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Abstract: Applications of glyphosate for weed control in bermudagrass pastures are 
permitted; however, product labels are vague regarding use after spring green-up. In-season 
weed control with glyphosate could be a feasible option if bermudagrass tolerance to 
glyphosate was better understood. Also, a quantitative method might improve glyphosate 
injury assessment. The objective of this study was to evaluate the tolerance of 
bermudagrass cultivars Goodwell and Greenfield to varying glyphosate rates and develop 
a quantitative methodology to determine glyphosate injury based on relative green canopy 
cover (RGCC). The experimental design was a completely randomized factorial containing 
the two bermudagrass cultivars and five glyphosate rates (0.4, 0.5, 1.1, 1.5, and 3.1 kg a.i. 
ha-1) plus a nontreated control. Visual green canopy cover (VGCC) and RGCC ratings were 
collected at 8, 16, 24, 37, and 56 days after glyphosate application (DAG), and biomass 
from canopy regrowth following applications was collected at 56 DAG. The root mean 
square difference (RMSD) values indicated that agreement between methodologies 
decreased at later days after glyphosate application. The visual capability to estimate 
glyphosate injury was not as precise as the RGCC method, which measures green color at 
the pixel level. The fractional green canopy cover (FGCC) results indicated greater 
glyphosate injury of Greenfield than Goodwell at 24 DAG. At 56 DAG, canopy regrowth 
of Greenfield and Goodwell was lower than the control at glyphosate rates of 1.1 and 3.1 
kg a.i. ha-1, respectively. Thus, improved glyphosate recommendations for bermudagrass 
could be cultivar specific. 
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CHAPTER I 
 

 

REVIEW OF LITERATURE 

 

Bermudagrass description 

 Originally from Africa, bermudagrass [Cynodon dactylon (L.) Pers.] is the primary 

perennial warm-season grass feedstock in beef farms in the southern United States 

(Christians, et al., 2011, Hill, et al., 2001, Collins, et al., 2017). Main morphological 

characteristics of bermudagrass are hairy ligules of 1 to 3 mm long, smooth leaf blades of 

1.5 to 4 mm width, rhizomes and stolons with uneven internodes, and digitate panicles 

(Christians et al., 2011, Duble, 2001). In addition, bermudagrass can reach 61 cm tall and 

develop deep-rooted systems of up to 0.9 m (Ball et al., 2007, Christians et al., 2011). 

Established bermudagrass growth consists of producing new stems, leaves, and roots from 

rhizomes (belowground) and stolons (aboveground) every spring. In other words, 

bermudagrass has the ability of creating new clonal plants from its original tillers (Cudley, 

2007).  

Bermudagrass is considered a drought tolerant plant (Christians, et al., 2011, Huang 

et al., 2019, Shi et al., 2012,) which has potential to produce dry forage yields as high as 

19.8 Mg ha-1 yr-1 (Osborne et al., 1999). It also has a satisfactory grazing tolerance due to 

its
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high proportion of rhizomes and stolons (Christians, et al., 2011, Collins, et al., 2017). 

Bermudagrass cultivars developed for forage production are classified as either grazing or 

hay types (Silva, et al., 2015). Grazing types are short plants with steady growth through 

the season, which produces a dense sod. On the other hand, hay types are taller plants with 

fast growth, consequently producing a lesser dense sod. Moreover, hay types have greater 

yield potential. However, they mature faster, which decreases forage quality earlier in the 

season than grazing types (Stone et al., 2012).  

Its deep-rooted system (up to 0.9 m) is another bermudagrass trait which allows the 

plant to retain color, density and resistance to drought periods (Christians et al., 2011). 

However, drought resistance varies among cultivars (Christians et al., 2011). The grazing 

types tend to have lower water requirements and be more drought resistant than most hay 

types, which tend to thin during extended drought periods (Christians et al., 2011). In 

addition, bermudagrass is highly responsive to rainfall, where a minimum of 700 mm 

yearly precipitation followed with proper fertilization is considered appropriate to 

maximize forage production (Christians et al., 2011). 

Dormancy is a physiological stage where bermudagrass growth ceases temporarily 

due to frost and sustained soil temperatures below 10 °C (Christians et al., 2011) and 

growth ceases when temperature is lower than 0 °C (Mirabile et al., 2016). During 

dormancy, bermudagrass loses its chlorophyll content, and carbohydrates are translocated 

to underground reserve organs, i.e., rhizomes and roots (Christians et al., 2011). 

Bermudagrass breaks dormancy during mid to late spring when soil temperature persists 

for several days above 10 °C (Duble, 2001).  
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Bermudagrass is physiologically active when air temperature is above 4 °C; 

optimum growth is achieved when temperatures are within 27 and 35 °C. At temperatures 

higher than 35 °C, plant growth is detrimentally affected due to low photosynthesis, and 

high respiration rates (Beard, 1973, Munshaw et al., 2006, Unruh et al., 1996). 

 Bermudagrass, like most tropical grasses, is a C4 plant, flowering is photoperiod 

dependent. A study conducted by Keeley and Thullen (1989) in Kern county, California, 

reported that bermudagrass planted from March to May flowered 10 to 15 weeks after 

planting; June through September planted bermudagrass flowered within 4 to 8 weeks 

after; and August planted while flowered within 4 to 5 weeks after. Bermudagrass 

emergence (green up for established fields) will affect flowering, since the longer the plant 

takes to flower, the higher the amount of seeds produced (Keeley and Thullen, 1989).  

Bermudagrass types 

 The essential traits for selecting an appropriate bermudagrass cultivar to a specific 

location are winter hardiness, site-specific adaptations (e.g.: disease, low pH resistance), 

growth morphology (grazing vs. haying types), and yield potential (Dexter, 1956; Patton 

et al., 2008). The winter hardiness, which is the first concerning trait, is the capacity of 

plants to survive under freezing conditions (Abreu and Rocateli, 2019; Patton et al., 2008). 

Moreover, winter-hardy cultivars are less affected by stress in the fall and break dormancy 

in better growing condition than cold-sensitive cultivars. (Munshaw et al., 2006).  

 The majority of bermudagrass cultivars are adapted to slightly acidic soils - 5.0 to 

5.5 (Collins et al., 2017), sandy soils, and moderate to heavy grazing pressure (Hill, et al., 

2001). Hybrid bermudagrass, which is the offspring of two different cultivars (Fehr, 1991), 

are more popular for hay production since they present higher quality, response to N 



 

4 
 

fertilization, yield potential, and faster field curing than non-hybrid bermudagrass (Hansen, 

2000, Collins et al., 2017). However, their clonal sprigs do not produce viable seeds and 

must be vegetatively planted (Fehr, 1991). ‘Goodwell’ and ‘Greenfield’ hybrids are some 

of the commercial bermudagrass cultivars available for the state of Oklahoma (Abreu and 

Rocateli, 2019). ‘Goodwell’ is the most recently released dual purpose (hay and grazing) 

hybrid type. ‘Goodwell’ is a hybrid with larger stems and wider leaves among grazing 

types and presents a denser sod than usual hay cultivars (Redfearn et al., 2005). 

‘Greenfield’ is a steady yielding grazing type that establishes easily and performs well on 

poor soils (Abreu and Rocateli, 2005).  

 Bermudagrass management changes according to its use (hay or grazing). For hay 

meadows, the first harvest must be completed when forage height reaches 35 to 40 cm in 

most hybrids, which takes around 4 weeks of vegetative growth. Four-week cut intervals 

are recommended to maintain high forage nutritive value, digestibility, and crude protein 

(CP); leading to an increase in hay yield and quality (Newman et al., 2014). For grazing 

pastures, appropriate N fertilization is recommended after each grazing in order to 

stimulate forage regrowth with high nutritive value, leading to an increase in animal 

performance (Newman, 2014). In grazing rotational system, during bermudagrass peak 

growth rate, haying is recommended to remove and store forage surplus. This operation 

will not only avoid losses in forage quality (maturity), but also allow the use of the excess 

during periods of forage shortage (Newman, 2014).  

Bermudagrass fertilization 

 For successful bermudagrass establishment, soil must have a minimum pH of 5.0, 

and P (Phosphorus) and K (Potassium) must be applied according to soil test 
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recommendations. Slaton et al. (2008) found that P levels in soil tend to reduce after two 

years of forage production on bermudagrass fields without P fertilization. A long-term 

experiment demonstrated that applications of 58 kg P ha-1 and 235 kg K ha-1 are 

recommended to maintain minimum levels for proper bermudagrass growth (Guretzky et 

al., 2010). Research by Silveira et al. (2017) observed that warm-season grasses responded 

positively to P and K fertilization. Several authors (Yarborough et al., 2017; Silveira et al., 

2017) found that K fertilization is crucial for bermudagrass production and persistence, 

especially under continuous aboveground removal. However, high costs of these fertilizers 

limits the extent of their use (Silveira et al., 2017).  

 Different Nitrogen fertilization levels have been extensively evaluated for 

bermudagrass production systems (Osbourne et al., 1999). Several authors reported 

positive bermudagrass forage yield responses to N fertilization. Nitrogen is a dynamic 

nutrient in the soil that can be easily lost to the atmosphere or leached to deeper soil layers. 

Therefore its application frequency and time is different from other nutrients such as P and 

K (Nevens and Rehuel, 2003, Power, 1980). Nitrogen might be applied when plants are 

physiologically active since the nutrient can be easily lost by different biochemical 

processes including volatilization, denitrification, leaching, and immobilization (Campbell 

et al., 1986, Nevens and Rehuel, 2003). Additionally, N can be taken up by undesired 

plants, increasing weed invasion early in the season (Christians et al., 2011, Green and 

Martin 1998, Collins, et al., 2017). During establishment, 33 to 56 kg N ha-1 is 

recommended when stolons reach 7.5 to 15 cm, then a topdress application of 56 kg N ha-

1 is recommended thirty days later (Jennings and Boyd, 2013, and Redfearn 1995).  
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 A one-year experiment evaluated common bermudagrass yield under cumulative 

applications of four N rates (0, 56, 112 and 168 kg ha-1) applied through the season 

(Coblentz et al., 2004). The results found linear increases on total dry matter (DM) content 

of 5.2, 7.0, 7.8, 9.2 kg ha-1 at Stephens site, and 11, 12.4, 13.8 and 14.2 kg ha-1 at Latta site 

for the respective N rates. The same study evaluated the influence of the four different N 

rates on bermudagrass P uptake and found linear increases of 20.9, 27.4, 26.9 and 27.9 kg 

P ha-1 at Stephens and 41.8, 47.3, 48.7 and 50 kg P ha-1 at Latta sites for N rates of 0, 56, 

112, and 168 kg ha-1, respectively. Both Stephens and Latta sites were located close to 

Lincoln, AR. Alderman et al. (2011) reported yields of 3.9, 8.5, 9.6 and 10.5 kg ha-1 when 

fertilizing N on bermudagrass ‘Tifton 85’ at rates of 0, 45, 90, and 135 kg N ha-1 yr−1 in 

Gainesville, FL, respectively. In addition, the authors concluded that N fertilization had an 

impact only on aboveground production such as leaves and stems. No greater production 

of belowground structures such as rhizomes and roots were found.  

 Another research study developed in Ardmore, OK by Guretzky et al. (2010) 

evaluated the effects of N fertilizer and yield stability at rates of 0, 112, 224, 336, and 448 

kg ha−1 from 2002 to 2007 on ‘Midland’ bermudagrass. Average DM yields across all years 

were reported as 10.6, 11.5, 9.5, 10.1 and 10.4 Mg ha-1 from the lowest to the highest 

evaluated N rates. According to the authors, the plots fertilized with 112 kg ha-1 had the 

highest yield stability throughout the years, with the greatest yield mean across the years 

presenting the lowest standard error (SE = 0.04). The linear regression of treatment means 

were not significant (p >0.10) indicating that forage yields did not increase or decrease 

with different fertilizer rates. However, rates of 224 and 336 kg ha-1 indicated high yields 

when growing conditions were favorable such as higher rainfall events. Thus, under 
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unfavorable weather conditions, N rates of 112 kg ha-1 might be more cost efficient than 

higher rates due to extensive losses to the atmosphere, leaching, or volatilization. 

