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Osteoarthritis (OA) is a debilitating joint degenerative disease that is expected to 

drastically increase in prevalence by 2050. Therefore, it is necessary to find innovative 

ways to predict OA onset with the hopes of implementing preventative measures early 

on. 

 

OA incidence is positively correlated with increasing age and the female gender. 

Furthermore, gait analysis has been used to elucidate the biomechanical differences that 

arise from OA onset. Modern gait analysis research has moved towards non-linear 

analysis due to the understanding of the deterministic properties of human movement. 

Approximate Entropy (ApEn) and Fuzzy Entropy (FuzzyEn) are both tools that assess 

signal regularity under the theory of Optimal Movement Variability, and ApEn has been 

used in a limited capacity to investigate gait imbalance. The goal of this study was to 

investigate the efficacy of ApEn and FuzzyEn in assessing differences in gait imbalance 

parameters between males and females of a fixed age, and females of younger and older 

age groups, under the context of OA onset factors.   

 

Healthy young males (n=20) and females (n=20) between the ages of 18-25 were 

analyzed in the first study, while younger females of age 18-25 (n=8) and older females 

of age 50-60 (n=8) were analyzed in the second study. Subjects walked barefoot on a 

force sensitive treadmill surrounded by six motion capture cameras at a self-selected 

speed. ApEn and FuzzyEn calculations were then performed at varying k values on the 

signals of the peak ground reaction force during heel strike and toe off, medial-lateral 

center of pressure displacement and range of motion of the hip, knee and ankle.   

 

Our results confirmed that gait was a chaotic and deterministic process, since all 

subjects showed high entropy values at an input parameter k value of 0.2. FuzzyEn and 

ApEn values were within 22% for all parameters at k=0.2, showing agreement. ApEn 

found more significant differences between groups, however FuzzyEn showed higher 

relative consistency. Therefore FuzzyEn remains a promising tool in the investigation of 

OA and as a future OA prediction tool.  
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CHAPTER I 
 

 

INTRODUCTION 

 

I.1. Statement of Hypothesis and Specific Aims 

The primary goal of this research was to test the efficacy of entropy-based methods in 

assessing kinetic and kinematic gait parameters between groups in order to develop a potential 

osteoarthritis prediction tool. Specifically, we aimed to test the use of Approximate Entropy 

(ApEn) and Fuzzy Entropy (FuzzyEn) tools in investigating the variability of peak ground 

reaction forces during the heel strike (pGRFHS) and toe-off (pGRFTO) phases of gait, medial-

lateral center of pressure displacement of the foot during the stance phase (mlCOP) and range of 

motion at the ankle, knee and hip joints (ankleROM, kneeROM and hipROM respectively) 

between males and females, and younger and older females. Our research was based on the long-

term goal of developing reliable gait-assessment methods to identify the risk of osteoarthritis 

(OA) onset in healthy adults at a young age. If this can be done, strength training protocols may 

be implemented to delay or prevent the onset of OA at an early age.   

 OA is a degenerative joint disease which involves the gradual disappearance of bone 

cartilage that protects the bones from wear and tear, resulting in pain, stiffness, swelling and 

impaired locomotion (Felson, 1998). It affects approximately 27 million US adults, most of 

whom are over the age of 65, and is typically observed in the hand, knee and hip joints 

(Lawrence, 2008).  The most recent statistic by Barbour et al. in 2017 (Barbour, 2017) indicates
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that half of Americans over the age of 65 suffer from a form of arthritis, of which OA is the most 

common. Since the number of adults over the age of 60 is expected to double by 2050 (Ortman, 

2014), it is reasonable to expect a significant increase in OA occurrences by then. It is therefore 

critical to develop efficient screening protocols to enable the early detection of OA in young 

adults, with the hope of implementing corrective measures early on.  

 The incidence of radiographic OA with increasing age has been well documented and 

has led to the identification of increasing age as one of the factors behind OA onset (Felson & 

Zhang, 1998) (Lawrence, 2008). Furthermore, it has been found that OA is prevalent among 

females than males at all ages, especially after the age of 50 (Oliveria, 1995). Females are also 

twice as likely to develop OA in the knee joint (Felson, 2000) (Felson, 1997) (Davis, 1988). 

Despite the age and gender relationship in OA, the exact cause of OA is still debated due to a 

multitude of factors which simultaneously drive the condition (Felson, 1998). The factors can be 

grouped under two main umbrellas: systemic factors such as genetics, age and gender and local 

biomechanical factors such as joint laxity (rotation) and muscle weakness (Felson., 2000). The 

relationship of OA with biomechanical factors remains vague because the onset of OA itself 

further aggravates existing biomechanical imbalances and leads to OA progression to adjacent 

joints (Guilak, 2011) (Kaufman, 2001). The blurring of this line between the biomechanical 

causes of OA and the biomechanical results of OA onset has thus allowed research in this field to 

continue to this day. Therefore, an OA prediction tool would require an unconventional analysis 

method of biomechanical parameters that has not been used for this specific task before.   

One of the main tools in studying lower body biomechanical imbalances has been gait 

analysis. The mechanics of walking on a flat surface are well understood and normative and 

pathological gait has been well defined (Bresler, 1950) (Perry, 2010). Gait analysis has revealed 

differences in kinetic and kinematic parameters between males and females, younger and older as 

well as healthy and OA affected individuals (Kerrigan, 1998) (Hausdorff, 2010) (Childs, 2004). 

These results have often been obtained through linear analysis methods (mean, standard 
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displacement, coefficient of variation). However, recent research has found that linear methods 

fail to capture all aspects of movement and are unable to differentiate between pathology 

(Stergiou, 2011). This is because linear equations can only lead to solutions that decay, grow or 

maintain a steady state while many physiological responses show nonlinear behavior (E.A. van 

Emmerik, 2016). An example of this would be the variability of human movement. Consider, for 

example, an experiment where a subject is asked to repeat a movement in the exact same way. 

Despite the number of repetitions, no single movement can be replicated with the exact same joint 

trajectories and muscular force outputs (Bernstein, 1967). When it comes to human gait, linear 

tools mask this structure of true variability since the average picture obtained involves time 

normalization which stretches the data and results in the loss of temporal variations. The 

emergence of the theory of Optimal Movement Variability in 2006 (Stergiou, 2006) further 

necessitated a shift away from linear analysis techniques. The theory proposed that human 

movement possessed an optimal range of variability that was necessary for the body to react to 

environmental stimuli and stresses. A loss of this optimal state has been associated with 

pathology and even fatigue (Pincus, 1994). This led to the development of non-linear analysis 

methods as tools to analyze human movement. These tools have focused on understanding how 

variations in signal patterns change over time. In application, non-linear analysis methods have 

increased sensitivity in the detection of this variability based on past and future events, compared 

to linear techniques.  

There are a range of non-linear methods that have been used to investigate gait 

parameters in recent literature. These fall under the umbrella of local stability measures or under 

entropy. Local stability measures include the Lyapunov exponent (LyE), Floquet multiplier and 

Detrended Fluctuation Analysis (DFA). Despite the efficiency of these tools in uncovering gait 

abnormalities between younger and older adults (Granata, 2008), investigating local stability has 

not been entirely appropriate in gait analysis due to the negligence of the global stability of the 

system (E.A. van Emmerik, 2016). For example, adjusting gait to respond to an external 
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perturbation may result in poor local stability however it would be a positive adaptation on the 

global level and be indicative of a stable and adaptable system. Thus, movement scientists have 

turned to entropy analysis to better understand the complexities of human movement. Entropy is 

the amount of information needed to describe a system (Cover, 2006). Approximate Entropy 

(ApEn) has been one of the most commonly used complexity measures of this kind and has been 

used to quantify regularity in in time-series data (Pincus S. , 1995). In biological systems, high 

ApEn values suggest complexity and adaptability while lower ApEn values signify pathology due 

to less variability (Pincus S. , 1995). In gait analysis, ApEn has been used to investigate age-

related effects of spatio-temporal variables such as minimum toe clearance (Karmakar, 2007), 

variability patterns in kinematic parameters such as joint angles (Estep, 2018) and in the 

investigation of variability in anterior cruciate ligament deficient knees during walking 

(Georgoulis, 2006). However, there has been a noticeable gap in literature when it comes to 

entropy analysis of kinetic parameters. ApEn has received criticism due to its sensitivity to the 

length of the time series and the presence of a self-matching feature in the algorithm that provides 

a bias towards regularity (E.A. van Emmerik, 2016).  

ApEn and other entropy tools require three input parameters, “m” which determines the 

length of the template vectors in the algorithm, “k” which determines the bandwidth where 

conditioning vectors are found (where r = k*standard deviation), and “N” which is the number of 

data points that the algorithm processes. These input parameters play a critical role in the output 

and may result in a “flip-flop effect” of the results (Yentes, 2013). Many modifications to the 

ApEn algorithm have hence emerged to mitigate the negative aspects such as its self-matching 

feature and interaction of input parameters, such as Sample Entropy and Multiscale Entropy. 

However, the dependence on input parameters in other entropy measures has continued to be an 

issue (Yentes, 2018). Hence Yentes (2018) recommended that the range of input “k” values be 

displayed in results of future research, so that the performance of the algorithm can be accurately 

deduced.  
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Fuzzy Entropy (FuzzyEn), which is based on the concept of Fuzzy logic, was developed 

as an improvement to existing entropy measures (Chen, 2009). Unlike prior entropy methods, 

FuzzyEn considered the imprecise environments from which biological data sets arose and used 

an exponential function instead of the traditional Heaviside function. This fluidity in its core 

algorithm allowed for greater independence from data length and relative consistency compared 

to ApEn (Chen, 2007). FuzzyEn has shown its superiority in robustness to noise, input parameter 

selections and in eliminating the bias towards regularity (Chen, 2009). Despite its power, 

however, FuzzyEn has been used solely in the investigation of muscle physiology and its 

performance in investigating kinetics and kinematics gait parameters thus remains unknown.  

 With the hopes of developing a tool to predict OA onset in young adults, this research 

focused on testing the efficacy of ApEn and FuzzyEn as tools to detect kinetic and kinematic 

imbalances in two studies. The first study involved healthy younger males and females 

(controlled for age), while the second study involved healthy females of younger and older age 

groups (controlled for gender). We selected the gait imbalance parameters of peak ground 

reaction force during heel strike (pGRFHS) and toe off (pGRFTO), medial-lateral center of pressure 

of the foot displacement during stance phase (mlCOP) and the range of motion at the ankle, knee 

and hip (ankleROM, kneeROM, hipROM) over the entire trial. We compared the performance of 

ApEn and FuzzyEn in detecting differences in variability between the two groups in each study 

based on current knowledge of gender and age-based differences that have been elucidated using 

linear methodologies. 

 

I.2. Parameters studied 

The parameters investigated in this research were based on kinetic and kinematic gait 

parameters that have been investigated in literature (O. Riley, 2007) (Jamshidi, 2010). Peak 

ground reaction forces at heel strike and toe off (pGRFHS and pGRFTO, respectively) were 
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computed for each gait cycle as the first and second peak of the total ground reaction force curve, 

respectively (Figure 1.a).  

 𝑝𝐺𝑅𝐹𝐻𝑆 (%) =
𝐹𝑖𝑟𝑠𝑡 𝑝𝑒𝑎𝑘 (𝑁)

𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑁)
∗ 100 

 𝑝𝐺𝑅𝐹𝑇𝑂 (%) =
𝑆𝑒𝑐𝑜𝑛𝑑 𝑝𝑒𝑎𝑘 (𝑁)

𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑁)
∗ 100 

The medio-lateral center of pressure location (mlCOP) was determined by finding the 

range of displacement of the center of pressure trajectory from the heel-toe line during the stance 

phase of each gait cycle (Jamshidi, 2010). This value was then normalized by foot length (Figure 

1.b).  

𝑚𝑙𝐶𝑂𝑃 (%) =
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑂𝑃 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 (𝑚𝑚)

𝐹𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚)
∗ 100 

Joint ranges of motion values were computed for each stance phase based on the 

following equation: 

𝑅𝑂𝑀 (%) =
𝑀𝑎𝑥. 𝑎𝑛𝑔𝑙𝑒 − 𝑀𝑖𝑛. 𝑎𝑛𝑔𝑙𝑒

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑛𝑔𝑒
∗ 100 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Parameters: a) Vertical ground reaction force curve, and b) center of pressure 

location under the right foot.  

