#### **AIChE Design Presentation**

Zech Walker

# The Process

- Sustainable production of anhydrous ammonia
  - On-site production of N<sub>2</sub> and H<sub>2</sub> with renewable energy sources
    - N<sub>2</sub> produced via pressure swing adsorption
    - H<sub>2</sub> produced through electrolysis
  - Haber-Bosch synthesis of ammonia



# The Design

- 50 metric tons per day of commercial-grade, 99.5% mass purity, anhydrous ammonia
  - Small relative plant size
    - Loss of scale
    - Modular Numbering-up approach

- A greener approach in electrolysis
  - Methane reformation typical
  - Contract local wind energy providers

# **Discussion of Major Equipment**

Per Module:

- PSA Equipment
  - Four (4) stage reciprocating compressors
  - Three (3) interstage cooling water heaters
  - Three (3) cooling water centrifugal pumps
  - Three (3) knockout drums
  - Four (4) pressure vessels
- Electrolysis Equipment
  - One (1) water purification system
  - One (1) electrolyzer

## PSA Unit



# PSA Unit

Pressure Vessel Design: V-104, V-105, V-106, V-107

| Pressure Vessels         | V-104        | V-105    | V-106 | V-107 |  |  |
|--------------------------|--------------|----------|-------|-------|--|--|
| Orientation              |              | Vertical |       |       |  |  |
| Design Pressure (barg)   | 11.          | 11.      | 11.   | 11.   |  |  |
| Volume (m3)              | 11.5         | 7.7      | 7.7   | 11.5  |  |  |
| Diameter (m)             | 1.25         | 1.       | 1.    | 1.25  |  |  |
| Length (m)               | 9.           | 10.      | 10.   | 9.    |  |  |
| Process Temperature (°C) | 113.         | 113.     | 113.  | 113.  |  |  |
| Material of Construction | Carbon Steel |          |       |       |  |  |

# **Discussion of Major Equipment**

Per Module:

- PSA Equipment
  - Four (4) stage reciprocating compressors
  - Three (3) interstage cooling water heaters
  - Three (3) cooling water centrifugal pumps
  - Three (3) knockout drums
  - Four (4) pressure vessels
- Electrolysis Equipment
  - One (1) water purification system
  - One (1) electrolyzer

## **Electrolyzer Parameters**

#### **Electrolyzer Operating Parameters**

| Specifications             | Range              | Single Module Values |
|----------------------------|--------------------|----------------------|
| Net Production Rate        | 300 - 485 Nm^3/h   | 412 Nm^3/h           |
| Power Consumption          | 3.8 - 4.4 kWh/Nm^3 | 4.1 kWh/Nm^3         |
| Hydrogen Purity            | 99.99%             | 99.99 %              |
| Oxygen Content in Hydrogen | < 2ppm             | <2 ppm               |
| H2O Content in Hydrogen    | < 2ppm             | <2 ppm               |
| Delivery Pressure          | 1-200 barg         | 7.6 barg             |
| Ambient Temperature        | 5-35 °C            | 35 °C max            |
| Electrolyte                | 25% KOH            | 25% KOH              |
| Feed Water Consumption     | -                  | 129 gph              |

# **Discussion of Major Equipment**

- Ammonia Reactor Equipment
  - Five (5) stage reciprocating compressors
  - Four (4) knockout drums
  - Three (3) interstage cooling water heat exchangers
  - Four (4) cooling water centrifugal pumps
  - One (1) reactant / reactor effluent heat exchanger
  - One (1) reactor effluent / cooling water heat exchanger
  - One (1) reactant heating furnace
  - One (1) fluidized bed reactor
  - One (1) cooling tower
  - One (1) liquid ammonia separator
  - One (1) ammonia storage tank
- Ammonia Refrigeration Unit
  - One (1) R717 evaporator
  - One (1) R717 chiller
  - One (1) interstage cooling water heat exchanger
  - Three (3) stage reciprocating compressors
  - Two (2) cooling water centrifugal pumps
  - One (1) knockout drum

#### **Ammonia Reactor Loop**



#### **Fired Heater**

#### **Furnace Design: H-101**

| Specification             | Single Module |
|---------------------------|---------------|
| Required Heat Load (MJ/h) | 970.          |
| Design Heat Load (MJ/h)   | 1075.         |
| Efficiency                | .8            |
| Inlet Temp. °C            | 342.          |
| Outlet Temp. °C           | 450.          |
| Design Pres. (Barg)       | 205.          |
| Process Fluid Piping      | Alloyed Steel |
| Fuel Gas                  | Natural Gas   |

## Fluidized Bed Reactor

#### **Reactor Design: R-102**

| Design Factors                   | R-102           |
|----------------------------------|-----------------|
| Reactor Volume (m <sup>3</sup> ) | 1.53            |
| Diameter (m)                     | 1.8             |
| L/D Ratio                        | 0.334           |
| Design Pres. (barg)              | 205.            |
| Reaction Heat (kJ/h)             | 655000.         |
| Catalyst Charge (kg)             | 11600.          |
| Void Fraction                    | 0.5             |
| Materials of Construction        | Stainless Steel |