 Osborne et al. (1999) evaluated the effects of 0, 112, 672 and 1,344 kg N ha-1 yr-1 

and 0, 224, 448, 672 and 1,344 kg N ha-1 yr-1 of urea fertilizer during early-spring and late-

summer, respectively, on ‘Midland’ bermudagrass plots in Burneyville, OK and Ardmore, 

OK. The early-spring applications in Burneyville denoted DM yields of 10.9, 12.1, 14.9 

and 14.4 Mg ha-1 in 1994 and 5.8, 7.3, 10.5 and 10.6 Mg ha-1 in the 1995 year for the 

respective N rates. The late-summer application denoted DM yields of 6.3, 9.2, 10.7, 11.6 

and 13.2 Mg ha-1 during 1994 and 4.9, 6.6, 5.0, 7 and 7.7 Mg ha-1 during the 1996 year. In 

Ardmore, the early-spring applications denoted DM yields of 4.6, 8.9, 17.8 and 17.2 Mg 

ha-1 in 1994 and DM yields of 3.4, 4.6, 8.2 and 8.3 Mg ha-1 in 1995. The late-summer 

applications denoted DM yields of 4.7, 7.9, 8.7, 9.2 and 12.4 Mg ha-1 in 1994; 4.7, 6.8, 9.8, 

10.4 and 11.5 Mg ha-1 in 1995; and 1, 3.1, 4.3, 6.1 and 6.9 Mg ha-1 in 1996. Based on the 

authors’ findings, it was concluded that, under conditions of high rainfall, N fertilizer 

should be applied in early-spring. For the late-summer applications, urea should be avoided 

due to increased NH3 volatilization losses.  

   Differences in bermudagrass forage yield at similar N rates were found in different 

locations throughout the southern U.S (Coblentz et al., 2004; Guretzky et al., 2010). Initial 

soil fertility and seasonal precipitation were the main factors leading to forage yield 

variations within similar N rates applied. The variable N responses from previous research 

may be justified due to N fertilization being highly dependent on weather conditions 

(especially rainfall). Overall, an optimum N fertilization and efficiency depends on 
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environmental factors, economic constraints, soil conditions, and producer goals 

(Franzluebbers et al., 2004, Silveira et al., 2007). 

Beef and livestock enterprise in Oklahoma 

Beef cattle production plays an important role in the Oklahoma agricultural 

enterprise (Rogers et al., 2012). Total Oklahoma pastureland area, including introduced 

and native pastures for cattle production accounted for 56.6% of the total state agricultural 

land (NASS, 2012). In 2018, agricultural land devoted to cattle production in Oklahoma 

sustained a cattle inventory, i.e.; all cattle including calves, heifers, steers, and bulls raised 

on pastures and feedlots, of 5.10 million head, making Oklahoma the 5th biggest cattle 

producer of the United States with to a total income of $5.61 billion (NASS, 2018). 

Livestock sales (including poultry, swine, hogs, sheep, dairy, horses and other animal 

products) represented 74% of all the agricultural products sold in Oklahoma, while only 

the cattle industry signified 47.73% of the total agricultural income in 2012 for the state 

(NASS, 2012).  

Bermudagrass use in livestock 

 In the Southern Great Plains, including the state of Oklahoma, most of the cattle 

are raised on introduced warm-season grasses such as bermudagrass [Cynodon dactylon 

(L.) Pers.] during late spring and summer; and forage-grain wheat (Triticum aestivum L.) 

through the winter and early spring (Peel 2003, Rao et al., 2002). Bermudagrass is a major 

forage used on cattle operations in the USA, mainly cow-calf types, which is a consequence 

of its high forage yield potential on different soil types, resistance to drought and the its 

resilience to pests (Redfearn et al., 2005). Bermudagrass genotypes have been widely used 
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for either hay or grazing production systems in the southern USA (Silva, et al., 2015). 

Bermudagrass can be used during the spring-summer or early fall season, as it can be 

stockpiled for late-fall and winter grazing (Lalman et al., 2017). Bermudagrass provides 

fair to satisfactory pasture and hay if well managed since quality is dependent on maturity 

and soil fertility (USDA-NRCS, 2000). A fair and satisfactory quality hay must have 

around 55% Total Digestible Nutrients (TDN) and ≥9% of CP to meet most cattle 

categories nutrient requirements (Hall, et al., 2005). Research of Kloppenburg et al. (1995), 

which evaluated the chemical composition of ‘Hardie’ bermudagrass from May 30 to 

October 3 under an irrigation system and application of 306 kg ha-1 N in 3 split applications, 

found CP and TDN levels of 17 and 78%, respectively, which met most cattle categories 

requirements according to Hall et al. (2005). Research conducted by Lalman et al. (2017), 

where fall fertilized bermudagrass was evaluated to measure nutritive value and cattle 

allocation, it was concluded that CP content of the bermudagrass harvested in November 

was able to meet the demand for gestating cows (13.1 and 15.2% CP for the years of 1997-

98 and 1998-99, respectively). On the other hand, a stockpiled bermudagrass forage 

evaluated from September to December in a 3-year experiment had from 9 to 13.6% CP 

(Lalman et al., 2017).  

 Research of Utley et al. (1974) compared yearling steer performance following one 

forage bahiagrass (Paspalum notatum) ‘Pensacola’, and two cultivars of bermudagrass, 

‘Coastal’ and ‘Coastcross’, and found animal gains of 249, 372 and 527 kg ha-1 yr-1, 

respectively. These findings showed bermudagrass animal gain superiority over 

bahiagrass. A grazing trial with the bermudagrass cultivars ‘Callie’, ‘Coastal’, ‘Brazos’, 

and experimental hybrids ‘S-54’ and ‘S-16’, evaluated weight gains on Santa Gertrudis 
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(Bos taurus) steers in a 151 day period, and found gains of 881, 686, 673, 655 and 613 kg 

ha-1 for ‘Callie’, ‘Brazos’, ‘S-16’, ‘Coastal’, and ‘S-54’, respectively (Bransby, et al., 

1988). Work of Pedreira et al. (2016) evaluated yearling beef cattle performance on ‘Tifton 

85’ and ‘Florakirk’ bermudagrass during a 3 year stocking period. The authors reported 

gains of 638 and 358 kg ha−1, respectively, which demonstrated a better potential for 

grazing of ‘Tifton 85’. 

 A grazing and supplement trial with early weaned calves were evaluated on ‘Tifton 

85’ bermudagrass and live weight gains of 700, 1,080, 1,450 and 1,550 kg ha-1 following 

0, 10, 15, and 20 g kg−1 BW (body weight) concentrate supplement were found, 

respectively (Vendramini et al., 2007). A grazing trial with heifers on ‘Jiggs’ bermudagrass 

found gains of 692, 975, and 1.064 kg ha−1 (P <0.01), in 3, 7.5 and 12 animal units ha−1 

(AU = 450 kg live weight), all receiving 10 g kg−1 Live weight (LW) of concentrate (Aguiar 

et al., 2014). Furthermore, it was found that ‘Jiggs’ bermudagrass cannot be grazed under 

17 cm stubble height to maintain good stand during the growing season (Aguiar et al., 

2014). A grazing trial with yearling steers on ‘Coastal’, ‘Tifton 78’, and ‘Tifton 85’ found 

an Average Daily Gain (ADG) of 0.65, 0.74, and 0.72 kg BW, respectively (Hill et al., 

2001). Another grazing trial with Angus (Bos Taurus) steers on ‘Coastal’ and ‘Tifton 44’ 

bermudagrass under three different nitrogen rates: 101, 202, and 303 kg N ha–1, found ADG 

of 0.53, 0.55, and 0.63 kg BW and 0.60, 0.64 and 0.65 kg BW, for ‘Coastal’ and for ‘Tifton 

44’, respectively, as N rates increased (Burns et al., 2009). 

The bermudagrass cultivars mentioned above have shown to be an appropriate feedstock 

for grazing different cattle categories (Bransby et al., 1988, Burns et al., 2009, Hill et al., 
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2001, Pedreira et al., 2016). In addition, cattle performance was improved when 

concentrate supplementation was present (Aguiar, et al., 2014, Vendramini et al., 2007). 

Rotational vs continuous grazing 

 Bermudagrass, similar to other forages can be managed for cattle on either 

continuous, rotational, and, strip grazing. However, a conclusion for which is the best 

system is yet ambiguous. According to Heady (1961), continuous stocking includes 

yearlong and a whole season grazing on the same area, or as long as the weather permits. 

On rotational grazing, the animals graze on different paddocks, allowing the vegetation to 

rest (Heady, 1961).  

 A comparison between continuous, strip and rotational grazing found no significant 

difference of ADG at equal grazing pressures for steers grazing ‘Coastal’ bermudagrass in 

a 3-year experiment (Hart et al., 1976). No significant difference of ADG was observed 

after a two-year study among cattle on strip grazing and continuous management, although 

higher ADG was found on rotational grazing (Volesky et al., 1994). After evaluating milk 

yield on rotational vs. continuous grazing systems in a perennial ryegrass (Lolium perenne) 

pasture, no significant difference was found between managements and the hypothesis that 

rotational grazing increases milk yield per cow could not be supported (Pulido and Leaver, 

2003). In a research study conducted by Heitschmidt et al. (1987), no significance for 

growth dynamics was found on grasses from rotational and continuous grazing systems. 

However, higher CP was found on rotational systems due to the amount of senesced forage 

on the continuous system. In work of Hart et al. (1989), weight gain of calves, cows, and 

heifers did not differ significantly when comparing rotational and continuous grazing 

systems. The same work observed an increase of 60% of forage utilization for areas 
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surrounded by water sources and a decrease of 30% for areas greater than 4 km from water 

sources. In another study, the performance of steers was evaluated in a mixed pasture of 

bromegrass (Bromus madritensis), alfalfa (Medicago sativa), and red fescue (Festuca 

rubra) on rotational and continuous regimes, and found ADGs of 218 vs. 119 kg ha-1, 

respectively, (Walton et al., 1981). Work of Conway (1963) found significantly higher 

gains on rotational grazing on high stocking rates compared to continuous grazing. Work 

of Matthews et al. (1994), evaluated three grazing methods, including rotational with short 

grazing periods, rotational with long grazing periods, and continuous for two years in 

‘Callie’ bermudagrass on Holstein heifers (Bos taurus) and found no significant difference 

was found among the treatment means. However, ‘Callie’ bermudagrass outcompeted by 

‘Common’ bermudagrass and Bahiagrass (invasive species) on the continuous stocking 

system, which may have decreased cattle performance over time (Mathews et al., 1994).  

 Several research studies comparing both rotational and continuous grazing systems 

have found divergent conclusions on which system is best (Conway, 1963; Hart et al., 

1976; Hart et al., 1989; Heitschmidt et al., 1987; Pulido and Leaver, 2003; Volesky et al., 

1994; Walton et al., 1981). Nonetheless, some research shows no statistical differences on 

animal gains between continuous and rotational grazing systems (Hart et al., 1976, Heady 

1961, Pulido and Leaver, 2003, Volesky et al., 1994). However, rotational grazing can be 

more advantageous when intensive grazing around water surroundings could lead to 

overgrazing. In addition, continuous grazing system increases selectivity for specific plants 

and grazing pressure close to cattle feeders, and consequently increases prevalence of 

invasive species. Conversely, rotational systems force animals to graze the paddock 

uniformly (Hart et al., 1989, Heady, 1961, Mathews et al., 1994, Walton et al., 1981), 
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allowing the entire paddock to regrow evenly. However, costs associated with rotational 

stocking is higher due to the need for more fencing, water sources, and feeders (Heady, 

1961).  

Control of weeds in bermudagrass 

 Weeds can be a problem as they compete with target plants for nutrients, sunlight 

and water, and result decreased forage yields. Methods of weed control in pasture include 

mechanical, biological, chemical, cultural (prescribed fire, fertility, cultivar selection etc.) 

are available. 

