

Critical Design Review

1

- Oklahoma Weather Update
- Senior Capstone Flight Tests
- Senior Capstone Project Wars

CDR POC: Adam Morgan

Oklahoma Weather Update

Oklahoma Weather

<u>Senior Capstone</u> Flight Tests

Flight tests in the Cessna 172 are a part of OSU's BAE capstone coursework Simulator flights and data collection this month followed by crewed flights in March

Senior Capstone Project Competition

Speedfest (drones), APOP (Small Scale Turbojet Propulsion), Rocketry

Overview

- Administrative Overview
 - CDR POC: Justin Duewall

Analog System Design Solution

CDR POC: Austin Bennett

Research and Development

CDR POC: Madison Whiteley

System Operations and Interfacing

CDR POC: Josh Pankratz

Administrative Review

CDR POC: Michael Raymer

Administrative Overview

- Requirements Review
- PDR Documentation Review
- STARGATE Introduction

CDR POC: Justin Duewall

Justin Duewall

Hometown

Bryan, Texas

Major

Aerospace and Mechanical Engineering

Minor

Aerospace Studies

Hobbies

Playing Sports (all of them), Writing, and Reading

Interesting Fact:

Commissioning into the Air Force in May

Getting my Masters in Aerospace Engineering at AFIT

<u>Requirements Review</u> Primary Objectives

- Deployment Test: Demonstrate operations through a series of deployment tests
 - Include packaging concept and deployment operations
 - Crew lock inflates with some manual/mechanical assistance assisting low pressure inflation

- Internal Operations Tests: Demonstrate crew lock operations for EVA prep
 - Non-pressurized state when open to prototypes/mockups
 - Deploy the crew lock in an unpressurized state with some internal structure
 - Allow crew to transfer between module and other notional prototypes available during test.
 - Crew interaction w/ NASA and university EVA prep payloads

Documentation Review Schedule through CDR

Documentation Review PDR *Projected* Cost Analysis

Area of Cost	Budget Percent	Description of Use
DS Construction Materials	20%	Construction of analog demonstration system
Tool/Supplies	5%	Needed for use in construction
Electronic Hardware	15%	Electronic controlling units and their respective interfaces
Electronic Software	5%	Operating the electronic controls hardware for automated deployment demonstrations
Travel	42%	Travel expenses such as food, gas, and lodging
Misc.	13%	

STARGATE Demonstrator

STARGATE Introduction

PDR OS Design Concept

SDR STARGATE Demonstrator

Stargate Introduction CONOPS

STARGATE Introduction Component Terminology

Major Components

- 1. Dock
 - a) Frame
 - b) Wheel-Base
 - c) Door
 - d) Paneling

2. Span

- a) Air beams
- b) Exterior Wall
- c) Interior Wall
- d) Floor

3. Bulkhead

- a) Frame
- b) Wheel Base
- c) Door
- d) Paneling

- STARGATE Design Solution Components
- STARGATE System Operations

CDR POC: Austin Bennett

Austin Bennett

Hometown:

Oklahoma City, Oklahoma

Major:

Mechanical & Aerospace Engineering

Hobbies:

Board Games Building FPV Drones Video Games

Disc Golf

STARGATE Design Solution Design Philosophies

Maximize interior volume while retaining collapsibility

Optimized floor space and head room, compact systems

Ease of use by automating system operations

- Automatic floor deployment
- Self-contained systems

Incorporating quality of life features

- Dutch Doors and hardpoint mounts
- Variable system configurations

Retaining operational system characteristics while meeting demonstrational design requirements

STARGATE Design Solution Overview

Dock Frame

Span Configuration

- Air-beam and Wall Construction
- Floor
- Bulkhead Frame
- Other Design Elements
 - Hardpoints
 - Wheelbase
 - System Integration

STARGATE Design Solution Dock Frame

- Steel 8020 Frame
- Plastic Paneling
- Systems within:
 - Air tanks
 - Compressor
 - Winches
 - Electronics
 - Storage & Misc.