#### E-108 Annual Cost Savings

| Designation                    | Single Module | Whole Design<br>(Ten Modules) |
|--------------------------------|---------------|-------------------------------|
| Duty (MJ/hr)                   | 1150          | 11500                         |
| Flow Rate Natural Gas (ft3/hr) | 1440          | 14400                         |
| Annual Cost Savings            | \$53,000      | \$530,000                     |

# **Cooling Tower**

#### **Cooling Tower Design: T-101**

| Cooling Tower                          | T-101              |
|----------------------------------------|--------------------|
| CW Supply Temp (°C)                    | 48.89              |
| CW Return Temp (°C)                    | 29.44              |
| Duty Removed from CW System<br>(kJ/hr) | 10x10 <sup>6</sup> |
| Water Cooling Capacity (gpm)           | 442.52             |
| Power Supplied for Fan (kW)            | 11.12              |
| Power Supplied for Pumps (kW)          | 12.15              |
| % Water Loss to Evaporation (%)        | 0.033              |

# **Refrigeration Unit**



# **Refrigeration Unit HEX**

#### Heat Exchangers E-110 E-111 E-112 Refrigerant Floating Head Туре R717 Refrigerant Interstage R717 Cooler Cooler Evaporator 21 12 86 Area (m2) 104,900 Duty (kJ/h) 637,500 817,200 Shell Temp. (°C) -20 124 131 12 22 Design Pres. (barg) 6 Phase Vapor + Liquid Vapor Vapor + Liquid Materials of Construction Carbon Steel Carbon Steel Carbon Steel Tube 40.7 40.7 40.7 Temp. (°C) 4.9 4.9 Design Pres. (barg) 4.9 Phase Liquid Liquid Liquid Materials of Construction Stainless Steel Stainless Steel Stainless Steel

#### Heat Exchanger Design: E-110, E-111, E-112

#### Health, Safety, and the Environment

- Production trains as an inherently safer design
  - $\circ$  Reduced complexity with identical designs
  - $\,\circ\,$  Less process fluid in any one section of the plant
  - Potential for storage in smaller tanks, reducing the chance for disaster should one module fail
- Minimization of the carbon footprint
  - Fired heater as the primary source of carbon emissions
- Improved safety in the absence of methane reformation and sulfur recovery
  - $\,\circ\,$  Elimination of poisonous gas exposure, such as with  $\rm H_2S$

## **Potential Consequence Summary**

|     |                                                               |                  |                                                     |              | Disruption of Other |          | Community |
|-----|---------------------------------------------------------------|------------------|-----------------------------------------------------|--------------|---------------------|----------|-----------|
| No. | Hazard                                                        | Equipment Damage | Environmental Compliance                            | Loss of Life | Business Units      | Legal/PR | Impact    |
| ,   | Runture of High Pressure Process Pining (No Ammonia Released) | Medium           | Non-Toxic Release (N/A)                             | Medium       | Low                 | Low      | Low       |
|     |                                                               |                  |                                                     |              |                     |          |           |
| 2   | кирпиre oj гиgn Fressure Process Piping (Ammonia Keleasea)    | Meailim          | 1 oxic Release, Severe Environmental Action Needed  | riign        | mean                | nign     | nign      |
| 3   | Loss of Containment from Ammonia Storage                      | Low              | Toxic Release, Moderate Environmental Action Needed | Low          | Low                 | Medium   | Low       |
| 4   | Fire in Processing Unit (No Ammonia Released)                 | Medim            | Non-Toxic Release (N/A)                             | Low          | Medium              | Low      | Low       |
| 5   | Fire in Processing Unit (Ammonia Released)                    | Medium           | Toxic Release, Moderate Environmental Action Needed | Medium       | Medium              | Medium   | Low       |
| 6   | Overpressure / Explosion of Ammonia Storage Unit              | High             | Toxic Release, Severe Environmental Action Needed   | High         | High                | High     | High      |
| 7   | Overpressure / Explosion of Ammonia Process Unit              | High             | Toxic Release, Moderate Environmental Action Needed | Medium       | High                | Medium   | Medium    |
| 8   | Loss of Containment of R-717 from Chiller Circuit             | Low              | Toxic Release, Moderate Environmental Action Needed | Medium       | Medium              | Medium   | Low       |

#### Health, Safety, and the Environment

- Production trains as an inherently safer design
  - $\circ$  Reduced complexity with identical designs
  - $\,\circ\,$  Less process fluid in any one section of the plant
  - Potential for storage in smaller tanks, reducing the chance for disaster should one module fail
- Minimization of the carbon footprint
  - Fired heater as the primary source of carbon emissions
- Improved safety in the absence of methane reformation and sulfur recovery
  - $\,\circ\,$  Elimination of poisonous gas exposure, such as with  $\rm H_2S$

# **Fixed Capital Investment Costs**



# **Fixed Capital Breakdown**



# **Utility Costs**



#### **Utility Consumption Costs**

**Utility Costs by Process** 

# Sensitivity Analysis



Multiplication Factor: 1 = 1000

#### **Conclusions and Recommendations**

- At typical ammonia sales prices, the present design is not profitable
  - A sale price of approximately \$3,000 per ton is necessary for an 8% DCFROR
- Large fixed capital and continuous costs arise from electrolysis
- Methane reformation may allow for profitable operations, but runs counter to the push for green design
- In the event that the project is continued in an alternate form, automated emergency deluge systems may prove integral to safety

