

Critical Design Review

1

Overview

- Administrative Overview
 - CDR POC: Justin Duewall

Analog System Design Solution

CDR POC: Austin Bennett

Research and Development

CDR POC: Madison Whiteley

System Operations and Interfacing

CDR POC: Josh Pankratz

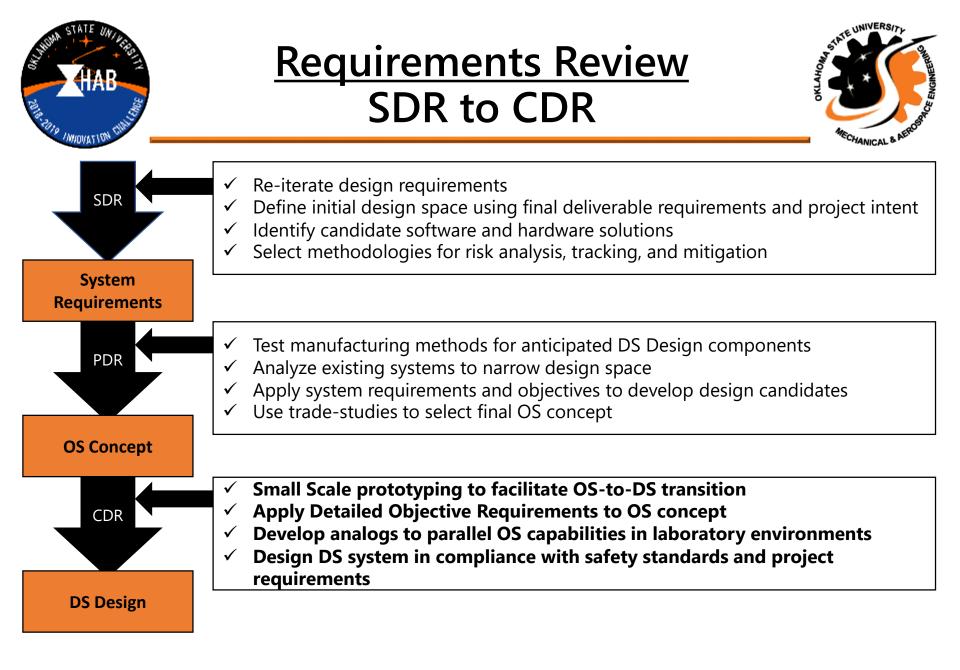
Administrative Review

CDR POC: Michael Raymer

Administrative Overview

- Requirements Review
- PDR Documentation Review
- STARGATE Introduction

CDR POC: Justin Duewall



<u>Requirements Review</u> Primary Objectives

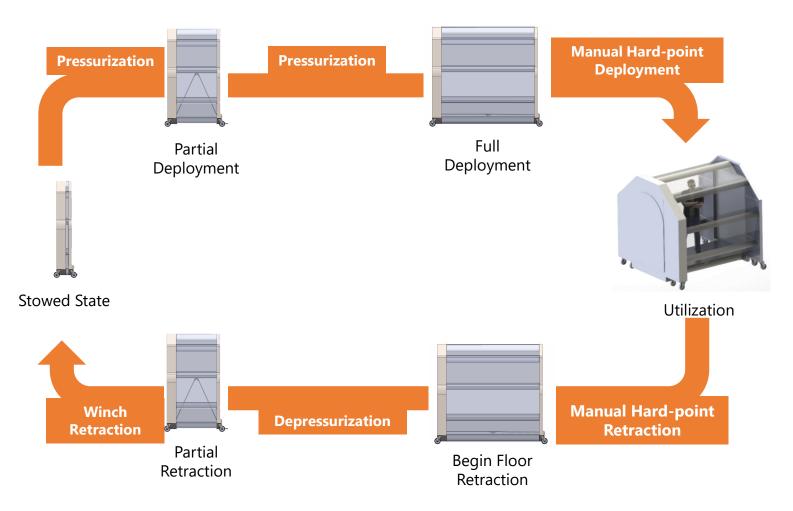
- Deployment Test: Demonstrate operations through a series of deployment tests
 - Include packaging concept and deployment operations
 - Crew lock inflates with some manual/mechanical assistance assisting low pressure inflation

- Internal Operations Tests: Demonstrate crew lock operations for EVA prep
 - Non-pressurized state when open to prototypes/mockups
 - Deploy the crew lock in an unpressurized state with some internal structure
 - Allow crew to transfer between module and other notional prototypes available during test.
 - Crew interaction w/ NASA and university EVA prep payloads



