in the case to allow for the sampling line and the electrical lines 

were sealed with silicone caulking. Since the gas outlet discharges into the enclosure 

before exiting through a small orifice in the case, the enclosure was effectively purged 
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with dry nitrogen preventing condensation from the chiller element. This maintained the 

enclosure at positive pressure with respect to the atmosphere and kept out environmental 

moisture. 

Data Logging and Power Supply 
 
 

The 4-20 mA data output from the TMFS was recorded by a Campbell Scientific® 

CR300 data logger with PC200W software (version 4.4.2). The non-isolated 4-to-20 mA 

current-loop was measured using a 24-bit analogue to digital (A-to-D) converter with an 

accuracy of ± 0.26% of the reading at a temperature range of -40 to 70 °C. Data from the 

TMFS were recorded every 10 seconds. 

Power was provided to the electronic components of the system by two Renogy 

RNC-100D monocrystalline solar panels with a maximum power of 100 watts each under 

Standard Test Conditions with an optimum output of 18.9 V and 5.29 A. Overall panel 

dimensions of each solar cell are 119.5 x 54.1 x 3.5 cm (47 x 21.3 x 1.4 in). The solar 

panels were connected to a Renogy Wander CTRL-WND30 charge controller that was 

connected to two NAPA 8301 deep cycle 12V flooded cell batteries (~105 amp-hour 

each). The panel and charger were connected by 8 AWG wire routed inside ¾-inch 

nominal diameter flexible metal conduit to protect the tubing from mechanical damage or 

animal tampering. The solar power system was designed to provide sufficient power on 

the shortest day of the year to supply the equipment with the required daily energy 

consumption. Additionally, the batteries were sized to provide four days of backup power 

in the event of a power system component failure. 
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Instrument Deployment and Testing 
 
 

Once the major components of the system were installed at the field site, the 

instrument was leak checked and field calibrated. All gas connections were made of brass 

compression fittings. Several pieces of hardware were integrated into the gas tubing 

system to allow testing and calibration. This hardware includes system gas connections 

(C) and gas isolation valves (IV) (Figure 5). The connectors and valves may be 

configured in several ways to allow for different operating modes and functionality 

(Table 3). 

 
 
 
Table 3.  Sampling Train Hardware Configurations 
 

Operation 
Hardware 

Connection 
1 

Connection 
2 

Calibration/ 
Sampling Port 

In-line 
Valve 1 

In-line 
Valve 2 

In-line 
Valve 3 

Leak Check 
Calibration 

Gas 
Cylinder 

Closed/ 
Capped Closed/Capped Open Open Open 

Zero/Reset 
Totalizer N/A Closed/ 

Capped N/A N/A Closed/ 
Capped N/A 

Calibration 
Calibration 

Gas 
Cylinder 

Open N/A Open Open Closed/ 
Capped 

Flow 
Measurement Shroud Open N/A Open Open Closed/ 

Capped 

Whole Gas 
Sampling Shroud N/A 

Whole Gas 
Sampling Vessel 
(Canister or bag) 

Open Closed/ 
Capped Open 

 

 

The fittings were leak tested by connecting a nitrogen calibration cylinder to the 

shroud end of the system, opening isolation valves one and three, closing isolation valve 

two, and capping the discharge line. With the cylinder valve open and the system 

pressurized, all the gas connections were leak tested using Snoop® liquid leak detector. 
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The system was field calibrated by zeroing the TMFS then flowing nitrogen from 

the compressed nitrogen cylinder at three known flowrates. Flow from the gas cylinder 

was controlled by Premier Industries 2700 series fixed flow regulators with flow rates of 

0.3, 0.5, and 1.0 sLPM. The principle of operation of the regulators was a needle valve 

restricted orifice with a +/- 10% accuracy over the pressure range of the bottle. The 

regulator was attached via a Compressed Gas Association (CGA) standard C-10 

connector to a 1,000 psig cylinder containing 103 standard liters of 99.999% nitrogen. 

The calibration cylinder was connected to the far (shroud) end of the polyethylene line to 

account for friction loss in the system. A 3-point field calibration was performed prior to 

beginning data collection, and again after data collection to account for drift, with less 

than 5% drift being acceptable (MSHA 2014). 

The power supply for the system was tested each time the investigator visited the 

site. Voltage at the battery was checked as well as voltage coming into the solar charge 

controller using a standard DC volt meter.  The batteries were checked for available 

current using an ammeter. 

Additional Features 
 
 
 The primary purpose for this instrument was the measurement of the mass flow 

rate of the gas and liquid phases of bubbly mixed-phased flow. While these 

measurements provide useful data, the full potential of the instrument was met when the 

data were combined with compositional analysis of the free phase and dissolved phase 

gasses. 

By utilizing connection three (Figure 5) to attach a whole gas sampling device 

such as an evacuated canister or non-reacting bag, the ebullating gas may be collected for 
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analysis. A copper tube and clamp sampler may also be used, but has the potential to 

react with oxygen and other active species. The totalizer on the TMFS was used to 

determine when it was appropriate to collect a whole gas sample. The shroud must first 

be allowed to exhaust the background air from when it was installed. Using dilution 

ventilation equations, purge volumes or time to dilution, values may be calculated 

(Equation 2; National Safety Council 2012). After calculating the effective ventilation 

rate of the shroud, the purge time was obtained based upon the flow rate measured by the 

TMFS. The effective mass flow rate accounts for non-ideal mixing in the shroud, 

increasing the number of purge volumes necessary to reduce the initial concentration of 

air.  

Equation (2)  

𝑄𝑄′ = 𝑄𝑄
𝐾𝐾

        

  Where: 

   Q' = The effective ventilation rate, liters per minute (lpm) 

Q = Actual ventilation rate, lpm 

K = A dimensionless mixing factor from 1 to 10 to account for 

imperfect mixing within the enclosed space, where 1 is ideal 

and 10 is poor. 

 Using the effective flow rate, the concentration of the initial air in the shroud at a 

given time was determined by Equation (3). 
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Equation (3) 

𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑖𝑖 �𝑒𝑒
(−𝑄𝑄

′𝑡𝑡
𝑉𝑉𝑒𝑒

)�       

  Where: 

   Ct = Concentration at given time, percent 

   Ci = Initial concentration, percent 

   Q' = The effective ventilation rate, lpm 

   t = Purging time, minutes 

   Ve = Volume of the enclosure, liters 

 

Solving Equation 2 for time yields: 

Equation (4) 

𝑡𝑡 =
�𝑉𝑉𝑒𝑒∗𝑙𝑙𝑙𝑙�

𝐶𝐶𝑖𝑖
𝐶𝐶𝑡𝑡
��

𝑄𝑄′
       

By assuming a reasonable K value and using a known shroud volume and flow 

rate, the purge volumes necessary to achieve the target residual concentration of less than 

one percent of original air was determined by  

Equation (5) 
𝑉𝑉
𝑝𝑝= 𝑡𝑡∗𝑄𝑄

′

𝑉𝑉𝑒𝑒
 

 Where: 

  Vp = Purge Volumes 

 
Therefore, 15 purge volumes of the shroud will result in a Ct of 0.7% given a K of 

3, or 10 purge volumes with a K of 2. For the device on the test spring flowing nominally 
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at 0.7 sLPM, once the totalizer reaches 24,500 liters in about 24 days, free gas 

composition assessment can be assured. 

Whole gas samples may be collected by either a vacuum canister or a film bag. 

Since helium is of primary significance in groundwater analysis, film bags were not 

appropriate for this application. For example, Tedlar™ bags have a gas permeation rate 

for helium of 150 cc / (100 in2)(24 hr)(atm)(mil) compared to the nitrogen permeation 

rate of 0.25 cc / (100in2)(24 hr)(atm)(mil) (DuPont 2014). Additionally, film bags have a 

maximum hold time of before analysis of 48 hours whereas vacuum canisters were stable 

for 30 days (Eurofins Air Toxics, Inc. 2014), making canisters more practical for remote 

field collection. 

