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Project Overview 

Metachronal Motion 

 The goal of this project was to design a remote operated paddle powered underwater 

vehicle that utilizes metachronal motion. This paddling motion is based on the metachronal 

paddling motions of shrimp and krill, and is defined as a wave pattern created by the sequential 

actions of structures. The primary advantage of metachronal motion in comparison to traditional 

hydrodynamics, is found at smaller scales, where metachronal motion produces higher drag in 

water. This advantage is why many pleopods use this motion to optimize swimming by giving 

the animal a weight support from the motion of the fluid. Metachronal motion produces more 

uniform flow vectors that provide not only a forward thrust, but are also capable of producing a 

lifting force. This type of motion can create numerous different flow vectors, it is even utilized 

by some species of krill to swim upside down. Figure 1 shows a comparison between a simple 

synchronized paddling on the left and metachronal paddling on the right. 

 

Figure 1 
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New Project Scope and Objectives 

  The goal of this project was to build an underwater vehicle that utilizes the concept 

proven by Dr. Santhanakrishnan and Mitchell Ford, but on a smaller scale, so that the vehicle can 

operate freely in water. To accomplish this, we were given several constraints and goals. The 

robot needed to be lightweight less than five pounds would be ideal, and less than ten pounds 

was required. The robot needed to be less than a foot in length to facilitate testing within the lab. 

The robot needed to reach a top speed of at least 0.5 m/s and accelerate to that speed within one 

body length of the robot. Dr. S. also required a camera be attached so that video can be recorded 

from the vehicle. 

Applicable Codes and Standards 

Since our project is an ROV, there aren’t many codes and standards to be found, but we 

can abide by different general building codes and safety codes. 

IEEE 1680 is a standard for environmental assessment of electronic products. This has to 

do with reduction or elimination of environmentally sensitive materials. It also includes codes for 

design for end of life, life cycle extension, energy conservation, end-of-life management, 

corporate performance, and packaging. To abide by these standards, we have design the ROV to 

be environmentally friendly. It is electrically powered so it does not give off any emissions. This 

ROV does however use acrylic cement. To abide by these standards, one must properly dispose 

of the cement after use and follow the proper cure time before use. This ROV is designed to not 

have an end of life, but to constantly be upgraded and modified for testing. We do however 

provide proper disassembly and disposal techniques. Energy conservation can be achieved by 

using renewable energy to power this ROV. IEEE standards also talk about futureproofing and 

corrosion resistance. Our ROV can constantly be upgrades to tackle the futureproofing standard. 

Our ROV is made mostly acrylic, this is corrosion resistant. There is however a steel spring 

inside the shaft seal that can corrode and will have to be replaced in regular maintenance 

intervals.  

The American Society of Mechanical Engineers has one standard we can abide by. That 

standard is B18.2.1. It is Square and Hex bolt screws. This code describes that square and hex 

bolt screws should have a standard tolerance and sizing. This is more for manufactures than for 

us. We will be using square and hex bolts in the fastening of acrylic plates on the ROV. 

The National Fire Protection Association has two standards and codes that we can use in our 

project. NFPA 70B and NFPA 70E. 70B is Electrical equipment maintenance. NFPA 70B 

describes that power should be disconnected when doing maintenance. This is to minimize the 

chances of shock when working. We will disconnect power and the Raspberry Pi when doing 

maintenance to our ROV. NFPA 70E is electrical safety in the workplace. This standard states 

that an arc flash and shock hazard sign must be posted if using an arc or powering an object. We 

have printed off a sign and will post it in Fablab 104 when the ROV is under power, or when/if 

we weld. This sign should be posted anywhere the ROV is at all times. 

Ingress Protection rating describes waterproofing standards. Our ROV will incorporate IP67 

Servos. The standard chart is shown below in figure 2. 
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Figure 2 

 

This rating is used to evaluate devices by how water and dust proof they are. In our case, an IP 

rating of 66 or better is preferred for our choice of servos due to them likely surviving a leak in 

our robot's hull. 

DNV*GL is a Norwegian and German Society that has standards for ROV’s. DNV*GL stands for 

Det Norske Veritas and Germanischer Lloyd.  

1.1) ROV should be designed to where if a single failure occurs, no dangerous situation can occur. 

This ROV is designed so that if a single failure occurs, no dangerous situation will occur. 

Power will be cut. 

1.2) ROVs and their components shall be designed to meet the service conditions stated in the 

specification. 

This ROV was designed to meet the requirements given to us and the conditions it will be 

tested in. 
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1.3) ROVs shall be designed and built to ensure safe operation and facilitate proper maintenance 

and the necessary surveys. 

If the user manual and maintenance manual are followed, this standard will be 

accomplished. 

1.4) ROVs shall be designed and constructed in such a way that sufficient possibilities for 

monitoring during dived travels are given. This can be achieved, e.g., by video systems and 

acoustic instruments. 

Camera is attached to this ROV where a live video is possible. Depth senor can be added 

with ease. This is due to many extra ports on the Raspberry Pi.  

1.5) ROVs shall be so equipped that the operator can be informed about the position and the 

operating condition of the vehicle. 

Camera is attached to this ROV where a live video is possible. 

1.7) Due care shall be taken to ensure that inadvertent movements cannot cause the remotely 

operated vehicle to destroy itself or equipment located at the work site or to become separated 

from its control and supply lines (e.g., by cable protector). 

ROV will be in a tank. Area around tether shall be open and free of any human or object. 

Tether will be help by a person guiding it into the tank with some slack. ROV could hit sides of 

tank.  

1.8) If electronics should fail, ROV should retain buoyancy. 

If electronics fail, buoyancy is not changed. We have a static (3d printed) weight in the 

ROV to retain buoyancy that is not electronically controlled.  

1.12) ROVs shall be so designed, that their operation causes no inadmissible environmental loads 

and endangering of the environment will be avoided as far as possible. 

No emissions come out of this ROV. If user manual and maintenance manual are followed, 

proper cleaning after use to be specific, no environmental issue should be present. 

6.2.5) The test pressure applied to vessels and apparatus with stress from internal pressure shall be 

equivalent to 1.5 times the maximum allowable working pressure. 

This can be tested with the box test in a tank.  

6.8.2) All electrical systems and equipment shall be inspected and tested before the ROV is put 

into service. 

If The manuals given are read and used properly, this is accounted for. We have an 
assembly manual that states one must check all electrical and mechanical connections and test 
them before service.  

IPC (Institute for Printed Circuits) 

IPC-2221 Generic PCB 
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This is a standard for printed circuits that can be done at the ENDEVOR Lab. This 
standard can be followed if circuit is printed.  