STARGATE Introduction

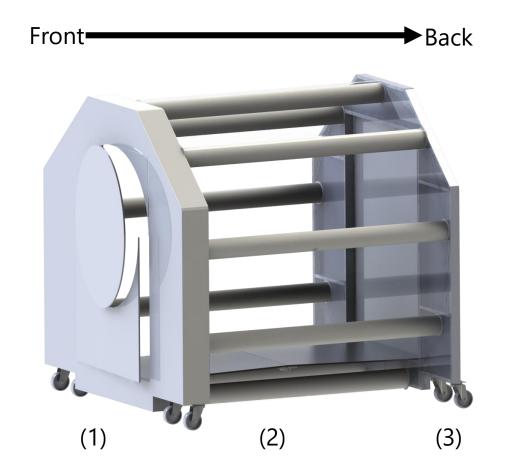
PDR OS Design Concept


SDR STARGATE Demonstrator

Stargate Introduction CONOPS

STARGATE Introduction Component Terminology

Major Components


- 1. Dock
 - a) Frame
 - b) Wheel-Base
 - c) Door
 - d) Paneling

2. Span

- a) Air beams
- b) Exterior Wall
- c) Interior Wall
- d) Floor

3. Bulkhead

- a) Frame
- b) Wheel Base
- c) Door
- d) Paneling

- STARGATE Design Solution Components
- STARGATE System Operations

CDR POC: Austin Bennett

STARGATE Design Solution Design Philosophies

Maximize interior volume while retaining collapsibility

Optimized floor space and head room, compact systems

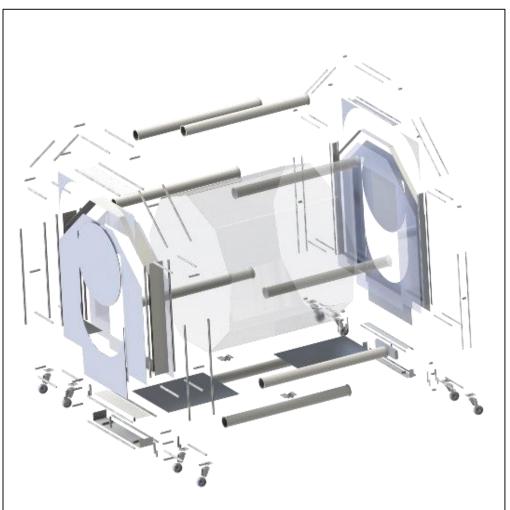
Ease of use by automating system operations

- Automatic floor deployment
- Self-contained systems

Incorporating quality of life features

- Dutch Doors and hardpoint mounts
- Variable system configurations

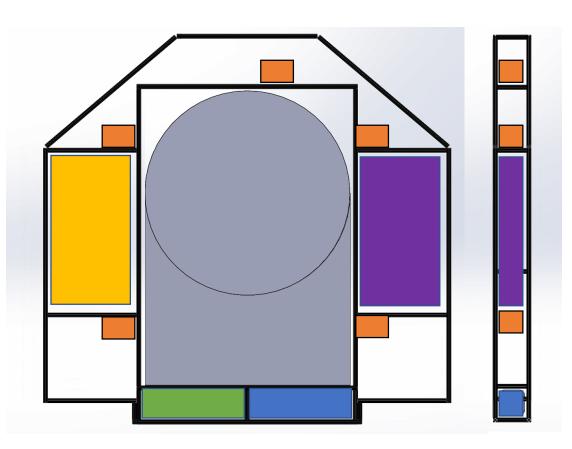
Retaining operational system characteristics while meeting demonstrational design requirements


STARGATE Design Solution Overview

Dock Frame

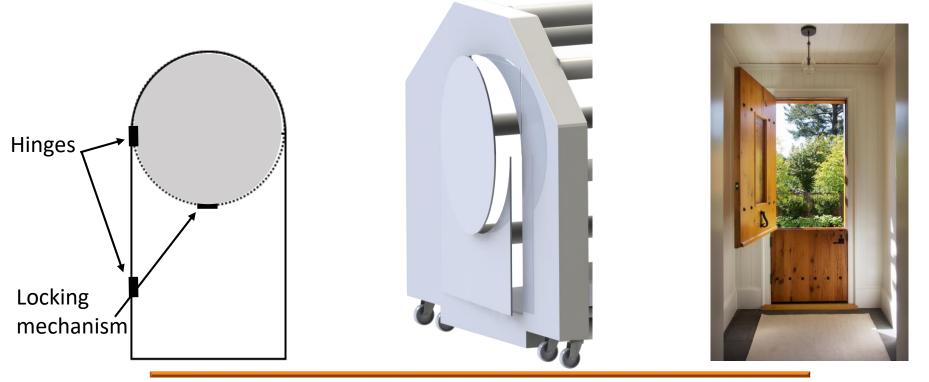
Span Configuration

- Air-beam and Wall Construction
- Floor
- Bulkhead Frame
- Other Design Elements
 - Hardpoints
 - Wheelbase
 - System Integration



STARGATE Design Solution Dock Frame

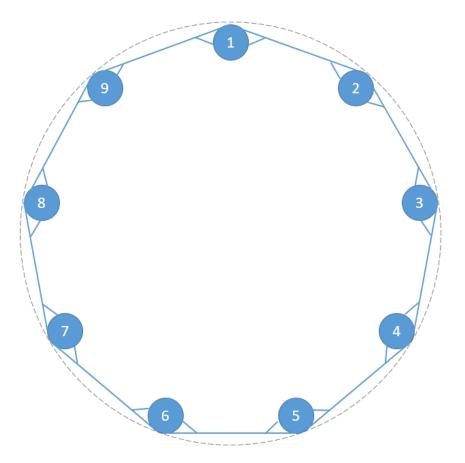
- Steel 8020 Frame
- Plastic Paneling
- Systems within:
 - Air tanks
 - Compressor
 - Winches
 - Electronics
 - Storage & Misc.

