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Major Field: CIVIL ENGINEERING 

 

Abstract: Skid resistance is critical for roadway safety. This study investigates two 

approaches to characterizing skid resistance based on pavement texture data and further 

exploring its effects on roadway crashes in Oklahoma. Skid resistance data were acquired 

in the field from three friction measurement devices: Grip Tester, a continuous friction 

measurement equipment (CFME), dynamic friction tester (DFT), and a locked wheel skid 

trailer. While pavement texture data were obtained using a high-speed profiler and a 

portable 3D laser scanner with ultra-high resolution. Through a comprehensive field data 

collection on testing sites with different preventive maintenance treatments in Oklahoma, 

this study evaluates the repeatability and the impacts of various operational factors on 

Grip Tester based CFME measurements. An adaptive signal processing technique, 

Hilbert-Huang transformation, is executed to extract texture characteristics from 

pavement profiles, which are subsequently correlated to friction measurements. Novel 3D 

areal texture parameters are calculated at both micro- and macro- scales. The random 

forest algorithm is implemented to determine the most important texture parameters for 

the development of friction prediction models. On the other hand, skid resistance and 

roadway features could have critical effects on highway safety but have not been fully 

considered to estimate crash rates in the current HSM safety performance functions 

(SPFs). In this study, four database systems managed by the Oklahoma DOT are utilized 

to integrate various safety-related roadway features into the SPF development process. 

Roadway crash data, pavement skid resistance, pavement management system (PMS) 

condition data, and traffic data from 2012 to 2016 in Oklahoma were acquired for the 

interstate, selected U.S. and state highways. An enhanced SPF is subsequently developed 

using negative binomial regression model with a log-linear relationship between crash 

frequency and roadway features. It is anticipated the work in this study could assist in 

well-informed decision making in terms of roadway safety for pavement preservation and 

maintenance practices in Oklahoma.        
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CHAPTER I 
 

 

INTRODUCTION 

Problem Statement 

Safety is one of the top priorities of the U. S. Department of Transportation (DOT). According to 

a study by Federal Highway Administration (FHWA, 2018), traffic crashes resulted in 

approximately 37,150 fatalities in 2017, or 1.17 fatalities per 100 million vehicle miles traveled. 

Various influencing factors could contribute to the traffic crashes, including the human behavior, 

the vehicle, the environment and the roadway (HSM, 2010). Of all these factors, skid resistance is 

critically important as it keeps vehicles on the road by allowing drivers to control or maneuver 

their vehicle (Hall et. al, 2009). It was found that about 70 percent of wet pavement crashes could 

be prevented or minimized by improved pavement friction (FHWA, 2016). 

Pavement skid resistance can be typically characterized by tire-pavement friction, macro- and 

micro- texture of the pavement surface. The field friction testing methods can be categorized into 

four groups: locked-wheel, side-force, variable-slip, and fixed-slip (Hall et al., 2009). The last 

three types of devices are generally characterized as continuous friction measurement equipment 

(CFME). Currently, most State Highway Agencies (SHAs), including the Oklahoma Department 

of Transportation (ODOT), employ locked-wheel skid trailers for friction measurements at the 

network scale (Henry, 2000). In recent years, CFME is recommended as a more appropriate 

method for pavement friction measurement (FHWA, 2010). CFME has the capability to 

continuously measure surface friction, providing greater details about spatial variability of the
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tire-pavement frictional properties (Flintsch et al., 2012). Moreover, unlike the locked wheel 

method by fully braking the testing tire used in the 1950s vehicle braking technology, CFME 

simulates the modern anti-braking system (ABS) equipped on current vehicles with a slip ratio of 

the testing tire during data collection. In addition, it consumes less water as compared with a 

locked-wheel skid trailer. However, due to the lack of practices at this time, research is needed to 

evaluate the repeatability of CFME and understand its response to various operational 

characteristics.  

It is commonly agreed that friction is dominated by micro-texture (<0.5 mm) and macro-texture 

(0.5 mm~50 mm) of pavement surface (Flintsch et. al, 2012; Henry, 2000; Kogbara et al., 2016). 

Unlike friction measurement using contact-based method, pavement or aggregate surface texture 

can be characterized at both micro- and macro- scales using high resolution non-contact 

measurement methods. Many research projects have made efforts in studying the relationship 

between friction and texture so that the measurement of friction can be enhanced or replaced by 

non-contact texture based measurements with the advancement of sensor technologies. However, 

the correlations between friction and texture indicators are not consistent among various studies 

(Flintsch et al., 2012; Hall et al., 2008; Kargah-Ostadi et al., 2015). Various texture parameters in 

disciplines other than pavement engineering are available for surface texture characterization and 

evaluation, which provide an alternative approach to studying the friction-texture relationship.  

Roadway safety is evaluated and estimated by the crash frequency in the Highway Safety Manual 

(HSM, 2010). The HSM provides an approach that utilizes regression equations, the Safety 

Performance Functions (SPFs), to predict the crash frequency for a specific site type. Although 

skid resistance is well known to be one of the contributing factors of crash, it is not considered in 

the current SPFs. Highway agencies are encouraged to develop state-specific SPFs for different 

roadway facilities and crash types (Merritt et al., 2015). Oklahoma Department of Transportation 

(ODOT) collects and manages safety-related data for the entire pavement networks for many 
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years. The available databases offer valuable resources for the development of enhanced SPF for 

more accurate roadway crash prediction and thus more robust pavement friction management. 

Thesis Objectives 

The objectives of the thesis include: 

1. Evaluating the Grip Tester based CFME measurements. 

a. The repeatability of Grip Tester measurements on different types of surface for 

both concrete and asphalt pavements.   

b. The influence of different operational characteristics on Grip Tester 

measurements by a comprehensive statistical model. 

c. The feasibility of a signal processing method, Hilbert-Huang Transformation 

(HHT), to characterize and quantify pavement surface texture. 

2. Developing pavement friction prediction models using high-resolution 3D texture data. 

a. Identify the suitable 3D areal pavement texture parameters at both micro- and 

macro- scales for surface texture characterization. 

b. Develop friction prediction models at both high and low speeds. 

3. Developing enhanced SPF for highway segments in Oklahoma. 

a. Identify the potential influencing factors, including skid resistance and roadway 

characteristics, for safety analysis and compile their data from various ODDT 

database systems.  

b. Determine whether these factors are significant for crash estimation. 

c. Develop enhanced SPF by integrating the significant influencing factors. 

d. Improve crash estimation using the Empirical Bayes method to reduce the 

regression-to-the-mean (RTM) bias.  
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Thesis Outline 

This thesis is organized into six chapters.  

Chapter 1: Introduction, illustrates the background and purpose of the thesis, including the 

Problem Statement, Thesis Objectives, and Thesis Outline. 

Chapter 2: Review of Literature, explains the key concept of skid resistance, its critical 

importance to roadway safety and current practice of safety evaluation. 

Chapter 3: Evaluation of Grip Tester Based Continuous Friction Measurement Equipment 

(CFME), evaluates the repeatability and the influencing factors of Grip Tester measurements.  

Chapter 4: Random Forest Based Pavement Friction Prediction Using High-Resolution 3D Image 

Data, explores the relationship of friction and pavement texture and develops models for friction 

prediction using 3D areal texture parameters at both micro- and macro- scales.  

Chapter 5: Enhanced Safety Performance Function for Highway Segments in Oklahoma, 

identifies the statistically significant factors for crash estimation and builds an enhanced Safety 

Performance Function by integrating influencing roadway characteristics.  

Chapter 6: Conclusion, outlines the major findings through Chapter 3 to 5 and discusses the 

future work.    
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Pavement Friction Management 

Roadway crash is one of the leading causes of death in United States. Each year, over 37,000 

lives and 230.6 billion dollars are lost in the U.S. (ASIRT, 2018). Various influencing factors 

could contribute to the traffic crashes, including the human behavior, the vehicle, the environment 

and the roadway (HSM, 2010). Of all these factors, transportation engineers can control only the 

roadway features. It is widely agreed that the lack of sufficient tire-pavement friction could 

increase the risk of traffic crashes (Merritt and Zaloshnja, 2015; Najafi et al., 2017). Therefore, 

Federal Highway Administration (FHWA) issues guidance to State and local highway agencies in 

management of pavement surface friction on roadways.  

The most recent Technical Advisory 5040.38: Pavement Friction Management, was issued in 

June 2010 (FHWA, 2010), superseding the previous Technical Advisory 5040.17: Skid Accident 

Reduction Program dated 1980. The goal of the new advisory (FHWA, 2010), is to minimize 

friction-related vehicle crashes by ensuring that pavements provide adequate and durable friction 

properties throughout their service lives in a cost-effective manner. It encourages agencies to 

utilize pavement friction and friction-related data, crash data and traffic data in an effective PFM 

program.  

An important part of the PFM is the selection of the most appropriate friction measurement 

equipment. The new advisory lists four types of full-scale friction test equipment: the locked-
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wheel, fixed slip, side force, and variable slip. The locked-wheel method (ASTM E-274, 2015) is 

widely used on U.S. highways and simulates emergency braking without anti-lock brakes. The 

three remaining methods can be characterized as continuous friction measurement equipment 

(CFME), which greatly enhance the ability to detect isolated low friction areas on pavements (de 

León Izeppi et al., 2016). In recent years, CFME is recommended as a more appropriate method 

for pavement friction measurement (FHWA, 2010). In addition, because all friction test methods 

can be insensitive to macro-texture under specific circumstances, it is recommended that friction 

testing be complemented by macro-texture measurement (FHWA, 2010).  

The study of NCHRP Project 01-43 (2009) provides a comprehensive PFM program framework 

in Guide for Pavement Friction, which comprised of the following key components: 

• Network Definition—subdivide the highway network into distinct pavement sections and 

group the sections according to levels of friction need. 

o Define pavement sections. 

o Establish friction demand categories. 

• Network-Level Data Collection—Gather all the necessary information. 

o Establish field testing protocols (methods, equipment, frequency, conditions, 

etc.) for measuring pavement friction and texture. 

o Collect friction and texture data and determine overall friction of each section. 

o Collect crash data. 

• Network-Level Data Analysis—Analyze friction and/or crash data to assess overall 

network condition and identify friction deficiencies. 
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o Establish investigatory and intervention levels for friction. Investigatory and 

intervention levels are defined, respectively, as levels that prompt the need for a 

detailed site investigation or the application of a friction restoration treatment. 

o Identify pavement sections requiring detailed site investigation or intervention. 

• Detailed Site Investigation—Evaluate and test deficient pavement sections to determine 

causes and remedies. 

o Evaluate non-friction-related items, such as alignment, the layout of lanes, 

intersections, and traffic control devices, the presence, amount, and severity of 

pavement distresses, and longitudinal and transverse pavement profiles. 

o Assess current pavement friction characteristics, both in terms of micro-texture 

and macro-texture. 

o Identify deficiencies that must be addressed by restoration. 

o Identify uniform sections for restoration design over the project length and 

schedule friction restoration activities as part of overall pavement management 

process. 

• Selection and Prioritization of Short- and Long-Term Restoration Treatments—Plan and 

schedule friction restoration activities as part of overall pavement management process. 

o Identify candidate restoration techniques best suited to correct existing pavement 

deficiencies. 

o Compare costs and benefits of the different restoration alternatives over a defined 

analysis period. 
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o Consider monetary and non-monetary factors and select one pavement 

rehabilitation strategy. 

In summary, the PFM program calls for routine friction testing of the roadway network, 

subsequent analysis of the data to identify friction deficiencies and final countermeasures to 

improve the safety. Agencies and researchers have implemented a wide variety of studies and 

practices to support the PFM program. Many States have installed the High Friction Surface 

Treatment (HFST) on spots with higher friction demands (FHWA, 2019), including Oklahoma, 

Kansas, Missouri, etc. The HFST involves the application of very high-quality aggregates, which 

has been verified to immediately reduce crashes, injuries, and fatalities associated with friction 

demand issues (FHWA, 2019; Zahir et al., 20170; Bledsoe, 2015). In order to better address the 

contribution of friction on highway safety, the Virginia Department of Transportation (DOT) 

integrates the skid resistance into the current crash prediction model. VDOT tests the skid 

resistance by a locked-wheel tester on all interstate and the primary routes on a multiyear cycle, 

doing two to three districts per year (de León Izeppi et al., 2016). Oklahoma DOT manages the 

Skid Studies Program, which used to perform systematic skid studies for the entire highway 

system, while in recent years the scope has been downsized to only include annual testing of US-

69, all Interstate Highways, as well as the Strategic Highway Research Program (SHRP) sites. In 

addition, ODOT also conducts special skid resistance testing as requested (ODOT, 2018).  

Pavement Skid Resistance 

Pavement skid resistance is the force generated between a vehicle tire and a pavement surface 

(Austroads, 2011). It is critical for roadway safety as it keeps vehicles on the road by allowing 

drivers to control or maneuver their vehicle (Hall et al., 2009). In addition, it is a key factor in 

highway geometric design as it used for determining the adequacy of the minimum stopping sight 

distance, and minimum horizontal radius, etc. 
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Pavement skid resistance can be typically characterized by tire-pavement friction, macro- and 

micro- texture of the pavement surface. Figure 1 visualizes the interaction between texture and a 

wet pavement, which is named as Three Zone Concept and first suggested by Gough and later 

extended by Moore (Moore, 1966). In zone 1, water is squeezed out by the macro-texture of the 

pavement surface, whereas in zone 2, it is by micro-texture. In zone 3, the tire comes into dry 

contact with the pavement surface, where the forces of adhesion and hysteresis come into play. 