 

Heel toe line 

Center of 

pressure 

trajectory 

a) b) 
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I.3. Hypothesis 

This research sought to investigate the performance of ApEn and FuzzyEn in detecting 

variability differences between two groups in two studies: healthy males vs healthy females 

(gender study), and younger healthy females vs older healthy females (age study), based on the 

knowledge of existing gait differences between these groups. We thus hypothesize that ApEn and 

FuzzyEn can be used to successfully detect differences in variability between healthy groups.   
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

II.1. Variability of Human Movement 

One of the earliest observations of human motion has been that it is variable. Not only are 

there multiple degrees of freedom for each limb, but also various combinations of muscles that 

can be utilized to perform the same motor task (Bernstein, 1967). This gives rise to a few 

important questions such as “how is this variability controlled while learning a new skill?” or “is 

this variability associated with disease/health” and “what are the sources of this variability?”. In 

the 20th century, there was an increased effort from scientists and researchers to answer some of 

these fundamental questions. Prior to 1960, the field of motor behavior was dominated by a “task-

oriented” approach (Pew, 1974) that emphasized “global” motor learning theories or sometimes 

no theories at all (Hull, 1943). Researchers investigated the relationship of many independent 

variables in the learning and performance of motor tasks and objectives and the results were often 

poorly defined (Schmidt, 1975). The 1960’s showed a shift towards motor skills research which 

led to the creation of many “closed-loop” theories which suggested that movement was controlled 

via continuous feedback loops (Sokolov, 1969) (Anokhin, 1969) (Konorski, 1967) and “open 

loop” theories which proposed that all the necessary information for a movement (usually 

ballistic or explosive) were already present within the system. Jack Adams improved upon these 

theories by introducing a closed loop theory in 1971 that was testable and repeatable and was  
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hence known as “The Adams Theory” (Adams, 1971). He proposed 2 states of memory, memory 

trace (which was responsible for initiating movement and choosing its overall direction) and 

perceptual trace (which was responsible for guiding the limb to the correct end point based on 

past experience and current feedback) that best explained how a motor system with intrinsic 

feedback would work (Adams, 1971). However, some of the criticisms of Adam’s theory 

revolved around the massive neurological storage requirements of a one to one mapping system 

and the question of how novel movements would be performed if perceptual trace was based on 

historical movements. Schmidt proposed Schema theory in 1975 which addressed these issues, by 

suggesting that there were 3 parts to movement i) A generalized motor program (GMP) ii) Recall 

Schema iii) Recognition Schema (Schmidt, 1975). His theory received much acclaim, particularly 

due to the proposition of a GMP, which is still a prominent theory today. Generalized Motor 

Program theory (GMPT) considers movement variations to be a result of error (Summers, 1995). 

It postulates that there is an error in predicting the required parameters to employ the GMP which 

results in variation, and that prediction error is gradually eliminated with practice (Schmidt R., 

2003) (Schmidt, 2005). A competing theory that emerged in the 1980’s was the Dynamical 

Systems Theory (DST) which assumed that order and regularity were not pre-programmed and 

stored but emerged from the dynamic interactions of many degrees of freedom within the motor 

system (Schmidt, 2003). DST understood biological systems to be self-organizing according to 

environmental, biomechanical and morphological constraints and thus movements sought the 

most stable solution from these. The current state of human movement research has scientists in 

either “camp” of GMPT or DST (Schmidt, 2003), however a common theme in both theories is 

that decreased variability is good and portrays an efficient execution of a movement.  

 However, this understanding of movement from either side begs a simple 

question. How are some movements that appear highly stable performed in highly variable ways? 

For example, a general observation of elite athletes and musicians (considered as people of high 

motor skills) shows that they have extremely stable outputs yet have developed multiple ways to 
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achieve these. The idea that variability decreases with increased skill does not hold in such 

instances and therefore questions the validity of GMPT and DST. This argument has been echoed 

before and Schmidt himself called for a new theory in 2003, asking researchers to abandon their 

“camps” and to move forward with a new theory that incorporated the surviving aspects GMPT 

and DST (Schmidt, 2003). Stergiou et al. took a different approach to this question and proposed 

that the paradoxes and controversies of GMPT and DST could be explained by the way in which 

variability had been traditionally measured (Stergiou, 2011). Traditionally, movement research 

had focused on linear statistical measures such as mean, standard deviation and coefficient of 

variation. These tools were statistical measures of centrality and showed us how far a set of data 

deviated around a central point, treating variations as random and independent and disregarding 

the temporal organization (or structure) of the variability with respect to time (Lomax, 2007). 

While linear methods were useful for linear systems, several studies indicated that human 

movement variations had deterministic properties (Dingwell, 1999) (Dingwell, 2007) (Harbourne, 

2009) (Stergiou,  2011) and thus nonlinear methods of analysis would have been more 

appropriate, thus affirming Stergiou’s approach. This was seen especially in human gait where a 

non-linear method such as DFA revealed that fluctuations in stride interval time showed long 

range correlations (Hausdorff, 1995) which degraded with age and neurological diseases 

(Hausdorff, 2009) (Stergiou, 2006). Stergiou and Harbourne (Stergiou, 2006) thus proposed a 

new model called “Optimal Movement Variability” which suggested that there was an optimal 

range of variability that existed between a purely stochastic system and a purely periodic one. 

Thus, under this new theory, variability was viewed as a deterministic structure that showed the 

adaptability of the system to environmental stimuli and stresses. A decrease or loss of this state 

was found to be associated with pathology and even fatigue, through non-linear methods (Pincus, 

1994) (Cignetti, 2009). Optimal movement variability theory proposed that motor development 

and learning processes obeyed methods by which optimal variability was reached and that 

abnormal development, pathology and aging resulted in rigid, inflexible and highly predictable 
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behavior outside of the optimal range (Stergiou, 2011).  Therefore, this paper functions under the 

assumptions of the prevailing Optimal Movement Variability theory, and the generalized 

consensus in literature is that there is a “functional” aspect to variability that is characterized by 

chaotic structure (Caballero, 2014). This paper hence seeks to test the veracity of non-linear 

methods as a diagnostic tool of chaotic signals in human movement, particularly gait imbalance 

parameters as a tool to predict osteoarthritis onset.   

 

II.2. Non-Linear methods 

Nonlinear methods in the investigation of human movement are the product of 

mathematical tools that have been used in the study of deterministic chaos. Biological signals 

have been found to exhibit deterministic patterns which have been defined as chaotic. In the 

instance of hearth rhythms, these chaotic states have been found to indicate healthy states 

(Denton, 1990) (Glass, 1988) contrary to prior theories believing that they were pathological. 

Currently, it is believed that chaotic behavior in a biological system may represent the 

physiologic capability to adapt to external stresses (Lipsitz, 2002).  

 In the application of non-linear methods in investigating motor variability, these tools 

look at how motor behavior changes over time, considering the temporal dynamics and 

complexity. They take the fuller picture of movement into account by understanding the “hidden” 

temporal structure of movement fluctuations (Stergiou, 2011). There have been many nonlinear 

methods that have been used to study human movement. The Lyapunov exponent (LyE), for 

example, measures the exponential rate of divergence of neighboring trajectories of a state space 

(obtained from human kinematic data) (Dingwell, 2006) and is a measure of the dynamic stability 

of a system. It has been used to estimate fall risk in elderly human subjects by quantifying local 

dynamic stability (Lockhart, 2008) (Brujin, 2013). Local dynamic stability is the degree of 

sensitivity of a system to small perturbations (Buzzi, 2003). Another way to analyze variability is 

to look at the degree of irregularity of the time series. Recurrence Quantification Analysis (RQA), 
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a tool that quantifies system properties by visualizing trajectories in phase space, has been used to 

analyze postural fluctuations (Riley, 1999) and even analyze changes in heart rate variability 

(Javorka, 2008). Detrended Fluctuation Analysis (DFA) is another non-linear tool that looks at 

the long-range power-law correlations in signals (Peng, 1995). DFA estimates fractal scaling 

properties of a times series where a scaling index value (α) of 1 indicates pink noise with fractal 

characteristics (Holden, 2005). DFA has been widely used in variability analysis to investigate 

heart rate variability (Ahmad, 2009) and gait analysis (Kirchner, 2014). Entropy measures are 

another type of non-linear approach to assess the degree of irregularity. Entropy refers to disorder 

or chaos and it’s meaning in information theory is akin to that of thermodynamics. Claude 

Shannon was the first researcher to introduce entropy as a tool to investigate time series data 

(Shannon, 1948). Under the theory of Shannon Entropy, entropy quantifies the uniformity or 

regularity of a time series, therefore higher entropy values would indicate increased irregularity 

while lower values would indicate increased periodicity and regularity (Shannon, 1948). The 

work of Shannon has been improved upon by various researchers and in 1995, Steve Pincus 

introduced Approximate Entropy to investigate biological signals ranging from endocrine 

hormone secretion data to infant heart rates (Pincus S. , 1995). Due to the work of Pincus, there 

have been many subsequent entropy algorithms developed such as Sample Entropy, Multiscale 

Entropy, Increment Entropy and so on, with an increasing use in the investigation of biological 

signals. It has generally been found that aging and diseased systems show reduced entropy values 

when compared to the dynamics of a healthy system, although there are anomalies to this 

understanding likely due to an increase in noise (Goldberger, 2002). The following section will 

take a deeper look at the mechanisms and uses of the different entropy methods available.  

 

II.3. Entropy-based methods 

Approximate Entropy (ApEn) was pioneered by mathematician Steven Pincus in the 

early 90’s and was introduced as a method of quantifying the complexity and regularity of time-
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series data. It has since been implemented in a wide range of investigations ranging from 

financial markets to weather patterns (Yentes, 2018). Its development pertaining to the analysis of 

human biological signals was motivated by data length constraints and noise commonly 

encountered in heart rate, endocrine and EEG data sets (Pincus S. , 1995). Its primary benefit 

appears in instances where classical statistics (such as mean, standard deviation) fail to show 

clear group distinctions (Fleisher, 1993).  

To compute ApEn, three input parameters are required. “m” is the length of the compared 

runs and “k” functions essentially as a filter (commonly multiplied to the standard deviation of 

the time series data to give a value “r”). “N” is the number of data points in the data (Figure 2). 
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Figure 2. Algorithm for the standard ApEn (from Xie, 2010). 

 

It can be understood that ApEn measures the likelihood (in logarithms) that runs of 

patterns that are close for “m” observations remain close in subsequent incremental comparisons 

(Pincus, 1994). The range of ApEn is from 0 to 2, with larger ApEn values signifying 

independent sequential processes (chaotic nature) while smaller ApEn values indicate relative 
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regularity of sequences (for example a sinusoidal wave). Pincus concluded that for data sets of 

N=1000, values of m=2 and r=0.1 to 0.2 times the standard deviation (SD) produced good 

statistical validity of ApEn for many models (Pincus & Goldberger, 1994). It was noted that “r” 

values smaller than 0.1*SD (i.e k=0.1) gave poor conditional probability estimates while r values 

larger than 0.25*SD (i.e. k=0.25) allowed for the loss of detailed system information (Pincus, 

1994). Pincus agreed that the choice of “r” was perhaps the most significant input parameter and 

must be chosen carefully, since a decreasing “r” caused ApEn to increase (Pincus S. , 1995). This 

variability of ApEn based on input parameters has been one of its biggest flaws, however Pincus 

advised that maintaining fixed input parameters across investigations would answer the simple 

question of regularity vs irregularity in signals (Pincus S. , 1995). Hence, a good technique would 

be to select the “r” value that provides the maximum value of ApEn based on the findings of 

Chon et al. (Chon, 2009). There has been some suggestion in literature to use a fixed “r” value 

based on the sampling rate, however this has been demonstrated to produce a different outcome 

compared to using r*SD (standard deviation), often flipping the results (Forrest, 2014). The 

suggested “m” value for clinical data, based on the findings of Yentes et al. is 2 (Yentes, 2018). 

In terms of gait analysis, an m of 2 would represent a comparison between one set of consecutive 

steps to another set of consecutive steps while an “m” value of 3 would indicate 3 steps compared 

with the next 3 and so forth (Yentes, 2013). However, it seems that in gait analysis, an m=3 

provides more consistent results for ApEn along a range of N values (Yentes, 2018). All human 

movement studies that have used ApEn have utilized an m value of 2 and an r value between 0.2 

and 0.25 (Georgoulis, 2006).  