Stainless steel vacuum canisters that have undergone electro-polishing and 

chemical passivation using the Summa process (i.e. Summa Canisters) are available in 

one liter and six liter volumes (Eurofins Air Toxics, Inc. 2014). Summa Canisters were 

fitted with critical orifice style regulators, which allowed for low flow rates (3.8-167 

mL/min) that will not induce a vacuum in the shroud and could alter the mass fractions of 

ebullated gas. A preferred sampling method would use a one-liter Summa Canister with 

the regulator set to 167 mL/min and a sampling time of five minutes to achieve the target 

800 mL sample volume. The collection point, C3 (Figure 5), should be placed after the 

drying column and particulate filter to eliminate water vapor from condensing in the 

canister and to prevent particulate blockage of the critical orifice. Alternatively, copper 

tube sampling using a crimp style cold welder may be used to collect gas samples. 

However, the copper metal is reactive with oxygen and will alter these measurements 

along with measurements for reactive species at contamination sites. 
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The whole gas sample may be analyzed by Gas Chromatography Mass 

Spectroscopy in accordance with the USGS Techniques and Methods 5-A11 (Hunt 2015). 

In addition, dissolved gas sampling should occur at the same time of whole gas sampling. 

Dissolved gas sampling is performed using the copper tube method (Hunt 2015). By 

using the same analytical technique as used for the dissolved phase gases, the total mass 

of the dissolved gasses may be calculated. Alternatively, dissolved gas measurement may 

be achieved by a permeable gas membrane technique (Manning et al 2003; Matsumoto et 

al. 2013). 

Preliminary Results 
 
 
 The flow-measuring device deployed at the Little Bubbler Spring successfully 

measured gas generation rate and water flow simultaneously. A sample of four days’ 

worth of data is presented as a hydropneumograph (Figure 6) by binning the 10-second 

data to 15-minute data.  For the sample period, the water flow rate was relatively stable 

with an average mass flow of 0.09 kg/s (1.44 gpm) and includes a handful of higher flow 

periods with a maximum mass flow of 0.16 kg/s (2.55 gpm). The gas flow rate (mostly 

nitrogen) oscillated between high and low flow, but without an obvious periodicity. The 

average nitrogen mass flow rate was 13.19 mg/s (0.63 SLPM or 0.022 SCFM) and ranged 

from a low of 12.34 mg/s (0.59 SLPM or 0.021 SCFM) to a high of 14.41 mg/s (0.69 

SLPM or 0.024 SCFM). 
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Figure 6.   Little Bubbler Spring Hydropneumograph. 
 

Legend:  Solid line is a 5-point running average of the individual data points. 
 
 
 
 

Discussion and Summary 
 
 
 The instrument described in this work successfully measured bubbly mixed-phase 

flow of groundwater from springs and produced a dataset in the form of a 

hydropneumograph. The instrument was broken up into manageable sized components 

that may be deployed in the field and provide continuous data collection. By the use of a 

phase separator, the gas generation rate and the water flow rate were independently 

measured. These data are necessary for understanding gas mass flow rate or WGR, which 

may be used to determine aquifer dynamics or used in combination with dissolved and 

free gas compositional analysis to determine accurately gas ratios for water age dating 

and other computations.  
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The described instrument was useful in examining the development of excess air 

in groundwater. Excess air (Heaton & Vogel 1981; Aeschbach-Hertig et al. 2000; Klump 

et al. 2008; Solomon et al. 2011) in groundwater was formed either by fluctuating water 

levels at the recharge pressurizing gas in the pore space or through vorticity in rapidly 

descending waters in fractured or karstified formations. Dissolved gas analysis is 

commonly used to calculate temperature at recharge by assuming that the saturation level 

of atmogenic gas is temperature driven; however, excess air is shown as a pressure 

phenomenon related to the depth of free gas entrapment in porous media (Holocher et al. 

2002; Jung & Aeschbach 2018). By measuring ebullated gas, gas flux, and dissolved 

phase gas concentrations, the total gas saturation per unit mass of the discharge water 

(hydropneumograph) can be obtained and used to evaluate the likelihood of a temperature 

or a pressure driving force for the excess dissolved gas.  
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CHAPTER IV 
 

 
RESULTS 

 

Improving Gas-Derived Aquifer Parameters  
 

Using Free-Phase Gas Measurements 
 
 
Article Submission: Preparing Manuscript for Groundwater 

Authors: Robert J. Agnew, and Todd Halihan 

 

Monitoring data from wells and discharge data from springs provide significant 

insights into aquifer dynamics. However, the quantitative physical migration of the free 

gas phase, when present, has sparing representation in the transport literature aside from 

effervescing (Type IV) springs (Agnew and Halihan 2018). Numerous groundwater 

springs have multiphase flow (Agnew and Halihan 2018), but current literature regarding 

springs that have free gas phase bubbles present (Type III), that are not effervescent, is 

sparse. How researchers approach free-phase gas chemical analysis in these springs is 

unknown, but it may be assumed that most generally ignore free gas phase effects, likely 

assuming that the ratio of He/Ne is largely unaffected by free phase gas (bubbles) and  
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consider the ratio to be between 0.220 and 0.288 (Aeschbach-Hertig, Peeters, et al. 2000). 

Parameters of importance for groundwater aquifers, recharge temperature and apparent 

age, are dependent upon the accurate determination of the dissolved gas content of the 

recharge waters ( (Schlosser, et al. 1989) (Stute and Schlosser 1993) (Aeschbach-Hertig, 

Peeters, et al. 2000) and others). Failure to consider the free gas phase may result in 

errors in determination of recharge temperature and other parameters collected using 

these data, particularly in karst aquifers where multiphase flow is common. 

Significant work has been performed sampling and modeling gas transport in 

groundwater, beginning with the amount of atmogenic gas in equilibrium with water, or 

Air Equilibrated Water (AEW) (R. F. Weiss 1970) (R. F. Weiss 1971) (Weiss and Kyser 

1978) (Clever 1979). Groundwater typically contains greater abundance of dissolved 

atmogenic gasses than AEW. This over-abundance of dissolved gas, or “Excess Air” 

(Herzberg and Mazor 1979), (Heaton and Vogel 1981) is driven by surface tension and 

capillary effects (Klump, et al. 2007) and water table fluctuations (Aeschbach-Hertig, 

Peeters, et al. 2000). These mechanisms for the development of excess air have been 

confirmed in a laboratory column experimental (Holocher, et al. 2002) and using an in-

situ field experiment (Klump, et al. 2007).  

By using the dissolved noble gas concentrations and Excess Air models, the 

temperature during recharge may be estimated, providing the Noble Gas Temperature 

(NGT) (Stute, et al. 1995) (Aeschbach-Hertig, Peeters, et al. 2000). The NGT is 

determined based upon the temperature dependence of the solubility of the noble gasses 

(R. F. Weiss 1970), (R. F. Weiss 1971), (Clever 1979), (Stute and Schlosser 1993) while 

accounting for Excess Air. Additionally, the dissolved Tritium/3He may be used to 
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determine the duration the waters have been in the aquifer, or apparent age (Schlosser, et 

al. 1989). 

In order to estimate the NGT, an excess air model is needed. The typical models 

have many commonalities, starting with the use of Air Equilibrated Water (or Air 

Saturated Water) derived from by Weiss (1970) (1971) (1978) and Clever (1979). All 

common models assume the absence of gas fluxes, particularly ebullative flux. Granted, 

diffusive flux occurs across the interfacial area (air/water surface at the discharge), past 

the point of underwater sampling, therefore ignoring diffusive flux is reasonable. These 

excess air models are solved using a computational inversion technique, (Sun, Hall and 

Castro 2010) (Jung and Aeschbach 2018). Caution must be used in the interpretation of 

these modeling results; Sun et al. (2010) shows statistically models can routinely get low 

Chi Square values due to inflation of original excess air concentration (A) before 

fractionation. Additionally, Cey et al. (2008), (2009) argue that goodness of fit is not a 

robust indicator of the appropriateness of an NGT model. Therefore, modeling results 

must be compared to physical realities to determine robustness and applicability to a 

given water system. For a thorough treatment of noble gas chemistry in natural waters see 

Kipfer et al. (2002). 