 

 

Body Design 

Design Updates 

 The design we presented at the FDR featured an aluminum body, with internal layers, a 

bottom layer for the servos, and a top layer for the rest of the electronics, and paddles sticking 

out the sides, directly driven by the servos. Figure 3 shows this design. 

 

Figure 3 

 We received valuable feedback concerning various portions of this design including the 

limitations of welding aluminum together. We also were asked to provide fenders for the paddles 

to aid with metachronal motion, which coupled with an updated material altered our designs to a 

fairly large degree. The first step in updating our design was to finalize the material for our body. 

We narrowed our list down to the original aluminum, polycarbonate, and acrylic. Figure 4 shows 
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the decision matrix for these materials. 

 

Figure 4 

 While aluminum was slightly cheaper, neither polycarbonate nor acrylic would break the 

bank. Aluminum was the most durable, and the panels for the design were easy to produce, but it 

was the heaviest material, and would prove difficult to weld together. Polycarbonate and acrylic 

have rather similar properties, and while polycarbonate is more durable and less brittle than 

acrylic, it is difficult to precisely machine and cannot be laser cut, whereas acrylic can be. The 

ability to quickly, easily, and precisely machine all of the panels with the use of the laser cutter 

available in Endeavor, is what ultimately made acrylic the most favorable option for the body 

material. 

 After deciding on acrylic we had to redesign the body using that new material. Our team 

developed three design concepts that were decided upon using the decision matrix in figure 5.            

 

Figure 5 

The first design is similar to the aluminum design from the FDR, with extended flanges on the 

front and top plates to act as a sort of fender to aid the metachronal motion. The second involved 

moving the paddles to the center of the robot. This design also changed from a flanged design for 

the lid to threaded inserts placed on the interior of the robot. This design featured a large amount 

of empty space on the top second layer, which was accounted for in the third design by widening 

the gap between the left- and right-hand side servos and removing the need for a second layer. 
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The first design shape is the least wide design, but due to the flanged top would not experience 

uniform flow over the top of the robot. Ultimately the second design was too complicated, and 

left Dr. S. with concerns on whether or not it would be capable of producing the correct flows for 

metachronal motion. Ultimately design 3 won out because it was the one Dr. S. liked the best. 

 

New Design Details 

  This new acrylic features many features that have gone unchanged since the initial design 

phases, such as direct drive from the servos, a 3D printed servo mount, and a small body 

footprint. All of these are done to maximize output while keeping the mass of the robot small 

enough to overcome the inertia as it begins paddling. The length is 10.5 inches, which is about 

the minimum distance we can have our paddles spaced apart, while still being able to achieve 

metachronal motion without the paddles impacting one another. The width is 12.75 inches and 

the height of the body is 2.31 inches, these are both the minimum dimensions allowed that still 

allow for all of the necessary components to be placed in the robot. Figure 6 shows the design in 

more detail, while figure 7 shows an exploded view of the design. 

Figure 6 
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Figure 7 

 As can be seen in the figures above the design features laser-cut acrylic panels that are to 

be adhered together using IPS Weld-On 3 Acrylic Plastic Cement. The lid and shaft seals utilize 

a rubber gasket to ensure watertight seal and are secured with sealing screws, which are screwed 

into threaded inserts placed in the panels of the robot, while a PG19 cable gland is used to 

provide a waterproof seal around the tether entrance. A 3D printed insert serves as a mount for 

the servo motors and the camera. The servos are then able to directly drive the paddles. Situated 

above the paddles are two fenders that are constructed out of acrylic panels and are to be screwed 

into the end plates and help maintain the flow needed for metachronal motion. The shaft 

assembly is easily interchangeable and assembles by 4 screws compressing a coupler holding the 

seal and bearing on a gasket. The design user interface and control is handled by a Raspberry Pi 

through a custom written Python program leveraging Flask for a web interface. This allows the 

paddles to be fully configurable per side and can be set to be fully synchronized or individually 

independent. Power will be supplied through a tether cable comprised of three DC conductors 

and an Ethernet cable. Power is routed through the robot by the power supply board that steps the 

voltage down for the internal electronics. Figures 8 through 10 show the top, front, and right 

views of the design. 
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Figure 8 

 

Figure 9 
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Figure 10 

 This design meets DNV*GL (Det Norske Veritas and Germanischer Lloyd) 1.8, where if 

the robot has electrical issues, it is still positively buoyant. We were able to determine this by 

testing to see if our design is lighter than the mass of the water it displaces. From given product 

weights (each servo is 60g) and from our Solidworks Model we know that our design weighs 

roughly 7.4lbs without additional ballasting, and we know that our design displaces (2.25" * 

7.25" * 10.5") [Main Body] + 2x (25.27 in^3)[Fenders] + (26.2in^3) [Paddles] = 248 in^3 = .144 

ft^3. Multiply that total by the density of water (62.4 lbs/ft^3) and we find that the mass of the 

water displaced is roughly 8.9 lbs. Since 7.4 is less than 8.9 our sub is positively buoyant. The 

design will be able to demonstrate metachronal motion while floating. Manipulating the 3D 

printed servo mount or by filling in the empty spaces within the fenders, neutral buoyancy can be 

easily achieved. 
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Limitations of Design and Future Work 

     Our design is not without limitation. One aspect of the design that can be improved 

upon is reshaping the design to be more aerodynamic. As a submarine, the design will require 

ballasting. An immediate recommendation is to increase the 3d printed pieces and fill in air gaps 

to increase the mass of the robot to achieve neutral buoyancy, while further along a team could 

add an active ballasting system to allow for the user to control the dive. Another limitation is that 

acrylic is brittle, which demands an extra degree of caution, and results in an increased risk in 

cracks to the body. Our design is not suited for high pressures, so the design will need to be 

reworked for deep-water use.  

It is also recommended that the user interface be updated to be compatible with a 

controller. Other future work includes adding a feedback system which cuts servo power, makes 

robot positively buoyant, then shuts system power if leaking is detected internally. Another long 

term goal is autonomy. Future teams could also look into upgrading from a passive hinge system 

to an active hinge system, and research the effects of width between right-hand- and left-hand 

side paddles on metachronal propulsion. 

Shaft Assembly Design 

Design Updates 

The shaft assembly for the robot was previously very expensive, and difficult to 

manufacture. The design needed a much simpler way of applying a waterproof application to a 

rotating shaft for the project to be completed with plenty of testing time before the end of the 

semester. The previous design uses cut brass tubing which has sleeve bearings and O-rings with 

wiper lids where the shaft will be pressed through the sleeve bearings with lubrication. The 

actual tubing that holds the apparatus is lathed to where thin bronze nuts and O-rinds were used 

to compress the system down and hold it in place. There are many issues with the design of this 

scheme which leads up to the new design.  