ApEn, however, does possess its imperfections. The algorithm to compute ApEn includes 

a self-matching feature of vectors (which was intentionally developed by Pincus to avoid taking 

the natural logarithm of 0, leading to an undefined answer). This adds a bias towards a more 

regular result. Furthermore, ApEn shows relative inconsistency when input parameters such as 

“N” are altered and may even “flip” its results depending on the input parameters used, where 
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lower entropy would falsely be found or vice versa (Chen, 2009) . These shortcomings were 

investigated by Yentes et al. especially in regards to its effect on human movement where she 

found that ApEn differed based on the input combinations of “m”, “r” and “N”, however showed 

relative consistency when m was 2 and the smallest r values were used (r=0.2*SD) (Yentes, 

2013). Sample Entropy (SampEn) was developed as a solution to this by Richman and Moorman 

and was a modification of the ApEn algorithm. It excluded the self-matching feature present in 

the former. It was hence argued to be a better tool since it behaved independent of data length and 

showed relative consistency (Richman, 2000). However, the subsequent investigations by Yentes 

concluded that both SampEn and ApEn were susceptible to a 3-way interaction between the input 

parameters “m”,” r” and “N”, significant enough to generate incorrect signal analysis results. The 

only benefit of SampEn appeared to be its independence of data length (Yentes, 2013). Her 

advice, and that shown by Karmarkar et al (Karmakar, 2007), is to reveal the effect of a range of 

“r” values on the output of ApEn or SampEn so that any flipping of entropy results may be 

observed. 

Fuzzy Entropy analysis is one of the more recent innovations in the use of non-linear 

methods to investigate biological signals. It was first developed by Bart Kosko based on the 

concept of “fuzzy sets” introduced by Zadeh in 1965 (Kosko, 1986) (Zadeh, 1965). It’s power in 

investigating biological signals was sparked by the work of Chen et al. with their renowned paper 

“Characterization of Surface EMG Signal based on Fuzzy Entropy” (Chen, 2007).  

 Theoretically, FuzzyEn is more applicable to biological signals since it understands the 

imprecise environments from which data sets arise and shows lenience in classifying vector 

similarity. While ApEn and SampEn determine the similarity of two vectors based on a Heaviside 

function which assigns a binary 1 or 0 (yes or no), FuzzyEn determines this based on a 

“membership degree” in the form of a number between 0 and 1. The algorithm developed by 

Chen et al. is hence similar to the ApEn algorithm involving an N sample time series {u(i): 1 ≤ I 

≤ N} with vector sequences Xm
i = {u(i),u(i+1),…,u(i+m-1)} – u0(i). The distance dm

ij between 
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two vectors Xm
i and Xm

j is given as the maximum absolute difference between their corresponding 

scalar components. The algorithm deviates thereafter, involving a similarity degree Dm
ij through a 

fuzzy function µ(dm
ij,n,r) = exp (-dm

ij )n/r . The functions φm(r) = (1 /( N-m)) ∑N-m
i=1 ((N-m-1)-1∑N-

m
j=1 Dm

ij  and φm+1(r) are then used to define the FuzzyEn output using the negative natural 

logarithm of the deviation of the two: FuzzyEn(m,n,r) = limN-∞[ ln φm(n,r) -  ln φm+1(n,r) ].  The 

main benefit of this approach is the replacement of the binary Heaviside function with a 

continuum-based approach, which is thus capable of considering the imprecise environments 

from which biological data sets arise.  

As in ApEn, FuzzyEn requires an “m” input parameter which describes the length of the 

vector sequences to be compared. The “r” and “n” parameters describe the width (often used as r 

multiplied by the standard deviation, r*SD) and gradient of the boundary of the exponential 

function respectively. In the investigation of surface EMG signals from the right forearm, Chen 

et. al selected a FuzzyEn m value of 2, an r value of 0.3 and an n value of 2 based on the clarity of 

results from experimental data involving random numbers and sinusoidal signals. Their results 

proved the superiority of FuzzyEn in investigating EMG, as it was shown to have the lowest 

standard deviation and the best characterizing result compared to ApEn and SampEn (Chen, 

2007). This was echoed in a 2009 study investigating all big three entropy measures, ApEn, 

SampEn and FuzzyEn by Chen et al. (Chen, 2009) where FuzzyEn was found to closely follow 

theoretical hypotheses and show freer parameter selections and robustness to noise. However, its 

use has centered around EMG and its performance in gait analysis of kinetic and kinematic 

parameters remains unknown. Therefore, exploring FuzzyEn in gait analysis would offer novel 

insights into the tool’s abilities.  
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II.4. Effects of osteoarthritis 

This paper focuses on a tool to predict osteoarthritis (OA) onset in the lower body. It is 

thus necessary to understand the factors behind OA and the biomechanical symptoms of OA 

onset in the lower body.  

OA is a disease characterized by localized cartilage erosion at a specific joint, resulting in 

bone-to-bone contact accompanied by pain, swelling, stiffness and anatomical changes to the 

underlying bone (Felson, 2000). It is the most common form of arthritis today and affects 

approximately 27 million Americans (Prevention, 2018). Felson and Zhang have highlighted that 

systemic and local factors contribute towards the onset of OA (Felson, 1998), with systemic 

factors including a person’s age, sex, racial characteristics and estrogen replacement therapy 

among others. It is believed that such systemic factors increase the vulnerability of the cartilage to 

injuries and reduces its ability to regenerate (Felson, 1998). Once these are in place, local 

biomechanical factors begin to take affect and may include joint injury, obesity, joint deformity 

and muscle weakness (Felson, 1998).  

A comprehensive study quantifying the incidence of hand, hip and knee OA in men and 

women of varying age groups from Massachusetts found that there was a correlation in the 

incidence of OA in all joints with age and gender (Oliveria, 1995). After the age of 50, women 

had a higher prevalence and incidence of OA, along with a drastic increase in the number of 

radiographically valid OA diagnoses (Oliveria, 1995).  The largest study into OA onset in the 

knee to date is the Framingham Osteoarthritis Study, which used 1424 radiographs of older 

subjects between the ages of 63 and 94 years. It found that radiographic evidence of OA 

increased with age from 27% in subjects younger than 70, to 44% in subjects over the age of 80 

(Felson, 1987). Furthermore, this study found that the proportion of women with symptomatic 

knee OA was significantly higher than that of men, thus confirming the understanding that OA of 

the lower body is related to old age and the female gender.  
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The effect of OA on the biomechanical functioning of the lower body has been 

investigated thoroughly using linear tools. Gait analysis of 24 subjects with unilateral 

symptomatic knee OA against 24 age and gender matched control subjects by Childs et. al found 

that disease affected subjects had an increased knee angle at heel contact, decreased knee flexion 

excursion (range of motion) during the loading response phase, decreased vertical ground 

reaction force during loading and push off and a prolonged activation of the tibialis anterior and 

medial gastrocnemius muscles compared to controls (Childs, 2004). Another study involving 47 

males and 92 females (mean age of 57 ± 12.5 years) with Grade II knee OA found that patients 

with knee OA exhibited reduced internal knee extensor moments and walked slower than those 

without knee OA (despite normalizing for shorter stride length) (Kaufman, 2001). A gender 

difference was also observed with female OA patients exhibiting greater peak knee flexion angles 

and knee extensor moments compared to males.  

  Despite these findings, there is a blurring of the line between the biomechanical causes 

of OA and the biomechanical symptoms of OA, since OA onset requires biomechanical 

imbalances and the disease itself results in biomechanical imbalances. This paradox necessitates 

an unconventional approach in detecting OA onset using traditional gait analysis tools.  
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II.5. Gender and gait 

It is relevant to this study to understand the anatomical differences in the musculoskeletal 

system of the lower body between healthy males and females since it is known that females are at 

an increased risk of knee osteoarthritis and certain knee injuries such as non-contact anterior 

cruciate ligament tears (Felson, 2000) (Arendt, 1999). This section hopes to offer insight into the 

resulting variations in female gait.   

Prior to the onset of puberty, there are very few differences in male and female anatomy. 

Studies report no difference in prepubescent femur and tibia lengths, knee laxity, tibiofemoral 

angles or hip anteversion (Smith, 2005) (Baxter, 1988) (Svenningsen, 1989) (Cahuzac, 1995) 

between males and females. However, with the onset of hormonal changes associated with 

puberty, there is a gradual shift in stature and muscle mass between the 2 genders. The static 

musculoskeletal differences found by Shultz et al. (Schultz, 2007) in a study of 50 males and 50 

females (aged 23 ± 4 and 22 ± 3 respectively) revealed that females possessed a significantly 

greater pelvic angle (anterior pelvic tilt), hip anteversion (femoral internal rotation), standing 

quadriceps angle and tibiofemoral angle (resulting in knee valgus and genu recurvatum (knee 

hyperextension)). These differences were mainly found proximal to the pelvis, and no differences 

were found in the alignment of lower legs, ankles or feet (tibial torsion, standing rearfoot angle or 

navicular drop. The proximality of these differences to the female hip may be related to the 

anatomical differences between the male and female pelvis. The female pelvis is wider and 

rounder than the male pelvis, with a wider sacrum. The acetabula are further apart in females, 

which results in greater lateral angles and a valgus inclination (Heyden). Female skeletons are 

also less dense and possess comparatively weaker tendons and ligaments compared to males 

(Nieves, 2005). The overall muscle mass in females is also lower compared to males as gross 

measures of body strength have revealed that females range from 42 to 63% of male strength 

(Frontera, 1991). However, in a study of 11 males and 11 females by Krishnan et al. 

(Chandramouli, 2009), it was found that during knee extension trials females showed higher 
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vastus medialis activity compared to males. Furthermore, in knee flexion trials, females showed 

higher vastus lateralis, vastus medialis and rectus femoris activity than males. The study found no 

significant differences in hamstring activation between males and females. These differences are 

thought to stem from the prevalence of slower type I muscle fibers present in females (Haizlip, 

2015). Especially in the vastus lateralis, it has been found that the cross-sectional area of all 3 

muscle fiber types was larger for men, but that Type 2A was largest in men while Type 1 was 

largest in women (Staron, 2000). Females are also found to recruit a larger number of motor 

unites compared to males at a given contraction intensity and opt for increasing motor unit 

recruitment as opposed to increasing motor unit firing rates when faced with increased force 

demands (Giannini, 1994).  

These differences are evident in the kinetics and kinematics of females in gait analysis 

studies involving comparisons between the two genders. A study by Kerrigan et al. measured the 

sagittal kinematic and kinetic (joint torque and power) data of the lower limbs of 99 young adult 

subjects (49 females and 50 males of ages 20 to 40 years) using a force platform and an 

optoelectronic motion analysis system. They found that females had significantly greater mean 

hip flexion, reduced mean knee extension before initial contact, and higher mean ankle power 

generation during pre-swing compared to males (Kerrigan, 1998). Another study by Chumanov et 

al. investigated the kinematics and EMG activity of the lower limbs of 34 subjects walking at 

varying speeds and inclinations on a treadmill. Kinematics were recorded using 40 reflective 

markers on 21 anatomical landmarks and the utilization of an 8-camera motion analysis system. 

EMG data was recorded using surface electrodes on the hip adductors, gluteus medius, gluteus 

maximus and vastus lateralis muscles of the lower right limb. Their results indicated that females 

had significantly greater peak hip internal rotation and adduction during the stance phase as well 

as greater hip excursion, lateral pelvic tilt excursion and peak knee flexion during stance at all 

walking and running speeds and inclinations, when compared to males (Chumanov, 2008). In 

addition to this, females had higher gluteus maximus and vastus lateralis activity compared to 
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males in all conditions (Chumanov, 2008). In terms of kinetics, Chiu & Wang conducted a similar 

study involving 15 males and 15 females, where EMG, joint motion and ground reaction force 

data were captured using wireless EMG surface electrodes, a six-camera motion capture system 

and a force platform. They found no differences in cadence between the 2 genders but found that 

females had higher tibialis anterior activity which correlated with higher vertical ground reaction 

forces in the loading response and pre-swing phase, compared to males (Chiu, 2007). A 

comprehensive report into the gender based differences in gait, based on a thorough literature 

review of all research in the field, was released in 2014 by the Air Force Research Laboratory and 

was undertaken by Frimenko et al. (Frimenko, 2014). Their findings can be summarized as 

follows: Female gait speed decreases with age proportionally compared to men. Males possess 

greater step length in every age group, while females possess greater cadence in every age group 

(findings of 80 studies). In terms of sagittal plane kinematics, females have generally lower hip 

ROM compared to males, varying knee ROM’s (sometimes higher, sometimes lower) compared 

to males and significantly greater ankle ROM’s compared to males (Frimenko, 2014). While 

these results have been found using linear analysis, it is important to understand its limitations in 

understanding OA onset due to the negligence of the temporal nature of the signal, for which non-

linear methods are best suited. There is a noticeable gap in literature when it comes to non-linear 

analysis of gender related gait differences specifically, since most non-linear analyses have been 

conducted on normal vs. pathologic groups. Often times, investigations revolve around the use of 

non-linear methods in understanding the differences in variability between running and walking 

(Jordan, 2008), or involve strictly male or female subjects (Jordan, 2009) (Costa, 2003). 