#### Questions

# **Considering More Modules**



# Balances

| PSA Unit                  |                     |                                  |                      |                                  |                    |
|---------------------------|---------------------|----------------------------------|----------------------|----------------------------------|--------------------|
| Stream or Equipment       | Enthalpyin (Btu/hr) | Enthalpy <sub>out</sub> (Btu/hr) | Energy Flow (Btu/hr) | Total Energy Difference (Btu/hr) | Percent Difference |
| PSA Feed, 1               | -101000.            | -                                | -                    | -                                | -                  |
| Compressor C-101          | -                   | -                                | 15000.               | -                                | -                  |
| Cooler E-101              | -                   | -                                | -3060.               | -                                | -                  |
| Compressor C-102          | -                   | -                                | -8430.               | -                                | -                  |
| Cooler E-102              | -                   | -                                | -8510.               | -                                | -                  |
| KO Drum V-102             | -                   | -11300.                          | -                    | -                                | -                  |
| Compressor C-103          | -                   | -                                | 16500.               | -                                | -                  |
| Cooler E-103              | -                   | -                                | -10600.              | -                                | -                  |
| KO Drum V-103             | -                   | -41100.                          | -                    | -                                | -                  |
| Compressor C-104          | -                   | -                                | 16200.               | -                                | -                  |
| Oxygen Adsorber V-105/106 | -                   | -17400.                          | -                    | -                                | -                  |
| Nitrogen to Process, 17   | -                   | -14800.                          | -                    | -                                | -                  |
| Totals                    | -101000.            | -84600.                          | 17100.               | 700.                             | 0.69%              |

# Balances

| Haber-Bosch Synthesis |                     |                                  |                      |                                  |                    |
|-----------------------|---------------------|----------------------------------|----------------------|----------------------------------|--------------------|
| Stream or Equipment   | Enthalpyin (Btu/hr) | Enthalpy <sub>out</sub> (Btu/hr) | Energy Flow (Btu/hr) | Total Energy Difference (Btu/hr) | Percent Difference |
| Nitrogen Feed, 17     | -15000.             | -                                | -                    | -                                | -                  |
| Hydrogen Feed, 19     | -6300.              | -                                | -                    | -                                | -                  |
| Compressor C-105      | -                   | -                                | 54000.               | -                                | -                  |
| Cooler E-104          | -                   | -                                | -38200.              | -                                | -                  |
| Compressor C-106      | -                   | -                                | 59900.               | -                                | -                  |
| Cooler E-105          | -                   | -                                | -60100.              | -                                | -                  |
| Compressor C-107      | -                   | -                                | 59600.               | -                                | -                  |
| Cooler E-106          | -                   | -                                | -60000.              | -                                | -                  |
| Compressor C-108      | -                   | -                                | 59900.               | -                                | -                  |
| Compressor C-109      | -                   | -                                | 509000.              | -                                | -                  |
| Reactor R-102         | -                   | -                                | 620000.              | -                                | -                  |
| Heater H-101          | -                   | -                                | 733000.              | -                                | -                  |
| Cooler E-109          | -                   | -                                | -1540000.            | -                                | -                  |
| Chiller E-(110-112)   | -                   | -                                | -580000.             | -                                | -                  |
| Ammonia Product, 37   | -                   | -796000.                         | -                    | -                                | -                  |
| Recycle, 38           | -584000.            | -                                | -                    | -                                | -                  |
| Total                 | -605300.            | -796000.                         | -182900.             | 7800.                            | 1.28%              |

# Balances

| Refrigeration Unit           |                      |                                  |                    |  |  |
|------------------------------|----------------------|----------------------------------|--------------------|--|--|
| Stream or Equipment          | Energy Flow (Btu/hr) | Total Energy Difference (Btu/hr) | Percent Difference |  |  |
| Process Fluid Chiller, E-110 | 6040000.             | -                                | -                  |  |  |
| Compresssor C-110            | 770000.              | -                                | -                  |  |  |
| Compressor C-111             | 959000.              | -                                | -                  |  |  |
| Cooler E-111                 | -990000.             | -                                | -                  |  |  |
| Compressor C-112             | 971000.              | -                                | -                  |  |  |
| Cooler E-112                 | -7750000.            | -                                | -                  |  |  |
| Total                        | 0.                   | 0.                               | 0%                 |  |  |