 

Figure 11 
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Figure 12 

Figure 11 (top) and 12 (bottom). Figure 11 shows a cut view of the old design scheme using 

sleeve bearings spaced by O-rings with wiper lids to seal the shaft. Figure 12 shows the new 

application which uses a ball bearing and a spring loaded rotary shaft seal with wiper lids to 

waterproof the rotating shaft.  

The new design is a much simpler design to manufacture and is a lot more cost efficient 

than the previous design. In the new design, a ½" acrylic sheet is laser cut into a 1 ½” by 1 ½" 

sheet that will hold both the plastic and glass balled ball bearing and the rotary shaft seal with 

steel spring on wiper lid. This apparatus is bolted onto the body with a gasket that seals the space 

between the acrylic body and the acrylic shaft holder in the subassembly. The aluminum shaft 

has minor manufactured processes done for it to fit onto the servo motor’s bronze shaft coupler 

(holds ¼" outer diameter shafts). The shaft is purchased as a ½" OD shaft. On one end of the 

shaft, the shaft is lathed down to ¼" to fit into the shaft coupler but remains ½" through the ball 

bearing and wiper lid shaft seal. On the other end of the shaft, A D-profile with a male end key in 

the middle is cut out of the shaft to fit a 3D printed sleeve that holds the actual paddles. It is 

recommended that the shaft is marked where these cuts are to be made after the servo motors and 

waterproof subassembly is in place. The paddles are laser cut where a pair of nuts and bolts are 

used to clamp the paddles down to the shaft sleeve, keeping the paddle in line during motion. 

The servo’s chosen for this assembly is the HS-656WP from servo city. The shaft coupler is 

purchased for the spline on the servo. This servo was chosen for multiple reasons and is 

discussed in the “Decision Matrix and New Design Details” section of this paper. The paddles 

are made from 1/8” acrylic sheets cut into two sections, the top section (2”x 2”) and the bottom 

section (3” x 2”). These sections are attached together by a small brass hinge that can be 

purchased at Lowes. 
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Decision Matrix and Design Justifications 

 

Figure 13 

 

Figure 14 

Figure 13 (Top) and 14 (Bottom). Figure 13 shows a decision matrix used to determine which 

shaft sealing application to use after both designs were shown to the team. A scale between one 

and three (one being the worst, three being the best) was assigned to each major category. The 

weighting applies the importance of each section which will factor into a total score, where the 

higher score is the overall better option. Figure 14 shows a decision matrix for the servo options, 

where + is the worst score and +++ is the best score. The most + determines the chosen servo.  

The shaft sealing techniques and the servo motors were given a list of criteria for which 

the components would be graded on. Unfortunately, due to unforeseen circumstances, the testing 

for some of the criteria were given “best educated guesses” for grading purposes. The chosen 

shaft sealing mechanism was the new idea where a ball bearing and rotary shaft seal is used to 

keep the shaft watertight, and the chosen servo was the HS-656WP due to its reasonable price, 

good torque, high water resistance, low current draw, and decent speed. 

For paddle design analysis, the size of the paddles were based off multiple parameters. 

Ideally, an optimization code is to be configured to determine paddle dimensions based off 

velocity and position, but the design of the paddles were based off of a range of different paddle 

lengths that were determined from a code developed early in the design process. The code uses 
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basic drag force assumptions applied to the legs with different lengths to determine how much 

stall torque will be applied at different angular velocities and stroke amplitudes. The range was 

set between 3 inches and 7 inches total for the size of the paddle. When designing the paddle, all 

of the servo motors and their stall torques were recorded and were also given a 10% offset from 

the stall torque to make sure the motor was still running (for example, if the stall torque is 2 Nm, 

1.8 Nm is used to make sure the design is not meeting the stall torque since the current draw will 

spike and the motor will have low velocity then). For all the motors, the average stall torque was 

about 2.5 Nm, which 2.25Nm was used when determining the parameters. Testing of the motor 

for variable paddle sizes was one of the things that was going to be tested until unforeseen 

circumstances did not allow the team to do such. The final paddle size dimension was based off 

the model where the frequency of the paddles moving are compared to the torque of the motors 

specs. Testing of the frequency was also part of the testing of the paddles, but was not 

accomplished due to unforeseen circumstances as well. The guess frequency of the loaded servo 

motors since the testing was not accomplished was 1.5Hz, where the torque of the motor needed 

to be roughly 2.25 Nm. This concluded the 5” total length of the paddles to be the largest paddle 

from the simulation that allowed for the maximum velocity profile yet met the torque and 

frequency specs. The widths of the paddles were given as a set point to the body team to help 

them design the robot within the size constraints given (2” width allows them 8” of body width 

to stay within the given goal which adds up to about the raspberry pi width, servo widths and box 

thicknesses totaled together). 
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Figure 15 

Figure 15. The diagram is the results of a python code that simulates the length of the paddles 

effecting to stall torque on the motors due to the force of drag. The code used to get the figure is 

shown in Appendix A. 

 

Limitations of Design and Future Work 

The sealing design seems like an easy, yet reasonable way to waterproof the shaft, but 

there are many limitations to the design. The first major limitation to the design is the code 

simulation. The code simulation, as shown in Appendix A, shows very basic dynamic equations 

and relationships to try and estimate certain parameters for the paddles rather than verifying them 

with experimental data. Ideally to accomplish this, an optimization code needs to be written that 

uses the code established from the “System Simulation” section of the paper to optimize paddle 

surface area while maximizing velocity and position. Other variables such as stroke amplitude 

could also be factored into the optimization as well. Also, as mentioned, experiments need to be 

ran prior to optimizing the code to validate the code.  

For the shaft sealing design, the spring that holds the wiper lid in place is made from 

steel. If the robot is to corrode, the seals will need to be replaced. Also, the seals are rated for 

only 7 psi of pressure. This means after the robot is submerged below 16 feet of water, the seal 

will not properly be capable of water sealing the shaft. Ideally, there are other shaft seals for 

rotary applications that can withstand higher pressures, but do not support the shaft sizes used in 
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this application. More research into different rotary shaft seals can be done to try and fit a larger 

shaft seal into place that can withstand higher pressures than the current application. Also 

research into different spring materials will help as a redundant factor for if the robot has shaft 

leaking issues.  

The shaft sleeves are 3D printed at a fine setting for PLA. PLA can potentially wear, 

especially if constantly under a lot of stress constantly. More research into the shaft sleeve 

material could be very beneficial to improving the life expectancy on the sleeves, allowing the 

paddle sizes to be more interchangeable in the future.  

Since the shafts were designed around 2” wide paddles, more research into shafts should 

be done to where if a new desired paddle width is to be tested, wider shafts do not have to be 

manufactured to properly hold the paddle. An idea is to alter the sleeve size and to place a “cap” 

over the hole that is exposed from the shaft sleeve when using for wider paddle applications. 