Adhesion and hysteresis are the two main components of tire-pavement friction. Adhesion is due 

to the molecular bonding between the tire and the pavement surface while hysteresis is the result 

of energy loss due to tire deformation. Both hysteresis and adhesion are related to surface 

characteristics and tire properties (Hall et al., 2009).  

 

Figure 1 Texture Three Zone Concept of a Wet Surface (after Moore, 1966) 

The skid resistance is usually quantified using the non-dimensional friction coefficient, 𝜇 as the 

ratio of the dragging force to the perpendicular force: 

𝜇 = 𝐹/𝐹𝑊                                              ( 1 ) 

It is worth noted that as the result of the interaction between the tire and the pavement, pavement 

friction depends on properties of both the road and the tire, with climatic factors also having an 

influence (Roe and Sinhal, 1998). It is dominated by the texture of pavement surface, mainly 

depending on the micro- and macro- texture, while mega-texture and unevenness are negligible 
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(Flintsch et al., 2012; Henry, 2000; Kogbara et al., 2016). Pavement texture is defined as “the 

deviations of the pavement surface from a true planar surface” in the NCHRP Project 01-43 

Guide for Pavement Friction (Hall et al., 2009). Based on the wavelength of the deviations, the 

Permanent International Association of Road Congress (PIARC, 1987) defines the pavement 

texture into four types: micro-texture (<0.5 mm), macro-texture (0.5 mm~50 mm), mega-texture 

(50 mm~500 mm), and unevenness (>500 mm).  

Table 1 Micro/macro Texture Ranges and Control Factors (Austroads, 2011) 

Pavement 

Surface 

Texture 

Texture 

Wavelength 

Major factors controlling texture level 

Asphalt surfacing Seal surfacing 

Micro- <0.5mm Selection of aggregate type 

(e.g. glassy, rough) 

Selection of aggregate type 

(e.g. glassy, rough) 

Macro- 0.5~50mm Mix type and design (e.g. 

maximum aggregate size, 

grading control, binder content) 

Seal type and design (e.g. seal 

size, binder application rate) 

 

Micro-texture is the fine-scale surface texture of coarse aggregates in asphalt mixes or sands in 

cement concrete, which interacts directly with the tire rubber on a molecular scale and provide 

friction (Flintsch et al., 2012). It is a more inherent characteristic of the aggregates and thus 

determined by the aggregate source (Austroads, 2011). This component of texture is especially 

important to friction performance at low speeds but needs to be present at any speeds (Flintsch et 

al., 2012).  

On wet pavements, as speed increases, skid resistance decreases and the extent to which this 

occurs depends on the macro-texture, typically formed by shape and size of the aggregate 

particles in the surface or by grooves cut into some surfaces (Austroads, 2011). Macro-texture can 

be controlled by the surfacing type selection and the mix/seal design. Generally, surfaces with 

greater macro-texture have better skid resistance at high speeds for the same low-speed skid 
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resistance (Roe and Sinhal, 1998). However, it worth noted that good skid resistance is not 

guaranteed by good texture (Merritt et al., 2015).  

Measurement of Skid Resistance 

The commercially available measurement devices obtain skid resistance using a rubber slider or 

tire being forced to slide across the wetted pavement surface (Austroads, 2011). The horizontal 

friction force resisting the sliding is measured, and the perpendicular force is either measured or 

assumed to be constant (Austroads, 2005).  

The American Society for Testing and Materials (ASTM) sets the standards for operating and 

calibrating the equipment used for measuring skid resistance for most of the methods used in the 

U.S. The methods can be grouped into two categories: high-speed friction measurement, and low-

speed or stationary friction measurement (Hall et al., 2009). 

Low-Speed and Stationary Friction Measurements 

Two devices that are typical for industrial and research use in the lab or at low speed in the field 

are the British Pendulum Tester (BPT) and the Dynamic Friction Tester (DFT), 

British Pendulum Tester (BPT) 

The BPT (Figure 2) has been in use since the early 1960s (Henry, 2000). The BPT (ASTM, 2018) 

is operated by releasing a pendulum from a specified height so that measures the energy loss 

when the rubber slider edge is propelled over a test surface. The slip speed for the BPT is 

typically assumed to be 10km/h (6mph). The difference between the height before the release and 

the height recovered is equal to the loss of kinetic energy due to the friction between slider and 

the pavement (Henry, 2000). Because the slip speed of the BPT is very low, it is mainly 

dependent on micro-texture and is used as a surrogate for micro-texture (Henry, 2000). 
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Figure 2 British Pendulum Tester (ASTM E3030-93, 2018) 

Dynamic Friction Tester (DFT) 

DFT (Figure 3) is a portable device measuring dynamic coefficient of friction (ASTM, 2018). A 

water supply unit delivers water to maintain a wet surface condition. The torque of the sliders is 

continuously measured during the testing for calculation of friction coefficients at various speeds 

in a single test run.  

 

Figure 3 Dynamic Friction Tester 
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High-Speed Friction Measurements 

The high-speed equipment can be subcategorized into four groups: locked-wheel (longitudinal 

friction force), side-force (sideway “lateral” friction factor), variable-slip, and fixed-slip 

(longitudinal friction force) (Hall et al., 2009). The last three devices can be characterized as 

continuous friction measurement equipment (CFME) because they conduct friction measurements 

continuously, greatly enhancing the ability to detect isolated low friction areas on pavements (de 

Leon Izeppi et al., 2016). More agencies around the world have started using CFME for highway 

friction management. 

Locked-wheel Skid Tester 

In the U.S., most state DOTs employ the locked-wheel skid tester, following ASTM E274 (2015), 

which simulates emergency braking without anti-lock brakes. The locked-wheel skid tester, as 

shown in Figure 4, is a trailer (of constant load and operated at a constant speed of 40 to 60 mph 

(65 to 100km/h) that hitches onto the back of a vehicle, and consists of two full-scale wheels, one 

of which is used for measuring (ASTM E274, 2015). The test wheel is equipped with either a 

standard ribbed-tire (ASTM E501) or a standard smooth-tire (ASTM E524). It is found that 

friction measurements with ribbed tire depend largely on the micro-texture, while friction 

measurement with smooth tire is sensitive to both the micro-texture and macro-texture (Li et al., 

2004). 

When a locked-wheel skid tester is in operation, an apparatus in front of the test wheel sprays 

water on the pavement to simulate a wetted surface condition. The test wheel is fully locked and 

produces 100 percent slip condition for friction measurement. It measures the coefficient of 

friction every one to three seconds and report the averaged value called Skid Number (SN) 

(ASTM E274, 2015). 
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Figure 4 Locked-wheel Skid Tester 

Continuously Friction Measurement Equipment (CFME) 

CFMEs have the advantage that they continuously measure the friction across the entire stretch of 

a road, providing greater detail about spatial variability of the tire pavement frictional properties 

(Flintsch et al. 2012), using either side-force or fixed-slip device.  

Side-force Device 

The side-force method measures the ability of vehicles to maintain control in curves with the 

angled wheel. The yaw angle between the tire and the direction of motion is typically small, 

between 7.5 to 20° (Hall et al., 2009). The small yaw-angle combined with low slip-speeds results 

in sensitivity to micro-texture, but often an insensitivity to macro-texture (Hall et al., 2009). Mu-

Meter (ASTM E670, 2015) and Side-Force Coefficient Road Inventory Machine (SCRIM) are the 

two most common side-force devices. SCRIM was developed in 1960s in the UK and currently 

used in Australia, throughout Europe and in some parts of Asia (Austroads, 2011). The side-force 

measuring device can continuously monitor skid resistance on a network scale.  

Variable-slip Device 

The associated standard of the variable-slip device is ASTM E1859. This equipment utilizes a test 

wheel, capable of measuring longitudinal friction with a full range of speeds, from free rolling to 

fully lock. During operation, this equipment works by reducing the free-rolling velocity of the test 

wheel until it achieves a fully-locked condition, while simultaneously recording the frictional 
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forces as the tire progresses through the range of percent slip (0 to 100) (Hall et al., 2009). An 

example of variable-slip equipment is the Road Analyser and Recorder (ROAR), which is a 

compact unit with a single test wheel and able to mounted to a host vehicle. It can operate in 

either fixed or variable slip modes. Compared with other testers, it has the advantage of 

measuring the coefficient of friction at varying slip ratios in a single test run (Austroads, 2011).  

Fixed-slip Device 

The fixed-slip device (Figure 5) measures the rotational resistance at a constant slip speed (12 to 

20 percent) (Hall et al., 2009). A widely used fixed-slip device is Grip Tester (Figure 5), which 

consists of a trailer that hitches onto the back of a vehicle, and operated under a constant load and 

at a constant speed of 40 to 60 mph (ASTM, E2340/E2340M-11, 2015). The fixed-slip device 

provides the coefficient of friction continuously, rather than periodically locking up and 

measuring skid resistance. Friction is measured by a single testing wheel at a steady test speed 

and reported as FN at 1m (3.28ft) interval.  

 

Figure 5 Grip Tester 

Factors Influencing Friction Measurements 

According to NCHRP (Hall et al., 2009), the factors that influence pavement friction forces can 

be grouped into four categories: pavement surface characteristics, vehicle operational parameters, 
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tire properties, and environmental factors. Specifically, various factors are reviewed in the 

following sub-sections, including pavement surface texture; pavement condition; slip speed; 

water film depth; temperature; road geometry, et al. 

Pavement Surface Texture 

Pavement micro- and macro-texture are the main pavement surface characteristics that affect tire-

pavement friction. Micro-texture (< 0.5mm depth) is the dominant factor in determining wet skid 

resistance at low to moderate speeds. Micro-texture is still important at high speeds but the 

macro-texture (0.5mm to 50.0mm) becomes dominant, as it provides rapid drainage routes 

between the tire and road surface (VicRoads, 2018). 

Mean profile depth (MPD) and mean texture depth (MTD) are among the mostly used texture 

parameters, whose relationships to pavement friction are widely studied but not consistent among 

the studies (Hall et al., 2008; Kargah-Ostadi et al., 2015). 

Macro-texture can be controlled by pavement treatments. Some typical macro-texture depths of 

different treatments are summarized in Table 2 (Merritt et al., 2015). Although there is no 

codified typical friction value for a given treatment, many studies were conducted to investigate 

the properties of different treatments. It was found by Li et al. (2012) that the friction of 

microsurfacing surface increased significantly in the first six months and reached the maximum 

number approximately after 12 months of service; UTBWC is capable of providing sufficient and 

consistent skidding resistance to allow quick opening to traffic. Several studies (de Leon Izeppi et 

al., 2010; Bledsoe 2015) claimed that High Friction Surface (HFS) can provide significant 

increase on surface skid resistance with a positive economic benefit. Li et al. (2007) compared 

friction performance of coarse aggregate and Hot-Mix asphalt pavements, and concluded coarse 

aggregate pavement (such as open-graded friction course (OGFC) and stone mastic asphalt mix) 

generated more consistent friction performance than other regular mixes. 
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Table 2 Typical Macro-Texture Depth for Various Pavement Treatments (Merritt, Lyon, and Persaud, 2015)  

Pavement Treatment Typical Macrotextue Depth 

Slurry Seal 0.3 to 0.6 mm 

Thin Hot Mix Asphalt Overlay 0.4 to 0.6 mm (Dense Graded) 

>1.0mm (Stone Matrix Asphalt) 

Microsurfacing 0.5 to 1.0 mm 

Diamond Grinding 0.7 to 1.2 mm 

Grooving 0.9 to 1.4 mm 

Ultra-Thin Bonded Wearing Course (UTBWC) >1.0 mm 

Chip Seal (various binder types) >1.0 mm 

Open Graded Friction Course (OGFC) 1.5 to 3.0 mm 

High Friction Surfacing (HFS) >1.5 mm 
 

Pavement Condition 

Pavement condition indices, such as International Roughness Index (IRI) and rutting, can 

undermine pavement drainage performance and vehicle stability which could reduce the skid 

resistance between vehicles and pavements (Arhin et al., 2015; Fwa et al., 2016).  

Slip Speed 

The coefficient of friction between a tire and the pavement changes with varying slip, which is 

expressed as the percentage of the ratio of slip speed to vehicle velocity. As illustrated in Figure 

6, which is increasing rapidly to a peak value usually at 10 to 20 percent slip and then decreases 

to a value known as the coefficient of sliding friction that occurs at full sliding (Hall et al., 2009). 

In dry conditions the level of surface friction is considered to be constant with increasing vehicle 

speed. However, in wet conditions, the level of surface friction reduces rapidly with increasing 

vehicle speed (Vicroads, 2018).   