 The mostly used techniques to suppress weeds are mechanical and chemical 

methods (Smith, 2017). Mechanical methods aim to remove the entire plant or part of the 

plant from the vegetation, through the use of mowing or cultivation (Smith, 2017). The 

chemical method consists of the application of herbicides, mainly by liquid spraying, or 

pellets broadcasting (Smith, 2017). Biological weed control is another available option that 

has been used for several years (McFadyen, 1998). However, compared to other methods, 

biological control usually takes longer to establish, and become effective; furthermore, its 

management is work intensive. Biological control consists of the use of natural predators 

to cause stress and injury to target weeds (Smith, 2017). Livestock can even be used as 

biological weed control. Addition of different species of animals in a pasture, such as goats 

and sheep, or by increasing cattle stocking rates can result in weed control (Popay and 

Field, 1996).  Insects (e.g., weevils), mites, and pathogens are other options for weed 

biocontrol (McFadyen, 1998). However, in case of success, efficacy may not last for long 

(Smith, 2017). In addition, one of the major challenges reported by biological control users 

is potential damage to non-targeted plants (McFadyen, 1998).  
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Soil fertilization also is considered as a weed control method (Green and Martin, 

1998). Bermudagrass is highly responsive to N fertilization (Christians, et al., 2011), as 

previously mentioned, thus enhancing soil fertility consequently decreases weed 

population as bermudagrass competes with undesired species. Work of Eytcheson (2011) 

in Oklahoma evaluated different N rates and herbicide treatments, and found that the 

addition of N fertilizer increased bermudagrass yield and consequently increased field 

sandbur (Cenchrus echinatus) control. In Oklahoma, common difficult-to-control weeds in 

bermudagrass pastures include field sandbur, western ragweed, (Ambrosia psilostachya) 

(New, 1997; WSSA, 2004), large crabgrass, (Digitaria sanguinalis) (Kering et al., 2012), 

johnsongrass (Sorghum halepense) (Mack, 1991), pigweeds (Amaranthus spp.) (Bond et 

al. 2006), and horseweed (Conyza canadensis) (Heap, 2018).  

There are several herbicides, preemergence and post emergence, available for 

controlling the weeds mentioned above. In the case of the crabgrass, field work of Butler 

et al. (2006) used different herbicides and different timings on newly established ‘Coastal’ 

bermudagrass to evaluate their effects on large crabgrass and bermudagrass injury. The 

same authors applied 0.26 kg a.e. (acid equivalent) ha-1 of glyphosate 14 days after planting 

(DAP) on newly established ‘Coastal’ bermudagrass, and found injury rates of about 8% 

and 86 to 90% control of crabgrass. Field work of Walker et al. (1998), observed the control 

of sandbur and crabgrass following applications of diuron as PRE and POST on two 

bermudagrass. The PRE application of diuron resulted in an increase of 38% and 62% of 

herbage mass on the bermudagrass + crabgrass plots and the bermudagrass + sandbur, 

respectively. In this same experiment, there were no effective results for POST applications 

of diuron. A study by Matocha et al. (2010) tested a mix of nicosulfuron + metsulfuron 
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applied when field sandbur was 2.5 to 7.5 cm tall and another application at 7.5 to 10 cm 

tall to evaluate control of the sandbur on bermudagrass fields. Control of 90% of field 

sandbur in ‘Tifton 85’ and ‘Jiggs’ bermudagrass pastures was observed at 30 and 90 days 

after treatment (DAT). The same study also found that ‘Tifton 85’ had a higher tolerance 

to the herbicide than ‘Jiggs’ as the injury ranged from 0 to 15% and 7 to 22%, respectively. 

Work of Grichar et al. (2008) evaluated the combination of 2,4-D plus imazapic at 

rates of 40 kg a.e. ha-1 + 70 g a.i. ha-1, 70 kg a.e. ha-1 + 140 g a.i. ha-1, 110 kg a.e. ha-1 + 210 

g a.i. ha-1, 140 kg a.e. ha-1 + 280 g a.i. ha-1, 200 kg a.e. ha-1 + 350 g a.i. ha-1, 240 kg a.e. ha-

1 + 420 g a.i. ha-1, respectively, to control field sandbur and johnsongrass on ‘Coastal’ and 

‘Tifton 85’ bermudagrass fields. More than 80% of field sandbur was controlled at all rates 

and more than 96% of control was observed when imazapic rates were over 70 g a.i. ha-1. 

Johnsongrass was controlled more than 80% with imazapic plus 2,4-D at 110 g a.i. ha-1 + 

210 g a.e. ha-1 or higher. In addition, the yield reduction of both varieties was observed 

when compared to the nontreated control. On the other hand, ‘Tifton 85’ was severely 

affected by the herbicides at all rates on the first harvest. For the second harvest, yield was 

reduced by 49% at rates of 200 kg a.e. ha-1 + 350 g a.i. ha-1 or greater in comparison to the 

control. At the third harvest, no difference was observed. Overall, ‘Tifton 85’ can be less 

tolerant to the following combination of herbicides than ‘Coastal’ bermudagrass and rates 

of 110 kg a.e. ha-1 + 210 g a.i. ha-1 imazapic plus 2,4-D, respectively, showed 98 and 82% 

of control on sandbur and johnsongrass, respectively; with ≤51% injury on the selected 

bermudagrasses. Sellers and Ferrell (2012) imply that, under established bermudagrass, 

rates of 0.07 to 0.11 kg a.e. ha-1 of metsulfuron + nicosulfuron can provide effective control 

against seedlings of crabgrass, sandbur, and established johnsongrass.  
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 Research of Funderburg et al. (2014) evaluated the control of western ragweed in 

heavily infested bermudagrass plots in Ardmore, OK. POST applications of 2,4-D plus 

aminopyralid at rates of 0.457 + 0.057 kg a.e.-1 controlled 100% of ragweed when applied 

in April and May. Preemergence applications with aminopyralid at rates of 0.133 kg a.e. 

ha-1 controlled 95% of ragweed plants when applied in February and March. Thus, PRE 

and POST applications were effective controlling western ragweed in bermudagrass 

pasture. In addition, the PRE application could be more beneficial if the bermudagrass was 

dormant at the time of application, and the application cost was lower due to a single 

chemical application. Another study of Matocha et al. (2013) evaluated western ragweed 

control and injury of ‘Tifton 85’ bermudagrass under applications of picloram plus 

diflufenzopyr, triclopyr plus diflufenzopyr, dicamba plus diflufenzopyr and picloram, 

triclopyr and diflufenzopyr alone at different rates. The most successful rates were 

picloram at 0.28 and 0.56 kg a.e ha-1 with or without diflufenzopyr, which resulted in 95% 

control of ragweed at 94 days after treatment (DAT) in 2003; and picloram alone at 0.56 

kg a.e ha-1 or picloram plus diflufenzopyr at 0.28 and 0.112 kg a.e.-1 with control rates of 

96 and 97%, respectively, at 95 DAT in 2004. ‘Tifton 85’ bermudagrass had a growth 

reduction of 17.5% and 23.8% under applications of picloram at rates of 0.28 and 0.56 kg 

a.e. ha-1; and a growth reduction of 57.5% and 66.3% for the combination of picloram plus 

diflufenzopyr at rates of 0.28 + 0.0112 and 0.56 + 0.112 kg a.e. ha-1, respectively. Thus, it 

was concluded that picloram alone could have similar ragweed control to picloram plus 

diflufenzopyr, however, with lower bermudagrass injury. 

 Field work of Kruger et al. (2010) noted successful controlled ≥90% of a glyphosate 

resistant horseweed population under applications of dicamba and 2,4-D at rates of 280 g 
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a.e. ha-1 applied at 0-7, 7-15, 15-30, and >30 cm height. In addition, no differences in 

horseweed height or dry weight were observed between any of the herbicide treatments 

applied. However, Kruger et al. (2010) recommends that horseweed should be controlled 

at a maximum of 30 cm height since latter herbicide application decreases control 

effectiveness. A study by Wiese et al. (1995) found ≥95% control of horseweed under 

applications of 2,4-D at 560 g a.e. ha-1, dicamba at 280 g a.e. ha-1, atrazine + 2,4-D at 3,360 

+ 1,120 g a.e. ha-1, chlorsulfuron at 13 g a.e. ha-1, metsulfuron at 5 g a.e. ha-1, metsulfuron 

+ 2,4-D at 5 + 560 g a.e. ha-1, trialsulfuron at 13 g a.e. ha-1, and thifensulfuron at 13 g a.e. 

ha-1. In addition, weed species such as pigweed can be controlled with metsulfuron + 

aminopyralid at rates of 0.14 to 0.23 kg a.e. ha-1 with a non-ionic surfactant at 0.17 to 0.35 

ml L ha-1 (Sellers and Ferrell, 2012).  

 The herbicides presented above have effective weed control on bermudagrass 

pastures. Overall, it is important to maintain consistent weed control throughout the 

seasons. Moreover, the manipulation of chemicals, crop rotation and use of cover crops are 

important agronomic practices (Abouziena and Haggag, 2016) able to diminish the 

propagation of resistant weed biotypes and some weed control. A useful tool that can be 

used on bermudagrass weed control, is the application of herbicides during dormant season, 

which can avoid weed infestations during the spring (White, 1994). Another important 

factor for maintaining weeds controlled in a pasture, is to start clean during establishment, 

which consists of removing all the weeds from a field prior to planting (Abouziena and 

Haggag, 2016).       

 

 



 

18 
 

CHAPTER II 
 
 

ASSESSING GLYPHOSATE INJURY AND FORAGE BERMUDAGRASS 
REGROWTH USING CANOPEO 

 
 
 

INTRODUCTION 
 
 

Bermudagrass [Cynodon dactylon (L.) Pers.] is the most common introduced 

summer forage in the U.S. Southern Great Plains (SGP), which is primarily used as beef 

and dairy cattle feedstock (Christians et al., 2011; Collins et al., 2017; Hill et al., 2001). 

Bermudagrass breaks dormancy and starts green-up during mid-spring when soil 

temperature persists for several days above 10°C. Plants then achieve maximum growth 

during mid-summer at air temperatures within 27 and 35°C and stay physiologically active 

until mid-fall as long as air temperature is above 4°C (Christians, et al., 2011; Duble, 2001; 

Beard, 1973, Munshaw, et al., 2006, Unruh, et al., 1996). The mid-spring bermudagrass 

green-up combined with its initial submaximal growth until mid-summer allows weeds to 

grow with minor suppression. These weeds are usually undesirable in pastures because 

they are unpalatable, sometimes toxic to animals, and decrease overall forage yield and/or 

quality. Furthermore, some of those plants are other grasses, such as Italian ryegrass 

(Lolium multiflorum Lam.), crabgrass (Digitaria spp.], johnsongrass [Sorghum halapense 

(L.) Pers.], and sandbur (Cenchrus spp.), which are not easily controlled in bermudagrass 

with selective herbicides. Consequently, the control of undesirable grasses relies on the use
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of non-selective herbicides, such as glyphosate, which injures bermudagrass. To avoid 

injury, glyphosate applications on bermudagrass pastures are highly recommended during 

dormancy to control winter weeds, whereas its application after green-up is cautioned and 

vaguely described on product labels.  

However, previous research indicated that physiologically active bermudagrass is 

tolerant to glyphosate at certain rates and application frequencies. Johnson (1988) reported 

that established common-type (cv. ‘Ormond’) and hybrid bermudagrass (cv. ‘Tifway’, 

‘Tifgreen’, and ‘Tifdwar’) were not successfully terminated with two glyphosate 

applications, spaced 30 days apart, at rates of 2.2, 3.3, and 4.5 kg a.i. ha-1 in Griffin, GA. 

Single applications were only tested at 4.5 kg a.i. ha-1 because lower rates could not 

effectively injure bermudagrass with single applications. Thus, the highest visual injury 

achieved by single and double glyphosate applications were 38 and 70%, respectively, 

when following a rate of 4.5 kg a.i. ha-1 rate. Other authors stated that genetic variations 

among bermudagrass cultivars might play a role in injury responses to glyphosate. Bryson 

and Wills (1985) reported different glyphosate injury responses among 16 bermudagrass 

biotypes. In general, the differences among biotypes were greater with the lower 

glyphosate rates (≤1.12 kg a.i. ha-1). For instance, significant variations in visual injury (38 

– 87%) among biotypes were observed at 1.12 kg a.i. ha-1 rate.  In another study, a 

glyphosate application at a rate of 1.10 kg a.i. ha-1 effectively terminated recently sprigged 

hybrid bermudagrass (cv. ‘Tifton-10’, ‘TifSport’, and ‘TifEagle’). However, common 

bermudagrass (cultivar unknown) had its diameter size reduced by 52% and survived 

following a 1.10 kg a.i. ha-1 glyphosate application (Webster et al., 2003). Furthermore, 
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Webster et al. (2004) reported that hybrid bermudagrass tended to be easily injured by 

glyphosate compared to common bermudagrass after testing 12 bermudagrass cultivars.  