# **Utility Costs**

| Cooling Water Costs Per 1,000 Gallons (Note 1) |                                                         |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| Industrial Costs                               | \$ 2.79                                                 |  |  |  |  |  |
| Industrial Electricity Costs Per Kilowatt-Hou  | Industrial Electricity Costs Per Kilowatt-Hour (Note 1) |  |  |  |  |  |
| Monthly Fee                                    | \$ 57.75                                                |  |  |  |  |  |
| Charge Per kWh                                 | \$ 0.05                                                 |  |  |  |  |  |
| Demand Charge July, August & September Per kW  | \$ 19.58                                                |  |  |  |  |  |
| Demand Charge January, February & March Per kW | \$ 16.49                                                |  |  |  |  |  |
| Demand Charge Other Months Per kW              | \$ 13.65                                                |  |  |  |  |  |
| Natural Gas Costs Per 1,000 ft^3 (Note 2)      |                                                         |  |  |  |  |  |
| Industrial Costs                               | \$ 4.42                                                 |  |  |  |  |  |

#### **PSA Utilities**

| Designation | Single M               | fodule                                   | Whole Project (Ten Module |                                          |
|-------------|------------------------|------------------------------------------|---------------------------|------------------------------------------|
| Equipment   | Electric Power<br>(kW) | Annual<br>Cooling Water<br>Make-up (gpy) | Electric Power<br>(kW)    | Annual<br>Cooling Water<br>Make-up (gpy) |
| C-101       | 3                      | -                                        | 30                        | -                                        |
| C-102       | 3                      | -                                        | 34                        | -                                        |
| C-103       | 3                      | -                                        | 34                        | -                                        |
| C-104       | 3                      | -                                        | 33                        | -                                        |
| E-101       | -                      | 34                                       | -                         | 183                                      |
| E-102       | -                      | 95                                       | -                         | 510                                      |
| E-103       | -                      | 118                                      | -                         | 634                                      |
| P-101 A/B   | 1                      | -                                        | 5                         | -                                        |
| P-102 A/B   | 1                      | -                                        | 5                         | -                                        |
| P-103 A/B   | 1                      | -                                        | 5                         | -                                        |
| Total       | 15                     | 246                                      | 147                       | 1327                                     |
| Cost        | \$7,000                | \$0                                      | \$75,000                  | \$0                                      |

#### **Electrolysis and Haber Bosch Utilities**

| Designation | Single Module          |                                          | Whole Project (Ten Modules) |                        |                                          |                         |
|-------------|------------------------|------------------------------------------|-----------------------------|------------------------|------------------------------------------|-------------------------|
| Equipment   | Electric Power<br>(kW) | Annual<br>Cooling Water<br>Make-up (gpy) | Natural Gas<br>(ft3/hr)     | Electric Power<br>(kW) | Annual<br>Cooling Water<br>Make-up (gpy) | Natural Gas<br>(ft3/hr) |
| R-101       | 1,719                  | 1,079,369                                | -                           | 17,192                 | 10,793,685                               | -                       |
| C-105       | 16                     | -                                        | -                           | 165                    | -                                        | -                       |
| C-106       | 18                     | -                                        | -                           | 182                    | -                                        | -                       |
| C-107       | 18                     | -                                        | -                           | 181                    | -                                        | -                       |
| C-108       | 18                     | -                                        | -                           | 182                    | -                                        | -                       |
| C-109       | 272                    | -                                        | -                           | 2,720                  | -                                        | -                       |
| E-104       | -                      | 425                                      | -                           | -                      | 4,251                                    | -                       |
| E-105       | -                      | 360                                      | -                           | -                      | 3,600                                    | -                       |
| E-106       | -                      | 668                                      | -                           | -                      | 6,676                                    | -                       |
| E-109       | -                      | 30,861                                   | -                           | -                      | 308,613                                  | -                       |
| P-104 A/B   | 1                      | -                                        | -                           | 5                      | -                                        | -                       |
| P-105 A/B   | 1                      | -                                        | -                           | 5                      | -                                        | -                       |
| P-106 A/B   | 1                      | -                                        | -                           | 5                      | -                                        | -                       |
| P-108 A/B   | 68                     | -                                        | -                           | 678                    | -                                        | -                       |
| H-101       | -                      | -                                        | 964                         | -                      | -                                        | 9,643                   |
| T-101       | 35                     | 48,649                                   | -                           | 350                    | 486,487                                  | -                       |
| Total       | 2,167                  | 1,160,331                                | 964                         | 21,665                 | 11,603,311                               | 9,643                   |
| Cost        | \$1,010,000            | \$3,200                                  | \$35,000                    | \$10,100,000           | \$27,400                                 | \$350,000               |

# **Refrigeration Utilities**

| Designation | Single N               | Iodule                                   | Whole Project          | (Ten Modules)                            |
|-------------|------------------------|------------------------------------------|------------------------|------------------------------------------|
| Equipment   | Electric Power<br>(kW) | Annual<br>Cooling Water<br>Make-up (gpy) | Electric Power<br>(kW) | Annual<br>Cooling Water<br>Make-up (gpy) |
| C-110       | 23                     | -                                        | 232                    | -                                        |
| C-111       | 29                     | -                                        | 289                    | -                                        |
| C-112       | 29                     | -                                        | 292                    | -                                        |
| E-110       | -                      | 6723                                     | -                      | 67235                                    |
| E-111       | -                      | 1106                                     | -                      | 11061                                    |
| E-112       | -                      | 8619                                     | -                      | 86187                                    |
| P-109 A/B   | 19                     | -                                        | 189                    | -                                        |
| P-110 A/B   | 2                      | -                                        | 24                     | -                                        |
| Total       | 103                    | 16448                                    | 1027                   | 164483                                   |
| Cost        | \$48,000               | \$500                                    | \$480,000              | \$5,000                                  |