Since it is very difficult to maintain a standard speed on open roadways, many studies explored 

methods to convert the skid resistance from one speed to any desired speed. Flintsch et al. (2010) 

conducted a study to quantify the relationship for locked-wheel skid tester between speed 

adjustment factor and MPD for smooth tire and ribbed tire measurement respectively.  
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Figure 6 Coefficient of Friction versus the Percentage of Tire Slip (Hall et al., 2009) 

Water Film Thickness 

A study of NCHRP (2009) points out that water, can act as a lubricant, significantly reducing the 

friction between tire and pavement. The effect of water film thickness on friction is minimal at 

low speeds (<20mph or 32 km/h) and quite pronounced at higher speeds (>40mph or 64 km/h). In 

fact, a water film thickness of 0.002 inches reduces the tire pavement friction by 20 to 30 percent 

of the dry surface friction (Merritt et al., 2015).  

Pavement macro-texture and tires threads can provide channels for water to escape through the 

tire pavement contact area which results in increasing the traction between tire and the pavement 

surface (Flintsch et al., 2012). It is known that worn tires are more sensitive to water film 

thickness. Ribbed tires are less sensitive to the operational test conditions and water film 

thickness. Some recommend ribbed tires as the preferred choice for friction measurement (Henry, 

2000). However, ribbed tires are less sensitive to the pavement macro-texture, so it is 

recommended that their measurements be accompanied by macro-texture measurements (Flintsch 

et al., 2012). 
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Temperature 

Research has indicated that the tire-pavement friction decreases if the tire temperature increases 

(Hall et al., 2009). Anupam et al. (2013) observed that higher temperature resulted in a lower 

hysteretic friction for a given pavement surface and a given tire slip ratio.  

Bianchini et al. (2011) did a research on the temperature influence on the skid number of asphalt 

pavement surfaces when measured by the locked-wheel skid tester. The results showed that it was 

possible to define a reference temperature to adjust friction measured at any other temperature 

value. The reference temperature identified is between 19.5°C (67.1°F) and 20.2°C (68.4°F). The 

friction adjustment factors were ranged from -2, at approximately 4.4°C (40°F), to 2 for 32.2°C 

(90°F). 

Road Geometry 

Vicroads (2015) pointed out that the highest rates of loss to surface friction were found at sites 

where the highest vehicle stresses were imparted onto the surface aggregates, such as at tight 

curves and the approaches to intersections. At these sites, polishing of the surface aggregate 

occurs. It is also recognized that crossfall and superelevation will have effects on the propensity 

of water to pond on a road surface. 

Pavement Skid Resistance and Highway Safety 

Highway safety is a critical transportation issue in the United States. The first strategic goal in the 

FHWA Strategic Plan (2018) is focusing on safety: the use of a data-driven approach to reduce 

transportation-related fatalities and serious injuries across the transportation system. 

Factors contributing to roadway crashes can be classified into three general categories (HSM, 

2010):  

• Human (driver and/or passenger behavior) 



20 

 

• Vehicle (design and condition) 

• Roadway environment (design and condition) 

At the era of autonomous driving and connected vehicles, the role of roadway on crashes will 

become more important. Factors in the roadway category include surface conditions (skid 

resistance, IRI, etc.) and roadway geometry (curves, grade, shoulders, etc.). Miller and Zoloshnja 

(2009) found that inadequate roadway condition is a contributing factor in more than half, 52.7 

percent, of the nearly 42,000 American deaths resulting from motor vehicle crashes each year and 

38 percent of the non-fatal injuries, resulting in more than $217 billion of economy loss each 

year. Many studies have consistently shown a link between crashes and roadway characteristics. 

The National Transportation Safety Board and FHWA found that about 70 percent of wet 

pavement crashes could be prevented or minimized by improved pavement friction (FHWA, 

2016). A comprehensive relationship between friction and crash rate was found by Wallman and 

Astrom (2001) and revealed that the higher friction can significantly reduce the crash rate (Table 

3):  

Table 3 Relationship between Friction Coefficient and Crash Rate (Wallman and Astrom, 2001) 

Frictional Coefficient Crash Rate (injuries per million vehicle km) 

<0.15 0.80 

0.15-0.24 0.55 

0.25-0.34 0.25 

0.35-0.44 0.20 

 

The AASHTO Highway Safety Manual (HSM, 2010) provides an approach that utilizes 

regression equations, the Safety Performance Functions (SPFs), to predict the crash frequency for 

a specific site type. Although roadway condition is listed as one category of contributing factors 

of crash, it is not fully considered in the current SPFs. The SPFs for highway segments in 

AASHTO HSM are functions of annual average daily traffic (AADT) and the segment length, 

which are both crash exposure indicators (HSM, 2010). Highway agencies are encouraged to 

develop state-specific SPFs for different roadway facilities and crash types (Merritt, et al., 2015). 
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For example, the SPF in Virginia is developed to include skid resistance and the radius of 

curvature for interstate and primary highway system (de León Izeppi, et al., 2016).  

The jurisdiction-specific SPFs are likely to enhance the reliability of the Part C predictive method 

(HSM, page A-9, 2010; Lu et al., 2012). According to FHWA-SA-14-004 report, the steps in 

developing SPFs include (Srinivasan, Carter, and Karin Bauer, 2013): 

Step 1- Identify Facility Type. Depending on whether the SPF is being estimated for 

project-level analysis or network screening, the jurisdiction can decide which facility 

types they are most interested in. 

Step 2 - Compile Necessary Data. Depending on whether the SPFs will be used for 

project level analysis or network screening, the data needs are quite different. 

Step 3 - Determine Functional Form. The SPFs in Part C of the HSM and in Safety 

Analyst are negative binomial regression models with a log-linear relationship between 

crash frequency and site characteristics.  

Step 4 - Develop the SPF. A number of statistical tools (statistical software) are available 

to develop SPFs. Common ones include SAS, STATA, and GENSTAT (all commercially 

available software packages). Other software, including R, an open source programming 

language, and Microsoft Excel, can be used as well. 

Step 5 - Conduct Model Diagnostics. These include checking the sign of the parameters’ 

coefficients, examining residuals via residual plots and cumulative residual plots (i.e., 

CURE plots), and identifying potential outliers using Cook’s D or other tools, and 

examining goodness-of-fit measures. 
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Step 6 - Re-estimate the SPF. Based on the results of Step 5, the SPF may have to be re-

estimated using a different statistical model or functional form. The SPF may also need to 

be re-estimated after removing outliers that were identified in the diagnostics step. 

Furthermore, the statistically reliability of average crash estimation can be improved by 

combining observed crash frequency and estimates of the average crash frequency, using the 

Empirical Bayes predictive method (EB Method) to compensate for the potential bias resulting 

from regression-to-the-mean (RTM). The RTM is the tendency of crash fluctuations where a 

comparatively high crash frequency is followed by a low crash frequency (Hauer, 1996). Failure 

to account for the RTM bias may result in an over- or under- estimation of long-term crash 

frequency. The Empirical Bayes (EB) method is commonly known to address two problems of 

safety estimation: it increases the precision of estimates beyond what is possible when one is 

limited to the use of two-three years of history accidents, and it corrects for the RTM bias. The 

EB method uses a weighted adjustment factor, w, which is a function of the SPF’s over-

dispersion parameter, 𝑘, in the negative binomial distribution: 

𝑤 = 1 (1 + 𝑘 × (∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))𝑎𝑙𝑙 𝑠𝑡𝑢𝑑𝑦 𝑦𝑒𝑎𝑟𝑠⁄      ( 2 ) 

Therefore, the expected average crash frequency for the analyzed period is: 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑤 × 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + (1 − 𝑤) × 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑     ( 3 )
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CHAPTER III 
 

 

EVALUATION OF GRIP TESTER BASED CONTINUOUS FRICTION MEASUERMENT 

EQUIPMENT (CFME) 

CFME is recommended as an appropriate method for Pavement Friction Management (PFM) 

program (FHWA, 2010). This chapter is to evaluate the performance of CFME in two aspects: the 

repeatability and the influence of operational characteristics on CFME measurements. The 

evaluation will assist state DOTs and highway agencies in better understanding the 

implementation of CFME for friction measurements. In particular, the Grip Tester, one type of 

CFMEs, was utilized as the primary field friction data collection device.      

Repeatability of Grip Tester Measurements 

The repeatability, also known as precision, of any measuring device is a primary concern of 

equipment users. It is desired that continuous friction measurements are not altered from 

repeating runs taken with the same equipment under unchanged conditions. If the system is 

repeatable, the measurement error can be mapped and compensated for. If the measurements 

differ greatly, one can argue that the findings derived from the measurements are inaccurate. 

However, continuous friction measurements may differ to a certain degree from multiple runs due 

to the potential vehicle wandering or the performance of the friction tester. As a result, it is 

necessary to evaluate the repeatability of CFME measurements, and herein a Grip Tester is used 

for field data collection.  

Friction measurements can be affected by many factors, such as pavement surface type, testing
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speed, water film thickness, tire characteristics, temperature and so on (AASHTO, 2008). To fully 

investigate the repeatability of Grip Tester measurements, testing sites with various pavement 

preventive treatments should be included for both concrete and asphalt pavements. For each site, 

multiple repeating runs were performed by the Grip Tester, owned by OSU, under the same 

operational conditions (0.25mm water film depth and 40mph vehicle speed). Five testing sites 

were selected and tested over the course of two field trips. Three of them were tested in 

November 2018: Lakeview Road in Stillwater (flexible pavement with Micro-surface), SH-33 in 

Perkins (concrete pavement with longitudinal grooving), and US-77 North Bound in Norman 

(concrete pavement with five types of preventive treatments including shotblasting). The 

additional two testing sites were tested in March 2019: I-40 in Oklahoma City (high friction 

surface with lead in and lead out asphalt pavement) and US-177 in Ponca City (ultra-thin 

bounded wearing course (UTBWC) asphalt). The temperature impact of each site is neglected. 

The friction profile of each site is displayed in Figure 7. 

Various methodologies are available for repeatability testing. Traditionally, repeatability is often 

reported in terms of standard deviation, which measures the variation of measurements taken by a 

single device under the same conditions. This approach involves calculating the variances for 

friction records at the same location of multiple repeated runs. The standard deviation of the 

variances can be obtained subsequently. Table 4 summaries the average friction numbers and 

standard deviations of the variances for multiple repeating runs on each site. It is found that the 

Grip Tester friction measurements are more repeatable on the longitudinal groove site and 

UTBWC site, whose standard deviations are 0.0004 and 0.0006 respectively.  
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Figure 7 Grip Tester Friction Measurements 
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Table 4 Means and Standard Deviations for Evaluation of Repeatability 

Site  Description # of Run 1 2 3 4 5 

Lakeview Rd Micro-surface Average FN 0.468 0.470 0.479 0.500 0.474 

Standard Deviation 0.0107 

SH-33 Longitudinal Groove Average FN 0.604 0.612 0.625 0.615 0.630 

Standard Deviation 0.0004 

US-77-NB-R Shotblasting Average FN 0.628 0.586 0.602 0.565 / 

Standard Deviation 0.0012 

I-40-HFST Asphalt & High 

Friction Surface 

Average FN 0.591 0.619 0.652 0.645 0.653 

Standard Deviation 0.0125 

US-177 Ultra-thin Bonded 

Wearing Course  

Average FN 0.595 0.596 0.592 0.604 0.602 

Standard Deviation 0.0006 

 

In addition, cross-correlation is a more rigorous statistical metric to identify the similarity among 

repeating measurements, which has been applied successfully in many disciplines, including 

pavement engineering in the areas of pavement longitudinal profiles (Karamihas, 2004) and 

friction profiles (Najafi et al., 2017) for repeatability and accuracy testing. The output of this 

methodology yields a single value, the cross-correlation coefficient, whose range is -1.0 to 1.0, 

whereby 1.0 indicates a perfect positive correlation, and -1.0 indicates a perfect negative 

correlation.  

 

(a) Correlation at 0 Lag                    (b) Correlation at 22 Lags 

Figure 8 Cross-correlation Methodology 
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Cross-correlation may also be employed to determine how much one waveform should be shifted 

to obtain the best match with another waveform, i.e. the optimal synchronization. The two friction 

profiles measured on Lakeview Road in Stillwater are shown in Figure 8(a): the first run (black 

line) and the second run (dotted red line). The two profiles are shifted in waveform by 

approximately 20 to 50 lags. The cross-correlation method is able to determine the optimum 

amount of shifting that provides the highest cross-correlation coefficient. The calculation process 

was performed by R programming. The maximum cross-correlation coefficient is 0.833 after the 

second run (dotted red line) is shifted to the left by 22 lags, as exhibited in Figure 8(b).  