Previous research indicated that undesirable plants can be effectively controlled by 

glyphosate without substantial bermudagrass injury after green-up. Control of 99% of 

johnsongrass was reported following glyphosate applications of 0.92 kg a.i. ha-1 (Brown et 

al., 1987). At those rates, based on previous discussion, bermudagrass could be minimally 

injured and able to recover quickly. Crabgrass and broadleaf signalgrass (Urochloa 

platyphylla Munroe ex C. Wright) were controlled 76 and 91%, respectively, and hybrid 

bermudagrass (cv. ‘Tifton 85’) was injured 9% when a glyphosate rate of 0.28 kg a.i. ha-1 

was applied (Butler et al., 2006). The authors also reported that bermudagrass 

establishment was improved after weeds were controlled. The cited studies indicated that 

glyphosate application on bermudagrass pastures after green-up might be a viable 

management option for controlling undesirable plants; however, glyphosate injury 

magnitude may vary among bermudagrass forage varieties. The cultivars ‘Greenfield’ and 

‘Goodwell’ are commonly used in the SGP, and no information on their tolerance to 

glyphosate is available. 

Furthermore, the previously cited studies assessing bermudagrass injury to 

glyphosate used a visual rating system. This commonly used method entails a scale of 0 to 

100 where 0 = no visual injury compared to the nontreated control and 100 = complete kill. 

This method relies on the observer’s judgement and is a subjective, qualitative 

measurement (Johnson, 1975). Although the visual rating system has been accepted as a 

standard method, visual estimations have been criticized for their subjective nature and the 

need of properly trained observers (Leinauer et al., 2014; Richardson et al., 2001). 



 

21 
 

Furthermore, visual rating protocols and standards may vary among researchers; 

consequently, the lack of normalization of this method makes data comparison among 

different studies nearly impossible (Krans and Morris, 2007). 

 Affordable digital cameras and mobile devices have popularized the use of digital 

images. Moreover, interactive, simple, and accurate tools capable of quantifying fractional 

green canopy cover (FGCC), such as the app Canopeo (http://www.canopeoapp.com), are 

available to the public at no cost. Fractional green canopy cover is a non-destructive 

measurement that estimates canopy cover development. Its use has extended to forest land 

cover, green and senescing fraction of soybean canopy [Glycine max (L.) Merr.], percent 

land cover in turf, and weed growth rates after tillage, etc. (Karcher and Richardson, 2005, 

Korhonen et al., 2006, Purcell, 2000; Rasmussen et al., 2010; and Richardson et al., 2001). 

In practice, herbicide injury evaluation partly consists of monitoring green canopy cover 

discoloration. Therefore, Canopeo might be a useful standardized and quantifiable tool for 

this task. Thus, the objectives of this study were to (1) contrast the RGCC quantitative 

method against the commonly adopted visual rating system, while (2) evaluating the 

tolerance of ‘Greenfield’ and ‘Goodwell’ forage bermudagrass cultivars to different 

glyphosate rates.  

MATERIALS AND METHODS 

Experimental Conditions 

 A greenhouse study was conducted at the Controlled Environmental Research Lab 

(CERL), Oklahoma State University, Stillwater, OK (36.12 °N, 97.06 °W). During the fall 

of 2017, bermudagrass cv. ‘Greenfield’ and ‘Goodwell’ were sprigged into co-extruded 
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polypropylene pots (0.15 m tall, 0.17 m diameter), which were filled with appropriate 

potting mix, fertilized, watered daily, and clipped monthly until a 100% sod cover was 

present in every pot. During the experiment, the applied photoperiod was extended to 14 

hours using supplemental lighting provided by a combination of metal halide and high-

pressure sodium lamps. Temperature maintained inside of the greenhouse was controlled 

by a wall-mounted evaporative cooling pad system (Acme’s Koll-Cel, USGR, Houston, 

TX), and monitored by a data logger (TP425, The Dickson Company, Addison, IL). The 

average day and night temperatures observed during the experiment period were 29.0±7.8 

and 21.3±5.1°C, respectively. 

Glyphosate Treatments and Experimental Design 

In the early spring of 2018, the following five rates of glyphosate (Roundup 

PowerMAX, Monsanto, St. Louis, MO) plus a nontreated control were applied to 

bermudagrass pots three weeks after clipping (2.5 cm stubble height) using a spray 

chamber: 0.4,  0.5, 1.1,  1.5, and 3.1 kg a.i. (active ingredient) ha-1 (Generation III Research 

Sprayer, DeVries Mfg., Hollandale, MN). The sprayer chamber was equipped with an 

80001 EVS nozzle calibrated to deliver 140 L ha-1 in order to achieve appropriate spray 

coverage. Five pots of each cultivar were sprayed at once for each glyphosate rate, and two 

runs were conducted for a total of 10 pots per rate per cultivar. Four hours after glyphosate 

application, once leaves were dry, pots were returned to the CERL, where moisture was 

monitored daily, and pots were watered as needed.  

The experimental design was a factorial arranged in a completely randomized 

design where the two forage bermudagrass cultivars ‘Greenfield’ and ‘Goodwell’ were 
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assigned as the main plots, while the five glyphosate application rates plus the nontreated 

control were assigned as the subplots.  

Estimating Relative Green Canopy Cover with Canopeo 

 The Canopeo app (Oklahoma State University, Stillwater, OK) is an ACT image 

analysis software based on the red-green-blue (RGB) color system. Using this system, all 

pixels of a digital image are analyzed and classified according to the ratios of red/green, 

blue/green, and excess green index resulting in a binary black and white image. Pixels 

classified as white are predominantly in the green band (~500 – 750 nm) which correspond 

to green canopy; and pixels classified as black correspond to non-green canopy. Then, 

FGCC is calculated based on the white/black pixel ratio ranging from 0 (no green canopy) 

to 1 (100% green canopy) (Patrignani and Ochsner, 2015). 

 Each bermudagrass pot was placed at the center of a white square panel (0.5 m x 

0.5 m), and pictures were taken at a 1.5-m height parallel to the ground using a 12-

megapixel camera (iPhone 7, Apple Inc., Cupertineto, CA). Then, pictures’ excess borders 

were precisely cropped at the edges of the white panel to a standardized size of 1000 x 

1000 pixels using Adobe Photoshop CC 2018 (Adobe Inc., San Jose, CA). These image 

treatments standardized the relative plant size in all pictures making possible FGCC 

comparisons among different images of the same pot at different time periods. Then, FGCC 

for each individual picture was calculated using the Canopeo Matlab app.  

Finally, relative green canopy cover (RGCC) was calculated using Eq. [1]: 

�
FCC 𝑛𝑛

FCC 0
 � x 100 =  %RC C𝑛𝑛            [1] 
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where: FGCC0 = FGCC at day zero (initial conditions), FGCCn= FGCC at a given day n, 

and %RGCCn is the percentage of green cover at day n relative to its initial FGCC at day 

zero. The RGCCn values <100% reflect reduction in green canopy area; while values 

>100% reflect increase in green canopy area cover relative to day zero.  

Data Collection 

Based on the methodology described above, pictures of each bermudagrass pot was 

taken on the same day but prior to glyphosate application (0 DAG), then pictures were 

taken at 8, 16, and 24a DAG. Following pictures taken 24a DAG, aboveground 

bermudagrass biomass was clipped at a stubble height <2 cm using electronic shears (18V 

LXT® Grass Shear, Makita® U.S.A Inc., La Miranda, CA), and a second round of pictures 

were taken after removal on the same day (24b DAG). Finally, pictures were also taken on 

37 and 56 DAG.   

Relative green canopy cover was calculated for each pot for all days evaluated 

based on calculated FGCC using the Canopeo software. For a given bermudagrass pot, 

FGCC0 was calculated using the picture taken at 0 DAG, and the FGCCn was calculated 

using the picture taken on that specific n day (n =0, 8, 16, 24a, 24b, 37, and 56 DAG). The 

RGCC values calculated for days prior to clipping (8, 16, and 24a DAG) reflects the 

glyphosate injury to the bermudagrass canopy. This is based on the assumption that canopy 

discoloration (i.e., deviation from green color band, ~500 – 750 nm) was caused by 

glyphosate application. In this case, the lower the RGCC, the higher the glyphosate injury. 

However, the RGCC values calculated after clipping (2b, 37 and 56 DAG) reflect the 

percentage of canopy cover regrowth relative to coverage at 0 DAG. In this case, the higher 

the RGCC, the higher the bermudagrass recovery after glyphosate application. 
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A visual injury rating for each bermudagrass pot was performed simultaneously 

with pictures at 8, 16, and 24a DAG. Rates were based on a scale of 0 to 100, where 0 = 

no herbicide injury, and 100 = complete plant death or necrosis. Then, the visual green 

canopy rating (VGCC) was calculated by subtracting visual injury ratings from 100.  

Finally, all pots were re-clipped at a stubble height <2 cm in the last sampling day 

(56 DAG) after taking pictures. The collected aboveground dry biomass regrowth (ADMR) 

in each pot was dried in a forced-air oven maintained at 55°C to a constant weight.  Data 

were used to determine final forage dry matter production (g m-2) regrown from 24b to 56 

DAG.  

Experimental Design and Statistical Analysis 

 The RMSD method was used to compare the RGCC method against the standard 

VGCC method based on measurements recorded at 0, 8, 16, 24a DAG. The RMSD was 

estimated using Eq. [2]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
           [2] 

where: n was the number of observations, Pi was the calculated RGCC value for the ith 

measurement, and Oi was the observed (visually rated) value for the ith measurement. 

The statistical analysis for evaluating the effect of the glyphosate treatment on 

‘Greenfield’ and ‘Goodwell’ cultivars was conducted using the Statistical Analysis System 

(SAS V9.4; SAS Institute, Cary, NC). The RGCC dataset for 0, 8, 16, 24a, 24b, 37, and 56 

DAG was subjected to repeated measurement by ANOVA using PROC GLM at α = 0.05 

(Littell et al., 1996). Finally, the ADMR dataset collected on 56 DAG was also analyzed 
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by ANOVA using PROC GLM; however, treatment means were separated by the 

LSMEANS procedure when protected by F-tests significant at α = 0.05. 

RESULTS AND DISCUSSION 

Visual Rating vs. Relative Green Canopy Cover 

Across all rates and DAGs, the agreement between VGCC and RGCC was higher 

between Goodwell than Greenfield cultivar values. The RMSD values were 28.70% for 

Goodwell, and 40.78% for Greenfield. Moreover, the latter the green canopy estimation, 

the lower the agreement between methods. For cultivar Goodwell, the RMSD values were 

27.73%, 29.96%, and 33.40% for 8, 16, and 24 DAG, respectively. The same trend was 

found for the Greenfield cultivar, where the RMSD values were 31.95%, 40.32%, and 

49.37% for 8, 16, and 24a DAG, respectively (Fig. 1A – F).  

The low agreement between VGCC and RGCC relies on how the methods estimate 

glyphosate injury in bermudagrass. Figure 2 illustrates both methods. Glyphosate acts in 

plants by altering different physiologic processes, such as photosynthesis, chlorophyll 

biosynthesis, photochemical reactions, plant mineral nutrition, etc., leading to gradual 

wilting and yellowing (chlorosis), which advances to necrosis (Fernandez and Bayer, 1976; 

Gomez et al., 2014; Mahakhode and Somkuwar, 2015). These color variations (green – 

brown) fall into the hue range from 5G to 5YR in the Munsell color system; where 

yellowing is classified as the intermediate hues 10 GY and 5 GY (Malacara, 2011). Greater 

difficulty in visually assessing yellowish canopies resulted in inaccurate VGCC 

estimations in latter periods, i.e., at 16 and 24a DAG, when chlorosis was more accentuated 

(Abreu, unpublished data, 2018). This issue was also mentioned by Webster et al. (2000) 

when studying human color hue identification among 51 individuals. The authors argued 
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that ambient lighting can drastically affect an individual’s color hue rating; and that human 

color rating is subjective due to different proportions of eye cone receptors among 

individuals. Conversely, Canopeo eliminates subjectiveness associated with visual ratings, 

because it estimates canopy green cover based on the RGB system where pixels 

predominantly in the green band (~500 – 750 nm) are classified as green canopy (Patrignani 

and Ochsner, 2015). Thus, the RGCC seems to be a more precise and reliable method to 

estimate the effects of discoloration caused by glyphosate in plant canopies. Therefore, the 

rest of this manuscript will focus on RGCC and not discuss VGCC.  

Glyphosate Effect on Bermudagrass Canopy 

 Greenfield had lower RGCC values (higher glyphosate injury) than Goodwell at 8 

to 24a DAG; however, RGCC differences were significant at 16 and 24a DAG, only (Table 

1). Glyphosate rate was significant at all evaluation periods. Overall, the higher the 

glyphosate rate, the lower the RGCC. Furthermore, the interaction of cultivar × rate was 

not significant at any period. Thus, the effect of glyphosate rate over time was analyzed 

separately by cultivar.  

At 8 DAG, no Goodwell RGCC differences were observed among the control 

(91%) and plants sprayed with glyphosate at 0.4 (72.0%) and 0.5 (73.1%) kg a.i. ha-1 (Fig. 