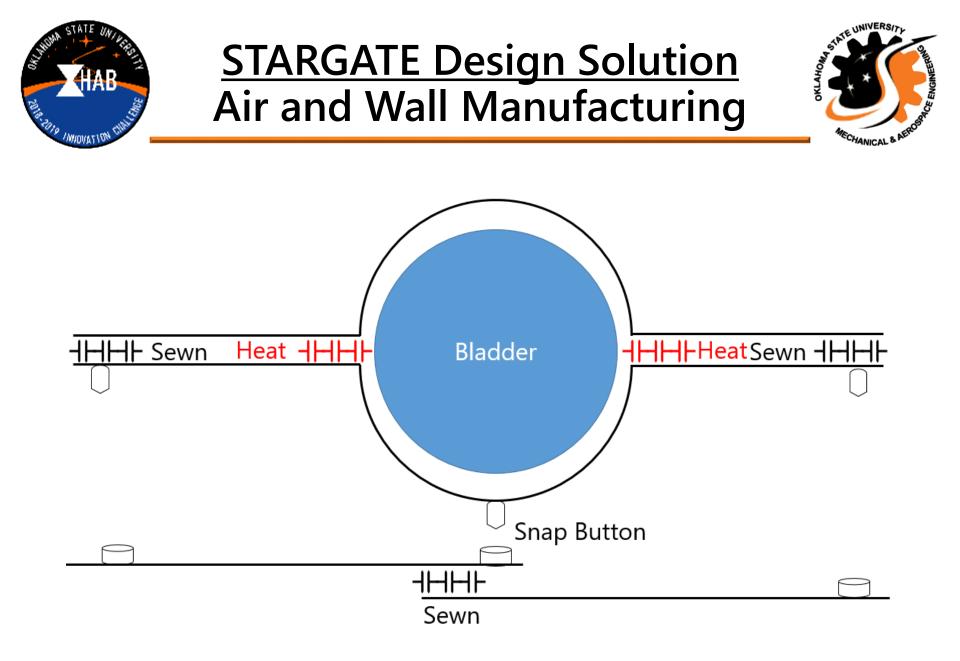


STARGATE Design Solution Ingress and Egress Method

- Dutch Door styled hatch system
- Allows easy access as well as hatch simulation

STARGATE Design Solution Radial Profile



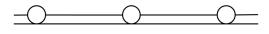

• 6-in. Diameter air beams

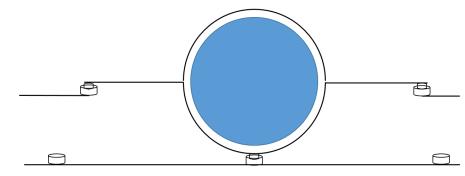
- Nonagonal configuration
- Inscribed on 8-foot diameter circle

Air beams Sizing

- Provide expansion force during deployment
- Carry small internal loads (fabric hardpoints)
- Semi-permanent outer wall
 - Removable using snapbutton fastener system

STARGATE Design Solution Air beam & Wall Design


As-shipped interior configuration


- Triangular channels on either side of each air-beam
- Housing space for electronics, lights

Optional interior wall

- Attaches with snap-buttons
- Expands interior wall volume for integration of other systems (e.g. umbilical's)
- Variable level of flight fidelity

<u>Configuration 1</u> Narrow channels for wires, lines, and lights

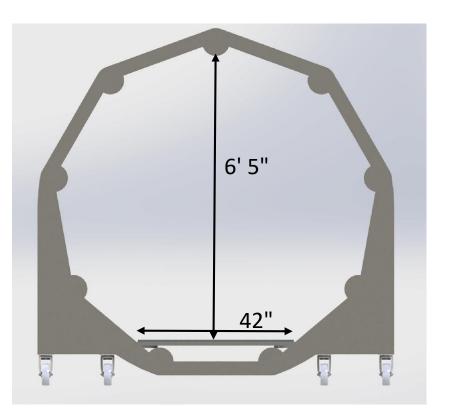
<u>Configuration 2</u> More realistic "double wall," snaps in


STARGATE System Operations Ground Test Configurations

Four wall geometry configurations

- With and without a floor panel
- With and without interior wall Panel
- Easily configurable using "snap buttons"