Table 5 Maximum Cross-correlation Value for Evaluation Repeatability 

Sites # of Run 1 2 3 4 5 

Lakeview 

(Micro-

surface) 

1 1.000 0.833 0.592 0.573 0.714 

2 / 1.000 0.676 0.569 0.725 

3 / / 1.000 0.582 0.794 

4 / / / 1.000 0.644 

5 / / / / 1.000 

SH-33 

(Longitudinal 

Groove) 

1 1.000 0.916 0.912 0.939 0.925 

2 / 1.000 0.863 0.878 0.881 

3 / / 1.000 0.902 0.878 

4 / / / 1.000 0.887 

5 / / / / 1.000 

US-77 

(Shotblasting) 

1 1.000 0.534 0.633 0.484 / 
2 / 1.000 0.782 0.735 / 
3 / / 1.000 0.621 / 

4 / / / 1.000 / 

I-40  

(HFST& 

Asphalt) 

1 1.000 0.955 0.926 0.943 0.943 

2 / 1.000 0.954 0.959 0.950 

3 / / 1.000 0.941 0.950 

4 / / / 1.000 0.950 

5 / / / / 1.000 

US-177 

(UTBWC) 

1 1.000 0.817 0.828 0.662 0.838 

2 / 1.000 0.873 0.637 0.855 

3 / / 1.000 0.688 0.871 

4 / / / 1.000 0.647 

5 / / / / 1.000 

 

Cross-correlation analysis is subsequently applied to the possible combinations of multiple runs, 

and the results for the five testing sites are shown in Table 5. The highest repeatability is obtained 
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on the HFST section, but there is relatively weaker repeatability on the shotblasting site. The 

friction profile of the shotblasting site is uniform in shape without distinct changes (Figure 7), 

which makes the synchronization process more challenging. For the HFST site, since there is a 

significant increase of friction from the non-HFST to HFST surface, the synchronization of the 

measurements is easier and more accurate. Additionally, the wandering of the testing vehicle 

during measurements could reduce the correlation among different runs. Overall, the results 

suggest that the Grip Tester based CFME measurements have sufficient repeatability.  

Influence of Operational Characteristics on Grip Tester Measurements  

Understanding the influence of various factors on CFME measurements has many benefits in 

guiding state agencies to effectively implement CFME for the PFM. The influencing factors for 

pavement friction measurements can be put into four categories: pavement surface characteristics, 

vehicle operational parameters, tire properties, and environmental factors (AASHTO, 2008; 

Austroads, 2009). Most previous studies (Hall et al., 2009; Vicroads, 2018; Flintsch et al., 2010) 

only investigated limited number of influencing factors while other characteristics were held as 

constants. This section aims to investigate and quantify the influence of various characteristics on 

Grip Tester based CFME measurements via a comprehensive field data collection and statistical 

multiple regression analysis.  

The influencing factors investigated in this study include pavement texture parameters, pavement 

conditions in terms of IRI, temperature, vehicle speed, and water film depth during the testing. To 

better quantify pavement surface texture, instead of the commonly used texture indicator mean 

profile depth (MPD), a novel signal processing technique, Hilbert-Huang Transformation (HHT), 

is implemented to extract amplitude and instantaneous frequency information as the potential 

texture parameters. This process will be discussed later in detail.  
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Field Data Collection and Preprocessing 

In order to investigate the effects of various characteristics on the continuous friction 

measurements, 22 testing sites were selected as the testing bed in the State of Oklahoma, 

including: 

• Ten types of preventive maintenance treatments: chip seal, ultra-thin bounded 

wearing course (UTBWC), asphalt resurface, warm mix asphalt, microsurface, high 

friction surface treatment (HFST), concrete resurface, longitudinal grooving, next 

generation concrete surface (NGCS), and shotblasting.  

• Nine combinations of friction testing conditions: three water film depths (0.25, 0.50, 

1.00mm) combined with three different testing speeds (40, 50, 60mph for major 

arterials, while 30, 40, 50mph for minor arterials).   

The range of ambient temperature during testing was from 56 to 110°F. Field friction data was 

collected using the Grip Tester. The corresponding pavement texture data was acquired by an 

AMES 8300 Survey Pro High Speed Profiler. The Profiler is capable of collecting both macro-

texture data and longitudinal profiles at highway speed at 0.25mm (0.00082ft) interval. The 

collected profile can be used to calculate mean profile depth (MPD) and the international 

roughness index (IRI). 

For each testing scenario, a uniform 500ft-long pavement section was selected for analysis, and 

the corresponded IRI value, temperature during testing, testing speed, and water film depth are 

acquired.  

Prior to extracting the texture characteristics, it is important to remove noises from the 

longitudinal pavement profiles (Katicha et al., 2015). One simple, but widely used, method is the 

use of the mean plus or minus three times of standard deviation for outlier detection. Statistically, 

approximately 0.26% of the data samples are identified as outliers (Howell, 1998). However, this 



30 

 

method is limited to the normal distribution, and its mean and standard deviation are strongly 

affected by the outliers. In this study, an alternative to this fixed threshold is used, the Median 

Absolute Deviation (MAD) from the median of a univariate data set. Subsequently, the Hampel 

filter (Salem et al., 2013) is applied using the MAD results as the outlier resistant parameters. 

The first step of Hampel filtering is to obtain the median (∅) of a sliding window (Equation (4)). 

A window is composed of a point of interest and its N surrounding samples, with N/2 data points 

each side. Later, the MAD of the sliding window is calculated using Equation (5), which is the 

median of the set difference between each point and the ∅. An outlier is identified if it differs 

from the median by a threshold value related to the MAD (Equation (6)). Lastly, the detected 

outliers are replaced by the median of the sliding window (∅). This methodology is executed in R 

programming. One example is displayed in Figure 9. Figure 9(a) is the original texture profile. 

The outliers are detected as red dots in Figure 9(b), and the denoised profile is shown in Figure 

9(c). 

∅ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐻1, 𝐻2, … 𝐻𝑁)      ( 4 ) 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛( |𝐻𝑖 − ∅|)     ( 5 ) 

|𝐻𝑖 − ∅| > 𝑘 × 𝑀𝐴𝐷      ( 6 ) 

Where H is the relative depth of pavement texture, and k is the threshold value. 
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Figure 9 An Example Pavement Texture Profile: Original and After Denoising 

Hilbert-Huang Transformation (HHT) Based Texture Profile Analysis 

After removing noises from the texture profiles, the HHT technique is applied to extract the 

texture characteristics. HHT is an adaptive methodology based on the local characteristic in the 

time scale of the data and is, thus, suitable for analyzing non-linear and non-stationary signals 

(Huang et al., 1998; Kane and Rado, 2015; Rado and Kane, 2014). The obtained texture 

information from the HHT process is deployed as the influencing factors to represent the physical 

characteristics, such as sharpness and curvature of the texture asperities (Cho et al., 2010). The 

HHT technique consists of two major processes: the empirical mode decomposition (EMD) and 

the Hilbert spectral analysis (Huang et al., 1998). 

Empirical Mode Decomposition (EMD) 

Each denoised pavement texture profile is decomposed, according to the EMD process, into a set 

of basic profiles, called as the Intrinsic Mode Function (IMF) (Gagarin, 2014), 𝐶𝑗: 
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𝐻(𝑥) = 𝑟𝑛(𝑥) + ∑ 𝐶𝑗(𝑥)𝑛
𝑗=1      ( 7 ) 

Where H is the relative depth of a pavement profile at distance (or time) x; n is the total number 

of IMFs;  𝑟𝑛 is the residue of the decomposition, which can be either termed as a monotonic 

function or a constant.  

Each IMF represents a simple oscillatory mode, which can be linear or non-linear based upon the 

characteristics of the data (Huang et al., 1998). To extract the IMFs, the EMD consists of the 

following steps. First, construct upper envelope by connecting all the local extrema with a cubic 

spline line. Second, repeat the procedure to produce the lower envelope. The upper and lower 

envelopes should cover all the data between them. Third, their mean is computed and subtracted 

from the original data. The result is the first candidate IMF. This sifting process can be repeated 

until the resulting function satisfies the definition of IMF (Huang, 1998): 

• the number of local maxima and the number of local minima differs at most by one;  

• the upper and lower envelopes of the signal are symmetric with respect to zero. 

Figure 10 illustrates an example pavement texture profile and its EMD results. Each IMF has a 

mean of zero. The component with highest frequency is extracted as the first IMF (IMF1), and the 

remaining signal is considered as the residue of IMF1. Subsequently, the second IMF (IMF2) is 

obtained by taking the residue signal as a new signal and repeating the EMD process. The sifting 

process can be stopped when the residue becomes a monotonic function or a constant, which is 

usually an indicative trend of the original data (Huang, 1998; Ayenu-Prah and Attoh-Okine, 

2009). In this study, each texture profile was decomposed to a maximum of 10 IMFs. 

The obtained IMFs represent the actual sharpness, power, and curvature of the texture asperities 

at different scale classes, which could relate to the frictional characteristics of pavement surfaces 

(Rado and Kane, 2014).  



33 

 

 
Figure 10 An Example of An Original Pavement Profile and Its Decomposed IMFs and Residue 

Hilbert Spectral Analysis 

After the EMD process, the Hilbert spectral analysis is performed on each IMF component to 

compute the instantaneous frequency as the derivative of the phase function and then extract the 

localized texture information. The results of Hilbert spectral analysis can subsequently yield a full 

energy-frequency-time distribution of the signal in the Hilbert spectrum (Ayenu-Prah and Attoh-

Okine, 2009). Thereby, the original data can be expressed as the real part, Re, in the following 

form (Gagarin, 2014):  

𝐻(𝑥) = 𝑅𝑒 ∑ 𝑎𝑗 (𝑥)𝑒𝑖 ∫ 𝜔𝑗(𝑥)𝑑𝑥𝑛
𝑗=1      ( 8 ) 

Where, 𝑎(𝑥) and 𝜔(𝑥) represent the amplitude and instantaneous frequency as a function of 

distance (or time) variable x. 
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Subsequently, the amplitude (𝐴𝑖) and instantaneous frequency (𝐹𝑖) of the 𝑖th 𝐼𝑀𝐹𝑖 are averaged 

into texture parameters, which are further used to investigate their influences on pavement 

friction measurements. 

Statistical Analysis and Results 

A multiple regression analysis is conducted to quantify the effects of different characteristics on 

the continuous friction measurements. The influencing factors include the texture parameters 

from the HHT process, IRI, temperature, Grip Tester testing speed and its water film depth. The 

multiple regression model is expressed in the formula below: 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝜑 + ∑ 𝛼𝑖 ∗ 𝑋𝑖
𝑛
1      ( 9 ) 

Where, 𝜑 is the estimated intercept; 𝑋𝑖 represents the influential parameters; α𝑖 is the estimated 

coefficient of corresponding parameters. 

Backward stepwise regression is applied to develop the final multiple regression model. It starts 

with all the variables included in this study, then gradually removes the least significant variable 

at each step and finds a reduced model that best explains the data. The statistical results of the 

multiple regression analysis are displayed in Table 6.  

Average IRI, temperature, testing speed, water film depth, and a portion of the texture parameters 

are statistically significant for the friction measurements at more than 99.99% level of confident. 

The adjusted R-squared is 0.88 and the p-value of the model is less than 0.05, indicating that the 

model is significant. Temperature, testing speed, and water film depth show negative effects on 

the friction measurements. That is, the increases of these operational characteristics will result in 

decreases of measured friction numbers. These findings are consistent with those from several 

previous studies (Hall et al., 2009; Vicroads, 2018). Average IRI is found to have a positive effect 

on friction measurements. It is logical since the bouncing of the Grip Tester on rough surfaces 

may result in an increase of the dragging force (F) and a decrease of the force (N) perpendicular 
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to the pavement surface. As a result, the coefficient of friction, which is the ratio of F over N, 

increases. It is also noted the Grip Tester friction measurement is more sensitive to the change of 

water film depth and some of the texture parameters. However, the effects of some texture 

parameters on friction data are positive, while others are negative. Although these parameters 

from the HHT process are believed to reflect the actual sharpness, power, and curvature of the 

texture asperities at different scale levels; thus far, no consistent conclusions are available to 

explain their detailed physical meaning. Further research is, therefore, needed to explore the 

physical meanings of these parameters and the mechanism on why they matter. 

Table 6 Multiple Regression Results 

Parameters Coefficients 
Std. 

Error 
t value Pr(>|t|) 

Significant 

Level 

(Intercept) -4.84E-01 1.70E-01 -2.85 0.004883 ** 

Average IRI (in/mi) 2.19E-03 2.87E-04 7.641 1.21E-12 *** 

Temperature (F) -4.59E-03 4.59E-04 -9.997 < 2e-16 *** 

Speed (mph) -3.04E-03 4.61E-04 -6.599 4.43E-10 *** 

Water Film Depth 

(mm) 
-1.01E-01 1.18E-02 -8.564 4.65E-15 *** 

𝐹2   2.81E-05 4.26E-06 6.591 4.62E-10 *** 

𝐹4   4.95E-05 5.89E-06 8.41 1.20E-14 *** 

𝐹6   -3.75E-05 8.67E-06 -4.326 2.51E-05 *** 

𝐹7   -3.67E-05 1.04E-05 -3.516 0.000554 *** 

𝐹8   3.77E-05 8.35E-06 4.517 1.13E-05 *** 

𝐹9   -1.99E-05 5.19E-06 -3.833 0.000175 *** 

𝐹10   1.50E-05 1.77E-06 8.505 6.67E-15 *** 

𝐴2 -6.80E+01 9.39E+00 -7.238 1.25E-11 *** 

𝐴3 1.73E+02 1.63E+01 10.607 < 2e-16 *** 

𝐴5 -8.02E+01 1.09E+01 -7.386 5.35E-12 *** 

𝐴7 -9.62E+01 8.95E+00 -10.749 < 2e-16 *** 

𝐴8 7.54E+01 6.29E+00 11.994 < 2e-16 *** 

         Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

   Adjusted R-squared:  0.88  

   p-value: < 2.2e-16 

 

Utilizing the developed multiple regression model, the predicted and measured Grip Tester 

friction values are verified in Figure 11 with an adjusted R-squared of 0.88; this indicates the 

model could clearly demonstrate the response of the friction measurements of a Grip Tester. This 
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model may assist state agencies in better understanding the field friction measurements and 

prompting the implementations of CFMEs to support pavement friction management programs. 

