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CHAPTER I 

INTRODUCTION 

Statement of the Problem and 

Literature Review 

In surveys of human populations on sensitive or highly personal 

matters, the respondent often refuses to respond or intentionally gives 

incorrect answers. The bias produced by these two sources of non

sampling error is sometimes large enough to make the sample estimates 

seriously misleading. 

Warner (1) developed an interviewing procedure designed to reduce 

or eliminate these biases. He called the technique "randomized 

response" because the respondent selects a question from two or more 

questions in which at least one is sensitive using a probability basis 

by using a randomizing device without revealing to the interviewer which 

of the alternative questions has been chosen. The individual reply, 

which must be "Yes" or "No" to each question, is of no certain meaning 

for a specific respondent, but a batch of replies provides useful 

information for estimating the proportion of the population that has the 

"sensitive characte:::-istic". To apply the Warner model, a simple random 

sample of n people will be drawn with replacement from the population 

and each person interviewed. Before the interviews, the respondent is 

provided a random device in order to choose one of two statements of the 

1 
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form: 

I belong to the sensitive group S. 

I do not belong to the sensitive group S. 

Without showing to the interviewer which statement has been chosen, the 

respondent is required only to answer "yes" or "no" according to the 

statement selected and to his actual status with respect to the sensi-

tive group S. 

Let P8 represent the true proportion of respondents who belong to 

the sensitive group S. 

Let p represent the probability that the random device shows S. 

If denotes the number in the sample who report "yes", then the 

maximum likelihood estimator of P8 and its variance are 

nl p - 1 1 
(2p - l)n + 2p - 1 ' p # 2 

= Ps(l - Ps) + p(l - p) 

n n(2p - 1) 2 • 

Warner also shows that the proportion of respondents who would answer a 

direct question untruthfully need not be too great before the mean 

square error of the usual estimate would exceed the variance of the 

randomized response estimate. 

Abul-Ela et al. (2) extended Warner's design to the trichotomous 

case to estimate the proportions of three related mutually exclusive 

groups, one or two of which are sensitive. In order to apply this 

extension, two independent non-overlapping simple random samples of size 

and must be drawn with replacement from the population. In 

each of the two samples, a different random device must be used to 



obtain information concerning the group to which a respondent belongs. 

Sup~ose that each random device consists of a deck of cards. Deck 1 is 

used in the first sample; deck 2 in the second. Each deck contains 

three different types of cards. One type of card says "I belong to 

group I"; the second, "I belong to group II"; the third, "I belong to 

group III". In every deck within one survey, the proportions in deck 1 

must be different from those in deck 2, and the proportions within any 

deck must not be one third for each group. 

A variation of the Warner technique has been suggested by Walt R. 

3 

Simmons [see Horvitz et al. (3)] and is designed to increase further the 

cooperation of the respondents. It requires the respondents to randomly 

select one of two unrelated questions, so that the mutually exclusive 

and complimentary properties of the Warner technique no longer apply. 

Two independent, non-overlapping simple random samples 'of size n 1 

and are required. Every respondent in the two samples is asked to 

reply with only a "Yes" or "No" answer to one of two statements selected 

on a probability basis, where one question refers to a non-sensitive 

attribute, say N, unrelated to the sensitive attribute, S. In this 

particular model, two sets of the randomizing device need to be used. 

Set 1 is used for respondents in the first sample, and set 2 is used 

for the respondents in the second sample, and the two sets must also 

be different with respect to the probability that statement S will be 

selected. 

Let PS and PN represent the proportion in the population with 

the sensitive attribute S and non-sensitive attribute N respectively. 

Let and represent the probability that the randomizing 

device shows S in sample set 1 and sample set 2, respectively. 
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If and denote the number of 11 Yes 11 answers in the two 

corresponding samples, then the maximum likelihood estimator of PS and 

its variance are 

/'... A 

Var(P8 ) 

nll n21 
nl (1 - p2) - n2 (1 - pl) 

pl - p2 

2 
- p ) 

2 

It is noted that if PN is known, then a single sample is suffi-

cient to estimate P8 . This estimator and its variance are 

nll 
- (1 - pl)PN 

nl A 

Ps 
pl 

~A _1_ [nll 
(1 - :~l)J Var(P 8 ) 

2 n 
nlpl 1 

It has been shown by Greenberg et al. (13) that the unrelated 

questions design with PN unknown is slightly less efficient than the 

unrelated questions design with PN known. Moors (4) showed that, for 

optimally allocated sample size for the two samples, the unrelated 

question randomizing device can be used in the first sample only, while 

the second sample is used to estimate the proportion in the population 

with the non-sensitive characteristic. If the proportion in the 

population with the non-sensitive characteristic is known in advance, 



only one sample is required to estimate the proportion with the sensi

tive characteristic. Moors further showed that with optimal choice 

of the two sample sizes, the unrelated questions design will be more 

efficient than the Warner design, regardless of the probability of 

choosing the sensitive question in the first sample and regardless of 

the choice of the proportion with non-sensitive characteristics in the 

population. 

5 

To improve efficiency when two samples are required and the propor

tion in the population with the non-sensitive characteristic is not 

known beforehand, Donald T. Campbell suggested a two alternative ques

tions design [see Folsom et al. (5)] which consists of using two non

sensitive alternative questions in conjunction with the sensitive 

question. The respondents in both samples answer a direct question on 

a non-sensitive topic and also one of two questions selected by the 

randomizing device. The non-sensitive question used in the randomized 

response part of the first sample will be the question which the 

respondents are required to answer directly in the second sample, and 

vice versa. It can be shown that the two alternative questions design 

will never be any less efficient than the estimator with Moors' 

optimized version of the standard two sample one alternate question 

design and the two alternate questions design will never be more ef

ficient than the single alternate question design with the proportion 

in the population with non-sensitive characteristic known. 

The variance introduced by the random selection of questions may be 

reduced by repeated trials with each respondent. The use of two trials 

per respondent has been discussed by Horvitz et al. (3). A gain in 

efficiency can be achieved by using the additional information provided 
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by the individual response sequences (yes, yes; yes, no; no, yes; and 

no, no) rather than pooling data for the two trials. Liu and Chow (10) 

have suggested the use of a special randomizing device which, in a 

single trial, yields an estimate with variance roughly equivalent to 

the variance of the Warner estimate with five trials per respondent. 

The special randomizing device consists of a spherical bottle with a 

thin narrow neck. The bottle contains red and white beads, at least six 

of each color. The respondent is first told that the red beads refer 

to the sensitive category and the white beads to the non-sensitive 

category. The respondent is then asked to shake the device thoroughly 

before turning it upside down, permitting exactly five beads to move 

into the neck of the bottle, which is frosted on one side so that the 

interviewer cannot observe the result of the trials. Without mention-

ing color, respondents who belong to the sensitive class report the 

number of red beads in the neck of the bottle, and respondents who do 

not belong to the sensitive class report the number of white beads. 

Let Z. represent the number of beads reported by the ith respond
l 

ent; T is the total number of beads used in the randomizing device; 

k is the number of beads sampled in each trial. 

If p denotes the proportion of red beads (sensitive category) in 

the bottle, then it follows that this multiple trials design unbiased 

estimator of the true proportion of respondents who belong .to the 

sensitive group, S, P8 , is 

~ z - (1 - p) ~ 1 
p S (2p - 1) ' p T 2 

where 
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n -z 1 
k I Z. 

n i=l l 

with 

[ p(l- p) ] 

(2p 1) 2 . 

To the present, practically all research in the field of randomized 

response has been concerned with refining the technique for use with 

questions of a qualitative nature requiring only a "yes" or ''no" 

response. The technique need not be restricted to nominal scale data. 

It has wide application in the field of quantitative response data, and 

study is being directed toward development of the method for use in 

this area. Greenberg et al. (7) discuss the extension of the randomized 

response technique to the case of obtaining information on the distribu-

tion of quantitative data. They utilize the unrelated questions concept 

in estimating only the mean and variance of the distribution of the 

quantitative measure. Greenberg et al. also discussed the choice of the 

probability of selecting the sensitive questions in the two samples, 

the selection of the non-sensitive characteristic and the allocation of 

the sample size into two samples. Eriksson (8) has discussed a new 

randomized response model for obtaining information on the distribution 

f . . . bl B . h" h d h .th d o a quant1tat1ve varla e. y us1ng t 1s new met o , t e 1 respon -

ent, who has the true value X.' 
l 

is asked to make a random choice of a 

card from a deck which contains cards saying "Give a true answer" and 

"Say that your value is 

instruction. on the card. 

Y." and then answers in accordance with the 
J 

The value given by the ith person is 



considered as an observation on a variable z.. with sample space 
lJ 

(Xi, Y1 , .•. , Y1 ). The. values are taken on with probabilities 

p, p1 , ••. , p1 respectively. Given the sample of n persons the 

estimator and its variance can be found. 

To estimate the entire distribution of the quantitative variable, 

not just the mean and variance, Poole (9) suggested a new technique. 

This technique is different in that instead of asking the respondent to 
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answer one of two randomly chosen questions, he is asked to multiply the 

true response by a random number and tell the interviewer only the 

result. More recently, Liu and Chow (10) have discussed a new discrete 

quantitative randomized response model by using a predetermined combina-

tion of balls in the randomizing device instead of asking an innocuous 

question. It has been shown that the procedures for administering this 

method are simple and that its efficiency of estimations is higher than 

in the other currently available models. 

Objectives of the Study and 

Organization of Thesis 

It is the objective of this thesis to develop new randomized 

response models that increase the cooperation of the respondent, sim-

plify the estimation of the parameters and at the same time decrease the 

variances of the randomized response estimators. Two randomized 

response models for proportions and five randomized response models for 

quantitative data have been proposed in this paper. The description of 

the models and estimation of the parameters including the models based 

on repeated trials per respondent have been discussed in Chapter II and 

Chapter III. I~ particular, a brief discussio~ co~paring estimates 
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obtained by both direct and randomized response models for proportions 

under different assumptions is made to see where a new model has 

potential advantages over the direct interviewing process and other 

available models and is presented in Chapter II. In Chapter III, we 

compare the efficiencies of the multiplicative and additive models for 

quantitative data. The entire study of these comparisons was carried 

out on the basis of the empirical investigation. The extension of the 

randomized response models for proportions to the case when some sampled 

respondents do not report truthfully or refuse to answer the questions 

and to the multi-proportions situation, the randomized response model 

for cluster sampling and the combining of randomized response estimators 

have also been discussed in Chapter II. 

The methods of determining the sample size for each model and the 

extra cost in terms of sample size for the randomized response model for 

proportions as compared with the regular model are described in Chapter 

IV which includes examples and applications of some of the results. 

Chapter V gives a summary and conclusions of the results obtained 

in this study. 



CHAPTER II 

RANDOMIZED RESPONSE MODELS FOR PROPORTIONS 

Model I 

Description of the Model and Estimation 

of the Parameters 

Based on randomized response research to date, we may say that the 

unrelated questions design when the proportion in the population with 

the non-sensitive characteristic is known in advance is always prefer

able to the other currently available models for proportions. The 

reasons for this are that the design requires only a single sample and 

the efficiency of estimation is higher than for the other designs. To 

get a new model in which the procedure for administering the model is 

simpler and more efficient than the unrelated questions model (e.g., 

time spent explaining how to use the randomizing device and hence the 

interviewing cost, the likelihood of truthful answers), we should 

consider the procedure in which the knowledge of the population with the 

non-sensitive characteristics can be achieved by incorporating it in 

the randomizing device. 

Suppose that every person in a population belongs to either the 

sensitive group S or non-sensitive group N and it is required to 

estimate the proportion belonging to the sensitive group S. A simple 

random sample of n people is drawn with replacement from the 

10 
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population and each person is interviewed. Before the interviews, each 

interviewer is furnished with an identical randomizing device, say a box 

of balls. Each box contains two different types of halls. Each type of 

ball says either "Give the true answer" ("yes" or "no" to the sensitive 

question) or "Yes". In every box being used as a randomizing device, 

the proportions of these two kinds of balls are identical. Then in each 

interview the respondent is asked to shake the box and draw one ball 

unobserved by the interviewer. The respondent only answers the specified 

question without telling the interviewer which question is being 

answered. 

Let PS represent the true proportion of respondents who belong to 

the sensitive group S. 

Let and represent the number of balls saying "Give the 

true answer" and "Yes", respectively, then, assuming truthful answers 

by each respondent, the probability that a respondent will answer "Yes" 

is 

p (2.1) 

Let denote the number of respondents answering "Yes". Under 

the assumption of completely truthful reporting, the likelihood equa-

tion of the sample is 

L(P 8 ) 

Then the maximum l~kelihood estimate of P8 is 



The expected value of the estimate is 

E(P 8 ) 

and the variance of P8 is 

m2 J 
m + m 1 2 

gp(l- p) 
2 

n 

A 

12 

(2.2) 

(2. 3) 

(2.4) 

Expression (2.3) and (2.4) show that P8 is an unbiased estimate 

of the true population proportion P8 and the variance of P8 can be 

expressed as the sum of the variance due to sampling plus the variance 

A 

due to the random device. The estimator of Var(P8 ) is 

(2.5) 

A ~A 
It is clear that the minimum of Var(P 8 ) or Var(P 8 ) can be 



obtained by choosing m2/m1 as small as possible. 

very large when compared with m2 • 

Comparison of the Model with Some 

Other Available Models 

That is, is 

For purposes of comparing the efficiency of estimation in the two 

13 

models, we will first assume that the sample sizes are the same in both 

models and all respondents are reporting truthfully (except in the 

regular model). The model effect was computed as the ratio of the 

variance of the estimator for Model I to the variance of the estimates 

obtained in the other models. The cases in which Model I is more ef-

ficient are shown in the tables or figures by those ratios that are 

less than one. 

Regular Model (Direct Question Model). Suppose that in a regular 

survey members of group S tell the truth only with probability p8 

and members of the non-sensitive group tell the truth with probability 

one. 

where 

The estimator of PS and its mean square error are 

~ 

MSE(PS) 

1 n 
L: Y. 

n i=l l 

if the ith member reports "Yes", 

if the ith member reports "No". 

(2.6) 

(2. 7) 



The results of an empirical investigation for n = 100, PS = 0.1, 

0.3, 0.5, 0.7 and 0.9, and n = 1000, P8 = 0.1 are given in Table 

XVI to Table XXI (see Appendix). A plot of the data in Table XVI to 

Table XXI is shown in Figure 1. 

The data in Table XVI to Table XXI and the graph in Figure 1 

illustrate the following: 

14 

(i) Model I can be more efficient than the regular estimates even 

with sample sizes as small as 100, depending on the parameter P5 ,p8 

and m2/m1 . 

(ii) The efficiency of Model I relative to the regular estimates 

increases as P8 increases or as m2/m1 decreases. 

(iii) Model I loses efficiency relative to the regular estimates 

as the probability of telling the truth by the respondents, p8 , 

increases. 

(iv) Model I is more efficient than the regular estimates for all 

Ps and m2/m1 provided PS ~ 0.6 and n > 100. 

(v) If the respondents who belong to the sensitive group tell 

the truth with probability less than 0.7, then Model I is ntore efficient 

than the regular estimates for all PS and m2 /m1 (except for some 

m2/m1 when PS = 0.1) even with sample sizes as small as 100. 

Warner Model. For the Warner model described in Chapter I, the 

empirical investigation is shown in Table XXII (see Appendix) and Figure 

2. The data and a plot of the data give the following results. 

(i) The Warner randomized response model is far less efticient 

than Model I for p = m2/(m1 + m2). 

(ii) Model ~. with m2/m1 = 0.1, is more efficient than the 

Warner model for all PS and p. 
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(iii) For P8 = 0.9, Model I is more efficient than the Warner 

model for all p and m2/m1 . 

(iv) The efficiency of Model I relative to the Warner model 

increases as P8 increases. 
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(v) Model I loses efficiency relative to the Warner model as the 

probability, p, of selecting the sensitive question decreases. 

(vi) The variance of Model I and the Warner model are sensitive 

to m2/m1 and p respectively. 

(vii)- To increase the cooperation of the respondents, let p = 

0.2 or 0.8. Model I is more efficient than the Warner model for all 

values of P8 and m2/m1 less than 0.5. 

(viii) In general, we may say that Model I is more efficient than 

the Warner model. 