STARGATE Design Solution Ingress and Egress Method

- Dutch Door styled hatch system
- Allows easy access as well as hatch simulation

STARGATE Design Solution Radial Profile

• 6-in. Diameter air beams

- Nonagonal configuration
- Inscribed on 8-foot diameter circle

Air beams Sizing

- Provide expansion force during deployment
- Carry small internal loads (fabric hardpoints)
- Semi-permanent outer wall
 - Removable using snapbutton fastener system

STARGATE Design Solution Air beam Pneumatic Systems

Three Independent Pressure Lines

- Tubes alternate lines
- Single line failure symmetry maintained

14 Dec 18

STARGATE Design Solution Air beam & Wall Design

As-shipped interior configuration

- Triangular channels on either side of each air-beam
- Housing space for electronics, lights

Optional interior wall

- Attaches with snap-buttons
- Expands interior wall volume for integration of other systems (e.g. umbilical's)
- Variable level of flight fidelity

<u>Configuration 1</u> Narrow channels for wires, lines, and lights

<u>Configuration 2</u> More realistic "double wall," snaps in

STARGATE System Operations Ground Test Configurations

Four wall geometry configurations

- With and without a floor panel
- With and without interior wall Panel
- Easily configurable using "snap buttons"

STARGATE Design Solution Floor and Head Space

• 6' 5" of head space

 Designed to accommodate a standing suited astronaut

42" x 93" of floor space

 Designed to accommodate four crew members for demonstration with appropriate space

STARGATE Design Solution Floor Design

- Floor folds in middle for improved collapsibility
 - Simply supported by frame on sides

Catwalk Floor Segment

STARGATE Design Solution Bulkhead Frame

- Same door assembly as Dock Frame
 - Can either open standard size door or NASA size hatch
- Same structural design as the Dock Frame
 - Adequate room to mount any required systems
 - Lightweight for minimal-resistance deployment
- Wheelbase can be increased for stability if needed

STARGATE Design Solution Hardpoints

Pair of collapsible metal beams

- Manually deployed after expansion
- Folds flat against frame when stored
- One set on each end
 - Snap into place on opposite side
- Allows for crewed operations in 1-g environment
 - Support tool & equipment loads

STARGATE System Operations Deployment Process

Stage 1

- Fully compacted
- Tube Pressure = 0 psi

• Partially expanded

• Floor begins unfolding

Stage 2

- 0 psi< Tube Pressure < 0.5 psi
- Forward wheelbase in motion

- Fully expanded
- Floor fully expanded
- Tube Pressure = 0.5 psi
- Forward wheelbase stopped

CUNIVERSIT

STARGATE System Operations Retraction Method

- Totally automated retraction
 - Winches apply variable contracting force
 - Encoders on winch lines ensure even and consistent retraction
- Microcontrollers interface with main control system

Relief valves open on all lines

- Controlled slow release of air
- Allows for even contracting & compacting

- Model Development
- System Analysis
- Critical Load Analysis
- Engineering Development Tests

CDR POC: Madison Whiteley

Madison Whiteley

Hometown:

Coweta, Oklahoma

Major:

Aerospace & Mechanical Engineering

Hobbies:

Reading

Lacrosse

Napping

<u>Model Development</u> Scale Model

Quarter scale model

- Foamboard, tape, and glue construction
- Will model retraction methods and floor construction

Purpose

- Reference material for proportions of STARGATE
- Display model for design and manufacturing space
- Manufacturing space frequented by campus tours

<u>Model Development</u> Virtual Reality

- VR Model
 - Using Autodesk software
- Purpose
 - Better understand physical proportions of STARGATE
 - Visualize scale model at 1:1 scale with no expense
 - Rapidly analyze impact of design changes on system configuration

System Analysis Weight Estimation

Estimated Structural Weight

- 720-lbs
- Includes both the Dock frame and bulkhead frame
- Determined from major structural dimensions

8020.net Structural Members

- Estimated with 80mm x 40mm members
- 0.2317 lbs per inch

Factor of Safety of 1.5 applied to initial estimate

• Accounting for fastener mass

<u>System Analysis</u> Space Efficiency

 $\begin{array}{l} \underline{Typical\ Cross\ Section}\\ \hline Available\ Area\\ 64.00-ft^2\\ After\ Circularization\\ 50.27-ft^2\\ After\ Nonagonalization\\ 46.30-ft^2\\ After\ Air\ beam\ Incorporation\\ 44.50-ft^2 \end{array}$

Floor Loading Analysis

- Expected Failure Mode: Shear
- 14 fasteners per side to achieve 2.0 F.O.S.
- Can be increased w/ minimal weight penalty

Bending Analysis

 Current floor design results in a F.O.S. of 4.96 at worst case

E UNIVERSIT

Validation & Experimentation

- Senior Aerospace Courses require capstone related experimentation
 - Use required experimentation to develop safety documentation for air beam systems
 - Final reports and data will be incorporated into final delivery user guide

Major Validation Areas

- Airbeam Contruction Methods
- Air Beam Burst Test expected failure mode of air beams
- Air Beam Bending Test maximum point and distributed load
- Pressure Lift Test maximum load displaced by an expanding pressurized volume
- Pressure Push Test horizontal displacement of mass and transient pressures

Validation & Experimentation Air Beam Burst Test

Objective:

- Verify strength of beambladder system
- Ensure worker safety

Process:

- Beams with bladders will be inflated until either the bladder or fabric encasing the bladder bursts.
- Will test to ensure beams will not burst at high pressure or through multiple uses.