Therefore, this paper seeks to establish normative data on the differences in variability between 

males and females of a healthy group, while assessing the efficacy of such non-linear methods.  

 

 

 



23 
 

II.6. Age and variability 

It is well documented that OA onset is correlated with increasing age (Oliveria, 1995). 

Hence, it is important to understand the anatomical and physiological changes that occur with old 

age.  

Older individuals experience a decrease in skeletal muscle mass (Frontera, 2000). 

Sarcopenia, which is defined as the age-related loss of muscle mass, leads to a decrease in muscle 

strength and aerobic capacity (Evans, 1993). It contributes to the most “striking and consistent” 

changes of lean body mass with age (where lean body mass implies skeletal muscle and bone 

mass) (Evans, 2010). From ages 20 to 80 there is an approximately 30% reduction of muscle 

mass while the cross-sectional area of the muscles decreases by approximately 20% (Frontera, 

2000). There is also a preferential loss of type 2 muscle fibers over type 1 with advancing age 

(Larsson, 1983) (Porter, 1995) although the consensus among researchers is still varied. The 

factors behind these are complex, yet can bet attributed to decreased physical activity, declining 

androgen concentrations, nutritional imbalances, inflammation and insulin resistance that appear 

with age (Kortebein, 2007) (Morley, 2003). Furthermore, there is a loss of bone mineral density, 

metabolic rate and an increase in body fat with age (Evans, 2010). Bone loss with age has been 

well investigated in the Framingham osteoporosis study, where a total of 800 subjects were 

longitudinally examined over a four-year period (Hannan, 2010). It was found that bone mineral 

density decreased significantly in both elderly men and women and that women had a greater loss 

compared to men (which is relevant in our gender-based hypothesis as well). Murray et al. have 

found that age decreases isometric and isokinetic torques of the knee flexor and extensor muscles 

in men (Murray, 1980) (Frontera, 1991), similar to the results of Frontera et al. who found that 

flexor and extensor strength of the knee was significantly reduced in older people (Frontera, 

1991). The loss of muscle mass and strength is important to our understanding of movement, 

since these are required by an individual to stabilize forces at a joint. In the lower body, proper 

muscle activation and force generation is a vital component of shock attenuation between foot 
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and ground (Wakeling, 2003). The loss of muscle mass has also been associated with an 

increased risk of falling and injury (LaStayo, 2003). In terms of sensory function, it was found in 

a longitudinal study by Baloh et al. (Baloh, 2003) that vestibular function as well as visual, 

auditory and somatosensation were significantly decreased with age, however this was only 

weakly correlated with a 29% measured change in resulting gait and balance.  

 There are several important changes that happen in the foot with age. In a study by Scott 

et al. (Scott, 2007) where 50 younger and 50 older subjects were investigated, it was found that 

older subjects possessed flatter, pronated feet and exhibited reduced range of motion at the ankles 

with a higher prevalence of hallux valgus as well as toe plantar flexor weakness. These were 

associated with reduced magnitude of plantar forces and pressure under the heel, midfoot and 

metatarsophalangeal joints. A decrease in toe plantarflexion strength by up to 29% in older adults 

has also been found by Endo et al. (Endo, 2002). Interestingly, there has also been an observance 

of decreased tactile sensitivity of the lower limb (Thornbury, 1981) showing that the sensory 

change with age is not limited to the visual and auditory and may have an effect in 

proprioception. These changes could be explained by the anatomical change to cutaneous tissues 

of the foot which become dry, inelastic and cool with age, often showing callosities in the medial 

and lateral metatarsal heads and heel due to atrophy of soft tissues (Edelstein, 1988). The loss of 

plantar tissue response to different impact velocities may also explain variations in the plantar 

pressure distribution profile with age. This was investigated by Hsu et al. who found that tissue 

reaction to cyclical stresses are impaired in the elderly, due to the decreased shock absorbency 

and increased energy dissipation ratio (Hsu, 2005).  

  These anatomical and physiological changes that occur with age can be witnessed in the 

change of gait parameters of older adults when compared with healthy younger adults. This has 

been undertaken in two ways, using linear analysis methods in the past, and more recently using 

non-linear analysis tools.  
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 In linear analysis investigations, it has been found that older adults generate less power 

and perform less work about the ankle compared to younger adults while more work and higher 

power is found about the hip of older adults (DeVita, 2000). This is often described as a distal to 

proximal shift in control strategy. This was demonstrated by Devita and Hortobagyi in their 

investigation on the age-related redistribution of joint torques and power during gait (DeVita, 

2000). Their study involved 12 elderly (mean 69) and 14 young (mean 21) adults of whom 

ground reaction force and kinematic data were recorded during gait. They found that elderly 

adults had 58% increased angular impulse at the hip, 279% increased work at the hip, 50% 

decreased angular impulse at the knee, 39% less work at the knee, 23% less angular impulse at 

the ankle accompanied with 29% less work at the ankle. They also found that elderly adults had a 

4% shorter step length as well as a 4% increase in cadence.  Ko et al. found similar 

spatiotemporal results in their longitudinal study involving 183 participants (mean 73+= 9 years) 

with a decreasing gait speed and stride length while cadence was observed to increase. They 

confirmed the findings of other studies that wider stride width was also observed with older age 

(Ko, 2011).  

 A combination of linear and non-linear tools was used by Buzzi et al. in one of the more 

popular papers that investigated the age and gait variability question (Buzzi, 2003). They looked 

at the variability of 10 younger females (20-37) to that of 10 older females (71-79) by having 

subjects walk on a treadmill for 30 gait cycles while measuring the sagittal kinematic data from 

the right lower extremity (maximum and minimum vertical displacement of ankle, knee and hip 

as well as maximum and minimum knee joint angles). What they found was that there was a 

significant increase in standard deviation and coefficient of variation for the minimum vertical 

displacements of the hip and the minimum and maximum vertical displacements of the ankle as 

well as the knee angle maximum and minimum. In addition to this they used the largest 

Lyapunov Exponent method (LyE) and found that LyE values were greater for all parameters in 
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the elderly group, showing that elderly subjects displayed more local instability than younger 

subjects.   

 Kurz and Stergiou utilized non-linear statistical entropy to (Stergiou, 2003) investigate 10 

younger (mean aged 25) and 10 older (mean aged 75) individuals. The subjects walked on a 

treadmill while kinematic data of the right lower extremity were recorded. While their method of 

entropy analysis differed from ApEn and FuzzyEn (outlined in this paper), they found larger 

entropy values in the older group which suggested that there was less certainty in selecting a joint 

range of motion (ROM) for the ankle, knee and hip joints with age. However, it must be noted 

that their methodology involved stride to stride comparisons of the right leg only and the ROM 

was defined as the difference between the absolute maximum and minimum angles.   

For ApEn investigations, Karmakar et al. (Karmakar, 2007) looked at minimum toe 

clearance (MTC) between 30 young, 27 healthy elderly and 10 falls risk elderly subjects. The 

subjects walked at a self-selected speed on a treadmill while a motion capture system was used to 

collect 2D foot clearance data. ApEn was utilized on a constant 500 gait cycles per subject (to 

normalize for speed variations), while the m value was set at 3 and r values were varied from 

0.1*SD to 0.9*SD in increments of 0.1. Their results showed the ability of ApEn to flip results 

based on the “r” value, as it was found that below an r value of 0.26*SD, the falls risk group had 

a higher ApEn than that of the healthy young and healthy older groups. Above an r value of 0.26, 

the mean ApEn of the falls risk group was found to be smaller than the other two groups. The 

peak ApEn values were observed for all groups at an r value of 0.4*SD, and if the method of 

maximum ApEn (described by Chon et al., 2009) is followed, would support the hypothesis that 

pathology (in this case falls risk) correlates with lower ApEn values, since the falls risk group 

was found to be lower in ApEn compared to the other two at the peak ApEn.  

More recently, Cavanaugh et al. investigated the step count values of 157 community-

dwelling older adults (aged 70 and over) over the span of 2 weeks. Their investigation looked at 

the step count values at 1-minute intervals throughout the day as a way of assessing minute-to-
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minute fluctuations in step count. What they found was that older, physically active participants 

displayed grater randomness (higher ApEn) values compared to inactive participants. 

Randomness indicated greater uncertainty in the ordering of a step count. Their conclusion raised 

the validity of nonlinear methods to assess movement health and supported earlier studies that 

higher ApEn values allowed for more adaptive movements (Cavanaugh, 2009). 

From these studies we can observe that investigations into gait variability and age using 

non-linear methods have been broad. The studies utilizing ApEn have looked at mainly spatio-

temporal and kinematic parameters. It would be of use to contribute to this literature by 

investigating other gait imbalance parameters such as ground reaction force and center of 

pressure variations. Furthermore, the performance of FuzzyEn in gait analysis of kinetic and 

kinematic parameters remains unknown, as its use has centered around EMG analysis. Hence, this 

study serves to establish normative data for ApEn and FuzzyEn in the investigation of gender 

based and age-based gait variability differences in addition to testing the efficacy of ApEn and 

FuzzyEn as tools to assess differences between two groups, with the hopes of developing an OA 

onset prediction tool.   
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CHAPTER III 
 

 

GENDER STUDY: MALES VERSUS FEMALES 
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Entropy analysis of kinetic and kinematic gait parameters reveals a complex chaotic 

behavior in both males and females 
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III.1. Abstract 

Osteoarthritis (OA) is an age-related joint degenerative disease that affects 30.8 million 

Americans. The number of adults affected by OA incidence is predicted to dramatically increase 

by 2050 as the population of adults over the age of 60 is expected to double. Thus, there is a 

critical need for reliable screening protocols for the early detection of this debilitating disease. A 

variety of variability measurements have been developed in the past decade. Approximate 

Entropy (ApEn) has been used to identify pathology in biosignals and to investigate gait 

variability. Fuzzy Entropy (FuzzyEn) was developed as an improvement of ApEn, however its 

use has primarily been in the study of electromyography signals. This study quantifies the 

performance of ApEn and FuzzyEn in identifying gait variability in healthy young male and 

female adults to provide baseline data. Twenty healthy males and females between 18 and 25 

years old walked on an instrumented treadmill at a self-selected speed while kinetic and 

kinematic parameters were recorded. We found that gait is a complex chaotic process, regardless 

of the gender, since both kinetic and kinematic parameters exhibited step-to-step variability. 

Overall, males showed lower variability in kinetic parameters while females showed lower 

variability in kinematic parameters. More importantly, FuzzyEn was less sensitive to input 

parameters and thus more reliable than ApEn. We believe that this entropy measurement is a 

promising tool for the early detection of biomechanical imbalances that can lead to OA onset. 

 

III.2. Keywords 

Gait, Chaos, Entropy Analysis, Variability, Gender 
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III.3. Introduction 

Almost half of Americans over the age of 65 suffer from arthritis, of which osteoarthritis 

(OA) is the most common (Barbour, 2017). OA is a painful, debilitating disease that is 

characterized by a progressive disappearance of the articular cartilage. Since the number of adults 

over the age of 60 is expected to double by 2050 (Ortman, 2014), it is reasonable to expect a 

significant increase in OA occurrences in the future. Hence, there is a need to develop efficient 

screening protocols to enable early detection of OA in young adults, with the hope of 

implementing corrective measures early on. The investigation of gender-based differences during 

gait may highlight key parameters for such screening protocols, since females are twice as likely 

to develop OA in the knee joint (Zhang, 2010). Gait analysis could be an effective screening task 

since it has been an established tool in investigating kinetic and kinematic variations during gait 

(Hausdorff, 2001; Andriacchi, 1985).  

Traditionally, research into gender-based gait differences has focused on linear statistical 

measures of centrality such as mean, median, standard deviation and coefficient of variation. 

These quantities highlight how far a set of data deviates from a central point, treating variations 

as random and independent, and thus disregarding temporal variations (Lomax, 2007). One of 

these studies by Kerrigan et al. involved ninety-nine young adult subjects and found that females 

have significantly greater mean hip flexion, reduced mean knee extension before initial contact, 

and higher mean ankle power generation during pre-swing compared to males (Kerrigan, 1998). 