Unrelated Questions Model. For the unrelated questions model 

described in Chapter I, we will only compare Model I and the unrelated 

questions design with PN known. The results of empirical sampling for 

every combination of P8 = 0.1, 0.5 and 0.9 and PN = 0.1, 0.5 and 

0.9 are given in Table XXIII to Table XXVII (see Appendix). The graph 

of these data are shown in Figure 3. The results are summarized below: 

(i) As P8 increases, Model I is more efficient than the un

related questions model for all PN. 

(ii) Model I is more efficient than the unrelated questions 

model for all PN and m2/m1 provided that 

P8 o.9 

or P8 = 0.1 

or P8 = 0.5 

and 

and 

and 

is less than approximately 0.7. 

is less than approximately 0.3. 

is less than approximately 0.5. 
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(iii) Model I is more efficient than the unrelated questions model 

for all P8 , PN and m2/m1 , provided that p1 is less than 

approximately one third. 

(iv) In order to avoid raising suspicion in the respondents, let 

p1 = 0.5 and m2 /m1 = 1. Model I is more efficient than the unrelated 

questions model for all P8 and PN except for very small values of 

P8 and PN (e.g., 0.1). 

(v) For small values of m2/m1 , Model I is more efficient than 

the unrelated questions model except for small values of P8 and large 

values of (e.g., 0.9). 

Multiple Trials Model. For the multiple trials model described in 

Chapter 1, the ratio of the variance of Model I to that of the multiple 

trials model for different values of P8 , p, k and m2/m1 with T = 

100 are given in Table XXVIII to Table XXXII (see Appendix). The graph 

of these data is shown in Figure 4 and the results are summarized below: 

(i) Model I is more efficient than the multiple trials model 

with T = 100, k = 5, p = 0.4 for all m2/ml and Ps or T = 100, 

k = 10, p = 0.4 for all m2/ml and P8 ..::_0.4. 

(ii) With m2 /m1 ..::_ 0.1, Model I is more efficient than the 

multiple trials model with T = 100, k = 10 (also 5) for all p and 

P8 ..::_o.9. 

(iii) With m2/m1 < 0.3, Model I is more efficient than the 

multiple trials model with T 100, k = 5 for all P8 and p > 0.3. 

0.1, 0.2, 0.3 and 0.4, Model I is more 

efficient than the multiple trials model with T = 100, k = 5 for P8 

greater than 0.9, 0.7, 0.5 and 0.1, respectively. 
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(v) As PS or p increases, the ratio of the variance of 

Model I to the multiple trials model decreases. 

(vi) As k increases, the ratio of the variance of Model I to 

the multiple trials model increases. 

(vii) Use Model I to estimate PS if we expect that the true 

proportion of the sensitive group in the population is greater than 

0.5 and let m2 /m1 be less than 0.3. 

Extension of Model I in the Case When 

Some Sampled Respondents Do Not 

Report Truthfully 

Suppose that members of the sensitive group tell the truth only 

with probability Prs and members of the non-sensitive group tell the 

truth with probability piN' then the probability that a respondent 

will answer "Yes" is 

p = Pr (A respondent is a member of the sensitive group and 

answers "Yes" to the statement "Give the true answer") 

+ Pr (A respondent is a member of the non-sensitive group 

answers "Yes" to the statement "Give the true answer") 

+ Pr (A respondent is a member of the sensitive group and 

answers "Yes" to the statement "Yes") 

and 

+ Pr (A respondent is a member of the non-sensitive group and 

answers "Yes" to the statement "Yes") 

21 
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(2.8) 

Let denote the number of respondents answering "Yes", then the 

estimate for p is n1 /n. 

The estimator of P8 and its variance are 

pS [:l +(:~::~PIN- (m1 :lm)J /[Prs + c~: ::lPrN- cl :lm)l 
(2.9) 

Q (1 -_E) 

n hs + (:~: :~jPrN -Ll :1m)f 
(2.10) 

with 

(2. 11) 

For the estimator of and its variance will be 

reduced to 

Prs -; 1/2 (2.12) 
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(2.13) 

where 

with 

(2.14) 

• 

Since those people in a population who belong to the non-sensitive 

group have no reason to give an incorrect answer~ let piN = 1~ then 

the estimator of PS and its variance are 

(2.15) 

(2.16) 

n ~IS -

where 

with 
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./".... A 

Var(P 5) (2.17) 

A comparison of Model I with the regular model in the case when 

members of the sensitive group tell the truth only with probability 0.5, 

0.7 or 0.9, and members of the non-sensitive group tell the truth with 

probability one is shown in Table I. The sample size used in each case 

is 100 and m2/m1 = 0.2. A plot of the data in Table I is also shown 

in Figure 5. The data in Table I and the graph in Figure 5 suggest 

that we should not use Model I if 

(i) Ps > 0.23 and Pis 0.7 provided that Ps 0.1. 

(ii) Ps > 0.45 and Pis 0.9 provided that Ps 0.1. 

(iii) Ps < 0.26 and Pis 0.7 provided that Ps 0.5. 

The range of Ps for another combination of Pis and Ps can 

also be found directly from Figure s. 

Extension of Model I in the Case When 

Some Sampled Respondents Refuse to 

Answer the Questions 

Some sampled respondents, especially the respondents who belong to 

the sensitive group, may not want to answer the sensitive questions even 

using the randomizing device. By forcing the respondents to answer the 

questions, they may give false information which commonly causes large 

systematic errors when estimating the parameters of interest. The 

following is the model developed for the sample in which some sampled 

respondents refuse to answer the sensitive questions. 



Pis 

0.5 

0.7 

0.9 

TABLE I 

COMPARISON OF MODEL I AND THE REGULAR MODEL IN THE CASE WHEN 
SOME SAMPLED RESPONDENTS DO NOT REPORT TRUTHFULLY, 

n = 100, m2/m1 = 0.2 

MSE (Model I)/MSE (Regular) 
Ps Ps=O.l Ps=0.3 Ps=0.5 Ps=0.7 

0.5 4.8485 0.7404 0.3105 0.1731 

0.4 3.6181 0.5260 0.2183 0.1211 

0.3 2. 7746 0.3918 0.1616 0.0893 

0.2 2.1878 0.3026 0.1243 0.0686 

0.1 1. 7561 0.2405 0.0985 0.0543 

o.o 1.4400 0.1955 0.0800 0.0441 

0.7 3.8903 0.7921 0.3483 0.1873 

0.6 2.7917 0.4868 0.2050 0.1080 

0.5 2.0269 0.3252 0.1340 0.0700 

0.4 1. 5151 0.2310 0.0942 0.0489 

0.3 1.1618 0.1721 0.0697 0.0361 

0.2 0.9142 0.1329 0.0536 0. 0277 

0.1 0.7354 0.1056 0.0425 0.0219 

0.0 0.6030 0.0859 0.0345 0.0178 

0.9 3.6848 1. 5360 0.9316 0.5602 

0.8 2.9737 o. 8136 0.3734 0.1836 

0.7 2.1871 0.4518 .0.1869 0.0869 

0.6 1. 5694 o. 2777 0.1100 0.0501 

0.5 1.1414 0.1855 0.0719 0.0324 

0.4 0.8509 0.1318 0.0505 0.0227 

0.3 0.6532 0.0982 0.0374 0.0167 

0.2 0.5136 0.075~ 0.0288 0.0129 

0.1 0.4134 0.0602 0.0228 0.0102 

0.0 0.3390 0.0490 0.0185 0.0083 
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Ps=0.9 

0.1093 

0.0762 

0.0561 

0.0431 

0.0341 

0.0276 

0.1067 

0.0608 

0.0392 

0.0273 

0.0201 

0.0154 

0.0122 

0.0099 

0.2759 

0.0773 

0.0353 

0.0201 

0. 0130 

0.0090 

0.0067 

0.0051 

0.0040 

0.0033 
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Let n be the sample size, n be the number of respondents ~vho 
r 

refuse to answer the questions, then n = n - n 
c r 

will be the number 

of respondents who answer the questions. 

Thus, the probability that a respondent who answers the questions 

will answer "Yes" is 

27 

(2.18) 

where PSc is the true population propor-tion of the people who answer 

the questions and also belong to the sensitive group. 

Since the estimate for is where is the number 

of respondents answering "Yes", then 

A 

lncl(m + mJ !1 PSc = m ) -n 1 2 
c 

(rnl :l rn2) 
ncl rn2 

(2.19) 
n rnl c 

Let k denote the proportion of respondents who refuse to answer 

the questions and also belong to the sensitive group, then the adjusted 

value for PSc is 

A 

:P 8c(Adjusted) = 
n P8 + kn 

c c r 
n 

(2.20) 

Substituting identity (2.19) in (2.20), the adjusted value for 

A 

PSc may be written 



A 

P Sc (Adjusted) 
n m2 kn 
_c_+ __ r 
nm1 n 

28 

(2.21) 

We note that (2.21) depends on an unknown parameter k. Various 

techniques to estimate k are considered later. 

It is evident that the persons in a population which do not belong 

to the sensitive group have no reason to refuse to answer the questions, 

so let k = 1. The estimator for PSc will be reduced to 

P5c(Adjusted, k=l) 

with 

Var[P 5c(Adjusted,k=l)] 

and 

n m2 n 
_c_ +_.E. 
nm1 n (2.22) 

+ Var(n ) - 2Cov(n 1 ,n )] c c c 
(2.23) 

/'- A 

Var[P 5c(Adjusted,k=l) 

2 !zP :1m2) ln(n~l) ~ n~1) + n(:c) (1 :c) 

+ 2nC~1j( :c)] 

+ 2n 1n ] . 
c c 

(2.24) 

A further consideration is that, what would be the estimate of P5 

for the case when k + 1. This brings up the question of how can we 

estimate the value of k from our sample. There are at least two 
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alternative approaches, both of which are approximate solutions: 

n 
A 

(1) Using k 
r A -P 

n Sc (2.25) 

A 

(2) Using k 
n r A 

- P8 (Adjusted). 
n c (2.26) 

Alternative 1. This estimator is good only when the value of P8 

is the same for both those who answer and those who refuse to answer. 

There is some evidence that the value of a parameter will not be the 

same for respondents as for non-respondents [Finkner (16), Hendricks 

(17)]. In our case, the value of P8 in the sampled respondents who 

answer the question is likely to be less than the value of P 8 in those 

sampled respondents who refuse to answer. 

Alternative 2. Since the value of P8c(Adjusted) depends upon the 

value of k, then a direct solution of k is not available. However, 

the value of k can be found by a simple iterative procedure, il-

lustrated as follows: 

(i) Find the first approximation 

n r A 

-P 
n Sc 

and then 

P8c(Adjusted) 1 

(ii) Find the second approximation 



and then 

A 

P8c(Adjusted) 2 

(iii) Find the third approximation 

and then 

A 

P8c(Adjusted) 3 

A A 

A 

n m2 k 2n 
_c_+ __ r 
nm1 n 

A 

n m2 k 3n 
__ c_ + __ r 

nm1 n 

(iv) If the ith approximation of k, k .• 
1 

is equal or approx-

imately equal to the (i - l)th approximation, then is the 

estimator of k we want. 

By using k =(:r ) [method (1)] as an estimator of k, the 

A 

adjusted value for PSc will be 

30 

:P 8 c(Adjusted,k) (2.27) 

If we assume n fixed instead of being a random variable, then 
c 

A 

the variance of PSc(Adjusted) can be written in the form 

Var[P 8 (Adjusted,k=l,n fixed)] c . c 

(2.28) 
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Since the expression (2.28) without 
n 

c 
n 

is [see (2.4)], 

and 
n 

c 
n 

is less than or equal to 1, then we can conclude that 

Var[P Sc (Adjusted,k=l,nc fixed)] _:::_ Var(PSc). (2.29) 

n 
A A 

Again, the variance of PSc(Adjusted) when k 
r A 

-- P5 can also 
n c 

be written in the form 

Var[P8 (Adjusted,k,n fixed)] 
c c 

. 2 ln n · 
= _£ + 2( 2 

n 2. 
n 

A 

= Var[P8 (Adjusted,k=l,n fixed)] 
c c 

ps ) m2(1 - ps >1 
c + c j.(2.30) 

m1n 

Combining Model I with the Unrelated 

Questions Model (PN Known) 

In general Model I and the unrelated questions model seem to be 

more efficient than other available models. Unfortunately, the effi-

ciency of these two models over the other ones depends upon the value of 

r 5 . For some surveys we may not have any idea about the value of r 5 

in the population at all. In order to get a new model which is more 

efficient than either of these two models, the best way is to combine 
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the good points of the two models, using the inverse of the variance of 

the estimators in each model as weights. For this purpose, onJy a 

single sample is needed. But each sampled respondent has to use two 

different randomizing devices, one set for Model I and another set for 

the unrelated questions model, to answer the questions given by each 

model. A diagram of the design is shown in Table II below. 

TABLE II 

DIAGRAM OF THE COMBINED DESIGN 

Sampled Respondent Model I Unrelated Questions Model 

1 -- --

2 -- --

3 -- --
. . . 
. . . 
. . . 
n -- --

:Ps 
A A 

PSI Psu 

A 

Var(PSI) Var(Psu) Var(Ps) 

We shall now formulate the combined estimate of PS in Model I and 

the unrelated questions model in mathematical terms. 
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Var(P8u)P 8I + Var(P8I)Psu 

Var(PSI) + Var(P 8U) 
(2.31) 

A 

The variance of P8 (Combined) is approximately 

Var[P8 (Combined)] = 

Var(P8I)Var(P8u) 

Var(PSI) + Var(P 8U) 
(2.32) 

The expression (2.32) implies that Var[P8 (Combined)] is always 

less than or equal to the minimum of Var(P8I) and Var(P8U). 

Model II 

In order to extend Model I to a multi-proportions randomized 

response model, we will look at a special version of Model I which we 

will call Model II. In this situation, there is no difference between 

Model I and Model II except for the randomizing device used in these 

two models. 

Description of the Model and Estimation 

of the Parameters 

The randomizing device used in this model is a box containing 

m balls; are white and are black (m- m1 2:. 2). The 
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proportion of balls with different colors must be predetermined. At the 

interview, the respondent is asked to shake the box and draw two of th~ 

balls in that box with or without replacement. The respondent is 

required to tell the truth if he gets at least one white ball (i.e.~ 

"YeB" or "No"). If the respondent gets all biac:k balls~ he i$ required 

L~t P5 repr~s~nt th~ tru~ proportion of respond~nts who b~long 

to th~ ~~n~itiv~ group S, th~n th~ probability that a r~~p~nd~nt will 
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A 

Substituting identity (2.33) in (2.35), the variance of P8 may be 

written 

where k1 

Since the estimator for p is then the estimator for 

(2.37) 

For sampling with replacement, a ball is drawn out, its color noted 

and then replaced. This is done two times. In this case, the probabil-

ity of drawing a white ball is constant and is equal to m1 /m. By 

applying the probability density function of the binomial distribution, 

the probability that a respondent will answer "Yes" is 

p (2.38) 

Proceeding exactly as in the sampling without replacement case we 

obtain 

(2.39) 



with 

where 

and 

k 
2 

ml( ml \ 
-m 2- -J m 1 
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_1 (nl0(1 _ nl). 
k2 n , n 

(2.41) 
n 2 

It can be shown that sampling with replacement is generally 

more precise than sampling without replacement but for a large 

population size, the precision of the two methods tends to be very 

similar. 

Let us turn now to the efficiency of Model II. The expression 

(2.37) and (2.41) suggest that if a large number of balls are drawn out 

from the box and the ratio of the white balls to the black balls is very 

large, then the efficiency of Model II will be increased significantly. 

For the purpose of inducing more cooperation in the respondents, the 

ratio of the white balls to the black balls should not be too large 

(it should probably be no larger than 4) and the number of balls drawn 

from the box should not be greater than three. 



A Multi-Proportions Randomized 

Response Model 

In the case where every person in a population belongs to one of 

t mutually exclusive groups (1, 2, ... , t) and it is desired to 
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estimate the proportion in each group, the technique of Model II can be 

extended. 

We shall now illustrate this technique by using a box containing 

m balls (m ~ 2t) where m1 ~ t are white and (m - m1 ) ~ t are 

black, as our randomizing device. The proportion of balls with dif

ferent colors will be predetermined. At the interview, the respondent 

is asked to shake the box and draw at least t of the balls in that box 

with or without replacement. The respondent is required to answer 

according to the number of white balls he gets and the probability of 

getting that number of white balls. For example, suppose we use 

m = 30, m1 = 20 to estimate the proportion of 3 mutually exclusive 

groups in the population and let the respondent draw 5 of the balls from 

the box without replacement. In this case there are six possible num

bers of white balls drawn from the box. They are 0, 1, 2, 3, 4 and 5. 