STARGATE Design Solution Floor and Head Space

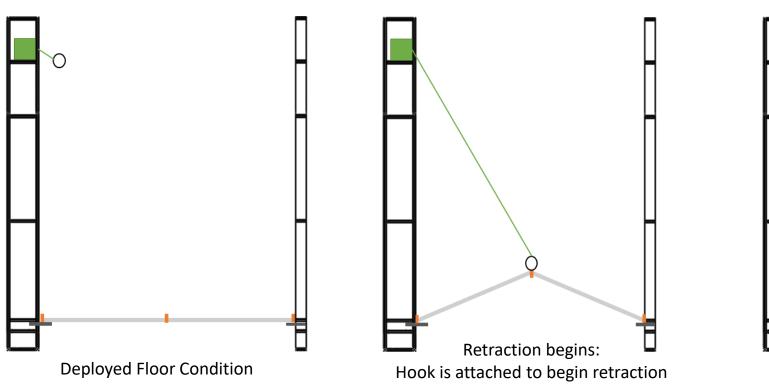


• 6' 5" of head space

 Designed to accommodate a standing suited astronaut

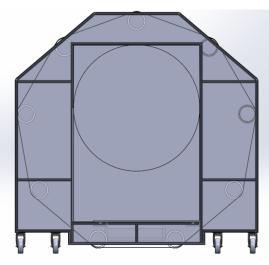
42" x 93" of floor space

 Designed to accommodate four crew members for demonstration with appropriate space


STARGATE Design Solution Floor Design

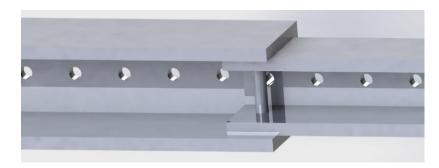
- Floor folds in middle for improved collapsibility
 - Simply supported by frame on sides

Catwalk Floor Segment

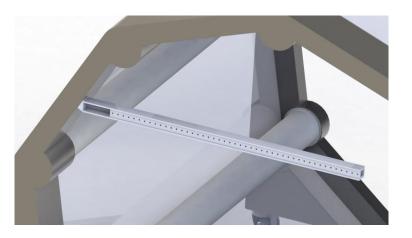


STARGATE Design Solution Bulkhead Frame

- Same door assembly as Dock Frame
 - Can either open standard size door or NASA size hatch
- Same structural design as the Dock Frame
 - Adequate room to mount any required systems
 - Lightweight for minimal-resistance deployment
- Wheelbase can be increased for stability if needed

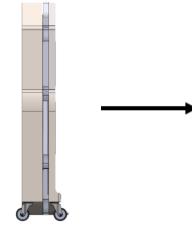



STARGATE Design Solution Hardpoints

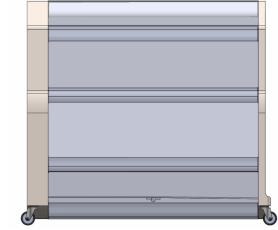


Pair of collapsible metal beams

- Manually deployed after expansion
- Folds flat against frame when stored
- One set on each end
 - Snap into place on opposite side
- Allows for crewed operations in 1-g environment
 - Support tool & equipment loads



STARGATE System Operations Deployment Process


Stage 1

- Fully compacted
- Tube Pressure = 0 psi

Stage 2

- Partially expanded
- Floor begins unfolding ٠
- 0 psi< Tube Pressure < 0.5 psi
- Forward wheelbase in motion
- **Fully expanded**
- Floor fully expanded ٠
- Tube Pressure = 0.5 psi •
- Forward wheelbase stopped

CUNIVERSIT

STARGATE System Operations Retraction Method

- Totally automated retraction
 - Winches apply variable contracting force
 - Encoders on winch lines ensure even and consistent retraction
- Microcontrollers interface with main control system

Relief valves open on all lines

- Controlled slow release of air
- Allows for even contracting & compacting

- Model Development
- System Analysis
- Critical Load Analysis
- Engineering Development Tests

CDR POC: Madison Whiteley

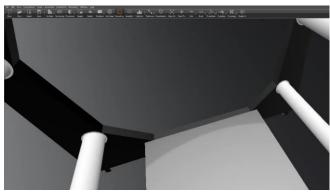
<u>Model Development</u> Scale Model

Quarter scale model

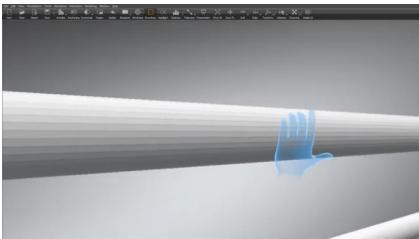
- Foamboard, tape, and glue construction
- Will model retraction methods and floor construction

Purpose

- Reference material for proportions of STARGATE
- Display model for design and manufacturing space
- Manufacturing space frequented by campus tours



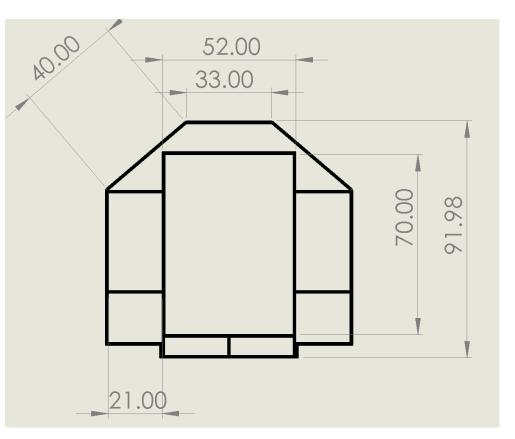
<u>Model Development</u> Virtual Reality



- VR Model
 - Using Autodesk software
- Purpose
 - Better understand physical proportions of STARGATE
 - Visualize scale model at 1:1 scale with no expense
 - Rapidly analyze impact of design changes on system configuration