#### **PSA Compressors**

| Compressor Parameters      | C-101 | C-102          | C-103          | C-104 |
|----------------------------|-------|----------------|----------------|-------|
| Туре                       |       | Reciprocating, | Electric Drive |       |
| Discharge Pressure (barg)  | .7    | 1.8            | 3.6            | 6.6   |
| Discharge Temperature (°C) | 75.   | 113.           | 128.           | 113.  |
| Volumetric Flow rate (gpm) | .6    | .6             | .6             | .6    |
| Hydraulic power (hp)       | 3.    | 3.             | 3.             | 3.    |
| Compressor Efficiency (%)  | 75.   | 75.            | 75.            | 75.   |
| Brake Horsepower (bhp)     | 5.    | 7.             | 7.             | 5.    |
| Motor Size (hp)            | 10.   | 10.            | 10.            | 10.   |
| Motor Efficiency           | 80.   | 80.            | 80.            | 80.   |
| Material of Construction   |       | Carbo          | n Steel        |       |

#### **PSA Heat Exchangers**

| Heat Exchangers           | E-101                                 | E-102                                 | E-103                                 |
|---------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Туре                      | Floating Head<br>Interstage<br>Cooler | Floating Head<br>Interstage<br>Cooler | Floating Head<br>Interstage<br>Cooler |
| Area (m2)                 | 0.4                                   | 0.8                                   | 1                                     |
| Duty (kJ/h)               | 3,230                                 | 8,970                                 | 11,200                                |
| Shell                     |                                       |                                       |                                       |
| Temp. (°C)                | 75                                    | 115.0                                 | 115.0                                 |
| Design Pres. (barg)       | 5.0                                   | 5                                     | 7                                     |
| Phase                     | Vapor                                 | Vapor                                 | Vapor                                 |
| Materials of Construction | Carbon Steel                          | Carbon Steel                          | Carbon Steel                          |
| Tube                      |                                       |                                       |                                       |
| Temp. (°C)                | 40.7                                  | 40.7                                  | 40.7                                  |
| Design Pres. (barg)       | 4.9                                   | 4.9                                   | 4.9                                   |
| Phase                     | Liquid                                | Liquid                                | Liquid                                |
| Materials of Construction | Stainless Steel                       | Stainless Steel                       | Stainless Steel                       |

## **PSA Cooling Water Pumps**

| Pump Parameters           | P-101 A/B    | P-102 A/B       | P-103 A/B |
|---------------------------|--------------|-----------------|-----------|
| Туре                      | Centri       | fugal, Electric | Drive     |
| Discharge Pressure (barg) | 5.1          | 5.1             | 5.1       |
| Flow rate (gpm)           | .3           | .9              | 1.        |
| Hydraulic power (hp)      | .01          | .04             | .05       |
| Pump Efficiency           | .73          | .73             | .73       |
| Brake Horsepower (bhp)    | .02          | .05             | .06       |
| Design Power (kW)         | .75          | .75             | .75       |
| Motor Size (hp)           | 1.           | 1.              | 1.        |
| Motor Efficiency          | .9           | .9              | .9        |
| Material of Construction  | Carbon Steel |                 |           |

#### **PSA Knockout Drums**

| Knockout Drums           | V-101        | V-102 | V-103 |
|--------------------------|--------------|-------|-------|
| Orientation              | Horizontal   |       |       |
| Design Pressure (barg)   | 4.1          | 5.2   | 7.    |
| Volume (m3)              | .14          | .14   | .14   |
| Diameter (m)             | .6           | .6    | .6    |
| Length (m)               | 1.5          | 1.5   | 1.5   |
| Process Temperature (°C) | 50.          | 50.   | 50.   |
| Material of Construction | Carbon Steel |       |       |

#### Ammonia Loop Compressors

| Compressor Parameters           | C-105 | C-106 | C-107              | C-108 | C-109 |
|---------------------------------|-------|-------|--------------------|-------|-------|
| Type                            |       | Recip | rocating, Electric | Drive |       |
| Discharge Pressure (barg)       | 13.   | 27.   | 51.                | 97.   | 187.  |
| Discharge Temperature (°C)      | 106.  | 138.  | 138.               | 137.  | 84.   |
| STD. Volumetric Flow rate (gpm) | 3.    | 3.    | 3.                 | 3.    | 3.    |
| Hydraulic power (hp)            | 21.   | 24.   | 24.                | 24.   | 201.  |
| Compressor Efficiency (%)       | 75.   | 75.   | 75.                | 75.   | 75.   |
| Brake Horsepower (bhp)          | 25.   | 27.   | 27.                | 27.   | 210.  |
| Motor Size (hp)                 | 25.   | 30.   | 30.                | 30.   | 250.  |
| Motor Efficiency (96)           | 80.   | 80.   | 80.                | 80.   | 80.   |
| Material of Construction        |       |       | Carbon Steel       |       |       |