The assigned groups to each number of white balls and the corresponding 

probabilities are shown in Table III. 

If our interests do not center on any groups, the groups that are 

assigned to r = O, 1 and 2 can be interchanged. In the case where 

our interest is primarily in a particular group and where the propor

tion of respondents belonging to that group is expected to be high, we 

should assign that group to the value of r which has the largest 

probability among the three values which have been assigned the response 



"Answer Group i". If, however, the proportion belonging to that group 

is expected to be small, then the value of r assigned should be the 

one having the smallest of these three probabilities. For example, if 

we are interested in group 1 and want to get a good estimator for P1 , 

the assigned number of white balls for "Group 1" should be two if the 

expected P1 is high, and zero if it is low. 

Number 

TABLE III 

THE ASSIGNED GROUPS TO THE NUMBER OF WHITE BALLS 
AND THE CORRESPONDING PROBABILITIES 

of White Balls 
Pr(r) "Response" (r) 

0 0.00177 "Group 1" 

1 0.02947 "Group 2" 

2 0.15999 "Group 3" 
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3 0.35998 "Give the true answer" 

4 0.33999 "Give the true answer" 

5 0.10880 "Give the true answer'' 

It is evident that the main emphasis in assigning answers to values 

of r is to maximize the probability of getting "Give the true answer" 

and minimize the probability of getting "Group i". 

Now, let P. 
1 

represent the true proportion of respondents who 

belong to "Group i", then the probability that a respondent will answer 



"Group i" is 

P.[l- ~ Pr(r.)] + Pr(r.) 
l i=l l 1 

where Pr(r.) is the probability of drawing "Group i". 
l 

If a random sample of size n is taken, let n. 
l 
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(2.42) 

denote the 

number of respondents answering "Group i", and then the estimator for 

with 

and 

Now, 

is n. /n. 
l 

n. 
Substituting pi 

l 
in (2.42) and solving for 

n 

:P. 
l 

Var (P.) 
l 

Cov(P. ,P.) 
l J 

~ Pr(r.)] 
i=l l 

t l 
l: Pr(r.), 

i=l l _j 

Cov(ni nj) 
n ' n 

[1 t l2 
- l: Pr(r.) 

i=l l-

P. we will get 
l 

(2.43) 

2 

(2.44) 

(2.45) 
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(n. n.) 
Cov _.2:. _1. = 

n ' n 
1 

2 Cov(ni, n.) 
n J 

= 12 Cov(.~ Xi, ~ x.) where X., X. 
n 1=l j=l J 1 J 

1 or 0, 

1 - Cov (X. , X. ) 
n 1 J 

1 
= -[E(X.X.) - E(X.)E(X.)] 

n 1 J 1 J 

_lE(X.)E(X.) 
n 1 J 

As before, since 
n. 

1 

n ' 
then the estimator of Var(P.) 

1 

Cov (P. , P . ) are 
1 J 

/""'.. A A 

Cov(P., P.) 
1 J 

]
2 

~ Pr(r.) 
i=l 1 

t ,2 

E Pr(r.)J • 
i=l 1 

(2.46) 

and 

(2. 4 7) 

(2.48) 

In order to minimize the variance of the estimator, the expression 

(2.44) suggests that 

(i) The ratio m1 /m should tend to one and hence the probabil

ity of getting a large number of white balls be high. 

(ii) The number of balls drawn from the randomizing device each 

time should be equal or close to the number of black balls in the 

randomizing device. 

(iii) The number of white balls that correspond to the t 
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smallest probabilities should be assigned to the t groups, the rest of 

them assigned to the answer "Give the true answer". 

t 
We note, however, that E Pr(r.) 

i=l l 

should be about 0.2 or more to 

encourage cooperation among the respondents. 

Randomized Response Model for Proportions 

in Cluster Sampling 

According to a randomized response model for proportions, the 

sampling units are classified into the sensitive group or the non-

~ 

sensitive group so that P8 is the ratio of the number of units in the 

sensitive group in the sample to the total number of units in the 

sample. The formulae for the variance and the estimated variance of 

~ 

P8 derived for this case can not be used in the case when each sampling 

unit is composed of a group of elements, and it is the elements that are 

classified as S or N. For example, if the sampling unit is a family 

and the elements are members of the family or the sampling unit is a 

school and elements are students in that school. 

~ ~ 

In order to find P8 and the estimated variance of P8 for this 

kind of sampling unit, suppose the size of the sampling unit is not 

constant. 

Let m. be the number of elements in the ith sampling unit, then 
l 

h . f p . h .th 1' . t e est1mator o S 1n t e 1 samp 1ng un1t, 

ms./m. 
l l 

is 

(2.49) 

where is the number of elements belonging to the sensitive group. 
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The proportion of units falling in the sensitive group in the 

sample is 

n /n 
L: ms. L: m. 

i"'l 1 i=l 1 

A 

R (2.50) 

where n is the sample size. 

Structurally, this is a typical ratio estimate. Let us consider 

the variance of a ratio estimator. If variates x. and are 
1 

measured on each unit of a simple random sample of size n, assumed 

large, the variance of R = y/x is approximately: 

Var(R) ' 
l N (y. - Rx.) 

L: 1 1 

-2 N - 1 
nX i=l 

2 

where R = Y/X is the ratio of population means. 

(2.51) 

If we put for and m. 
1 

for x. 
1 

in (2.51), the approxi-

mate variance of P5 is 

= 1 ~ (mi)
2 

n i=l H 
(2.52) 

where P5 is the proportion of elements in the sensitive group in the 

population and M 
1 N 
N L: m. is the average number of elements per 

i=l 1 



sampling unit in the population. 

For the estimated variance of P8 

2 

~ (:i) 
n i=l m 

(2.53) 

where m 
1 n 

~ m. is the average number of elements per sampling unit 
n i=l 1 

in the sample. 

In summary, a randomized response model may be used in conjunction 

with a ratio estimator of the population proportion PS in the case 

when each sampling unit is composed of a group of elements, and it is 

the elements that are classified as S or N. The formula for 

estimating P8 is the same as the formula used in the randomized 

response model for proportions with one respondent as a sampling unit, 

but the formulae for the variance and estimated variance of PS have to 

be changed by using the approximate variance of a ratio estimator with 

and m. 
1 

X. • 
1 

Extension of the Randomized Response 

Models for Proportions to Two 

Trials and t Trials 

per Respondent 

It seems clear enough that a gain in the efficiency of the 

randomized response models can be achieved by using the additional 

information provided by repeated trials with each respondent. Or-

dinarily, doubling the number of observations will reduce the variance 
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in random samples by about one-half. We shall now illustrate this 

technique on two trials and t trials per respondent. 

Two Trials per Respondent 

An extension of the randomized response model for proportions 

requires each respondent to make two independent selections of the two 

questions using the same randomizing device. 

It is evident that for an individual from whom two responses are 

required there are four possible responses: (Yes, Yes), (Yes, No), 

(No, Yes), and (No, No). 

If we let n11 , n10 , n01 and n00 be the number of individuals 

answering (Yes, Yes), (Yes, No), (No, Yes) and (No, No) respectively in 

the sample and n be the sample size, then the estimate for the 

probability that a respondent will answer "Yes", p, in each model will 

be 

(2.54) 

can then be found by substituting for p in each model. 

Similarly, the estimated variance of P5 can be found by substituting 

A* A 
p for p in Var(P5) but instead of dividing by n we have to 

divide by 2n. The results for each model are summarized in Table IV. 

t Trials per Respondent 

In this case, each respondent is required to make t independent 

selections of the t questions using the same randomizing device. As 

before, let nll ... 1, nll ... 0 ..•.. ,and noo ... 0 
' 

be the numbers 
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of individual answering (Yes, Yes, ••. ,Yes), (Yes, Yes, .•. ,No), ... , 

and (No, No, ... ,No) respectively. 

TABLE IV 
A 

ESTIMATORS OF Ps AND Var(Ps) IN RANDOMIZED RESPONSE MODELS 
FOR PROPORTION WITH TWO TRIALS PER RESPONDENT 

Model 

I 

II 
(Without 

Replacement) 

( m ~ m1) (~) 
-

(~)kl 

Let n be the sample size, then the estimate for p can be 

written in the form 

A* 
- p ) 

A** 1 [ 
p tn tnll ..• 1 + (t- l)(nll ... 10 + nll ..• 01 + ··· + nOl ... 1) 

+ (t- 2)(nll ... 00 + nll ... 010 + · ·· + nOOl ... 1) 

+ 2 (n + n + 110 000 0 1010 •.. 0 . . . + noo . 0 0 11) 

+ (n + n + 000 + noo •.. 1)]. 10 ... 0 010 ... 0 
(2o55) 

Proceeding exactly as in the two trials case we obtain the same 
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A ~A 
formulae for Ps and Var(Ps) as in the two trials case except we put 

A** p for A* p and tn for 2n. 

The alternative way of applying repeated trials with each respond-

ent is to use t different sets of randomizing devices for each 

respondent. The estimator for PS is the weighted average of PS 

obtained from the t samples. The weights used in this case are the 

inverse of the variances of the t estimators. We shall now formulate 

the problem in mathematical terms. 

PS(Repeated) (2.56) 

Var[PS(Repeated)] 

where PSi and n. 
l 

represent the estimators of the true proportion 

d h b f d . "Y II • h .th 1 an t e num er o respon ents answer1ng es 1n t e 1 samp e 

respectively. We note that both (2.56) and (2.57) involve the 

quantities Var(PSi) which are unknown. It is usual in a practical 

application to estimate Var(PSi) and make this 

substitution in the appropriate places in (2.56) and (2.57). 

If we compare the efficiency of these two methods of applying 

repeated trials, we will see that the gain in efficiency is somewhat 

less with the alternative method, however, because of the correlation 

among the t responses. 



CHAPTER III 

RANDOMIZED RESPONSE MODELS FOR 

QUANTITATIVE DATA 

Extensions of the Multi-Proportions Randomized 

Response Models to Estimate the Mean 

for Quantitative Data 

Model III 

The multi-proportions randomized response model presented earlier 

in Model II can be extended to estimate the mean for quantitative data. 

For the purpose of illustration, let us suppose that the midpoint of 

the ith interval or class of the quantitative measures belonging to 

"Group i" is represented by X •• 
1 

Then the estimated population mean of 

the quantitative measures can be written in the form 

with 

. ./'\._ " 
Var(J.I) 

t 
A 

L: p .X. 
i=l 1 1 

t 2 .............. A t .,../'...... A 

I X.Var(P;) + 2 I X.X.Cov(P., ~.) 
i=l 1 1 i<j=l 1 J 1 J 

47 

(3 .1) 
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t 2 t 
I:n.(n-n.)X.-2 I: n.n.X.X. 

l. =1 l l l . . 1 l 1 l J 
= =-~----------------~l_<~]-=~--------

2 
(3. 2) 

t 
I: Pr(r) 

i=l lJ 

where Pi is the estimator of the true proportion of respondents 

belonging to the ith interval of the quantitative measures. 

Before proceeding to the next model, we shall give an example of 

this application. Suppose we want to estimate the average income of 

people in a certain area and we divided the expected income of these 

people into three classes or intervals ($0-7,499, $7,500-14,999 and 

$15,000-22,499). The randomizing device used in this model is the same 

as Lhe randomizing device used in MoClel II (for multi-proportions). 

The instructions tell the respondent to answer "Group i" if a ball is 

drawn with "Group i" on it. If a "Give the true answer" ball is 

selected, then the respondent should tell the interviewer the group in 

which he actually belongs. An example of group definitions is given in 

Table V. 

The midpoints, as we have seen, are 3,749.5, 11,249.5 and 

18,749.5 respectively. 

In order to get a simpler procedure for administering the model, 

the randomizing device used in this extension should be a box of 

(t + 1) kinds of balls. Each kind of ball says either "I belong to 

Group i" (i = 1, 2, ..• , t) or "Give the true answer". The required 

statements corresponding to each group are marked on the surface of the 

balls (e.g., range of income). At the interview, the respondent is 

asked to shake the box and draw a ball from that box. The respondent is 

required to answer in accordance with the instructions or statements on 



the surface of the balls. If it is a ball which says "Give the true 

answer" then the respondent is expected to answer truthfully with 

the number of the group to which he belongs. If the ball shows "Group 

i", then the respondent answers with the number i. As before, the 

respondent only answers the specified question without telling the 

interviewer which question is being answered. 

TABLE V 

THE CORRESPONDING QUESTIONS TO EACH GROUP 

Model II 
(Multi-Proportions) 

Group 1 Did you earn 

Model III 

less than $7,500 last year? 

49 

Group 2 Did you earn more than $7,500 but less than 
$15,000 last year? 

Group 3 Did you earn more than $15,000 but less than 
$22,500 last year? 

Now, consider the method of estimation of our parameters. Let 

represent the number of balls saying "Give the true answer" and let the 

number of balls for each group be one, then the total number of balls 

in the box is m1 + t. 

Let P. represent the true proportion of respondents who belong to 
1 

"Group i", then the probability that a respondent will answer "Group i" 

is 



so 

(1. 3) 

If a random sample of size n is taken, let n. 
]_ 

denote the number 

of respondents answering "Group •II 
]_ , then the maximum likelihood esti-

mates of P., its estimated variance and covariance are 
]_ 

~A 
Var(P.) 

]_ 

(3. 4) 

(3. 5) 

(3. 6) 

Referring to (3.4), (3.5) and (3. 6) the estimated population mean 

of the quantitative measures an,d its estimated variance are obtained as 

follows: 

]..1 

2 

t) [ ~ n. (n 
i=l ~ 

Model IV 

2 
n. )X. 

]_ ]_ 
2 ~ n.n.x.x.]. 
.. llJ~J 
~<]= 

(3. 7) 

(3. 8) 

In the case where every person in a population belongs to one of t 

mutually exclusive groups, and it is required to estimate the propor-

tion in each group, the Warner model can be extended as in Abul-Ela 

et al. (2). For this purpose (t - 1) simple random samples with 



replacement of sizes n 1 , n 2 , •.. , nt-l are required to estimate the 

" (t- 1) proportions and Pt 
t-lA 

1 - ~ Pk. It is necessary to use 
k=l 

(t - 1) sets of different combinations of the probability of getting 

the J.th f th .th 1 d . f . h d" . group rom e 1 samp e an sat1s y1ng t e con 1t1on 

t 

~pi. = 1 for i 
j=l J 

1, 2, ••. , t- 1. 

For purposes of illustration let us suppose that nil is the 

number of "Yes" answers reported in the ith sample. Then the maximum 

likelihood estimate of P8 can be written in the form 

51 

-1 
E n (3.9) 

with 

where 

p = 

-1 -1 
p ~<r )' (3.10) 

(3.11) 

pt-1 

Pu - plt 

p21 - P2t 
P22 - P2t 

I I I I I I I I I I I I I 

P2Ct-l) - P2t ......... 
p(t-1)1- p(t-l)t p(t-1)2- p(t-l)t ..... p(t-l)(t-1)- p(t-l)t 

(3.12) 



n -

v = 

v .. 11 

52 

nll 

nl plt 

n21 

n2 Pzt (3.13) 

......... 
n(t-1)1 

n (t-1) 
- p(t-l)t 

vll 

v22 

L(nilJ (1 
n. n. 

1 1 

l 

v(t-l)(t-1~ 

n.l) 
---1 -, i = 1, 2, ... , t- 1. 

n. 
1 

(3 .14) 

(3 .15) 

Again, if we let X. 
1 

t h "d . f h .th . 1 f represen t e m1 po1nt o t e 1 1nterva o 

the quantitative measures belonging to "Group i", then the estimated 

population mean of the quantitative measures and its estimated variance 

will be obtained as follows: 

(3.16) 

(Jt-1) 'xp-lv(p-1) 'xJt-1 + x2(Jt-1\ 'p-1v(p-1) 'Jt-1 
1 -- - - - 1 t 1 ) - - - 1 (3.17) 
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where 

1 xl 

1 x2 

t-1 
Jl and X (3 .18) 

1 
(t-l)xl X 

t-1 

By applying Model IV to the previous example, two independent non-

overlapping simple random samples of size n1 and are drawn with 

replacement from the population. Suppose that the random device con-

sists of two decks of cards. Deck 1 is used in the first sample, deck 

2 in the second sample. Each deck contains three different types of 

cards. Each type of card says: 

(i) Did you earn less than $7,500 last year? 