3A). Relative green canopy cover for Goodwell following the 1.1 kg a.i. ha-1 rate was 57.7% 

and was lower than the control, but not different from RGCC values for Goodwell 

following 0.4 and 0.5 kg a.i. ha-1 rates. Moreover, Goodwell following the two highest rates 

(1.5 and 3.1 kg a.i. ha-1) had lower RGCC values than all other treatments. Goodwell RGCC 

values for 1.5 and 3.1 kg a.i. ha-1 rates were 13.4% and 6.2%, respectively; and they were 

not different from each other. A similar RGCC trend was observed for Greenfield at 8 
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DAG. The nontreated control had a RGCC value of 90.9%, while Greenfield following 

rates of 0.4 and 0.5 kg a.i. ha-1 had similar values of 83.1 and 71.8%, respectively (Fig. 3B). 

The RGCC for Greenfield following the 1.1 kg a.i. ha-1 rate was 49.6% and was lower than 

values for the nontreated control and 0.4 kg a.i. ha-1 glyphosate rate; and not different from 

either 0.5 or 1.5 kg a.i. ha-1 rates. The highest applied rate (3.1 kg a.i. ha-1) had a RGCC of 

21.7% which was similar to the RGCC value following the 1.5 kg a.i. ha-1 rate, but lower 

than values for the nontreated control and those following rates of 0.4, 0.5, and 1.1 kg a.i. 

kg ha-1. 

For both Greenfield and Goodwell cultivars, a slight RGCC decrease was observed 

for the control at 16 DAG. After five weeks of unsuppressed growth, nontreated controls 

produced large amounts of stems and leaves which demanded more water and other 

nutrients than pot-confined roots could supply resulting in the observed RGCC reduction 

of ~9%.  At 16 DAG, Goodwell RGCC following glyphosate rates of 0.4, 0.5, and 1.1 kg 

a.i. ha-1 were similar (~27%) and higher than RGCC values for 1.5 and 3.1 kg a.i. ha-1 rates. 

Goodwell plants following glyphosate rates of 1.5 and 3.1 kg a.i. ha-1 had aboveground 

biomass (i.e., leaves and stems) that was completely necrotic (RGCC ~ 0%). Although 

substantial glyphosate injury was reported for Goodwell, glyphosate injury for Greenfield 

was even more severe at 16 DAG. No RGCC differences were found among all glyphosate 

rates when applied to Greenfield; and they were substantially lower than the control. 

Greenfield RGCC values were ~10% for 0.4, 0.5, and 1.1 kg a.i. ha-1 and ~0% for 1.5 and 

3.1 kg a.i. ha-1 rates.  

 Relative green canopy cover at 24a DAG slightly increased or were similar to the 

values at 16 DAG for all glyphosate rates applied to both Greenfield and Goodwell. 
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Therefore, RGCC results at 24a DAG were similar to 16 DAG.  These findings also suggest 

that peak glyphosate injury to Greenfield and Goodwell bermudagrass aboveground 

biomass takes no more than 16 d after application when ambient conditions such as light, 

temperature, soil water, and nutrient conditions are not limiting. 

According to Webster et al. (2003), common and hybrid bermudagrass types 

showed final green canopy ranging from 0 to 13% (i.e., 87 to 100% visual injury) when 

glyphosate was applied 1.10 kg a.i. ha-1. These findings are similar to the Goodwell and 

Greenfield RGCC findings at tested rates ≥1.5 kg a.i. ha-1 at 16 DAG.  Conversely, RGCC 

after glyphosate applications of 1.12 kg a.i. ha-1 varied from 13 to 62% (i.e., 38 to 87% 

visual injury) among sixteen bermudagrass biotypes (Bryson and Wills, 1985). These 

contrasting findings indicate that glyphosate injury in bermudagrass likely is cultivar-

dependent.   

Moreover, our findings agreed with Bryson and Wills (1985) who documented that 

differences among biotypes were greater following lower glyphosate rates (1.12 – 2.24 kg 

a.i. ha-1). Relative green canopy cover differences between Goodwell and Greenfield were 

more evident at tested rates ≤ 1.1 kg a.i. ha-1 (Fig. 3A and 3B). Goodwell cultivar is a high 

yielding hybrid bermudagrass released in 2007 for haying and grazing purposes, presenting 

a predominant upright growth, which results in a tall and sparse sod. On the other hand, 

Greenfield cultivar is a low and steady yielding hybrid released in 1954 for grazing 

purposes, presenting a predominant horizontal growth with short plants and thick sod 

(Abreu and Rocateli, 2019). Greenfield canopy architecture could have facilitated 

increased glyphosate contact/absorption, and its relatively low biomass production may 

have allowed increased glyphosate injury (less tissue to translocate and desiccate). On the 



 

30 
 

other hand, because glyphosate is a herbicide that moves in both the phloem and xylem, 

contact is typically not a limiting factor when considering performance. Another factor 

likely contributing to the differences in tolerance between the two hybrids is genetics (Price 

et al., 1983; Paris et al. 2008). 

Glyphosate Effect on Bermudagrass Regrowth 

Goodwell had higher RGCC at canopy regrowth than Greenfield at 37 and 56 DAG 

(Table 2). The effect of glyphosate rate was significant at both regrowth periods. Overall, 

the higher the glyphosate rate, the lower the RGCC. Moreover, the cultivar x rate 

interaction was significant at 37 DAG, in spite of the fact that Goodwell’s RGCC values 

were always higher than Greenfield for all tested rates. Consequently, the interaction effect 

at 37 DAG was ignored because it did not influence the cultivar effect. Thus, glyphosate 

rates over time were analyzed separately by cultivar.  

At 37 DAG, no canopy regrowth differences were observed for Goodwell when 

comparing the control, 0.4, 0.5, and 1.1 kg a.i. ha-1 glyphosate rates, and their RGCC values 

ranged from 35.2 to 44.6% (Fig. 4A). At the glyphosate rate of 1.5 kg a.i. ha-1, canopy 

regrowth was intermediate (RGCC = 22.8%). Precisely, canopy regrowth following the 

rate of 1.5 kg a.i. ha-1 was lower than previous cited rates, and higher than regrowth 

following 3.1 kg a.i. ha-1 (RGCC = 4.9%). Overall, Goodwell increased its RGCC to ~21% 

across all glyphosate rates from 37 to 56 DAG. Final RGCC values for Goodwell and plants 

following applications of 0.4, 0.5, 1.1, and 1.5 kg a.i. ha-1 at 56 DAG were similar and 

ranged from 67.8 to 55.7%. Goodwell following the rate of 1.5 kg a.i. ha-1 had a final 

RGCC of 42.7%, which was lower than nontreated control and following rates of 0.4 and 
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0.5 kg a.i. ha-1, but similar to Goodwell following the 1.1 kg a.i. ha -1 rate. Moreover, the 

rate of 3.1 kg a.i. ha-1 had the lowest final canopy regrowth (RGCC = 23.5%). 

Greenfield canopy regrowth was lower than Goodwell, especially at higher 

glyphosate rates. At 32 DAG, Greenfield canopy regrowth for the control and plants 

following rates of 0.4 and 0.5 kg a.i. ha-1 did not differ, with RGCC values ranging from 

26.6 to 40.2% (Fig. 4B). Furthermore, the rates of 1.1, 1.5, and 3.1 kg a.i. ha-1 resulted in 

lower canopy regrowth, ranging from 0.1 to 10.3%. At 56 DAG, no differences in final 

canopy regrowth were found among the nontreated control and Greenfield following rates 

of 0.4, 0.5, and 1.1 kg a.i. ha-1 at 56 DAG, and their final RGCC values ranged from 53.6 

to 41.5%. Greenfield following the rate of 1.5 kg a.i. ha-1 had a final RGCC of 21.4 %, 

which was lower than nontreated control, 0.4, 0.5, and 1.1 kg a.i. ha-1 rates. Following the 

rate of 3.1 kg a.i. ha-1, Greenfield had the lowest final canopy regrowth (RGCC = 5.8%). 

Destructive samples showed similar canopy regrowth findings. Goodwell with 

205.4 g m-2 produced 20.2% more ADMR than Greenfield (163.9 g m-2) across all 

glyphosate rates at 56 DAG (P < 0.01). Similar results were reported from a multi-site-year 

bermudagrass cultivar performance trial in Oklahoma, where Goodwell produced 15 to 

25% more dry biomass than Greenfield (Rocateli et. al, 2019). Aboveground dry matter 

regrowth differences (p = 0.03) were also found among glyphosate treatments. These 

destructive canopy samples showed a similar trend to the RGCC for the same sampling 

period (56 DAG): the higher the glyphosate rate, the lower the canopy regrowth. Thus, the 

ADMR cultivar x rate interaction effect was not significant (P = 0.16); and data were 

analyzed separately by cultivar (Fig. 5A – B). 
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 Goodwell’s ADMR following the 3.1 kg a.i. ha-1 rate (87.8 g m-2) was lower than 

the control and all other rates (Fig. 5A); and the control (242.8 g m-2) and rates ≤1.5 kg a.i. 

ha-1 did not differ. This observation concurred with previous RGCC findings for all 

glyphosate rates, except 1.5 kg a.i. ha-1 rate. Relative green canopy cover values for the 1.5 

kg a.i. ha-1 rate indicated lower canopy regrowth than rates ≤1.1 kg a.i. ha-1. These different 

results between ADMR and RGCC measurements were explained by visual observations. 

Goodwell bermudagrass following the glyphosate rate of 1.5 kg a.i. ha-1 had detrimental 

effects on canopy regrowth, such as substantial amounts of chlorotic leaves (Abreu, 

unpublished data, 2018). These chlorotic leaves (not green) were accounted as canopy 

regrowth in the ADMR, but not accounted by the RGCC method. Therefore, the RGCC 

method underestimated Goodwell canopy cover regrowth following the 1.5 kg a.i. ha-1 

glyphosate rate. 

As opposed to that found with Goodwell, a slight amount of chlorotic leaves was 

present in Greenfield canopy regrowth for all evaluated glyphosate rates; therefore, 

chlorotic leaves were not a confounding variable. However, different findings between 

ADMR and RGCC were found for Greenfield. At a glyphosate rate of 1.1 kg a.i. ha-1 (149.2 

g m-2), Greenfield had lower ADMR than the control (271.3 g m-2) and plants following 

the 0.4 kg a.i. ha-1 rate (248.0 g m-2); however, values were not different from the 0.5 (214.4 

g m-2) and 1.5 kg a.i. ha-1 rates (94.8 g m-2). Finally, the rate of 3.1 kg a.i. ha-1 (5.8 g m-2) 

had the lowest ADMR value. Although ADMR values indicated that glyphosate 

detrimental effects started at 1.1 kg a.i. ha-1, the RGCC values indicated that canopy 

regrowth started to significantly decrease at the 1.5 kg a.i. ha-1 rate. This discrepancy 

between ADMR and RGCC values was explained by considerable plant stunting, i.e.: 
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reduction in plant height, following the rate of 1.1 kg a.i. ha-1 (Abreu, unpublished data, 

2018). The plant stunting which substantly decreased ADMR was not detected by the 

RGCC method. 

CONCLUSION 

The proposed RGCC method was demonstrated to be more precise and less 

subjective to estimate plant injury and regrowth after herbicide application than the visual 

rating method. Color identification by human eye is subjective. Variation among 

individuals vision characteristics, such as proportion of eye cone receptors, makes data 

normalization impossible from different evaluators; even a single evaluator might have its 

color rating affected by different ambient lighting. Conversely, the proposed RGCC 

method is standardized to quantify green canopy at its specific wavelength band rather than 

relying on variations of the human eye. Thus, the greatest benefit that the adoption of the 

RGCC method would result in is the development of a standardized method to quantify 

plant discoloration among scientists. This standardized method would allow the collection 

of normalized data across different studies, making possible their comparison. One 

limitation to this method is that it only quantifies discoloration. For injury caused by 

glyphosate, this system works well, but for other herbicide sites of action, it could be 

limiting as other symptoms (stunting, epinasty, strapping, cupping, callusing, etc.) could 

be observed. Because of a potential limitation of the Canopeo app to not record other 

symptoms, it was assumed that Canopeo data could be assessed with plant height 

measurements and subjective visual estimates for better accuracy of herbicide injury 

observations.  
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In this study, thanks to its high precision, the RGCC method detected injury and 

regrowth responses between Goodwell and Greenfield bermudagrass cultivars following 

the application of various glyphosate rates. Maximum glyphosate injury, regardless of rate, 

was observed at no more than 16 DAG for both cultivars. However, Goodwell was more 

tolerant than Greenfield to glyphosate at rates ≤ 1.1 kg a.i. ha-1; although both cultivars 

were severely injured at rates ≥1.5 kg a.i. ha-1. After 56 DAG, both cultivars exhibited 

canopy regrowth at all tested rates. Detrimental effects to the canopy regrowth of 

Greenfield started at 1.1 kg a.i. ha-1 while regrowth was severely suppressed (RGCC = 

5.8%) at 3.1 kg ha-1. Conversely, Goodwell detrimental effects were only noticeable at the 

1.5 kg ha-1 rate while regrowth suppression at 3.1 kg ha-1 was less severe (RGCC = 23.5%).  

