```
ANCE OF PEANUTS TO THE TOBACCO THRIPS.
```


FRANKLINIELLA FUSCA (HINDS)

By
SHARON CLAIRENE YOUNG H
Bachelor of Science
Bethany Nazarene College
Bethany, Ok1ahoma 1964
Master of Science Oklahoma State University Stillwater, Oklahoma 1965

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
May, 1.969

FIELD AND LABORATORY TESTS FOR GENETIC RESISTANE OF PEANUTS TO THE TOBACCO THRIPS, FRANKLINIELLA FUSCA (HINDS)

Thesis Approved:

725152

ACKNOWLEDGMENTS

I want to thank the members of my committee, Drs. R. R. Walton, Ralph S. Matlock, W. A. Drew and Jerry H. Young for reading this thesis and making a number of helpful suggestions.

I wish to thank Dr. Matlock for arranging the planting and cultivation of the peanuts in the field plots and providing the seed for plants used in laboratory tests.

Special thanks is due my adviser Dr. Walton for his guidance throughout my research and preparation of this thesis.
I. also want to thank Mr. Richard Kinzer who developed the techniques used in rearing the thrips.

Financial support was provided by the Argricultural Research Service, United States Department of Agriculture through Grant No. 12-14-100-8046 (33).

TABLE OF CONTENTS

Section Page
I. FIELD TESTS 1
Introduction 2
Review of Literature 4
Methods and Materials. 13
The Damage Rating Scale 1.9
Single-1eaf Method 23
Selection of Samples 24
Variation Among Technicians' Ratings 24
1966 Multiple-1eaf Method 24
1967 Multiple-1eaf Method 25
Late Season Seedling Evaluation 25
Check Variety Evaluation for Comparing Damage Level Among Experiments 26
Results and Discussion 27
Damage Evaluations of Check Plots 32
Damage Evaluations of Balanced Lattice Experi- ments 1966 32
Late Season Experiments, 1966 39
Damage Evaluations, 1967 40
Summary 49
II. LABORATORY TES'S 51
Introduction 52
Review of Literature 54
Methods and Materials 59
Ancibiosis-Tolerance Tests 60
Preference Tests 62
Difficulcies 65
Results and Discussion 67
Polerance 70
Preference 70
Summary 74
Sections PageLITERATURE CITED . 75
APPENDIX 80

LIS' OF TABLES

Tab1e

Page

1. Mean number of thrips per foliar bud from peanut entries, Experiment 4, 1966. : 81
2. P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 1,1966 . 82
3. P.I. numbers of peanut entries with significantly different ($p \leq .05$) thrips populations, Experiment 2, 1966. . . 83
4. P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 3, 1966. . . 84
5. P.I. numbers of peanut entries with significantly different (p 5.05) thrips populations, Experiment 5, 1966. . . 85
6. P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 6, 1966. . . 86
7. P.I. numbers of peanut entries with significantly different ($p \leq .05$) thrips populations, Experiment 7, 1966. . . 87
8. P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 8, 1966.. . 88
9. P.I. numbers of peanut entries with significantly different ($p \leq .05$) thrips populations, Experiment 9, 1966. . . 89
10. P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 10, 1966 . . 90
11. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 1, 1966. 91
12. Mean leaf damage ratings of peanut entries by two
evaluation methods, Experiment 2, 196692
13. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 3, 1966.93
14. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 4, 1966. 94
15. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 5, 1966. 95
16. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 6, 1966 96
17. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 7, 1966 97
18. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 8, 1966 98
19. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 9, 1966 99
20. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 10, 1966 100
21. Mean number of thrips per bud in ten experiments, 1966 29
22. Analysis of variance of larval populations on "Krinkle" leaf spreader rows, 1967. 30
23. Mean single-leaf damage ratings of top 10 peanut entries in each of ten experiments, 1966 34
24. Mean multiple-leaf damage ratings of top ten peanut entries in each of ten experiments, 1966 36
25. Mean leaf damage ratings of top ten peanut entries in three late season experiments, 1966 41
26. Mean leaf damage ratings of peanut entries in late season Experiment A, 1966 101
27. Mean leaf damage ratings of peanut entries in late season Experiment B, 1966 102
28. Mean leaf damage ratings of peanut entries in late season Experiment C, 1966 103
29. Mean single-1eaf damage ratings of top ten peanut entries in each of ten experiments, 1967. 44
30. Mean multiple-leaf ratings of top ten peanut entries in each of ten experiments, 1967 46
31. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 1, 1967 104
32. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 2, 1967 105
33. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 3, 1967 106
34. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 4, 1967 107
35. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 5, 1967 108
36. Mean leaf damage raiings of peanut entries by two evaluation methods, Experiment 6, 1967 109
37. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 7, 1967 110
38. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 8, 1967 111
39. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 9, 1967 112
40. Mean leaf damage ratings of peanut entries by two evaluation methods, Experiment 10, 1967 113
41. Mean number of surviving thrips and mean leaf damage rating of entries in antibiosis and tolerance test. 68
42. Mean number of thrips recovered from peanut entries in Preference Experiment 1 72
43. Mean number of thrips recovered from peanut entries in Preference Experiment 2 73

LIST OF FIGURES

Figure Page

1. Relative position of ten experiments in 1966. 15
2. Relative position of ten experiments in 1967. Detail within one experiment shown positions of eight replications. 15
3. The battery of ninety-eight l-gal Berlese funnels for extracting thrips from peanut foliage 17
4. Leaf damage rating, No. 1 19
5. Leaf damage rating, No. 2 20
6. Leaf damage rating, No. 3 20
7. Leaf damage rating, No. 4 21
8. Leaf damage rating, No. 5 21
9. Leaf damage rating, No. 6 22
10. Leaf damage rating, No. 7 22
11. Leaf damage rating, No. 8 23
12. Average daily number of thrips per foliar bud, 1966 and 1967. 31
13. Dialysis tubing cage for confining thrips on peanut 1eaflets 61
14. Aspirator, powered by electric Hudson duster, for transferring thrips larvae to testing cages 63
15. Rotating cage used in comparing thrips preference for peanut entries 64

FIELD TESTS

INTRODUCTITON

The tobacco thrips, Frankliniella fusca (Hinds), is a pest on seedling peanut plants throughout the peanut growing areas of the United States. Immature thrips rasp through the epidermis of young foliar buds causing the resulting open leaflets to be smaller, dis* torted, and scarred on the upper surface, thus reducing the photosynthetic area. Thrips may also feed in peanut flowers or on open leaves, but the major damage results from their injury of foliar buds. When large numbers of thrips are present, leaf buds may be totally destroyed and seedling plants may be severely stunted. It is not clear at the present time to what extent thrips damage directly reduces the fruit or hay yield. However, it is probable that thrips damage retards development, delaying maturation; and decreases vigor, making plants more vulnerable to disease and other hazards.

Thrips can be controlled with insecticides, but because of the high cost and the growing concern about the continued use of large amounts of toxic chemicals there has been increasing interest in developing alternate methods for protecting crops from insect damage. One such method is the use of plant strains which have genetic resistance against an insect pest species. Genetic resistance is a heritable capacity to escape or to withstand insect damage to a greater degree than other strains of the same species. It is an ideal method of crop protection because it is inexpensive,
requires no additional time or effort, and is relatively permanent.
The process of developing resistant crop varieties requires a long period of time, The first step in developing peanut vari. eties resistant to thrips is to locate germ plasm with such resistance.

Though thrips are not the most important insect pests attacking peanuts, with the rapidly increasing world population, high food value crops such as peanuts may be called upon to produce ever higher and more consistent yields. Each contribution that results in higher yield will be helpful.

The purposes of these studies were to develop techniques for screening peanuts for thrips resistance and to identify germ plasm resistant to thrips.

REVIEW OF LITERATURE

This review of the literature indicated that the first report of thrips damage to peanuts in the United States was published by the Florida Agricultural Experiment Station in 1922 (Watson 1922). Although the damage had been observed before, it was not until a widespread outbreak in the spring of 1919 that thrips were identified as the causal agent. In this early paper, leaf damage was described and some severe stunting of the seedling plants was reported. Apparently, no further studies were reported until the late 1930's.

Farmers recognized the injury and called it "possum ear" referring to the shape of damaged leaves (Wilson and Arant 1949), or more commonly, "pouts" because the young plants refused to grow until they began to bloom (Poos 1941).

In 1938 at a conference attended by agronomists, entomologists, and plant pathologists of the United States Department of Agriculture, it was reported that "pouts" occurred throughout the peanut growing areas of the Southeast, but there was disagreement as to the cause of the condition. Some thought it was a nutrient deficiency or a virus disease. The following year, controlled experiments in which thrips were caged on peanut plants proved that thrips were responsible for the injury known as "pouts" (Shear and Miller 1941).

The term "pouts" is no longer used because it has been mistakenly applied to leafhopper damage which superficially resembles
that done by thrips (Shear and Miller 1941).
Thrips collected from injured peanuts in Georgia, Virginia, North Carolina, and South Carolina were identified as Franklinielia fusca (Hinds). Adults of F. tritici (Fitch) were also collected in two localities, but later studies in which immature thrips were collected and reared to adults showed that E. fusca reproduces on peanut leaf buds but F. tritici does not (Poos et al. 1947). E. fusca is also the predominant species attacking peanuts in Alabama (Eden and Brogden 1960) and Texas (Harding 1959).

Adult female tobacco thrips hibernate during the colder parts of the winter, and begin to reproduce early in the spring. The population builds up on weeds, other crops, and early volunteer peanuts (when present); and migrates to the crop seedlings soon after the leaves emerge (Arant 1951, Poos et al. 1947). Eggs are inserted into the tissue of the very young foliar buds. Larvae emerge 4 to 7 days later and feed in the still tightiy folded bud, rasping the epidermis and sucking up the exuding sap. The larvae are thigmotropic and always feed inside a folded leaflet, the result being that damage is confined to the upper surface of opened leaflets (Poos 1945).

The most severe damage is done early in the season during the seedling stage. Injury is evident to some extent every year (Eden and Brogden 1960), but varies from only slight scarring and puckering of the leaves to aborted leaves that shrivel and die, turning black as if they had been burned (Poos 1945). Most investigators report severe stunting of seedling peanuts when thrips infestations are high, but there is disagreement as to the long term effect. As the
plants become older, usually after blooming begins, thrips damage becomes less acute and plants may recover. However, Poos and Dobbins (1951) found differences in plant size between controls and plants protected with insecticides until the middle of August. When grown on poor soil, unprotected plants had a significantly lower green weight at harvest than insecticide treated plants (Poos et a1. 1947).

Numerous studies have been done in which different levels of thrips populations have been established by use of insecticides in order to assess the effect of thrips injury on yield. Results have been inconsistent and contradictory. Eden and Brogden (1960) found a highly significant increase in pod yield of 191 pounds per acre during a four-year study using a systemic insecticide, phorate. However, some evidence indicates that yield was decreased where thrips were controlled with insecticides (Arant and Arthur 1954, Leuck et al. 1967). The latter group of workers attributed larger yields where thrips damage occurred to the fact that worms avoided leaves that were damaged by thrips. Phytotoxicity of some insecticides to peanut plants could also affect results (Howe and Miller 1954).

Leuck et al. (1967) reported that Almeida and Arruda (1962. Bragantia 21 (39): 679-87) found an average yield increase of 45% on plots where thrips were controlled and Poos et al. (1947) found yield increases up to 36% where thrips were controlled with DDT. His data were based on total green weight of the plant and pods because peanuts do not mature at the latitude of Beltsville, Maryland, where the experiments were conducted.

Hyche and Mount (1958) found pod yield increases ranging from

204 to $617 \mathrm{lb} /$ acre when thrips were controlled by use of systemic insecticides.

Poos et al. (1947) found that thrips control increased peanut yields on low fertility soil but not on high fertility soil.

Wilson and Arant (1949) reported that pod yield increases varied from nothing to 92 1b/acre.

The following publications indicated that no consistent significant increases in yield resulted from thrips control: Arant 1954, 1950; Arthur and Arant 1954; King et al. 1961; and Harding 1959).

There are apparently many variables which influence such experiments. Application of insecticides after damage becomes apparent may not increase yield (Eden and Brogden 1960). The variety of peanuts used, and its interaction with thrips and with other insect species may also affect the relationship between thrips population, thrips damage, and yield (Leuck et al. 1967).

Under natural conditions where no insecticide is used, sozl fertility, rainfall, and other weather conditions as well as infestation level affect the amount of thrips injury and the extent to which a plant can recover and yield normally (Arant 1941, Poos et al. 1947).

The use of insect resistant crops is not a new concept in pest control. Hessian fly resistant wheat was reported as early as 1792 and by 1931 there were insect resistant varieties of over 100 different crops (Sne11ing 1941).

The use of resistant varieties is an ideal method of protecting crops from insect damage (Beck 1965). After a resistant variety has
been tested and developed, there is little expense or effort required of the individual grower (Packard and Martin 1952). Resistance is usually specific for one species of insect so that it does not interfere with biological controls of other species. In addition, it is relatively permanent compared with most other control measures. Resistance is particularly valuable in countries where farmers do not have the skill or capital to use insecticides. It can also be valuable in protecting that part of a crop that is often sacrificed before chemical control becomes economically feasible (Painter 1951).

Resistance might indeed be the panacea of insect control if a high level of resistance were available for most crops. However, complete immunity of a plant variety for an insect pest is rare. There have been some spectacular successes in which resistance alone is a highly effective means of insect control. Among these are phyloxera resistant grapes , Hessian fly resistant wheat and greenbug resistant barley. Resistant varieties of a large number of crops are known, but their degree of effectiveness varies from near immunity to only a low level of resistance. Varieties having a low level of resistance provide some crop pretection alone and may also be used as a part of an integrated control program.

Resistance has been variously defined. Snelling (1941) used the term to refer to "those characteristics which enable a plant to avoid, tolerate, or recover from attacks of insects under conditions that would cause greater injury to other plants of the same species." Painter (1951) defined resistance as "the relative amount of heritable qualities possessed by the plant which influence the ultimate degree of damage done by the insects." Beck (1965) approached the
concept form an ecological rather than an economic point of view. He defined resistance as "the collective heritable characterisitcs by which a plant species, race, . . . may reduce the probability of successful utilization of that plant as a host by an insect species . . ." The empirical working definition to be used in this thesis is that given by Painter (1958). "Plants that are inherently less damaged or less infested than others under comparable environmental conditions in the field have been called resistant."

Many factors affect the interaction between a plant and an insect pest species, and thus affect the degree of resistance or susceptibility. Several reviewers have attempted to classify these factors (Mumford 1931, Snelling1941). The most useful classification is that made by Painter (1951) in which he separated three basic categories--antibiosis, non-preference, and tolerance. Antibiosis includes those characteristics of the plant which adversely affect the biology of the insect. Non-preference factors are those which cause the insect not to be attracted to the plant initially or not to remain on the plant and utilize it as a host. Tolerance includes factors by which the plant can withstand an insect infestation without suffering severe damage.

Resistance and the categories of resistance are relative terms and can be defined only by comparison of a variety with other more susceptible varieties of the same species (Painter 1951).

There are two general methods of evaluating resistance among varieties of a crop. One is some type of measurement of damage caused by the insect and the other is a measurement of the numbers of the insect present on different plant varieties.

Light damage in field experiments is characteristic of all three types of resistance. Lower population levels indicate either nonpreference or antibiosis. If both damage and population can be accurately measured, tolerance may be distinguished from antibiosis and non-preference in the field (Painter 1951).