Other kinematic studies have revealed that females show greater internal hip rotation and 

adduction when compared to males but conflicting results have been found regarding sagittal 

plane hip and knee kinematics (Ferber, 2003; Chumanov, 2008). Chiu & Wang (2007) also found 

that females show significantly higher vertical ground reaction forces in the loading response and 

pre-swing phases and higher tibialis anterior activity compared to males. While these gender 

differences deduced through linear analysis of gait remain useful, the variability of gait with 

respect to gender has remained a largely unexplored area and may lead to novel insights into the 
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higher rate of OA in females, and in the development of efficient screening protocols for early 

OA detection. 

Several studies have indicated that human movement variations possess deterministic 

properties (Dingwell, 1999; Dingwell, 2007; Harbourne, 2009). Under the theory of Optimal 

Movement Variability, first proposed by Stergiou & Harbourne (2006), there exists an optimal 

range of movement variability necessary for the body to react to environmental stimuli and 

stresses. A loss of this optimal state has been associated with pathology or fatigue (Pincus and 

Goldberger, 1994). Several non-linear methods have been developed to investigate this variability 

and fall under the umbrellas of local stability measures or entropy. Since local stability measures 

neglect the global stability of the system (Van Emmerik, 2016), it is appropriate to use entropy 

measures in studying gait variability since it is rooted in information theory. 

Approximate Entropy (ApEn) is a popular entropy measure that was first used by Steve 

Pincus (Pincus, 1995) as a method of quantifying the complexity and regularity of biological 

time-series data. The ApEn algorithm measures the likelihood that runs of patterns that are close 

for m observations remain close in subsequent incremental comparisons, based on an input 

parameter (r) related to the standard deviation of the signal (where r = k*standard deviation) and 

the length of the signal (N, the number of data points). ApEn ranges from 0 to 2, with larger 

values signifying increased variability and thus adaptability, and lower values signifying 

regularity, i.e. reduced variability or even underlying pathology (Pincus S., 1995). In gait 

analysis, ApEn has been used to investigate age-related effects of spatio-temporal variables such 

as minimum toe clearance (Karmakar, 2007), variability patterns in kinematic parameters such as 

joint angles (Estep, 2018), and in the investigation of variability in anterior cruciate ligament 

deficient knees during walking (Georgoulis, 2006). However, there is a noticeable gap when it 

comes to kinetic parameters. ApEn also shows inconsistencies with its dependence on input 

parameters and its bias towards regularity, due to an inherent self-matching feature. A recent 

investigation into the performance of ApEn with varying input parameter values by Yentes and 
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Schmid (2018) found a significant interaction between r and N and hence recommended that r 

values be listed as a range when depicting results in entropy studies. Many modifications to the 

ApEn algorithm have thus emerged, such as Sample Entropy and Multiscale Entropy. However, 

the dependence on input parameters in other entropy measures continues to be an issue (Yentes, 

2013).  

Chen and Wang (2007) developed Fuzzy Entropy (FuzzyEn), which is based on the 

concept of Fuzzy logic developed by Zadeh (1965), as an improvement to existing entropy 

measures. Unlike other entropy measures, FuzzyEn considers the imprecise environments from 

which biological data sets arise. When analyzing vector similarity, FuzzyEn replaces the binary 

response of traditional entropy measures (0 or 1), by a continuum. Despite utilizing the same 

input parameters as ApEn, FuzzyEn has shown its superiority in its robustness to noise and input 

parameter selections, and in eliminating the bias towards regularity (Chen, 2009). However, 

despite its power, FuzzyEn has been used solely in the investigation of muscle physiology, i.e. 

electromyographic (EMG) signals, and its performance in investigating kinetics and kinematics 

gait parameters thus remains unknown.  

We thus hypothesize that ApEn and FuzzyEn are effective tools in detecting gender-

related variability of kinetic and kinematic parameters. The purpose of this study was thus to 

assess the efficacy of ApEn and FuzzyEn in detecting gender-related variability and to establish 

normative kinetics and kinematics variability measures for young healthy subjects during gait. 

Specifically, we studied the variability of six parameters: (1) peak ground reaction force during 

heel strike, (2) during toe off, (3) medio-lateral center of pressure location, sagittal range of 

motion of the (4) hip, (5) knee, (6) and ankle joints.  
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III.4. Methods  

III.4.1. Subjects 

Twenty healthy males and twenty healthy females between the ages of 18 and 25 were 

included in this study (Males: age: 21.9 ± 1.8 years, Females: age: 21.9 ± 1.2 years). The study 

was conducted under the approval of the university’s Institutional Review Board and all 

participants signed an informed consent form. Participants were screened based on the inclusion 

criteria of (1) no diagnosed OA, (2) no history of lower limb surgeries, and (3) no existing cardiac 

conditions. Participants also filled out an intake form providing information about the 

participant’s height, weight, lower body injuries over the past year, neurological disorders, 

diabetes diagnosis, pregnancy, level of physical activity (active considered as exercise for two 

and a half hours a week during the past year) and administration or consumption of analgesics 

prior to participation. 

III.4.2. Data collection protocol 

A six-camera motion capture system (Natural Point Inc., Corvallis OR, USA) was used to 

record kinematics data. Twenty-six motion analysis markers were placed on anatomical 

landmarks according to the Rizzoli Lower Body protocol (Leardini, 2007). Ground reaction 

forces and plantar pressure distributions were recorded using an instrumented treadmill (Noraxon, 

Scottsdale AZ, USA).  

Instrumented barefoot subjects were asked to step on the treadmill and remain in a 

standing t-pose for calibration. Subjects then increased the treadmill speed until a comfortable 

gait speed was achieved. Subjects warmed up for two minutes at this fixed, self-selected speed 

after which kinetics and kinematics data were then collected for 10 minutes. 

III.4.3. Data processing 

Force and pressure data were sampled at 100 Hz. Pressure data was filtered using a 4th 

order Butterworth low-pass filter with a cut-off frequency of 20 Hz to reduce any treadmill-

related noise. A custom MATLAB algorithm was used to sort data per subject and per gait cycle. 
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In order to take into account the differences in speed, 370 gait cycles were selected in the middle 

of each subject’s trial. Peak ground reaction forces at heel strike and toe off (pGRFHS and 

pGRFTO, respectively) were computed for each gait cycle as the first and second peak of the total 

ground reaction force curve, respectively. To allow for inter-subject comparisons, these values 

were then normalized by body weight. The medio-lateral center of pressure location (mlCOP) 

was determined by finding the range of deviation of the center of pressure trajectory from the 

heel-toe line during the stance phase of each gait cycle (Jamshidi, 2010). This value was then 

normalized by foot length. To calculate joint kinematics, an existing OpenSim model (Hamner, 

2010) was modified to create a 19-degree of freedom template, which was then used to create 

subject-specific models. A pipeline between Matlab (MathWorks, Natick MA, USA) and 

OpenSim (Delp, 2007) was developed to automatically scale each model and compute the joint 

kinematics for each of the 370 gait cycles selected. 

ApEn and FuzzyEn values were then computed for step-to-step data for pGRFHS, 

pGRFTO, mlCOP, and the three joint ROMs, using m = 2, n = 1, and k ranging from 0.1 to 0.9 in 

0.1 increments. The ApEn and FuzzyEn algorithms used were downloaded from the Mathworks’ 

File Exchange database and were developed by Lee (Lee, 2012) and Alvarez (Monge-Alvarez, 

2015), respectively. Differences between the two methods were estimated by pulling together the 

data for males and females and computing the normalized difference (𝑛𝐷), defined as follow: 

𝑛𝐷 =  
𝐴𝑝𝐸𝑛 − 𝐹𝑢𝑧𝑧𝑦𝐸𝑛

𝐹𝑢𝑧𝑧𝑦𝐸𝑛
∗ 100 

III.4.4. Statistical analysis 

Linear analyses was performed on each parameter using an independent two sample t-test 

or Wilcoxon Man Whitney test, depending on the distribution of the data, to check for differences 

between males and females (Box, 2005). ApEn and FuzzyEn outputs were compared for each 

group (males and females), parameter, and k value using the means and medians based on the 

condition of normality found by the Jarque-Bera test (Jarque & Bera, 1980). Normal data was 
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compared using an independent two-sample t-test while non-normal data was investigated using 

the Wilcoxon Man Whitney test. Significance was set at p < 0.05. 

 

III.5. Results 

Our results indicate that: (1) gait is a complex process since all the parameters studied 

exhibited relative variability, with entropy values ranging from 0.2 to 2 (and always superior to 

0.9 at k = 0.2), and (2) these variabilities are predominantly non gender-specific. Subjects’ 

characteristics are shown in Figure 3. Males exhibited a significantly higher Body Mass Index in 

comparison to females (p = 0.048). 

 

Figure 3. Characteristics of subjects involved 

in the males vs females study. Center line 

indicates median, bottom and top edges 

indicate the 25th and 75th percentiles, 

respectively and whiskers extend to extreme 

data points. Asterisks indicate significance 

(p<0.05).  
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Regarding linear analyses (Figure 3), females exhibited significantly higher peak vertical 

force at heel strike and toe off, and higher sagittal hip ROM (p < 0.05). 

 

 

Figure 4. Linear analysis: peak vertical ground reaction force at heel-strike (pGRFHS) and 

toe-off (pGRFTO), medio-lateral center of pressure displacement (mlCOP), and ankle, 

knee, and hip ranges of motion (ankleROM, kneeROM, and hipROM, respectively). Bars 

represent the mean values per group, whiskers represent one standard deviation, and 

asterisks represent significance (p < 0.05). 

 

Regarding variability analysis using ApEn, males exhibited lower variability for peak 

ground reaction force at heel strike and toe off and for medio-lateral COP displacement (Figure 

4). However, significantly lower values for males were only found for the peak ground reaction 

force during toe off at k = 0.8 (p = 0.047) (Figure 4.a) and for the medio-lateral COP 

displacement at k = 0.2 and 0.3 (p = 0.002 and 0.003, respectively). The trends were the same 

when using FuzzyEn, with significantly lower FuzzyEn values for males in the peak ground 

reaction force during toe off at k = 0.1 and 0.2 (p =0.040 and 0.049, respectively) (Figure 4.b). 
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Figure 5. ApEn and FuzzyEn values versus k values for the peak GRF at heel strike (a), 

the peak GRF at toe off (b), and the medio-lateral COP displacement (c). Bars represent 

the mean values per group, whiskers represent one standard deviation, and asterisks rep 

represent significance (p < 0.05). Males showed lower entropy values with significantly 

lower median ApEn values in peak ground reaction force during toe off for k = 0.8 , and 

lower mean FuzzyEn values for k = 0.1 and 0.2, as well as lower median ApEn values for 

medio-lateral center of pressure displacement for k = 0.2 and 0.3. 
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Females exhibited lower variability for sagittal ankle, knee and hip ranges of motion, 

regardless of the entropy method used (Figure 5). ApEn values were significantly lower in 

females for the ankle ROM (Figure 5.c) at k = 0.1, 0.2, 0.4 and 0.5. FuzzyEn showed similar 

trends but without significance. 

 

Figure 6. ApEn and FuzzyEn values versus k values for the hip ROM (a), knee ROM (b), 

and ankle ROM (c). Bars represent the mean values per group, whiskers represent one 

standard deviation, and asterisks represent significance (p < 0.05). Females showed lower 

entropy values with significantly lower median ApEn values in ankle ROM for k = 0.1, 

0.2, 0.4, and 0.5. 
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Finally, normalized differences between ApEn and FuzzyEn values were all inferior to 

20% only for k = 0.2 (Figure 6). 

 

Figure 7. Normalized difference between mean ApEn and FuzzyEn versus k values for the 

three kinetics and three kinematics parameters. Absolute differences are all inferior to 20% 

only for k = 0.2. 

 

III.6. Discussion 

The purpose of this study was to test the efficacy of approximate and fuzzy entropy in 

detecting differences in gait variability between healthy males and females as well as to establish 

normative variability values for kinetic and kinematic gait parameters. Both kinetic and kinematic 

parameters exhibited step-to-step temporal variability. These results confirm that, for young 

healthy subjects, gait is not a simple cyclic motion but a complex chaotic process (Stergiou, 
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2011). Overall, we did not find consistent significant gender-related differences, showing that the 

processes at play seem to be universal for young healthy humans. 

Linear analyses were performed to validate our data collection protocol by comparing our 

results to previous studies. Males exhibited a significantly higher BMI than females, which is 

reflective of the male and female population aged 20-39 years old in the United States (Flegal 

2006). Females experienced significantly higher peak vertical ground reaction forces during the 

heel strike and toe off phases of gait, similar to previous findings by Chiu & Wang (2007). 