While the typical excess air models have many commonalties, every model relies 

on specific assumptions in the computation of excess air. The Unfractionated Excess Air 

(UA Model) simply adds additional air of the composition of AEW to most closely 

reflect the measured concentrations of the gasses in the water sample (Andrews and Lee 

1979); (Heaton and Vogel 1981); (Stute and Schlosser 1993). The Partial Re-

equilibration (PR model) considers diffusive loss of some portion of the excess air (Stute, 
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et al. 1995). The Closed-system Equilibration (CE model) fixes a volume of air trapped in 

bubbles per unit mass of water (Aeschbach-Hertig, Peeters, et al. 2000). The Oxygen 

Depletion (OD) model assumes that the increase in noble gas concentrations is 

proportional to the partial pressure increase from the consumption of oxygen by 

biological processes (Hall, et al. 2005), (Castro, et al. 2007). The Partial Degassing (PD 

model) is a modification of the PR model using diffusive loss rather than re-equilibration 

(Aeschbach-Hertig, El-Gamal, et al. 2008). The Gas diffusion relaxation (GR model) is a 

modification of the OD model using diffusion and a loss of air (Sun, Hall, et al. 2008). 

The governing equations for the six listed models (UA, PR, PD, OD, GR, and CE) are 

well described in Jung & Aeschbach (2018) and subsequent references. 

These excess air models are used to determine the NGT by fitting excess air 

parameters to the dissolved noble gas concentrations and the temperature dependent gas 

solubility. This analysis relies upon the difference in the neon concentration in the water 

sample and AEW (ΔNe), as neon’s solubility is governed by excess head and has nearly 

negligible temperature dependence (Aeschbach-Hertig, Peeters, et al. 2000) (Aeschbach-

Hertig, et al. 2002) (Kipfer, et al. 2002). Helium is not used in this determination due to 

non-atmogenic sources of helium being present in groundwater.  

The amount of excess air, the NGT, and ΔNe are also necessary parameters for 

the tritium/3He Groundwater Age Model. The accurate selection of the excess air model 

is critical for determination of water age (Peeters, et al. 2002) using the groundwater-

dating procedure developed by Schlosser (1989), which is suitable for the determination 

of apparent age in young waters. Note that, “The tritium/3He age is an apparent age 
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which is affected by 3He loss due to incomplete confinement in the groundwater body 

and by mixing.” (Schlosser, et al. 1989, 245). 

While the dissolved gasses in groundwater have received much attention, the free 

gas phase, however, is given less emphasis in hydrogeology unless a source of 

contamination is present wherein the free gas phase (bubbles) provides a transport 

mechanism for contaminant migration (Patoczka and Wilson 1984) (Vroblesky & Lorah, 

Prospecting for Zones of Contaminated Ground-Water Discharge to Streams Using 

Bottom-Sediment Gas Bubbles, 1991) (McLinn and Stolzenburg 2009). Additionally, 

free phase gas from groundwater is given more attention in water purification engineering 

literature (Scardina 2004) (Scardina and Edwards 2006) where water movement through 

filter beds made of sand causes dissolution of the gas. Since bubbles provide a 

mechanism for transportation of dissolved phase components, the presence of bubbles at 

a groundwater discharge indicates the potential for stripping noble gasses from the 

dissolved phase, altering measurements. 

Gas migration from dissolved to free phase has significant effects on dissolved 

gas content (White, Hem and Waring 1963); (Baird, Bottomley and Taitz 1979); 

(Patoczka and Wilson 1984); (Lucchetti and Gray 1988); (Vroblesky & Lorah, 

Prospecting for Zones of Contaminated Ground-Water Discharge to Streams Using 

Bottom-Sediment Gas Bubbles, 1991) (Mariner, et al. 2003) (Lavenson, et al. 2016) 

(Daniel A. B., 2018). The dissolution mechanism of the excess air is from velocity effects 

around obstructions based on observations in the Ash Meadows Flow System (Thomas, 

et al. 2002)  and in filter beds of sand (Scardina 2004) (Scardina and Edwards 2006). The 

increased velocity results in a pressure drop following Bernoulli’s Principle and provides 
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the necessary initiation energy for degassing to form the characteristic bubbles of a Type 

III Spring (Agnew and Halihan 2018). This induced phase change combined with the 

dissolved gases’ Henry’s Air-Water Partitioning Coefficient (Kaw) and Diffusivities 

drives the noble gasses of interest out of the dissolved phase with helium migrating to the 

free phase fastest and xenon migrating the slowest (Holocher, et al. 2002). 

In order to discuss gas issuing from groundwater, some clear terms are needed. 

Since groundwaters have excess air, they will re-equilibrate with the atmosphere upon 

eruption at the surface. This re-equilibration, or mass transfer, is the total gas flux. If the 

re-equilibration occurs with the presence of bubbles, the total gas flux is the sum of the 

diffusive flux and either the ebullative flux or the effervescent flux. Diffusive flux is the 

mass transfer of dissolved gas to the atmosphere by diffusivity across the bulk interfacial 

area of the liquid (water) (Daniel A. B., 2018). Ebullative flux is the liberation of bubbles 

typical from a mechanical, or velocity induced, pressure drop typical of a Type III 

Spring, Bernoulli mechanism (Agnew and Halihan 2018). Effervescent flux is the 

liberation of bubbles formed by supersaturation (>3 bar or “sparkling”) (Agnew and 

Halihan 2018)) of the dissolved gas typical of a Type IV “Soda Spring” (Agnew and 

Halihan 2018). Ebullative vs Effervescent flux is easily determined because, 

“Effervescing water will continue to bubble (for a time) when removed from the spring, 

unlike Bernoulli (III) bubbles.” (Agnew and Halihan 2018, 864). 

Given the abundance of excess air in groundwater and the number of springs 

known to ebullate, one must ask that if the free gas phase is discounted in ebullating 

springs, does significant error occur in the estimation of recharge parameters (age and 

temperature) in groundwater? If error in the estimation of excess air may results in an 
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error in the determination of ΔNe, that would then lead to an underpredicted Nobel Gas 

Temperature (NGT) proportional to the difference between the He/Ne ratio in AEW and 

the sample. If the hypothesis is correct, the difference between the errors of He and Ne 

should be proportional to the difference in dimensionless Henry’s Air-Water partitioning 

coefficient (KAW) in He and Ne and therefore drive a proportional error in apparent age. 

This investigation will evaluate theoretical errors introduced in the calculation of 

recharge parameters using noble gas analysis when the effects of multiphase flow are 

ignored. The potential errors will be tested at the Nelson Spring Complex, OK that has 

previously been evaluated using existing techniques (Christenson, Hunt and Parkhurst 

2009). Finally, we examine the rapid fluctuation in water table level in this karst aquifer 

as the driving mechanism for excess air in the system. 

 
Study Area 

 
 

In order to test the ebullition-stripping hypothesis, a study area that minimizes the 

variables in dissolved gas chemistry is preferred. Specifically, an aquifer that exhibits 

rapid fluctuations in elevation of the water table at the recharge that will drive gas into 

solution creating excess air is ideal. The aquifer should also be isothermal or near 

isothermal to avoid temperature induced solubility changes or degassing. Ideally, the 

system should have large homogenous lithology with a central located flowline to 

provide stable water chemistry coupled with a long-term well data and water chemistry 

data for comparison of results. The lithology should also contain structures conducive to 

rapid flow, such as fractures or conduits, to allow for velocity induced pressure effects. 
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Finally, the system must terminate at a discharge with observed ebullition, preferably a 

Bernoulli (Type III) Spring (Agnew and Halihan 2018). 

For this study, we selected the Eastern Arbuckle-Simpson aquifer as it satisfies all 

of the necessary criteria for hypothesis testing. The EAS aquifer is a well-characterized 

and stable aquifer comprised of ~1000 meter thick karstic fractured dolomite (Fairchild, 

Hanson and Davis 1990), (Swinea 2008). The EAS aquifer has a groundwater model 

available testing potential flowlines (Christenson, Osborn, et al. 2011). The flowline of 

interest is in the center of the aquifer (Figure 7) and shows little chemical variability in  

 

 

 

Figure 7.  Arbuckle-Simpson Aquifer Potentiometric Surface and Flow Lines, 
  After Christenson 2009, Fig. 20. 
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the groundwater (Christenson, Hunt and Parkhurst 2009). Most importantly, “The 

temperature data indicate that the aquifer is well connected vertically with flow processes 

nearly eliminating any geothermal gradient in the aquifer” (Halihan, Mouri and Pucket 

2009, 1). The isothermal nature of the aquifer, less than 0.1 C variability as spring 

discharges in the Nelson Spring Complex (Swinea 2008) make the system ideal for 

dissolved gas chemistry investigations. Finally, across the EAS aquifer small karst 

features and regional faults are present (Christenson, Hunt and Parkhurst 2009) allowing 

for desired rapid flowpaths. 