(ii) Did you earn more than $7,500 but less than $15,000 last 

year? 

(iii) Did you earn more than $15,000 but less than $22,500 last 

year? 

The proportions of these three kinds of cards within any deck are 

identical, but the proportions of cards in deck 1 are different from 

those in deck 2 and the proportions within any deck must not be one 

third for each kind [see (3.9), (3.10) and (3.12)]. As before, the 

respondent is required to draw a card and answer only "Yes" or "No" 

according to the question on that card. 

If we let and denote the number of "Yes" answers 

reported in the first sample and second sample respectively, then the 

estimated average income of people in that area is 
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(3.19) 

with 

(3.20) 

where 

0 

X 11,249.5 

0 

p 

n 

v 
_o 

Advantages of the Extensions 

Making use of this technique to estimate the mean for quantitative 

data, the procedure for administering the model is rather simple and 

causes less embarrassment to the respondents and hence increases the 

likelihood of truthful answers. It is evident that the efficiency of 
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the estimate depends on the distribution of the quantitative measures 

and the choice of intervals or classes. Grouping the measurements into 

classes, it is then assumed that the midpoint of each class will fairly 

represent all the observations in that class. This assumption involves 

a slight approximation, but the results will prove quite satisfactory 

for significance tests provided that the observations are divided into 

at least 10 intervals. When the data shows a natural tendency to be 

spread fairly evenly among all the intervals, regardless of their width, 

the efficiency of the estimate will increase as the number of intervals 

used increases. 

Model V (Multiplicative Model) 

Description of the Model and Estimation 

of the Parameters 

The multiplicative model was first developed by Poole (9). The 

randomizing device used in this model is a box containing a number of 

balls. A number such as 1, 2, ... , r will be marked on the surface of 

each ball and the proportion of balls with different numbers will be 

predetermined. As in the previous models, the respondent is asked to 

shake the box and draw one of the balls in that box. Suppose a survey 

is conducted in order to estimate the average income of some population 

of interest as in the examples given in Model III and Model IV. The 

respondent multiplies the number on the surface of the ball he gets by 

his income and the result is recorded. 

By using Poole's technique, the distribution of the random 

multiplier has to be known beforehand and the estimation procedure is 

rather complicated. In order to get a simpler procedure of estimation 



we will introduce an alternative method of estimation. 

represent the true response and randomized Let X. and Y. 
1 1 

response of the ith respondent respectively. 

Let represent the proportion of the balls marked 

1,2, ... ,t 
t 

and L p. 
j=l J 

1, then 

E(Y.) 
1 

n 
Z E(Y.) 

i=l l 

t 
L r.p.X. 

j=l J J l 

t n 
Z r.p. Z X. 

j=l J Ji=l l 

t 
nX Z r. p .• 

j=l J J 

Solving for X, we obtain 

X = ~ E (Y . )/· (n ~ r . p .) . 
i=l l j=l J J 

The estimator for X is then obtained by putting 

we have 

~ ~ Y.j (n ~ r.p.) 
i=l 1 j=l J J 

= Y/ ~ r .p. 
j=l J J 

with 

Y. 
l 

for 

r.' j 
J 

E(Y.). 
l 

56 

(3. 21) 

Thus 

(3. 22) 
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A 

Var(X) (3.23) 

A non-detailed empirical investigation will be discussed in the 

next section. 

Empirical Investigation 

The objective of this study is to investigate the choice of t, pj' 

and r. which we use in this model in order to minimize the variance 
J 

of the estimator. For questions such as, "What is the best combination 

of and r.?", the answers are more difficult to obtain. 
J 

It is 

the author's opinion that if we know the range of the true responses, 

we should divide this range into t equal intervals. The choice of 

r. 
J 

should be the midpoints of each interval, and the choice of p. 
J 

should be close to the frequencies of X. 
l 

in each interval. It is also 

clear that t should be as large as possible. In order to attack the 

problem from an investigation viewpoint we shall consider the choices of 

t, pj and r. as follows: 
J 

(i) t = 2, 3, 4 and 6. 

(ii) r. 
J 

= (1, 3), (1, 2, 3), (4, 5, 6) , (7, 8, 9) 

and 

r .. [Min(X.) + (I/2)] + (j - l)I, j 
J l 

1;2, ... ,t (3.24) 

where 

I [Max(X.) - Min(X.)]/t • 
. l l 

(iii) 1/t 



·and 

where fk is the frequency of X. 
l 

•.• , t and n is the sample size, 

and 
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. h kth . 1 k 1n t e 1nterva , 1, 2, 

(3. 25) 

In this study, the per capita personal income for 25 states from 

different regions of the United States of America in 1974 (see Table 

XXXIII, Appendix) will be considered as X. 
l 

(i = 1, 2, . .. ' 25). The 

corresponding r. for the true response X. are found by using a table 
J l 

of random numbers. The estimator of x, its variance and coefficient 

of variation for five different sets of random numbers and for various 

combinations of t, r. and p. are summarized in Table VI to Table 
J J 

VIII. 

From the data in Table VI to Table VIII, it is somewhat surprising 

to find that in order to minimize the variance of the estimate we 

should choose t, p. and r. such that the variance of r. is as 
J J J 

small as possible. 

.... 

We observe that for the same variance of r., 
J 

the 

variance of X will decrease as r. = 
J 

1 t 
2:: r. 

t j=l J 
increases. Also, the 

P ]. - 1 2 t can be chosen in any fashion but we must have j'. - , , ... , , 

t 
2:: p. 1. 

j=l J 



TABLE VI 
A 

THE VALUES OF X FOR EACH SET OF THE SAMPLE AND THE AVERAGE OBTAINED FROM MODEL V 

A 

Combi- ~ar(r.) - X r. pj r. 
nation J J J 1 2 3 4 5 

a 1:3 1/2 2.0000 2.00 4542.00 5134.44 4899.52 5308.82 5057.80 

b 1:2:3 1/3 1.0000 2.00 5173.82 4923.60 4985.14 4909.24 5217.06 

c 4:5:6 1/3 1.0000 5.00 5206.54 5106.48 5131.10 5100.74 5239.07 

d 4:5:6 0 44: 0 40: .16 1.0000 5.00 5140.78 5091.33 5106.51 5196.75 5140.04 

e 4:5:6 .20:.23:.57 1.0000 5.00 5132.92 5226.84 5142.47 5307.68 5140.83 

f 4:5:6 .16:.40:.44 1.0000 5.00 5142.64 5165.93 5034.23 5227.47 5190.17 

g 4.87:6.33 1/2 1.0658 5.60 5049.43 5203.89 5142.63 5249.39 5183.91 

h 4.62:5.60:6.57 1/3 0.8946 5.60 5206.15 5150.41 5178.46 5114.45 5221.44 

i 4.50:5.23:5~96:6.69 1/4 0 0 8135 5.60 5187.95 5217.27 5151.40 5188.27 5185.67 

j 4.38:4.87:5.35:5.84:6.33:6.82 1/6 0.8101 5.60 5234.42 5221.18 5224.55 5243.94 5238.28 

k 7:8:9 1/3 1.0000 8.00 5214.72 5152.20 5167.57 5148.59 5225.54 

True Value (X) 

Average 

4988.52 

5041.77 

5153.74 

5135 0 08 

5190.15 

5152.09 

5165.85 

5174.18 

5186.11 

5232.47 

5181.73 

5228.36 

l.n 
\.0 



TABLE VII 

THE VALUES OF VAR(X) FOR EACH SET OF THE SAMPLE AND THE AVERAGE OBTAINED FROM MODEL V 

Combi- r. pj Var(r.) r. Var(X 1 
nation J J J 1 2 3 4 5 

a 1:3 1/2 2.0000 2.00 2.1238 2.2543 2.0985 2.1141 1.8852 

b 1:2:3 1/3 1.0000 2.00 1. 4 7 54 1.0718 1.2132 0.9755 1.1219 

c 4:5:6 1/3 1.0000 5.00 0.2589 0.1451 0.1267 0.1158 0.1340 

d 4:5:6 . 44: . 40: .16 1.0000 5.00 0.2996 0.1659 0.1472 0.1417 0.1274 

e 4:5:6 . 20: • 23: . 57 1.0000 5.00 0.2338 0.1736 0.1695 0.1558 0.1478 

f 4:5:6 • 16: . 40: . 44 1.0000 5.00 0.2008 0.1482 0.1227 0.0789 0.0816 

g 4.87:6.33 1/2 1. 0658 5.60 0.2028 0.1997 0.1668 0.1628 0.1051 

h 4.62:5.60:6.57 1/3 0.8946 5.60 0.2339 0.1174 0.0970 0.0998 0.1072 

i 4.50:5.23:5.96:6.69 1/4 0. 8135 5.60 0.2207 0.1046 0.1013 0.0998 0.0957 

j 4.38:4.87:5.35:5.84:6.33:6.82 1/6 0.8101 5.60 0. 2165 0.1136 0.1146 0.0875 0.0804 

k 7:8:9 1/3 1.0000 8.00 0.1750 0.1115 0.0883 0.0947 0.0998 
---- - -----------------

1All variances have been multiplied by 105 . 

Average 

2.0952 

1.1716 

0.1561 

0.1764 

0.1761 

0.1264 

0.1675 

0.1311 

0.1244 

0.1225 

0.1139 

0'\ 
0 



Combi-
nation 

a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

TABLE VIII 

THE VALUES OF COEFFICIENT OF VARIATION OF X FOR EACH SET OF THE SAMPLE 
&~D THE AVERAGE OBTAINED FROM MODEL V 

-Var(r.) c.v.(%J r. p. r. 
J J . J J 1 2 3 4 

1:3 1/2 2.0000 2.00 10.1463 9. 2472 9.3498 8.6609 

1:2:3 1/3 1.0000 2.00 7.4241 6.6493 6.9870 6.3621 

4:5:6 1/3 1.0000 5.00 3.0904 2.3587 2.1934 2.1095 

4:5:6 . 44: . 40: .16 1.0000 5.00 3.3670 2.5301 2.3762 2.2905 

4:5:6 .20:.23:.57 1.0000 5.00 2.9789 2.5212 2. 5319 2.3519 

4:5:6 .16: . 40: . 44 1.0000 5.00 2.7555 2.3569 2.2008 1. 6989 

4.87:6.33 1/2 1.0658 5.60 2.8206 2. 7159 2. 5114 2.4310 

4.62:5.60:6.57 1/3 0.8946 5.60 2.9376 2.1039 1. 9016 1. 9537 

4.50:5.23:5.96:6.69 1/4 0.8135 5.60 2.8635 1. 9605 1. 9537 1. 9253 

4~38:4.87:5.35:5.84:6.33:6.82 1/6 0.8101 5.60 2.8110 2.0415 2.0494 1. 7839 

7:8:9 1/3 1.0000 8.00 2.5366 2.0495 1.8189 1.8900 

5 

~.5845 

~.4204 

~.2162 

2.1957 

2.3650 

1. 7400 

1. 9780 

1. 9829 

;1..8869 

. 7122 

1. 9121 

Average 

9.1757 

6.7889 

2.4242 

2.5862 

2.5570 

2.1826 

2.5052 

2.2120 

2.1509 

2.1156 

2.0593 

0' 
1-' 
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Model VI (Additive Model) 

Description of the Model and Estimation 

of the Parameters 

According to Model V there is another case one might consider. 

What will happen if we ask the sampled respondents to add the numbers 

marked on the surface of the balls to their incomes instead of multiply-

ing by them. This brings up the question of what to do when it is 

desired to compare this additive model to the multiplicative model. We 

shall discuss this problem later. Now, let us first find the formulae 
A A 

for X and Var(X). 

As before, let X. and Y. 
l l 

represent the true response and 

randomized response of the ith sampled respondent respectively. 

Let represent the proportion of the balls marked 

1, 2, . 0 0, t, 

E(Y.) 
l 

t 
and E p. 

j=l J 

t 

1, 

* l: r.p. +X .• 
j=l J J l 

n 
l: E(Y.) 

i=l l 

then 

t * n 
n E r.p. + EX. 

j=l J J i=l l 

( 
t * 

n E r .p. + 
j=l J J 

Solving for X, we obtain 

X 
1 n t * 

E E(Y.) - l: r.p.o 
n i=l 1 j=l J J 

* r., j 
J 

(3o26) 



Again, the estimator for X is then obtained by putting 

E(Y.). Thus we have 
l 

where 

X= 

The variance of X is 

A 

Var(X) 

1 n t * 
L: Y. - L: r.p. 

n i=l 1 i=l J J 

t * y - L: r. p. 
j=l J J 

-* X+ r 
t * 

- L: r.p. 
j=l J J 

-* 1 n * 
r L: r .. 

n i=l l 

Var(Y) 

= Var(X) + Var(r*). 

Y. 
l 

for 
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(3.27) 

(3.28) 

(3.29) 

An empirical investigation of this model will be discussed next. 

Empirical Investigation 

For the same set of data and the same set of random numbers that we 
A 

used in Model V, we shall calculate X, the variance of X and the 

coefficient of variation for Model VI for some combinations of * t, r. 
J 

and Referring to (3.28) and (3.29), we shall investigate Model VI 

using the following combinations: 

(i) 

(ii) * r. 
J 

(1000, 3000) and pj 1/2. 

(3000, 5000) and p. = 1/2. 
J 
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(iii) * r. 
J 

(1000, 5000) and p. = 1/2. 
J 

(iv) * (1000, 3000, 5000) and p. = 1/3. r. 
J J 

(v) * (1000, 2000, 3000, 4000, 5000) and 1/5. r. pj J 

(vi) * (2000, 2500, 3000, 3500, 4000) and 1/5. r. p. 
J J 

(vii) * (2500, 2750, 3000, 3250, 3500) and 1/5. r. pj J 

(viii) * r. = (2750, 2875, 3000, 3125, 3250) and p. = 1/5. 
J J 

A A 

The values of * - -Var(r.), X, Var(X) and the coefficient of variation of 
J 

X are summarized in Table IX to Table XI. 

In summary, in order to minimize the variance of the estimator, the 

choices of t, p. 
J 

and * r. should be such that the variance of 
J 

* r. 
J 

should be as small as possible. We note that for the same variance of 
A 

r~, if t increases, then the variance of X will decrease, and that 
J 

can take any values so long as 
t 
L: p. 

j=l J 
equals one. 

Comparison of Model V and Model VI 

In order to compare the efficiency of the multiplicative model and 

the additive model, the values of r.X and 
J 

r* + X where r 
j j 

and 

r~ are random numbers used in the two models, should be the same for 
J 

both models. For example, if the r. 
J 

used in the multiplicative model 

are (1, 3), then the values of r.X are (5228.36, 15685.08) and hence 
J 

the corresponding values of * r. used in the additive model should be 
J 

(0, 10456.72). 
A 

For the purpose of this comparison, the value of X, its variance 

and the coefficient of variation of the two models for the same sets of 



TABLE IX 
A 

THE VALUES OF X FOR EACH SET OF THE SAHPLE AND THE AVERAGE OBTAINED FROH HODEL VI 

... 
Var(/) 1 Combi- * * X 

nation 
r. pj L:r,p. 