Because of the small size and thigmotrophic nature of many thrips species, measurement of population is difficult. Most workers have collected standard samples of plant material in the field and transported them to a laboratory for counting. Thrips must be extracted from the plant sample and debris, and must be concentrated into a small area for magnification and and counting. Two basic methods of extraction have been employed. Thrips have been washed out of plant crevices with a liquid or forced to crawl out by use of irritating stimuli such as heat, desication, or chemicals.

LePelley (1942) was able to remove thrips from glossy coffee leaves by simply dipping them in ethanol, but Howe and Miller (1954) found it necessary to unfold each leaflet of peanut buds and wash them several times.

Evans (1933) developed a method for driving thrips out of roses by use of turpentine, which was lethal, but acted slowly enough to allow thrips to crawl out of roses and toward a light. Lewis (1960) found a similar technique using turpentine as an agitant to be 85% efficient for extracting adults, but only 67% of the larvae and 19% of pupae were recovered.

Taylor and Smith (1955) compared the number of thrips extracted from rose samples by two methods. They washed samples with detergent
water and used turpencine to drive thrips from comparable samples. There was no significant difference between the two methods.

Bondy (1940) used direct sunlight on black cloth at a heat source in a modified Berlese funnel for extracting thrips. Hoerner (1947) and Shirck (1948) also used Berlese funnels. The latter author experimented with different temperatures and found that $115^{\circ} \mathrm{F}$ was the optimum temperature for forcing onion thrips out of foliage without killing them too rapidly.

After obtaining thrips in collecting fluid some workers further extracted thrips from debris by adding detergent, which caused thrips to sink below plant material (Lewis 1960); or adding benzene, which caused thrips to float above inorganic debris making use of the affinity of insect cuticle for benzene (Bullock 1963).

Most of the previously mentioned workers filtered the collecting fluid and counted thrips on the filter under a dissecting microscope with the aid of some type of grid.

Several investigators have measured thrips population on peanuts by counting the number in 10 or 20 terminal buds.

Insect damage to crop plants is usually measured in terms of field reduction. However, in studies of varietal resistance, yield is not a valid measure of insect damage because yield is highly variable among varieties.

In testing thrips resistance among cotton varieties, Ballard (1951) rated damage to leaves of individual cotton plancs by use of a 10 -point scale.

Leuck et a1. (1967) measured thrips damage among peanut varieties
by estimating the percentage of leaves showing signs of thrips feeding.

Matlock (1966) scanned plots containing approximately 40 peanut plants each and rated each plot on a 10 -point scale for thrips damage. Few reports concerning peanut resistance to thrips have been published. Campbell and Emory (1966) began tests for peanut resistance to thrips in North Carolina in 1960. They found one peanut line with a low level òr resistance but did not identify it.

Leuck et al. (1967) found differential thrips feeding on 14 peanut lines in a two-year study at Tifton, Georgia. Starr, Argentine, and NC-2 were found to be less preferred than other entries in the test.

The Catalogue of Seed of the Southern Regional Plant Introduction Station (Langford et al. 1968) lists thrips injury ratings for 332 peanut entries. Entries were rated from 1-4 on the basis of two replications of an experiment, but the method of evaluating damage was not given.

MATERTALS AND METHODS

The peanut entries tested included 872 accessions from the Oklahoma Agricultural Experiment Station collection of peanut germ plasm. This is about 25 to 30% of the world collection of peanut germ plasm. Most entries had been obtained through the United States Department of Agriculture, Agricultural Research Service, New Crops Branch, Southern Regional Plant Introduction Station, Experiment, Georgia. Among these were 14 varieties, 20 selections, two mutants, 11 experimental lines, and 825 plant introductions. Spanish, Valencia, Virginia Bunch, and Runner peanut types were represented. All were of the same species, Arachis hypogaea L. Entries not having commercial variety names will be identified in this paper by plant introduction numbers (P.I.) and Oklahoma peanut numbers ($\mathrm{P}-\mathrm{No}$.). In a few cases the $P . I$. number is not unique to one entry because two or more Oklahoma $\mathrm{P}-\mathrm{No}{ }^{\text {T}} \mathrm{s}$ have been assigned to variants of the same Plant Introduction.

In field experiments, the test insects were natural infestations of thrips which migrated to the peanuts from surrounding crops and weeds, After collecting large numbers of these and examining them in the laboratory it was estimated that usually over 95% were the tobacco thrips, Frankliniella fusca (Hinds).

Field experiments were conducted at the Oklahoma Agricultural Research Station, Perkins, Oklahoma, during the summers of 1966 and
1967. Each year plots occupied eleven acres which was divided into ten sections to form ten separate experiments. Although the ten experiments each year were conducted identically as to procdeure, several factors necessitated their not being grouped into one large experiment. First, the evaluation of all experimental units would require a period of time too long to assume uniform plant maturity, weather conditions, and thrips infestations. Second, soil differences were suspected and soil fertility has influenced thrips damage to peanuts in previous experiments (Poos et al.1947). Third, the different crops which surrounded the experimental area and the prevailing southerly wind could cause marked differential dispersion of thrips over the eleven acre planting.

Each of the ten experiments included a different set of 48 entries and a common commercial check variety, Starr, making a total of 481 entries per year. Ninety entries from the 1966 tests were chosen for re-evaluation along with 391 new entries in 1967.

In 1966 the ten experiments were planted at two locations in the field separated by about 500 feet. The experiments were all contiguous in 1967. The relative positions of the experiments for both years are shown in Figs. 1 and 2.

The statistical design of each experiment was a 7×7 balanced lattice with eight replications. Each replication included one plot of each of 49 varieties. A plot consisted of one row 15 feet long containing approximately 40 plants. Plots were separated by 3-ft alleys along the ends of rows and by a row of "Krinkle" leaf mutant ($\mathrm{P}-151$) between experimental plots. The spreader row was included so that all experimental entries would be between two buffer

Fig. 1.--Relative positions of ten experiments in 1966.

1		2	3	4
5	I	V	7	
	II	VI		
	III	VII		
	IV	VIII		
8		9	10	

Fig. 2.--Relative position of ten experiments in 1967. Detail within one experiment shows positions of eight replications.
rows which would tend to have a uniform thrips population. Because of its unique appearance, "Krinkle" leaf served as a phenotypic marker so that there was less danger of sampling from the wrong row. In 1966, thrips population samples were taken from each of 3920 experimental plots. Samples from four replications of each of the 49 varieties in an experiment were collected and processed in one day.

A sample of 20 foliar buds from each plot was collected in a half-pint ice cream carton and transported to the laboratory. Each sample was heated for one hour in a l-gal Berlese funnel with a 60-watt light bulb to drive thrips into an attached test tube containing 60\% alcohol (Fig. 3) . The buds and the inside of the funnel were then washed with a fine spray of water to carry adhering thrips into the alcohol.

The alcohol solution was filtered to concentrate the thrips in one plane for counting with a binocular dissecting microscope. The upper portion of the alcohol was first decanted into a filter paper-lined funnel. Then a saturated NaCl solution was added to the test tube causing thrips to float and sand and heavier debris to sink. The upper portion containing thrips was again decanted into the filter paper funnel. A grid was placed over the filter paper for counting thrips under the microscope and a thumb punch tally counter was used to facilitate accurate counting,

In 1967, thrips population was not measured on experimental entries, but samples were taken from the "Krinkle" leaf spreader row in order to evaluate day to day population changes and infestation differences over the field.

Fig. 3.-- The battery of ninety-eight 1-gal Berlese funnels for extracting thrips from peanut foliage.

A stratified random sampling method was used to obtain an unbiased estimate of the population of thrips each day. Samples were taken from the nine experiments which occupied a rectangular area, while the remaining experiment was excluded because it bordered the others on only one side and was not considered typical (Fig. 2). There were 72 lattice designs in the area from which samples were taken. Thirty-six of these were sampled per day, those in the east half (replications 1-4) or the west half (replications 5-8)
of each experiment on alternate days (Fig. 2).
One sample consisted of 28 foliar buds from 105-feet of "Krinkle" leaf running the length of a lattice. Four buds were collected from each of the seven plot-sized row segments,

The selection of a row within each lattice to sample each day was made by a random method without replacement. In this way, each "Krinkle" leaf row was sampled once in 14 sampling days. IBM cards bearing row identification numbers and nine-digit random numbers were randomized rapidly by use of a card sorter. The lattice and row numbers to be sampled each day were printed directly from the cards to gum-backed labels which were then affixed to collecting containers.

In 1967, buds were collected in $45-$ dram plastic vials. The centers of the vial lids were cut out and replaced with fine meshed cloth to prevent moisture from condensing and drowning the thrips. Vials were transported to the laboratory immediately after the buds were collected and thrips were extracted by use of Berlese funnels. The procdeure was similar to that previously described for 1966. However, after the buds had been emptied into a funnel the same vial in which the buds had been stored was filled with 60% alcohol and used to collect thrips at the bottom of the Berlese funne1. There were two advantages of this procedure over the previous method. Thrips adherring to the vial when the foliage was removed were not lost, and the collection vial label remained with the sample to avoid recopying error.

Differential counts of larvae and adults were made for each sample.

The Damage Rating Scale

Damage was evaluated by rating leaves on an eight-point scale where " 1 " was no thrips damage and " 8 " was complete destruction of the leaf. Figs. 4 through 11 show peanut leaves which illustrate each category of the scale used in 1966. The colored picture scale helped to increase consistency among the ratings of several technicians. Studies on judgment scales have shown that 7 or 8 is the maximum number of categories that most individuals can reliably and efficiently discriminate (Bruner 1959, Miller 1956). The 8-point scale included the category "no damage" and 7 degrees of damage.

Fig. 4--Leaf damage rating, No. 1.

Fig. 5--Leaf damage rating, No. 2.

Fig. 6--Leaf damage rating, No. 3.

Fig. 7--Leaf damage rating, No. 4.

Fig. 8--Leaf damage rating, No. 5.

Fig. 9--Leaf damage rating, No. 6.

Fig. 10 --Leaf damage rating, No. 7 .

Fig. 11--Leaf damage rating, No. 8.

The 1966 scale was modified in 1967 to make the intervals along the damage continuum more equivalent. The category " 3 " had included a wide spectrum of damage while 5 and 6 were ambiguous. Therefore, the old categories 5 and 6 were combined and designated " 6 " while 4 and 5 were shifted toward the lighter end of the scale.

Single-1eaf Method

In both years, seedling plants were evaluated by rating the youngest opened leaf of 20 plants per plot. Thumb-punch tally counters were used to cumulate the ratings of the twenty leaves and the total number of damage points for each plot was recorded. This method of evaluation will be referred to as the "single-leaf" method.

Selection of Samples
In 1966 single leaf tests, 20 plants within a plot were selected by taking one step into the row and rating leaves on the next 20 consecutive plants. In all subsequent tests plants were selected by the use of plot-1ength ropes having the desired number of uniformly spaced knots. The ropes were stretched along the crowns of the plants and the plant closest to each knot was selected. This provided objective plant selection and better representation of the whole plot.

Variation Among Technicians' Ratings

In 1966, five technicians evaluated rows composed of a set of seven plots, but no record was made of which technician rated each row. Any variation among the ratings of different technicians was thus confounded with row effect and was only partially removed by the statistical design. In 1967, eight workers were employed, and each rated one replication of each experiment. Variation among raters was thus removed with replication effect.

The increased number of personnel also allowed each experiment to be completed in one day, This reduced variation due to thrips population changes, weather, and other factors which influenced ratings from day to day.

1966 Multiple-leaf Method

By the latter part of July, 1966, the plants were large and the thrips population per foliar bud was lower. Damage was re-evaluated on all plots by rating all the leaves on the central stalk of 10 plants per plot. The total number of damage points and the number of leaves rated were recorded for each plant. This method was
designed to measure the plants' responses over a period of differing thrips population levels. This procedure will be called the "multiple-leaf" method of rating damage.

1967 Multiple-1eaf Method

After analyzing the 1967 single-1eaf data, approximately half of the entries in each experiment were chosen for re-evaluation. About 20 less damaged entries and three or four susceptibles from each experiment were selected. The thrips population had been lower than the previous year, and by late July many of the younger leaves were only slightly damaged. Therefore, a method was devised to measure the plants' response during only the periods of heaviest infestation. The seven youngest leaves on the central stalk were examined and the two most heavily damaged leaves were rated on each of 10 plants per plot.

Late Season Seedling Evaluation

In August, 1966, 78 entries were planted to obtain more data from the seedling stage where thrips damage is normally most severe. The entries were chosen on the basis of the single-1eaf ratings for the 481 entries planted earlier in the season. Sixty-one of them had been lightly damaged, and 17 heavily damaged previously. The commercial check variety, Starr, was also included in each experiment.

Entries were tested in three randomized complete block experiments with 27 entries each. There were eight replications.

In September when the plants were in the five-1eaf stage, the youngest three leaves of ten plants per plot were rated. The total
damage points for each plot was recorded and the average damage rating per leaf was computed.

In 1967 a group of selected entries were again planted for late season evaluation but thrips infestation failed to develop in this test.

Check Variety Evaluation for Comparing Damage Level Among Experiments
Since the ten experiments were rated at different times, infestations, plant age, and weather at the time of rating varied among experiments. In order to obtain a comparison of damage levels among the ten experiments in 1966, all plots of the check variety (Starr) were rated in one day. Ten plants were rated from each of the 80 plots. All the leaves on the central stalk of each plant were examined and the rating for each leaf was recorded. In this way measurements comparable to those from either the single-1eaf or multipleleaf method could be extracted. Therefore, the average damage levels of leaves of corresponding ages could be compared among the ten experiments.

Population data on peanut entries in 1966 were analyzed statistically for each balanced lattice design as described by Cochran and Cox (1957). Adjusted means were then compared using the Duncan's New Multiple Range Test (Duncan 1955).

There were significant differences in numbers of thrips collected from two or more pairs of entries in each experiment. Differences among means were large. In each experiment the highest entry mean was more than twice as large as the lowest entry mean. However, the variances were also large and in most experiments only a moderate number of pairs of entries could be declared significantly different.

For eight of the experiments, coefficients of variation were approximately 20% while the C. V. for Experiment No. 6 was 50% and Experiment No. 4 was 7.4\%.

In Experiment No. 4, seven entries had significantly ($\mathrm{p} \leq .05$) lower populations of thrips than Starr and 12 entries had significantly higher populations than Starr. P.I. 268823 had significantly fewer thrips than 42 other entries.

In each of the other nine experiments, the entry with the lowest thrips population was significantly different ($\mathrm{p} \leq .05$) from 2 to 16 of the more heavily infested entries. None of these entries had significantly fewer thrips than Starr, but 19 had more.

A complete tabulation of the entries in Experiment 4, showing
mean number of thrips per bud and significant difference among entry means, is presented in the appendix (Table 1). Results of each of the other nine experiments are presented by tabulating the entries at the high and low ends of the population range and indicating whether or not a significant difference was found between each pair of entries (Tables 2 to 10). Entries included in the experiment, but not in these tables, are given with the 1966 damage results in the appendix (Tables 11 to 20).

In summary Table 21 the entry in each experiment that had the lowest average thrips population is tabulated and the number of entries with significantly more thrips is shown. The experiment mean, Starr mean, and the highest mean are also given for each experiment.

The number of thrips from Starr was lower than the mean in each experiment.
"Krinkle"leaf, the spreader row, was included as an experimental entry in Experiment No. 1 and its population mean was very similar to that of Starr. They ranked 11th and 12 th (low to high) among the 49 entries in the experiment (Table 2).