The recharge for the system is the Blue River Watershed extending ~12 miles to 

the NW of the spring (Christenson, Osborn, et al. 2011). The aquifer water table rapidly 

responds during rain events as indicated by the Fittstown Mesonet Well (no. 97451) 

located in the upper portion of the recharge seven miles northwest of the study spring 

(see Figure 7., green square on point). A recent record 36.80 cm of rain (14.49 inches) in 

24 hours on 9/23/2018 resulted in a 12.5 meter (41 foot) increase in groundwater level in 

4.17 days (See Figure 8. Fittstown Mesonet Well Plot) at the well (Oklahoma Water 

Resource Board 2005-2018). The average depth to groundwater is 28.7 m (94.1 ft) at the 

Fittstown Mesonet station (FITT) averaged over 5 years (2014-2018) at one-hour 

intervals. The RMS fluctuation of the aquifer mean water level, measured over the same 

period, is 5.71 meters (18.74 feet). The recharge temperature for the system is expected to 

be between 16.23 ˚C (mean annual temperature at FITT for 2004-2018) and 18.03 ˚C 

(precipitation-weighted mean temperature) (Mesonet 2019a). 

The flowpath of interest for this study is located within the center of the formation 

outcrop area. The aquifer follows a potentiometric surface from 319 meters above mean 
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sea level (MAMSL) at the FITT to 305 MAMSL at the discharge 11.45 km away, 

resulting in a hydraulic gradient of 1:850, see Figure 7. (Adapted from (Christenson, 

Osborn, et al. 2011)). Karst features present in the outcrop imply the availability of rapid 

flowpaths. Additionally, test bores in the formation commonly encounter voids 

(Christenson, Hunt and Parkhurst 2009). Finally, fractures in the carbonate formation also 

allow for rapid water movement (Halihan, Mouri and Pucket 2009). 

 

 

 

Figure 8. Fittstown Mesonet Well Log Rapid Recharge Event (Mesonet 2019)b. 
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The flowlines of interest intersect the surface to form numerous small springs 

along fracture traces. Excess head provides energy to drive a Bernoulli degassing process 

in the narrow fractures before the flowpath reaches the discharge creating Bernoulli 

(Type III) bubbles (Agnew and Halihan 2018). The specific discharge location is in the 

Nelson Spring Complex (Christenson, Hunt and Parkhurst 2009). The spring complex is 

located on the Arbuckle-Simpson ranch situated along the Blue River. A fifth magnitude 

spring within the complex named The Little Bubbler located at 34°27'26.23"N, 

96°40'6.36"W was selected for its size and elevated position above the surrounding 

tributaries and for its nearly steady flow of gas (bubbles). 

 
Methods 

 
 

In order to measure and model gas migration, we obtain field data in the recharge 

zone to evaluate gas recharge. At the discharge site, an instrument that measures the flow 

of water and free phase gas from the study spring is described. Using dissolved and free 

phase gas measurements in combination with the flow measurements, we combine the 

results into a hydropneumograph. The values of total noble gasses in free and dissolved 

phases are used to model excess air, recharge temperature, and apparent age. 

Recharge zone field data were collected at the Fittstown Mesonet Station and 

Fittstown Well (FITT), maintained by a partnership between the Oklahoma Mesonet and 

the Oklahoma Water Resources Board. The FITT collects an abundance of 

meteorological data; of interest to this study are air temperature, 24-hour rain totals, and 

depth to groundwater. The FITT is located 10 k. (6.3 mi.) SW of the town of Fittstown, 

OK in Pontotoc County Lat/Long: 34.552050° N, -96.717790° W. Well data from the 
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FITT was used to calculate the RMS flux of the groundwater surface from 2014 to 

present. 

Spring gas and water data were collected using a hydropneumometer (Agnew & 

Halihan (Accepted on 3/2/2019). The instrument deployed from December 20, 2017 to 

August 7, 2018. The period reviewed in this study is February 4-7, 2018 when the 

dissolved and free gas samples were collected. Water flow was recorded using a standard 

weir per ASTM D5242-2013 (ASTM 2013) coupled with a pressure transducer and 

barometer. Free phase gas flow was recorded using a thermal mass flow meter (TMFM) 

connected to a capture shroud over the spring discharge. Local air temperature, 

barometric pressure, electrical conductivity (EC), and water temperature were also 

measured. 

Compositional measures for the dissolved and free phase gasses were collected 

using the copper tube method as described by the USGS instructions for 3H/3He Noble 

Gas Sampling based on (Schlosser, et al. 1989). The copper tube apparatus was 

submerged in the pool created by the spring discharge using caution to prevent the 

formation of gas bubbles in the sampler. For the gas samples, the copper tube was 

connected to the discharge of the TMFM and allowed to purge prior to closure. The 

collection shroud was allowed to purge for 40 days prior to sample collection. The gas 

samples were analyzed by the USGS at the Geology, Geophysics, and Geochemistry 

Science Center using Techniques and Methods 5-A11 (Hunt 2015). Three repeat samples 

were collected for each phase (6 samples total), however, only one water sample and two 

free gas samples passed QA/QC. 
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The results of the gas analysis cannot be directly compared as the quantity of gas 

in water reported as ccSTP/g (H2O) and free phase gas is reported as ccSTP/cc (where the 

volume fraction = mol fraction). Using the volumetric flow rates of the water and bulk 

gas the following procedure for combining dissolved and free phase results was used. 

Free phase gas flow rate ccSTP/sec multiplied by the reported mol fraction yields 

ccSTP/sec by species. Water flow rate in g/sec multiplied by gas species specific 

volumetric flow rate is normalized vs water to yield ccSTP/g(H2O). Having both the free 

and dissolved phase gas quantities in the same units allows for the addition of water and 

gas species specific quantities to yield total gas in ccSTP/g(H2O), see Equation 6 

Equation (6) 

𝐶𝐶𝑖𝑖
𝑔𝑔+𝑤𝑤 = (𝐶𝐶𝑖𝑖

𝑔𝑔)(𝑄𝑄𝑔𝑔)
𝑄𝑄𝑤𝑤

+  𝐶𝐶𝑖𝑖𝑤𝑤   ( 

Where: 

𝐶𝐶𝑖𝑖
𝑔𝑔+𝑤𝑤 = Combined free and dissolved phase concentration of the ith 

gas species in water (ccSTP/gH2O) 

𝐶𝐶𝑖𝑖
𝑔𝑔 = Concentration of the ith gas species in the free gas phase 

(ccSTP/cc) 

𝑄𝑄𝑔𝑔 = Total volumetric flow rate of the gas phase (ccSTP/s) 

𝑄𝑄𝑤𝑤 = Volumetric flow rate of the bulk liquid (water) (g/sec) 

𝐶𝐶𝑖𝑖𝑤𝑤 = Concentration of the ith gas species dissolved in water 

(ccSTP/gH2O) 

 

The species-specific noble gas concentration results were used to model the 

aquifer’s recharge conditions. Aquifer recharge conditions, excess air and NGT, were 
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modeled using the PANGA software (Jung & Aeschbach (2018)) which expands the 

number of models available from the previous NOBLE software (Peeters, et al. 2002). 

The software fits noble gas parameters using an inversion technique described by 

McGrail (2001) that returns a Chi square value that is a minimization of the error-

weighted square sum of the deviation about the measured and modeled noble gas 

concentrations (Jung and Aeschbach 2018). Field measurements of the discharge free-

phase gas showed diminished oxygen concentration, indicating that the Oxygen 

Depletion (OD) model would be the most appropriate model for use with these data, and 

was therefore used for the study. 