Also, a set screw connecting the sleeve to the paddle will help with the stability of the paddle and 

eliminating any potential slipping of the sleeve.  

Power Supply, Distribution, and transmission Design 

Design Updates 

 The power supply of the MPPRUV is handled by an external 24V power supply and an 

internal power distribution circuit. This was done in order to balance power supply with the 

anticipated power draw of the system. The other two options were Power over Ethernet (PoE) 

and a 5V or 48V DC power supply.  

PoE was our first choice for power delivery as it would allow us to combine data 

communications and power into one, reasonably small and lightweight cable. We ran into issues 

with this design choice during research as we realized that the implementation would be much 

more complex than we believed we had time for. We also discovered that the absolute maximum 

power that we could supply with PoE was 90W, which was far below our worst-case power draw 

which came out to about 200W. It would require us to step the PoE voltage down to usable 

voltages for our DC equipment, have large magnetic components, and would take up a large 

amount of space in the final robot design. The advantages that the PoE would offer would be 

negated by the tether we had found in which we could have DC power and ethernet running in 

one cable.  

In the end we chose a medium voltage, 24V DC power system that used buck converters 

to step the voltage down for our servos, Raspberry Pi, and servo controller. We also had two 

other options for our line voltage: 5V and 48V. 5V was too low to allow much power to flow to 

our robot over any distance, with the required power of 200W this would give us a minimum 

current of 40amp which would incur a lot of losses in the transmission line. The 40amps could be 

accommodated if the cable in the tether was very large and heavy, however this was not a 

feasible design. The other option was 48V, which in many cases would be better with lower 

losses in the transmission line. The reason we didn’t go for 48V was that it was dangerously 

close to the minimum voltage required for power on safety checks and would likely have slowed 

down our development process. We did not research buck converters for this voltage, but from 
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general research, using this voltage would increase heat output, component weight, and 

component size. After looking at our options we settled on 24V DC for the power through the 

tether as the voltage was high enough that we didn’t need to use thick or heavy cables and the 

buck converters at this voltage were very efficient both with power and space. 

The power distribution and servo controller board are designed with our 24V tether power supply 

voltage, 5V Raspberry PI and servo controller voltages, and 7.4V servo voltages in mind. There 

are 5 buck converters as part of it, four of which output at 7.4V for the servos and one of which 

outputs at 5V for the Raspberry Pi and Servo Controller. Each buck converter is built 

implementing the Texas Instruments TPS56339 buck converter IC. This IC allows the 

conversion of voltages from 24V to any value from 1V to 12V, which is perfect for our 24V 

tether voltage and 5V and 7.4V power outputs. This also allows the output voltage to be changed 

to support many different optimal servo voltages for maximum performance. The servo 

controller is based on the PCA9685 from NXP and uses the design from Adafruit as reference. 

Using the Adafruit design as reference allows us to draw from the software libraries provided by 

Adafruit in our project, greatly simplifying the programming of the device by abstracting the 

software from the low-level hardware and programming required to handle I2C manually. The 

different schematics are shown below for the two different buck converters and the servo 

controller along with the overall schematic. 
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Overall Schematic for the power distribution board 
Figure 16 

Figure 16 

7.4V Buck Converter Schematic 

5V Buck Converter Schematic 

Servo controller 

Adafruit PCA9685 
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In our design we chose servos to drive our paddles over a few other options. Other 

notable options include stepper motors, linear actuators, and a very sophisticated planetary gear 

system. Overall servos were our best choice and will be explained in the following paragraphs. 

Our first idea, and the one demonstrated to us, were stepper motors. Stepper motors were 

very quickly dismissed due to their large size and heavy weight, but the most positive aspects of 

stepper motors were their previous use in the lab model created my Mitchell Ford, their infinite 

variability, and capability for high speeds.  

Our third idea, and the most complex, was the use of planetary gear systems along with a 

two-bar mechanism to generate the paddling motion. The best part of this is the electrical 

simplicity of the design, it would still use servos, but the servos could be small and not very 

powerful or fast. The actual power plant for this design would be a powerful brushless motor, 

one for each side with the ability to link both sides to ensure synchronization. The offset would 

be handled by moving the planetary gears to introduce a positive or negative offset in the 

position of the paddle. This idea was elegant but would have required the creation of very precise 

and complex parts and was not deemed to be feasible. 

Our second idea, and another one we initially dismissed due to speed and power, was 

servos. Initially servos sounded like a great idea, we would have very fine control over their 

position at any given time, but their speed the torque would quickly become a problem with 

larger paddles or higher speeds. In the end, we decided to go with servos as no other option was 

as space efficient or as easy to handle hardware-wise. In the end the servos were the best choice 

for this project and will work great as we have managed to implement them.For the design of the 

actual power distribution board we first needed to decide on a size. We had already decided on 

implementing a raspberry pi into the machine and the MAE body team already had access to a 

raspberry pi model in solid works to design around. To make their life easy we told them to 

simply give us space for another raspberry pi to put the power distribution board and ensure we 

could run wires between them.  

To keep with general good practice design principles, we had the power input on one side 

moving to the outputs, we decide to put the I2C and raspberry pi power location on the top of the 

board to put them as close to the Pi as possible. In this design with an input current of the board 

was going to be around 5 amps so to ensure the best connect we gave a long pad that you could 

strip a long portion of the wire and solder directly to the board. For grounding the different parts 

of the buck converters and servos we decided it was best practice to have a ground plane on the 

bottom of the board and use vias to connect the two sides. The became tricky when trying to 

connect the tether cable to the board, it makes the builders life a little easier we created a small 

ground pad on the top of the board with vias underneath it. We had a small concern about the 

vias holding the current to pass between the two sides, we overcame this by over sizing the vias 

and giving the builder the option to fill in the vias with extra solder.  
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𝑡𝑟𝑎𝑐𝑒 𝑎𝑟𝑒𝑎(𝑚𝑖𝑙𝑠2) = (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (3𝐴𝑚𝑝𝑠)

(0.048 ∗ 𝑇𝑒𝑚𝑝_𝑟𝑖𝑠𝑒(10℃)0.44)
)

1
0.725

 

𝑡𝑟𝑎𝑐𝑒 𝑤𝑖𝑑𝑡ℎ(𝑚𝑖𝑙𝑠) =  
𝑡𝑟𝑎𝑐𝑒 𝑎𝑟𝑒𝑎(𝑚𝑖𝑙𝑠2)

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑠𝑠(2𝑜𝑧) ∗ 1.378 (
𝑚𝑖𝑙𝑠
𝑜𝑧 )

= 26.9𝑚𝑖𝑙𝑠 

 

Above is the calculations for the required trace width of the individual buck converters. A big 

assumption is that this calculation is with a 2oz copper board, this simply refers to the thickness 

of the copper. If a 1oz copper board used, then the required trace width comes out to 53.8mils 

instead of the 26.9mils that a 2oz copper board requires. This is important because the largest 

trace width I was able to fit onto the board was about 50mils, so this PCB requires a 2oz copper 

board to stay within safety tolerances. A note to make is the random constants that are present 

in the equation are from the IPC-2221 standard for PCB external traces.  