In 1967 thrips population counts of stratified random samples from "Krinkle" leaf spreader rows were analyzed to determine time and location effects. Highly significant differences were found among the nine experimental areas sampled. The number of larvae increased significantly from south to north and from east to west across the 3×3 arrangement of nine experiments. The south to north differences may have been caused by the prevailing southerly wind.

Table 21.--Mean number of thrips per bud in ten experiments, 1966.

Exp. No.	Entry having least thrips			$\begin{gathered} \text { Starr } \\ \overline{\mathrm{X}} \\ \hline \end{gathered}$	$\begin{gathered} \text { Exp. } \\ \overline{\mathrm{X}} \\ \hline \end{gathered}$	$\underset{\overline{\mathrm{X}}}{\text { Highest }}$
	P.I. No.	No. entries with more thrips*	$\overline{\mathrm{X}}$			
1	261984	15	1.6	2.0	2.3	3.3
2	NRM 1	9	1.5	2.1	2.3	3.7
3	268832	6	2.8	3.5	4.1	6.0
4	268823	42	3.2	4.8	5.1	7.9
5	268678	14	2.2	3.0	3.6	5.8
6	290581	6	1.6	2.1	2.6	4.1
7	268641	11	1.9	2.4	2.9	4.2
8	259745	4	1.4	2.1	2.3	3.5
9	290599	16	0.9	2.3	2.3	3.7
10	268689	2	1.9	2.4	2.8	3.9

* $\mathrm{p} \leq .05$

Highly significant differences were also found among populations on different days. The analysis of variance is shown in Table 22.

Large population changes over time were found in both 1966 and 1967. The daily average number of thrips per bud for both years is shown in Fig. 12.

Since samples in 1966 were taken only from a portion of one experiment each day, the effects of time and location are confounded. In 1967, data showed that both location and time significantly
influenced numbers of thrips infesting peanut plants in the tests.

Table 22.--Analysis of variance of larval populations on "Krinkle" leaf spreader rows, 1967.

Source	d.f.	M.S.	F
North vs South	2	8848.82	$18.12 \% * *$
East vs West	2	3315.58	$6.99 \% *$
Latitude x Longitude	4	1706.01	3.49%
Error	54	488.47	
Days	13	30114.18	$75.50 \% * *$
Days x Locations	104	660.88	$1.66 \% * *$
Error	351	398.87	

$$
\begin{array}{ll}
* * * & \mathrm{p} \leq .001 \\
* * & \mathrm{p} \leq .01 \\
* & \mathrm{p} \leq .05
\end{array}
$$

This information supported the decision to divide entries into ten experiments, each of which could be planted in a small area and evaluated in a short period of time.

Population counts, averaged over the first 22 sampling days each year, were 1.60 thrips per bud in 1967 compared with 3.03 in 1966. The difference may have been even greater than the data indicated because tighter containers were used for collecting samples in 1967 than in 1966. Several factors may have contributed to this difference. The 1966 average was based on samples from only "Krinkle"

Fig. 12.--Average daily number of thrips per foliar bud, 1966 and 1967.
leaf. As previously mentioned, "Krinkle" leaf had a population mean slightly lower than Starr's in 1966 entry comparisons. "Krink1e" leaf ranked llth and was significantly different ($p \leq .05$) from six of the entries in its experiment (Table 2), indicating a low level of non-preference or antibiosis. This could have biased the 1967 population estimates downward.

Higher rainfall in 1967 may have influenced the thrips popula* tion. From the time of planting through the first 22 sampling days, plots received 8.64 inches of rain in 1967 compared with 3.78 inches in 1966.

Damage Evaluations of Check Plots

Damage ratings, taken on one day from all the 1966 Starr check plots, were analyzed to determine whether there were differences in damage levels in different experiments when time factors were held constant. No significant differences were found among the ten experiments by the single-1eaf or multiple-leaf method of rating. This could be interpreted in two ways. The population dispersion over the field was more homogeneous in 1966 than in 1967, or population differences of the magnitude measured did not produce measurable differences in damage.

Damage Evaluations of Balanced Lattice Experiments 1966

Damage ratings for entries in each balanced lattice experiment in 1966 were analyzed as described by Cochran and Cox (1960) and adjusted means were compared by use of Duncan's New Multiple Range Test.

Significant differences were found among entries in all
experiments by both single-leaf and multiple-leaf methods of evaluation. Starr, the check variety, was among the least damaged in most experiments.

The variance was much greater for multiple-leaf evaluations than for single-leaf tests. Coefficients of variation were two or three times larger in nine of the ten experiments. This indicated that there was more variation among plot averages based on 70 leaves of different ages (in multiple-leaf tests) than among plot averages based on 20 leaves of the same age (in single-1eaf tests). Therefore, the single-leaf evaluations yielded more reliable information and will be given more emphasis in this discussion.

The results from each method of evaluation of all experiments are summarized by tabulating the top ranking ten entries from each experiment. The mean damage rating for each entry and the number of entries significantly more damaged than each of these are given. Each experiment mean, highest mean, Starr mean, and the coefficient of variation are shown for each experiment (Tables 23 and 24).

The reader can determine which were the better entries in separate evaluations of each experiment by referring to the sumary Tables 23 and 24. The following discussion will indicate statistically significant differences and point out briefly the entries which were outstanding in both evaluations.
P.I. 268661 (Experiment 6) was significantly better than Starr in both evaluations. It was significantly better than 32 and 44 other entries in the single-1eaf and multiple-1eaf tests, respectively.
P.I. 290599 and P.I. 158838 ranked first and second, respectively,

Table 23.--Mean single-leaf damage ratings of top 10 peanut entries in each of ten experiments, 1966.

P.I. No.	Rating	No. ent. more damaged*	P.I. No.	Rating	No. ent. more damaged*
Exp. 1: Exp. $\frac{\text { x. }}{2.866 ; ~ H i g h, ~}$3.638; Starr, $\underline{2.715 ; ~ C . V ., ~} 6.1 \%$			Exp. 4: Exp. $\bar{x}, 3.008$; High, 3.711; Starr, 2.712; C.V. 5.7\%		
268769	2.327	33	268729	2.610	20
268723	2.411	22	271022	2.626	19
Strat. Span. ${ }^{\text {a }}$	2.475	18	268654	2.654	19
259771	2.491	17	268737	2.658	19
268738	2.530	15	268823	2.684	19
261927	2.626	10	268704	2.712	13
268706	2.638	10	Starr	2.712	13
259800	2.644	10	268778	2.716	13
268704	2.664	9	268817	2.727	12
OICB 1272	2.670	9	268711	2.764	10
Exp. 2: Exp. 즌 2.779; High, 3.319; Starr, 2.510; C.V., 6.5\%			Exp. 5: Exp. 즈, 2.947; High, 3.556; Starr, 2.568; C. V_{0} 5.4\%		
268764	2.380	21	268678	2.416	33
268600	2.452	12	268699	2.471	33
248762A	2.456	12	247378	2.558	21
268724	2.476	11	Starr	2.568	21
268741	2.484	10	268808	2.590	18
268789	2.500	10	268787	2.612	17
Starr	2.510	10	268773	2.657	14
270804	2.536	10	259671	2.678	12
261985	2.544	10	268742	2.762	10
268801	2.561	9	268739	2.772	10

Exp. 3: Exp. $\overline{\mathrm{x}}, 2.895$; High, 3.517; Starr, 2.646; C.V. 5.6\%

261959	2.364	36	268661	2.384	32
268734	2.532	17	268777	2.501	21
268720	2.542	17	268716	2.613	14
259860	2.566	17	268599	2.621	14
268746	2.592	17	268747	2.621	14
268804	2.626	17	NRM 6	2.685	13
268828	2.646	16	268726	2.696	12
Starr	2.646	16	268636	2.700	12
268791	2.685	13	268791	2.722	12
268691	2.686	13	268794	2.727	12

Table 23. (Continued)

P.I. No.	Rating	No. ent. more damaged*	P.I. No.	Rating	No. ent. more damaged $\%$
Exp. 7: Exp. $\overline{\mathrm{x}}, ~ 2.989$; High, 3.463; Starr, 2.662; C.V., 5.7\%			Exp. 9: Exp. $\overline{\mathbb{X}}, 2.820$, High, 3.456; Starr, 2.386; C.V. 7. 2%		
270857	2.517	25	290599	2.024	42
161300	2.623	18	158838	2.130	39
Starr	2.662	16	299468	2.216	38
268711	2.689	15	Starr	2.386	16
268824	2.744	11	259756	2.894	16
259812	2.746	11	161868	2.460	12
268790	2.749	11	234420	2.474	11
268717	2.758	11	268777	2.525	9
259579	2.764	11	268721	2.590	7
268781	2.768	11	268740	2.593	6

Exp. 8: Exp. X, 3.150; High, 3.822; Starr, 2.878; C.V., 5.9%

259745	2.588	29	268767	2.294	34
259834	2.762	19	268597	2.319	27
P-35-1-1660	2.787	19	Starr	2.388	22
Argentine	2.836	14	268766	2.419	20
268598	2.860	14	268725	2.475	15
268735	2.868	14	268708	2.475	15
268711	2.872	14	299469	2.519	11
Starr	2.878	13	259821	2.538	10
268660	2.896	11	268689	2.550	10
268706	2.900	11	270850	2.600	6

* $\mathrm{p} \leq .05$
${ }^{\text {a }}$ Stratford Spanish

Table 24.--Mean multiple-leaf damage ratings of top ten peanut entries in each of ten experiments, 1966.

P.I. No.	Rating	No. ent. more damaged *	P.I. No.	Rating	No. ent. more damaged*
$\begin{aligned} & \frac{\text { Exp. }}{1}: \quad \text { Exp. } \bar{x}, \frac{2.966}{3.635} ; \text { High, } \\ & \underline{\text { Starr }}, \frac{1.843}{2 .} \text { C.V. } 12.1 \% \end{aligned}$			Exp. 4: Exp. $\overline{\text { x }}, 2.870$; High, 3.038; Starr, 2.766; C.V. 26.0%		
229553	2.684	5	268644	2.552	30
268795	2.688	5	268632	2.631	19
Strat. Span. ${ }^{\text {a }}$	2.714	5	268679	2.660	13
259774	2.722	5	268823	2.675	11
268733	2.753	4	259827	2.706	6
290608	2.768	4	268812	2.724	6
268774	2.774	4	268778	2.749	0
268738	2.786	4	268697	2.754	0
268595	2.836	4	268654	2.762	0
Starr	2.843	4	Starr	2.766	0
			Exp. 5: Exp. 즈, 2.843; High, 3.2.52; Starx, 2.696; C.V., 27.4\%		
270804	2.475	28	162541	2.556	16
248762A	2.560	19	268678	2.587	12
268764	2.571	19	161317	2.667	7
268724	2.581	19	268773	2.688	6
290536	2.583	19	276776	2.689	6
268679	2.604	18	Starr	2.696	5
268741	2.613	18	268728	2.716	4
268805	2.634	17	268818	2.724	3
268807	2.638	17	268787	2.738	3
268789	2.661	14	268694	2.748	3

Exp. 3: Exp. X, 3.038; High, 3.595; Starr, 2.954; C.V., 26.8\%

268791	2.860	3
268701	2.860	3
268703	2.877	3
268746	2.892	3
268691	2.913	3
259860	2.916	3
Dixie Giant	2.918	3
268690	2.919	3
268698	2.924	3
268698	2.937	3

Table 24. (Continued)

P.I. No.	Rating	No. ent. more damaged $\%$	P.I. No	Rating	No. ent. more damaged $\%$
277197	2.537	35	290599	2.377	38
F416-2	2.542	35	158838	2.494	34
259603	2.673	13	268828	2.502	34
290633	2.678	13	268724	2.510	33
270857	2.680	13	299468	2.529	31
268706	2.688	13	234420	2.560	22
Starr	2.701	11	Starr	2.563	21
268616	2.710	10	268637	2.571	20
259579	2.721	10	161868	2.613	12
161300	2.732	10	259756	2.631	10

Exp. 8: Exp $\overline{\mathrm{X}}, 2.844$; High, 3.090; Starr, 2.782; C.V. 21.7\%

229553	2.639	15
268833	2.698	9
259745	2.701	9
268692	2.723	4
268826	2.738	4
268706	2.740	3
268798	2.743	3
268784	2.743	3
268768	2.757	3
Argentine	2.776	2

* $\mathrm{p} \leq .05$
a Stratford Spanish
in Experiment 9 by both methods of evaluation. The former was significantly less damaged than over 79% of the other entries and the latter was significantly better than over 71% of the entries in both tests. In this experiment (No. 9), the top seven entries by the single-1eaf rating method were all among the top ten by the multipleIeaf method.

Analysis of the Multiple-1eaf evaluation of Experiment 6 indicated that four entries (P.I. 290581, P.I. 268621, P.I. 268661, and P.I. 276105) were significantly less damaged than Starr and 41 other entries. It was not that Starr was more heavily damaged in this experiment than it was in other experiments; the variance was smaller and, therefore, smaller differences were significant.
P.I. 299468 had significantly less damage than 38 entries in the single-1eaf rating and less ($p \leq .05$) than 30 entries in multiple1eaf evaluation (Experiment 9).
P.I. 268767 ranked first and second in the two evaluations and was significantly better than 34 and 13 other entries in singleleaf and multiple-1eaf tests (Experiment 10).
P.I. 268678 ranked first and second in its two evaluations. It was significantly less damaged than 33 and 12 entries in its experiment by the single-1eaf and multiple-1eaf methods, respectively (Experiment 5).
P.I. 259745 ranked first and thrid in its evaluations and was significantly better than 29 and 9 other entries in single-leaf and multiple-leaf ratings, respectively (Experiment 8).
P.I. 268777 was significantly less damaged than 21 other entries in both evaluations. It ranked second and fifth in single-leaf and
multiple-1eaf evaluations, respectively (Experiment, 6).
Stratford Spanish ranked third in its experiment (No. 1) by both methods of evaluation. It was significantly better than 18 and 5 other entries, respectively, in the two tests.

The commercial variety, Argentine, ranked fourth and tenth. It was significantly less damaged than 14 entries in the singleleaf evaluation but significantly better than only 2 entries in the multiple-1eaf tests (Experiment 8).

Complete lists of all entries tested in each experiment, with damage ratings by both methods of evaluation, are shown in the appendix (Tables 11 , to 20). All nonsignificant ranges are indicated so that comparisons can be made between all pairs of entries in each experiment. No direct comparisons could be made between entries in different experiments. However, the damage levels of Starr provide an approximate index for comparisons across experiments.

Late Season Experiments, 1966
The results of the 1966 late season experiments tended to confirm the earlier results despite low damage levels. Fifteen of the 17 entries chosen as susceptible checks were significantly more damaged than the best entry in their respective experiments. All of the susceptible checks had mean damage ratings below the grand mean of their experiments.

Significant differences were also declared among some of the better entries chosen for retesting. Three entries P.I. 268711, P.I. 259800 , and P.I. 268794 were significantly less damaged than Starr and ten of the other 23 entries in Experiment A. P.I. 268804
and P.I. 268769 were significantly less damaged ($\mathrm{L} \leq .05$) than over half of the other entries in Experiment B. P.I. 268777 was significatnly better than five entries in Experiment C.

The least damaged ten entries in each of the three experiments are listed together with the mean leaf damage rating and the number of entries significantly more damaged than each of these in Table 25.