In addition, this study also verifies the feasibility and usefulness of the HHT technique for the 

extraction of more meaningful pavement texture characteristics from pavement texture profiles, 

which could be correlate well to friction measurements. 

 
Figure 11 Predicted Friction versus Measured Friction 

Conclusion 

Through a comprehensive field data collection and analysis, the following conclusions can be 

drawn based on the results: 

• The Grip Tester based CFME measurements have sufficient repeatability, which displays 

its capability to support the PFM program. 

• HHT technique is feasible and useful for the extraction of meaningful pavement texture 

characteristics from pavement texture profiles, which correlate well to friction 

measurements.  
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• The Grip Tester measurement shows a negative response to the change of temperature, 

testing speed, and water film depth; whereas, it has a positive response to the change of 

IRI.   

• The model developed using various operational factors and HHT indicators can be used 

to correct/adjust friction measurements conducted at different operation conditions for 

comparable results. 
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CHAPTER IV 
 

 

RANDOM FOREST BASED PAVEMENT FRICTION PREDICTION USING HIGH 

RESOLUTION 3D IMAGE DATA 

Many studies have concluded that pavement friction is dominated by the texture of pavement 

surface, especially the micro- and macro- texture characteristics. Many researchers have 

developed friction-texture models to explore the use of non-contact measurements for skid 

resistance evaluation, which could compensate for the limitations of current contact-based 

measurements, such as water consumption and subjecting to change with many operational 

factors. The objective of this chapter is to develop a friction prediction model using high 

resolution 3D texture data of pavement surfaces.   

Currently, pavement surface texture is primarily measured at the macro-texture scale. Mean 

profile depth (MPD) and mean texture depth (MTD) are among the mostly used texture 

parameters, whose relationships to pavement friction are widely studied but not consistent among 

the studies (Flintsch et al., 2012; Hall et al., 2008; Kargah-Ostadi et al., 2015). With the 

advancement of non-contact high resolution 3D laser technology, it is becoming feasible to 

characterize pavement or aggregate surface texture at both macro- and micro- scales (Kargah-

Ostadi et al. 2015; Kanafi et al. 2015; Li et al. 2012; Masad, 2005; Qian et al. 2017; Zuniga-

Garcia, 2016), and investigate their influences on surface friction characteristics under traffic 

polish over time based on field data sets. In addition, incorporating texture at both macro- and 

micro- scales can improve the accuracy of friction prediction (Ergun et al., 2005; Serigos et al., 
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2014; Chen et al., 2019). 

Various texture parameters in disciplines other than pavement engineering are available for 

surface texture characterization and evaluation. In this chapter, the collected 3D high resolution 

pavement surface texture data was filtered into micro- and macro scales with twenty-seven 3D 

areal texture parameters including height parameters, volume parameters, hybrid parameters, 

spatial parameters, and feature parameters. Furthermore, these 3D areal texture parameters were 

correlated to the pavement friction using the random forest algorithm, one of the most popular 

machine learning technologies.   

Field Data Collection 

The field testing bed of this study was constructed in November 2015 by the Oklahoma 

Department of Transportation (ODOT), as a part of the LTPP SPS-10 project. Six warm mix 

asphalt (WMA) sections were constructed in this site, with the length of 500 ft for each section. 

Sections 1 to 3 are the LTPP required SPS-10 experimental designs, while sections 4 to 6 are 

supplemental sections with mixes chosen by the ODOT Division Office. The detailed mixture 

design information of each section is displayed in Table 7 (Yang et al., 2017). Three data 

collection trips were made in November 2015 (immediately after construction), June 2016 and 

January 2017. During each trip, 36 pairs of pavement friction and texture data were collected on 

predefined locations: three pairs on each section and three pairs on each transition section. In 

total, 108 pairs of pavement friction and texture data were collected in this study for data analysis. 
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Table 7 Experiment Design for LTPP SPS-10 Site in Oklahoma (Yang et al., 2017) 

Section 

ID 
Binder Comment 

Aggregate 

Combination 

Insoluble 

Residue (%) 

1 PG 70-28 HMA with RAP + RAS 1 56.3 

2 PG 70-28 WMA Foaming with RAP + RAS 1 56.3 

3 PG 70-28 WMA Chemical with RAP + RAS 1 56.3 

4 PG 64-22 WMA Chemical with RAP + RAS 1 56.3 

5 PG 58-28 WMA Chemical with RAP + RAS 1 56.3 

6 PG70-28 WMA Stone mix with mineral filler 2 43.6 

Mainline PG70-28 HMA with RAP 3 60.8 

Note:  

Aggregate Combination 1 contains 38% 5/8 Chips + 35% Stone Sand + 12% Sand + 12% RAP + 3% RAS; 

Aggregate Combination 2 contains 90% 5/8 Chips + 10 Mineral Filler; 

Aggregate Combination 3 contains 34% 5/8 Chips + 13% Scrns. + 30% Stone Sand + 13% Sand + 10% 

RAP. 

 

Pavement surface texture data was collected using the LS-40 scanner (Figure 12(a)). The 3D laser 

triangulation imaging technology is used in LS-40 to collect and process 2D/3D images: a built-in 

motor stage moves a very fine laser beam over target surface or objects; a high resolution camera 

takes laser beam images from an angle. The LS-40 scans a 4.5” by 4” pavement surface with 

height resolution (z) at 0.01mm and lateral resolution (x, y) at 0.05mm. Therefore, the obtained 

high resolution 3D surface image includes both pavement macro- and micro- texture 

characteristics. 

Immediately after the LS-40 testing, a DFT (Figure 12(b)) was utilized to collect pavement 

friction data at the same location. DFT is a portable device measuring dynamic coefficient of 

friction (ASTM E1911-09a, 2009). A water supply unit delivers water to maintain a wet surface 

condition. The torque of the sliders is continuously measured during the testing for calculation of 

friction coefficients at various speeds, from 10 km/h to 80 km/h.  
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(a) LS-40 Portable 3D Surface Analyzer 

 
(b) Dynamic Friction Tester (DFT) 

Figure 12 Data Collection Devices 

Data Preprocessing Using Butterworth Filtering 

Since the LS-40 texture data contains both macro- and micro-texture information, it is desired to 

separate the two components for the development of friction models. The Butterworth filter is a 

signal processing technique which passes or stops certain frequencies of interest. Zuniga-Garcia 

and Prozzi designed a Butterworth filter to isolate micro- and macro-texture wavelengths from 

field pavement surface data. As shown in Figure 13, a customized band pass Butterworth filter is 

designed in this study to separate macro- and micro-texture from the collected high-resolution 3D 

pavement images. In this filter, all the frequencies between 0.0008 and 0.08 cycles/m 

(wavelengths from 0.5 to 50 mm) are passed through for macro-texture, as shown in Figure 13(b), 

while the frequencies less than 0.08 cycles/m (wavelengths lower than 0.5 mm) are passed for the 

micro-texture information, as shown in Figure 13(c).  
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Figure 13 Butterworth Filter 

3D Areal Pavement Texture Parameters 

Once the macro- and micro-texture data are separated from each 3D texture image, 3D areal 

texture parameters are calculated at both macro- and micro-scales. As shown in Table 8, twenty-

seven 3D areal texture indicators are calculated in this paper, which can be categorized into five 

classes: seven height parameters, three spatial parameters, two hybrid parameters, six volume 

(a) Original 3D Texture Data 

(b) Macro-Texture 

(c) Micro-Texture 
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parameters, and nine feature parameters. Due to the length limitations, the detailed definitions and 

equations of these texture parameters are omitted herein, which can be found in the ISO25178 

standard (2012) and at Li et al. (2017). 

Table 8 3D Areal Surface Texture Parameters 

Categories ISO 25178 

Parameters 

Unit Description 

Height  Sq mm Root mean square height of the surface  

Ssk Unitless  Skewness of height distribution  

Sku Unitless Kurtosis of height distribution  

Sp mm Maximum height of peaks 

Sv mm Maximum height of valleys 

Sz mm Maximum height of the surface 

Sa mm Arithmetical mean height of the surface 

Spatial  Sal mm Fastest decay auto-correlation rate 

Str Unitless Texture aspect ratio of the surface 

Std - Texture direction of the surface 

Hybrid  Sdq Unitless Root mean square gradient of the surface 

Sdr % Developed area ratio 

Volume 

(Functional)  

Vm mm3/mm2 Material volume at a given height 

Vv mm3/mm2 Void volume at a given height 

Vmp mm3/mm2 Material volume of peaks 

Vmc mm3/mm2 Material volume of the core 

Vvc mm3/mm2 Void volume of the core 

Vvv mm3/mm2 Void volume of the valleys 

Feature Spd 1/mm2 Density of peaks 

Spc 1/mm Arithmetic mean peak curvature 

S10z mm 10 point height 

S5p mm 5 point peak height 

S5v mm 5 point valley height 

Sda mm2 Closed dales area 

Sha mm2 Closed hills area 

Sdv mm3 Closed dales volume 

Shv mm3 Closed hills volume 
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Correlation Analysis of Friction Numbers 

DFT friction numbers at 10, 15, 20, 25, 30, 40, 50, 60, and 70 km/h are selected herein to study 

the speed influence on friction performance. As discussed in the previous session, 108 DFT 

friction measurements are made from the three data collection events. The maximum friction 

number is 0.74, the minimum 0.19, and the median 0.38. Correlation analysis is subsequently 

conducted among the friction measurements at various speeds to identify the representative DFT 

friction numbers at both high and low speeds. In general, a correlation coefficient larger than 0.8 

indicates a strong correlation while less than 0.5 indicates weak correlation. The correlation 

coefficients are summarized in Table 9.  

As Table 9 shows, the friction numbers measured at 25 to 70 km/h and those measured at 10 to 20 

km/h are highly correlated. Therefore, the friction numbers at 70 km/h and 15 km/h are selected 

to represent the high-speed and low-speed friction. Friction models at high and low speeds are 

subsequently developed with the aforementioned texture parameters.  

 Table 9 Correlation among DFT Friction Numbers at Different Speeds 

 
DFT70 DFT60 DFT50 DFT40 DFT30 DFT25 DFT20 DFT15 DFT10 

DFT70 1.00 
        

DFT60 0.98 1.00 
       

DFT50 0.97 0.99 1.00 
      

DFT40 0.92 0.95 0.98 1.00 
     

DFT30 0.83 0.87 0.92 0.97 1.00 
    

DFT25 0.73 0.77 0.84 0.91 0.97 1.00 
   

DFT20 0.49 0.53 0.60 0.69 0.81 0.91 1.00 
  

DFT15 0.05 0.09 0.16 0.25 0.41 0.58 0.83 1.00 
 

DFT10 -0.20 -0.18 -0.13 -0.05 0.11 0.29 0.62 0.87 1.00 

 

Implementation of Random Forest Algorithm 

The random forest algorithm is a non-linear ensemble machine learning technique combining 

many decision trees to make a prediction for both classification and regression problems. For 

regression tasks, its main advantages are: i) the robustness regarding solve overfitting, ii) the 

comparatively small number of hyper parameters that have to be specified by users, iii) the 
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automatic computation of variable importance rankings that accesses the contribution of each 

variable to the final model, iv) the algorithm is very fast since training of each decision tree is 

independent (Hutengs et al., 2016). 

In a random forest regression model, decision trees are paralleled and the mean prediction value 

is generated as the output of the model. The random forest can model the complex relationship 

between input variables and prediction other than detailed numerical expressions, with the 

following three steps (Fernández-Blanco et al., 2013): 

• Obtain n random samples from the original dataset as tree seeds. 

• For each seed grow a non-pruned tree, and for each node randomly choose m predictors 

and the best split among them. 

• Execute the different prediction trees and select the most voted tree as the prediction. 

Two key features of the random forest algorithm are out-of-bag (OOB) error estimates and 

variable importance rankings (Hutengs et al., 2016). In a random forest, each decision tree is 

trained via the bagging method, in which a subset data is randomly sampled with replacement 

from the original training set. With bagging, only approximately 63% of the training instances are 

sampled on average for each predictor, while the remaining 37% of the training instances that are 

not sampled are called OOB instances (Geron et al., 2017). The mean squared error (MSE) of the 

OOB samples is generally used to test error estimate, a similar measurement as k-fold cross-

validation. Subsequently, every node in a decision tree in the forest is split into two, and the 

number of variables selected at each split is optimized by minimizing the OOB error of 

predictions (ISO, 2012). The algorithm records the decrease of weighted impurity at each split 

and each tree to evaluate the importance of a variable 𝑋𝑚 for predicting Y (Breiman, 2001; 

Breiman, 2002), as shown Equation (1) known as Mean Decrease Impurity importance (MDI) 

(Louppe et al., 2013): 
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Imp (𝑋𝑚) =
1

𝑁𝑇 
∑ ∑ 𝑐(𝑡)∆(𝑆𝑡 , 𝑡)𝑡∈𝑇:𝑣(𝑆𝑡)=𝑋𝑚𝑇                          ( 10 ) 

Where NT is the number of trees in the forest; 𝑣(𝑆𝑡) is the variable used in split 𝑆𝑡; c(t) is the 

proportion of samples reaching node t, calculated by 𝑁𝑡/𝑁; ∆(St, t) represents impurity decreases 

for node t. In this regression task, the impurity decreases are evaluated by MSE. In Python 

programming, the importance of variable is normalized to a value between 0 and 1, refereed as 

the importance value in this study. The sum of the importance value in a random forest equals to 

one. The higher the importance value, the more important the variable 𝑋𝑚 is for predicting Y.  