Validation & Experimentation Air beam Bending Test

Objective:

- Determine accurate buckling resistance of large-diameter, lowpressure for proposed materials and manufacturing techniques
- Test Rig:

Validation & Experimentation Pressure Lift Test

Objective:

 Determine maximum opposing force that air-beams can overcome during deployment

Process:

• With the exterior design on its side, weight is added to upper surface to measure the vertical deployment force at 0.5psig.

Test Rig:

Validation & Experimentation Preliminary Push Test

Objective:

 Determine the maximum weight which can be pushed on rollers during tube expansion

Results:

- 170 lb. weight which could be pushed
- Expansion force = 5.5 lbf
- Force varies on tube contraction method

System Operations and Interfacing

- Engineering Specialty Plans
- Wiring Schematic
- Pneumatic System Diagram
- Control Methods
- Facilities Tour

CDR POC: Josh Pankratz

Josh Pankratz

Home Town:

Hydro, Oklahoma

Major:

Aerospace and Mechanical Engineering

Hobbies:

Reading Trail Riding Video Games

Engineering Specialty Plan

Broad Categories

- Project separated into six broad categories areas for planning
- Broad categories monitored weekly at university level
- Effort to communicate bi-weekly

Design and Manufacturing Specialties

- Seven critical areas identified
- Each will have an appointed Subject Matter Expert (SME)
- SME will monitor all progress in critical area, and will update management regularly
- More Detail in Backup Slides

Basic Wiring Schematic

Pneumatic System Diagram

Control Methods

Current Board:

Raspberry Pi Zero

Alternative Board:

MyRio from National Instruments

Reasons:

Field programmable gate arrays (FPGA)

- Allows for fast I/O response
- Fast prototyping
- Logic control is run on hard circuits
- Industry level control setup that is reprogrammable

Labview:

- Direct interface with FPGA
- Easy to use graphical programing

<u>Facilities Tour</u> Primary Workspace

<u>Facilities Tour</u> Other Workspaces

Primary Workspace

- Eight dedicated computer workstations
- 1800 sq. Ft.

Adjacent Workspaces

- Electronics Maker Space (attached room)
- Plastic/Nylon Additive Manufacturing Room (two floors down)

Administrative Review

- Hazard Matrix
- Risk Management
- FOD Avoidance
- Budgeting Data
- Post-CDR Schedule

CDR POC: Michael Raymer

Michael Raymer

Hometown:

Broken Arrow, Oklahoma

Major:

Aerospace & Mechanical Engineering

Hobbies:

Flying

Hiking

Aircraft Ferry

Auto & Aircraft Maintenance

Competitive Shooting

Hazard Matrix

P= Risk to Personnel		Probability [Pr] Estimations						_
A= RISK to	A= Risk to Assets				Hazard	Hazard		
Severity Classifications		A: Frequent	B: Probable	C: Occasional	D: Remote	E: Improbable	Code	Description
I: Catastrophic							01	Electrocution
						P07	02	Fire
II: Critical						A02, P02, A07	03	C02
III: Moderate							04	Structural Failure
					A04	P04	05	Minor Injury
IV: Negligible				P05, P09	P06, A08	A01, P01, P03	06	Thermal
							07	Compressor Explosion
RAC: 1	Unacce _l tempora	ceptable – All operations shall cease immediately until the hazard is corrected, or until orary controls are in place and permanent controls are in work.08						Pressure Lines
RAC: 2	Undesir tempora	sirable – All operations shall cease immediately until the hazard is corrected or until prary controls are in place and permanent controls are in work.					09	Entering Confined Spaces
RAC: 3	Accepta	Acceptable with controls – Division Chief or equivalent management is authorized to					More De	echnice spaces
RAC: 4-7	Acceptable with controls – Branch Chief or equivalent management is authorized to accept the risk with adequate justification							Slides

JPR 1700 Regulations

Detailed review pending access to checklist provided by NASA contact

- 6.3.4: Warehouse Safety and Health
- 6.7: JSC's Policy for handling Unique Hardware or Materials
- 6.9: Space Systems and Test Safety
- 6.10: Confined Spaces
- 6.11: Pressurized Gas

Regulation	Applicability	Status		
6.1	N/A			
6.2	N/A			
6.3	Applies	Reviewed		
6.4	N/A			
6.5	N/A			
6.6	N/A			
6.7	Applies	Reviewed		
6.8	N/A			
6.9	Applies	Reviewed		
6.1	Applies	Reviewed		
6.11	Applies	Reviewed		
6.12	N/A			
6.13	N/A			