Further efforts must be made to evaluate the impact of glyphosate use in non-

dormant bermudagrass, including different bermudagrass types. In the future, glyphosate 

recommendations for in-season bermudagrass management might address a cultivar-

specific recommendation or might be fragmented into categories, e.g., grazing and hay 

types. This approach would provide improved weed management to bermudagrass based 

pastures.



 

35 
 

REFERENCES 

Abouziena, H.F. and W.M. Haggag. 2016. Weed control in clean agriculture: a review1. 

Planta daninha. 34:377-392. doi.org/10.1590/S0100-83582016340200019 

Abreu, L.F., and A.C. Rocateli. Selecting an appropriate bermudagrass variety for pastures. 

Oklahoma Cooperative Extension, Oklahoma State University. Available at: 

http://dasnr22.dasnr.okstate.edu/docushare/dsweb/Get/Document-11354/PSS-

2600web.pdf (accessed 16 Oct. 2019) 

Abreu, L.F., and A.C. Rocateli. Selecting an Appropriate Bermudagrass Variety for 

Pastures. Oklahoma Cooperative Extension, Oklahoma State University. Available 

at: http://dasnr22.dasnr.okstate.edu/docushare/dsweb/Get/Document-11354/PSS-

2600web.pdf (accessed 16 Oct. 2019) 

Aguiar, A. D., J.M.B. Vendramini, J.D. Arthington, L.E. Sollenberger, J.M.D. Sanchez, 

W.L. da Silva, A.L.S. Valente, and P. Salvo. 2014. Stocking Rate Effects on ‘Jiggs’ 

Bermudagrass Pastures Grazed by Heifers Receiving Supplementation. Crop Sci. 

54:2872-2879. doi:10.2135/cropsci2014.02.0135 

Alderman, P.D., K.J. Boote, and L.E. Sollenberger. 2011. Regrowth Dynamics of ‘Tifton 

85’ Bermudagrass as Affected by Nitrogen Fertilization. Crop Sci. 51:1716-1726. 

doi:10.2135/cropsci2010.09.0515



 

36 
 

Ball, D., C. Hoveland and G. Lacefield. 2007. Southern forages, modern concept for forage 

crop management. International Plant Nutrition Institute; 5th edition. Norcross, 

Georgia, USA. 

Ball, D.M., M. Collins, G. Lacefield, N. Martin, D. Mertens, K. Olson, D. Putnam, D. 

Undersander, M. Wolf. 2001. Understanding forage quality. American Farm 

Bureau Federation, Park Ridge, IL. 

Beard, J. 1973. Turfgrass: science and culture. Prentice-Hall, Englewood Cliffs, NJ, USA. 

Beard, J. 1973. Turfgrass: science and culture. Prentice-Hall: Englewood Cliffs, New 

Jersey, USA. 

Bond, J.A., L.R. Oliver, and D.O. Stephenson. 2006. Response of Palmer amaranth 

(Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed 

technol. 20:885-892. doi.org/10.1614/WT-05-189.1 

Bransby, D.I., B.E. Conrad, H.M. Dicks and J.W. Drane. 1988. Justification for Grazing 

Intensity Experiments: Analysing and Interpreting Grazing Data. J. Range Manage. 

41: 274-279. doi:10.2307/3899377. 

Brown, S., J.M. Chandler, and D.C. Bridges. 1987. Bermudagrass (Cynodon dactylon) and 

Johnsongrass (Sorghum halepense) ecotype response to herbicides. Weed Technol. 

1:221-225. doi:10.1017/S0890037X00029572 



 

37 
 

Bryson, C., and G. Wills. 1985. Susceptibility of bermudagrass (Cynodon dactylon) 

biotypes to several herbicides. Weed Sci. 33:848-852. 

doi:10.1017/S004317450008348X 

Burns, J. C., M.G. Wagger, and D.S. Fisher. 2009. Animal and Pasture Productivity of 

‘Coastal’ and ‘Tifton 44’ Bermudagrass at Three Nitrogen Rates and Associated 

Soil Nitrogen Status. Agron. J. 101:32-40. doi:10.2134/agronj2008.0006x 

Butler, T.J., J.P. Muir and J.T. Ducar. 2006. Response of Coastal bermudagrass (Cynodon 

dactylon) to various herbicides and weed control during establishment. Weed 

technol. doi.org/10.1614/WT-05-173.1P 

Butler, T.J., J.P. Muir, and J.T. Ducar. 2006. Weed control and response to herbicides 

during Tifton 85 bermudagrass establishment from rhizomes. Agron. J. 98:788-

794. doi:10.2134/agronj2005.0282 

Campbell, C., A.J. Leyshon, R.P. Zentner and H. Ukrainetz. 1986. Time of application and 

source of nitrogen fertilizer on yield, quality, nitrogen recovery, and net returns for 

dryland forage grasses. Can. J. Plant Sci. doi.org/10.4141/cjps86-114. 

Christians, N.E., A.J. Patton, and Q.D. Law. 2011. Fundamentals of turfgrass management. 

Fourth Edition. John Wiley and Sons. New York, New York, USA.   

Christians, N.E., A.J. Patton, and Q.D. Law. 2011. Fundamentals of turfgrass management. 

Fourth Edition. John Wiley and Sons. New York, New York, USA.   



 

38 
 

Coblentz, W.K., J.E. Turner, D.A. Scarbrough, J.B. Humphry, K.P. Coffrey PAS., M.B. 

Daniels, J.L. Gunsaulis, K.A. Teague, J.D. Speight and P.A. Moore JR. 2004. 

Effects of Nitrogen Fertilization on Phosphorus Uptake in Bermudagrass Forage 

Grown on High Soil-Test Phosphorus Sites. Prof. Anim. Sci. 7446(15)31289-4. 

doi.org/10.15232/S1080- 

Collins, M., C.J. Nelson, R.F. Barnes., and K.J. Moore. 2017. Forages, Volume 1: An 

introduction to grassland agriculture (Vol. 1). Wiley-Blackwell; 7 edition. 

Collins, M., C.J. Nelson, R.F. Barnes., and K.J. Moore. 2017. Forages, Volume 1: An 

Introduction to Grassland Agriculture (Vol. 1). Wiley-Blackwell; 7 edition. 

Conway, A. 1963. Effect of grazing management on beef production: II. Comparison of 

three stocking rates under two systems of grazing. Irish J. Agr. Res. 2:243-258. 

(accessed 23 Oct. 19). Available at: http://www.jstor.org/stable/25555308 

Corriher, V.A. and L.A. Redmon. 2011. Bermudagrass varieties, hybrids and blends for 

Texas. Technical Rep. E-320. Available at 

http://publications.tamu.edu/FORAGE/PUB_forage_Bermudagrass Varieties.pdf 

(accessed 24 Oct. 2019). 

Cudley, D.W., Elmore, C.L., and C.E. Bell. 2007. Bermudagrass: Integrated Pest 

Management for Home Gardeners and Landscape Professionals. Univ. Calif. Ag. 

Nat. Res. Pub, 7453. 



 

39 
 

Dexter, S. 1956. The Evaluation of Crop Plants for Winter Hardiness.  Adv. Agron. 

doi.org/10.1016/S0065-2113(08)60690-2 

Ditsch, D.C., S.R. Smith, and G.D. Lacefield. 2011. Bermudagrass: A Summer Forage in 

Kentucky. AGR-48. University of Kentucky College of Agriculture, Lexington, 

KY, USA. Available at http://www.ca.uky.edu/agc/pubs/agr/agr48/agr48.pdf 

(accessed 24 Oct. 2019). 

Duble, R.L. 2001. Turfgrasses: Their Management and Use in the Southern Zone. Second 

Edition. Texas A&M University Press. College Station, TX, USA. 

Eytcheson, A.N. 2011. Field Sandbur (Cenchrus spinifex) Control and Bermudagrass 

(Cynodon dactylon) Response to Herbicide and Nitrogen Fertilizer Treatments 

(Doctoral Dissertation, Oklahoma State University). Available at 

https://shareok.org/handle/11244/9323 (accessed 24 Oct. 2019). 

Fehr, W., 1991. Principles of cultivar development: theory and technique. Macmillian 

Publishing Company. Stuttgart, Germany. 

Fernandez, C., and D. Bayer. 1977. Penetration, translocation, and toxicity of glyphosate 

in bermudagrass (Cynodon dactylon). Weed Sci. 25:396-400. 

doi.org/10.1017/S0043174500033737 

 



 

40 
 

Franzluebbers, A.J., S.R. Wilkinson, and J.A. Stuedemann. 2004. Bermudagrass 

management in the Southern Piedmont USA: X. Coastal productivity and 

persistence in response to fertilization and defoliation regimes. Agron. J. 96:1400–

1411. doi:10.2134/agronj2004.1400 

Funderburg, E.R., J.M., Locke and J.T., Biermacher. 2014. Evaluation of aminopyralid 

applied PRE to control western ragweed (Ambrosia psilostachya) in Oklahoma 

pastureland. Weed technol. 28:395-400. doi.org/10.1614/WT-D-13-00171.1 

Gomes, M.P., E. Smedbol, A. Chalifour, L. Hénault-Ethier, M. Labrecque, L. Lepage, M. 

Lucotte and P. Juneau. 2014. Alteration of plant physiology by glyphosate and its 

by-product aminomethylphosphonic acid: An overview. J. Exp. Bot. 65:4691-

4703. doi.org/10.1093/jxb/eru269 

Green, J. and J. Martin. 1998. Weed Management in Grass Pastures, Hayfields, and 

Fencerows. AGR-172. Cooperative Extension Service. University of Kentucky. 

College of Agriculture. Available at: 

http://courses.missouristate.edu/WestonWalker/AGA375_Forages/Forage%20Mg

mt/References/1Guides/3Renovate/Weed/UKAGR172WeedMgmtGrassPasturesH

ayfieldsFencerows.pdf (accessed 24 Oct. 2019). 

Grichar, W.J., P.A. Baumann, T.A. Baughman and J.D. Nerada. 2008. Weed Control and 

Bermudagrass Tolerance to Imazapic plus 2, 4-D. Weed Technol. 97-100. 

doi.org/10.1614/WT-07-097.1. 



 

41 
 

Guretzky, J., M. Kering, J. Mosali, E. Funderburg and J. Biermacher. 2010. Fertilizer Rate 

Effects on Forage Yield Stability and Nutrient Uptake of Midland Bermudagrass. 

J. Plant Nutr. 33: 1819-1834. doi:10.1080/01904167.2010.503831. 

Hall, J.B., W.W. Seay and S.M. Baker. 2005. Nutrition and Feeding of the Cow-Calf Herd: 

Production Cycle Nutrition and Nutrient Requirements of Cows, Pregnant Heifers 

and Bulls. Virginia Cooperative Extension. Publication 400-012. Available at 

https://www.pubs.ext.vt.edu/400/400-012/400-012.html (accessed 24 Oct. 2019). 

Hansen, T., R.L. Kallenbach, R. Mammen, R. Crawford, M. Massie, and G.J. Bishop-

Hurley. 2000. Bermudagrass. MU Extension, University of Missouri-Columbia. 

Available at: 

http://courses.missouristate.edu/WestonWalker/AGA375_Forages/Forage%20Mg

mt/References/2Forages/2WarmGrass/1Bermuda/MUG4620Bermudagrass.pdf 

(accessed 24 Oct. 2019). 

Hart, R.H., M.J. Samuel, J. Waggoner and M. Smith. 1989. Comparisons of grazing 

systems in Wyoming. J. Soil Water Conserv. 44: 344-347. ISSN: 1941-3300 

Hart, R.H., W.H. Marchant, J.L. Butler, R.E. Hellwig, W.C. McCormick, B.L. Southwell, 

and G.W. Burton. 1976. Steer Gains under Six Systems of Coastal Bermudagrass 

Utilization. J. Range Manage. 29: 372-375. doi:10.2307/3897142. 