A complete tabulation of all entries in each test and the mean damage rating of each is shown in the appendix (Tables 26 to 28). A11 nonsignificant ranges are shown so that comparisons may be made between each pair of entries within each experiment. The late planted experiments occupied less than one acre and were rated by two technicians within 24 hours. The experiment means of the three experiments were similar as were the Starr check means and the ranges. Therefore, least significant difference values were computed to provide comparisons among entries planted in different experiments. The L.S.D. values for comparing entries from each pair of experiments are as follows: Experiments A and $B, 0.2163$; Experiments A and C, 0.2859 ; and Experiments B and $C, 0.2731$. By use of these tests for significance the reader may make any desired comparison between any two entries included in the three experiments.

Damage Evaluations, 1967
In 1967, germination was poor for a few entries in nine of the ten experiments. Twenty-four entries which failed to germinate in three or more of their eight replicates were eliminated from the tests.

Table 25.--Mean leaf damage ratings of top ten peanut entries in three late season experiments, 1966.

P.I. No.	Rating	No. ent. more damaged*	P.I. No.	Rating	No. ent. more damaged*
Exp. A: Exp. X, 1.621; High, 1.934; Starr, 1.661; C.V., 10.3\%			$\begin{aligned} & \text { Exp. C: Exp. } \overline{\mathrm{X}}, \underline{1.356} ; \text { High, } \\ & 1.895 ; \text { Starx }, \underline{1.895} ; \text { C.V. } 16.6 \% \end{aligned}$		
268711	1.439	11	268777	1.356	5
259800	1.454	11	268721	1.433	2
268794	1.452	11	NRM 6	1.483	1
268766	1.480	8	268790	1.484	1
268597	1.496	5	268802	1.486	1
268708	1.507	4	268781	1.487	1
268823	1.521	3	Strat. Span. ${ }^{\text {a }}$	1.491	1
268706	1.526	3	268716	1.526	1
Argentine	1.530	3	268678	1.526	1
270857	1.573	3	268661	1.530	1

Exp. B: Exp. $\overline{\mathrm{X}}, 1.616$; High, 1.829; Starr, 1.521; C.V. 8.9\%

268804	1.424	13
268769	1.429	13
259834	1.498	9
268767	1.511	8
268734	1.516	7
Starr	1.521	7
268741	1.522	7
268711	1.536	7
270857	1.551	5
259771	1.554	5

* $\mathrm{p} \leq .05$
a Stratford Spanish

Since there were missing plots in almost every lattice, all experiments were treated as randomized block designs where each lattice was a block (Fig. 3).

Three entries which germinated in six or seven replicates were included in Experiments 5 and 6. Means within these experiments were compared by $\mathrm{Kramer}^{\text { }}$ s (1956) extension of the multiple range test, which accomodates unequal numbers of replications. In the other eight experiments comparisons among means followed Duncan's (1955) procdeure.

Coefficients of variation were approximately 10% in all 1967 experiments.

Significant differences ($\mathrm{p} \leq .05$) were found among entries in all experiments by both methods of evaluation.

The results of the multiple-leaf ratings substantiated the ranking of entries by the single-1eaf test. In five experiments all of the better entries chosen for re-evaluation were less damaged than all the susceptible entries re-evaluated. In each of the other five experiments only one entry deviated from this pattern.

Five entries ranked best in their experiments by both methods of measuring leaf damage. These were P.I. 268771, P.I. 259594, P.I. 268770, P.I. 280688, and P.I. 306223. P.I. 280688 was the only entry significantly ($p \leq .05$) better than Starr in 1967 experiments. It was significantly less damaged according to both methods of evaluation. It was significantly less damaged than all other entries in its single-leaf experiment and significantly less damaged than 83% of the entries included in its multiple-leaf test. P.I. 268771 was significantly better than 25 and 9 other entries in single-leaf
and multiple-1eaf tests, respectively. (Recall that approximately half of the entries, those previously showing average to heavy damage, were not included in the 1967 multiple-1eaf tests). P.I. 259594 was better ($\mathrm{p} \leq .05$) than 7 entries in its single-leaf test and 13 entries in its multiple-1eaf test. P.I. 268770 was significantly better than 27 and 4 entries in its two evaluations. P.I. 306223 was significantly better than 25 and 9 other entries.

Four additional entries were significantly less damaged than over half of the other entries in their respective single-leaf tests. These were P.I. 268772, Starr, P.I. 311264, and P.I. 299468. The last mentioned entry also ranked second in its multiple-1eaf evaluation.
P.I. 298877 ranked first and seventh and significantly excelled 21 and 1 entries in the two evaluations.

The ten least damaged entries in each of the ten experiments according to both evaluation methods are listed in Tables 29 and 30. The mean damage rating and the number of entries significantly more damaged are shown for each of these entries. The experimental mean, Starr:mean, highest mean, and coefficient of variation for each experiment are also given.

All entries tested in 1967 are listed in the appendix, in numerical order according to P.I. numbers within each experiment. Damage ratings from both evaluations are shown (Tables 31 to 40). All nonsignificant ranges are indicated so that significant differences among entries can be ascertained.

The entries chosen as possible "resistants" in 1966 did not, as a group, have much less damage than other entries in 1967. This

Table 29.--Mean sing1e-1eaf damage ratings of top tne peanut entries in each of ten experiments, 1967.

P.I. No.	No. ent. more Rating damaged. $*$	P.I. No.	Rating	No. ent. more damaged
Exp. 1: Exp. 즈, 2.359; High, 2.831; Starr, 2.275; C.V., 10.3\%		$\begin{aligned} & \frac{\text { Exp }}{2} \cdot \frac{\text { Exp }}{}: \frac{\bar{x}}{2.440} ; \underline{\text { High, }} \\ & \text { 2.781: } \end{aligned}$		
. 268771	1.99425	268772	2.162	25
298843	$2.112 \quad 17$	Starr	2.231	16
NC-5	2.11916	259777	2.238	16
268677	2.13114	268708	2.238	16
162524	2.38 13	290607	2.244	16
259860	$2.150 \quad 13$	Argentine S. ${ }^{\text {a }}$	2.250	16
206228	2.15013	268713	2.269	13
298871	$2.169 \quad 13$	300591	2.288	10
298840	$2.181 \quad 10$	Argentine ${ }^{\text {b }}$	2.294	10
Va56R	$2.200 \quad 9$	Tifton Span. ${ }^{\text {c }}$	2.300	10

Exp. 2: Exp. X, 2.449; High, 2.862; Starr, 2.275; C.Vo 11.9\%

298877	2.075	21
248760	2.150	18
268766	2.181	16
268723	2.188	14
268724	2.231	10
306358	2.244	8
268790	2.262	7
P-761	2.275	7
Starr	2.275	7
268777	2.281	7

Exp. 3: Exp. $\overline{\mathrm{X}}, 2.475$; High, 2.756; Starr, 2.362; C.V., 11.6\%

259594	2.256	7
268721	2.262	7
295983	2.262	7
268804	2.269	6
295989	21269	6
229553	2.275	6
162659	2.306	6
306222	2.319	4
268689	2.325	4
268668	2.338	4

Exp. 5: Exp. 즈, 2.710; High, 3.281; Starr, 2.456: C.Vos 9.7\%

268770	2.806	27
295987	2.450	15
Starr	2.456	15
262076	2.475	14
268794	2.475	14
306224	2.481	1.4
270804	2.488	14
298848	2.519	14
300589	2.538	10
234420	2.575	6

Exp. 6: Exp. X, 2.817; High, 3.281; Starr, 2.806; C.V., 10.6\%

280688	2.056	47
268740	2.488	22
268644	2.519	20
268703	2.531	19
306225	2.538	19
298866	2.550	17
Spanette	2.606	9
306226	2.606	9
295984	2.612	9
259834	2.619	9

Table 29. (Continued)

P.I. No.	Rating	No. ent. more damaged $\%$	PoI. No.	Rating	No. ent. more damaged\%
Exp. 7: Exp. $\overline{\mathrm{X}}, 2.918$; High,			Exp. 9: Exp. ${ }^{\text {X }}$, 2, 552, High,		
3.237; Starr, 2.600; C.V., 8.4\%			2.988; Starr,	2.331;	C.V. $\mathrm{V}_{0} 9.4 \%$
Starr	2.600	25	Argentine $\mathrm{S}^{\text {a }}$	2.269	18
Argentine $\mathrm{S}^{\text {a }}$	2.606	22	268771	2.281	18
T-437	2.612	20	268626	2.294	17
290597	2.681	14	298869	2.300	17
Va 462	2.719	10	Starr	2.331	17
268701	2.769	9	268716	2.338	15
270817	2.775	9	298872	2.356	13
268821	2.775	9	161868	2.362	13
259745	2.781	9	NC-4X	2.369	11
230328	2.788	9	295973	2.375	11
Exp. 8: Exp. $\bar{X}, 2.591$; High,			Exp. 10: Exp. $\overline{\mathrm{X}}, \underline{2.514}$; High		
2.938; Starx,	2.494;	V. 8. 5%	3.081; Starr	2.356; C.V., 10.3\%	
299468	2.262	27	306223	2.156	25
311264	2.294	25	259767	2.250	15
298847	2.325	21	268734	2.352	13
185632	2.344	19	298876	2.352	13
121298	2.375	18	300246	2.352	13
OICB-1271	2.381	18	290599	2.306	12
298863	2.388	18	295986	2.344	11
280689	2.394	18	Spanette	2.350	11
261970	2.425	17	Starr	2.356	11
259728	2.431	17	268654	2.375	9

[^0]Table 30.--Mean multiple-1eafa ratings of top ten peanat entries in each of ten experiments, 1967.

P.I. No.	Rating	No. ent. more damaged $\%$ b	E.I. No.	Rating	No. ent more damaged $\%$
Exp. 1: Exp. X, 2.448; High, 2.788; Starr, 2.419; C.V., 10.6\%					
268771	2.169	9	268711	2.438	6
259860	2.206	7	268708	2.456	6
300244	2.281	4	Starr	2.462	6
Va56R	2.306	3	121070-1	2.481	6
306228	2.312	3	Argentine ${ }^{\text {c }}$	2.491	5
298840	2.325	2	268768	2.531	5
268769	2.356	2	268713	2.531	5
162524	2.381	2	268661	2.544	5
290606	2.400	1	268701	2.562	4
268677	2.412	1	121070-3	2.594	4
Exp. 2: Exp. $\overline{\mathrm{X}}, 2.582$; High,			Exp. 5: Exp. X ${ }^{\text {x }}$ 2.656; High,		
3.088; Star	2.431;	V. 10.9\%	3.150 Sta	$\underline{2.550}$;	C.V. ${ }^{8.8 \%}$
268777	2.281	8	268770	2.444	4
268823	2.375	5	268830	2.519	3
268766	2.400	5	259662	2.538	3
268723	2.431	2	306224	2.538	3
Starr	2.431	2	Starr	2.550	3
248760	2.456	1	268497	2.556	3
298877	2.469	1	295987	2.562	3
259536	2.475	,	298848	2.562	3
161300	2.512	1	280690	2.575	3
268829	2.531	1	. 268764	2.575	3

Exp. 3: Exp. 즈, 2.697; High, 3.238; Starr, 2.606; C.V. 8.4\%

259594	2.400	13
268678	2.425	10
268706	2.475	7
306222	2.475	7
268721	2.506	5
229553	2.569	3
268804	2.575	3
Florigiant	2.594	3
Starr	2.606	3
268791	2.657	3

Exp. 6: Exp. X, 2.600; High, 3.000; Starr, 2.488; C.Vo 9.8\%

280688	2.194	19
306226	2.319	8
279481	2.319	8
Argentine	2.400	6
298855	2.431	5
Starr	2.488	4
Spanette	2.531	4
268740	2.544	2
298837	2.569	2
270857	2.575	2

Table 30. (Continued)

P.I. No.	Rating	No. ent. more damaged 4 b	P.I. No.	Rating	No. ent. more damaged ${ }^{\%} \mathrm{~b}$
Exp. 7: Exp. $\overline{\text { x }}$, 2.858; High,			Exp. 9: Exp. $\underline{X}, \underline{2.764}$; High,		
3.319; Starr, 2.575; C.V., 9.3\%			3.394; Star	2.581;	C.V. 10.0\%
290597	2.562	11	298872	2.494	6
Starr	2.575	11	298869	2.506	6
Va462	2.631	7	268778	2.531	4
Argentine $\mathrm{S}^{\text {d }}$	2.656	5	OACP58-16	2.556	4
259745	2.675	5	Starr	2.581	4
268721	2.688	5	OICRB	2.612	3
T-437	2.712	5	268771	2.644	3
290599	2.738	5	NC-4X	2.662	3
T-400-1	2.744	5	295973	2.675	3
298852	2.756	5	268716	2.675	3
Exp. 8: Exp. $\overline{\mathrm{X}}, \underline{2.600}$; High,			Exp. 10: Exp. $\overline{\mathrm{X}}, 2.828$; High,		
3.200; Starr,	2.569;	V. 9.0%	3.231; Starr, 2.744; C.V. 6.7%		
298863	2.375	4	306223	2.569	9
299468	2.394	3	298839	2.644	6
185632	2.462	3	259767	2.669	6
162538	2.469	3	295986	2.694	6
121298	2.475	3	Spanette	2.700	6
275497	2.500	3	268734	2.738	5
298847	2.506	1	298846	2.744	5
268725	2.531	1	Starr	2.744	5
OICB-1271	2.538	1	259774	2.775	4
295971	2.550	1	3002.46	2.775	4

* $\mathrm{p} \leq .05$
a The two most heavily damaged leaves per plant were rated.
b Iwenty-four entries per test--four which previously showed high damage and 20 with low damage.
c Mass selection
d Argentine selection
may have resulted from the lower thrips populations and damage levels present in 1967. Most of the re-tested entries were less damaged than they had been the previous year, but other entries were also lightly damaged. Thus, fine discrimination among better entries was not probable. There was a trend, however, for the repeated entries to have less damage than the average for their experiments. Fiftysix were not significantly more damaged than the best entry in each experiment.

The susceptible entries chosen in 1966 were again more heavily damaged in 1967. Some of the susceptible entries which were heavily damaged in five evaluations of three plantings included P.I. 145045, P.I. 155053, P.I. 268633, P.I. 259591, P.I. 268649 , P.I. 221708 , and P.I. 262000.

It appears that there are a few entries which are highly susceptible while the majority are only slightly susceptible. There are approximately 30 entries which give some indication of a low level of resistance. These entries are being re-evaluated under heavy thrips infestations and subjected to breeding experiments before genetic resistance can be established.

Eight hundred seventy-two peanut entries were tested for resistnace to thrips by measuring leaf damage and thrips population.

In 1966,481 entries were tested in ten 7×7 balanced lattice experiments. Thrips populations were measured and leaf damage was evaluated by two methods for each entry. Significant differences ($\mathrm{p} \leq .05$) were found among entries in each experiment. In August, 79 entries from both ends of the damage spectrum were planted and seedling plants were evaluated for leaf damage. These data ranked entries chosen as "resistants" above those chosen as "susceptibles" in most cases.

In 1967, 89 entries were re-evaluated along with 391 new entries. Thrips populations were not measured on experimental entries, but random samples were taken from "Krinkle" leaf spreader rows to gauge thrips population differences at different times and positions. The thrips population was much lower in 1967 than in 1966 . After leaf damage was evaluated once and analyzed, entries from both ends of the damage spectrum were re-evaluated. Significant ($\mathrm{p} \leq .05$) differences in leaf damage among entries were found in all experiments. The better entries re-tested from the 1966 list failed to show outstandingly low damage levels in 1967. Most of the susceptible entries re-tested had consistently heavy damage.