FOD Avoidance

Design Consideration for FOD prevention

- Systems and hardware will be enclosed for the duration of the analogue deployment and retraction.
- Removeable panels will be implemented for ease of access for inspection and cleaning in FOD control areas
- FOD critical areas are sealed off to prevent debris and water from entering and damaging crew-lock
- Open floor scheme prevents FOD entrapment within crew-lock

FOD Area Classification

- FOD Critical Areas: Inflatable air-beams
- FOD Control Areas: Electronics and hardware housed within airlock within removable panels, hardpoints, bulkhead frames
- FOD Awareness Areas: Inner crew lock area, crew-lock walkway

Cost and Schedule Data Itemized Budget for Materials

Fabrics

- Based on cost-per-yard from manufacturer
- Allowance for F.O.S. of 1.5

Structural Hardware

- Cost values sourced from 8020.net
- "Finishing" category includes cost of exterior paneling, floors, etc.

Electronics

 Subject to change in-lieu of contact with National Instruments

Area/Item	Sub	total	Itemized	
Fabrics	\$	950.00		
Bladders			\$ 60.00	
Air beam Walls			\$ 450.00	
Demonstrator Wall Panels			\$ 320.00	
Allotment for Cost Overrun			\$ 120.00	
Structural Hardware (8020.net estimate)	\$	3500.00		
Catwalk Construction			\$ 660.00	
Catwalk Finishing			\$ 100.00	
Dock and Bulkhead Frames			\$ 2000.00	
Dock and Bulkhead Finishing			\$ 300.00	
Allotment for Cost Overrun			\$ 440.00	
Electronics	\$	1050.00		
Control Systems (Raspberry Pi)			\$ 50.00	
Air beam Control Sensors			\$ 315.00	
Pneumatic Systems			\$ 300.00	
Crewed Volume Sensors & Lighting			\$ 250.00	
Allotment for Cost Overrun			\$ 135.00	
Total	\$ 5500.00			

Cost and Schedule Data Overall Budget

JSC Delivery Estimate

- 550-mi. U-Haul rental (one way)
- Two vehicles for student and faculty travel
- Two nights in Houston/JSC area
- Current estimate for unallotted budget
 - \$<u>1800.00</u>
 - Used for large unexpected cost overruns
 - Development of extra functions, tools, and features

Area/Item	Subtotal		Itemized	
Demonstration Article	\$	5500.00		
Fabrics			\$ 950.00	
Structural Hardware			\$ 3500.00	
Electronics			\$ 1050.00	
JSC Delivery Estimate	\$	2700.00		
Vehicle Rental (U-Haul Est.)			\$ 293.00	
Gas (1 vehicle at 12-mpg, 2 at 18-mpg)			\$ 535.00	
Lodging			\$ 1400.00	
Allotment for Cost Overrun			\$ 472.00	
Estimated Remaining Budget	\$ 1	10000.00		
Unallotted Budget	\$ 1800.00			

Post-CDR Schedule Timeline

Task 5

- Final Engineering Model Construction
- Task 6
 - Testing, Technology Maturation and Implementation
- Task 7
 - Documentation Development, Validation, Delivery

Post-CDR Schedule Outreach

Potential Outreach

- Stillwater Public Schools
- Public Schools in surrounding counties

Outreach topics

- Perspective as STEM students
- Use of inflatable structures
- Future of inflatables in
- Space Applications

Outreach Tools

- VR models
- Scale Models
- Inflatables

Review & Questions

- Administrative Overview
 - CDR POC: Justin Duewall

Analog System Design Solution

CDR POC: Austin Bennett

Research and Development

CDR POC: Madison Whiteley

System Operations and Interfacing

CDR POC: Josh Pankratz

Administrative Review

CDR POC: Michael Raymer

Backup Slides

Critical Design Review

Airbeam Expansion Forces

Maximum Expansion Forces

- 9 Airbeams
- Area of 28 sq. in.
- Peak Force 127-lbf
- With intended method of airbeam contraction, nearly peak force should be maintained throughout inflation

Engineering Specialty Plan (1/5)

Structural Engineering

- 8020 reduces need for specialty skills
- Manufacturing for custom hinges and non-critical components

Mechanical Systems Integration

- Winches tested for maximum performance under expected power
- Manufacture supports accordingly

Pneumatics Systems

- Air beam strength validated through testing
- Pneumatics all off the shelf, manufacturer specs used

Engineering Specialty Plan (2/5)