However, Keller et al. (1996) found higher vertical thrust forces in males compared to females at 

speeds of 1.5 and 2.0 m/s in a study comprising of 13 male and 10 female recreational athletes. 

Since gait speed was not controlled in our study, our contradictory findings can be attributed to 

the higher average gait speed of females, since it has been found that vertical thrust forces 

increase with speed (Keller, 1996). The increased hip range of motion in females in comparison 

to males agrees with previous findings (Kerrigan et al., 1998). We did not a find significant 

increase in the knee and ankle sagittal ranges of motion in females. However, the trend indicating 

higher ranges of motion for females agrees with previous findings (Frimenko, 2014). Controlling 

for gait speed may have revealed significant linear kinematic differences between males and 

females. However, we chose not to impose a pre-selected speed since our focus remained on gait 

variability analysis, hence necessitating a natural and comfortable gait speed for the subjects 

involved. 

For non-linear analysis, the embedded dimension of input parameter m = 2 allowed for a 

step-to-step comparison of gait data and was based on prior studies (Estep, 2018). The data length 

N was fixed at 740 steps for all subjects for investigating the kinetic and kinematic parameters. 

We varied our input parameter k (where r = k*standard deviation) incrementally from 0.1 to 0.9 

based on the recommendation by Yentes & Schmid (2018) to reveal the performance of the 

algorithms at different input parameters, and to prevent incorrect assessments of the signal 

complexity (Chon, 2009). Non-linear analysis using ApEn showed a distinctive pattern for kinetic 
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and kinematic data that peaked at k = 0.2 or 0.3 and decreased thereafter. A similar pattern was 

observed in a prior study by Kamarkar et al. (2007), where a peak was observed in healthy young, 

healthy elderly, and falls risk groups, but for a k value of 0.4. This difference in peak regions may 

be due to differences in input parameters between the two studies since interactions between input 

parameters m, k and N produce varying results (Yentes, 2018). However, ApEn peaks coincided 

with statistical significance in the case of the ankle ROM and medio-lateral COP displacement, 

which supports the recommendation by Chon to use the k value that provides the maximum ApEn 

value (Chon, 2009).   

For kinetic parameters, i.e. peak vertical force at heel-strike and toe-off, and medio-

lateral COP displacement, both entropy measures found higher values for females than for males, 

with significance for peak force at toe-off using FuzzyEn and for medio-lateral COP 

displacement using ApEn. However, we did not find any simultaneous significance. Nevertheless, 

these trends suggest that females exhibit relatively higher variability, i.e. adaptability, during the 

stance phase, which may compensate for their higher hip power absorption and ankle power 

generation in comparison to males (Kerrigan, 1998), as well as the significantly higher hip 

negative work during running compared to men (Ferber, 2003). Both males and females exhibit 

high gait variability for k values ranging from 0.2 to 0.3, which is indicative of a healthy 

biomechanical system (Pincus, 1994). 

For kinematic parameters, males exhibited higher entropy values, i.e. variability, than 

females for the ankle ROM, which was significant when using ApEn. This finding is particularly 

interesting since females walked slightly faster than males, although not significantly, and should 

have thus shown increased variability (Jordan, 2007; Estep, 2018). The implication could be that, 

despite the higher ranges of motion and gait speeds, females may lack the kinematic adaptability 

present in males. A lack of kinematic variability, i.e. an ability to adapt to external stimuli and 

stresses, could result in localized peak contact pressures in the cartilage of the ankle, knee, and 

hip joints. This local overloading may lead to gradual cartilage damage and may result in 
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osteoarthritis onset (Zhang, 2010). Our results may thus show insights into the prevalence of 

lower body osteoarthritis in females.  

Comparison of the two entropy measurement methods showed that while trends were 

similar, there were more cases of significant differences between males and females when using 

ApEn. Indeed, this is evident in literature where ApEn’s sensitivity has been used to show lower 

variability in pathological groups such as in multiple sclerosis patients where lower ApEn values 

were found (Kaipust, 2012). However, FuzzyEn showed sensitivity in peak vertical ground 

reaction force at toe off, where females had significantly higher entropy values compared to 

males. Although this was echoed in ApEn for k = 0.8, caution should be observed due to weak 

algorithmic validity of ApEn at such high k values (Pincus, 1994). For all parameters, FuzzyEn 

showed lower entropy values compared to ApEn, which goes against the current understanding 

that ApEn shows a bias towards regularity (Yentes, 2018). However, ApEn showed poor relative 

consistency for k values below 0.2, with male and female results exhibiting the well documented 

“flip-flop effect” (Boskovic, 2011). The “flip-flop effect” limits the reliability of ApEn at lower k 

values, and continues to be a strong reason of implementing a range of k input values when 

analyzing biosignals (Karmakar, 2007). Finally, for solely k = 0.2 did the two methods give 

similar values, with a normalized difference inferior to 20%. Thus, if varying k is not an option, 

using k = 0.2 should minimize the discrepancies between ApEn and FuzzyEn outputs. 

Coincidentally, this value is the one recommended for computing ApEn values (Pincus S. , 1995). 

The limitations of this study are related to the data collection protocol. The use of a 

treadmill has been found to show a bias towards regularity due to the inability to adjust speed and 

forced cadence (Dingwell, 2001) which has been revealed in ApEn and sample entropy analysis 

(Yentes, 2018). However, the use of a treadmill in this study enabled the collection of many gait 

cycles at relative comfort to the subjects and was validated by previous investigations into 

kinematic variability (Estep, 2018; Georgoulis, 2006).  Future work will focus on studying 

potential age-related effects on gait variability, and effects of this variability on joint contact 
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forces. The hypothesis to investigate would be that lower variability leads to a higher amount of 

cartilage damage. This future study will be pave the way for the development of a reliable 

predictor of the risk of osteoarthritis onset. Another limitation of this study is that the 

performance of entropy tools on patients with osteoarthritis was not conducted. Future studies 

have to be performed with healthy and osteoarthritis affected patients in order to understand the 

true result of such algorithms. Furthermore, longitudinal studies where patients are re-tested over 

a period of time would elucidate a better understanding behind the development of gait 

abnormalities with age, through the lens of variability.  

 

III.7. Conclusion 

This study assessed the variability of kinetic and kinematic gait behavior to provide 

baseline data for future studies. Our findings confirmed that gait is a complex chaotic process, 

regardless of the gender, since both kinetic and kinematic parameters exhibited step-to-step 

variability. When comparing the two entropy measures used, FuzzyEn appears to be a more 

reliable tool due to a reduced dependence on input parameters and a lower probability of finding 

potentially false significant differences. This study was the first to use entropy measurements for 

characterizing both kinetic and kinematic gait parameters, and hence paves the way for 

developing novel reliable predictors of early onset of musculoskeletal disorders through gait 

variability analysis. 
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Onset 

Eranda Ekanayake 1, Jerome Hausselle 1 

1 BAMM Lab, School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, USA 

 

IV.1. Abstract 

Osteoarthritis (OA) is an age-related joint degenerative disease that is predicted to 

dramatically increase in prevalence by 2050, as the population of adults over the age of 60 is 

expected to double. Thus, there is a critical need for reliable screening protocols for the early 

detection of OA onset. A variety of variability measurements have been developed in the past 

decade. Approximate Entropy (ApEn) has been used to identify pathology in biosignals and to 

investigate gait variability. Fuzzy Entropy (FuzzyEn) was developed as an improvement of ApEn, 

however its use has primarily been in the study of electromyography signals. This study sought to 

quantify the performance of ApEn and FuzzyEn in identifying gait variability in younger and 

older females, under the context of OA onset. Eight younger females (of ages 18 to 25 years old) 

and eight older females (of ages 50 to 60 years old) walked on an instrumented treadmill at a self-

selected speed while kinetic and kinematic parameters were recorded. We found that gait remains 

complex and chaotic into old age. Overall, older females showed relatively lower entropy values 

in all parameters except for peak ground reaction force during heel strike, showing promise in the 

variability analysis method. FuzzyEn was less sensitive to input parameters and thus more 

reliable than ApEn. We believe that this FuzzyEn is a promising tool for the early detection of 

biomechanical imbalances that can lead to OA onset. 

 

IV.2. Keywords 

Gait, Chaos, Entropy Analysis, Variability, Age 

 



47 
 

IV.3. Introduction 

Osteoarthritis (OA) is the most common form of arthritis and affects approximately 27 

million Americans today (Health, 2018). The disease is characterized by localized cartilage 

erosion at a specific joint, resulting in bone-to-bone contact accompanied by pain, swelling, 

stiffness and anatomical changes to the underlying bone (Felson, 2000). The onset of OA is 

dependent on a multitude of systemic factors that increases the vulnerability of an individual to 

the disease, after which local biomechanical factors trigger the disease (Felson, 1998). However, 

current understanding is unclear on whether systemic factors possess their own biomechanical 

issues that drive OA onset (Felson, 2000). With the number of doctor-diagnosed arthritis cases in 

the United States set to increase by 49% by 2040 (Hootman, 2016), there is a critical need to 

better understand the biomechanics behind osteoarthritis onset so that early preventative measures 

can be implemented.  

One of the systemic factors behind OA onset is age (Felson , 2000). Oliveria et al. (1995) 

found that OA incidence increases after the age of 50 years old, with knee and hip OA 

progressing the fastest during this period. While the exact reason for this is unknown, researchers 

investigating the biomechanical effects of age on gait have found a distal to proximal shift in gait 

control strategy of older adults. This shift includes less power and work generated at the ankle in 

exchange for higher power and work generated at the hip (DeVita, 2000). In addition, linear 

analysis of spatio-temporal gait parameters has revealed that elderly adults walk at slower speeds 

and with shorter step lengths, despite having higher cadence (Ko, 2010).  

Another systemic factor of OA onset is gender. Females over the age of 50 years old have 

a higher prevalence and incidence of OA for most joints, including the hip and knee (Saase, 

1989). Investigations into the biomechanical differences between males and females during gait 

have revealed a higher pelvic range of motion (ROM) in all planes (Frimenko, 2014), an 

increased knee valgus angle throughout the gait cycle (Cho, 2004), and higher ankle ROM due to 

greater ankle flexion at heel strike and toe off (Frimenko, 2014). While these biomechanical 
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differences may provide clues as to why older females are at a higher risk of osteoarthritis, it is 

important to note that earlier studies had focused on linear statistical measures of centrality, 

which sufficed under the popular ‘Generalized Motor Program’ and ‘Dynamical Systems’ 

theories of human movement at the time. However, the emergence of a more recent theory of 

Optimal Movement Variability  has warranted the use of novel non-linear tools in investigating 

the variability of human movement (Stergiou, 2006). This theory suggests that human movement 

exists in an optimal range of variability between a purely stochastic system and a purely periodic 

one (Stergiou, 2006) and that variability is essentially a deterministic process (Dingwell, 1999). 

Of the many non-linear tools developed for this cause, Approximate Entropy (ApEn) grew in 

popularity in gait variability studies (Pincus S. , 1995). ApEn is a measure of the likelihood that 

runs of patterns that are close for “m” observations remain close in subsequent incremental 

comparisons based on an input parameter related to the standard deviation of the signal r (where r 

= k*standard deviation) and length of the signal N (where N is the number of data points). The 

output of ApEn ranges between 0 and 2, with higher values signifying complexity of the signal, 

and lower value signifying regularity (Pincus, 1994). Due to the an inherent self-matching feature 

in ApEn that provided a bias towards regularity, and a significant interaction between the input 

parameters (Yentes, 2018), Chen & Wang developed Fuzzy Entropy to provide a more robust and 

reliable entropy analysis of biological signals (Chen, 2009). FuzzyEn used the same input 

parameters as ApEn while replacing the Heaviside function for a Fuzzy function with a 

“membership degree” (Chen, 2007). Our earlier investigation into the efficacy of ApEn and 

FuzzyEn in the investigation of variability in gait imbalance parameters of healthy, young males 

and females showed that FuzzyEn was more reliable due to a lower dependence on input 

parameters and a lower chance of finding false significant differences (Ekanayake & Hausselle).  