To illustrate the process, Figure 14 displays an example decision tree randomly selected from the 

random forest (A suffix of “L” represents macro-texture; “S” represents micro-texture in all the 

figures in this chapter). The decision tree in Figure 14 is restricted to a depth of five for simplicity 

and demonstration. Each node displays four types of information: a binary condition; the value of 

MSE; number of samples reaching this node; prediction value of Y. As the tree grows, the 

number of samples is reducing until reaching to 1. Thereby, this decision tree gives a prediction 

for specific inputs. A final prediction is reached with most vote aggregated of all trees. For 

instance, if 𝑆𝑎 at micro-scale is 0.5, 𝑆𝑝𝑐 at macro-scale is 5.0, and 𝑆𝑡𝑑 at macro-scale is 95.0, the 

prediction of corresponding friction number is 0.2 based on this decision tree, as demonstrated by 

the dotted line in Figure 14.  
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Figure 14 An Example Decision Tree in Random Forest 

Friction Prediction Model 

55 variables (27 pairs of 3D surface micro- and macro-texture indicators, and temperature) are 

used for developing friction prediction models at representative high and low speeds identified 

previously. 70% of the collected 108 pairs of pavement friction and their corresponding 55 

variables are randomly selected for model development while the remaining 30% are used for 

model verification. 

Model Development 

Although the 55 variables provide a comprehensive list, their significances should be determined 

so that only the most significant ones can be maintained for friction model development. First, 

variable importance analysis is conducted via Python programming on the training data set for 

friction at the two representative speeds (70 and 15 km/h) using random forest algorithm. The top 

ranked variables are provided in decreasing order in Table 10. Model A specifies the friction 

predictive model at 70 km/h while Model B is for the friction predictive model at 15 km/h. The 
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importance value is a relative measurement. The sum of all the importance values of the 

significant variables in each model equals to one. The higher the importance value is, the stronger 

the link exists between the variables and the target. For instance, the most influential variable is 

Sa for micro-texture in Model A whereas it is the temperature in Model B. 

Table 10 Variable Importance Analysis (Top 18 Variables) 

Model A Model B 

Variable Importance Value Variable Importance Value 

SaS 0.1113 Temperature 0.3221 

SdqS 0.0726 VmcS 0.1441 

S10zL 0.0557 VvcS 0.0427 

SdrS 0.0538 StdS 0.0393 

StrS 0.0413 SalL 0.0388 

SpcL 0.0396 SalS 0.0344 

Temperature 0.0372 SpcS 0.0322 

StdL 0.0363 SdaL 0.0201 

SskL 0.0341 SdqS 0.0145 

SpL 0.0291 SpL 0.0135 

S5vL 0.0272 S10zL 0.0131 

SpcS 0.0266 SpcL 0.013 

S5pL 0.0245 StdL 0.0119 

SzL 0.0234 VvS 0.011 

SdaL 0.0233 ShaL 0.0108 

SalS 0.0208 SpdL 0.0108 

StdS 0.0164 SdrS 0.0097 

SvL 0.0164 StrS 0.0096 

 

The top parameters with high importance values are selected to develop the friction prediction 

models. The optimal number of variables in the random forest model should be determined. 

Breiman (2001) recommended the number of variables in the model should be started at the 

integer less than (1 + 𝑙𝑜𝑔2𝑀), where M is the number of variables, which is 55 herein. 

Therefore, in the first attempt the top six (1 + 𝑙𝑜𝑔255) ranked variables are elected as inputs to 

build random forest regression models. Subsequently, one additional variable is added into the 

model and the goodness-of-fit is compared to the previous models. This process repeats until the 

best model is identified. 
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The R-squared value for the training data set is calculated to serve as a reference index for model 

determination. R-squared value is a statistical measure ranged from 0 to 1 that represents the 

proportion of the variance for targets that is explained by input variables. Commonly, the higher 

the R-squared value, the better the model fits the data. It is found that with the increasing of the 

number of variables, the R-squared value increases in the beginning but it tends to be steady 

afterwards. The optimal number of variables is seven for Model A with the R-squared value of 

0.91, and eight for Model B with the R-squared value of 0.94. Table 11 lists the selected 

parameters which are used to predict friction performance. 

Table 11 Random Forest Regression Model for Friction Prediction 

Model Items Rank of 

Importance 

Importance 

Value 

Sum of 

Importance 

Value 

Texture 

parameter 

Categories 

High Speed 

Friction 

Model (70 

km/h) 

Micro- Sa 1 0.183 0.488 Height 

Sdq 3 0.169 Hybrid 

Sdr 4 0.136 Hybrid 

Macro- S10z 2 0.173 0.396 Feature 

Spc 5 0.129 Feature 

Std 7 0.094 Spatial 

Temperature 6 0.116 0.116 / 

Low Speed 

Friction 

Model (15 

km/h) 

Micro- Vmc 2 0.173 0.500 Functional 

Sal 3 0.099 Spatial 

Vvc 4 0.085 Functional 

Spc 6 0.073 Feature 

Std 7 0.071 Spatial 

Macro- Sal 5 0.079 0.141 Spatial 

Sda 8 0.062 Feature 

Temperature 1 0.359 0.359 / 

 

Pavement friction is composed of two principal forces: adhesion (depends mostly on micro-

texture) and hysteresis (depends mostly on macro-texture) (Hall et al., 2009). Adhesion is the 

direct bonding/interaction between vehicle tire and micro-texture, while hysteresis is the energy 

loss due to tire deformation. The results herein indicate macro-texture exhibits a larger 

contribution to friction at 70 km/h (39.6%) than that at 15 km/h (14.1%). Hysteresis increases 
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along with the testing speed and becomes noticeably influential when the testing speed is above 

105 km/h (Hall et al., 2009). Accordingly, micro-texture displays a significant contribution to 

fiction at both speeds. In addition, due to the viscoelastic properties of the testing tire material, 

hysteresis is affected by temperature and thus friction varies. 

Model Verification 

In this study, 70% of the collected data sets are randomly sampled for model development, while 

the remaining 30% for model verification. Using the developed friction models, the predicted 

friction numbers are calculated for the verification data set and compared with the measured 

friction at different speeds to validate the proposed models. The comparison results are shown in 

Figure 15. The R-squared values between the predicted and the measured friction numbers are 

0.65 at 70 km/h and 0.67 at 15 km/h, indicating that over sixty percent of verification data can fit 

the proposed models.  

In addition, the mean absolute errors (Equation (11)) and the accuracy (Equation (12)) are also 

calculated and shown in Figure 15. It can be concluded that the selected texture parameters are 

representative to predict pavement friction at both high and low speeds.  

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛
          ( 11 ) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 −
∑(

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛|

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛
)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑟𝑖𝑐𝑖𝑡𝑜𝑛
                          ( 12 ) 
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Figure 15 Model Verification 

Conclusion 

In this chapter, pavement friction prediction model has been developed and verified to have 

satisfactory performance at both high and low speeds. The results reveal that:  

• 3D areal texture parameters of pavement surface at micro-scale play the most significant 

role in influencing pavement friction; Macro-texture is also significant for friction, while 

it exhibits a stronger contribution to friction numbers at high speed than at low speed. 

• Temperature is significant for friction numbers at both high and low speeds. 

The identified 3D texture parameters provide potential alternatives to describe the pavement 

texture in relation to friction performance. It also proposes new ways to evaluate pavement 

surface friction performance using high-resolution 3D data sets.  
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CHAPTER V 
 

 

ENHANCED SAFETY PERFORMANCE FUNCTION FOR HIGHWAY SEGMENTS IN 

OKLAHOMA 

Safety is one of the top priorities of the U.S. Department of Transportation (DOT). The safety 

performance functions (SPFs) are detailed as statistical models to predict the expected average 

crash frequency for a certain roadway facility, mainly as a function of traffic exposure indicators. 

Skid resistance is commonly agreed to have critical effects on highway safety, but have not been 

fully considered to estimate crash rates in current SPF in the Highway Safety Manual (HSM). In 

this chapter, skid resistance, along with roadway characteristics, is investigated and its 

contribution to vehicle crashes is explored. Furthermore, an enhanced safety performance 

function is developed by incorporating the significant influencing roadway characteristics for 

highway segments in Oklahoma.  

Data Acquisition and Preprocessing 

Factors contributing to roadway crashes can be classified into three general categories: human 

behavior, vehicle, and roadway/environment (HSM, 2010). This study only focuses on crashes 

where it is believed roadway is a contributing factor, while other categories are out of scope for 

this study. Factors in the roadway category include surface characteristics (e.g. skid resistance, 

IRI, Rut, etc.) and roadway geometry (e.g. grade, curvature, etc.). The relevant data for crash 

analysis has been collected and stored in various databases managed by ODOT, including the
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PMS, SAFE-T database, Skid Studies Program, and SiteManager construction management 

system. Particularly, the investigated data and the data sources are summarized in Table 12.  

Table 12 Data Sources for Crash Analysis 

Data Item Data Source 

Crash data (frequency, type, severity) SAFE-T 

Average annual daily traffic (AADT) 

Presence of medians and shoulders 

Friction Skid Studies Program 

Segment identification: location, length PMS 

Pavement surface conditions: surface type, texture, IRI, rutting) 

Roadway geometry (grade, curve, number of lanes) 

Maintenance rehabilitation & reconstruction (MR&R) Works SiteManager 

 

Data Sources 

Safety-T Database 

SAFE-T is a database of statewide crash information garnered from collision report forms 

submitted by law enforcement (Adams and Warren, 2017). Data is available from 1998 to 

present. The database can generate reports in many formats based upon multiple criteria, 

including a range of dates and filters over the highway, control section, division, etc. Crash data is 

recorded as a point location event with a broad variety of relevant information.  

Since crashes are rare and random events which naturally fluctuate over time at any given site 

(HSM, 2010), 5-year crash data was used in this study to decrease the risk of issues associated 

with crash fluctuation. Crash data on interstate, U.S. and state highways from 2012 to 2016 in the 

entire State of Oklahoma was acquired from the SAFE-T database. Meanwhile, relevant 

information was also obtained involving location information (highway name, control section 

number, mile point, subsection ID, GPS, etc.), collision type (rear-end, head-on, etc.), collision 

severity (fatality, injured, property damage, etc.), traffic in terms of AADT, and roadway data 

(shoulder, median, etc.).  
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Skid Studies Program 

The Skid Studies Program at ODOT is managed through the Strategic Asset & Performance 

Management (SAPM) Division. ODOT used to perform systematic skid studies for the entire 

highway system, while in recent years the scope has been significantly downsized to only include 

annual testing of US-69, all Interstate Highways, as well as the Strategic Highway Research 

Program (SHRP) sites. In addition, ODOT also conducts special skid resistance testing as 

requested (ODOT, 2018).  

ODOT collects friction data using a commonly used friction measurement equipment, locked-

wheel skid tester operating at 50mph during testing. The friction data is recorded at an interval of 

approximately 0.5 miles and reported by control section saved as separate files. Significant 

preprocessing efforts are needed to combine those files into one universal database, since the 

scopes of testing sites have been changed during these years, and the reporting items and formats 

are not consistent. 

In this study, friction data from 2012 to 2016 was gathered and summarized in Table 13. Friction 

is tested in one lane for each direction for divided roads, while one direction for undivided roads. 

The yearly skid testing is totaled from 0 to 5,078 lane-miles in the study period, yielding a total 

mileage of 18,341. No friction data was received in 2016, while only a handful of control sections 

on US-69 were tested in 2013.  

Table 13 ODOT Skid Studies Program (2012-2016) 

Year Highway Classification # of Control Section Skid Testing Lane-miles 

2012 I-35, US, SH 474 5,078 

2013 US-69 14 213 

2014 IS, US, SH 664 7,148 

2015 IS, US, SH 553 5,903 

2016 / 0 0 

Total  IS, US, SH 1705 18,341 
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Pavement Management System (PMS) 

ODOT PMS maintains a computer database of pavement distresses and other roadway 

characteristics on the National Highway System (NHS) and State Highway System (SHS) routes. 

It estimates the current and future needs of the NHS and SHS by producing a statewide annual 

report (ODOT, 2018).  

The PMS data is collected on a 2-year cycle since 2001. About half of the mileage is collected in 

the first year, and the other half of the mileage is in the second year. The field data is formatted 

with one record for every 0.01 miles of pavement, including location information (highway name, 

control section number, mile point, control subsection, GPS, etc.), pavement surface 

characteristics (surface type, IRI, rutting, macro-texture, etc.), roadway geometry (grade, 

curvature, number of lanes, etc.), etc.  

According to ODOT SAPM, the subsections of a control section are generated by multiple 

criteria based on ODOT Road Inventory Manual (OODT, 2010), such as state highway junction, 

political jurisdiction, urban area boundary, surface width or type change, et al. The subsection 

breaks are subject to change among different years if pavement type changes, or number of lanes 

changes, etc. More details on the breaking rules of control subsection can be found in ODOT 

Road Inventory Manual (OODT, 2010). 