 

42 
 

Heady, H.F. 1961. Continuous vs. Specialized Grazing Systems: A Review and 

Application to the California Annual Type. J. Range Manage. 14: 182-193. 

doi.org/10.2307/3895147 

Heap I (2018) International Survey of Herbicide Resistant Weeds. 

http://www.weedscience.org/Summary/Species.aspx. (accessed 5 Nov. 2019). 

Heitschmidt, R., S. Dowhower and J. Walker. 1987. Some effects of a rotational grazing 

treatment on quantity and quality of available forage and amount of ground litter. 

J. Range Manage. 318-321. doi:10.2307/3898728 

Hill, G., R. Gates and J. West. 2001. Advances in bermudagrass research involving new 

cultivars for beef and dairy production. J. Anim. Sci. 79: E48-E58. 

doi.org/10.2527/jas2001.79E-SupplE48x 

 Hill, G., R.N. Gates and J.W. West. 2001. Advances in bermudagrass research involving 

new cultivars for beef and dairy production. J. Anim. Sci. 79: E48-E58. 

doi.org/10.2527/jas2001.79E-SupplE48x 

Huang, S., S. Jiang, J. Liang, M. Chen, and Y. Shi. 2019. Current knowledge of 

bermudagrass responses to abiotic stresses. Breed. Sci. 69: 215–226. 

doi:10.1270/jsbbs.18164 

J. D. Volesky, F. De Achaval O'Farrell, W.C. Ellis, M.M. Kothmann, F.P. Horn, W.A. 

Phillips, and S.W. Coleman. 1994. A Comparison of Frontal, Continuous, and 

Rotation Grazing Systems. J. Range Manage. 47: 210-214. doi:10.2307/4003018. 



 

43 
 

Jennings, J.A. and J.W. Boyd. 2013. Establishing bermudagrass for forage. Cooperative 

Extension Service, University of Arkansas, U.S. Dept. of Agriculture and County 

Governments Cooperating. Available at 

https://www.uaex.edu/publications/pdf/FSA-19.pdf (accessed 24 Oct. 2019). 

Johnson, B. 1977. Winter Annual Weed Control in Dormant Bermudagrass Turf. Weed 

Sci. 25: 145-150. doi.org/10.1017/S0043174500033142  

Johnson, B. 1988. Glyphosate and Sc-0224 for bermudagrass (Cynodon Spp.) cultivar 

control. Weed Technol. 2:20-23. doi:10.1017/S0890037X00030001 

Johnson, B.J. (1975). Purple nutsedge control by bentazon and perfluidone in turfgrasses. 

Weed Sci. 23:349-353. doi:10.1007/s12230-012-9298-4 

Karcher, D.E., and M.D. Richardson. 2005. Batch analysis of digital images to evaluate 

turfgrass characteristics. Crop Sci. 45:1536–1539. doi:10.2135/cropsci2004.0562 

Keeley, P.E. and R.J. Thullen. 1989. Influence of Planting Date on Growth of 

Bermudagrass (Cynodon dactylon). Weed Sci. 37: 531-537. 

doi.org/10.1017/S0043174500072362 

Kering, M.K., T.J. Butler, J.T. Biermacher, and J.A. Guretzky. 2012. Biomass yield and 

nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenergy 

Res. 5:61-70. doi.org/10.1007/s12155-011-9167-x 



 

44 
 

Kloppenburg, P.B., H.E. Kiesling, R.E. Kirksey and G.B. Donart. 1995. Forage Quality, 

Intake, and Digestibility of Year-Long Pastures for Steers. J. Range Manage. 48: 

542-548. doi:10.2307/4003067. 

Korhonen, L., K.T. Korhonen, M. Rautiainen, and P. Stenberg. 2006. Estimation of forest 

canopy cover: A comparison of field measurement techniques. Silva Fenn. 40:577–

588. doi:10.14214/sf.315 

Krans, J.V., and K. Morris. 2007. Determining a profile of protocols and standards used in 

the visual field assessment of turfgrasses: A survey of national turfgrass evaluation 

program-sponsored university scientists. Appl. Turfgrass Sci. 4.doi:10.1094/ATS-

2007-1130-01-TT 

Kruger, G.R., V.M. Davis, S.C. Weller, and W.G. Johnson. 2010. Control of Horseweed 

(Conyza canadensis) with Growth Regulator Herbicides. Weed Technol. 24:425–

429. doi.org/10.1614/wt-d-10-00022.1  

Lalman, D., B. Woods, K. Barnes, D. Redfearn and C. Coffey. 2017. Managing 

Bermudagrass Pasture to Reduce Winter Hay Feeding in Beef Cattle Operations. 

Oklahoma Cooperative Extension Service Division of Agricultural Sciences and 

Natural Resources Oklahoma State University, Stillwater, OK, USA. Available at 

http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-5674/ANSI-

3035web.pdf (accessed 24 Oct. 2019). 



 

45 
 

Leinauer, B., D.M. VanLeeuwen, M. Serena, M. Schiavon, and E. Sevostianova. 2014. 

Digital image analysis and spectral reflectance to determine turfgrass quality. 

Agron. J. 106:1787-1794. doi:10.2134/agronj14.0088   

Liu, K., L.E. Sollenberger, Y.C. Newman, J.M.B. Vendramini, S.M. Interrante, and R. 

White-Leech. 2011. Grazing Management Effects on Productivity, Nutritive Value, 

and Persistence of ‘Tifton 85’ Bermudagrass. Crop Sci. 51:353-360. 

doi:10.2135/cropsci2010.02.0122 

Mack, R.N., 1991. The commercial seed trade: an early disperser of weeds in the United 

States. Econ. Bot. 45:257-273. doi.org/10.1007/BF02862053 

Mahakhode, R.H and S.R. Somkuwar. 2015. Morphoanatomical and structural alterations 

in Psoralea corylifolia (L.) induced by glyphosate. Int. J. Pharm. Sci. 30:136-140. 

ISSN 0976 – 044X 

Malacara, D. 2011. Color vision and colorimetry: theory and applications. SPIE, 

Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA) 

Mathews, B.W., L.E. Sollenberger and C.R. Staples. 1994. Dairy Heifer and Bermudagrass 

Pasture Responses to Rotational and Continuous Stocking1. J. Dairy Sci. 77: 244-

252. doi.org/10.3168/jds.s0022-0302(94)76947-2 

Matocha, M.A., W.J. Grichar and C. Grymes. 2010. Field sandbur (Cenchrus spinifex) 

control and bermudagrass response to nicosulfuron tank mix combinations. Weed 

Technol. 24: 510-514. doi.org/10.1614/WT-D-10-00032.1 



 

46 
 

Matocha, M.E., P.A. Baumann and M.A. Matocha. 2013. Western Ragweed (Ambrosia 

psilostachya) Control and Bermudagrass Response to Diflufenzopyr Tank-Mix 

Combinations. Weed Technol. 27:757-761. doi.org/10.1614/WT-D-13-00053.1 

McFadyen, R.E.C. 1998. Biological control of weeds. Annu. Rev. Entomol. 43:369-393. 

doi.org/10.1146/annurev.ento.43.1.369 

Mirabile, M., F. Bretzel, M. Gaetani, F. Lulli and M. Volterrani. 2016. Improving aesthetic 

and diversity of bermudagrass lawn in its dormancy period. Urban For. Urban Gree. 

18: 190-197. doi.org/10.1016/j.ufug.2016.06.007 

Munshaw, G., E. Ervin, C. Shang, S. Askew, X. Zhang and R. Lemus. 2006. Influence of 

late-season iron, nitrogen, and seaweed extract on fall color retention and cold 

tolerance of four bermudagrass cultivars. Crop Sci. 46:273-283. 

doi:10.2135/cropsci2005.0078 

Munshaw, G.C., E.H. Ervin, C.Shang, S.D. Askew, X.Zhang, and R.W. Lemus. 2006. 

Influence of Late-Season Iron, Nitrogen, and Seaweed Extract on Fall Color 

Retention and Cold Tolerance of Four Bermudagrass Cultivars. The authors wish 

to acknowledge P.D. Gerard, Dep. of Ag. Info. Sci. and Ed., Mississippi State 

Univ., Mississippi State, MS 39762 for statistical assistance. Crop Sci. 46:273-283. 

doi:10.2135/cropsci2005.0078 

 



 

47 
 

NASS, Census of Agriculture (2012). United States Department of Agriculture National 

Agricultural Statistics Service. (accessed 4 Mar. 2019). Available at: 

https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Count

y_Profiles/Oklahoma/cp99040.pdf 

NASS, Surveys - Cattle Inventory – Measured in dollars (2018), United States Department 

of Agriculture National Agricultural Statistics Service. (accessed 4 Mar. 2019). 

Available online at the following link: 

https://quickstats.nass.usda.gov/results/9341A6F9-9DBE-3EE9-9029-

3FBEB1D828C6  

NASS, Surveys - Cattle Inventory (2018), United States Department of Agriculture 

National Agricultural Statistics Service. (accessed 4 Mar. 2019). Available online 

at the following link: https://quickstats.nass.usda.gov/results/AC3AEF4B-CC3C-

3442-BDA8-288E9331915C 

Nevens, F. and D. Rehuel. 2003. Effects of cutting or grazing grass swards on herbage 

yield, nitrogen uptake and residual soil nitrate at different levels of N fertilization. 

Grass Forage Sci. 58: 431-449. doi.org/10.1111/j.1365-2494.2003.00396.x 

New, M.G. 1997. Survey of Weed Management Practices in Pastures and Rangelands in 

Oklahoma and Selectivity of Various Herbicide Treatments on Cultivars of Forage 

Bermudagrass (Cynodon dactylon). (Master Thesis, Oklahoma State University). 

Available at: https://shareok.org/bitstream/handle/11244/12334/Thesis-1997-

N532s.pdf?sequence=1 (accessed 24 Oct. 2019). 



 

48 
 

Newman, Y.C., J.M.B. Vendramini, and F.A. Johnson. 2014. Bermudagrass production in 

Florida. SS-AGR-60. Univ. Florida Inst. Food Agric. Sci. Gainesville, FL, USA. 

Available at: http://edis.ifas.ufl.edu/pdffiles/AA/AA20000.pdf (accessed 16 Jun. 

2018). 

Noy-Meir, I. 1975. Stability of grazing systems: an application of predator-prey graphs. J. 

Ecol. 459-481. doi.org/10.2307/2258730 

Osborne, S.L., W.R. Raun, G.V. Johnson, J.L. Rogers and W. Altom. 1999. Bermudagrass 

response to high nitrogen rates, source, and season of application. Agron. J. 91: 

438-444. doi:10.2134/agronj1999.00021962009100030013x 

Paris, M., F. Roux, A. Berard, and X. Reboud. 2008. The effects of the genetic background 

on herbicide resistance fitness cost and its associated dominance in Arabidopsis 

thaliana. J. Here. 101:499. doi.org/10.1038/hdy.2008.92 

Patrignani, A., and T.E. Ochsner. 2015. Canopeo: A powerful new tool for measuring 

fractional green canopy cover. Agron. J. 107:2312-2320. 

doi:10.2134/agronj15.0150 

Patton, A.J., Richardson, M.D., Karcher, D.E., Boyd, J.W., Reicher, Z.J., Fry, J.D., 

McElroy, J. S., and Munshaw, G.C.  2008. A Guide to Establishing Seeded 

Bermudagrass in the Transition Zone. doi:10.1094/ATS-2008-0122-01-MD. 



 

49 
 

Pedreira, C.G.S., V.J. Silva, Y.C. Newman and L.E. Sollenberger. 2016. Yearling Cattle 

Performance on Continuously Stocked ‘Tifton 85’ and ‘Florakirk’ Bermudagrass 

Pastures. Crop Sci. 56: 3354-3360. doi:10.2135/cropsci2016.06.0522. 

Peel, D.S. 2003. Beef cattle growing and backgrounding programs. Vet. Clin. N. Am-Food 

A. 19: 365-385. doi.org/10.1016/S0749-0720(03)00032-X 

Popay, I. and R. Field. 1996. Grazing animals as weed control agents. Weed Technol. 10: 

217-231. doi.org/10.1017/S0890037X00045942P 

Power, J.F. 1980. Response of Semiarid Grassland Sites to Nitrogen Fertilization: II. 