A few entries showed some indication of a low level or resistance.

Among these were P. I. 280688 and P. I. 268661.

LABORATORY TESTS

INTRODUCIION

The results of field experiments reported in Part I of this thesis indicated that there were differences in degree of resistance or susceptibility to thrips among the 872 peanut entries tested. It was desirable, therefore, to further examine the more promising entries under controlled conditions in the laboratory to determine their general mechanisms of resistance--non-preference, antibiosis, or tolerance.

There had been little statistical discrimination among the better entries in each field experiment and little basis of comparison of entries in different field experiments. Therefore, a decision was made to screen several dozen entries in the laboratory rather than to do intensive testing of a few entries.

Antibiosis was measured by confining a known number of thrips larvae on leaves of each peanut entry and counting the number that survived for 1 week.

Tolerance was estimated by rating the amount of damage sustained by leaves to which 30 thrips larvae had been confined for 1 week.

Thrips preference among peanut entries was evaluated by exposing potted plants of several entries to adult female thrips in a circular rotating cage and counting the number of thrips on each plant at the end of the testing period.

Laboratory experiments were not designed to confirm or reject field results. The plant or the insect may behave differently in the environment of the laboratory than it does in the field (Painter 1954). The objective of these preliminary laboratory experiments was to test a number of peanut entries under controlled conditions to detect measurable differences among entries in the effects of preference, antibiosis, and tolerance.

REVIEW OF THE LITERATURE

Each of the general mechanisms of resistance discussed in Part I of this thesis, may operate through morphological, chemical, or physiological characteristics of the plant (Jones et al. 1934). Preference for food or oviposition sites may depend on visual, tactile, gustatory, or olfactory stimuli which attract or repell the insect. Antibiosis may result from physical characteristics of the plant or chemical factors, whether toxins, lack of nutrients, or other necessary behavior stimulants. Tolerance is affected by growth hormones as well as gross morphology and tissue structure of the plant (Block 1941, Painter 1951).

A number of studies have been done on host selection and nutrition of phytophagous insects. Results have indicated that a very complex interaction of factors may influence resistance (Thorsteinson 1960, Beck 1965).

This review of the literature revealed no reports on laboratory studies of thrips resistance in peanuts. However, a number of methods have been developed for determining the basis of resistance in other insect-plant associations. There are also some reports of techniques for manipulating and caging thrips. More resistance experiments have involved aphids than any other insect group. This is probably due to the large number
of species that are economic pests and the relative ease of studying them (Painter 1951).

Antibiosis of small grain seedlings against greenbugs has been measured by confining one adult on each plant and counting the progeny at the end of one week (Dahms et a1. 1955, Chada et a1. 1961). Dahms et al. also recorded the amount of damage to the same plants as a measure of tolerance.

Harvey and Hackerott (1956) caged alfalfa 1eaves with dialysis tubing and inoculated each cage with 20 nymphal or adult aphids. They were able to count the insects through the transparent tubing without removing the cage, thus obtaining several measurements of antibiosis at different times.

Cartier and Painter (1956) caged sorghun leaves in a similar manner and counted the progeny of one aphid as a measure of antibiosis.

Poos and Smith (1931) measured leafhopper development on different varieties of host plants by inoculating each plant with first instar nymphs. The number maturing and rate of maturation were recorded.

Klement and Randolph (1960) inoculated alfalfa seedlings with one apterous aphid per plant. At three-day intervals, they counted the number of aphids on randomly selected leaflets as a measure of antibiosis. Tolerance was measured on the same plants by rating entire plants on a 9 -point damage scale where nine indicated death of the plant. Significant differences were found among damage levels of several varieties by this method.

Chada et al. (1961) tested tolerance of small grains to greenbugs, Sprouted seeds of several varieties, including resistant and susceptible checks, were planted in a flat, caged in transparent cellulose nitrate plastic. Each plant was inoculated with five greenbugs and evluated 10 to 14 days later. Ratings were on a scale or zero to five, based on the percentage of leaf area damaged.

Ivanoff (1945) compared seedling cucurbits for tolerance by inoculating them with equal numbers of aphids. Susceptible entries showed a marked curling of the leaves while resistant ones did not.

Dahms et al. (1955) tested greenbug preference of small grains by releasing nymphs in the center of caged 6 -inch pots containing single plants of eight different varieties. The number of greenbugs on each plant was counted for four consecutive days. The same plants were later rated for tolerance on a fivepoint scale.

Poos and Smith (1931) tested leafhopper preference for legume varieties by exposing adults to two potted plants of each of two entries in a glass cage. Adults were allowed to oviposit from 1 to 5 days, then were killed by fumigation. The nymphs were counted and removed as they hatched.

Cartier and Painter (1956) measured preference of the corn leaf aphid for different sorphum entries by exposing insect-free plants in an infested greenhouse. Every two or three days the adult aphids on each plant were counted and removed.

The specific methods to be used in determining which type
of resistance a plant possesses depend upon the insect and the level of resistance (Painter 1951).

Because of their small size, thigmotrophic nature, and the difficulty of handling them, thrips require special methods for 1aboratory testing (Bryan and Smith 1956). In order to be thripstight, a cage should have no openings larger than 0.0025 inch, but ventilation must be provided to prevent condensation of moisture (Sakimura 1961, Munger 1942). Bailey (1931) tested transparent, permeable cellulose films for this purpose. He reported that cages of this material were very satisfactory for providing humidity and temperature similar to those outside the cage.

George (1961) caged thrips on whole potted plants by use of polyethylene bags which were ventilated by forced air. The air outlets were covered with fine cloth and pressure was maintained at a level sufficient to keep the bags inflated. A number of other cages have been designed but are not suitable for use on intact leaves on a plant.

The most often used technique for manipulating thrips has been to pick them up individually with a small moistened brush (Bailey 1933, Samuel et al. 1930, Bryan and Smith 1956) or to brush groups of anesthetized thrips off leaves with a powdered brush (Munger 1942). George (1961) transferred thrips from one cage to another with an aspirator.

As an adjunct to another study, Wardle (1927) measured thrips infestations on uncaged cotton plants of five varieties. They found differences in degree of susceptibility among the varieties, but did not attempt to discriminate between preference and antibiosis
effects. Wardle and Simpson (1927) studied feeding lesions in detail and concluded that the thickness of the epidermis would affect the degree of injury to the plant. They did not test varietal reactions to damage.

Callan (1943) conducted laboratory tests to measure antibiosis and preference of thrips on field-resistant cacao plants. He confined 50 to 100 thrips on an isolated cocao leaf and counted the number alive after three, five, and seven days. He was apparently able to observe thrips on the large flat leaves without disturbing them. He tested preference in two ways. Larvae were exposed to 4.8 cm leaf discs of two varieties arranged in a 4×4 alternating pattern. In the second test 500 larvae were placed on an uncaged plant and the number remaining there were counted at 24 hour intervals.

METHODS AND MATERIALS

Fifty-nine peanut entries which appeared resistant in field experiments were tested in the laboratory in an attempt to determine the general mechanisms of resistance. Eight highly susceptible entries as well as Starr variety were included as controls.

Peanut seeds were treated with Arasan seed protectant to inhibit mold growth. To facilitate germination, seeds were placed between layers of moist paper toweling on a piece of Seran plastic food wrap and rolled into a cylinder. The plastic prevented evaporation and adhered to itself keeping the cylinder intact. The temperature was maintained at $80^{\circ} \mathrm{F}$. After 2 or 3 days when the seeds had radicles approximately 1 inch long, they were ready for transplanting to 4 -inch plastic pots filled with a 50-50 mixture of peat moss and perlite. Each pot was saturated with a nutrient solution containing 3 oz of Peter's 20-20-20 fertilizer in 20 gallons of water. Subsequently, 6 oz of the same nutrient solution was added to each pot at weekly intervals. Plants were maintained in a greenhouse and watered daily until they were ready to be used in resistance tests.

The thrips used in resistance tests were Frankliniella fusca reared in the laboratory as described by Kinzer (1968).

All experiments were conducted in a room where light and temperature were controlled. Temperature was maintained at $80 \pm 2^{\circ} \mathrm{F}$.

Daylight flourescent bulbs provided 2000 foot-candles of light for 12 consecutive hours of each 24 hour period.

Antibiosis-Tolerance Tests

Sixty-one peanut entries were compared in an experiment designed to measure antibiosis and tolerance. Thirty thrips larvae were caged on a leaf of each peanut entry for 7 days. The number of thrips surviving was recorded as an index of antibiosis and the damage to the leaf was rated as a measure of tolerance. The statistical design was a randomized complete block where one set of 61 entries tested at the same time was one block. There were seven blocks.

The fifth or sixth leaf on each plant was used for testing soon after it was completely unfolded. Two of the four leaflets on a leaf were removed to facilitate caging.

The cage was a 5 -inch segment of dialysis tubing sealed at both ends with Scotch brand filament tape (Fig. 13). The dialysis tubing was 0.00010 inches thick and had a flat width of 1.73 inches. Cages were constructed in the following manner. A small ring of strip caulking compound was molded around the petiole about $\frac{1}{2}$ inch below the axial leaflet then the dialysis tubing was placed over the leaf and gently pressed against the caulking compound. A small incision was made into the tubing and caulking compound and the tubing was folded over the depth of the cut. A similar fold was made at the other end of the cage after thrips were introduced into it. In this way the adhesive surface of the tape was not exposed to the interior of the cage and

Fig. 13.-Dialysis tubing cage for confining thrips on peanut leaflets.
thrips did not become trapped in it.
Larvae were used for infesting caged leaves 8 days after oviposition (2 or 3 days after hatching). The leaves on which they were feeding were shaken over a smooth black surface. Larvae were then counted and transferred to test cages in groups of ten by use of an aspirator operated by a slight vacuum. The aspirator hose was attached to a piece of copper tubing $\frac{1}{4}$-inch in diameter, the end of which was covered with a piece of hard finish, 100 mesh fabric. This small rigid aspirator tip could be manipulated accurately to pick up one larva at a time. The electric motor of the vacuum apparatus (Fig. 14) could be turned off and on with a foot switch so that the operator had both hands free to manipulate the aspirator tip and the caged peanut leaves. The larvae were held on the fabric by the vacuum until the tip was inserted into the leaf cage, then the vacuum was turned off and the tube gently tapped to dislodge larvae from the fabric.

After 7 days, each cage was cut open and the number of live thrips were counted by removing each one with a fine sable brush. Both surfaces of both leaflets were rated for damage on an 8 -point scale where the absence of feeding marks was " 1 " and scarring of the entire surface was "8." Two judges made independent ratings of the four surfaces and the average of the eight ratings was treated as a unit observation.

Preference Tests

In order to test preference among peanut entries, potted plants were exposed to adult female thrips in a cylindrical rotating cage
(Fig. 15) and the number of thrips on each entry at the end of the testing period were counted. The rotating cage was designed to equalize light intensity and direction and cancel any other biasing factors.

Fig 14.-Aspirator, powered by electric Hudson duster, for transferring thrips larvae to testing cages.

The cage was 36 inches in diameter and 14 inches high. The bottom of the cage was of masonite, the walls were of transparent cellulose nitrate plastic, and the top was glass. The walls were
supported by two circular metal rims at the top and bottom. The glass top was removable and was sealed to the top metal rim with strip caulking compound during testing.

Fig. 15. -Rotating cage used in comparing thrips preference for peanut entries.

The cage was continuously ventilated by a squirrel cage fan which forced air through a 2 -inch pipe in the center of the cage floor. The air outlets were 16 cloth-covered holes evenly spaced around the top of the cage walls. The cage was mounted on a turntable which rotated at $1 / 8 \mathrm{rpm}$.

Plants were tested when they were about 3 weeks old and in the five-leaf stage of growth. An attempt was made to select plants of uniform size for each replication (block) of the experiment. One plant of each of 16 entries was tested in the cage at the same time. They were arranged in a circle so that all were equidistant from the center and from the adjacent plants. Relative positions of the entries were randomized for each replication of the experiment.

Four hundred adult female thrips were released from a petri dish on a platform in the center of the cage (Fig. 15). The lid was then sealed in place and the cage was allowed to rotate for 2 days. The lid was then removed and each plant was cut off at the crown and placed in a 1-gal Berlese funnel. The methods of extracting and counting the thrips were the same as described earlier in Part I.

Two preference experiments were conducted using these methods. In the first experiment four entries which were susceptible in field experiments were placed at 90 -degree intervals in the circular cage. The other 12 entries were randomized among them for each of six replications of the experiment.

In the second experiment two entries which were preferred in the first preference experiment were included as susceptible checks and placed opposite each other (180 degrees) in the cage. The Starr variety and four other entries were also repeated.

Difficulties

It was necessary to test plants that were healthy, uniform, insect free, and insecticide-free. Peanut plants were usually easy
to raise, but occasionally all the foliar buds would turn brown and die. Other workers in a separate greenhouse had peanut plants with similar symptoms. The pH of the water supply did not vary with the condition and the difficulty could not be attributed to any variation in procedure. Plants were also sensitive to lack of light and became etiolated during periods of cloudy weather. They would not tolerate shading and, therefore, could not be caged to screen out insect pests.

It was necessary to raise three or four times as many plants as were tested to insure having one satisfactory plant of each entry for a complete block. All plants that were visibly aberrant were discarded.

Plants in the greenhouse became infested with leaf-rolling pyralid caterpillars, two-spotted spider mites, and aphids at various times during the tests. When infestations occurred it was necessary to discard all plants and fumigate the greenhouse.

It was also difficult to keep the greenhouse and the testing room free from insecticides when experiments involving insecticides were carried on nearby. At one time the entire thrips culture was killed in one day. Eggs within the plant tissue were not harmed and the culture was re-established.

Finally, it was difficult to plan thrips rearing efforts so that adequate numbers of larvae of the proper age were available when each set of plants was ready for testing.

RESULIS AND DESCUSSION

Analysis of variance of antibiosis tests indicated that there were highly significant differences among blocks despite attempts to maintain uniform environmental conditions and test procedures.

The average number of thrips surviving on different entries ranged from 5 to 19 , but the coefficient of variation was 58% and only a few entries were significantly different.

Seven of the eight entries which had been susceptible in field tests, supported no more thrips than entries which appeared better in the field. Two consistent field-susceptible entries P.I. 268649 and P.I. 221708 had significantly fewer surviving larvae than P.I. 268654 and P.I. 268661 which had appeared resistant in the field. There was a significantly higher thrips survival on P.I. 268661 than on sixteen other entries. Its field resistance probably did not result from antibiosis.

Argentine had significantly fewer thrips than five entries. In two of the seven replications no thrips survived on Argentine.

Six other entries, P.I. 268706, P.I. 268734, P.I. 268767, P.I. 268768, P.I. 268769, and P.I. 268804 had significantly fewer thrips than P.I. 268654, P.I. 268708, and P.I. 268661. The mean number of thrips on each entry and all non-significant ranges are shown in Table 41.