#### Interstage Heat Exchange

| Heat Exchangers           | E-104                                 | E-105                                 | E-106                                 |
|---------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Туре                      | Floating Head<br>Interstage<br>Cooler | Floating Head<br>Interstage<br>Cooler | Floating Head<br>Interstage<br>Cooler |
| Area (m2)                 | 5                                     | 5                                     | 10                                    |
| Duty (kJ/h)               | 40,300                                | 63,460                                | 63,300                                |
| Shell                     |                                       |                                       |                                       |
| Temp. (°C)                | 40.7                                  | 40.7                                  | 40.7                                  |
| Design Pres. (barg)       | 4.9                                   | 4.9                                   | 4.9                                   |
| Phase                     | Liquid                                | Liquid                                | Liquid                                |
| Materials of Construction | Carbon Steel                          | Carbon Steel                          | Carbon Steel                          |
| Tube                      |                                       |                                       |                                       |
| Temp. (°C)                | 106                                   | 138                                   | 137                                   |
| Design Pres. (barg)       | 15                                    | 32                                    | 55                                    |
| Phase                     | Vapor                                 | Vapor                                 | Vapor                                 |
| Materials of Construction | Stainless Steel                       | Stainless Steel                       | Stainless Steel                       |

# Ammonia Loop Knockout Drums

| Knockout Drums           | V-108        | V-109      | V-110 | V-111 |
|--------------------------|--------------|------------|-------|-------|
| Orientation              |              | Horizontal |       |       |
| Design Pressure (barg)   | 18.          | 31.        | 55.   | 101.  |
| Volume (m3)              | .4           | .4         | .4    | .4    |
| Diameter (m)             | .6           | .6         | .6    | .6    |
| Length (m)               | 1.5          | 1.5        | 1.5   | 1.5   |
| Process Temperature (°C) | 50.          | 50.        | 50.   | 50.   |
| Material of Construction | Carbon Steel |            |       |       |

# Ammonia Loop CW Pumps

| Pump Parameters           | P-104 A/B | P-105 A/B    | P-106 A/B      | P-108 A/B |
|---------------------------|-----------|--------------|----------------|-----------|
| Туре                      |           | Centrifugal, | Electric Drive |           |
| Discharge Pressure (barg) | 5.1       | 5.1          | 5.1            | 5.1       |
| Flow rate (gpm)           | 4.        | 6.           | 6.             | 1400.     |
| Hydraulic power (hp)      | .2        | .3           | .3             | 60.       |
| Pump Efficiency           | .73       | .73          | .73            | .73       |
| Brake Horsepower (bhp)    | .2        | .4           | .4             | 82.       |
| Design Power (kW)         | .75       | .75          | .75            | 75.       |
| Motor Size (hp)           | 1.        | 1.           | 1.             | 100.      |
| Motor Efficiency          | .9        | .9           | .9             | .9        |
| Material of Construction  |           | Carbo        | n Steel        |           |

# **Ammonia Loop Heat Integration**

| Heat Exchangers           | E-108                                          | E-109                                       |
|---------------------------|------------------------------------------------|---------------------------------------------|
| Туре                      | Floating Head<br>Reactor Effluent<br>Exchanger | Floating Head<br>Reactor Effluent<br>Cooler |
| Area (m2)                 | 22                                             | 55                                          |
| Duty (kJ/h)               | 1,150,000                                      | 1,620,000                                   |
| Shell                     |                                                |                                             |
| Temp. (°C)                | 250                                            | 40.7                                        |
| Design Pres. (barg)       | 205                                            | 4.9                                         |
| Phase                     | Vapor                                          | Liquid                                      |
| Materials of Construction | Carbon Steel                                   | Carbon Steel                                |
| Tube                      |                                                |                                             |
| Temp. (°C)                | 450                                            | 282                                         |
| Design Pres. (barg)       | 205                                            | 205                                         |
| Phase                     | Vapor                                          | Vapor                                       |
| Materials of Construction | Stainless Steel                                | Stainless Steel                             |

## Ammonia Loop Separator

| Pressure Vessels         | V-113        |
|--------------------------|--------------|
| Orientation              | Vertical     |
| Design Pressure (barg)   | 202.         |
| Volume (m3)              | .1           |
| Diameter (m)             | .3           |
| Length (m)               | 1.4          |
| Process Temperature (°C) | - 5.         |
| Material of Construction | Carbon Steel |

## Ammonia Storage Tank

| Pressure Vessels         | V-114        |
|--------------------------|--------------|
| Orientation              | Horizontal   |
| Design Pressure (barg)   | 17.          |
| Volume (m3)              | 247.         |
| Diameter (m)             | 5.           |
| Length (m)               | 14.          |
| Process Temperature (°C) | - 5.         |
| Material of Construction | Carbon Steel |