Several studies highlighted the effect of age and gait variability Buzzi et al. investigated 

this relationship by studying gait kinematics of ten younger and ten older females. They found 

that Lyapunov Exponent values were greater for the sagittal vertical displacements of the hip, 
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ankle, and knee in the elderly group, concluding that elderly subjects displayed more local 

instability than younger subjects (Buzzi, 2003). Kurz and Stergiou used non-linear statistical 

entropy to investigate sagittal kinematics between ten younger and ten older subjects and found 

larger entropy values in the older group. This suggested that there was less certainty in selecting a 

joint range of motion for the ankle, knee, and hip joints with age (Stergiou, 2003). Furthermore, 

Karmakar et al. (Karmakar, 2007) looked at minimum toe clearance between thirty young, twenty 

seven elderly, and ten elderly subjects with fall risk and found that above an ApEn input “r” value 

of 0.26*SD, the falls risk group had a lower ApEn than the other two groups. Their study 

supported the hypothesis proposed by Pincus (Pincus, 1994) that lower ApEn can be related to an 

underlying pathology.  These studies mainly focused on age-related variability of spatio-temporal 

and kinematic parameters. Since OA onset has been related to higher-than-normal joint contact 

forces, there is also a critical need to establish the effects of age on the variability of kinetic 

parameters such as ground reaction forces, center of pressure locations, and muscle activity. 

Therefore, the purpose of this study was to assess age-related changes in the variability of 

kinetic and kinematic gait parameters using Approximate and Fuzzy Entropy. This study is a 

critical first step towards a better understanding OA onset and the development of efficient 

preventive measures. Specifically, we studied the variability in females of six parameters: (1) 

peak ground reaction force during heel strike, (2) during toe off, (3) medio-lateral center of 

pressure location, and sagittal ROM of the (4) hip, (5) knee, and (6) ankle joints. 

 

IV.4. Methods  

IV.4.1. Subjects 

The study was conducted under the approval of the university’s Institutional Review 

Board and all participants signed an informed consent form. Eight females between the ages of 18 

and 25 years old and eight females between the ages of 50 and 60 years old were included. For 

subjects aged 18-25, gait data was obtained from our prior study which involved investigating the 
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efficacy of ApEn and FuzzyEn in finding differences in variability between healthy men and 

women of this age range. This study utilized the exact same parameters but focused on 

investigating the performance of entropy tools with respect to age. All participants had to meet 

the inclusion criteria of i) no diagnosed OA, ii) no history of lower limb surgeries, and iii) no 

existing cardiac conditions. Eligible participants filled out an additional intake form which 

provided information about the participant’s weight, height, lower body injuries over the past 

year, neurological disorders, diabetes diagnosis, pregnancy, level of physical activity (active 

considered as exercise for two and a half hours a week during the past year) and administration or 

consumption of analgesics prior to participation. 

IV.4.2. Data collection protocol 

To record kinematic data, a six-camera motion capture system (Natural Point Inc., 

Corvallis OR, USA) was used along with twenty-six motion analysis markers that were placed on 

participants’ bone anatomical landmarks according to the Rizzoli Lower Body established by 

Leardini et al. (Leardini, 2007). An instrumented treadmill (Noraxon, Scottsdale AZ, USA) was 

used to record plantar pressure distributions.   Participants remained barefoot for this study. Once 

instrumented, participants were asked to step on the treadmill and remain in a standing position 

for calibration. Participants then increased the speed of the treadmill until a comfortable gait 

speed was achieved and warmed up for two minutes at this fixed speed. Kinetic and kinematic 

data were then collected for ten minutes at the comfortable self-selected speed of the participant. 

IV.4.3. Data processing 

Data for younger subjects (ages 18 to 25) were selected from our prior study to match the 

average BMI and gait speed of the eight older females (ages 50-60) from whom data was 

collected in this study.  

A sampling rate of 120Hz was used for motion capture data while pressure data were 

sampled at 100Hz. Flickering motion-capture markers were corrected using pattern-based 

interpolation while a 4th order Butterworth low-pass filter with a cut-off frequency of 4Hz was 
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applied to reduce noise. Pressure data were filtered using a 4th order Butterworth low-pass filter 

with a cut-off frequency of 20 Hz to reduce treadmill-related noise.  A custom Matlab algorithm 

was used to sort data per subject and per gait cycle based on the pressure measurements. In order 

to take into account differences in speed, 370 gait cycles were extracted in the middle of the trial 

for each subject. Vertical ground reaction forces were computed based on the pressure 

distributions at each time step. Peak vertical ground reaction forces at heel strike and toe off 

(pGRFHS and pGRFTO, respectively) were computed for each step as the first and second peak 

of the total ground reaction force curve, respectively. These values were then normalized by body 

weight to allow for inter-subject comparisons. The medio-lateral center of pressure location 

(mlCOP) was determined by finding the range of  deviation of the center of pressure trajectory 

from the heel-toe line during the stance phase of each step (Jamshidi, 2010), and by then 

normalizing by foot length. To compute joint kinematics, an existing OpenSim (Delp, 2007) 

model (Hamner, 2010) was modified to create a 19-degree of freedom template to develop 

subject specific models. Scaling and inverse kinematics procedures were automatically run for 

each subject and each gait cycle using a custom pipeline between Matlab (MathWorks, Natick 

MA, USA) and OpenSim.. Sagittal hip, knee, and ankle ROM (HipROM, KneeROM, 

AnkleROM, respectively) were computed for each subject and each gait cycle as the amplitude of 

the corresponding angle during the stance phase. 

Step-to-step non-linear analysis of the six variables of interest (pGRFHS, pGRFTO, mlCOP, 

HipROM, KneeROM, AnkleROM) was performed using Approximate and Fuzzy Entropy 

(FuzzyEn) codes downloaded from the Mathworks’ File Exchange database (Lee, 2012) (Monge-

Alvarez, 2015) using input parameters of m=2, n=1 and k ranging from 0.1 to 0.9 in 0.1 

increments. based on the recommendation by Yentes et al. (Yentes & Schmid, 2018) in order to 

gauge the performance of each entropy measure and to observe and “flip-flop effect” of results. 

Differences between the two entropy methods were estimated by pulling together the data for 

younger vs older groups and computing the normalized difference (nD), defined as follow: 
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𝑛𝐷 =
(𝐴𝑝𝐸𝑛 − 𝐹𝑢𝑧𝑧𝑦𝐸𝑛)

𝐹𝑢𝑧𝑧𝑦𝐸𝑛
∗ 100 

IV.4.4. Statistical analysis 

To test for differences between the two age groups (younger and older), linear analyses 

was performed on each parameters using an independent two sample t-test or Wilcoxon Man 

Whitney test, depending on the distribution of the data. FuzzyEn values were compared for each 

group and each k value using the means and medians based on the condition of normality found 

by the Jarque-Bera test (Jarque & Bera, 1980). Normal data was compared using an independent 

two-sample t-test while non-normal data was investigated using the Wilcoxon Man Whitney test. 

Significance was set at p = 0.05. 

 

IV.5. Results 

 

 

Figure 8. Characteristics of subjects involved 

in the younger females vs older females 

study. Center line indicates median, bottom 

and top edges indicate the 25th and 75th 

percentiles, respectively and whiskers extend 

to extreme data points. Asterisks indicate 

significance (p<0.05).  
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Older females had an average age of 55.75 ± 2.60, BMI of 24.24 ± 2.55 and walked at a 

gait speed of 0.91 ± 0.21 m/s. Younger females had an average age of 22 ± 0.76, BMI of 24.15 ± 

1.96 and walked at a gait speed of 0.92 ± 0.13 m/s (Table 2). There was no significant difference 

in BMI or gait speed between the two groups, as the data from younger female subjects were 

intentionally selected to match older subjects’ BMI and gait speeds. However, 12.5% of younger 

females had suffered an injury in the lower extremity in the past year and 100% were physically 

active (defined the same as earlier), while none of the older subjects had suffered from a lower 

body injury but only 75% were physically active. 

Regarding linear analyses (Figure 7), older females had a significantly higher range of 

motion in the hip (p = 0.0281). Younger females showed insignificantly higher values for peak 

ground reaction force during heel strike and toe off and medial-lateral center of pressure. Older 

females showed marginally higher range of motion at the ankle and marginally lower range of 

motion at the knee when compared to younger females. 



54 
 

 

Figure 9. Linear result so investigation into younger vs older females. Bars represent the 

mean values per group, whiskers represent one standard deviation, and asterisks represent 

significance (p < 0.05). 

Non-linear analysis by ApEn and FuzzyEn revealed no significant differences between 

younger and older subjects in kinetics (peak ground reaction force during heel strike and toe off, 

medial-lateral center of pressure) (Figure 8) and for range of motion in the hip and ankle (Figure 

9). However, older adults had significantly lower entropy values in the range of motion of the knee, 

which was found by ApEn at k = 0.2 and 0.3 (p= 0.02 and 0.04 respectively) and FuzzyEn at k=0.1 

(p = 0.04) (Figure 9). For peak ground reaction force during heel strike, younger adults were 

observed to have slightly lower entropy values in both measures. For peak ground reaction force 

during toe off and medial-lateral center of pressure, the opposite was observed (older adults had 

lower entropy values). For all kinematic parameters (range of motion at the hip, knee and ankle), 

older adults were observed to have slightly lower entropy values.  

* 
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Figure 10. ApEn and FuzzyEn values versus k values for the peak GRF at heel strike (a), 

the peak GRF at toe off (b), and the medio-lateral COP displacement (c) in younger and 

older females. Bars represent the mean values per group, whiskers represent one standard 

deviation, and asterisks represent significance (p < 0.05). 
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Figure 11. ApEn and FuzzyEn values versus k values for the hip ROM (a), knee ROM (b), 

and ankle ROM (c) in younger and older females. Bars represent the mean values per 

group, whiskers represent one standard deviation, and asterisks represent significance (p < 

0.05). 

 

The comparison of ApEn vs FuzzyEn at varying k values revealed that differences 

between the two measures under all parameters were inferior to 20% for k = 0.2 except for 

ROMankle which was at 21% (Figure 10). However, differences were greater than 20% above 

and below k = 0.2 (Figure 10).  

* * * 



57 
 

In both investigations, entropy values at k = 0.2 between FuzzyEn and ApEn were no larger 

than 22%, indicating confidence in the input parameter.  

 

Figure 12. Normalized difference between mean ApEn and FuzzyEn versus k values for 

the three kinetics and three kinematics parameters. At k=0.2 all parameters had a difference 

less than 20% except for ROMankle, which was at 21%. 

 

IV.6. Discussion 

The purpose of this study was to assess the performance of ApEn and FuzzyEn in 

detecting differences in variability between a healthy younger group and a healthy older group 

that was controlled for gender (females). Our linear analyses found a significant increase in the 

hip range of motion of older females, suggesting the beginning of a distal to proximal shift in gait 

control strategy. This was found by DeVita et al. (2000) in an investigation of twelve young (aged 

21 years) and twelve elderly (aged 69 years) adults. Older adults generated more work at the hip 
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and less work at the ankle. Our linear analyses also revealed a slight decrease in knee range of 

motion in older adults, which is in agreement with the findings of Ostrosky et al. (1994), who 

found that older adults demonstrated decreased knee extension during gait at a self-selected speed 

when compared to younger adults. However, our study showed an unusual observation of older 

females showing slightly higher ankle ranges of motion compared to younger females. This 

conflict with the distal to proximal shift in control strategy, however, may be due to our older 

subjects having been below the age of 60, unlike other studies where significantly older subjects 

were investigated. Hence, our subjects may have been showing early signs of the purported distal 

to proximal shift. 

Non-linear analyses by ApEn and FuzzyEn found that older females had slightly lower 

entropy values, with significance in the knee range of motion, except for the peak ground reaction 

force during heel strike. The significant decrease in knee range of motion variability at k = 0.2 

indicates that a continual region of knee joint cartilage could be loaded during gait, and combined 

with knee valgus in females (Schultz, 2007), could explain the higher incidence of knee OA in 

older females (Felson, 1997). However, it must be noted that the lower entropy observed here is 

strictly relative and would still be considered complex and part of a healthy adaptable system due 

to the entropy values being greater than 1.  

The significantly higher median hip range of motion values coupled with lower entropy 

values in older females could highlight an important finding relating to osteoarthritis onset of the 

hip. Higher hip ranges of motion would cause joint contact forces to act on smaller areas of the 

femoral head and acetabular labrum during peak hip extension and flexion (as can be found 

through inverse dynamics). If true, this combination of increased force per unit area and lower 

variability (as observed in our entropy analysis) would mean that a specific region of femoral and 

acetabular cartilage is loaded with higher force concentrations during gait cycles in older 

individuals. This could lead to significant cartilage stress and hence osteoarthritis onset. More 

research would have to be conducted to determine if cartilage stress is indeed increased with 
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higher ranges of motion, in order to prove this theory. However, such findings elucidate the 

benefits of using variability analysis as an approach to better understand osteoarthritis. Out of the 

six parameters investigated, older females showed slightly lower entropy values for five, with 

significantly lower entropy values for the knee range of motion, suggesting that our hypothesis 

was mostly supported in the age investigation.  