1 2 3 4 5 J J J J 

a 1000:3000 1/2 2,000 20 5028.36 5268.36 5188.36 5348.36 5268.36 

b 3000:5000 1/2 4,000 20 5028.36 5268.36 5188.36 5348.36 5268.36 

c 1000:5000 1/2 3,000 80 4828.36 5308.36 5148.36 5068.36 5308.36 

d 1000:3000:5000 1/3 3,000 80 5228.36 5388.36 5228.36 5148.36 5388.36 

e 1000:2000:3000:4000:5000 1/5 3,000 100 5148.36 5228.36 5148.36 5348.36 5228.36 

f 2000:2500:3000:3500:4000 1/5 3,000 30 5188.36 5228.36 5188.36 5288.36 5228.36 

g 2500:2750:3000:3250:3500 1/5 3,000 6.25 5208.36 5228.36 5208.36 5258.36 5228.36 

h 2750:2875:3000:3125:3250 1/5 3,000 1.5625 5218.36 5228.36 5218.36 5243.36 5228.36 

True Value (X) 
------ - - ··- ------- -

1All variances have been multiplied by 105 • 

Average 

5220.36 

5220.36 

5212.36 

5276.36 

5220.36 

5224.36 

5228.36 

5227.36 

5228.36 

0'1 
V1 



TABLE X 

"" THE VALUES OF VAR(X) FOR EACH SET OF THE SAMPLE AND THE AVERAGE OBTAINED FROM MODEL VI 

Combi- * * * 1 Vard) 1 
r. p. L:r.p. Var(r.) 

nation J J J J J 1 2 3 4 5 

a 1000:3000 1/2 2000 20 0.6318 0.6478 0.6478 0.6425 0.6478 

b 3000:5000 1/2 4000 20 0.6318 0.6478 0.6478 0.6425 0.6478 

c 1000:5000 1/2 3000 80 1. 8318 1.8958 1.8958 1. 8745 1. 8958 

d 1000:3000:5000 1/3 3000 80 1. 2985 1. 4211 1.4318 1. 2291 1. 2878 

e 1000:2000:3000:4000:5000 1/5 3000 100 1. 0291 1.1303 0.9958 0.8758 1. 0651 

f 2000:2500:3000:3500:4000 1/5 3000 30 0. 4311 0.3985 0.4228 0.3928 0.4401 

g 2500:2750:3000:3250:3500 1/5 3000 6.25 0.2816 0.2735 0.2795 0.2720 0.2839 

h 2750:2875:3000:3125:3250 1/5 3000 1. 5625 0.2442 0.2422 0.2437 0.2419 a·. 2448 
-

1All variances have been multiplied by 105 . 

Average 

0.6435 

0.6435 

1. 8787 

1. 3337 

1. 0192 

0.4171 

0.2781 

0.2434 

0\ 
0\ 



Combi-
nation 

a 

b 

c 

d 

e 

f 

g 

h 

TABLE XI 
A 

THE VALUES OF COEFFICIENT OF VARIATION OF X FOR EACH SET OF THE SAMPLE 
AND THE AVERAGE OBTAINED FROM MODEL VI 

* * Var(r~) 1 c. v. %) r. pj ~r.p. 1 2 3 4 5 J J J J 

1000:3000 1/2 2000 20 4.9988 4.8311 4.9056 4.7393 4.8311 

3000:5000 1/2 4000 20 4.9988 4.8311 4.9056 4.7393 4. 8311 

1000:5000 1/2 3000 80 8.8642 8.2023 8.4572 7.9174 8.2023 

1000:3000:5000 1/3 3000 80 6.8922 6.9961 7.2373 6.8096 6.6599 

1000:2000:3000:4000:5000 1/5 3000 100 6.2310 6.4303 6.1294 5.5333• 6.2421 

2000:2500:3000:3500:4000 1/5 3000 30 4.0018 3.8181 3.9631 3. 7477 4.0124 

2500:2750:3000:3250:3500 1/5 3000 6.25 3.2219 3.1831 3.2099 3.1364 3.2227 

2750:2875:3000:3125:3250 1/5 3000 1.5625 2.9946 2.9766 2.9915 2.9662 2.9925 
- ---- ---- -- -- -- ---------

1All variances have been multiplied by 105 . 

Average 

4.8593 

4.8593 

8.3156 

6.9214 

6.1155 

3.9092 

3.1896 

2.9845 

"' " 
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random numbers as before and for the following sets of * r . , r . and pJ. 
J J 

(i) r. 
J 

(1, 3), r~ = (0, 10456.72) 
J 

and p. = 1/2 
J 

(ii) r. 
J 

* (1, 2, 3), r. 
J 

(0, 5228.36, 10456.72) and p. = l/3 
J 

(iii) r. = (4, 5, 6), 
J 

* r. = 
J 

(15685.08, 20913.44, 26141.80) 

are calculated and they are summarized in Table XII. 

and 

It is observed that: (i) the multiplicative model is much more 
~ 

efficient than the additive model; (ii) the variance of X for the 

additive model depends only on the values of the selected r., i = 
l 

1, 2, •.. , n. It does not depend on the values of the corresponding 
A 

X. but the variance of X for the multiplicative model does. 
l 

Now, consider the fact that if there is very much difference in the 

* or r. is too small, this will cause 
J 

or if the variance of r. 
J 

embarrassment to the respondents and hence decrease the likelihood of 

truthful answers. The solution proposed is to use pj equal to 1/t 

and the values of r .X 
J 

or should not be less than double the 

expected value of X. 

Model VII 

Description of the Model and Estimation 

of the Parameters 

The randomizing device used in this model ts a deck of 11 kinds of 

cards. Ten of the cards have the integers 0 to 9 on them, while the 

eleventh has "Give the true answer" on it. Let represent the 

number of cards that say "Give the true answer" and let the number of 



TABLE XII 

COMPARISON OF MODEL V AND MODEL VI FOR DIFFERENT COMBINATIONS OF r., p. = 1/t 
] ] 

A 

~ 1 

* Sample X Var{X} c.v. {%} r., r. Model V Model VI Model V Model VI Model V Model VI ] J 

r. = 1:3 1 4542.00 4182.69 2.1238 11.1661 10.1463 25.2636 
J 2 5134.44 5437.49 2.2543 11.6035 9.2472 19.8105 
* 3 4899.52 5019.22 2.0985 11.6035 9.3498 21.4614 r. = 0:10456.72 4 5308.82 5855.76 2.1141 11.4577 8.6609 18.2795 ] 

5 5057.80 5437.49 1. 8852 11.6035 8.5845 19.8105 
(p. = 1/2) 

J Average 4988.52 5186.53 2.0952 11.4869 9.1757 20.6645 

r. = 1:2:3 1 5173.82 5228.36 1.4754 7.5213 7.4241 16.5875 
J 2 4923.60 5646.63 1. 0718 8.3596 6.6493 16.1921 

* 3 4985.14 5228.36 1.2132 8.4325 6.9870 17.5636 r. = 0:5228.36:10456.72 4 4909.24 5019.22 0.9755 7.0475 6.3621 16.7256 J 
5 5217.06 5646.63 1.1219 7.4484 6.4204 15.2842 

(p. = 1/3) 
J Average 5041.77 5353.84 1.1716 7.7619 6.7889 16.4558 

r. = 4:5:6 1 5206.54 5228.36 0.2589 7. 5213 3.0904 16.5875 
J 2 5106.48 5646.63 0.1451 8.3596 2.3587 16.1921 

* 3 5131.10 5228.36 0.1267 8.4325 2.1934 17.5636 
r. = 15685.08:20913.44 4 5100.74 5019.22 0.1158 7.0475 2.1095 16.7256 J :26141.80 5 5239.07 5646.63 0.1340 7.4484 2.2162 15.2842 

(p. = 1/3) Average 5153.74 5353.84 0.1561 7.7619 2.4242 16.4558 
____:._:_} 

1All variances have been multiplied by 105 . "' 1.0 
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cards for each number (0, 1, ••• , 9) be one. 

At the interview, the respondent is asked to make a random choice 

of a card from the deck and answers in accordance with the following 

instructions. If it is a card saying "Give the true answer", the 

respondent will be asked to answer the sensitive question. If the card 

shows any numbers, the respondent will be asked to write down this 

number, say 3, take all the cards saying "Give the true answer" out of 

the deck and draw (m2 - 1) more cards, one by one with replacement, 

say 0 and 5 (m2 is the number of digits in the number we want to 

estimate, in our case m2 

305 to the interviewer. 

3). The respondent simply tells the number 

It might appear at first glance that this procedure would not be 

convenient for the respondents who get the card with any numbers for 

the first time. The cost of interviewing may also be high because the 

interviewers have to spend more time explaining how to use the random

izing device to the respondents, and some respondents may need more time 

for taking the cards out. In order to solve these problems, we may use 

two decks of cards. Both of them are the same except the second one has 

no "Give the true answer" cards. We may also use a ten sided die 

instead of using the second deck of cards with no "Give the true 

answer" cards. 

It seems clear enough that this model can be applied to both dis

crete and continuous data. There is no problem in applying it to 

discrete data such as the number of automobile accidents during the 

past year, number of involvements with the courts, number of induced 

abortions and number of times the respondent has used heroin in a 

specified time period. But for continuous data such as personal 
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income, the persons who give the rough estimate of their income (e.g., 

$15,600) and high income persons are going to be known to be telling 

the truth when they answer the question truthfully. Alternatively, 

low income persons will also be easy to identify. In such a situation, 

this method may not work well. 

In an attempt to estimate our parameters, let us define P. 
~ 

as the 

true proportion of respondents who possess the quantitative measure "i". 

Then the probability that a respondent randomly selected from a 

population will answer "i" is 

p. 
l 

If a random sample of size n is taken, let n. 
l 

(3. 30) 

denote the number 

of respondents answering that they possess the quantitative measure "i", 

then the maximum likelihood estimate of P., its estimated variance 
l 

and covariance are 

of 

P. 
l 

/'.._ A 

Var(P.) 
~ 

L"-.C (PA f\ ) = ov . ,r. 
l J 

The same results are obtained by substituting 

in the expression (3.30). 

n. 
~ 

n 

(3. 31) 

(3. 32) 

(3.33) 

as an estimate 



As in Model III and Model IV, let X. be the value of the 
1 

quantitative measure "i", then the estimated mean of the quantitative 

measures is 
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(3. 34) 

with 

n.)x:- 2 6 n.n.x.x.]. 
1 1 i <j 1 J 1 J 

(3. 35) 

According to the expression (3. 35), it is immediately clear that 

if the number of "Give the true answer" cards increases and the total 

number of cards is fixed, then the efficiency of the estimate will 

increase. For the purpose of securing the best cooperation by the 

respondents with the highest efficiency, the number of "Give the true 

answer" cards should not be much greater than ten. 

Extension of the Randomized Response Models 

for Quantitative Data to Two Trials 

per Respondent 

There are at least three techniques one might consider in this 

paper. Some techniques can be applied to every randomized response 

model for quantitative data, but some techniques can be applied only to 

some models, or to a specific model. For the purpose of this study, we 

shall illustrate only those techniques which apply to each of the 

randomized response models for quantitative data derived in Chapter III. 
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Model III with Two Trials per Respondent 

Suppose that every person in a population belongs to one of t 

mutually exclusive groups, and it is required to estimate the population 

mean. 

Let each respondent make two independent selections using the same 

randomizing device, then for an individual from whom two responses are 

required there are t 2 possible responses: 

(Group 1, Group 1), (Group 1, Group 2), ... ' (Group 1, Group t) 

(Group 2, Group 1), (Group 2, Group 2), ... ' (Group 2, Group t) 

(Group t, Group 1), (Group t, Group 2), ... , (Group t, Group t) 

Let n.. represent the number of individuals answering (Group i, 
lJ 

Group j) in the sample. 

Let n be the sample size, then the estimate for the probability 

that a respondent will answer "Group i", pi' is 

with 

1 t 

2n Z (n.k + nk.) 
k=l l l 

t 

z pi 1. 
i=l 

(3. 36) 

Since the probability that a respondent will answer "Group i" is 



then 

Solving for p., 
l 

A 

P. 
l 

~ Pr(r.)J + Pr(r.), 
i=l l l 

Pi rl- ~ Pr(r.)l + Pr(r.). L i=l l'J l 

we find 

1 t 
2n I (n.k + nk.) - Pr(r.) 

k=l l l l 

t 
1- I Pr(r.) 

i=l l 

As before, the estimated population mean of the quantitative 

measures and its variance are 

and 

Var(~) 

t 
A 

I P .X. 
i=l l l 

t 2 A t 
I X.Var(P.) + 2 I X.X.Cov(P.,P.), 

i=l l l i<j=l l J l J 
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(3.37) 

where X. denotes the midpoint of the ith interval of the quantitative 
l 

measure belonging to "Group i". 

The estimated variance of ~ is 

~A 
Var(]J) 

t 2............ A t /""-... A A 

I X.Var(P.) + 2 I X.X.Cov(P.,P.) 
i=l l l i<j=l l J l J 

(3.38) 



where 

/"""-... A 

Var(P.) = 
]_ 

and 

.,/'\... A A -

Cov(P. ,P.) 
]_ J 

Model IV with Two Trials per Respondent 
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1 t l 
2n l: ( n . k + nk . ) i 

k=l ]_ "l_j 

(3. 39) 

Let each respondent from each set of t - 1 simple random samples 

of size ni' i = 1, 2, .•. , t- 1, make two independent selections us

ing the same randomizing device. Then for an individual from whom two 

responses are required there are four possible responses: (Yes, Yes), 

(Yes, No), (No, Yes) and (No, No). 

Let nijkll' nijklO' nijkOl and be the numbers of 

individuals answering (Yes, Yes), (Yes, No), (No, Yes) and (No, No) 

respectively to (Group j, Group k) of the ith set of sample. Then 

the estimate for p in the ith sample, will be 

t t 
l: l: 

j=l k~=l 

Znijkll + nijklO + nijkOl 

2ni 

_The derivation of the ~S' ~(~8 ), ~ ~A 
and Var(l-l) 

(3.41) 

proceeds along 

the same lines as that of those estimators in Model IV. The results of 

the derivation are 



where 

* n = 

t 
I 

j=1 

t 
I 

j=1 

-1 * -1 I 

~ ~ (~ ) 

(Jt-1) I X ...;1n * + X ( 1 - t~1 p.) 
1 -~ - t . l l=1 

t Zn1jkll + n1jk10 + n1jk01 
L: 

k2:j=1 2n1 

t Zn2jk11 + n2jk10 + n2jk01 
I 

k2:j=1 2n2 

t t 
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(3.42) 

(3.43) 

(3. 44) 

- plt 

Pzt 

I I 
j=1 k2:j=1 

Zn(t-1)jk11 + n(t-1)jk10 + n(t-1)jk01 
2n 1 - P(t-1)t 

t- (3.46) 

* v 

* v(t-1)(t-1) 

* _ ~ ~ ~ Znijk11 + nijk10 + nijk01) 
v .. - 2 

11 . 1 k . 1 n. l J= 2)= l 

>< 1 - I I -=-11"-'· =~-.=.....;-:.:.=..:'---~-:.:...:...:::. ( 
t t Zn .. k11 + niJ"klO + n.iJ"kOl) 

j=1 k.::J=l Zni · 

(3.47) 

(3. 48) 
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Model V, Model VI and Model VII with 

Two Trials per Respondent 

The e~timators using these three models with two trials per 

r~§pond~nt ~an b~ found by the same method as that of the estimators 

obtain~d from th~ alt~rnative method of applying repeated trials to the 

randomiz@d r~~pon~~ models for proportions in Chapter II. 

c1v;:rcc2> + C 2~cC1 ) 

~cCl> + ~<~2> 
(3.49) 

" wfl@F@ y. i§ tft@ @§tim~t~r ~f th§ popul~tion m~~fi in wht~h th~ ~~mpl~d 
i 

F@§p§fid@fit§ Y§@d tli@ ith f~fl~h::lifihifi~ (j§vi~tl!s i = ls ~. 



CHAPTER IV 

DETERMINATION OF THE SAMPLE SIZES 

Estimation of the Population Proportion 

One of the main advantages of a sample survey is that it is pas-

sible to ensure approximately a pre-specified margin of error in the 

sample results by suitably fixing the sample sizes. Suppose we wish 

to determine the sample size for each randomized response model for 

proportions with a given precision d = IPs- Psi with probability 

(1- a), that is, we want 

(4 .1) 

By assuming that the sample proportion, PS' is normally distrib

uted, then the formula that connects the sample size n with the 

desired degree of precision is 

(4.2) 

where is the ordinate of the normal curve that cuts off an area 

a/2 in one tail. We note that Var(PS) will depend on n and so we 

can solve (4.2) for n, but this will be a function of P8 . We also 

note that if P8 is too close to zero or one, the normality assumption 

will not be valid. 
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A 

For practical use, an estimate PS of PS is substituted in this 

formula. In practice, there are three ways of estimating population 

variances for sample size determinations: (1) by the results of a pilot 

survey; (ii) by previous sampling of the same or a similar population; 

and (iii) by guess work about the structure of the population, assisted 

by some mathematical results. These three methods are discussed in 

(15). 

Making use of (4.2) and Var(P 8 ) for each proposed randomized 

response model for proportions, the formulae for n in each model are 

summarized in Table XIII. 