## **Refrigeration Compressors**

| Compressor Parameters            | C-110                         | C-111        | C-112 |  |  |  |  |  |
|----------------------------------|-------------------------------|--------------|-------|--|--|--|--|--|
| Туре                             | Reciprocating, Electric Drive |              |       |  |  |  |  |  |
| Discharge Pressure (barg)        | 3.                            | 7.           | 17.   |  |  |  |  |  |
| Discharge Temperature (°C)       | 46.                           | 124.         | 131.  |  |  |  |  |  |
| STD. Volumetric Flow rate (m3/h) | 10.                           | 10.          | 10.   |  |  |  |  |  |
| Hydraulic power (hp)             | 3.                            | 3.           | 3.    |  |  |  |  |  |
| Compressor Efficiency (%)        | 75.                           | 75.          | 75.   |  |  |  |  |  |
| Brake Horsepower (bhp)           | 5.                            | 7.           | 7.    |  |  |  |  |  |
| Motor Size (hp)                  | 10.                           | 10.          | 10.   |  |  |  |  |  |
| Motor Efficiency                 | 80.                           | 80.          | 80.   |  |  |  |  |  |
| Material of Construction         |                               | Carbon Steel |       |  |  |  |  |  |

# **Refrigeration Pumps**

| Pump Parameters          | P-109 A/B      | P-110 A/B      |
|--------------------------|----------------|----------------|
| Type                     | Centrifugal, H | Electric Drive |
| Flow rate (gpm)          | 387.           | 50.            |
| Hydraulic power (hp)     | 17.            | 2.             |
| Pump Efficiency          | .73            | .73            |
| Brake Horsepower (bhp)   | 23.            | 3.             |
| Design Power (kW)        | 19.            | 2.2            |
| Motor Size (hp)          | 25.            | 3.             |
| Motor Efficiency         | .9             | .9             |
| Material of Construction | Carbo          | 1 Steel        |

# **Refrigeration Knockout Drum**

| Knockout Drum            | V-112        |
|--------------------------|--------------|
| Orientation              | Horizontal   |
| Design Pressure (barg)   | 10.          |
| Volume (m3)              | .4           |
| Diameter (m)             | .6           |
| Length (m)               | 1.5          |
| Process Temperature (°C) | 50.          |
| Material of Construction | Carbon Steel |

# **Inherent Safety**

| Hazard                                                                                                                                                                | Inherent Safety Concept | Application in Process                                                                                                                                                                                                                         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Production of Waste and Possible<br>Environmental Pollutants.                                                                                                         | Minimization            | Eliminate all unnecessary usage of fossil<br>fuels to power and heat the process for<br>less CO <sub>2</sub> emissions.                                                                                                                        |  |  |  |  |  |
| Complex operating procedures<br>plant wide, increasing chance for<br>operator error.                                                                                  | Simplification          | Modular ammonia synthesis trains greatly<br>simplify the lineup of process units, as well<br>as their operation plant wide.                                                                                                                    |  |  |  |  |  |
| Storage of large amounts of<br>ammonia in tankage increases<br>severity of potential accidents.                                                                       | Moderation              | With each modular ammonia train being its<br>own entity, tankage is also split between<br>the trains to accommodate for less<br>ammonia in a mass storage setting.                                                                             |  |  |  |  |  |
| Equipment failure can lead to<br>downstream process trips and<br>upsets, leading to a potentially<br>costly and hazardous situation.                                  | Minimization            | With the modular setup, if there is a<br>process unit that must come down for<br>maintentnace in one train, the remaining 9<br>trains may continue to operate normally,<br>minimizing costly plant downtime and<br>hazardous process stoppage. |  |  |  |  |  |
| Possible exposure to poisonous<br>gasses such as H <sub>2</sub> S is likely when<br>utilizing sulphur recovery and<br>methane reforming units to produce<br>hydrogen. | Substitution            | With the usage of water electrolysis and<br>pressure swing adsorption, methane<br>reforming and hydrocarbons are not<br>necessary to produce process feedstocks.                                                                               |  |  |  |  |  |