System Analysis Weight Estimation

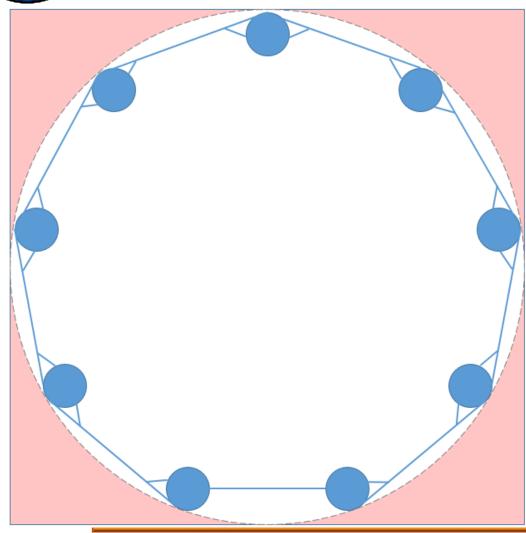
Estimated Structural Weight

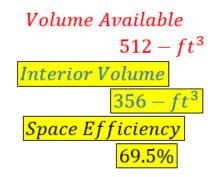

- 720-lbs
- Includes both the Dock frame and bulkhead frame
- Determined from major structural dimensions

8020.net Structural Members

- Estimated with 80mm x 40mm members
- 0.2317 lbs per inch

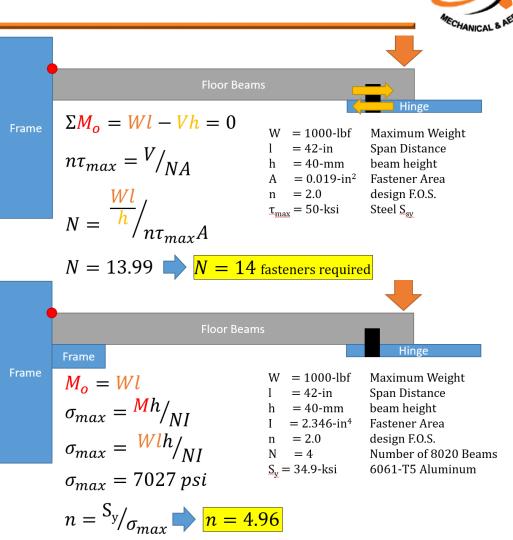
Factor of Safety of 1.5 applied to initial estimate


• Accounting for fastener mass



<u>System Analysis</u> Space Efficiency

 $\begin{array}{l} \underline{Typical\ Cross\ Section}\\ \hline Available\ Area\\ 64.00-ft^2\\ After\ Circularization\\ 50.27-ft^2\\ After\ Nonagonalization\\ 46.30-ft^2\\ After\ Air\ beam\ Incorporation\\ 44.50-ft^2 \end{array}$

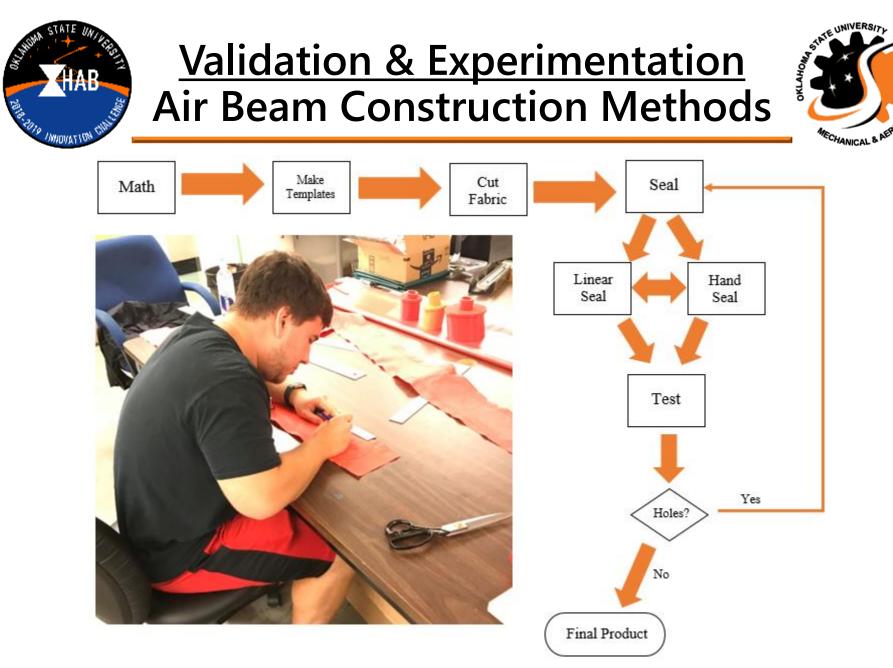

Floor Loading Analysis

- Expected Failure Mode: Shear
- 14 fasteners per side to achieve 2.0 F.O.S.
- Can be increased w/ minimal weight penalty