Table 14 Subsection in ODOT PMS Database (2012-2016) 

Highway Classification Year # of Subsection 
Avg Length of 

Subsection 
Lane Miles 

Interstate Highway 2012 0.00 0.00 0.00 

2014 1316.00 1.02 1346.00 

2016 1338.00 1.01 1346.00 

United Highway 2012 771.00 0.91 702.00 

2014 1328.00 1.05 1397.00 

2016 491.00 0.86 421.00 

State Highway 2012 198.00 1.11 221.00 

2014 184.00 1.14 211.00 

2016 0.00 0.00 0.00 

Total 5626.00 1.00 5643.00 
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In this study, each subsection is considered as a uniform roadway segment for crash analysis. A 

brief summary of the PMS subsections from 2012 to 2016 is demonstrated in Table 14.  

SiteManager Database 

The ODOT Awarded Notices Highway Construction Contracts from 2012 to 2016 were obtained 

from the SiteManager system. The project and location description, project number, and allocated 

days were queried from the contracts and summarized to link to other data sets. The MR&R 

works that are considered to affect roadway crashes include changes of roadway geometry (widen 

median and shoulder alignment change etc.), pavement preventive maintenance, rehabilitation, 

and reconstruction. 

Data Preprocessing 

The acquired data was divided into roadway segments based on the subsections of a control 

section for later investigation in this study. First, a complete list of highway segments was 

generated for all the unique subsections from the ODOT PMS database, along with the starting 

and ending mile posts to define each segment. Subsequently, the initial list of segments was 

filtered by two criteria. Segments with missing roadway characteristics were eliminated, 

especially for those without friction data. Meanwhile, the segments with MR&R works during the 

analysis period were excluded to minimize the impacts of site conditions changes on roadway 

crashes. 

Linking Various Database 

The ability to associate all data for a given roadway segment is critical to the accurate and 

continued use of them for model development. A major challenge was the coordination of the 

various data sets using a common referencing system for processing the data efficiently. For one 

thing, SAFE-T crash data is referenced by control subsections with GPS coordinates, friction data 

is referenced by control section and milepost, PMS data contains both information, while the site 
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construction data only has descriptive location information that is manually collected from the 

ODOT Contract Section Maps. For another thing, data consistency issues continued to be a 

challenge facing many state highway agencies (SHAs). For example, the definitions of directions 

within the various databases are inconsistent. The PMS database uses “5” for primary directions 

while “6” for secondary directions of a roadway segment. The crash and friction data use letters 

to indicate the directions.  

After manually modifying the inconsistent data to the same format, all required data was linked 

for each highway segment by subsection ID and direction of travel. As a result, the data size was 

reduced to 1835 segments. Furthermore, 24 segments were found to have MR&R works from 

2012 to 2016, resulting in a final data size of 1811 segments. The basic information of the 

selected final list of segments is summarized in Table 15.  

Table 15 Lane Miles Analyzed in Oklahoma (2012-2016) by Highway Class 

Highway Classification IS Hwy US Hwy State Hwy Total 

# of Segment 1103 587 121 1811 

Average Segment Length 1.14 1.24 1.26 1.18 

Lane Miles 1254 726.62 152.3 2132.93 

 

SAFE-T Crash Data 

Crash data contains a wide range of types, however, only vehicle crashes that are related to 

roadway characteristics were included in this study. For example, vehicle-train, vehicle-

pedestrian, and vehicle-animal crashes were excluded. Crashes which involved alcohol, drugs, 

work zones, etc. were not considered in this study. Furthermore, crashes occurred on 

contaminated pavement conditions (snow, ice, oil, et al.), in which not enough contact between 

tire and pavement surface, have been eliminated from the analysis. After filtering and aggregating 

the crash data for the subsections, 34.5 % of the segments had no crashes during the analysis 

period. The detailed crash information is displayed in Table 16. The 5-year crash data of analysis 
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shows that 29.50% of the crashes led to fatalities or injuries, while 70.50% are property damage 

crashes. On average, 83.88% of crashes occurred on dry conditions and 16.12% on wet surfaces. 

Table 16 Crashes Analyzed in Oklahoma (2012-2016) by Highway Class 

Highway Class IS Hwy US Hwy State Hwy Total % 

Total Crash 25,941 3,644 454 30,039 100.00% 

Crash Severity 

Fatal 135 52 7 194 0.65% 

Personal Injury 7,369 1,126 172 8,667 28.85% 

Property Damage 18,437 2,466 275 21,178 70.50% 

Pavement Condition 

Dry 21,652 3,131 413 25,196 83.88% 

Wet 4,289 513 41 4,843 16.12% 

Type of Crash 

Fixed-Objects 5,600 638 99 6,337 21.10% 

Sideswipe 4,779 434 34 5,247 17.47% 

Angle-Related 2,532 1,125 146 3,803 12.66% 

Rollover 893 137 29 1,059 3.53% 

Head-On 49 35 4 88 0.29% 

Rear End 12,088 1,275 142 13,505 44.96% 

 

Safety-Related Data Sets 

Several factors appear to influence roadway safety performance in previous studies (HSM, 2010; 

Arhin et al., 2015; Fwa et al., 2016; Aram, 2010; Miller and Zoloshnja, 2009), including traffic 

volume (AADT), roadway surface conditions (friction, texture, surface type, roughness), and 

geometry factors (longitudinal grade, horizontal curvature, number of lanes, presence of shoulder 

and median). These factors, available in the ODOT databases, are acquired and linked to each 

corresponding segment.  

The surface type under this study include asphalt (AC), jointed concrete (JCP), and continuously 

reinforced concrete pavement (CRCP). For each segment, friction performance was measured by 

two indices: the average number and the interquartile range (IQR) of friction. IQR is the 

difference between the 75th and 25th percentiles of data, which is a statistical measurement of 
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variability. For surface texture, the average of the lowest quartile of mean profile depth (MPD) 

are used. 

International roughness index (IRI), generally expressed in inch per mile, is a standard measure of 

the reaction of a vehicle to roadway profile and roadway roughness. FHWA (1990) recommended 

a threshold of 170 in/mile (2.7 m/km) for acceptable ride quality and a threshold of 95 in/mile 

(1.5m/km) for good ride quality. Accordingly, IRI is ranked as “Good”, “Acceptable”, or “Poor” 

for each of the 0.01-mile ODOT PMS data, and the lowest ranking level within the subsection is 

assigned to the segment.  

Table 17 Contributing Factors for Crash Analysis 

Factors Description Statistical Distribution 

Crash 

Exposure 

Segment Length Segment Length (mile) Min.: 0.05; Max.: 10.2; Mean: 

1.178 

AADT AADT(vehicle/day) Min.: 1600; Max.:158,561; 

Mean: 28,653  
Rural or Urban 1-Rural; 2-Urban Rural: 55.5%; Urban: 44.5% 

Skid 

Resistance 

Average Friction  The average friction value  Min.: 16.9; Max.: 62.0; Mean: 

40.13 

IQR of Friction  Interquartile of friction Min.: 0; Max.: 26.95; Mean: 

2.85  
MPD The average of lowest quartile 

MPDs 

Min.: 0.336; Max.: 2.524; Mean: 

0.766 

Surface 

Conditions 

Avg. IRI 

Ranking 

1-Good; 2-Acceptable; 3-Poor  Good: 4.8%; Acceptable: 

19.8%; Poor: 75.4% 

Max. Rut 

Ranking 

1-Good; 2-Acceptable; 3-Poor Good: 6.4%; Acceptable: 

23.3%; Poor: 70.3%  
Pavement Type 1-AC; 2-JCP; 3-CRCP AC: 57.8%; JCP: 30.6%; CRCP: 

11.7% 

Roadway 

Geometry 

Avg. Grade Average grade value  Min.: 0.033; Max.: 4.516; Mean: 

1.013 

Average degree 

of curve 

Average degree of curve  Min.: 0; Max.:17.293; Mean: 

0.266  
Maximal degree 

of curve 

The largest degree of curve Min.: 0; Max.: 66.62; Mean: 

1.188  
Length of curves Total length of curves with 

radius < 1000 (m) 

Min.: 0; Max.: 2.95; Mean: 

0.103  
Number of Lanes # of lanes  2, 3, 4, 6, 8, 10  
Presence of 

Shoulder 

0-No; 1-Yes No: 4.1%; Yes: 95.9% 

  Presence of 

Median 

0-No; 1-Yes No: 10.7%; Yes: 89.3% 
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Rutting is a common distress along the two pavement wheel paths and presents a safety risk to 

vehicles during wet weather with reduced skid resistance, which could lead to loss of control or 

hydroplaning accidents (Fwa et al. 2016). Per literature review (AASHTO, 1989; Lister and 

Addis, 1977; Sousa et al. 1991), in this study a rut depth of 0.5 in (12.7mm) is selected as the 

threshold between high and medium rut severity, and 0.25 (6.4mm) is chosen in between medium 

and low rut severity. Similar to that for IRI, the most serious level is assigned to each 

corresponding segment.  

Many research efforts have revealed the radius of the horizontal curve is significant for roadway 

crashes (Krammes et al. 1993; Aram, 2010). Studies have shown the difference between straight 

sections and curves becomes pronounced at a radius of about 1000m (Department of 

Transportation, 1984). Therefore, in this study, curves with radius below 1000m, or degree of 

curvature greater than 1.75°, are considered to have negative effects on safety. The total length of 

such curves within each segment is calculated for crash analysis.  

The influencing factors and their descriptive statistics are shown in Table 17. 

Development of Enhanced Safety Performance Function  

Overview of Crash Modeling Methods 

The crash prediction model (i.e. SPF) requires statistical analysis to map the relationship between 

crash data and roadway characteristics. Prior to the analysis, it is critical to understand the 

distribution of crash data. Crash occurrences are discrete and non-negative integers as well as 

random and rare events. Therefore, roadway safety in terms of the frequency of crashes is often 

studied, which involves the number of crashes occurring in some geographical space (usually a 

homogeneous roadway segment or intersection) over a specified time period. 
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Because crash-frequency data are non-negative integers, Poisson regression model has been used 

for analysis for several decades (Lord and Mannering, 2010). In a Poisson regression model, the 

probability of roadway segment 𝑖 having 𝑦𝑖 accidents per time period (5 years in this study) is 

given by: 

𝑃(𝑦𝑖)=𝑒𝑥𝑝(−𝜆𝑖)𝜆𝑖
𝑦𝑖 𝑦𝑖!⁄        ( 13 ) 

Where, 𝜆𝑖 is the Poisson parameter for segment 𝑖, which equals to the expected number of 

accidents per time period in segment 𝑖. Poisson regression model is estimated by specifying the 

Poisson parameter 𝜆𝑖 as a function of explanatory variables, where the most common functional 

form being 𝜆𝑖=exp (𝛽𝑋𝑖).  

Although the Poisson model has been a commonly used approach for crash-frequency analysis, it 

restricts its distribution with equal mean and variance. Thus, it is not able to handle over-

dispersion or under-dispersion problems, where the mean of the crash counts does not take the 

same value of the variance.  

The Poisson-Gamma (Negative Binomial) regression model is an extension of the Poisson model 

to overcome such possible dispersion problems in the data. The Negative Binomial model 

introduces an error term (𝜖) into the Poisson parameter: 

𝜆𝑖=exp (𝛽𝑋𝑖+𝜖)       ( 14 ) 

When 𝜖 approaches zero, the Negative Binomial model becomes a Poisson model. The addition 

term 𝜖 allows the variance of data to differ from the mean, as defined below with k as the over-

dispersion parameter: 

VAR(𝑦𝑖)=E(𝑦𝑖)+𝑘𝐸(𝑦𝑖)2       ( 15 ) 

In this study, the enhanced SPF is developed using negative binomial regression models with a 

log-linear relationship between crash frequency and roadway characteristics.  
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SPF and Empirical Bayes Method 

SPFs are regression equations that estimate the average crash frequency for a specific site type. In 

HSM (2010), the SPFs have been developed for three facility types (rural two-lane roads, rural 

multilane highways, and urban and suburban arterials). An example SPF for roadway segments 

on rural two-lane highways is: 

𝑁𝑆𝑃𝐹𝑟𝑠 = (𝐴𝐴𝐷𝑇) × (𝐿) × 365 × 10−6 × 𝑒𝑥𝑝 (−0.312)    ( 16 ) 

Where, AADT is average annual daily traffic volume (vehicles per day) and L is the length of 

roadway segment (miles). Both factors are related to crash exposure, while roadway 

characteristics are not considered. 

It is mandatory that the SPFs in the HSM be calibrated to local conditions since exiting SPFs are 

only directly representative of the sites used to develop them (HSM, 2010). Two parameters 

should be determined in calibration process: the calibration factor and calibrated dispersion 

parameter. The calibration factor (𝐶) is determined by: 

𝐶 =∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 ∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠⁄    ( 17 ) 

Where, predicted crashes for each site are calculated using the SPF predictive model. 