| Project Title:                 | Title: AICHE Senior Design Project - 50 mtpd Ammonia Production |                                                                                                                                                                                                                                                                                                                     |          |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|--------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------------|----------|---------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Corporate financial situation: | Expense                                                         |                                                                                                                                                                                                                                                                                                                     |          |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Minimum rate of return I* =    | 8.0%                                                            | 6 Tax rate = 25%                                                                                                                                                                                                                                                                                                    |          |          | Annual Ammonia production (mtpv)= 17.340 |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Other relevant project info.   | Multiplication F                                                | actor: 1 = 1000                                                                                                                                                                                                                                                                                                     |          |          |                                          |          | Cost per ton (2000 lb)= \$2.955 |          |          | \$2,955  |          |          |          |          |          |          |          |          |          |          |          |
| End of Year                    | 2021                                                            | 2022                                                                                                                                                                                                                                                                                                                | 2023     | 2024     | 2025                                     | 2026     | 2027                            | 2028     | 2029     | 2030     | 2031     | 2032     | 2033     | 2034     | 2035     | 2036     | 2037     | 2038     | 2039     | 2040     | 2041     |
| Production                     |                                                                 |                                                                                                                                                                                                                                                                                                                     |          |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Ammonia Annual Revenue         | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | 28,200   | 56,500                                   | 56,500   | 56,500                          | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   |
| Sales <b>R</b> evenue          |                                                                 |                                                                                                                                                                                                                                                                                                                     | -        | 28,200   | 56,500                                   | 56,500   | 56,500                          | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   |
| Net Revenue                    | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | 28,200   | 56,500                                   | 56,500   | 56,500                          | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   | 56,500   |
| - Raw Material Costs           | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (15)     | (30)                                     | (30)     | (30)                            | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     | (30)     |
| - Other Op Costs               | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (10,450) | (28,800)                                 | (28,800) | (28,800)                        | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) | (28,800) |
| - Utilities                    | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (5,500)  | (11,000)                                 | (11,000) | (11,000)                        | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) | (11,000) |
| - Operating Labor              | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (3,850)  | (7,700)                                  | (7,700)  | (7,700)                         | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  | (7,700)  |
| - Depreciation                 | -                                                               | -                                                                                                                                                                                                                                                                                                                   |          | (7,200)  | (12,900)                                 | (10,300) | (8,300)                         | (6,600)  | (5,300)  | (4,700)  | (4,700)  | (4,700)  | (4,700)  | (2,400)  |          |          |          |          |          |          |          |
| -Working Capital Writeoff      | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| - Depreciation Writeoff        | -                                                               | -                                                                                                                                                                                                                                                                                                                   |          |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Taxable Income                 | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | 1,185    | (3,930)                                  | (1,330)  | 670                             | 2,370    | 3,670    | 4,270    | 4,270    | 4,270    | 4,270    | 6,570    | 8,970    | 8,970    | 8,970    | 8,970    | 8,970    | 8,970    | 8,970    |
| - Tax @ 25%                    | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (296)    | 983                                      | 333      | (167)                           | (592)    | (917)    | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,642)  | (2,242)  | (2,242)  | (2,242)  | (2,242)  | (2,242)  | (2,242)  | (2,242)  |
| Net Income                     |                                                                 | -                                                                                                                                                                                                                                                                                                                   | -        | 900      | (2,900)                                  | (1,000)  | 500                             | 1,800    | 2,800    | 3,200    | 3,200    | 3,200    | 3,200    | 4,900    | 6,700    | 6,700    | 6,700    | 6,700    | 6,700    | 6,700    | 6,700    |
| + Depreciation                 | -                                                               | -                                                                                                                                                                                                                                                                                                                   |          | 7,200    | 12,900                                   | 10,300   | 8,300                           | 6,600    | 5,300    | 4,700    | 4,700    | 4,700    | 4,700    | 2,400    | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| + Working Capital Writeoff     | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | -        | -                                        | -        |                                 | -        | -        | -        | -        | -        |          | -        | -        | -        | -        | -        | -        | -        | 700      |
| + Depreciation Writeoff        | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | -        | -                                        | -        | -                               | -        | -        | -        | -        | -        |          | -        | -        | -        | -        | -        | -        | -        | -        |
| - Working Capital              | -                                                               | -                                                                                                                                                                                                                                                                                                                   | -        | (700)    | -                                        | -        | -                               | -        | -        | -        |          | -        |          | -        | -        | -        | -        | -        | -        | -        | -        |
| - Fixed Capital                | (12,000)                                                        | (23,900)                                                                                                                                                                                                                                                                                                            | (23,900) | (12,000) | -                                        | -        |                                 | -        | -        | -        |          | -        |          | -        |          | -        | -        | -        | -        | -        | -        |
| Cash Flow                      | (12,000)                                                        | (23,900)                                                                                                                                                                                                                                                                                                            | (23,900) | (4,600)  | 10,000                                   | 9,300    | 8,800                           | 8,400    | 8,100    | 7,900    | 7,900    | 7,900    | 7,900    | 7,300    | 6,700.00 | 6,700.00 | 6,700.00 | 6,700.00 | 6,700.00 | 6,700.00 | 7,400.00 |
| Discount factor (P/Fi*,n)      | 1.000                                                           | 0.926                                                                                                                                                                                                                                                                                                               | 0.857    | 0.794    | 0.735                                    | 0.681    | 0.630                           | 0.583    | 0.540    | 0.500    | 0.463    | 0.429    | 0.397    | 0.368    | 0.340    | 0.315    | 0.292    | 0.270    | 0.250    | 0.232    | 0.215    |
| Discount Cash Flow             |                                                                 | (22,130)                                                                                                                                                                                                                                                                                                            | (20,490) | (3,652)  | 7,350                                    | 6,329    | 5,545                           | 4,901    | 4,376    | 3,952    | 3,659    | 3,388    | 3,137    | 2,684    | 2,281.09 | 2,112.12 | 1,955.67 | 1,810.80 | 1,676.67 | 1,552.47 | 1,587.66 |
| NPV @ i* =                     | 12,028                                                          | Although the NPV is greater than zero at a discount rate of 8%, this is not an economically attractive option because the cost/Dioton to reach an 8% DCFROR<br>was \$2955. When compared to a traditional ammonia plant cost/Dioton of ~\$700 this ammonia plant design in corporating electrolysis is not feasible |          |          |                                          |          |                                 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

DCFROR = 8.01%

Notes:

1 Purchase and apply for operating permit July 2021

2 36 months later production starts