Bending Analysis

 Current floor design results in a F.O.S. of 4.96 at worst case

E UNIVERSIT

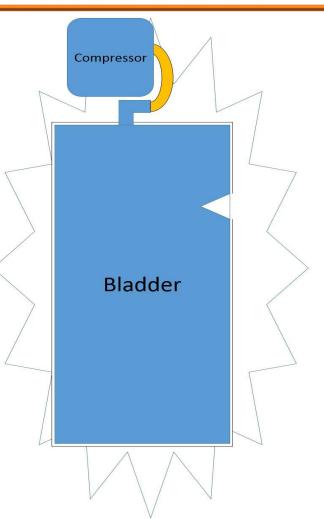

Validation & Experimentation

- Senior Aerospace Courses require capstone related experimentation
 - Use required experimentation to develop safety documentation for air beam systems
 - Final reports and data will be incorporated into final delivery user guide

Major Validation Areas

- Airbeam Contruction Methods
- Air Beam Burst Test expected failure mode of air beams
- Air Beam Bending Test maximum point and distributed load
- Pressure Lift Test maximum load displaced by an expanding pressurized volume
- Pressure Push Test horizontal displacement of mass and transient pressures

Validation & Experimentation Air Beam Burst Test



Objective:

- Verify strength of beambladder system
- Ensure worker safety

Process:

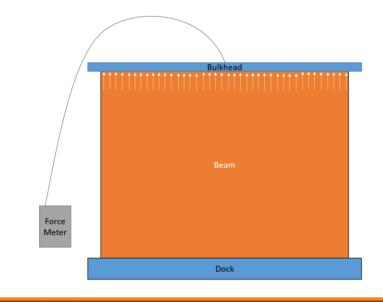
- Beams with bladders will be inflated until either the bladder or fabric encasing the bladder bursts.
- Will test to ensure beams will not burst at high pressure or through multiple uses.

Validation & Experimentation Air beam Bending Test

Objective:

- Determine accurate buckling resistance of large-diameter, lowpressure for proposed materials and manufacturing techniques
- Test Rig:

Validation & Experimentation Pressure Lift Test


Objective:

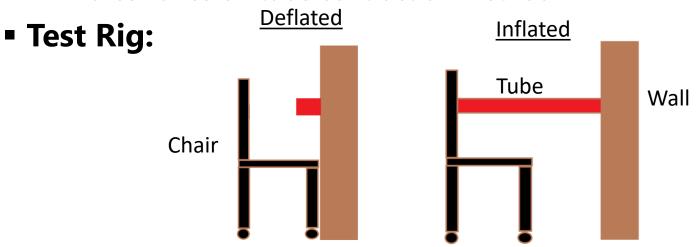
 Determine maximum opposing force that air-beams can overcome during deployment

Process:

• With the exterior design on its side, weight is added to upper surface to measure the vertical deployment force at 0.5psig.

Test Rig:

Validation & Experimentation Preliminary Push Test



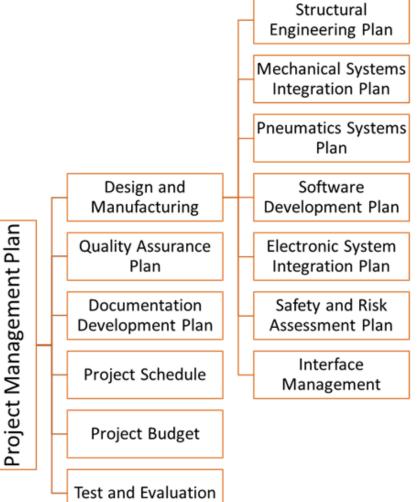
Objective:

 Determine the maximum weight which can be pushed on rollers during tube expansion

Results:

- 170 lb. weight which could be pushed
- Expansion force = 5.5 lbf
- Force varies on tube contraction method

System Operations and Interfacing

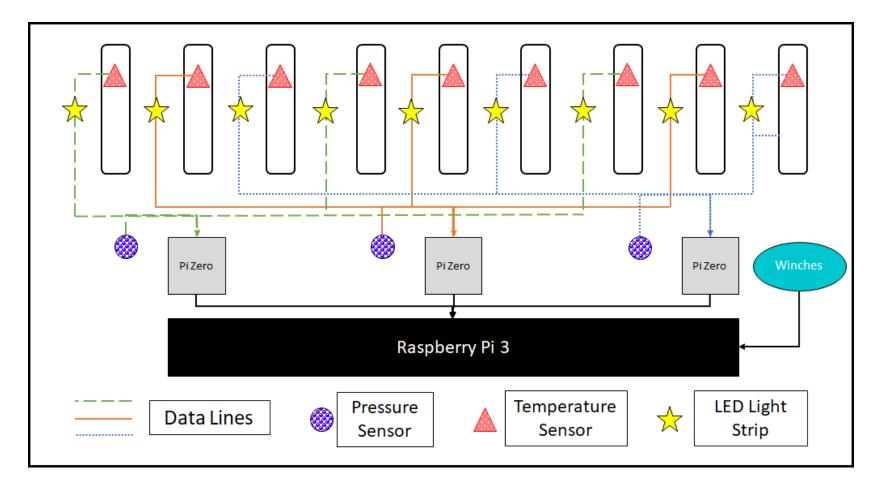

- Engineering Specialty Plans
- Wiring Schematic
- Pneumatic System Diagram
- Control Methods
- Facilities Tour