Additionally, the USGS dissolved gas analysis was used to estimate apparent age 

using the procedure from Schlosser, et al. (1989). The term apparent age is preferred 

because the calculation is susceptible to error from the vertical flux of gas due to poor 

confinement as well as other uncertainties in measurement. For apparent age modeling, 

the selection of the excess air model is critical for the accurate determination of water age 

(Peeters, et al. 2002) as recharge temperature and excess air fraction alter the 

computation by a “factor of 2.” (Peeters, et al. 2002, 597). 
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Results 
 
 

We present the results of the field data collection and the laboratory chemical 

analysis. These data include the physical measures taken at the study spring, the chemical 

analyses of the water and gas samples, and the modeling results for recharge temperature 

and apparent age. We additionally include our process for model selection and 

verification. Finally, we include a check of water table fluctuation vs the excess pressure 

predicted in the OD modeling results. 

During the study period, the average water flow rate of the Little Bubbler Spring 

was 1.78E-03 m3/sec with a range of 3.61E-04 to 4.07E-03 /sec, and a standard deviation 

of 0.63. The free-phase gas flow rate captured by the shroud was 5.51 ccSTP/sec, with a 

range of 4.27 to 7.3 ccSTP/sec, and a standard deviation of 0.26 ccSTP/sec. The average 

air temperature was 0.87 ˚C with a range of -10.2 to 18.19 ˚C, and a standard deviation 

6.23 ˚C. In contrast, the average water discharge temperature was 16.0 ˚C, with a range of 

15.1 to 17.56 ˚C, and a standard deviation of 0.56 ˚C. The variability of the discharge 

temperature is due to atmospheric influence on the spring pool used to seal the gas 

capture shroud. During the sampling period, the average barometric pressure was 972 

mbar with a range of 871 to 1045 mbar, and a standard deviation 46.6 mbar. The average 

electrical conductivity (EC) was 579 μS/cm, with a range of 556 to 610 μS/cm, standard 

deviation 12.63 μS/cm. The physical parameter measurements are summarized in Figure 

9.  Hydropneumograph of the Little Bubbler Spring. 
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Figure 9.  Hydropneumograph of the Little Bubbler Spring. 

 

 

The compositional analysis of the free and dissolved gas phases included the five 

typical noble gasses and nitrogen. The free phase analysis also included oxygen and 

carbon dioxide. The water sample was also analyzed for tritium and 3He for age dating. 

The results from the laboratory analysis for both the free and dissolved phase are 

presented in Table 4.  USGS Compositional Results along with the combined value for 

total gas in ccSTP/gH2O. A noticeable trend is observed of increasing error between the 

inclusion and exclusion of the free phase results from the heavy to light noble gases. The 

change in isotopic ratios, when considering the free and dissolved phase gas content, is 
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presented in Table 5. The change in the isotopic ratios is relatively small. However, a 

change in R/Ra will affect age dating calculations. The largest isotopic ratio difference of 

4.4% was in the 20Ne/22Ne ratio and is important for model selection. 

 

 

Table 4.  USGS Compositional Results 

 

 

 

%Error
Water Gas Gas+Water W vs W+G

He 1.03E-07 2.29E-08 1.27E-07 -18.7%
+/- 7.66E-10 2.29E-10 1.00E-09
Ne 3.19E-07 6.06E-08 3.82E-07 -16.4%
+/- 6.38E-09 1.21E-09 7.64E-09
Ar 4.38E-04 3.00E-05 4.70E-04 -6.6%
+/- 8.77E-06 1.50E-06 1.03E-05
Kr 9.17E-08 3.35E-09 9.51E-08 -3.6%
+/- 2.75E-09 1.68E-10 2.92E-09
Xe 1.27E-08 2.51E-10 1.29E-08 -2.0%
+/- 3.80E-10 1.26E-11 3.93E-10
N2 2.30E-02 2.52E-03 2.56E-02 -10.2%
+/- 1.15E-03 5.99E-05 1.21E-03

Species
ccSTP/g(H2O)
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Table 5.  USGS Ratio Results 

 

 

 

Table 6.  PANGA Modeling Results 

 
 

 

 

Given the numerous excess air models available for the determination of the 

NGT, model selection is important to ensure accurate results. The gas sample analysis 

Without Helium, Constrained

W W+G W W+G W W+G W W+G
OD 0.58 0.59 1.69E-03 1.94E-03 16.76 17.39 1.20 1.22
GR Err Err Err Err Err Err Err Err
CE 0.32 0.24 1.38E-02 1.63E-02 12.05 12.35 N/A N/A
PD 0.24 0.22 5.48E-03 5.77E-03 11.88 12.17 N/A N/A
PR 0.24 0.24 8.79E-03 1.24E-02 11.88 12.17 N/A N/A
UA 1.61 1.50 7.09E-03 1.06E-02 10.93 11.22 N/A N/A

Model
Chi Square A [ccSTP/g] T [ ˚C] P_O
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shows an oxygen content of 11.8% (typical of groundwater (Tan 2000)). This value is 

consistent with gas-sample field measurements. Therefore, the Oxygen Depletion (OD) 

model is appropriate, assuming the oxygen depletion occurred at the recharge due to 

biological action (root respiration, decomposition of organic material, etc.) (Stute and 

Schlosser 1993). However, biological consumption of O2 should produce an equimolar 

amount of CO2 and the net partial pressure of the dissolved gasses should remain constant 

(Stute and Schlosser 1993). The gas sample indicates only 2.6% CO2, which does not 

account for the ~10% reduction in oxygen. This mass imbalance is explained by the 

reactions of highly soluble CO2 with the carbonate minerals (Drever 1997) of the 

Arbuckle group. 

Since the OD model presumes that the depletion of oxygen causes the increase in 

partial pressures of the other dissolved atmogenic gasses, consideration must be given to 

an inverse scenario where an increase in another gas causes a proportion decrease in the 

abundance of oxygen, such as the production of nitrogen through the process of 

denitrification. Even considering that the nitrogen content of the discharging free-phase 

gas is 84%, for the EAS aquifer, denitrification is not likely. While excess of nitrogen is 

known to occur from denitrification (Musgrove, et al. 2016) (Böhlke, et al. 2009) (Addy, 

et al. 2002), the recharge area lacks the types of agriculture associated with nitrates. 

Additionally, four reductase steps are necessary to convert 𝑁𝑁𝑁𝑁3− to N2, which typically 

occurs in anoxic environments. The discharge water contains 12% oxygen and only 0.76 

mg/L of nitrate as N and <0.008 mg/L as nitrite as N. Therefore, production of 

NON2ON2 is unlikely and a mass balance of nitrate to N2 would account for <0.5% 

of discharging gas. The excess N2 is accounted for by depletion of O2. 
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For this system, the OD model is an acceptable choice, but the other models 

should be given consideration. When examining the PR, CE, and UA models, the 

20Ne/22Ne ratio best for determining model fits (Peeters, et al. 2002). The 20Ne/22Ne ratio 

in atmosphere is 9.80 (Ojima and Podosek 1983), and 9.78 in AEW (Beyerle, et al. 

2000), from the same sources the 36Ar/40Ar ratio in the atmosphere is 296.0 and 295.93 in 

AEW. Because, “20Ne/22Ne and 36Ar/40Ar in the gas excess should remain between the 

atmospheric ratio and the ratio at atmospheric solubility equilibrium if fractionation 

occurs according to the CE-model, but might be significantly smaller if the fractionation 

depends on the differences in molecular diffusivities (PR-model)” (Peeters, et al. 2002) 

and our data are 9.932 and 295.6 for gas+water (9.825 and 295.5 for water only), the PR 

model may be eliminated. 

In using the PANGA software to model the excess air and NGT, all six models 

were run due to convenience even though the OD model was selected and the PR model 

eliminated. However, only the OD model returns a result that has a reasonable Chi 

square, a reasonable concentration of dissolved excess air in ccSTP/g H2O, and most 

importantly a reasonable estimated recharge temperature between the mean annual 

temperature and the precipitation-weighted mean temperature. While the OD model is the 

most reasonable, it returns a POD that may appear be too high; this is addressed later in 

the water table fluctuations section. The results of the PANGA modeling are presented in 

Table 6 for all six models. The results are presented when running the model with only 

the dissolved gas analytical results (water only or “w” in the table) and when running the 

model with the dissolved plus free-phase gas analytical results (water+gas or “g+w” in 

the table. 
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For the OD model, the water only (dissolved gas) analysis returns a NGT of 16.8 

˚C whereas the water+gas (dissolved plus free phase) returns an NGT of 17.4 ˚C. The 

percent error between the gas and gas+water results is 3.4%, which, as predicted, roughly 

corresponds to the percent difference in the He/Ne ratios of gas vs gas+water of 2.8%. 