Estimation of the Population Mean 

To determine the sample size for estimating the population mean for 

each model for a given precision d = ~~- ~1 with probability (1- a) 

we wish to have 

Pr(l0 - ~1 ~d) > 1 -a. (4.3) 

Again, by assuming that w is normally distributed, the formula 

that connects the sample size n with the desired degree of precision 

is 

d (4.4) 

The sample size n could be more precisely evaluated from 

d t(a/2, n- l)J Var(0). (4.5) 



TABLE XIII 

SAMPLE SIZES FOR SOME RANDOMIZED RESPONSE MODELS FOR PROPORTIONS 

Model 

I with PIS 1 

I with piS 1 1, PIN 

I with n n + n , k c r 

I with Two Trials per 
Respondent 

1 

II with Sampling Without 
Replacement 

1 

z +-2 m2) 
a/2 (1 - Ps)(Ps ml 
d2 

2 
2a/2 p'(l- p') 

d2 ( 1)2 
\Pis - 2 

za/2 ~· ( m2) ~ -- n 1 P + - (1 "" P ) d c \ S m1 S _ 

z2 m2) 
aj2 (P + _ (1 - P 8) 2 S ml 2d 

1 
2 

n 

z2 
aj2r { (m- m) -~-2-kP 1-kP -2 1 

kd - 8 s 21 

:m 
+ ~ 

p' 

Note 

1 1 
Ps<Pis - 2) + 2 

nr sampled respondents 
refuse to answer the 
questions 

~ m~ { 1 - (m ~ m~H k 
'· 

(
m \ r m - ml \ 
2)-\ 2 / 

00 
0 



Model 

II with Sampling with 
Replacement 

II with Multi-Proportions 

Regular 

TABLE XIII (Continued) 

n 

z2 . . 2 
a /2 [ , { , ( ml) l 22 k P8 1 - k P - 2 1 - - ( + 

k' d S m J 

2 2 

( 1 -:1 ) { 1 -( 1 - :1) } J 

2 
Z a /2 __ .~...--_ __......~___ 

2 r t J-2 
dj ~- L: Pr(r.) 

i:;;1 l 

22 

a/2 (P p )(1- PSpS) 
2 s s 

d 

Note 

k' = :1(2- :1) 

pj P.rl- ~Pr(rJ 
J L i=l l 'J 

+ Pr(r.) 
l 

d. = IP. - P .I 
J J J 

Var(P.) > Var(P.), i i j 
J - l 

00 
f-' 



Model 

Warner 

Unrelated Questions 
(PN Known) 

Multiple Trials 

TABLE XIII (Continued) 

z p(l - p) 2 J ~rp c1- p > + 2 
2 ~s s (2p- 1) d 

2 
Zn/2 C(l - C) 

7 p2 

P5 (1 - P5) 

L - T - k [ p(l - p) ] 

z!/2 T - 1 (2p - 1}2 

n 

1 
p:/:2 

Note 

C = pPS + (1 - p}PN 

1 
p:/:2 

OJ ......, 
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However, t(a/2, n - 1) depends on n. As a result n is under-

estimated, since Za/ 2 is less than t(a/2, n- 1). The obvious cor

rection which suggests itself is to increase the value of n in the 

ratio 2 2 
t (a/2, n - 1)/Za/2, where n is evaluated from (4.4) but 

the correction is not likely to be important unless n is small. 

The calculation of n for estimating the population mean also 

assumes knowledge of Var(0) when the error, d, permissible in the 

estimate of the population value of the mean is given. Proceeding 

exactly as in the case of estimating the population proportion, we 

obtain the formulae for sample sizes for Model III to Model VII. The 

formulae are given in Table XIV for each of the models. 

The Extra Cost in Terms of Sample Size for 

Model I as Compared with the 

Regular Model 

The objective of this study is to investigate the extra cost in 

terms of sample size for the randomized response models if the mean 

square error of the regular estimate is the same as the variance of the 

randomized response estimate. In the investigation given in this paper 

we shall use Model I as our randomized response model. 

Suppose that members of the sensitive group tell the truth with 

probability one in Model I and tell the truth with probability p5 in 

the regular model. 

If it is desired that the mean square error of the regular 

estimator be the same as the variance of the Model I estimator, that 

is 



Model 

III 

IV 

v 

VI 

TABLE XIV 

SAMPLE SIZES FOR HODEL III TO MODEL VII 

n 

2 
zo./2 

7 
[ 

t 2 t l I: X.p.(l- p.)- 2 l: X.X.p.p. 
. 1 1 1 . 1 . . 1 1 J 1 J 
1= 1<]= 

_ _r(r.)' 2 J 

z2 . + t )2[. t t J 
a./2 (ml l: X~p. (1- p.) - 2 I: XiX.pip. 

2 m 1 1 1 . · -1 J J d 1 i=l 1<]-

2 2 
Za./2SY 

2( t )2 
d l: r.p. 

j=1 J J 

( 2 2 
ZCJ./2SX)/d2 

( 2 I 2) -* 1 - ZCJ./ 2 d Var(r ) 

Note 

pi pi~- ~ Pr(r.)J + Pr(r.) 
i=l 1 1 

pi 
p 1 + 1 ( m ) 

i m1 + t m1 + t 

s~ is the estimate of the 

variance of Y. 

-* 1 n. * 
r =-I: r. 

n i~l 1 

si is the estimate of the 

variance of X. 
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where nl 

respectively. 

and are the sample sizes in Model I and the regular model 

In order to find the extra cost in terms of sample size, the ratio 

of ni/nR is not fixed for specified values of m2/m1 , PS and 

and the value of 
~ 

(or nR) is varied. This is because PS is a biased estimate of PS 

for the regular model and this bias does not depend on nR. Based 

upon the knowledge about the selection of m2/m1 in the Model I 

technique (see Model I), we shall fix m2 /m1 by choosing for it a 

value as close to zero as is practicable without arousing suspicion in 

the respondent. This would probably be no smaller than 0.20. Table XV 

and Figure 6 then exhibit the ratios of the sample sizes of Model I 

estimates to the sample sizes of regular estimates for various values 

of P8 and Ps under the assumption that the respondents tell the 

truth in the randomized method but only tell the truth in the non-

randomized method with probability The sample size is set 

at 100, 500, and 1,000 in each case. 

Referring to Table XV and Figure 6, it is observed that, by fixing 

m2/m1 to be 0.2, an extra cost in terms of sample size for Model I 

will be incurred when: 

(i) 

(ii) 

is less than 0.174 provided that Ps 

1,000. 

is less than 0.202 provided that 

0.9 and 

0.7 and 
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TABLE XV 

THE VALUES OF ni/nR IN THE CASE WHEN THE MEAN SQUARE ERROR 
OF THE REGULAR ESTIMATOR IS THE SAME AS THE VARIANCE 

OF THE MODEL I ESTIMATOR, m2/m1 = 0.2 

Ps nR Ps 
0.1 0.3 0.5 0.7 0.9 

100 0.3293 0.5201 0.9076 1. 7408 2.9380 

0.1 500 0.0665 0.1089 0.2081 0.5242 2.0470 

1,000 0.0333 0.0548 0.1060 0.2798 1.4843 

100 0.0478 0.0779 0.1472 0.3586 1. 2191 

0.3 500 0.0096 0.0158 0.0308 0.0830 0.5409 

1,000 0.0048 0.0079 0.0155 0.0423 0.3190 

100 0.0172 0.0283 0.0543 0.1413 0.7035 

0.5 500 0.0034 0.0057 0.0111 0.0305 0.2337 

1,000 0.0017 0.0028 0.0056 0.0154 0.1274 

100 0.0068 0.0112 0.0216 0.0579 0.3734 

0.7 500 0.0014 0.0022 0.0044 0.0121 0.1006 

1,000 0.0007 o. 0011 0.0022 0.0061 0.0526 

100 0.0017 0.0027 0.0054 0.0146 0.1141 

0.9 500 0.0003 0.0005 0. 0011 0.0030 0.0262 

1,000 0.0002 0.0003 0.0005 0.0015 0. 0133 
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(iii) Ps is less than 0.368 provided that Ps = 0. 9 and nR 

100. 

(iv) Ps is greater than 0.524 provided that Ps 0.1 and nR 

100. 

(v) Ps is greater than 0.768 provided that Ps 0.1 and nR 

500. 

(vi) Ps is greater than 0.836 provided that Ps 0.1 and nR 

1,000. 

(vii) Ps is greater than 0.848 provided that Ps 0.3 and nR 

100. 

Suppose the costs per sampling unit of Model I and the regular 

model are and cR respectively. In most circumstances it will 

be reasonable to expect ci to be greater than cR, since in any 

randomized response method the interviewers will require more training 

and will spend more time on each interview. Thus, Model I will be 

cheaper to run whenever is less than We have comput,ed 

the values of n1 /nR for various values of nR, P8 , Ps and for -

m2 /m1 = 0.2 in Table XV • From this table, one can determine the 

situations in which Model I is cheaper to use than the regular model 

for the same accuracy. These situations are characterized by those 

parameter values for which n1 /nR is less than cR/c1 . 
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CHAPTER V 

' SUMMARY AND CONCLUSIONS 

On the basis of the empirical investigations of Model I, the 

Warner model, the unrelated questions model and the multiple trials 

model, it is concluded that the three competitors are Model I, the 

unrelated questions model and the multiple trials model. If forced to 

a decision at this time, Model I would probably be chosen as the 

preferred design. This is because the procedure for administering 

Model I is simpler than the other two models. If the comparisons are 

made among Model I and Model II, the efficiency of Model II would be 

expected to be very similar to the efficiency of Model I but the 

interviewing costs are expected to be higher. For randomized response 

models for discrete quantitative data, it seems clear enough that Model 

VII would be preferable to the other four models. Model III would also 

be preferable to Model IV but it is somewhat surprising to find that 

Model V is much more efficient than Model VI. In the development given 

in Model V, although exact distribution cannot be obtained in general, 

reasonable approximations can be made yielding a procedure adequate to 

the situation encountered in practice. 

This study has shown that in the case when some sampled respondents 

do not report truthfully or refuse to answer the questions, or the 

repeated trials per respondent are used, the randomized response models 

can be extended. It is also shown that in the case when each sampling 
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unit is composed of a group of elements and it is the elements that are 

classified, the formula for estimating the true proportion of the 

respondents who belong to the sensitive group is the same as the 

formula used in the randomized response model for proportion with one 

respondent as a sampling unit. But the formula for the variance of the 

estimator has to be changed by using the approximated variance of the 

ratio estimator. 

As in the general survey designs, the sample size for each random-

ized response design for a given precision can be determined. However, 

if it is desired that the mean square error of the regular estimator 

be the same as the variance of randomized response estimator, the extra 

cost in terms of sample size is not fixed but varies as the sample size 
. 

of the regular model or of the randomized response model is changed. 
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Regular I Estimate 

Ps Bias 

1.0 0.00 

0.9 -0.01 

0.8 -0.02 

0.7 -0.03 

0.6 -0.04 

0.5 -0.05 

0.4 -0.06 

0.3 -0.07 

0.2 -0.08 

0.1 I -0.09 

0.0 I -0.10 

TABLE XVI 

COMJlARISON OF MODEL I AND THE REGULAR MODEL \-liTH P S = 0.1 AND n = 100 

MSE (Model I) /MSE _(Regular) 
m2/m1 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

11.0000 10.0000 9.0000 8.0000 7.0000 6.0000 5.0000 4.0000 

10.7726 9.7932 8. 8139 7.8346 6.8553 5.8759 4.8966 3.9173 

8.7148 7.9225 7.1303 6.3380 5.5458 4.7535 3.9613 3.1690 

6.3830 5. 8027 5.2224 4.6422 4.0619 3.4816 2. 9013 2. 3211 

4.5749 4.1590 3.7431 3. 3272 2. 9113 2.4954 2.0795 1. 6636 

3. 3277 3. 0252 . 2. 7227 2.4202 2.1176 1. 8151 1. 5126 1. 2101 

2.4849 2.2590 2.0331 1. 8072 1. 5813 1. 3554 1.1295 0.9036 

1. 9071 1. 7338 1. 5604 1. 3870 1.2136 1.0403 0.8669 0.6935 

1.5009 1.3645 1. 2280 1. 0916 0.9551 0.8187 0.6822 0.5458 

1. 207 5 1. 0976 0.9879 0.8781 0.7684 0.6586 0.5488 0.4391 

0.9900 0.9000 0.8100 o. 7200 0.6300 0.5400 0.4500 0.3600 

0.2 

3.0000 

2.9380 

2.3768 

1. 7408 

1. 2477 

0.9076 

o. 6777 

0.5201 

0.4093 

0.3293 

0.2700 

0.1 

2.0000 

1. 9586 

1.5845 

1.1605 

0.8318 

0.6050 

0.4518 

0.3467 

0.2729 

0.2195 

0.1800 

<.D 
\J1 



Regular 
Estimate 

Ps Bias 1.0 

1.0 0.00 4.3333 

0.9 -0.09 3.1696 

0.8 I -0.18 1.6778 

0.7 -0.27 0.9325 

0.6 -0.36 0.5732 

0.51 -0.45 0.3827 

0.41 -0.54 0.2720 

0.31 -0.63 0.2026 

0.21 -0.72 0.1564 

0.1 -0.81 0.1243 

0.0 -0.90 0.1011 

TABLE XVII 

COMPARISON OF MODEL I AND THE REGULAR MODEL I.JITH P S = 0. 3 AND n = 100 

MSE (Model I)/MSE (Regular) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

4.0000 3.6667 3.3333 3.0000 2.6667 2.3333 2.0000 

2.9258 2.6820 2.4382 2.1943 1. 9505 1.7067 1. 4629 

1.5487 1. 4196 1. 2906 1.1615 1. 0324 0.9034 0. 7743 

0.8607 0.7890 0. 7173 0.6455 0.5738 0.5021 0.4304 

0.5291 0.4850 0.4409 0.3968 0.3527 0.3086 0.2645 

0.3533 0.3239 0.2944 0.2650 0.2355 0.2061 0.1766 

0.2511 0.2301 0.2052 0.1883 0.1674 0.1465 0.1255 

0.1870 0.1714 0.1558 0.1402 0.1247 0.1091 0.0935 

0.1444 0.1324 0.1203 0.1083 0.0963 0.0842 0.0722 

0.1148 0.1052 0.0956 0.0861 0.0765 0.0669 0.0574 

0.0933 0.0855 0. 0778 0.0700 0.0622 0.0544 0.0467 

0.2 

1. 6667 

1. 2191 

0.6453 

0.3586 

0.2204 

0.14 72 

0.1046 

0. 0779 

0.0602 

0.0478 

0.0389 

0.1 

1. 3333 

0.9753 

0.5162 

0.2869 

0.1764 

0.1178 

0.0837 

0.0623 

0.0481 

0.0382 

0.0311 

\.0 
0'\ 



Regular I Estimate 

Ps :3ias 1.0 

1.0 0.00 3.0000 

0.9 -0.05 1. 507 5 

0.8 I -0.10 0.6048 

o. 7 I -0.15 0.3027 

0.6 I -0.20 0.1781 

0.51 -0.25 0.1164 

0.4 I -0.30 0.0819 

0.3 -0.35 0.0606 

0.2 -0.40 0.0466 

0.11 -0.45 0.0369 

o.o I -0.50 I o. 0300 

TABLE XVIII 

COMPARISON OF HODEL I AND THE REGULAR MODEL WITH P S = 0. 5 AND n = 100 

HSE (Model I)/MSE (Regular) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

2.8000 2.6000 2.4000 2.2000 2.0000 1.8000 1.6000 

1.4070 1.3065 1. 2060 1.1055 1. 0050 0.9045 0.8040 

0.5645 0.5242 0.4839 0.4435 0.4032 0.3629 0.3226 

0.2825 0.2624 0.2422 0.2220 0.2018 0.1816 0.1614 

0.1663 0.1544 0.1425 0.1306 0.1188 0.1069 0.0950 

0.1087 0.1009 0.0932 0.0854 0.0776 0.0699 0.0621 

0.0764 0.0710 0.0655 0.0600 0.0546 0.0491 0.0437 

0.0565 0.0525 0.0485 0.0444 0.0404 0.0363 0.0323 

0.0435 0.0404 0.0373 0.0342 0.0311 0.0280 0.0249 

0.0345 0.0320 0.0296 0. 0271 0.0246 0.0222 0.0197 

0.0280 0.0260 0.0240 0.0220 0.0200 0.0180 0.0160 

0.2 

1.4000 

0.7035 

0.2822 

0.1413 

0.0831 

0.0543 

0.0382 

0.0283 

0.0217 

0.0172 

0.0140 

0.1 

1. 2000 

0.6030 

0.2419 

0.1211 

0. 0712 

0.0466 

0.0327 

0.0242 

0.0186 

0.0148 

0.0120 

"" -...! 