CDR POC: Josh Pankratz

Engineering Specialty Plan

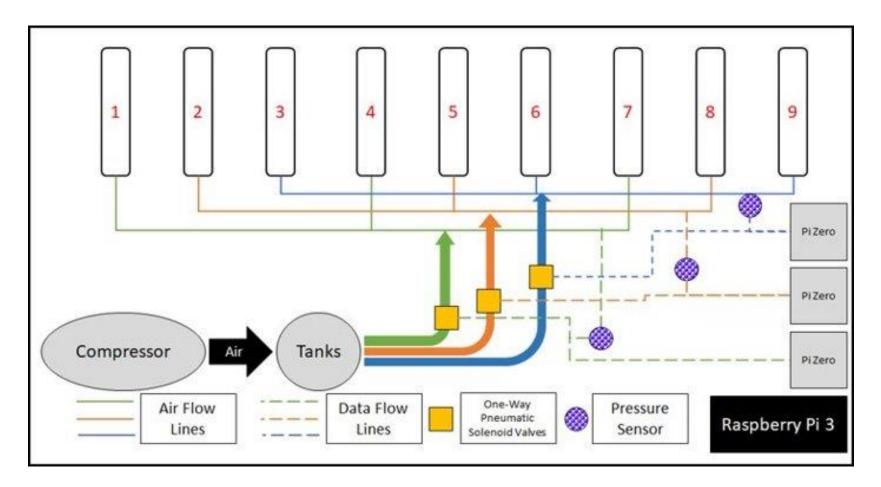
Broad Categories

- Project separated into six broad categories areas for planning
- Broad categories monitored weekly at university level
- Effort to communicate bi-weekly


Design and Manufacturing Specialties

- Seven critical areas identified
- Each will have an appointed Subject Matter Expert (SME)
- SME will monitor all progress in critical area, and will update management regularly
- More Detail in Backup Slides

Basic Wiring Schematic



Pneumatic System Diagram

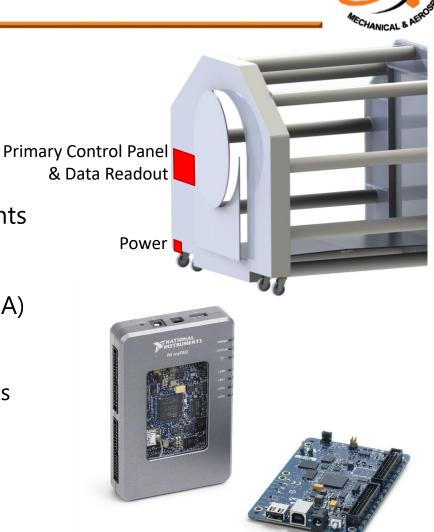
Control Methods

Current Board:

Raspberry Pi Zero

Alternative Board:

MyRio from National Instruments


Reasons:

Field programmable gate arrays (FPGA)

- Allows for fast I/O response
- Fast prototyping
- Logic control is run on hard circuits
- Industry level control setup that is reprogrammable

Labview:

- Direct interface with FPGA
- Easy to use graphical programing

Administrative Review

- Hazard Matrix
- Risk Management
- FOD Avoidance
- Budgeting Data
- Post-CDR Schedule

CDR POC: Michael Raymer

Hazard Matrix

P= Risk to Personnel A= Risk to Assets Severity Classifications		Probability [Pr] Estimations						
		A: Frequent	B: Probable	C: Occasional	D: Remote	E: Improbable	Hazard Code	Hazard Description
							01	Electrocution
I: Catastrophic						P07	02	Fire
II: Critical						A02, P02, A07	03	C02
							04	Structural Failure
III: Moderate					A04	P04	05	Minor Injury
IV: Negligible				P05, P09	P06, A08	A01, P01, P03	06	Thermal
							07	Compressor Explosion
RAC: I	tempora	ary controls are	erations shall cease in place and pern	08	Pressure Lines			
RAC: 2	Undesirable – All operations shall cease immediately until the hazard is corrected or until temporary controls are in place and permanent controls are in work.				09	Entering Confined Spaces		
	AC: 3 Acceptable with controls – Division Chief or equivalent management is authorized to accept the risk with adequate justification.				s authorized to	More De	etail in Backup	
BAC: 4-7	Accepta	cceptable with controls – Branch Chief or equivalent management is authorized to accept ne risk with adequate justification						Slides

JPR 1700 Regulations

Detailed review pending access to checklist provided by NASA contact

- 6.3.4: Warehouse Safety and Health
- 6.7: JSC's Policy for handling Unique Hardware or Materials
- 6.9: Space Systems and Test Safety
- 6.10: Confined Spaces
- 6.11: Pressurized Gas

Regulation	Applicability	Status
6.1	N/A	
6.2	N/A	
6.3	Applies	Reviewed
6.4	N/A	
6.5	N/A	
6.6	N/A	
6.7	Applies	Reviewed
6.8	N/A	
6.9	Applies	Reviewed
6.1	Applies	Reviewed
6.11	Applies	Reviewed
6.12	N/A	
6.13	N/A	