 

Figure 17  - Top    Figure 18 - Bottom 
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Decision Matrix and New Design Details 

 

 Board 

Space 

Complexity Cost Cable 

Complexity 

Power Over 

Ethernet 

+++ +++ +++ + 

5V DC + + + +++ 

24V DC* ++ ++ ++ ++ 

 

Above is the decision matrix for choosing the power delivery options and how we chose, that 

covered all of the needed areas. 

We did not create a decision matrix for the power distribution board because we made it from 

scratch and thus were able to create it in a manner to best fit our needs. That being said in the 

future one safety change that I would consider making is putting direct connectors on the board, 

this would make for less open pads to be potentially shorted. 

Software Design 

Design Updates 

 In the beginning we had three options for writing software for this robot, the Robotics 

Operating System (ROS), hard programming in C/C++, and programming in Python. The first 

option that we pursued was ROS, it had excellent support for robotics and would have made 

making the robot autonomous a piece of cake. C and C++ was another option that we did not 

pursue due to the extreme complexity and time required to write all functions from scratch but 

would have been very performant. In the end we moved to Python as it had many functions built 

in and could still do low level communications with the servo controller.  

ROS was the first option we tried, and we had some nice success with it. We managed to 

write out a publisher and subscriber such that we could control the robot in real time, but we ran 

into problems with high command rates as the program would break away from running the 

paddles to handle the latest command which slowed the program down dramatically. After this 

there was talk of moving the program to ROS Parameters, but this was not implemented as we 

switched away from ROS. 

C and C++ was another option we considered. With these programming languages we 

could create a very high-performance application at the cost of a large and hard to handle 
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program. Everything we wanted to do was very much possible with these programming 

languages and, if we were to create this program before 2010 would have been our first choice, 

but do to the simplicity and capabilities of Python, we didn't need to deal with C or C++. 

In the end we settled on Python. We already had some code that could be carried over 

from the attempt at ROS as it ran on top of Python. We used python to great effect in this project. 

Combining both a web interface and the servo controller to create a comprehensive application 

that has both a good user interface and the low-level control necessary to run the servos directly 

within the application. We were again proven right in choosing this path through performance 

metrics as this application at most used 2.5% of the raspberry pi’s computational power, even 

while running the servos at 100 times per second which is almost twice as high as necessary.  

In order to keep the software burden on the Raspberry Pi, and the authors of said 

software, manageable, we decided to use the open source software Motion to handle the camera. 

Motion is a open source free software package originally designed to convert the Raspberry Pi 

into a motion activated security camera. From this package we disabled the motion detection and 

recording options and have it just serving a motion jpeg stream that can be opened in a web 

browser and viewed live with low latency. This software also can be expanded in the future with 

more cameras as it supports USB cameras as well, in most cases without much reconfiguration.  

 

Decision Matrix and New Design Details 
 

Simplicity Ease of Use Ease of Upgrades Future Expandability 

Python with Flask* +++ +++ ++ + 

ROS + + ++ +++ 

Note: Higher is better 

Limitations of Design and Future Work 

 The only issue that our final design will face is expandability in the future. With ROS it 

would have been very easy to make the RUV autonomous for add extra features that could be 

controlled by a controlling computer.  

User Interface 

Design Updates 

 The web interface was created using Python Flask, a Python package used to create web 

applications. We expanded the web application such that it could control and start processes on 

the Raspberry Pi itself. The web interface is created using an HTML webpage as a template with 

all the variables subbed in at request time. The variables are handled by an HTML form that 

allows the change of variables and a button to update the variables on the Raspberry Pi. The 
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starting and stopping action are handled in the same form and as such allows the updating of 

variables with the start button (though this is not part of the specifications of the software). The 

web interface also allows the tuning of the pulse widths for the servos to ensure the proper 

calibration of the 180-degree maximum paddle amplitude. 

 

  

 

Figure 19 The website of the servo Controller 
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System Simulation 

Design Overview 

Because fabrication and testing of the robot could not be accomplished during these 

unfortunate times, our team had to figure out a way to see if our design meets the goals given at 

the beginning of the course. A system simulation was determined to be the best way to see if the 

system properly meets the goals given without having any data from testing a built prototype. 

The system is built on Python 3.7 using the import of “odeint” to solve a set of dynamic 

equations. First, a free body diagram of the system needs to be drawn to determine what forces 

act on the paddles. 

  

Figure 20 

Figure 21. A free body diagram is drawn from theory to show all major forces acting on the 

system. The green arrow on the bottom references the power stroke of the paddle. The x-

components of forces are used to determine the x position and velocity at different times. The 

magnitude of forces are calculated at 2/3 the length of the paddle segments since the linear 

velocity increases as the length of the paddle increases (triangular force distribution). The stroke 

amplitude is defined as the angle between the paddle’s final positions for recovery and power 

strokes outlined by the angled orange lines. The paddle is broken into two sections, a top section 

which will not hinge on the recovery stroke due to it being directly attached to the shaft, and the 
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bottom section where the recovery stroke’s force is ignored due to the hinge allowing the support 

to fold. In real world application, there will be a fraction of drag due to this hinging but will be 

minimal for overall simulation results.  

The diagram allows for a system of ordinary differential equations to be derived to solve 

for the position and the velocity of the system over a function of time. These results can be 

graphically displayed to see if the velocity of the robot meets the goal of .5 m/s within one length 

of the robot. 

  

Figure 21 
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Figure 22 

Figure 23a (Top) and Figure 23b (Bottom). Figure 23a displays the system of differential 

equations that the system simulation code solves. The code is shown in Appendix B. Theta 

which is the angle of the paddle from the vertical “zero position” is defined as well as it’s 

derivative with respect to time. These values will display positive and negative, where the code 

will use the derivative to determine the magnitude of the forces (positive or negative values). The 

linear velocity can be derived as a function of the angular velocity function over the length of the 

paddle. The force of drag used is then thrown into the differential equations of x dot equaling the 

velocity of the robot, and the acceleration is the sum of forces in their respective polarities. 

Figure 23b shows the position in the x axis (top) and the velocity (bottom) as a function of time. 

The horizontal orange lines show the given requirements, where the velocity must exceed .5 m/s 

before the length of the robot is travelled (10.5”). 