The performance of ApEn and FuzzyEn were most consistent with each other at an input 

parameter of k = 0.2, since entropy values were within 20% of each other for all parameters 

except for the range of motion of the ankle, which was at 21%. This finding supports two 

observations by previous researchers: that a k-value of 0.2 for ApEn shows the most statistical 

validity (Pincus S. , 1995) and that the highest ApEn value often depicts the most accurate picture 

of a signal’s complexity (Chon, 2009). Furthermore, this result can be extended to include a 

recommendation to utilize a k value of 0.2 in future FuzzyEn studies investigating gait 

parameters. At a k value of 0.2, FuzzyEn showed statistical significances less of often than ApEn. 

Hence, FuzzyEn exhibits more conservative outputs as observed by Chen et al. (2009). For all 

parameters, FuzzyEn showed higher relative consistency (compared to ApEn) in its output, when 

comparing between two groups, at varying k values. However, the same could not be said for 

ApEn. The notable “flip-flop effect”, which was first outlined by Boskovic et al. (2011), was 

observed. The flip-flop effect is when the entropy values transition from relatively higher to 

relatively lower (or vice versa) as k-values increase (Boskovic, 2011). However, for all instances 

of flipping, stability was observed beyond k values of 0.2 in ApEn outputs, which suggests that k 

values of 0.1 should be avoided in future entropy studies, an assertion that was made by its 

creator (Pincus S. , 1995). Meanwhile, outputs of FuzzyEn were in agreement at all k values, 

showing the stability of FuzzyEn across a range of input k values, validating the findings of Chen 

et al. (2009) who found that FuzzyEn showed more consistency in investigating EMG signals 

when compared to ApEn and Sample Entropy.  
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One of the limitations of this study was the data collection protocol. The use of a 

treadmill has been found to show a bias towards regularity due to the inability to adjust speed and 

forced cadence (Dingwell, 2001) which has been revealed in ApEn and sample entropy analysis 

(Yentes, 2018). However, the use of a treadmill in this study enabled the collection of many gait 

cycles at relative comfort to the subjects and was validated by previous investigations into 

kinematic variability (Estep, 2018; Georgoulis, 2006). Another limitation was the small sample 

size used in the age study. A sample size of 20 younger and 20 older females would have been 

more appropriate and provided clearer results. However, the results of this investigation provides 

valuable insight into the performance of ApEn and FuzzyEn and potential outcomes of an 

eventual larger study. Future work will also have to include data from electromyography signals 

in order to better understand the role of muscle loss and osteoarthritis onset with old age. Another 

limitation of this study was that the performance of entropy tools on patients affected with OA 

was not conducted. Future work will include investigating the performance of ApEn and FuzzyEn 

in detecting differences in gait variability between a healthy and osteoarthritis affected group. A 

longitudinal study on selected subjects could also better reveal the performance of entropy tools 

with respect to osteoarthritis onset.   

 

IV.7. Conclusion 

The goal of this study was to test the efficacy of using ApEn and FuzzyEn at detecting 

differences in variability between younger and older females, based on existing knowledge of 

increased osteoarthritis occurrences in females of older ages and known gait differences between 

younger and older individuals. Our hypothesis was supported due to the ability of FuzzyEn to 

detect significant differences in variability of kneeROM between younger and older females. The 

performance of FuzzyEn was more consistent and less sensitive than ApEn, proving its most 



61 
 

robust nature. This paper demonstrates that FuzzyEn could be a promising tool to pursue the 

development of an osteoarthritis detection tool by investigating changes in gait variability. 
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CHAPTER V 
 

 

OVERALL DISCUSSION 

 

The purpose of this study was to assess the efficacy of using ApEn and FuzzyEn as tools 

to detect differences in gait variability between males and females as well as younger and older 

females, based on existing, known linear differences in gait between the two groups, with the 

hopes of developing an osteoarthritis detection tool in the future. Our hypothesis was that 

Approximate Entropy (ApEn) and Fuzzy Entropy (FuzzyEn) tools would be successful in 

detecting differences in variability between healthy groups. Our hypothesis was supported.  

Our results indicated that both kinetic and kinematic parameters exhibit step-to-step 

temporal variability across gender and age groups. These results confirm that, for younger and 

older subjects that were healthy, gait is not a simple cyclic motion but a complex chaotic process 

(Stergiou, 2011). Overall, we did not find consistent significant gender-related differences, 

showing that the processes at play seem to be universal for young healthy humans. In the 

investigation of younger and older females, we found that gait remained chaotic well into 

maturity, however a significant loss in the variability of knee range of motion was observed in the 

older group.  

The performance of ApEn and FuzzyEn were in agreement with each other at an input 

parameter of k=0.2, since both studies showed entropy values within 20% of each other for all 

parameters except for the range of motion of the ankle in the age study which was at 21%. This 

finding supports two observations by previous researchers: that a k-value of 0.2 for ApEn shows 

the most statistical validity (Pincus S. , 1995) and that the highest ApEn value often depicts the 
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most accurate picture of a signal’s complexity (Chon, 2009). Furthermore, this result can be 

extended to include a recommendation to utilize a k value of 0.2 in future FuzzyEn studies 

investigating gait parameters. At a k value of 0.2, ApEn showed statistical significance 3 times in 

both studies, while FuzzyEn showed statistical significance only twice. Hence, FuzzyEn shows 

more conservative outputs as observed by Chen et al. (2009). For all parameters and in both 

studies, FuzzyEn showed higher relative consistency in its output (compared to ApEn), when 

comparing between two groups, at varying k values. However, the same could not be said for 

ApEn. The notable “flip-flop effect”, which was first outlined by Boskovic et al. (2011), was 

observed in results in nine out of the total twelve ApEn results (when considering both studies). 

The flip-flop effect is when the entropy values transition from relatively higher to relatively lower 

(or vice versa) as k-values increase (Boskovic, 2011). However, for all instances of flipping, 

stability was observed beyond k values of 0.2 in ApEn outputs, which suggests that k values of 

0.1 should be avoided in future entropy studies, an assertion that was made by its creator (Pincus 

S. , 1995). Meanwhile, outputs of FuzzyEn were in agreement at all k-values, showing the 

relative stability of FuzzyEn across a range of input k-values, validating the findings of Chen et 

al. (2009) who found that FuzzyEn showed higher relative consistency in investigating EMG 

signals when compared to ApEn and Sample Entropy.  

Our study also revealed that entropy analysis could potentially highlight hidden 

mechanisms behind OA onset. The combination of increased linear range of motion and reduced 

non-linear variability was observed in both studies. In the male vs female study, we found that 

females had a significantly higher hip range of motion coupled with a significantly lower ankle 

variability. In the younger vs older female study, we found that older females had significantly 

higher linear hip range of motion, coupled with a significantly lower knee range of motion. This 

increase in linear range of motion combined with decreased range of motion variability could 

indicate that specific areas of joint cartilage are being loaded constantly and may contribute to 

increased OA onset observed in older females. More research would have to be conducted to 
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investigate this relationship, by building computational models from data already obtained in this 

study.  

One of the limitations of this study was the data collection protocol. The use of a 

treadmill has been found to show a bias towards regularity due to the inability to adjust speed and 

forced cadence (Dingwell, 2001) which has been revealed in ApEn and sample entropy analysis 

(Yentes, 2018). However, the use of a treadmill in this study enabled the collection of many gait 

cycles at relative comfort to the subjects and was validated by previous investigations into 

kinematic variability (Estep, 2018; Georgoulis, 2006). Another limitation was the small sample 

size used in the age study. A sample size of 20 younger and 20 older females would have been 

more appropriate and provided clearer results. However, the results of this investigation provides 

valuable insight into the performance of ApEn and FuzzyEn and potential outcomes of an 

eventual larger study. Future work could include investigating the performance of ApEn and 

FuzzyEn in subject suffering from OA against healthy non-OA affected subjects, as well as a 

longitudinal study investigating the differences in gait variability with age in the same sample 

pool. Such studies would increase the understanding of the ability of ApEn and FuzzyEn to 

predict OA onset. Other studies could test the repeatability of ApEn and FuzzyEn in investigating 

the same parameters used in this paper.  
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CHAPTER VI 

 

 

CONCLUSION 
 

Our study confirmed that human gait was chaotic and variable in healthy populations. We 

found that Approximate and Fuzzy Entropy (FuzzyEn) could successfully detect differences in 

variability when comparing groups based on gender and age. We observed that Approximate 

Entropy (ApEn) was more sensitive to differences than FuzzyEn, and that ApEn displayed the 

notable “flip flop” effect at input “k” values that were less than 0.2. FuzzEn, on the other hand, 

was found to be more stable and consistent and did not display result flipping. We confirmed that 

the input “k” parameter that produces the maximum entropy value gives a statistically valid result 

for ApEn as found by Chon et. al (2009). We also found that “k”values less than 0.2 produced 

poor statistical validity. 

Our results displayed that entropy analysis can elucidate potential “hidden” factors 

behind osteoarthritis onset, such as an increase in linear range of motion coupled with a decrease 

in kinematic variability. Further research would have to be undertaken to confirm the validity of 

this claim. The limitations of this study include a bias towards regularity due to the use of a 

treadmill and the small sample size used in the age study.  

Overall, we conclude that entropy analysis is a useful tool in detecting variability 

differences and suggest that FuzzyEn could be used in the development of an osteoarthritis (OA) 

prediction tool. Future work would include testing FuzzyEn in the investigation of variability 

between healthy and OA affected groups.  We recommend that future research display a range of 

“k” values in entropy results as initially suggested by Yentes et al. (2018).
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APPENDIX A 

Non-linear analysis results at k=0.2 for ApEn and FuzzyEn in the Male vs Female investigation. 

(*) indicates higher entropy value of significance at p<0.05. 

 

 

 

 

 

 

    MALES (n=20) FEMALES (n=20) p 

pGRFHS ApEn 1.45 1.47 0.382 

  FuzzyEn 1.31 1.36 0.249 

      

pGRFTO ApEn 1.46 1.48 0.144 

  FuzzyEn 1.31 *1.37 0.049 

      

mlCOP ApEn 1.18 *1.25 0.002 

  FuzzyEn 1.42 1.49 0.337 

      

ROMhip ApEn 1.34 1.33 0.860 

  FuzzyEn 0.97 0.95 0.900 

      

ROMknee ApEn 1.48 1.46 0.457 

  FuzzyEn 1.38 1.24 0.441 

      

ROMankle ApEn *1.49 1.39 0.046 

  FuzzyEn 1.38 1.11 0.081 
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Non-linear analysis results at k=0.2 for ApEn and FuzzyEn in the Younger vs Older (fixed 

gender, female) investigation. (*) indicates higher entropy value of significance at p<0.05. 

 

 

    
18-25 GROUP 

(n=8) 
50-60 GROUP 

(n=8) p 

pGRFHS ApEn 1.47 1.48 0.691 

  FuzzyEn 1.35 1.44 0.442 

      

pGRFTO ApEn 1.48 1.45 0.111 

  FuzzyEn 1.35 1.30 0.388 

      

mlCOP ApEn 1.25 1.20 0.127 

  FuzzyEn 1.50 1.37 0.236 

      

ROMhip ApEn 1.46 1.27 0.279 

  FuzzyEn 1.33 1.15 0.573 

      

ROMknee ApEn *1.44 1.29 0.022 

  FuzzyEn *1.27 1.04 0.043 

      

ROMankle ApEn 1.42 1.35 0.310 

  FuzzyEn 1.20 1.10 0.351 
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APPENDIX B 

Rizzoli Lower Body Protocol. A 26 marker lower body tracking system based on the work of 

Leardini et al. (Leardini, Sawacha, & Paolini, 2007). The red markers are calibration markers that 

are removed prior to data collection. Figure obtained from OptiTrack documentation 

[NaturalPoint, Inc, USA].  

 

 

 

 

 

 

 

 

 

 

 

 

Coronal front and coronal back (left and right) images of a subject, displaying how Rizzoli 26 

was implemented.  

 

 

 

 

 

 

 

 



79 
 

APPENDIX C 

Data collection screen. Top left and top right show force and pressure sensitive treadmill in 

addition to motion capture cameras. Bottom left depicts real time data collection of force and 

pressure data via Noraxon software. Bottom right shows real time tracking of markers and a 3D 

skeleton.  
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APPENDIX D 

Subject intake form: exclusion criteria (1-4) and auxiliary information (5-10). 
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