These parameters were then used in the apparent age modeling results. The apparent age 

of the water only portion of the gas is 10.5 years. The apparent age of the water plus free 

phase gas is 12.7 years. The percent difference in the apparent age of 17.3% roughly 

corresponds with the percent difference in the KAW of He and Ne of 14.3%. Crucially, the 

revised temperature estimate of 17.4 ˚C lies between the expected values of 16.23 ˚C and 

18.03 ˚C. 

This modeling updates the values reported by Christenson et al. (2009) for 

recharge temperature and age for the spring discharges of the Nelson spring complex 

from 14.4 ˚C and 43.6 years apparent age to 17.4 ˚C and 12.7 years apparent age. These 

updated values decrease the apparent age by 71% and increase the temperature by 21%. 

A re-analysis of the 2009 Christenson et al. noble gas data using the OD model returns an 

estimated recharge temperature of 16.3 ˚C, similar to the 16.8 ˚C water only result in this 

study. These results are summarized in Table 7. 
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Table 7. Summary of Error Estimates Between Single Phase and Two Phase  
Estimates of Recharge Temperature and Apparent Groundwater Age 
(left 3 column), and comparison of Two Phase Estimates Compared  
to Previous Work (right 3 columns) 
 

 

 

Returning to the topic of POD, and the question if the POD values returned by the 

model are excessive, we examine the implication of these results. Assuming excess air is 

proportional to amplitude of water table fluctuations (Aeschbach-Hertig, et al. 2002), and 

if POD (pressure increase from oxygen depletion) is equivalent to assuming a recharge 

altitude for the aquifer that is lower than the true recharge altitude (Sun, Hall and Castro 

2010), then we can infer that POD may also be equivalent to the average depth of 

equilibration of the entrapped air at the recharge, which should be related to the RMS 

value of the water table fluctuation. For this system, POD is then a measure of both excess 

hydrostatic pressure and partial pressure increase due to oxygen depletion.  

In a system with oxygen depletion being the only mechanism of increased 

pressure, a POD of 1.208 would equate to 100% oxygen depletion due to the 20.8% 

abundance of oxygen in the moist air of the equilibration zone. The model results show a 

POD of 1.201 for water only and 1.216when considering the gas+water analysis, which 

results in a partial pressure greater than 100% oxygen depletion. Sampling results and 

field measurements are consistent with an oxygen concentration in the water of 11.8%, or 

Parameter W W+G %Diff. C. 2009 A. 2019 %Diff.
ΔNe 175% 211% -17% 60% 211% -72%

Temp. (C) 16.8 17.4 -3.4% 14.4 17.4 -17%
App. Age (yrs.) 10.4 11.9 -13% 43.6 11.9 266%
W - Water values only
W+G - Water plus gas values
C. 2009 - Christenson et al. 2009
A. 2019 - This research
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a 43.2% O2 depletion, which equates to a POD of 1.0896 from true oxygen depletion 

alone. Subtracting this result from the model derived POD yields a POD from excess head 

of 1.112 and 1.126 for water and water+gas respectively. Taking a POD of 1.2076 as 1 

atmosphere of excess head and proportioning the revised POD values yields an excess 

head of 0.539 atm and 0.607 atm for gas and gas+water respectively. Converting atm to 

meters of water yields 5.57 mH2O (18.3 ftH2O) and 6.28 mH2O (20.6 ftH2O) for water 

and water+gas respectively. The RMS fluctuation of the aquifer of 5.71 meters is similar 

to these estimated values and is approximately one-half the peak amplitude of 12.4 

meters (41 feet). 

We examine the amplitude of the water table because, “Under recharge conditions 

typical for many aquifers, the excess dissolved gases, expressed by the relative Ne excess 

ΔNe, is mainly determined by the hydrostatic pressure on the entrapped air. Thus, we 

suggest that ΔNe is essentially a measure of the amplitude of water table fluctuations in 

the recharge area” (Aeschbach-Hertig, et al. 2002, 174). Looking at the results for ΔNe in 

this system using the OD model, water only yields ΔNe of 175%, water plus gas yields a 

ΔNe of 211%. Therefore, ΔNe is under predicted by 35% in this system when ignoring 

the free-phase gas discharge.  

Discussion 
 
 

We show that error is in fact introduced into the estimation of recharge 

parameters (excess air, ΔNe, age, and temperature) if the free gas phase is ignored in 

ebullating springs. The error in the estimation of excess air driven by a 35% error in ΔNe 

which leads to a modest underprediction error in Nobel Gas Temperature (NGT) of 3.6%, 

similar to the difference in the He/Ne ratio. The difference between the errors of He and 
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Ne quantity are proportional to the difference in dimensionless Henry’s Air-Water 

partitioning coefficient (KAW) in He and Ne and therefore drive a proportional 

overprediction error of 17% in apparent age. Finally, we link the RMS flux of the water 

table at recharge to the quantity of excess air using the OD model. 

Many authors have stated that ebullition may result in errors in dissolved gas 

analysis. However, the quantification of this error in natural systems, to our knowledge, 

has not been measured. For the spring in study, we show a >10% error in the total 

dissolved gas content and a >16% error in Ne species-specific error. As the transfer of air 

into water in the recharge (Holocher, et al. 2002) and the mass transfer to bubbles (Daniel 

A. B., 2018) near the discharge is governed by Henry’s constant, then the expected 

difference in the concentration of dissolved gas between air equilibrated water and water 

with excess air should correspond with the Henry’s Air-Water Partitioning Coefficient 

(KAW). As a check of data validity, we shown that ignoring the mass of the exsolved gas 

introduces error proportional to the magnitude of KAW, Figure 10. Therefore, we 

conclude that for ebullating springs, consideration of the free phase gas is essential in 

reducing errors in calculating recharge parameters and water age. The strong correlation 

between KAW and our computed error (R2 = 0.9973) is indicative of this method’s ability 

to accurately measure total dissolved gas concentrations. 

 

 



 

82 
 

 

Figure 10. Relationship of Error in Noble Gas Measurement to Henry's 
Air-Water Partitioning Coefficient (KAW) 

 

 

 

By examining the both the free and dissolved phases of atmogenic gasses in 

groundwater systems, a Multiphase Gas Transport Model may be conceptualized, see 

Figure 11. At the recharge, meteoric water equilibrates with the atmosphere (Air 

Saturated Water) (R. F. Weiss 1970) beginning the gas cycle. Additional air volume is 

added to the water through surface tension and capillary effects in the quasi-saturated 

zone (Klump, et al. 2007) as it infiltrates. During infiltration, a rapid rise in the 

groundwater surface traps air bubbles in the matrix and the water re-equilibrates with the 

trapped air generating "Excess Air" (Heaton and Vogel 1981). In the recharge zone of the 

aquifer, biological action may reduce the oxygen content of the groundwater and 

proportionally increase the partial pressure of the other dissolved gasses, with some  
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production of CO2 (Stute and Schlosser 1993). The dissolved gasses are transported 

through the aquifer, with the possible reduction of CO2 through carbonate mineralization 

(Christenson, Hunt and Parkhurst 2009). During migration across the aquifer, infiltration 

of helium may occur from the mantle and helium may also escape through incomplete 

confinement (Schlosser, et al. 1989). If there is sufficient hydrostatic head to accelerate 

water in a low resistance path (fracture or conduit), possibly past a flow restriction, 

increasing velocity and decreasing pressure, resulting in the degassing of the waters 

(Thomas, et al. 2002). If the degassing occurs near the spring discharge, then a Type III 

spring with Bernoulli bubbles (Agnew and Halihan 2018) is formed. 
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Figure 11.  Multiphase Gas Transport Model. 

 

 

 

 
1. Meteoric water equilibrates with the atmosphere 

(Air Saturated Water) (Weiss 1970). 
 
 

2. Additional air volume is added to the water through 
surface tension and capillary effects in the vadose 
zone (Klump et al. 2007). 

3. A rapid rise the groundwater surface traps air 
bubbles in the matrix and the water re-equilibrates 
with the trapped air generating "Excess Air" 
(Heaton & Vogel 1981). 