Regular I Estimate 

Ps Bias 1.0 

1.0 0.00 2.4286 

o . 9 I -0 . 0 7 I o . 7 o 53 

o.sl -0.14 I 0.2311 

0.7 -0.21 0.1094 

0.6 -0.28 0.0631 

0.5 -0.35 0.0409 

0.4 -0.42 0.0286 

0.3 -0.49 0.0211 

0.2 I -0.56 I 0.0162 

0.11 -0.63 I 0.0128 

o.o I -0.70 I 0.0104 

TABLE XIX 

COMPARISON OF MODEL I AND THE REGULAR MODEL WITH PS = 0.7 AND n = 100 

MSE (Model I)/MSE (Regular) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

2.2857 2.1428 2.0000 1. 8571 1. 7143 1. 5714 1.4286 

0.6556 0.6223 0.5808 0.5393 0.4978 0.4564 0.4149 

0.2175 0.2039 0.1903 0.1767 0.1632 0.1496 0.1360 

0.1030 0.0966 0.0901 0.0837 0. 0772 0.0708 0.0644 

0.0594 0.0557 0.0515 0.0482 0.0445 0.0408 0. 0371 

0.0385 0.0361 0.0337 0.0312 0.0288 0.0264 0.0240 

0.0269 0.0252 0.0235 0.0218 0.0202 0.0185 0.0168 

0.0198 0.0186 0.0174 0.0161 0.0149 0. 0136 0.0124 

0.0152 0.0143 0. 0133 0.0124 0.0114 0. 0105 0.0095 

0.0121 0.0113 0.0106 0.0098 0.0090 0.0083 0.0075 

0.0098 0.0092 0.0086 0.0079 0.0073 0.0067 0.0061 

0.2 

1. 285 7 

0.3734 

0.1224 

0.0579 

0.0334 

0.0216 

0.0151 

0. 0112 

0.0086 

0.0068 

0.0055 

0.1 

1.1428 

0.3319 

0.1088 

0.0515 

0.0297 

0.0192 

0.0134 

0.0099 

0.0076 

0.0060 

0.0049 

1..0 
CXl 



Regular I Estimate 

Ps Bias 1.0 

1.0 0.00 2.1111 

0.9 -0.09 0.1971 

0.8 I -0.18 0.0552 

o. 7 I -0.27 0.0252 

0.6 I -0.36 0.0144 

0.5 1-0.4.5 0.0093 

0.41-0.54 0.0065 

0.3 -0.63 0.0048 

0.2 -0.72 0.0036 

0.1 -0.81 0.0029 

0.0 -0.90 0.0023 

TABLE XX 

COMPARISON OF MODEL I AND THE REGULAR MODEL WITH PS = 0.9 AND n = 100 

MSE ~Model I}/MSE ~Regular) 
m2/m.l 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

2.0000 1. 8889 1.7778 1.6667 1. 5555 1.4444 1. 3333 

0.1867 0.1764 0.1660 0.1556 0.1452 0.1349 0.1245 

0.0523 0.0494 0.0465 0.0436 0.0407 0.0378 0.0349 

0.0239 0.0226 0. 0213 0.0199 0.0186 0.0173 0.0159 

0. 0136 0.0129 0.0121 0.0113 0.0105 0.0098 0.0091 

0.0088 0.0083 0.0078 0.0073 0.0068 .o. 0063 0.0058 

0.0061 0.0058 0.0054 0.0051 0.0048 0.0044 0.0041 

0.0045 0.0043 0.0040 0.0038 0.0035 0.0032 0.0030 

0.0035 0.0033 0.0031 0.0029 0.0027 0.0025 0.0023 

0.0027 0.0026 0.0024 0.0023 0.0021 0.0020 0.0018 

0.0022 0.0021 0.0020 0.0018 0.0017 0.0016 0.0015 

0.2 

1. 2222 

0.1141 

0.0320 

0.0146 

0.0083 

0.0054 

0.0037 

0.0027 

0.0021 

0.0017 

0.0013 

0.1 

1.1111 

0.1037 

0.0290 

0.0133 

0.0076 

0.0049 

0.0034 

0.0025 

0.0019 

0.0015 

0.0012 

\.0 
\.0 



Regular I Estimate 

Ps Bias 

1.0 0.00 

0.9 I -0.01 I 

0.8 I . -o. 02 I 

0.7 I -0.03 

0.6 I -0.04 

0.5 I -0.05 I 

0.4 I -0.06 

0.3 -0.07 

0.2 -0.08 

0.1 I -0.09 

0.0 I -0.10 

TABLE XXI 

COMPARISON OF MODEL I AND THE REGULAR MODEL WITH PS = 0.1 AND n = 1,000 

MSE (Model I)/MSE (Regular) 
m2/ml 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

11.0000 10.0000 9.0000 8.0000 7.0000 6.0000 5.0000 4.0000 

5.4425 4.9478 4.4530 3.9582 3.4634 2.9687 2.4739 1. 9791 

2.0904 1. 9003 1. 7103 1.5203 1. 3302 1.1402 0.9502 0.7601 

1.0258 0.9325 0.8393 0.7460 0.6528 0.5595 0.4663 0.3730 

0. 5977 0.5433 0.4890 0.4347 0.3803 0.3260 0.2717 0.2173 

0.3886 0.3533 0.3179 0.2826 0.2473 0.2120 0.1766 0.1413 

0.2721 0.2474 0.2226 0.1979 0.1731 0.1484 0.1237 0.0989 

0.2008 0.1826 0.1643 0.1461 0.1278 0.1095 0.0913 0.0730 

0.1542 0.1402 0.1262 0.1121 0.0981 0.0841 0.0701 0.0561 

0.1221 0.1110 0.0999 0.0888 0.0777 0.0666 0.0555 0.0444 

0.0990 0.0900 0.0810 0. 0720 0.0630 0.0540 0.0450 0.0360 

0.2 

3.0000 

1.4843 

0.5701 

0.2798 

0.1630 

0.1060 

0.0742 

0.0548 

0.0420 

0.0333 

0.0270 

0.1 

2.0000 

0.9895 

0.3801 

0.1865 

0.1087 

0.0706 

0.0495 

0.0365 

0.0280 

0.0222 

0.0180 

t-' 
0 
0 



TABLE XXII 

COMPARISON OF MODEL I AND THE WARNER MODEL 

Var ~Model I2/Var ~Warner) 

Ps p m2/ml 

1.0 0.9 0.8 0. 7 0.6 0.5 0.4 

0.1 or 0.9 4.2928 3.9025 3.5123 3.1220 2.7318 2.3415 1. 9513 

0.2 or 0.8 1. 8524 1.6840 1. 5156 1. 3472 1.1788 1.0104 0.8420 
0.1 

0.3 or 0.7 o. 7059 0.6417 0.5775 0.5134 0.4492 0.3850 0.3208 

0.4 or 0.6 0.1626 0.1478 0.1330 0.1182 0.1034 0.0887 0.0739 

0.1 or 0.9 3.1934 2.9273 2.6612 2.3950 2.1289 1.8628 1. 5967 

0.2 or 0.8 1. 5882 1.4559 1. 3235 1.1912 1.0588 0.9265 0.7941 
0.2 

0.3 or 0.7 0.6519 0.5976 0.5433 0.4890 0.4346 0.3803 0.3260 

0.4 or 0.6 0.1558 0.1428 0.1299 0.1169 0.1039 0.0909 0.0779 

0.1 or 0.9 2.5954 2.3957 2.1961 1. 9965 1. 7968 1. 5972 1. 3975 

0.2 or 0.8 1. 3905 1.2835 1.1766 1. 0696 0.9626 0.8557 0.7487 
0.3 

0.3 or 0.7 0.5977 0.5517 0.5057 0.4598 0.4138 0.3678 0.3218 

0.4 or 0.6 0.1465 0.1353 0.1240 0.1127 0.1014 0.0902 0.0789 

0.3 0.2 

1. 5610 1.1707 

0.6736 0.5052 

0.2567 0.1925. 

0.0591 0.0443 

1. 3306 1.0645 

0.6618 0.5294 

0.2716 0.2173 

0.0649 0.0519 

1.1979 0.9982 

0.6418 0.5348 

0.2759 0.2299 

0.0676 0.0564 

0.1 

0.7805 

0.3368 

0.1283 

0.0295 

0.7983 

0.3971 

0.1630 

0.0390 

0.7986 

0.4278 

0.1839 

0.0451 
1-" 
0 
1-" 



Ps p 

1.0 0.9 

0.1 or 0.9 2.2069 2.0493 

0.2 or 0.8 1. 2273 1.1396 
0.4 

0.3 or 0.7 o. 5411 0.5024 

0.4 or 0.6 0.1346 0.1250 

0.1 or 0.9 1. 9200 1. 7920 

0.2 or 0.8 1. 0800 1.0080 
0.5 

0.3 or 0.7 0.4800 0.4480 

0.4 or 0.6 0.1200 0.1120 

0.1 or 0.9 1. 6815 1.5764 

0.2 or 0.8 0.9351 0.8766 
0.6 

0.3 or 0.7 0.4122 0.3865 

0.4 or 0.6 0.1026 0.0961 

TABLE XXII (Continued) 

Var ~Model I2/Var {Warner2 
m2/ml 

0.8 0.7 0.6 0.5 0.4 

1. 8916 1. 7340 1. 5764 1. 4187 1. 2611 

1. 0519 0.9643 0.8766 0.7890 o. 7013 

0.4638 0.4251 0.3865 0.3478 0.3092 

0.1154 0.1058 0.0961 0.0865 0.0765 

1. 6640 1.5360 1. 4080 1.2800 1.1520 

0.9360 0.8640 0.7920 0. 7200 0.6480 

0.4160 0.3840 0.3520 0.3200 0.2880 

0.1040 0.0960 0.0880 0.0800 0.0720 

1. 4713 1.3662 1. 2611 1.1560 1.0509 

0.8182 0.7597 0.7013 0.6429 0.5844 

0.3607 0.3349 0.3092 0.2834 0.2576 

0.0897 0.0833 0.0769 0.0705 0.0641 

0.3 0.2 

1.1035 0.9458 

0.6136 0.5260 

0.2705 0.2319 

0.0673 0. 0577 

1.0240 0.8960 

0.5760 0.5040 

0.2560 0.2240 

0.0640 0.0560 

0.9458 0.8407 

0.5260 0.4675 

0.2319 0.2061 

0. 05 77 0.0513 

0.1 

0.7882 

0.4383 

0.1932 

0.0481 

0.7680 

0.4320 

0.1920 

0.0480 

0.7356 

0.4091 

0.1803 

0.0449 

f-' 
0 
N 



TABLE XXII (Continued) 

Var {Model 12/Var ~Warner2 

Ps p m2/ml 
1.0 0.9 0.8 0. 7 0.6 0.5 0.4 

0.1 or 0.9 1.4546 1.3690 1. 2834 1.1979 1.1123 1. 026 7 0.9412 

0.2 or 0.8 0. 7792 0.7334 0.6876 0.6418 0.5959 0.5501 0.5042 
0.7 

0.3 or 0.7 0.3350 0.3153 0.2956 0.2759 0.2561 0.2364 0.2167 

0.4 or 0.6 0.0821 o. 0773 0. 0725 0.0676 0.0628 0.0580 0.0531 

0.1 or 0.9 1.1975 1.1310 1.0645 0.9979 0.9314 0.8649 0.7983 

0.2 or 0.8 0.5956 0.5625 0.5294 0.4963 0.4632 0.4301 0. 3971 
0.8 

0.3 or 0.7 0.2445 0.2309 0.2173 0.2037 0.1901 0.1766 0.1630 

0.4 or 0.6 0.0584 0.0552 0.0519 0.0487 0.0454 0.0422 0.0390 

0.1 or 0.9 0.8239 0. 7805 0.7371 0.6938 0.6504 0.6070 0.5637 

0.2 or 0.8 0.3555 0.3368 0.3181 0.2994 0.2807 0.2619 0.2432 
0.9 

0.3 or 0.7 0.1355 0.1283 0.1212 0.1141 0.1069 0.0998 0. 0927 

0.4 or 0.6 0.0312 0.0295 0.0279 0.0263 0.0246 0.0230 0.0213 

0.3 0.2 

0.8556 0. 7701 

0.4584 0.4126 

0.1970 0.1773 

0.0483 0.0435 

0.7318 0.6653 

0.3640 0.3309 

0.1494 0.1358 

0.0357 0.0325 

0.5203 0. 4770 

0.2245 0.2058 

0.0856 0.0784 

0.0197 0.0181 

0.1 

0.6845 

0.3667 

0.1576 

0.0386 

0.5988 

0.2978 

0.1222 

0.0292 

0.4336 

0.1871 

0. 0713 

0.0164 

1-' 
0 
w 



PN pl 
1.0 

0.1 O.llOO 

0.3 0.9900 

0.1 0.5 2.7500 

0.7 5.3900 

0.9 8.9100 

0.1 0.0398 

0.3 0.3782 

0.5 0.5 1.1786 

0.7 2.8269 

0.9 6.6603 

0.1 0.0671 

0.3 0.3970 

0.9 0.5 0.9900 

0.7 2.1618 

0.9 5.4329 

TABLE XXIII 

COMPARISON OF MODEL I AND THE UNRELATED QUESTIONS MODEL WITH PS = 0.1 

Var {Model I)/Var (Unrelated) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.1000 0.0900 0.0800 0.0700 0.0600 0.0500 0.0400 0.0300 0.0200 

0.9000 0.8100 0. 7200 0.6300 0.5400 0.4500 0.3600 0.2700 0.1800 

2.5000 2.2500 2.0000 1. 7500 1.5000 1.2500 1.0000 0.7500 0.5000 

4.9000 4.4100 3.9200 3.4300 2.9400 2.4500 1. 9600 1. 4700 0.9800 

8.1000 7.2900 6.4800 5.6700 4.8600 4.0500 3.2400 2.4300 1. 6200 

0.0362 0.0326 0.0290 0.0254 0.0217 0.0181 0.0145 0.0109 0. 0072 

0.3438 0.3094 0.2750 0.2407 0.2063 0.1719 0.1375 0.1031 0.0688 

1. 0714 0.9643 0.8571 0.7500 0.6428 0.5357 0.4286 0.3214 0.2143 

2.5699 2.3129 2.0559 1. 7989 1. 5419 1. 2850 1. 0280 0. 7710 0.5140 

6.0548 5.4493 4.8438 4.2384 3.6329 3.0274 2.4219 1. 8164 1.2ll0 

0.0610 0.0549 0.0488 0.0427 0.0366 0.0305 0.0244 0.0183 0.0122 

0.3610 0.3249 0.2888 0.2527 0.2166 0.1805 0.1444 0.1083 0. 0721 

0.9000 0.8100 0. 7200 0.6300 0.5400 0.4500 0.3600 0.2700 0.1800 

1. 9652 1. 7687 1.5722 1.3757 1.1791 0.9826 0.7861 0.5896 0.3930 

4.9390 4.4451 3.9512 3.4573 2.9634 2.4695 1. 9756 1. 4817 0.9878 
- -------- --- ---------- ----- -- -

f-' 
0 ..,.. 