$\begin{gathered} \text { Entry } \\ \text { (P.I. Number) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	\qquad	$\begin{aligned} & \text { Signif. } \\ & \underline{p} \leq .05 \% \end{aligned}$	$\overline{\mathrm{X}}$ Leaf Damage	$\begin{aligned} & \text { Signif. } \\ & \text { p } \leq .05 \% \end{aligned}$
268649	376	5.1	a	2.95	$a b c$
Argentine	2	5.7	$a b$	2.75	$a b c$
268706	400	6.4	$a b c$	2.77	$a b c$
268734	656	6.6	abc	2.61	a
268769	428	6.9	abc	2.64	$a b$
221708	912	6.9	$a b c$	2.82	$a b c$
268767	334	7.4	$a b c$	2.66	$a b c$
268678	610	7.7	$a b c$	2.62	ab
268804	723	8.1	$a b c$	3.02	$a b c$
NRM 6	486	8.9	abcd	2.73	$a b c$
268777	695	8.9	abcd	3.13	$a b c$
268769	685	9.0	abcd	3.20	$a b c$
268598	349	9.3	abcd	2.96	$a b c$
Starr	6	9.7	abcd	2.70	abc
161868	148	9.7	abcd	2.89	$a b c$
268725	648	9.9	abcd	2.75	$a b c$
268726	649	10.1	abcde	2.64	$a b c$
268778	696	10.1	abcde	3.25	$a b c$
268781	712	10.1	abcde	2.73	$a b c$
268746	669	10.3	abcde	3.02	$a b c$
268597	565	10.4	abcde	3.02	$a b c$
262000	810	10.4	abcde	3.04	$a b c$
268741	663	10.7	abcde	2.59	a
268773	691	10.9	abcde	3.12	$a b c$
259834	898	11.0	abcde	2.95	$a b c$
248762A	551	11.1	abcde	2.73	$a b c$
259771	784	11.3	abcde	2.75	abc
268633	844	11.3	abcde	2.89	$a b c$
161300	17	11.4	abcde	2.70	abe
268791	707	11.4	abcde	3.11	$a b c$
259745	779	11.4	abcde	3.17	$a b c$
268716	410	11.7	abcde	2.90	$a b c$
268711	631	11.9	abcde	2.86	abc
299469	967	12.1	abcde	2.71	$a b c$
158838	977	12.1	abcde	3.05	abc
268823	445	12.3	abcde	2.82	$a b c$

Table 41. (Continued)

$\begin{gathered} \text { Entry } \\ \text { (P.I. Number) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	\qquad	$\begin{aligned} & \text { Signif. } \\ & \underline{p} \leq .05 \% \\ & \hline \end{aligned}$	$\overline{\mathrm{X}}$ Leaf Damage	$\begin{aligned} & \text { Signif. } \\ & \underline{p} \leq .05 \% \end{aligned}$
268648	849	12.3	abcde	3.14	$a b c$
145045	979	12.3	abcde	3.14	$a b c$
259800	332	12.4	abcde	2.70	$a b c$
270857	772	12.9	abcde	2.92	$a b c$
268748	672	13.0	abcde	3.00	$a b c$
268787	704	13.0	abcde	3.02	abc
155053	973	13.0	abcde	2.86	abc
Strat. Span. ${ }^{\text {a }}$	11	13.1	abcde	2.98	abc
268708	403	13.1	abcde	2.73	$a b c$
268740	418	13.1	abcde	2.59	a
268711	407	13.3	abcde	2.80	$a b c$
268802	720	13.3	abcde	3.15	$a b c$
234420	40	13.4	abcde	2.82	$a b c$
259860	791	13.6	abcde	3.09	$a b c$
268724	647	13.9	abcde	2.98	$a b c$
290599	949	13.9	abcde	3.30	bc
268790	435	14.1	abcde	2.77	$a b c$
268764	681	14.1	abcde	3.07	$a b c$
268772	688	14.4	bcde	3.18	abc
259753	780	14.6	bcde	2.99	$a b c$
268721	642	15.1	cde	3.08	abc
268729	652	15.4	cde	2.75	$a b c$
268654	379	17.6	de	3.21	abc
268708	629	19.1	e	3.14	abc ,
268661	971	19.1	e	3.32	c

* Means not followed by the same letter are significantly different.
a Stratford Spanish

Tolerance

Analysis of variance of damage rating and comparison of means by Duncan's New Multiple Range Test indicated that there were significant differences among a few entries. P.I. 268740, P.I. 268741, and P.I. 268734 were less damaged that P.I. 290599 and P.I. 268661. However, damage evaluations were not independent of population counts since early death of thrips in a cage would preclude heavy damage to the leaf. Analysis of covariance was not used to adjust for infestation differences because the relationship between the two factors was not linear.

Direct comparisons of damage and population measures for individual entries indicated that three entries--P.I. 268729, P.I. 268740, and P.I. 268790--supported somewhat higher numbers of thrips, yet were less damaged than most other entries. P.I. 268741 had nearly average numbers of thrips but was very lightly damaged.

These data (Table 41) do not warrant any definite conclusions regarding tolerance of the entries.

Preference

Analysis of data from Preference Test I indicated that one entry, P.I. 268777, was significantly ($\mathrm{p} \leq .05$) preferred over all other entries. A field susceptible entry, P.I. 268680 , attracted the second highest number of thrips. Mean numbers of thrips recovered from the other entries were lower and similar to each other. Starr had a slightly higher thrips infestation than 11 of the 15 other entries. The field susceptible entries did not attract more thrips than the entries being tested for resistance.

In the second preference test one entry, P.I. 280688, was significantly less preferred than Starr, P.I. 268777, and P.I. 268611. This entry was the most promising one of the 1967 field tests. Its foliage has a marked purple hue and is more pubescent than most of the other entries tested.
P.I. 290599 had significantly fewer thrips than two entries.
P.I. 268777, which was included as a susceptible check on the basis of the first preference test, was again heavily infested. It differed significantly from the best two entries. Starr had more thrips than the mean number for the experiment.

Mean numbers of thrips recovered from each entry in both preference tests are shown in Tables 42 and 43.

One entry 268661 had significantly more thrips than 13 other entries in Preference Test II; but it had ranked least infested in the previous preference test. It was the most promising entry in 1966 field tests and was well above average in its 1967 field experiment, but was the worst entry in the antibiosis experiment and was also heavily damaged. Any resistance mechanism possessed by this entry was not measured by our testing methods. Further field and laboratory tests of this entry would be of interest.

Table 42. - Mean number of thrips recovered from peanut entries in Preference Experiment 1.

Entry (P.I. Number)	Okla. P-No.	$\overline{\mathrm{X}}$	Signif. $\mathrm{p} \leq .05 \%$
268740	418	10.50	a
268661	971	10.50	a
259745	779	10.83	a
268648	849	10.83	a
155053	973	11.00	a
268633	844	12.00	a
268804	723	12.00	a
Argentine Se1.	74	12.66	a
259594	311	12.66	a
268734	656	12.83	a
268770	686	12.83	a
Starr	6	13.00	a
268772	688	14.00	a
268794	711	15.33	a
268649	676	17.50	a
268777		24.33	b

* Means not followed by the same letter are significantly different.
${ }^{\text {a }}$ Argentine Selection

Table 43. - Mean number of thrips recovered from peanut entries in Preference Experiment 2.

$\begin{gathered} \text { Entry } \\ \text { (P.I. Number) } \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	$\overline{\mathrm{x}}$	$\begin{aligned} & \text { Signif. } \\ & \mathrm{p} \leq .05 \% \end{aligned}$
280688	326	9.67	a
290599	949	11.17	$a b$
268741	663	12.33	$a b c$
268649	376	12.50	$a b c$
Krinkle leaf	151	13.00	abc:
268725	648	13.83	$a b c$
Argentine	2	14.83	$a b c$
268772	688	14.83	abc
259745	779	15.00	$a b c$
268740	418	15.17	$a b c$
OICRB-1271	112	15.17	$a b c$
268678	610	15.67	$a b c$
268729	652	16.50	$a b c$
Starr	6	18.17	bed
268777	695	18.83	cd
268661	971	23.83	d

* Means not followed by the same letter are significantly different.

Fifty-nine entries which appeared resistant in field experiments were tested in the laboratory in experiments designed to detect antibiosis, tolerance or non-preference. Antibiosis and tolerance were measured by confining 30 larvae on a leaf, counting the number of thrips which survived one week, and rating the damage of the leaf.

Preference was measured by exposing 16 entries to adult female thrips in a cylinderical rotating cage and counting the number on each entry at the end of 2 days.

Argentine was the best entry in antibiosis tests. It was significantly different ($\mathrm{p} \leq .05$) from five other entries.

Tolerance tests were inconclusive.
P.I. 280688, which had been outstanding in field tests was significantly ($\mathrm{p} \leq .05$) less preferred than Starr.

LITERATURE CITED

Arant, F. S. 1950. Control of peanut insects. Alabama Agr. Exp. Sta. Annual Report 58/59. 43-44.

Arant, F. S. 1951. Insect pests, p. 230-235. In, The peanut, the unpredictable legume: a symposium. National Fertilizer Association, Washington, D. C.

Arant, F. S. 1954. Control of thrips and leafhoppers on peanuts. J. Econ. Entomo1. 47: 257-263.

Arant, F. S., and B. W. Arthur. 1954. Control of peanut insects. Alabama Agr. Exp. Sta. Annual. Report 62/63. 42.

Arthur, B. W., and F. S. Arant. 1954. Effect of systemic insecticides upon certain peanut insects and upon peanuts. J. Econ. Entomo1. 47: 1111-1114.

Bailey, S. F. 1931. The use of transparent cellulose films in life history studies. J. Econ. Entomol. 24: 898-901.

Bailey, S. F. 1933. The biology of the bean thrips. Hilgardia 7: 467-522.

Ballard, W. W. 1951. Varietal differences in susceptibility to thrips injury in upland cotton. Agron. J. 43: 37-44.

Beck, S. D. 1965. Resistance of plants to insects. Ann. Rev. Entomo1. 10: 207-232.

Bloch, R. 1941. Wound healing in higher plants. Bot. Rev. 7: 110-146.

Bondy, F. F. 1940. Modified Berlese funnel for collecting thrips. U. S. Bur. Entomo1. and Plant Quarantine. ET-157.

Bruner, J.S. 1959. Learning and thinking. Harvard Educ. Rev. 29: 184-192.

Bryan, D. E., and R. F. Smith. 1956. The Frankliniella occidentalis (Pergande) complex in California. Univ. California Pub. Entomol. 10: 359-410.

Bullock, J. A. 1963. Extraction of Thysanoptera from samples of foliage. J. Econ. Entomol. 56: 612-614.

Callan, E. M. 1943. Thrips resistance in cacao. Trop. Agr. 20: 127-135.

Campbell. W. V., and D. A. Emery. 1966. Resistance of peanuts to an insect complex. In Peanut Improvement Working Group, Proc. Fourth National Peanut Research Conference. Tifton, Georgia. 108p.

Cartier, J. J., and R. H. Painter. 1956. Differential reaction of two biotypes of the corn leaf aphid to resistant and susceptible varieties, hybrids and selections of sorghums. J. Econ. Entomol. 49: 498-508.

Chada, H. L., I. M. Atkins, J. H. Gardenhire, and D. E. Weibe1. 1961. Greenbug-resistance studies with small grains. Texas Agr. Exp. Sta. Bull. B-982. 18p.

Cochran, W. G., and Gertrude M. Cox. 1957. Experimental designs. Second ed. John Wiley and Sons, Inc., New York. 611p.

Dahms, R. G., T. H. Johnston, A. M. Schlehuber, and E. A. Wood, Jr. 1955. Reation of small-grain varieties and hybrids to greenbug attack. Oklahoma Agr. Exp. Sta. Tech. Bull. T-55. 61p.

Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11: 1-42.

Eden, W. G., and C. A. Brogden. 1960. Systemic insecticides for thrips control on peanuts. Alabama Agr. Exp. Sta. Progress Report 77. 3p.

Evans, J. W. 1933. A simple method of collecting thrips and other insects from blossom. Bull. Entomol. Res. : 24: 349-350.

George, J. A. 1961. A pneumatic laboratory cage for Thysanoptera. Can. Entomol. 93: 564-565.

Harding, J. A. 1959. Effects of thrips on peanut yields. Texas Agr. Exp. Sta. Progress Report 2116. 4p.

Harvey, T. L., and H. L. Hackerott. 1956. Apparent resistance to the spotted alfalfa aphid selected from seedlings of susceptible alfalfa varieties. J. Econ. Entomol. 49: 289-291.

Hoerner, J. L. 1947. A separator for onion thrips. J Econ. Entomol. 40: 755.

Howe, W. L., and L. I. Miller. 1954. Effects of demeton soil drenches on peanut pests. J. Econ. Entomol. 47: 711-712.

Hyche, L. L., and R. H. Mount. 1958. Control of peanut insects. Alabama Agr. Exp. Sta. Annual Report 66/67. 52.

Ivanoff, S. S. 1945. A seedling method for testing aphid resistance. J. Hered. 36: 357-361.

Jones, H. A. , S. F. Bailey, and S. L. Emsweller. 1934. Thrips resistance in the onion. Hilgardia 8: 215-232.

King, D. R., J. A. Harding, and B. C. Langley. 1961. Peanut insects in Texas. Texas Agr. Exp. Sta. Misc. Pub. 550. 14p.

Kinzer, R. E. 1968. Mass rearing the tobacco thrips, Frankliniella fusca (Hinds), and laboratory techniques for testing peanut resistance to thrips. Unpub. M. S. Thesis. Okla. State Uiniv. 42p.

Klement, W. J., and N. M. Randolph. 1960. The evaluation of resistance of seedling alfalfa varieties and strains to the spotted alfalfa aphid, Therioaphis maculata. J. Econ. Entomol. 53: 667669.

Kramer, C. Y. 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12: 307310.

Langford, W. R., J. H. Massey, W. L. Corley, and G. Sowell. 1968. Catalogue of seed. Section A, Southern Regional Plant Introduction Station. Experiment, Georgia. (Mimeographed)

LePelley, R. H. 1942. A method of sampling thrips populations. Bull. Entomo1. Res. 33: 147-148.

Leuck, D. B., R. O. Hammons, L. W. Morgan, and J. E. Harvey. 1967. Insect preference for peanut varieties. J. Econ. Entomol. 60: 1546-1549.

Lewis, T. 1960. A method for collecting Thysanoptera from Gramineae. Entomologist 93: 27-28.

Matlock, R. S. 1966. A method of evaluating thrips damage to peanuts. Unpublished Report. Department of Agronomy, Oklahoma State Univ.

Miller, G. A. 1956. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review 63: 81-97.

Mumford, E. P. 1931. Studies in certain factors affecting the resistance of plants to insect pests. Science 73: 49-50.

Munger, F. 1942. A method of rearing citrus thrips in the 1aboratory. J. Econ. Entomol. 35: 373-375.

Packard, C. M., and J. H. Martin. 1952. Resistant crops, the ideal way, p. 429-436. In U. S. Dep. Agr. Yearbook. Washington, D. C.

Painter, R. H. 1951. Insect resistance in crop plants. Macmillan Co., New York. 520p.

Painter, R. H. 1954. Some ecological aspects of the resistance of crop plants to insects. J. Econ. Entomo1. 47: 1036-1040.

Painter, R. H. 1958. Resistance of plants to insects. Ann. Rev. Entomo1. 3: 267-290.

Poos, F. W. 1941. On the causes of peanut "pouts." J. Econ. Entomol. 34: 727-728.

Poos, F. W. 1945. Control of tobacco thrips on seedling peanuts. J. Econ. Entomo1. 38: 446-448.