4. Biological action reduces oxygen content of the 
groundwater and proportionally increases the partial 
pressure of the other dissolved gasses, with some 
production of CO2 (Stute & Schlosser 1993). 

5. Transportation of dissolved gas through the aquifer. 
Reduction of CO2 through carbonate mineralization 
(Drever 1997). Infiltration of helium may occur 
from the mantle, helium may also escape through 
incomplete confinement (Schlosser et al. 1989). 

6. Aquifer hydrostatic head accelerates water in a low 
resistance path (fracture or conduit) past a flow 
restriction, increasing velocity and decreasing 
pressure, resulting in the degassing of the waters 
(Thomas et al. 2002). 

7. Bernoulli (Type III) multiphase spring discharge 
with bubbles (Agnew & Halihan 2018). 

1. Meteoric water equilibrates with the atmosphere 
between 16.23 °C (mean annual temperature) and 
18.03 °C (precipitation weighted mean temperature) 
(Mesonet 2019). 

2. Ibid. 
 
 

3. Excess air from water table RMS flux between 
2014-2018 of 5.71 m, peak amplitude of 12.4 m 
(Mesonet 2019). 
 

4. Oxygen content of discharge of 11.8%. 
 
 
 

5. CO2 content of discharge of 2.6% (not equimolar 
with 8.9% decrease in oxygen, consistent with 
carbonate interaction). 
 
 

6. ~10% of the total gas (N2) lost to ebullition. 
 
 
 
 

7. Estimated recharge temperature of 17.4 °C and 
apparent age of 12.7 years. 

General Model Arbuckle-Simpson Model 
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While this work gives an end-to-end treatment of multiphase gas flow in aquifers, 

the results have limitations. Additional work is needed in the characterization of the free 

gas component for ebullating springs. This initial study provides only a limited sample 

size on one small spring, making additional confirmation necessary to see if the results 

are consistent among multiple groundwater systems and spring magnitudes. 

In the future, we hope to deploy a real-time multiphase analyzer using a 

permanent capture structure collecting data over several recharge cycles. This longer-

term study would be necessary to begin to solidify the relationship between ebullition and 

dissolved gas content in detail. By coupling real-time dissolved and free gas 

measurement with traditional laboratory analysis, a more complete picture of how 

apparent age and recharge temperature measurements are altered throughout the recharge 

cycle can be obtained. 

Conclusions 
 
 

Use of dissolved noble gasses to estimate recharge parameters of temperature and 

age are well-established (Stute, et al. 1995) (Aeschbach-Hertig, Peeters, et al. 2000). 

Further, the action of bubbles to strip dissolved gasses is well-established (White, Hem 

and Waring 1963); (Baird, Bottomley and Taitz 1979); (Patoczka and Wilson 1984); 

(Lucchetti and Gray 1988); (Vroblesky & Lorah, Prospecting for Zones of Contaminated 

Ground-Water Discharge to Streams Using Bottom-Sediment Gas Bubbles, 1991) 

(Mariner, et al. 2003); (Lavenson, et al. 2016); (Daniel A. B., 2018). However, the 

literature, to our review, is largely void of reports on the presence of bubbles at springs 

where dissolved gas data is collected and then analyzed. We quantify the error in 

dissolved gas analysis in a bubbling spring and show the error is proportional to known 
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physical principles of the Henry Air-Water Partitioning Coefficient and the formation of 

excess air related to the RMS flux of the water table at the recharge. This result from a 

single spring needs to be expanded to determine if the relationships identified hold across 

scales and from bubbling springs of different geology. Extending the work of many other  

researchers, we show a more complete multiphase gas cycle in Type III springs. This 

more complete multiphase gas cycle in conjunction with the associated errors in 

dissolved gas analysis, particularly derived recharge temperature and subsequent apparent 

age, indicates a re-analysis of these estimates for certain aquifers that exhibit ebullition at 

the discharge. 
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CHAPTER V 
 
 

CONCLUSION 
 
 

This work examined questions related to errors associated with predictions of 

aquifer parameters based upon dissolved gas measurements in bubbling springs. 

Specifically, does the presence of bubbles at a spring introduce errors into the estimation 

of total gas content in the waters and if so, by how much? Does the measured error match 

the expected error based upon our knowledge of first principles? Does the error in the 

estimation of total gas content affect the estimation of excess air at the recharge, and if so 

how much? How does the error in excess air affect the estimation of recharge 

temperature? Finally, how does the error in the estimation of excess air and recharge 

temperature affect the estimation of groundwater age? 

As predicted, this work shows that error is in fact introduced into the estimation 

of recharge parameters (age and temperature) if the free gas phase is ignored in ebullating 

springs. The error in the estimation of excess air is driven by a 33% error in changes in 

Neon that leads to a modest error in predicted Nobel Gas Temperature (NGT) of nearly 

2%, proportional to the predicted difference from the proportionality of the He/Ne ratio. 

The difference between the errors of He and Ne quantity are proportional to the 
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difference in dimensionless Henry’s Air-Water partitioning coefficient (KAW) in He and 

Ne and therefore drive a proportional error of 17% in the estimation of apparent age.

 Therefore, the hypothesis that ignoring the free gas phase in bubbling springs 

results in the introduction of errors in the estimation of recharge parameters is confirmed. 

The introduced error is governed by the physical parameters of the He/Ne ratio and KAW, 

which lends validity to the work and provides a basis to establish correction methodology 

for these errors.  

Discussion 
 
Interpretation of Results 

 
Applying the results of this work specifically to the Nelson Spring Complex 

demonstrates the importance in accurately measuring total gas content among all phases. 

Inaccurate determination of excess air may result in improper excess air model which 

then compounds to the predicted noble gas temperature, and further to the estimation of 

apparent age. This work updates the values reported by Christenson et al. (2009) for 

recharge temperature and age for the spring discharges of the Nelson spring complex 

from 14.4 ˚C and 43.6 years apparent age to 16.8 ˚C and 12.7 years apparent age. By re-

analyzing the Christenson et al. (2009) noble gas data using the Oxygen Depletion (OD) 

model, rather than the previously used Closed Equilibrium (CE) model, returns an 

estimated recharge temperature of 16.3 ˚C (without including free gas) which then shows 

consistency within the known isothermal aquifer across an 11 year span between 

sampling events. 
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Limitations of the Research 
 

 
Additional work is needed in the characterization of the free gas component for 

ebullating springs. This initial study provides only an extremely limited sample size on 

one small spring, making these findings preliminary. This work also was undertaken on a 

karst spring characterized by Type III bubbles. Transferability of these results to non-

karst or non-Type III bubbling springs needs further evaluation. 

 
Contributions to Knowledge  

 
 This work expands understanding of gas in groundwater on several fronts. First, 

seven bubble facies are provided to organize and foster lines of research based on specific 

mechanisms of gasification and degasification of groundwater. Next, this work provides a 

field method for capturing and measuring free gas flow from bubbling springs. This 

device allows for both the determination of total dissolved gas content as well as provides 

a new tool for the understanding of aquifer dynamics, the hydropneumograph. The 

hydropneumograph shows promise in expanding our understanding of flow dynamics 

within aquifers. Finally, the improved determination of total gas content allows for 

quantification of the errors in the estimation of excess air, recharge temperature, and 

apparent age. In combination, better estimation of recharge temperature and age allows 

for an improvement in the reconstruction of paleoclimate. 
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Key Contributions of this work 
 

• Systematic description of seven mechanisms, categorized as facies, for bubbling 

springs 

• Cost effective method for collecting and computation of total gas discharge from 

bubbling springs 

• Quantification the errors associated with dissolved gas analysis when the free gas 

phase is ignored, particularly for the change in the quantity of neon, noble gas 

temperature, and apparent groundwater age 

• Provided the first quantified demonstration of the relationship between water table 

fluctuation and the quantity of excess air 

• Updated the recharge temperature and apparent age of the Arbuckle-Simpson 

aquifer at the Nelson Spring Complex 

 
Future Research 

 
 

The results from the hydropneumograph developed in this work may have 

application in the prediction of drinking water quality in certain springs. Byrds Mill 

Spring, located 12 miles to the south of the City of Ada, OK is the primary drinking 

water source for the city’s 17,400 residents (US Census Bureau, 2013). The spring water 

exhibits rapid decreases in electrical conductivity (EC) soon after large rain events. As 

this change in EC is indicative of water that has not been in prolonged contact with the 

rock matrix, and the surrounding recharge area is known to be karstified with sinkholes 

and other rapid flow features, this rainwater incursion may coincide with a decrease in 
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water quality in the spring waters. While EC may be an indication that lower quality 

water may have arrived at the intake for the city’s water supply, the proposed method of 

using a hydropneumograph for predicting the event would allow time for intervention by 

providing a precursor for water quality changes. 