Subsequently, the calibration factor works as a multiplier to the SPF prediction: 

𝑆𝑃𝐹𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = 𝐶 ∗ 𝑆𝑃𝐹𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔           ( 18 ) 

Furthermore, the statistically reliability of average crash estimation can be improved by 

combining observed crash frequency and estimates of the average crash frequency, using the 

Empirical Bayes predictive method (EB Method) to compensate for the potential bias resulting 

from regression-to-the-mean (RTM). The RTM is the tendency of crash fluctuations where a 

comparatively high crash frequency is followed by a low crash frequency (Hauer, 1996). Failure 

to account for the RTM bias may result in an over- or under- estimation of long-term crash 
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frequency. The EB method uses a weighted adjustment factor, w, which is a function of the SPF’s 

over-dispersion parameter, 𝑘, in the negative binomial distribution: 

𝑤 = 1 (1 + 𝑘 × (∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))𝑎𝑙𝑙 𝑠𝑡𝑢𝑑𝑦 𝑦𝑒𝑎𝑟𝑠⁄        ( 19 ) 

Therefore, the expected average crash frequency for the analyzed period is: 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑤 × 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 + (1 − 𝑤) × 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑      ( 20 ) 

Selection of Influencing Factors 

Variable selection is a process to determine a set of independent variables for the final regression 

model from a pool of candidate variables. On one hand, the subset of the independent variables 

needs to be as complete and realistic as possible. On the other hand, the independent variables 

included should be as few as possible to eliminate irrelevant variables, which will decrease the 

precision of the model as well as increase the complexity of data collection (NCSS). To balance 

the goodness-of-fit and model simplicity, the backward stepwise method is implemented for the 

model development.  

The backward stepwise method is often used in variable selection for regression models. It starts 

with a model including all candidate variables. At each step, the variable with the least 

significance is removed until all the remaining variables are significant. To determine the best 

final model in this process, the Akaike Information Criterion (AIC) and the log-likelihood ratio 

test are performed. The AIC, proposed by Akaike (1973), has been used routinely during the past 

decades, which is calculated as below (Burnham and Anderson, 2002):  

AIC=−2𝑙𝑜𝑔 (ℒ(�̂�)) + 2𝐾      ( 21 ) 

where, log (ℒ(𝜃)) is the maximized log-likelihood value and K is the number of estimable 

parameters in the approximating model. It is desired to rescale the AIC values so that the 

minimum AIC (𝐴𝐼𝐶𝑚𝑖𝑛) has a value of zero. The AIC value can be rescaled as the simple 

difference:  
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∆𝑖= 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛        ( 22 ) 

To better interpret the relative likelihood of a model, the Akaike weights is introduced as below: 

𝑤𝑖 = 𝑒𝑥𝑝 (−
1

2
∆𝑖) ∑ 𝑒𝑥𝑝 (−

1

2
∆𝑖)

𝑅
𝑟=1⁄        ( 23 ) 

Subsequently, the model with the highest value is considered as the best model. Furthermore, the 

best model can be compared to other models by computing the evidence ratio:  

𝐸𝑅𝑖 = 𝑤𝑏𝑒𝑠𝑡/𝑤𝑖         ( 24 ) 

The evidence ratios help strengthen the evidence for or against the various alternative hypothesis. 

A large evidence ratio suggests a strong support that one model is better than the other.  

Another technique to determine the best model is the log-likelihood ratio (LLR) test, which is 

generally used to compare two nested models where one model is obtained from the other by 

setting some of the parameters to be zero (PennState). The null hypothesis of this technique 

assumes the reduced model (𝐿𝑟) is true. While the alternative hypothesis supposes the current 

model (𝐿𝑐) is true. To test the null hypothesis, the likelihood-ratio is calculated using Equation 13 

(Lord, et al., 2013) and compared with the Chi-Square critical value (𝜒𝑘
2). LLR is distributed as 

𝜒2 statistic with k degree of freedom, where k is the difference in the number of parameters 

estimated between the two models including the intercepts (Lord et al., 2013). A larger LLR leads 

to small p-values, which indicates that the null hypothesis can be rejected. In other words, the 

reduced model is not preferred in comparison to the current model. 

𝐿𝐿𝑅 = 2 × (𝑙𝑜𝑔𝐿𝑟 − 𝑙𝑜𝑔𝐿𝑐)                   ( 25 ) 

Enhanced Safety Performance Function 

Negative binomial regression model is developed using 5 years of statewide crash data in 

Oklahoma. The function form, as shown in Equation 26, is adopted to develop the enhanced SPF 

incorporating roadway characteristics. It should be noted that natural log transformation of 

segment length (L) and AADT are used herein:  



65 

 

𝑁𝑆𝑃𝐹 = 𝛽1𝐿 × 𝛽2(𝐴𝐴𝐷𝑇) × 𝑒𝑥𝑝(𝛼 + ∑ 𝛽𝑖 × 𝑋𝑖3 )    ( 26 ) 

Where: β𝑖 = coefficient of the influencing variable Xi; 𝛼 = intercept.  

The initial model is built including all of the listed parameters in Table 17 and eliminating the 

least significant parameter step by step. The corresponding AIC is computed for each model and 

summarized in Table 18. 

Table 18 Akaike Information Criterion for Model Selection 

Model AIC ∆𝑖 𝑤𝑖 𝐸𝑅𝑖 Variable Removed 

1 10769.96 6.97 0.010 32.62   

2 

3 

10767.96 

10766.10 

4.97 

3.11 

0.028 

0.072 

12.00 

4.74 

Max. Rut Level 

Smallest Quartile MPD 

4 10764.38 1.39 0.170 2.00 Avg. Degree of Curve 

5 10762.99 0.00 0.341 1.00 Length of Curve 

6 10763.43 0.44 0.274 1.25 Rural or Urban 

7 10766.10 3.11 0.072 4.74 Pavement Type 

8 10767.99 5.00 0.028 12.18 Avg IRI Level 

9 10772.47 9.48 0.003 114.43 Max. Degree of Curve 

10 10779.20 16.21 0.000 3310.98 Avg Grade 

 

The results of Akaike weights (𝑤𝑖) in Table 18 indicate Model 5 has a 34.1% chance of being the 

best model, followed by Model 6 which eliminates an additional variable. The evidence ratio 

(𝐸𝑅𝑖) of Model 6 over Model 5 is 1.25, suggesting that Model 5 is 1.25 times more likely of 

being the best fit. Since the chances of being the best model are close for Model 5 and 6, the LLR 

test is performed to determine which model is to be used as the final model. As shown in Table 

19, the p-value is greater than 0.05, failing to reject the null-hypothesis. In other words, including 

the extra variable does not provide significant improvement on the goodness-of-fit of the model. 

In conclusion, Model 6 is selected as the final SPF model in this study. The estimated coefficients 

and over-dispersion parameter are displayed in Table 20. The enhanced SPF model is obtained by 

inserting the coefficients into the model as shown in Equation 26.  
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Table 19 Log-Likelihood Ratio Test Results 

Model #Df Chisq Pr(>Chisq) Results 

6 13 
2.4429 0.1181 

Model 6 is a better 

model 5 14 

 

Table 20 Regression Analysis Results 

Parameters Coefficients Std. Error z value Pr(>|z|) 
 

(Intercept) -8.28 0.688 -12.037 < 2e-16 *** 

Segment Length 0.60 0.046 12.902 < 2e-16 *** 

AADT 1.24 0.066 18.767 < 2e-16 *** 

Avg Friction -0.02 0.006 -2.455 0.0141 * 

IQR Friction -0.06 0.013 -4.667 3.1E-06 *** 

Avg IRI Level 0.16 0.072 2.259 0.0239 * 

Pavement Type -0.14 0.063 -2.159 0.0308 * 

Avg Grade 0.20 0.066 3.051 0.0023 ** 

Max. Degree of Curve 0.03 0.011 2.410 0.0160 * 

# of Lanes 0.19 0.051 3.733 0.0002 *** 

Presence of Shoulder -1.37 0.196 -7.000 2.6E-12 *** 

Presence of Median -0.93 0.164 -5.627 1.8E-08 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Dispersion parameter for Negative Binomial=0.4166 

AIC: 10763.43 

 

In addition to segment length and AADT that are adopted in the AASHTO HSM SPF model, nine 

pavement surface conditions and roadway geometry factors are significant in contributing to 

roadway vehicle crashes. The positive regression coefficients for some factors, such as segment 

length, AADT, number of lanes, IRI level, degree of curvature of horizontal curves, and 

longitudinal grade, imply that the average risk of crashes is expected to increase with the increase 

of those factors. On the other hand, the risk of crashes will decrease by increasing the values of 

the rest condition factors with negative coefficients. It should be mentioned that both the average 

friction and the variance of friction (IQR) are significant to vehicle crashes. 

Crash Estimation with Empirical Bayes Method 

Because a crash is generally a rare event, one shortcoming of safety estimates based on accident 

counts is that they may be too imprecise to be useful. They are subject to a common, long 
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recognized, regression-to-mean (RTM) bias in safety analysis. For practical reasons, one is often 

interested in the safety of entities that either require attention because they seem to have too many 

accidents or merit attention because they have fewer accidents than expected. The Empirical 

Bayes (EB) method is commonly known to address two problems of safety estimation; it 

increases the precision of estimates beyond what is possible when one is limited to the use of two 

to three years of history accidents, and it corrects for the RTM bias. 

With the enhanced SPF, the expected crash number in the five-year period is estimated combing 

with the EB method. An example is provided on US-69 and displayed in Figure 16. The figure 

displays the data by segments on US-69. The observed crash within each segment is marked with 

a triangle symbol, and the predicted crash from the SPF predictive model is plotted with circular 

circle symbols. In general, the estimation from the SPF model is found to be higher on those 

segments with zero observed crashes and lower than those segments with observed high crash 

rates. To reduce the RTM bias and produce more reliable crash estimations, the SPF predicted 

crash rate is further improved with the EB Method, as shown in Equations 19 and 20. After 

employing the EB method, the expected crash rate is plotted with a dotted black line in Figure 16.  

 

Figure 16 Observed, SPF Prediction, and Expected Crashes on US-69 NB 
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Conclusion 

An enhanced safety performance function on statewide highway network in the State of 

Oklahoma has been developed in this study. In addition to the crash two exposure-related 

indicators (AADT and segment length), roadway characteristics are considered for SPF model 

development and crash analysis.  

The average and variation of pavement friction and several other roadway factors, such as IRI 

level, grade and curvature, illustrate significant contributions to vehicle crashes. The expected 

risk of crashes may be reduced by improving surface friction, adding shoulder or median, and 

decreasing the grade or curvature. Furthermore, the statistical reliability of crash estimation is 

improved via Empirical Bayes (EB) method by combing observed crash data and predictions 

from the enhanced SPF. 

The enhanced SPF could assist in better quantifying the influence of roadway characteristics on 

vehicle crashes. Before-after analysis can aid decision making to identify locations that may 

benefit the most from a safety treatment as well as to determine the most appropriate 

countermeasure.
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CHAPTER VI 
 

 

CONCLUSION 

Findings 

1. The Grip Tester based CFME measurements have sufficient repeatability to support the 

PFM program. 

2. The Grip Tester based CFME measurement show a negative response to the change of 

temperature, testing speed and water film depth, while a positive response to the change 

of IRI.  

3. HHT technique is feasible and useful for the extraction of meaningful pavement texture 

characteristics from pavement texture profiles, which could be correlate well to friction 

measurements. The friction model developed using operational parameters and the HT 

indicators can be used to adjust friction measurements at various testing conditions. 

4. 3D areal texture parameters defined in the ISO 25178 can be deployed to characterize 

pavement texture information using high-resolution 3D texture data from pavement 

surfaces. 

5. 3D areal pavement surface texture parameters at micro-scale paly more significant role in 

pavement friction than that from macro-texture and temperature. Macro-texture is also 

significant for friction, while it exhibits a stronger contribution to friction numbers at 

high speed than at low speed. 

6. Temperature is significant for friction numbers at both high and low speeds. 

7. Besides the two exposure indicators (traffic and segment length) used in the SPF in the 
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AASHTO HSM, many other roadway influencing factors, including pavement surface 

characteristics (friction, texture, IRI, rutting, pavement type) and roadway geometry 

(longitudinal grade, horizontal curvature, number of lanes, presence or absence of 

shoulder and median), are statistically significant to roadway safety and therefore are 

included in the enhanced SPF developed in this study. The expected risk of crashes may 

be reduced by countermeasures such as improving surface friction, adding shoulder or 

median, and decreasing the grade or curvature.  

8. The expected risk of crashes may be reduced by improving surface friction, adding 

shoulder or median, and decreasing the grade or curvature.  

9. The statistical reliability of crash estimation is further improved via Empirical Bayes 

method by combing historical crash data and predictions from the SPF.   

Future Work 

Further study could be focused on addressing the following problems:  

1. The parameters from the HHT process could reflect the actual sharpness, power and 

curvature of the texture asperities at different scales, however thus far the mechanism on 

how they impact pavement skid resistance has not been fully understood. 

2. This thesis studied the friction-related crashes of all severity levels (fatal, injured and 

property damaged), while crashes with high severity should be of interest particularly, 

such as single-fatal and multi-fatal crashes. The future research could compare the 

contributing factors of crashes with different severity levels, which will assist in well-

informed decision makings to reduce crash severity and further improve roadway safety 

in Oklahoma.  
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