FOD Avoidance

Design Consideration for FOD prevention

- Systems and hardware will be enclosed for the duration of the analogue deployment and retraction.
- Removeable panels will be implemented for ease of access for inspection and cleaning in FOD control areas
- FOD critical areas are sealed off to prevent debris and water from entering and damaging crew-lock
- Open floor scheme prevents FOD entrapment within crew-lock

FOD Area Classification

- FOD Critical Areas: Inflatable air-beams
- FOD Control Areas: Electronics and hardware housed within airlock within removable panels, hardpoints, bulkhead frames
- FOD Awareness Areas: Inner crew lock area, crew-lock walkway

Cost and Schedule Data Itemized Budget for Materials

Fabrics

- Based on cost-per-yard from manufacturer
- Allowance for F.O.S. of 1.5

Structural Hardware

- Cost values sourced from 8020.net
- "Finishing" category includes cost of exterior paneling, floors, etc.

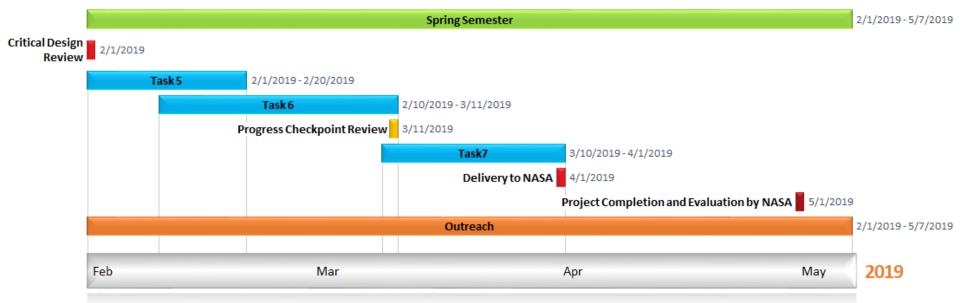
Electronics

 Subject to change in-lieu of contact with National Instruments

Area/Item		total	Itemized	
Fabrics	\$	950.00		
Bladders			\$ 60.00	
Air beam Walls			\$ 450.00	
Demonstrator Wall Panels			\$ 320.00	
Allotment for Cost Overrun			\$ 120.00	
Structural Hardware (8020.net estimate)	\$	3500.00		
Catwalk Construction			\$ 660.00	
Catwalk Finishing			\$ 100.00	
Dock and Bulkhead Frames			\$ 2000.00	
Dock and Bulkhead Finishing			\$ 300.00	
Allotment for Cost Overrun			\$ 440.00	
Electronics	\$	1050.00		
Control Systems (Raspberry Pi)			\$ 50.00	
Air beam Control Sensors			\$ 315.00	
Pneumatic Systems			\$ 300.00	
Crewed Volume Sensors & Lighting			\$ 250.00	
Allotment for Cost Overrun			\$ 135.00	
Total		\$ 5	500.00	

Cost and Schedule Data Overall Budget

JSC Delivery Estimate


- 550-mi. U-Haul rental (one way)
- Two vehicles for student and faculty travel
- Two nights in Houston/JSC area
- Current estimate for unallotted budget
 - \$<u>1800.00</u>
 - Used for large unexpected cost overruns
 - Development of extra functions, tools, and features

		CHANICAL & P	
Area/Item	Subtotal	Itemized	
Demonstration Article	\$ 5500.00		
Fabrics		\$ 950.00	
Structural Hardware		\$ 3500.00	
Electronics		\$ 1050.00	
JSC Delivery Estimate	\$ 2700.00		
Vehicle Rental (U-Haul Est.)		\$ 293.00	
Gas (1 vehicle at 12-mpg, 2 at 18-mpg)		\$ 535.00	
Lodging		\$ 1400.00	
Allotment for Cost Overrun		\$ 472.00	
Estimated Remaining Budget	\$ 10000.00		
Unallotted Budget	\$ 1800.00		

Post-CDR Schedule Timeline

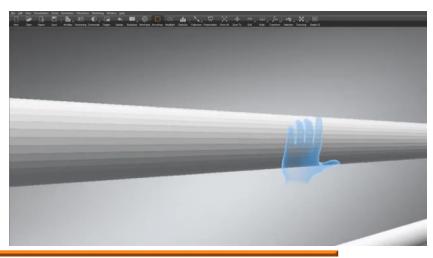
Task 5

- Final Engineering Model Construction
- Task 6
 - Testing, Technology Maturation and Implementation
- Task 7
 - Documentation Development, Validation, Delivery

Post-CDR Schedule Outreach

Potential Outreach

- Stillwater Public Schools
- Public Schools in surrounding counties


Outreach topics

- Perspective as STEM students
- Use of inflatable structures
- Future of inflatables in
- Space Applications

Outreach Tools

- VR models
- Scale Models
- Inflatables

Review & Questions

- Administrative Overview
 - CDR POC: Justin Duewall

Analog System Design Solution

CDR POC: Austin Bennett

Research and Development

CDR POC: Madison Whiteley

System Operations and Interfacing

CDR POC: Josh Pankratz

Administrative Review

CDR POC: Michael Raymer