Software Development Plan

- Software will be written in language compatible with Raspberry Pi or NI controllers
- Parallel development of documentation

Electronic System Integration Plan

- Space will be reserved solely for electronics
- Clean, neat, and labelled organization of wires
- Parallel development of documentation

Engineering Specialty Plan (3/5)

Safety and Risk Assessment Plan

- Proper prior safety mitigation procedures
- Designate someone as safety coordinator for build and testing processes

Interface Management

- Ensure communication between sub-teams
- Easily available, detailed documentation and design before building begins
- Proper testing and quality checks

Engineering Specialty Plan (4/5)

Quality Assurance Plan

- Enact review procedures before any permanent fixtures are created
- Rigorous testing process prior to delivery

Documentation Development Plan

- Task one person with documentation of all major team tasks and schedule progress
- Require periodic written sub-team reports

Engineering Specialty Plan (5/5)

Project Schedule

- Tentative schedule established at CDR
- Revised bi-weekly
- Regular communication with NASA contact

Project Budget

- Expected spending established at CDR
- Updated with purchases
- Regular communication with NASA contact and university

Test and Evaluation

- Individual systems tested and validated seperately for loads & performance
- System evaluation in weeks prior to delivery

Hazard Summary (1/5)

Hazard	Cause	Effect	Category		Mitigations	
Description	Cuuse	Lincer	Personnel	Assets	initigations	
01 Electrocution	1. Exposed wires 2. Improper electrical setup	 Damage to electrical components Injury to personnel 	4E	4E	 Careful attention during soldering, wiring, assembling. Inspection of electrical & wiring systems by one of the team's systems engineer. 	
02 Fire	1. Electrical components malfunction or complete failure resulting in overheating and catching fire.	 Injury or death to personnel. Damage to or loss of analog 	ЗE	ЗE	 Students, OSU & NASA personnel assess equipment prior to testing for fire mitigation. Manual temp monitoring. There will be temperature sensors in the analog. These are monitored in real-time by the operator. Circuit breakers installed appropriately. Operator has direct control to cut power immediately. Sensors installed for smoke. Fire extinguishers on standby for immediate use 	

Hazard Summary (2/5)

Hazard Description	Cause	Effect	Category		Mitigations
			Personnel	Assets	
03 CO2	1. Too many personnel in the analog for too long	1. Headaches, dizziness, mental underperformance	4E	NA	 CO2 sensor installed and routinely checked Analog is properly ventilated, naturally, by having the dock portion open to ambient air
04 Structural Failure	 Damage during deployment Loss of beam pressure 8020 beam failure 	 Damage to equipment/structure Entrapment Collapse causing injury 	3E	3D	 Quality control throughout construction Routine inspections Redundant structures Pneumatic system continuously monitored by team's systems engineer via user interface Emergency egress effective and briefed to personnel

Hazard Summary (3/5)

Hazard Description	Cause	Effect	Category		Mitigations
			Personnel	Assets	
05 Minor Injuries	1. Sharp edges Trip hazards	 Fillet or cover all sharp edges Ensure power cords or analog components are not posing a risk to tripping personnel 	4C	NA	 Quality control throughout construction Routine inspections Redundant pressure lines/components
06 Thermal	 Demonstration moved outside Facility's AC not functioning Lack of hydration 	 Dehydration Heat stress Heat exhaustion Heat stroke 	4D	NA	 Utilize facility cooling equipment Limited time outdoors Ensure personnel's hydration

Hazard Summary (4/5)

Hazard Description	Cause	Effect	Category		Mitigations
			Personnel	Assets	
07 Compressor Explosion	1. Exceeding allowable pressure limits of the tanks.	 High-speed blasts of air. Shrapnel and debris flung outward 	1E	2E	 Monitoring pressure gauges, while staying well below tanks pressure limits. Routine inspections Redundant pressure lines/components. This complies JPR 1700 6.11 Pressurized Gas and Liquid Systems
08 Pneumatic System Lines	 Exceeding allowable pressure limits of pneumatic lines. Hole puncture or tear. 	1. Medium-speed blasts of air.	NA	4D	 Redundant pressure lines/components Routine inspections This complies JPR 1700 6.11 Pressurized Gas and Liquid Systems

Hazard Summary (5/5)

Hazard Description	Cause	Effect	Category		Mitigations
			Personnel	Assets	
09 Entering Confined spaces.	 Low ceiling. Minimum walking space. 	 Minor body impact Tripping, falling 	4C	NA	 Entry procedure. Padding on exposed hard surfaces. This complies JPR 1700 6.10 Entering Confined Spaces and Controlled Areas

STARGATE Design Solution Analog Floor Design