Poos, F. W., and T. N. Dobbins. 1951. Test with benzene hexachloride for the control of insects attacking peanuts 1946-1949. U. S. Dep. Agr. Bur. Entomo1. and Plant Quarantine. E-820. 16p.

Poos, F. W., J. M. Grayson, and E. T. Batten. 1947. Insecticides to control tobacco thrips and potato leafhopper on peanuts. J. Econ. Entomol. 40: 900-905.

Poos, F. W., and F. F. Smith. 1931. A comparison of oviposition and nymphal development of Empoasca fabae (Harris) on different host plants. J. Econ. Entomol. 24: 361-371.

Sakimura, K. 1961. Techniques for handling thrips in transmission experiments with the tomato spotted wilt virus. Plant Dis. Reporter 45: 766-771.

Samuel, G., J. G. Bald, and H. A. Pittman. 1930. Investigations on "spotted wilt" of tomatoes. Commonwealth Australia Council Sci. Ind. Res. Bull. 44. 64p.

Shear, G. M., and L. I. Miller. 1941. Thrips injury of peanut seedlings. Plant Dis. Reporter 25: 470-474.

Shirck, F. H. 1948. Collecting and counting onion thrips from samples of vegetation. J. Econ. Entomol. 41: 121-123.

Snelling, R. O. 1941. Resistance of plants to insect attack. Bot. Rev. 7: 543-586.

Taylor, E. A., and F. F. Smith. 1955. Three methods for extracting thrips and other insects from rose flowers. J. Econ. Entomol. 48: 767-768.

Thorsteinson, A. J. 1960. Host selection in phytophagous insects. Ann. Rev. Entomol. 5: 193-218.

Wardle, R. A. 1927. The biology of Thysanoptera with reference to the cotton plant 1. The relation between degree of infestation and water supplied. Ann. App1. Bio1. 14: 482-500.

Wardle, R. A., and R. Simpson. 1927. The biology of Thysanoptera with reference to the cotton plant 3 . The relation between feeding habits and plant lesions. Ann. App1. Biol. 14: 513-528.

Watson, J. R. 1922. The flower thrips. Florida Agr. Exp. Sta. Bull. 162. 51 p .

Wilson, C., and F. S. Arant. 1949. Control of insects and diseases of peanuts. Alabama Agr. Expt. Sta. Leaflet 27.

APPENDIX

Table 1. - Mean number of thrips per foliar bud
from peanut entries, Experiment 4,
1966.

$\begin{gathered} \text { Entry } \\ (\mathrm{P} .1 . \text { No. }) \\ \hline \end{gathered}$	OkIa. P -No.	Mean Noo Thrips per Bud	Signifieant $\underline{g} \leq .05^{*}$
Starr	6	4.32	fghijk
	761	8.71	defghi
240570	826	6.45	opgrs
248761	550	4.29	bedef
259719	892	4,07	bedef
259774	785	5.53	ijkImn
259778	867	7.04	rs
259800	787	3.83	abed
259827	790	5.36	hijklm
261919	799	6.03	Imnop
261951	517	7.23	ε
262000	810	7.87	t
262013	533	4.07	bedæf
262042	793	6.90	grs
268545	348	4.78	efghij
268611	357	5.29	ghijkl
268616	837	5.70	klmno
268632	843	3.80	abc
268636	366	5.68	kimno
268642	590	4.43	bedefg
268643	847	5.28	ghijkl
268644	372	4.26	bedef
268647	373	6.90	qrs
2686:8	889	8.28	beder
$2686: 9$	376	6.38	mopqr
268654	379	3.78	abe
268673	605	5.33	hijklm
268679	859	5.26	ghije!
268685	618	4.35	bedeft
268703	395	6.82	pgrs
268704	626	5.98	Inno
268708	629	3.88	abed
268711	632	4.34	bedef
268712	409	4.93	fghijk
268714	635	4.26	bedef
268729			
268737	659	4.22	bodef
268743	665	4.82	fghijk
268757	677	4.32	bsdef
268778	696	3.92	abede
268788	878		1 Imo
268806	725	5.63	jklmo
268811	729	4.32	bedef
268812	4.41	4.49	bedefigh
268827	735	4.67	cdeigh
268823	485	3.29	®
268828	450	6.17	mnopq
270791	88.	4.82	fighijk
271022	867	3.62	ab

* Means not followed by the same letter are signifieantly different.

Table 2.-- P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 1, 1966.

High	- Low Population Entries ${ }^{\text {a }}$
Population Entries ${ }^{\text {b }}$	
	 웅 0
268759	
262048	************************
268609	***************
262057	****************
268706	*************
268631	***** $\% * * * * * * *$
221708	$\% \% \% \% \% \% \% \% \%$
268687	** $* * * *$
268633	\% $\%$ \%
261933	** $\% *$
262035	* *
268821	\% \%
262005	$\% \% \%$
268769	\%
268708	*

* Indicates significant difference between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

Table 3.--P.I. numbers of peanut entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 2, 1966 .

High	Low Population Entries ${ }^{\text {a }}$
Population Entries ${ }^{\text {b }}$	
268624	
268654	* * * * * * * $* * * * * * * * *$
268744	***********
290596	* \% \% \% $\%$ \% \% $\%$ \%
268618	*******
262047	\% \% \% \% \% \%
268808	\% \%
268664	\% \%
149634	\%

* Indicates significant difference between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

> Table 4. - - P. I. numbers of entries with significantly different $(p \leq .05)$ thrips populations, Experiment 3,1966 .
HighLow Population Entries ${ }^{\text {a }}$
PopulationEntries ${ }^{\text {b }}$
268691* *268724
Dirty White $\% * \% \% \% \% \%$

* Indicates significant difference between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

```
Table 5.--P.I. numbers of entries with significantly different ( \(\mathrm{p} \leq .05\) ) thrips populations, Experiment 5, 1966.
```

Population Entries ${ }^{\text {b }}$	Low Population Entries ${ }^{\text {a }}$
261997	\% \%
268611	*****************
268728	
268638	* * * * * * * * * $*$
268604	\% \% \% \% \% 家 \% \% \%
162804	* * \% \% \%
271021	$\% \% \%$
268818	$\% * \%$
237507	* \%
262068	*
161312	*
268729	*
259718	*
26862.9	\%

* Indicates significant difference between entries with intersecting lines.
${ }^{2}$ Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

Table 6.--P.I. numbers of entries with significantly different ($\mathrm{p} \leq .05$) thrips population, Experiment 6, 1966.

High	Low Population Entriesa
Population Entries ${ }^{\text {b }}$	
P-970R	* \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%
268822	\% \% \% \% \% \% \% \% \%
268794	\% \% \% \% \%
268751	示\% \% \%
259800A	* * *
268813	*

* Indicates significant difference between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

```
Table 7.--P.I. numbers of entries with
    significantly different
    (p s .05) thrips popu=
        lations, Experiment
        7, 1966.
```

High	Low Population Entries ${ }^{\text {a }}$
Population Entries ${ }^{\text {b }}$	
	人） $\infty \infty \circ \infty$ No
261921	\％\％\％\％\％\％\％\％\％\％\％\％\％\％
268752	
237510	
268637	\％\％豆 \％\％\％\％
262025	＊\％\％光 \％兄
155053	\％\％
261925	＊
270846	\％
268790	\％
268623	$\%$
268711	$\%$

＊Indicates significant difference between entries with intersecting lines．
a．Low population entries increase
in population from left to right．
b High population entries decrease in population from top to bottom．

Table 8.--P.I. numbers of entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 8, 1966.

High	Low Population Entries ${ }^{\text {a }}$
Population Entries ${ }^{\text {b }}$	 N NiN No Ni Mo
P-970F	\% $\%$ \% \% \% \% \% \% \%
268684	* * * * *
240546	* * * * *
261976	* * * * *

* Indicates significant difference between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

Table 9.--P.I. number of entries with significantly different ($p \leq .05$) thrips populations, Experiment 9, 1966.

High	Low Population Entriesa
$\begin{gathered} \text { Population } \\ \text { Entries } \end{gathered}$	
	 人
268598	********************
268695	** $* * * *$
259591	* * * * *
261918	* ****
268822	* * * *
268635	*
268721	*
261949	*
268707	*
248757	*
268625	*
162408	*
299467	*
268620	*
268665	\%
268613	*

* Indicates significant differences between entries with intersecting lines.
a Low population entries increase in population from left to right.
b High population entries decrease in population from top to bottom.

Table 10.--P.I. numbers of entries with significantly different ($\mathrm{p} \leq .05$) thrips populations, Experiment 10, 1966.

$\begin{aligned} & \text { High } \\ & \text { Population } \\ & \text { Entries } \end{aligned}$	Low Population Entries ${ }^{\text {a }}$
268708	********
270857	*******

* Indicates significant differences between entries with intersecting lines.
a Low population entries increase in population from left to right.
${ }^{b}$ High population entries decrease in population from top to bottom.

Table 11．－Mean lest damage rakings ot peanot entries by two evaluation methous，Experiment 1,2966 ．

$\begin{aligned} & \text { Entry } \\ & \text { (P.l. No.) } \end{aligned}$	$\begin{aligned} & \text { Okla. } \\ & \mathrm{P}-\mathrm{No} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \text { Signifo } \\ & 2 \leq .05^{*} \end{aligned}$	Mateiple Lesf	$\begin{aligned} & \text { signiro** } \\ & \underline{y} \leq .05^{*} \end{aligned}$
Starr	6	2.715	abcderghi	2.843	a．b
Brown Sel－2	955	3.016	Tgh i jed	2.344	ab
Krinkle leaf	151	2.737	abodefghij	2.956	abo
016 L 1272	113	2.670	abedeth	2.875	ab
Strat．Spano	11.	2.475	abc	2.714	a
221708	912	3.436	80	3.635	\dagger
248767	554	2.772	bedetghijk	2.987	$a b$
259701	777	2.774	bederghijk	2.986	abe
259767	783	2.826	bederghi ${ }^{\text {b }}$	2.722	＊
259771	788	2． 291	abed	2.888	8．6
259800	332	2.644	abedef	2.889	ab
261927	514	2.626	abcder	2.986	abo
261933	512	2.922	defghijk	2.897	$a b$
261938	513	2.362	ceitghijl	3.011	sbe
261957	809	2.760	boderghi jk	3.126	abede
261984	527	2.687	abodefgh	2.947	abo
262005	535	3.890	姐的	3.396	ef
262035	792	3.004	rghijkl	3.192	abcde
262048	816	3.126	hijklm	3.046	abod
262057	818	3.638	n	2.937	$a b c$
268595	346	2.937	efghijkl	2.836	ab
268609	354	2.737	abederghij	2.895	$a b$
268631	582	3.046	Fghijk3m	3.055	abed
268633	844	3.356	2 mro	30838	def
268689	375	2.016	Dealergio je	3.032	qbed
268663	388	2.976	fghigma	2.988	ctes
268687	863	3.148	ifkim	2.988	abe
268704	399	2.668	abcoerg	3.015	abe
268706	400	2.658	abader	2.911	ab
268706	870	3.350	2180	3.376	cdef
268708	302	3．096	ghi yelm	2.987	abe
268708	404	2.794	beedefghi ik	3.121	cbede
268715	636	2.772	boderghijle	2．858	$a b$
268723	686	2.441	ab	2.684	e
268733	65%	2.777	brierigh i jle	2.753	ab
268738	660	2.530	abede	2.786	88
268747	670	2.824	bedefghijk	3.034	abed
268759	874	50140	ijk3m	2.342	abe
268768	395	30.012	fghi	2.849	ab
268768	929	2.856	coerghijl	2.900	98
268769	428	2.327	a	2.986	386
268774	693	2.75	bedergitigt	2． 78.4	8
268787	4.32	2.944	efghijke？	2.962	abe
268795	4.36	2.812	bedefghijk	2.688	a
268821	443	2.864	cdefgh ijk	2.976	abe
268835	752	2.722	abuctefghi	2.983	abe
270786 A	88.	20898	cdetghijle	2．971	2 ab
270836	768	2.721	aberotghi	2． 3 g 2	86
290603	952	3.164	fle 3 困	2.768	sb

＊Means not followed ty the same leture are significandy different．
a Strasford Spanish

Table 12. - Mean leaf damage ratings of peawat entries by two evaluation methods, Experiment 2,296\%.

$\begin{aligned} & \text { Entry } \\ & \left(P_{+} 1 . \text { No. }\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Okia } \\ & \text { PoNo. } \end{aligned}$	Single Leaf	$\begin{aligned} & \text { sigmif } \\ & 0 \in .02^{*} \end{aligned}$	$\begin{gathered} \text { Multipieg } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \text { Signlí } \\ & \text { } \leqslant=05^{*} \end{aligned}$
Starr	6	2.510	abed	2.690	abede
NRM 1	473	2.772	abederghi	2.767	bodefigh
Spantex	4.	2.720	abedergh	2.711	abedef
149634	974 R	3.316	*	2.993	ghijkimme
152125	390	3.256	jk	3.243	-
237508	45	2.858	bederghij	2.876	coefghi jkha
248758	54.7	2.786	abedefigh	2.982	erghi jklma
248762A	55.	2.456	ab	2.560	ab
248768	555	2.651	abedefg	2.685	abe
259754	898	3.154	hijk	3.171	no
261985	528	2.544	abed	2.753	bedefgh
261994	530	2.588	abederg	2.703	abode
262047	794	2.939	defgh ijk	3.006	hijkImno
268577	344	3.254	Mijk	9.248	meo
268600	566	2.452	ab	2.894	bedefghijkl
268615	571	2.898	bederighij	2.988	fighijklma
268618	572	2.845	bederghif	3.136	maso
268624	575	2.786	aboderghi	3.072	klmmo
268635	365	3.319	k	3.031	i jkimno
268654	854	3.185	ijk	3.052	jklma
268659	857	2.738	abedefgh	2.988	ghijkImno
$26864{ }^{4}$	596	2.845	bederghij	3.122	mino
268679	61.	2.673	abctifg	2.604	abe
268680	383	2.843	Dedefanij	2.923	efghi jkims
268688	387	2.734	abedetgh	2.768	bederghi
268703	62.4	2.565	abeder	2.676	abcde
268724	647	2.476	abe	2.581	
268736	658	3.033	ghijk	2.735	abcdefgh
268741	663	2.484	abed	2.613	
268794	667	2.699	abaderg	2.672	abcde
268748	423	2.875	betorghij	2.930	efghi jkLum
268760	926	3.016	figh If	2.745	sbodergh
268764	681	2.380	a	2.571	
	684	2.680	abcuers	2.733	abcciers
268789	493	2.500	abed	2.661	abede
268792	799	2.572	abeder	2.736	abedergh
268801	722	2.561	abode	2.810	scdefigh ix
268805	724	2.578	abedery	2.634	abed
268807	726	2.626	abcdurg	2.638	abea
263808	727	2.726	aberofgh	2.754	bedeftgh
2688.14.	792	3.035	ghijk	2.803	bederghij
268824	742	2.882	bederfinij	2. 60.7	bederghijk
268827	449	2.928	cderghijk	2.301	dafghi jrim
270773	456	2.849	bederghij	3.077	1mno
270804	462	2.536	abed	2.475	a
270851	771	2.567	abedef	2.686	abede
274203	515	2.826	abederghij	2.993	ghi j jl lmmo
290536	945	2.800	beterghi	2.585	ab ${ }^{\text {b }}$
290596	98	30000	efghju	2.759	Bedefig

* Meane not followed by the sume letter are significanty different.

Table 23. - Mean leaf damage ratings of peame entries by two evaluation methods. Experiment 3. 1966.