Fertilizer Recovery1. Soil Sci. Soc. Am. J. 44:550-555. 

doi:10.2136/sssaj1980.03615995004400030023x 

Price, S.C., J.E. Hill, and R.W. Allard. 1983. Genetic variability for herbicide reaction in 

plant populations. Weed Sci. 31:652-57. doi.org/10.1017/s0043174500083028 

 Pulido, R. and J. Leaver. 2003. Continuous and rotational grazing of dairy cows–the 

interactions of grazing system with level of milk yield, sward height and 

concentrate level. Grass and Forage Sci. 58: 265-275. doi.org/10.1046/j.1365-

2494.2003.00378.x 

 Purcell, L.C. 2000. Soybean canopy coverage and light interception measurements using 

digital imagery. Crop Sci. 40:834–837. doi:10.2135/cropsci2000.403834x 



 

50 
 

Rao, S.C., S.W. Coleman, and H.S. Mayeux. 2002. Forage Production and Nutritive Value 

of Selected Pigeonpea Ecotypes in the Southern Great Plains. Crop Sci. 42:1259-

1263. doi:10.2135/cropsci2002.1259 

Rasmussen, J., H. Mathiasen, and B.M. Bibby. 2010. Timing of post-emergence weed 

harrowing. Weed Res. 50:436–446. doi:10.1111/j.1365-3180.2010.00799.x 

Redfearn, D.D., R.L. Woods, and C.M. Taliaferro. 2005. Choosing, establishing and 

managing bermudagrass varieties in Oklahoma. Division of Agricultural Sciences 

and Natural Resources, Oklahoma State University. Available at 

http://factsheets.okstate.edu/documents/pss-2583-choosing-establishing-and-

managing-bermudagrass-varieties-in-oklahoma/ (accessed 25 Oct. 2019). 

Richardson, M.D., D.E. Karcher, and L.C. Purcell. 2001. Quantifying Turfgrass Cover 

Using Digital Image Analysis. Crop Sci. 41:1884-1888. 

doi:10.2135/cropsci2001.1884 

Rocateli, A.C., L.F. Abreu, K.M. Horn. Oklahoma bermudagrass variety performance 

tests: 2016-2018 forage years.  Oklahoma Cooperative Extension, Oklahoma State 

University. Available at: 

http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-11483/CR-

2604web.pdf (acessed 16 Oct. 2019) 



 

51 
 

Rogers, J.K., F.J. Motal, and J. Mosali. 2012. Yield, yield distribution, and forage quality 

of warm-season perennial grasses grown for pasture or biofuel in the Southern 

Great Plains. ISRN Agronomy. doi:10.5402/2012/607476  

Sellers, B. and J. Ferrell. 2012. Weed Management in Pastures and Rangeland-2011. 

Gainesville (FL): University of Florida IFAS Extension. SS-AGR-08. Available at: 

https://edis.ifas.ufl.edu/pdffiles/WG/WG00600.pdf (accessed 25 Oct. 2019). 

Shi, H., Y. Wang, Z. Cheng, T. Ye, and Z. Chan. 2012. Analysis of Natural Variation in 

Bermudagrass (Cynodon dactylon) Reveals Physiological Responses Underlying 

Drought Tolerance. PLoS ONE 7:12. doi.org/10.1371/journal.pone.0053422 

Silva, V.J., C.G.S. Pedreira, L.E. Sollenberger, M.S.S. Carvalho, F. Tonato and D.C. Basto. 

2015. Seasonal Herbage Accumulation and Nutritive Value of Irrigated ‘Tifton 85’, 

Jiggs, and Vaquero Bermudagrasses in Response to Harvest Frequency. Crop Sci. 

55:2886-2894. doi:10.2135/cropsci2015.04.0225. 

Silveira, M. L., J.M.B. Vendramini, H.M.S. da Silva, B.M.M.N. Borges, V.S. Ribeirinho, 

J.J.J. Lacerda, M.V. Azenha, P.R.A. Viegas, and A.D. Aguiar. 2017. Potassium and 

Phosphorus Fertilization Impacts on Bermudagrass and Limpograss Herbage 

Accumulation, Nutritive Value, and Persistence. Crop Sci. 57:2881-2890. 

doi:10.2135/cropsci2017.03.0147 



 

52 
 

Silveira, M.L., V.A. Haby, and A.T. Leonard. 2007. Response of Coastal Bermudagrass 

Yield and Nutrient Uptake Efficiency to Nitrogen Sources. Agron. J. 99:707-714. 

doi:10.2134/agronj2006.0200 

Slaton, N., R. DeLong, C. Massey, B. Golden and E. Maschmann. 2008. Bermudagrass 

forage response to phosphorus fertilization rate. Wayne E. Sabbe Arkansas Soil 

Fertility Studies: 42-45. Available at: http://arkansas-ag-

news.uark.edu/pdf/569.pdf#page=43 (accessed 25 Oct. 2019). 

Smith, A.E. 2017. Handbook of weed management systems. Routledge. Abingdon, United 

Kingdom.  

Stone, C.K., P.J. Bauer, J. Andrae, W.J. Busscher, J. A. Millen, E. E. Strickland and D. E. 

Evans. 2012. Irrigation and Nitrogen Impact on Bermudagrass Yield Response in 

the Southeastern Coastal Plain. T. Asabe. 55:969. doi.org/10.13031/2013.41528. 

Taliaferro, C.M., and W.L. Richardson. 1980. Registration of Hardie Bermudagrass1 (Reg. 

No. 11). Crop Sci. 20:413-413. 

doi:10.2135/cropsci1980.0011183X002000030039x 

Unruh, J., R. Gaussoin and S. Wiest. 1996. Basal growth temperatures and growth rate 

constants of warm-season turfgrass species. Crop Sci. 36: 997-999. doi: 

10.2135/cropsci1996.0011183X0036000400030x 



 

53 
 

Unruh, J., R. Gaussoin and S. Wiest. 1996. Basal growth temperatures and growth rate 

constants of warm-season turfgrass species. Crop Sci. 36: 997-999. doi: 

10.2135/cropsci1996.0011183X0036000400030x 

USDA-NRCS. 2000. Bermudagrass Cynodon dactylon (L.) Pers. Plant Fact Sheet. USDA 

NRCS Plant Materials Program. Available at: 

https://plants.usda.gov/factsheet/pdf/fs_cyda.pdf (accessed 25 Oct. 2019). 

Utley, P., H.D. Chapman, W. Monson, W. Marchant and W. McCormick. 1974. 

Coastcross-1 bermudagrass, Coastal bermudagrass and Pensacola bahiagrass as 

summer pasture for steers. J. Anim. Sci. 38: 490-495. 

doi.org/10.2527/jas1974.383490x 

Vendramini, J.M.B., L.E. Sollenberger, J.C.B. Dubeux, S.M. Interrante, R.L. Stewart and 

J.D. Arthington. 2007. Concentrate Supplementation Effects on the Performance of 

Early Weaned Calves Grazing Tifton 85 Bermudagrass Florida Agric. Exp. Stn. 

Publication. Agron. J. 99: 399-404. doi:10.2134/agronj2005.0355. 

Walker, R.H., G. Wehtje and J.S. Richburg III. 1998. Interference and control of large 

crabgrass (Digitaria sanguinalis) and southern sandbur (Cenchrus echinatus) in 

forage bermudagrass (Cynodon dactylon). Weed technol. 707-711. 

doi.org/10.1017/s0890037x00044584 

Walton, P.D., R. Martinez and A.W. Bailey. 1981. A Comparison of Continuous and 

Rotational Grazing. J. Range Manage. 34: 19-21. doi:10.2307/3898444. 



 

54 
 

Webster, A.W., E. Miyahara, G. Malkoc, and V.E. Raker. 2000. Variations in normal color 

vision. II. Unique hues. J. Opt. Soc. Am. 17:1545-1555. doi: 

10.1364/JOSAA.17.001545 

Webster, T., C. Bednarz, and W. Hanna. 2003. Sensitivity of triploid hybrid bermudagrass 

cultivars and common bermudagrass to postemergence herbicides. Weed Technol. 

17:509-515. doi:10.1614/WT02-081 

Webster, T.M. 2000. Weed survey—southern states. In Proc. South. Weed Sci. Soc. (Vol. 

53:247-274). 

Webster, T.M. and Coble, H.D. 1997. Changes in the weed species composition of the 

southern United States: 1974 to 1995. Weed Technol. 11:308–317. 

doi:10.1017/S0890037X00043001 

Webster, T.M., W.W. Hanna, and B.G. Mullinix Jr. 2004. Bermudagrass (Cynodon spp) 

dose–response relationships with clethodim, glufosinate and glyphosate. Pest 

Manag. Sci.: formerly Pest. Sci. 60:1237-1244. doi:10.1002/ps.934 

Weed Science Society of America. 2017. WSSA survey ranks The Southern States 10 Most 

Common and Troublesome Weeds in Hay, Pastures, and Rangelands. 

http://www.swss.ws/wp-

content/uploads/docs/Southern%20Weed%20Survey%202004%20Tables%20-

%20Grass%20crops.pdf (accessed 7 Nov. 2019) 



 

55 
 

White, H.E. 1994. Planting and managing Bermudagrass for forage. 

https://vtechworks.lib.vt.edu/bitstream/handle/10919/47736/VCE418_011.pdf?se

quence=1 (accessed 8 Nov. 2019) 

Wiese, A.F., C.D. Salisbury, and B.W. Bean. 1995. Downy Brome (Bromus tectorum), 

Jointed Goatgrass (Aegilops cylindrica) and Horseweed (Conyza canadensis) 

Control in Fallow. Weed Technol. 9:249–254. 

doi.org/10.1017/s0890037x00023290 

Yarborough, J.K., J.M.B. Vendramini, M.L.A. Silveira, L.E. Sollenberger, R.G. Leon, 

J.M.D. Sanchez, F. Leite de Oliveira, F. Kuhawara, U. Cecato, and C.V. Soares 

Filho. 2017. Potassium and Nitrogen Fertilization Effects on Jiggs Bermudagrass 

Herbage Accumulation, Root–Rhizome Mass, and Tissue Nutrient Concentration. 

Crop. Forage Turfgrass Manag. 3:2017-04-0029. doi:10.2134/cftm2017.04.0029



 

56 
 

APPENDICES 
 

Table 1. P-values for relative green canopy cover on two bermudagrass cultivars at five 

different rates and control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of variation Days after glyphosate application 
8 16 24a 

Model <0.01* <0.01* <0.01* 
Cultivars      0.16 0.03* <0.01* 
Rates <0.01* <0.01* <0.01* 
Cultivar x Rates 0.80 0.51 0.06 
*significant at α = 0.05 
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Table 2. P-values for the effect of glyphosate rate at 37 and 56 days after application on 

canopy regrowth of two bermudagrass cultivars. 

Source of variation 
Days after glyphosate application 

37 56 
Model <0.01* <0.01* 
Cultivars <0.01* <0.01* 
Rates <0.01* <0.01* 
Cultivar x Rates <0.01* 0.75 
*significant at α = 0.05 
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Figure 1. A comparison between visual green canopy cover vs. relative green canopy 

cover collected from Goodwell and Greenfield bermudagrass cultivars at 8 (A and B), 16 

(C and D), and 24a (E and F) days after glyphosate applications (DAG). Statistic shown 

is root mean square difference (RMSD). Dashed lines represent the 1:1 line. 
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Figure 2. Visual green canopy cover (VGCCn), and relative green canopy cover 

(RGCCn) ratings of Goodwell bermudagrass treated with 1.1 kg a.i. ha-1 of glyphosate at 

a given day n. Relative green canopy cover was calculated based on the listed Canopeo 

output: FGCCn (fractional green canopy cover). 
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Figure 3. Relative green canopy cover as a proxy for canopy greenness for Goodwell (A) 

and Greenfield (B) treated with five different glyphosates rates and a control at four 

different time periods, where 0% = complete herbicide injury (total discoloration), and 

100% = no herbicide injury. Error bars denote least significant differences among 

glyphosate rates within same time period (α =0.05). 
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Figure 4. Relative green canopy cover as a proxy for canopy regrowth for Goodwell (A) 

and Greenfield (B) treated with five different glyphosates rates and a control at three 

different time periods, where 0% = no regrowth, and 100% = regrowth equals to canopy 

area at day zero. Injured canopies were removed at time period 24b. Error bars denote least 

significant differences among glyphosate rates within same time period. 
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Figure 5. Cumulative aboveground dry matter regrowth from 24b to 56 days after 

glyphosate application for Goodwell (A) and Greenfield (B) treated with five different 

glyphosates rates. Treatment means separated by different letters are significantly 

different (least significant difference, α = 0.05). 
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