PN. pl 
1.0 

0.1 0.0862 

0.3 0.6094 

0.1 0.5 1.4219 

0.7 2.4446 

0.9 3.6562 

0.1 0.0364 

0.3 0.3324 

0.5 0.5 0.9479 

0.7 1. 9353 

0.9 3.3874 

0.1 0. 0677 

0.3 0.4062 

0.9 0.5 0.9479 

0.7 1. 7864 

0.9 3.1992 

TABLE XXIV 

COMPARISON OF MODEL I AND THE UNRELATED QUESTIONS MODEL WITH PS = 0.3 

Var ~Model I)/Var {Unrelated) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

0.0795 0. 0729 0.0663 0.0596 0.0530 0.0464 0.0398 

0.5625 0.5156 0.4687 0. 4219 . 0.3750 0.3281 0.2812 

1. 3125 1. 2031 1. 0937 0.9844 0.8750 0.7656 0.6562 

2.2566 2.0685 1. 8805 1. 6924 1. 5044 1.3163 1.1283 

3.3750 3.0937 2.8125 2.5312 2.2500 1. 9687 1. 6875 

0.0336 0.0308 0.0280 0.0252 0.0224 0.0196 0.0168 

0.3068 0.2812 0.2557 0.2301 0.2045 0.1790 0.1534 

0.8750 0.8021 0. 7292 0.6562 0.5853 0.5104 0.4375 

1. 7864 1. 6376 1.4887 1.3398 1.1910 1. 0421 0.8932 

3.1268 2.8663 2.6057 2.3451 2.0845 1.8240 1.5634 

0.0625 0.0573 0.0521 0.0469 0.0417 0.0364 0.0312 

0.3750 0.3437 0.3125 0.2812 0.2500 0.2187 0.1875 

0.8750 0.8021 0. 7292 0.6562 0.5833 0.5104 0.4375 

1.6490 1.5116 1. 3742 1.2368 1. 0993 0.9619 0.8245 

2.9536 2.7074 2.4613 2.2148 1. 9690 1. 7226 1. 4 766 

0.2 

0.0331 

0.2344 

0.5469 

0.9402 

1. 4062 

0.0140 

0.1278 

0.3646 

0.7443 

1. 3028 

0.0260 

0.1562 

0.3646 

0. 6871 

1. 2305 

0.1 

0.0265 

0.1875 

0.4375 

0.7522 

1.1250 

0. 0112 

0.1023 

0.2917 

0.5955 

1. 0423 

0.0208 

0.1250 

0.2917 

0.5497 

0.9845 
1-' 
0 
Vl 



PN pl 
1.0 

0.1 0.0623 

0.3 0.3933 

0.1 0.5 0.8928 

0.7 1.5598 

0.9 2.4456 

0.1 0.0300 

0.3 0.2700 

0.5 0.5 0.7500 

0.7 1. 4700 

0.9 2.4300 

0.1 0.0623 

0.3 0.3933 

0.9 0.5 0.8928 

0.7 l. 5598 

0.9 2.4456 

TABLE XXV 

COMPARISON OF MODEL I AND THE UNRELATED QUESTIONS MODEL WITH PS = 0.5 

Var {Model I2/Var (Unrelated) 
m2/ml 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 

0.0581 0.0540 0.0498 0.0457 0.0415 0.0374 0.0332 

0.3671 0.3409 0.3147 0.2885 0.2622 0.2360 0.2098 

0.8333 0. 7738 0. 7143 0.6548 0.5952 0.5357 0.4762 

1. 4558 1. 3519 1. 24 79 1.1439 1. 0399 0.9359 0.8319 

2.2826 2.1196 1. 9565 1. 7935 1. 6304 1.4674 1.3043 

0.0280 0.0260 0.0240 0.0220 0.0200 0.0180 0.0160 

0.2520 0.2340 0.2160 0.1980 0.1800 0.1620 0.1440 

0.7000 0.6500 0.6000 0.5500 0.5000 0.4500 0.4000 

1.3720 1.2740 1.1760 1. 0780 0.9800 0.8820 0.7840 

2.2680 2.1060 1.9440 1. 7820 1. 6200 1. 4580 1. 2960 

0.0581 0.0540 0.0498 0.0457 0.0415 0.0374 0.0332 

0.3671 0.3409 0.3147 0.2885 0.2622 0.2360 0.2098 

0.8333 0. 7738 0.7143 0.6548 0.5952 0.5357 0.4762 

1.4558 1. 3519 1.2479 1.1439 1. 0399 0.9359 0.8319 

2.2826 2.1196 1. 9565 1. 7935 1. 6304 1. 4674 1. 3043 

0.2 

0.0291 

0.1836 

0.4167 

0.7279 

1.1413 

0.0140 

0.1260 

0.3500 

0.6860 

1.1340 

0.0291 

0.1836 

0.4167 

o. 7279 

1.1413 

0.1 

0.0249 

0.1573 

0. 3571 

0.6239 

0.9783 

0.0120 

0.1080 

0.3000 

0.5880 

0. 9720 

0.0249 

0.1573 

0.3571 

0.6239 

0.9783 
I-' 
0 
0\ 



PN pl 
1.0 

0.1 0.0379 

0.3 0. 2277 

0.1 0.5 0.5312 

0. 7 1.0012 

0.9 1. 7930 

0.1 0.0204 

0.3 0.1863 

0.5 0.5 0.5312 

0.7 1.0846 

0.9 1. 8984 

0.1 0.0483 

0.3 0.3415 

0.9 0.5 0.7969 

0.7 1. 3701 

0.9 2.0491 

TABLE XXVI 

COMPARISON·OF MODEL I AND THE UNRELATED QUESTIONS MODEL WITH PS = 0.7 

Var (Model I2/Var {Unrelated) 
m2/ml 

0;9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

0.0357 0.0335 0.0312 0.0290 0.0268 0.0245 0.0223 0.0201 

0.2143 0.2009 0.1875 0.1741 0.1607 0.1473 0.1339 0.1205 

0.5000 0.4687 0.4375 0.4062 0.3750 0.3437 0.3125 0.2812 

0.9423 0.8834 0.8245 0.7656 0.7067 0.6478 0.5889 0.5300 

1. 6875 1. 5820 1.4766 1.3711 1. 2656 1.1601 1. 0547 0. 9492 

0.0192 0.0180 0.0168 0.0156 0.0144 o. 0132 0.0120 0.0108 

0.1753 0.1644 0.1534 0.1424 0.1315 0.1205 0.1096 0.0986 

0.5000 0.4687 0.4375 0.4062 0.3750 0.3437 0.3125 0.2812 

1.0208 0.9570 0.8932 0.8294 0.7656 0.7018 0.6380 0.5742 

1. 7868 1. 6 7 51 1.5634 1. 4517 1.3401 1.2284 1.1167 1. 0050 

0.0454 0.0426 0.0398 0.0369 0.0341 0.0312 0.0284 0.0256 

0.3214 0.3013 0.2812 0.2612 o. 2411 0.2210 0.2009 0.1808 

0.7500 0.7031 0.6562 0.6094 0.5625 0.5156 0.4687 0.4219 

1. 2895 1. 2089 1.1283 1. 0477 o. 9671 0.8865 0.8059 0.7253 

1. 9286 1.8080 1. 6875 1. 56 70 1.4464 1.3259 1. 2053 1.0848 
--- - ------ ------- - --- -------- ---- -------------

0.1 

0.0178 

0.1071 

0.2500 

0.4711 

0.8437 

0.0096 

0.0877 

0.2500 

0.5104 

0.8934 

0.0227 

0.1607 

0.3750 

0.6447 

0.9643 
1-' 
0 
-....1 



TABLE XXVII 

COMPARISON OF MODEL I AND THE UNRELATED QUESTIONS MODEL WITH PS = 0.9 

Var {Model I2/Var ~Unrelated) 

PN pl m2/ml 
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

0.1 0.0129 0.0122 0.0115 0.0108 0.0102 0.0095 0.0088 0.0081 

0.3 0.0762 0. 0722 0.0682 0.0642 0.0602 0.0561 0.0521 0.0481 

0.1 0.5 0.1900 0.1800 0.1700 0.1600 0.1500 0.1400 0.1300 0.1200 

0.7 0.4149 0.3930 o. 3712 0.3494 0.3275 0.3057 0.2839 0.2620 

0.9 1. 0427 0.9878 0.9329 0.8780 0.8232 0.7683 0. 7134 0.6585 

0.1 0.0076 o. 0072 0.0068 0.0064 0.0060 0.0056 0.0052 0.0048 

0.3 0. 0726 0.0688 0.0649 0. 06ll 0.0573 0.0535 0.0497 0.0458 

0.5 0.5 0.2262 0.2143 0.2042 0.1905 0.1786 0.1667 0.1548 0.1428 

0.7 0.5425 0.5140 0.4854 0.4569 0.4283 0.3998 0. 3712 0.3426 

0.9 1. 2782 1.2110 1.1437 1. 0764 1. 0091 0.9419 0.8746 0.8073 

0.1 0. 0211 0.0200 0.0189 0.0178 0.0167 0.0155 0.0144 0.0133 

0.3 0.1900 0.1800 0.1700 0.1600 0.1500 0.1400 0.1300 0.1200 

0.9 0.5 0.5278 0.5000 0. 4722 0.4444 0.4167 0.3889 0.3611 0.3333 

0.7 1.0344 0.9800 0.9255 0.8711 0.8167 0.7622 0.7078 0.6533 

0.9 1. 7100 1. 6200 1. 5300 1.4400 1.3500 1. 2600 1.1700 1. 0800 

0.2 

0.0074 

0.0441 

0.1100 

0.2402 

0.6036 

0.0044 

0.0420 

0.1309 

0.3141 

0.7400 

0.0122 

0.1100 

0.3055 

0.5989 

0.9900 

0.1 

0.0068 

0.0401 

0.1000 

0.2184 

0.5488 

0.0040 

0.0382 

0.1190 

0.2855 

0.6727 

0. 0111 

0.1000 

0.2778 

0.5444 

0.9000 
I-' 
0 
00 



p k 

5 
0.1 

10 

5, 
0.2 

10 

5 
0.3 

10 

5 
0.4 

10 

TABLE XXVIII 

COMPARISON OF MODEL I AND THE MULTIPLE TRIALS MODEL WITH T = 100 AND PS = 0.1 

Var (Model I)/Var ~MultiEle Trials) 
m2/ml 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

8.3813 7.6194 6.8574 6.0955 5.3335 4. 5716 3.8097 3. 0477 2.2858 

9.5137 8.6488 7.7840 6.9191 6.0542 5.1893 4.3244 3.4595 2.5946 

5.5344 5. 0313 4.5282 4.0250 3.5219 3.0188 2.5156 2.0125 1. 5094 

7.3639 6.6944 6.0250 5.3555 4.6861 4.0167 3.3472 2.6778 2.0083 

2.8085 2.5532 2.2979 2.0425 1. 7872 1. 5319 1. 2766 1. 0213 0.7659 

4.4746 4.0678 3.6610 3.2542 2.8474 2.4407 2.0339 1. 6271 1. 2203 

0.7674 0.6977 0.6279 0.5581 0.4884 0.4186 0.3488 0.2791 0.2093 

1.4348 1.3043 1.1739 1.0435 0. 9130 0.7826 0.6522 0.5217 o. 3913 

0.1 

1. 5239 

1.7298 

1.0063 

1. 3389 

0.5106 

0.8135 

0.1395 

0.2609 

I-' 
0 

"' 



p k 

5 
0~1 

10 

5 
0.2 

. 10 

5 
0.3 

. 10 

5 
0.4 

10 

TABLE XXIX 

COMPARISON OF MODEL I AND THE MULTIPLE TRIALS MODEL WITH T = 100 AND P S = 0. 3 

Var {Model I}/Var ~Multiele Trials~ 
m2/ml 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

3.8216 3.5276 3.2337 2.9397 2.6457 2.3517 2.0578 1.7638 1.4698 

4.0614 3.7490 3. 4366 3.1242 2. 8117 2.4993 2.1869 1.8745 1.5621 

3.0447 2.8105 2.5763 2 .. 342.1 2.1079 1.8737 1.6394 1.4052 1.1710 

3.5165 3.3014 3.0262 2.7511 2.4760 2.2009 1.9258 1.6507 1.3756 

1.9259 1.7778 1. 6296 1.4815 1.3333 1.1852 1.0370 0.8889 0.7407 

2.6667 2.4615 2.2564 2.0513 1.8461 1.6410 1.4359 1.2308 1.0256 

0.6454 0.5957 0.5461 0.4964 0.4468 0.3972 0.3475 0.2979 0.2482 

1.1234 1. 0370 0.9506 0.8642 0. 7778 0.6913 0.6049 0.5185 0.4321 

0.1 

1.1759 

1. 2497 

0.9368 

1.1004 

0. 5926 

0.8205 

0.1986 

0.3457 

I-' 
1-' 
0 



p k 

5 
0.1 

10 

5 
0.2 

10 

5 
0.3 

10 

5 
0.4 

10 
------L_ ______ 

TABLE XXX 

COMPARISON OF MODEL I AND THE MULTIPLE TRIALS MODEL WITH T = 100 AND PS = 0.5 

Var {Model I2/Var {MultiEle Trials) 
m/m1 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

2.6967 2.5169 2.3371 2.1573 1.9776 1. 7978 1.6180 1. 4382 1.2584 

2.8403 2.6509 2.4616 2. 2722 2.0828 1. 8935 1. 7041 1.5148 1. 3254 

2. 2132 2.0656 1. 9181 1. 7705 1. 6230 1.4754 1. 3279 1.1803 1.0328 

2. 5472 2.3774 2.2076 2.0378 1. 86 79 1.6981 1. 5283 1. 3585 1.1887 

1. 4634 1. 3658 1. 2683 1.1707 1. 0732 0.9756 0.8780 0.7805 0.6829 

1. 9672 1. 8361 1. 7049 1. 5738 1. 4426 1.3115 1.1803 1. 0492 0.9180 

0.5172 0.4827 0.4483 0. 4138 0.3793 0.3448 0.3103 0.2759 0.2414 

0.8823 0.8235 0.7647 0. 7059 0.6470 0.5882 0.5294 0.4706 0. 4118 
L__ ----- --

0.1 

1.0788 

1.1361 

0.8853 

1. 0189 

0.5854 

0.7869 

0.2069 

0.3529 

1-' 
1-' 
1-' 



p k 

5 
0.1 

10 

5 
0.2 

10 

5 
0.3 

10 

5 
0.4 

10 

TABLE XXXI 

COMPARISON OF MODEL I AND THE MULTIPLE TRIALS MODEL WITH T = 100 AND PS = 0.7 

Var {Model I2/Var ~MultiEle Trials) 
m2/ml 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

2.1418 2.0158 1.8898 1. 7638 1. 6378 1.5118 1.3858 1.2599 1.1339 

2.2762 2.1423 2.0084 1. 8745 1.7406 1. 6067 1.4728 1. 3389 1.2050 

1.7064 1. 6060 1.5056 1.4052 1.3049 1.2045 1.1041 1.0037 0.9034 

2.0044 1. 8865 1.7686 1. 6507 1.5328 1. 4149 1. 2970 1.1790 1. 0611 

1.0794 1. 0159 0.9524 0.8889 0.8254 0.7619 0.6984 0.6349 0.5714 

1.4945 1. 4066 1. 3187 1.2308 1.1428 1. 0549 0.9670 0.8791 0.7912 

0.3617 0.3404 0.3191 0.2979 0.2766 0.2553 0.2340 0.2128 0.1915 

0.6296 0.5926 0.5555 0.5185 0.4815 0.4444 0.4074 0.3704 0.3333 
-- -- - ------ - -------- -~---------- -------- -------------- --------

0.1 

1. 0079 

1.0711 

0.8030 

0.9432 

0.5079 

0.7033 

0.1702 

0.2963 

r--' 
r--' 
N 



p k 

5 
0.1 

10 

5 
0.2 

10 

5 
0.3 

10 

5 
0.4 

10 

TABLE XXXII 

COMPARISON OF MODEL I AND THE MULTIPLE TRIALS MODEL WITH T = 100 AND PS = 0.9 

Var ~Model I}/Var (Multi2le Trials~ 
tn2/ml 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

1.6085 1.5239 1. 4392 1.3545 1.2699 1.1852 1.0006 1. 0159 0.9312 

1. 8259 1. 7298 1. 6337 1. 5376 1. 4415 1.3454 1. 2493 1.1532 1.0571 

1.0622 1. 0063 0.9503 0.8944 0.8385 0.7826 0. 7267 0.6708 0.6149 

1.4133 1.3389 1. 2645 1.1901 1.1157 1. 0413 0.9670 0.8926 0.8182 

0.5390 0.5106 0.4823 0.4539 0.4255 o. 3972 0.3688 0.3404 0.3120 

0.8587 0. 8135 0.7684 0. 7232 0.6780 0.6328 0.5876 0.5424 0.4972 

0.1473 0.1395 0.1318 0.1240 0.1163 0.1085 0.1008 0.0930 0.0853 

0.2754 0.2609 0.2464 0.2319 0.2174 0.2029 0.1884 0.1739 0.1594 
-

0.1 

0.8466 

0.9610 

0.5590 

0.7438 

0.2837 

0.4520 

0. 0775 

0.1449 
- - - --

I-' 
I-' 
w 
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