Byrds Mill spring, as well as numerous other springs in the region, is observed to 

ebullate gas ~0.03 m3/s. This work shows that at a nearby spring, the gas discharge rate 

increases 18-24 hours before the water flow rate increases. This increase in ebullition 

may act as an a priori indication of an incoming change in water quality. 

At Byrds Mill Spring, numerous flowpaths are indicated by both water chemistry 

and electrical resistivity imaging (ERI). During base flow, the spring exhibits constant 

EC and temperature, while during surge flow, EC drops to near zero, while temperature 

stays nearly steady. The multiple flowpaths indicated by ERI are hypothesized to reflect a 

deep (>1km) flow path and a much shallower flowpath connected to surface dolines. This 

rapid connection to surface waters is further evidenced by the water table fluctuations 

measured at the Fittstown Mesonet Station 4 miles to the southwest of the spring. The 

water table shows drastic changes in response to precipitation, raising 40 feet in 4 days in 

September of 2018. By studying total gas composition at this spring, the regional 

groundwater model of the Arbuckle-Simpson Aquifer could be improved by providing a 

basis for the quantity of water flow from the deep (old) and shallow (young) flowpaths. 

The goal is to expand on the previously developed method of determining a 

hydropneumograph for an ebullating spring by examining a major ebullating spring for 

several annual rain cycles. Additionally, by combining this method with the technique of 

field mass spectrometry by Brennwald (2016), it is hoped to establish a new benchmark 
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in the study of gas dynamics in springs with excess air (Heaton & Vogel, 1981), 

especially with sufficient excess air to induce ebullition. By doing so, periods of 

diminished water quality for the supply for the City of Ada may be predicted. This work 

may also enhance the existing groundwater model for the Arbuckle-Simpson aquifer, and 

provide for the hydrogeologist community a new technique for understanding water-gas 

dynamics. 

In addition to measuring the quantity of the gas and liquid phase flows, measuring 

the composition of the atmogenic gasses in the dissolved in free phases is possible using 

a “miniRuedi” gas-equilibrium membrane-inlet mass spectrometer (GE-MIMS) as 

described in Brennwald et al. (2016) and available from Gasometrix. The GE-MIMS 

using a passive membrane sampler deployed in the water, which equilibrates with the 

dissolved gasses and provides means for analysis. The free gas collected by the spring 

box enclosure can be directly measured via a sampling tube in the discharge vent. The 

miniRuedi would provide quantification to the ppm level for He, Ar, Kr, N2, O2, CO2, 

CH4, and H2 with an analytical uncertainty of 1-3%. This study would produce the first 

ever species-hydropneumograph. Based upon the team’s research, to be included in a 

forthcoming publication on a nearby karst spring, the oxygen depletion (OD) model is 

best suited for the determination of recharge temperature from noble gas solubuilities. 

With the OD model, the concentrations of only three noble gasses are necessary to 

determine the system. Additionally, with the miniRuedi providing oxygen concentration, 

the OD model becomes over determined.   

In addition to the miniRuedi instrument, periodic sampling of both the free and 

dissolved gas phases will be undertaken using the traditional copper tube method and 
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analyzed at the USGS Geology, Geophysics, and Geochemistry Science Center. These 

samples will serve as a touchstone for the continuous field measurements from the GE-

MIMS as well as provide point data for Ne and Xe, as well as more detailed isotopic 

analysis necessary for age dating. 

This proposed work has expected benefits related to local water quality, a regional 

benefit to improve the groundwater model, and broad goal to produce a new technique 

for the analysis of groundwater in ebullating springs. The tactical benefit is to provide the 

City of Ada with an a priori system to predict degrading water quality so that timely 

interventions can be made. Finally, this work will provide the first in-depth analysis of 

how ebullition impacts dissolved gas analysis allowing for improved estimation of 

recharge conditions and age. Additionally, we hope that by beginning this new line of 

hydrogeologic research, additional insights into groundwater mechanics may be revealed. 
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Boiling: Phase transition of a liquid to a gas (with the presence of bubbles) due to 

environmental conditions exceeding the boiling point. Specifically, the environmental 

temperature exceeds the liquid’s normal boiling point. (Agnew-Halihan) See also 

Ebullate. 

Boiling point: The conditions at which the vapor pressure of the liquid equals or 

exceeds the external environmental pressure surrounding the liquid. (American Industrial 

Hygiene Association 1998) 

Bubble: Nearly spherical body of gas contained in a liquid. (Merriam-Webster 

1950) 

Churning: To stir or agitate violently (Merriam-Webster 1950). Mechanical 

turbulence of water in a spring or well due to upwelling. (Agnew-Halihan) 

Ebullate/Ebullition: Phase transition of a dissolved gas coming out of solution 

(with the presence of bubbles) due to environmental conditions exceeding the boiling 

point. Specifically, the environmental pressure is less than the saturation pressure of the 

dissolved gas. (Agnew-Halihan) See also Boiling. 

Evaporation: The process of phase transition of a liquid to a vapor (without the 

presence of bubbles). (Merriam-Webster 1950) 

Excess Pressure (Supersaturation): The pressure of a dissolved gas in liquid 

beyond its saturation pressure at the normal boiling point. (Adapted from the American 

Heritage Dictionary of the English Language 2011)  

Exsolution: A violent ebullition of a dissolved gas wherein the host liquid is 

displaced from its confining body i.e. a shaken up soda bottle. (Adapted from Sigurdsson 

2000) 
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Fog: A condensed liquid aerosol suspended in air, typically with a droplet size 

sufficiently small as to be buoyant (visible). (American Industrial Hygiene Association 

1998) 

Gas: A substance that is in the gaseous state of matter above its normal boiling 

point (not visible). (Adapted from American Industrial Hygiene Association 1998 and 

Weast 1974) 

Gaseous: A fluid (such as air) that has neither independent shape nor volume but 

tends to expand indefinitely, without reference to the substances normal boiling point, 

which may therefore be a vapor or a gas. (Adapted from Merriam-Webster 1950) 

Mist: A mechanically generated liquid aerosol air in which the droplet size is 

typically sufficiently large as to cause settling (visible). (American Industrial Hygiene 

Association 1998) 

Normal boiling point: The normal boiling point (also called the atmospheric 

boiling point) of a liquid is the special case in which the vapor pressure of the liquid 

equals or exceeds 101.325 kilopascals (kPa) (i.e. 1 atmosphere). (International Union of 

Pure and Applied Chemestry (IUPAC) 1997) 

Roiling: Making turbid by stirring up the sediment or dregs of. (Merriam-Webster 

1950) 

Saturation Pressure: The pressure of a vapor which is in equilibrium with its 

liquid (100 relative humidity with respect to liquid water). (Merriam-Webster 1950) 

Semi-Sparkling e.g. pétillant or frizzante: Having an excess pressure of CO2 of 

not less than 1 bar and not more than 2.5 bar (250kPa) at 20 ºC (Council of the European 

Union 1999). 
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Sparkling e.g. Champagne: Having an excess pressure of CO2 of not less than 3 

bar (300kPa) at 20 ºC (Council of the European Union 1999).  

Steam: Water in the gaseous state and at a temperature above its normal boiling 

point. (Adapted from Merriam-Webster 1950) 

Vapor: A substance in the gaseous state below its normal boiling point (not 

visible), see evaporation. e.g. water vapor (Adapted from American Industrial Hygiene 

Association 1998, and Weast 1974) 

Vapor Pressure: The vapor pressure of a liquid is the equilibrium pressure of a 

vapor above its liquid (or solid); that is, the pressure of the vapor resulting from 

evaporation of a liquid (or solid) above a sample of the liquid (or solid) in a closed 

container. (American Industrial Hygiene Association 1998) 

Water Vapor: Water in vaporous form below its normal boiling point. (Merriam-

Webster 1950) 
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