The simulation results allow the user to enter custom values for all variables into an easy to 

use Python class to simulate the system with different variable values. The simulation seems to 

display a reasonable graphical display for the system. The values used to calculate the results in 

Figure 23 are; 

 M (mass) = 3.17 kg (7 lbs) 

 Body Frontal Face – W (width) = .324 m (12.75”), H (height) = .0508 m (2”) 

 Top Paddle Face – L (length) = .0508m (2”), W (width) = .0508m (2”) 

 Bottom Paddle Face - L (length) = .0762m (3”), W (width) = .0508m (2”) 
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 A (stroke amplitude) = 100 degrees 

 ω (frequency) = 2π 

 Φ (phase offset per paddle) - Paddle 1 = 0, P2 = π/2, P3 = π, P4 = 3π/2 

 Cdp (coefficient of drag paddle) = 1.3 

 Cdb (coefficient of drag body) = 3 

The generic simulation code used can be found in Appendix B. 

 

Limitations of Design and Future Work 

The overall code gives a decent analysis of the system theoretically but has not been 

tested experimentally to determine the validity of the results. The overall simulation follows a 

trend, which compared to previous research, seems valid, but cannot be verified without testing 

the actual prototype. The code is also a two-dimensional problem in which requires four 

dimensions (x,y,z,t) for proper analysis. The code also assumes basic drag forces and dynamic 

relationships which could be less accurate than hydrodynamic models. Future research needs to 

be done on such hydrodynamics and the code should be applied for different research structures 

to determine the best code fit for the working prototype.  

An optimization code which follows this code would help design body and paddle 

parameters as the frontal areas of the body and paddles can be varied, maximizing velocity and 

position as outputs. The code can use the basic dynamic model and can potentially open a new 

area of research on how to optimize dimensions for optimal performance of the vehicle.  

Cost Analysis 
For our project we found it easier to separate our cost analysis list into two categories. 

With one category being used for the parts that will be used for the body and the waterproofing 

of the body. The other category being for the list of parts that will be used for the electronics and 

the operation controls for the robot. We separated the parts into these categories in order to help 

estimate how much of our budget would be spent in each categories area.  

Mechanical 

For this category we placed all the parts and components we would need to manufacture 

the body and to install our waterproofing measures. This includes the acrylic to build the body 

and the cost of the gaskets and lip seals we needed to waterproof our robot. We also included the 

materials for the paddles and the 3D parts that we will need to manufacture. The final cost for 

these materials came out to be $539.47. The list for the mechanical components is provided in 

Appendix D. 

Electrical 

For this category we placed all the parts and components that we would need to power 

and operate the robot. The electrical components estimate will include costs for the parts 

necessary to power our robot and ensure that it operates correctly. It will include the costs for the 

three servo options that we have used for testing and it includes the final servo option that we 
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chose to move forward with. It will include the cost for the materials needed manufacture our 

control boards and any costs for wires and components necessary for it. We have also included 

the costs for the raspberry pi, power supply, and our camera. The final cost for these materials 

came out to be $1000.00. The list for the electrical components is provided in Appendix D. 

Overall 

After we finalized the calculations of the cost for our parts and materials, we ended up 

being under our budget of $4000 for our project. By being under budget we are allowed much 

more room for contingency which gives us financial room to test our systems more and allow us 

to improve the design. The final total cost estimate for the electrical components came to $1000 

and the final total cost for the mechanical components are $539.47. The combined cost for our 

electrical and mechanical components is $1,539.47. This is less than half of our budget of $4000. 

This will allow us to use a 100% contingency plan with still room for more improvements if we 

see fit. A 100% contingency will make the total cost be $3078.94 and will allow us to replace any 

part if or improve any subsystems if necessary. This will also give us room to test our methods as 

we see fit. This contingency will give us ample room for any mistakes that may occur during our 

manufacturing process. A complete parts list and calculation is provided as Appendix D. 
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Testing Plan 
 Figure 24 shows an overview of the testing and assembly GANNT Chart. A full 

Microsoft project file has been submitted alongside this report for detailed viewing. 

 

Figure 234 
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Mechanical 

 Mechanical testing will consist of five stages. Stage one will consist of cutting and 

assembling a small box made of acrylic, similar to the one in figure 25. This will be used to test 

the sealing of the weld-on 3 acrylic cement. Once 

the cement is verified another box will be built. 

This one will have 0.5” holes in two sides. This 

will allow us to test the cable glands by running 

the tether in one side and out the other leaving the 

ends of the tether out of the water and out of 

harm’s way while we test the glands. This box or a 

nearly identical box can then be made to test the 

shaft seals design. The sealing capabilities of these 

need to be tested and verified early in the process 

before building commences.  

Later, once the body is assembled a further 

test will be conducted on the body, with all 

mechanical components assembled correctly, but 

without any of the electrical components. If this 

works, we will add the electrical components and 

do an unpowered test. After that test is successful, 

the robot will be powered on, and the fully realized design will be tested one last time to ensure 

everything works correctly, and there is no leakage. 

 

Electrical 

 Electrical testing will be very straight forward. Once the power supply board is 

completely soldered, it will need to be powered up and tested to ensure that all voltages are 

present, and the servo controller operates as expected. First closely inspect tall of the solder joint 

to ensure proper connection. Test the connections after the visual conformation by securing the 

board to a nonconductive mat and connecting the board to the bench power supply. From here 

measure the output voltages with an oscilloscope or multimeter to ensure that they are at the 

proper 5 and 7.4 volts respectively. If the voltages are not where they should we recommend 

visually inspecting the connections, then proceeding to connect the oscilloscope to view the 

waveform ripple from the buck converter. If the output is still not at the desired voltage, then 

troubleshoot by narrowing down which buck converter is the problem and check the connections 

and part orientations. For troubleshooting the I2c connection, connect the power board to the 

Raspberry pi and see if the chip turns on and the outputs are desired, you can connect an 

oscilloscope to ensure the SDA and SDL are the correct waveforms.  

Hazard Analysis 
There are several hazards involved with this project including shock, pinch, cut, tripping, 

irritant, and biohazards. There is a shock hazard from electricity powering this ROV. Especially 

 

  Figure 25 
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when in water. A pinch hazard due to the mechanical mechanism driving the paddles. A cut hazard 

from fabrication and manufacturing. A tripping hazard from the tether. An irritant hazard from 

Weld-on 3. which is an acrylic cement used to join the acrylic body together. A biohazard from 

transporting it from water source to water source. Every single one of these hazards and be 

prevented. To combat shock hazard, we can get the ROV checked by electrical engineering 

professors, and we can also practice safe wiring and grounding standards. To combat pinch hazard, 

we can cut power to the ROV whenever working on it,and keep our hands away from the ROV 

when in operation. To combat cut hazards, we can wear proper safety equipment (gloves and safety 

glasses) and practice proper methods as well as getting the proper training on said tool. To protect 

against tripping on the tether, we will have only one person holding the tether and no one else 

around it. It will also be corded off. Using proper PPE like a mask, gloves, and eye protection, 

this can be minimized. To prevent a biohazard, we will wash and thoroughly clean the ROV before 

and after every test and especially before and after it is moved to a different water source. 

 

Design Goals and Did They Meet 
From the system simulation, the goal of achieving .5 m/s within the body length of the 

robot with the design that is currently simulated met the expectations. Figure 23 shows the 

intersection between the position and velocity functions, and shows the velocity reaching the 

.5m/s goal before the robot achieves 10 ½" (the length of the robot). The system is theoretical, so 

experimental data could potentially alter the result of this goal.  

Appendices 

Appendix A 

Code (Python 3) is shown for paddle length analysis. Equations are displayed under the 

functions. 

import matplotlib.pyplot as plt 

from numpy import * 

def Calculations(Length, Width, Kv, Density, Cd): 

    lmeter = Length * .0254 

    wmeter = Width * .0254 

    v = linspace(0,5,1000) 

    Fd = .5 * Density * v**2 * Cd * lmeter * wmeter 

    Torque = (Fd * lmeter) 

    return v,Fd,Torque 

def Velocity(Kv,Length): 
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    lmeter = Length * .0254 

    RN = linspace(10**0,10**3,1000) 

    velo = RN*Kv/lmeter 

    return RN, velo 

def Frequency(l,v,SA): 

    lmeter = l*.0254 

    f = (90/pi)*(v/(lmeter*SA)) 

    return f 

def lengthsatisfy(v,f,SA): 

    l = (90/pi)*(v/(f*SA))*39.37 

    return l 

def freq_vs_torq(density,SA,L,Cd,W): 

    lmeter = L * .0254 

    wmeter = W*.0254 

    f = linspace(0,10,1000) 

    t = .5 * density * ((pi/90)*SA*lmeter*f)**2 * Cd * wmeter * lmeter 

    return f,t 

def PaddleAnalysis(): 

    Density = 997.05 #kg/m^3 

    Kv = .8927 * 10**-6 #m^2/s 

    Llowest = 3 #inches for all lengths 

    L0 = 3.5 

    L1 = 4 

    L2 = 4.5 

    L3 = 5 

    L4 = 5.5 

    L5 = 6 

    L6 = 6.5 
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    Lhighest = 7 

    Width = 2 #inches 

    Cd = 1.28 #flat plate 

    SA = 120 #Stroke angle in degrees 

    frequency = 3 #Hz 

    #Import From Calculation for all lengths 

    v, Fdlowest, Tlowest = Calculations(Llowest,Width,Kv,Density,Cd) 

    v, Fd0, T0 = Calculations(L0,Width,Kv,Density,Cd) 

    v, Fd1, T1 = Calculations(L1, Width, Kv, Density, Cd) 

    v, Fd2, T2 = Calculations(L2, Width, Kv, Density, Cd) 

    v, Fd3, T3 = Calculations(L3, Width, Kv, Density, Cd) 

    v, Fd4, T4 = Calculations(L4, Width, Kv, Density, Cd) 

    v, Fd5, T5 = Calculations(L5, Width, Kv, Density, Cd) 

    v, Fd6, T6 = Calculations(L6, Width, Kv, Density, Cd) 

    v, Fdhighest, Thighest = Calculations(Lhighest, Width, Kv, Density, Cd) 

    fl = Frequency(Llowest,v,SA) 

    f0 = Frequency(L0, v, SA) 

    f1 = Frequency(L1, v, SA) 

    f2 = Frequency(L2, v, SA) 

    f3 = Frequency(L3, v, SA) 

    f4 = Frequency(L4, v, SA) 

    f5 = Frequency(L5, v, SA) 

    f6 = Frequency(L6, v, SA) 

    fh = Frequency(Lhighest, v, SA) 

    f, tl = freq_vs_torq(Density,SA,Llowest,Cd,Width) 

    f, t0 = freq_vs_torq(Density, SA, L0, Cd, Width) 

    f, t1 = freq_vs_torq(Density, SA, L1, Cd, Width) 

    f, t2 = freq_vs_torq(Density, SA, L2, Cd, Width) 
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    f, t3 = freq_vs_torq(Density, SA, L3, Cd, Width) 

    f, t4 = freq_vs_torq(Density, SA, L4, Cd, Width) 

    f, t5 = freq_vs_torq(Density, SA, L5, Cd, Width) 

    f, t6 = freq_vs_torq(Density, SA, L6, Cd, Width) 

    f, th = freq_vs_torq(Density, SA, Lhighest, Cd, Width) 

    #calculate frequency 

    length = lengthsatisfy(1.75,frequency,SA) 

    print("Length to satisfy frequency; l >= {:.2f} inches".format(length)) 

    plt.plot(v,Fdlowest, label="Length = {:} inches".format(Llowest)) 

    plt.plot(v, Fd0, label="Length = {:} inches".format(L0)) 

    plt.plot(v, Fd1, label="Length = {:} inches".format(L1)) 

    plt.plot(v, Fd2, label="Length = {:} inches".format(L2)) 

    plt.plot(v, Fd3, label="Length = {:} inches".format(L3)) 

    plt.plot(v, Fd4, label="Length = {:} inches".format(L4)) 

    plt.plot(v, Fd5, label="Length = {:} inches".format(L5)) 

    plt.plot(v, Fd6, label="Length = {:} inches".format(L6)) 

    plt.plot(v, Fdhighest, label="Length = {:} inches".format(Lhighest)) 

    plt.xlim(0,2.5) 

    plt.ylim(0,70) 

    plt.xlabel("Velocity of Legs (m/s)") 

    plt.ylabel("Force of Drag on Legs (N)") 

    plt.title("Force drag on Legs") 

    plt.legend() 

    plt.grid() 

    plt.show() 

    plt.plot(v, Tlowest, label="Length = {:} inches".format(Llowest)) 

    plt.plot(v, T0, label="Length = {:} inches".format(L0)) 

    plt.plot(v, T1, label="Length = {:} inches".format(L1)) 
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    plt.plot(v, T2, label="Length = {:} inches".format(L2)) 

    plt.plot(v, T3, label="Length = {:} inches".format(L3)) 

    plt.plot(v, T4, label="Length = {:} inches".format(L4)) 

    plt.plot(v, T5, label="Length = {:} inches".format(L5)) 

    plt.plot(v, T6, label="Length = {:} inches".format(L6)) 

    plt.plot(v, Thighest, label="Length = {:} inches".format(Lhighest)) 

    #plt.plot(x,servohighest,'k',label="Highest servo torque",linewidth=2) 

    plt.xlim(0,2.5) 

    plt.ylim(0, 13) 

    plt.ylabel("Motor Torque Needed (N*m)") 

    plt.xlabel("Velocity of Leg (m/s)") 

    plt.title("Torque needed for motor") 

    plt.legend() 

    plt.grid() 

    plt.show() 

    plt.plot(v, fl, label="Length = {:} inches".format(Llowest)) 

    plt.plot(v, f0, label="Length = {:} inches".format(L0)) 

    plt.plot(v, f1, label="Length = {:} inches".format(L1)) 

    plt.plot(v, f2, label="Length = {:} inches".format(L2)) 

    plt.plot(v, f3, label="Length = {:} inches".format(L3)) 

    plt.plot(v, f4, label="Length = {:} inches".format(L4)) 

    plt.plot(v, f5, label="Length = {:} inches".format(L5)) 

    plt.plot(v, f6, label="Length = {:} inches".format(L6)) 

    plt.plot(v, fh, label="Length = {:} inches".format(Lhighest)) 

    #plt.plot(x,servofrequency, 'k',linewidth=3, label="Servo Frequency Required = {:.2f} 

Hz".format(frequency)) 

    plt.xlim(0, 2.5) 

    plt.ylim(0,8) 

    plt.ylabel("Frequency (Hz)") 
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    plt.xlabel("Velocity of Legs (m/s)") 

    plt.title("Frequency vs Leg Velocity for Motor Selection") 

    plt.grid() 

    plt.legend() 

    plt.show() 

    plt.plot(f, tl, label="Length = {:} inches".format(Llowest)) 

    plt.plot(f, t0, label="Length = {:} inches".format(L0)) 

    plt.plot(f, t1, label="Length = {:} inches".format(L1)) 

    plt.plot(f, t2, label="Length = {:} inches".format(L2)) 

    plt.plot(f, t3, label="Length = {:} inches".format(L3)) 

    plt.plot(f, t4, label="Length = {:} inches".format(L4)) 

    plt.plot(f, t5, label="Length = {:} inches".format(L5)) 

    plt.plot(f, t6, label="Length = {:} inches".format(L6)) 

    plt.plot(f, th, label="Length = {:} inches".format(Lhighest)) 

    plt.xlim(0, 5) 

    plt.ylim(0, 8) 

    plt.ylabel("Torque Required by Motor(N*m)") 

    plt.xlabel("Frequency (Hz)") 

    plt.title("Frequency vs Leg Velocity for Motor Selection") 

    plt.grid() 

    plt.legend() 

    plt.show() 

PaddleAnalysis() 

Appendix B 

Code (Python 3) is shown for body simulation analysis. Equations are displayed under the 

functions. 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import odeint 
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from CollisionCheck import motion 

class Element(): 

    def __init__(self,L,W, Cd): 

        self.L = L 

        self.W = W 

        self.A = L*W 

        self.Cd = Cd 

class Krill(): 

    def __init__(self,m, Body,Paddle_1,Paddle_2): 

        self.m = m 

        self.body = Body 

        self.p1 = Paddle_1 

        self.p2 = Paddle_2 

class Medium(): 

    def __init__(self,ρ): 

        self.ρ = ρ 

class Motion(): 

    def __init__(self,A,ω,ϕ): 

        self.A = A 

        self.ω = ω 

        self.ϕ = ϕ 

class Simulator(): 

    def __init__(self,Krill,Motion,Medium,X0=np.array([0,0]),tf = 5): 

        self.t = np.linspace(0,tf,1000*tf) 

        self.X0 = X0 

        self.mot = Motion 

        self.med = Medium 

        self.krill = Krill 
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    def F_d_paddle1(self,bodyvel,theta,dtheta): 

        fd = (0.5*self.med.ρ*self.krill.p1.Cd*self.krill.p1.A*((dtheta*2*self.krill.p1.L/3)-

bodyvel)**2)*np.cos(theta)*np.sign(dtheta) #look into body velo offset (add body velo - flow 

velo) 

        return sum(fd)  

    def F_d_paddle2(self,bodyvel,theta,dtheta): 

        fd = (0.5*self.med.ρ*self.krill.p2.Cd*self.krill.p2.A*((dtheta*(self.krill.p1.L + 

2*self.krill.p2.L/3)-bodyvel)**2)*np.cos(theta)) 

        return sum(fd) 

        def F_d_body(self,vel): 

        return (0.5*self.med.ρ*self.krill.body.Cd*self.krill.body.A*(vel)**2) 

        def sys(self,X,t): 

        x, xdot = X[0], X[1] 

        deriv = np.zeros_like(X) 

        theta = self.mot.A*np.sin(self.mot.ω*t + self.mot.ϕ) 

        omega = self.mot.A*self.mot.ω*np.cos(self.mot.ω*t+self.mot.ϕ) #theta dot 

        #look at equilibrium 

        deriv[0] = xdot #position to velo 

        deriv[1] = (2*self.F_d_paddle1(xdot,theta,omega)/self.krill.m + 

2*self.F_d_paddle2(xdot,theta,omega)/self.krill.m - self.F_d_body(xdot)/self.krill.m) 

#acceleration from f=ma 

        return deriv  

    def simulate(self): 

        self.X = odeint(self.sys,self.X0,self.t) 

    def graph(self): 

        plt.figure(1) 

        plt.subplot(211) 

        plt.plot(self.t,self.X[:,0],label="Position") 

        plt.plot(self.t, .2667+0*self.t) 

        plt.xlabel("Time (s)") 



 

 

42 

 

        plt.ylabel("X-Position(m)") 

        plt.subplot(212) 

        plt.plot(self.t,self.X[:,1],label="Velocity") 

        plt.plot(self.t,0*self.t+.5) 

        plt.ylabel("Velo(m/s)") 

        plt.xlabel("Time (s)") 

        plt.legend() 

        plt.show() 

if __name__ == "__main__": 

    Medium = Medium(ρ = 1000) 

    Body_1 = Element(L = 0.0508, W=0.324, Cd = 3) 

    Paddle_1 = Element(L= 0.0508, W =0.0508, Cd = 1.3) 

    Paddle_2 = Element(L =0.0762, W=0.0508, Cd = 1.3) 

    Krill = Krill(3.17,Body_1, Paddle_1, Paddle_2)     

    Motion = Motion(A=np.radians(100),ω=2*np.pi,ϕ=np.array([0,np.pi/2,np.pi,3*np.pi/2])) 

    Sim =Simulator(Krill,Motion,Medium,X0=np.array([0,0]),tf = 5) 

    Sim.simulate() 

    Sim.graph() 
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Appendix C: Cost Estimate Lists 
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