$\begin{gathered} \text { Entry } \\ \text { (P.1. No.) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { OkIa. } \\ & \text { P-No. } \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \operatorname{signifo} \\ & \mathrm{D} \leq .05^{*} \end{aligned}$	$\begin{gathered} \text { Wultiple } \\ \text { Leaf } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Signif. } \\ & \text { B } \in 005^{*} \end{aligned}$
Starr	6	2.646	sbc	2.954	ab
Dirty White	29	3.328	$k 1$	3.041	abc
Dixit Giant	964	3.284	jkl	2.918	a
NRM 6	486	3.314	kI	3.089	abe
240578	562	2.816	beedfgh	2.955	ab
247374	823	2.769	bedef	3.595	d
259637	337	2.848	bederghi	2.983	abc
259765	782	2.792	bedergh	3.135	abe
259860	791	2.566	ab	2.916	a
251978	813	3.178	ghijki	30018	$a b c$
261959	812	2.364	a	2.939	a
262065	797	3.033	cdergh ijk	3.279	be
268626	362	3.228	ijkl	30079	abe
268627	578	3.183	hijki	3.141	abe
268690	84.2	30096	efghifl	30104	abc
268637	367	3.086	derghijk	3.029	abc
268639	661	2.792	bedergh	9.282	c
268639	845	3.054	defghijk	3.072	abc
268649	593	2.761	bedef	3.096	abc
268650	850	3.252	jkl.	3.157	$a b c$
268654	594	3.350	kl	3.155	abe
268657	380	3.142	fghijkl	3.069	abc
268657	595	2.792	bedefgh	3.020	abe
268680	384	3.527	- 2	3.086	abe
268690	61.5	2.776	beder	2.98	®
268691	866	2.686°	abed	2.913	2
268698	391	2.742	abedef	2.937	๕
268698	619	2.808	bedergh	2.928	a
268701	396	2.790	bederigh	2.860	a
268703	625	2.731	abede	2.877	3
268707	628	2.787	bedefigh	3.048	abs
268720	641	2.582	$a b$	3.106	abe
268724	411	2.765	bedef	2.965	abe
268734	656	2.532	ab	3.102	abe
268740	497	2.852	bederghi	3.143	abc
268742	420	3.181	Hijox	3.011	abe
268746	669	2.592	ab	2.892	a
268752	871	3.111	Pfofi $\mathrm{j} k$	3.107	abe
268765	682	2.782	bedefg	2.945	a
268772	689	2.743	abedef	2.953	ab
268791	706	2.685	abed	2.860	a
268801	719	2.865	bedefighi	3.070	abc
268804	723	2.626	ab	2.962	abs
268825	743	3.088	deTghijk	2.983	abe
268828	746	2.646	ase	3.044	abe
268832	455	2.858	bedefghi	2.955	ab
268832	728	2.762	bedef	3.1.44	abc
268832	749	2.808	bedergh	2.950	a
270838	464	20982	bedsighij	3.112	abe

* Marns not followed by the sume letrer are signiticantly different.

Table $\mathbf{1 4}$.-Mean leaf damage ratings of peant entries by two valuation methods, Experiment 4, 1966.

$\begin{aligned} & \text { Entry } \\ & \text { (P.1. No.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{0 k l a} \\ & \text { P-No. } \end{aligned}$	Single Leaf	$\begin{aligned} & \text { signifo } \\ & \mathrm{E} \leq .05^{*} \end{aligned}$	Multiple L.eaf	signif. $p \leq .05^{*}$
Starr	6	2.712	$a b c$	2.766	abedef
240570	826	3.317	hijkl	3.038	f
248761	550	2.825	abeder	2.879	bedef
259719	892	3.126	cderghi ${ }^{\text {jom }}$	2.857	boder
259774	785	2.866	abedet	2.837	afcdef
259778	867	2.980	sbederghijk	8.976	ef
259800	787	2.900	abederigh	2.853	bedef
259827	790	2.856	abedef	2.706	abede
261919	799	3.122	cdefghijk	2.977	ef
261951	527	3.308	ghijkI	2.954	cdef
262000	810	3.357	jklm	3.025	f
262013	533	2.983	abedefght jk	2.991	ef
262042	793	3.391	k1m	2.967	def
268545	345	3.229	Fghijkl	2.907	bedef
268611	357	3.315	hijkr	2.775	abedef
268626	837	3.036	abederighijk	2.978	ef
268632	843	3.122	cdefghigk	2.631	ab
268636	366	3.200	fgh ${ }^{\text {j }}$ k	3.036	f
268642	590	3.153	defigh ijk	3.030	f
258643	847	2.966	abcdefghijk	2.929	cdef
268644	372	2.984	abederghi	2.552	a
268647	373	3.378	jklm	2.907	beder
268688	849	3.278	cighijk	3.030	f
268649	376	3.711	m	2.933	ader
268654	379	2.658	ab	2.762	abedef
268673	605	3.228	cedotighije	2.900	bedef
268679	859	2.954	abcderghij	2.660	$a b c$
268697	618	2.804	abedef	2.754	abedef
268701	395	3.950	bederghijk	2.919	beder
268704	626	2.712	ato	2.806	abcder
268708	629	3.617	36	2.942	codet
268711	632	2.764	abeds	2.782	abedef
268712	409	2.920	elverarg	2.980	cdef
268714	635	2.880	abecrig	2.910	boder
268729	652	2.610	2 2	2.792	abcdef
268737	659	2.658	ab	2.796	becdef
258743	665	2.879	abcder	2.773	abeder
258757	677	3.000	abociefghijk	2.815	abesder
268778	696	2.715	abo	S. 719	abedef
268788	878	3.169	erghijk	3.030	f
268806	725	2.946	abedergh	2.872	beder̂
268811	729	2.882	abeder	2.844	abodef
268812	848	2.984	abederghi jk	2.724	abode
268817	739	2.767	abed	8.367	det
268823	485	2.684	2\%	2.679	abed
268898	850	3.060	cderghijk	2.977	ef
270791	868	3.132	cdergh ijk	2.95	Gef
271022	467	2.626	2*	$3_{5} 886$	beder
	761	2.982	abcerfei	\% ${ }^{8} 898$	beser

* Means not followed by the same letter are siguificandly different.

Table 15. - Mean las damage ratings pf peanut ameries by two evaluation methode, Experiment 50 1960.

$\begin{aligned} & \text { Entry } \\ & \left(\mathrm{P}, \mathrm{l}_{\mathrm{o}} \mathrm{No}_{0}\right) \end{aligned}$	$\begin{aligned} & \text { 0\&Ia. } \\ & \text { P-40. } \end{aligned}$	$\begin{array}{r} \text { Sivgle } \\ \hline \end{array}$	$\begin{aligned} & 5 \operatorname{inif} \\ & x \leq 005 \end{aligned}$	$\begin{gathered} \text { Riultiple } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \text { Signifo } \\ & p \in .02^{*} \end{aligned}$
Starr	6	2.568	$a b$	2.696	abede
139918	976	3.185	hijktm	2.885	abcderghi
161312	15	2.774	abedefg	2.761	abedefgh
161327	33.1	2.964	bedergh jik	2.667	abc
162581	154	3.143	ghijkd	2.556	a
126804	978	3.556	${ }^{11}$	3.252	j
237507	43	3.274	jk1m	3.061	hij
247378	557	2.558	90	2.829	abodefghi
248766	553	2.808	abederghi	2.870	bederigh i
259673	338	2.678	abedef	2.863	aboderghi
259718	891	3.270	jklm	2.841	abodefghi
261922	803	2.904	bedefghij	2.816	abedefghi
261950	804	3.052	efghijk	2.791	abcuefghi
262958	520	2.978	cderghijk	2.807	abcdefigh
261997	472	3.256	jkim	3.033	ghij
262068	817	3.500	2 m	3.088	11
268604	568	3.096	ghije	2.982	derghij
268621	356	3.313	kIm	2.971	cderghij
268614	570	2.780	abcdefgh	2.837	abedefigh:
268615	358	3.068	fghijk	2.842	abcdefighi
268617	838	2.910	bedefghijk	2.817	abedefghi
268628	579	3.009	defghijk	2.889	bedefgh:
268628	579	3.009	derghig	2. 389	bederghi
268629	580	3.040	erghijk	3.002	etaticid
268638	588	3.196	i jenm	2.937	edefigh
268685	898	3.056	efighijk	2.835	abedefghi
268675	607	2.996	Bevergh jik	2.820	abedefghi
268678	610	2.416	a ${ }^{\text {a }}$	2.587	ab
268694	869	2.936	bedergh j jk	2.798	abedefig
268699	620	2.478	- ${ }^{\text {a }}$	2.890	bedefgh
268702	622	3.076	60 ff	2.784	sbederghi
26871.3	379	8.312	atym	3.015	Fghij
268786	639	2.876	bodetghij	20, ${ }^{\text {a }}$ \%	abedefgh:
268758	651	2.96	bedefghijle	2.916	abeder
268799	413	2.929	bedefghijk	2.785	akederghi
268739	415	2.772	abcelafy	2.866	bederigh
268782		2.762	abedefg	2.922	cdefgn
258783	666	2.830	bederghijk	2.793	abederghi
268773	691	3.557	uberose	2.688	abed
268776	698	2.998	edetgaj jo	2.762	abedurgh
268787	704	2.812	abed	2.738	aboderg
268790	705	2.782	abedefigh	2.813	abederghi
268795	437	2.881.	bederghij	2.983	cderghi
268802	720	2.789	abederghi	2.983	abedefigh i
268808	439	2.590	abe	2.850	abedergh
268818	482	2.984	edetchi jic	2.724	abcuify
270789	759	2.882	bederghij	2.887	becrergh i
270837	769	2.800	sbederghi	28850	abedefigi
278021	4.66	3.225	jklm	2.979	catgh
276776	75 星	2.938	bedetogh ijik	8.689	aboct

* Means not followe by the same leter are significantly different.

Table 26o - Mean lef damage ratings of panut entries by fwo ovaluation methods, Exper iment 6, 19660

$\begin{aligned} & \text { Entry } \\ & (P .1 \text {. No.) } \end{aligned}$	$\begin{aligned} & \text { Okta. } \\ & \text { Pomo. } \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { Leaf } \end{aligned}$	$\begin{aligned} & \text { signtfo } \\ & \underline{g} \leq .05^{*} \end{aligned}$	MuItiple Leay	$\begin{aligned} & \text { signifo } \\ & g \leqslant .05^{*} \end{aligned}$
NRM 6	186	2.685	aboed	2.856	derghi $j k l$
Ross Select.	323	2.860	bederghi	2.855	defghi ikl
Stamer	6	2.836	bedergh	2.767	derg
+4\% Mmb	970R	9.323	- jkhma	2.989	orghijk
238422	42	3.191	Foni iklm	3.062	jk1
237569	47	3.458	1 Im	2.953	efghijkl
240560	345	2.866	bedefini	2.938	efothijk
259800 A	930	2.854	bodefgh	2.916	erghijkl
259335	899	2.810	abederg	2.787	defghi
261952	518	30.272	hijkim	2.979	erghijkn
262072	500	3.298	ijkIm	3.128	1
268599	351	2.621	abe	2.956	efghijkl
268621	840	3.087	cdefyin ikI	2.480	ab
268636	35%	3.210	ghi jklm	3.029	ghijk
268636	583	2.760	abode	2.891	defgin ${ }^{\text {del }}$
26559	958	3.258	jkima	3.091	kl
268654	377	3.385	klma	3.026	rghijkl
268663	971	2.364	a	2.502	ab
268683	612	3.208	ghijklm	2.907	efghijkl
268685	613	2.826	abcdefgh	2.996	efghijkl
268692	393	2.964	cterohijk	2.978	efghijkI
268693	868	3.115	derghijkrm	2.893	derghijkl
268696	617	2.810	abederg	2.806	defghij
268712	639	2.0772	abedera	2.792	defighi
268716	410	2.6 .93	abo	2.796	defgh
268726	689	2.696	abede	2.760	defg
268745	668	2.776	abedefg	2.842	defghijk
268747	671	2.628	abc	2.781	derigh
268751	674	2.994	Codefitiju	2.894	derghijkI
258758	424	3.027	ctergti ikim	2.8025	defghij
268777	695	2.502	$3{ }^{3}$	2.683	bed
258781	877	3.390	Lisma	3.022	FghijkI
268786	702	2.3090	bederghij	2.909	crighijki.
268789	434	3.054	cdetgh j l In	2.769	defa
268791	707	$2.72{ }^{2}$	abede	20782	cde
268792	708	2,900	bedefghij	2.897	defghijk
268793	710	2.886	bederegij	2.760	def
26879 星	721	2.8787	abcose	28.87	deaghijgr
268796	728	2084	abedef	82.907	erghijkI
268797	725	2.892	bederth	2.745	cde
268806	879	30248	efghtikn	3.051	
268813	880	90734	-1.0	3.218	1
2688.18	736	2.967	abodefa	2.825	defghij
268821	739	3.465		3.047	aijkz
268822	40.4	30.26	cedeghighin	2.928	efon jotel
268890	9,50	2.980	bediefghij		
270773	457	302\%	cdetgin jhime	2.659	dergh igh
276105	923.	2.854	becerigh ifl	20524	abc
290582	ge4 ${ }^{\circ}$	2. 6.98	bedesighi	20.954	a .

* Mean not frollowel by the seme luther are signizicanty different.

Table 170 - Mean leaf dumge ratings of peame ontries by two evaluation mathods, Experiment 7. 1966 .

$\begin{aligned} & \text { Entry } \\ & (\text { P.l. No. }) \end{aligned}$	$\begin{aligned} & \text { Ohe } \\ & \text { P-No. } \end{aligned}$	Single Leaf	$\begin{aligned} & \text { Signif } \\ & Q \leq .0 \mathrm{~F} \end{aligned}$	$\operatorname{matiple}_{\text {Leaf }}$	$\begin{aligned} & 81 g 016_{0} \\ & \underline{g} \leq .05^{*} \end{aligned}$
Dixia spanish	3	2.890	aboderab	3.8111	efgh i
Starr	6	2.662	abe	2.701	sbc
T 206m6-1	176	2.982	bederghith	2.760	abeda
F.116-2	398	3.621	bederighifk	2.542	a ${ }^{\text {a }}$
145045	979	3.381	kI	3.055	ghi
155053	09%	3.463	$\underline{1}$	3.042	ghi
2.61300	17	2.623	86	2.732	sbed
237510	46	3.118	frghijkı	2.905	bedefghi
259579	789	2.768	abcde	2.721	abed
259603	900	2.776	abede	2.673	ab
259812	788	2.746	abcde	2.856	bedefgh
261923	830	3.390	kl	2.905	bedergh i
261925	808	3.309		3.053	ghi
252025	534	3.11 .4	defoni jki	9.009	efgh!
262050	496	3.356	jk1.	2.900	bodefogh
264859	393	2.955	bederghil	2.824	bedefg
268596	347	3.030	bedefighijk	2.817	bedera
268598	350	2.854	abedef	2.931	bedefghi
268623	586	3.324	i jkL	2.926	bedefigh
268616	359	3.054	cdefghijkl	2.710	abcd
268616	361	3.298	hijkl	3.129	i
268623	578	2.918	abedotghi	2.970	derghi
268697	369	30239	fohijkl	3.088	hi
26864	589	2.820	ubedef	2.77	abedef
268658	856	2.884	abodefat	2.840	bedergh
268670	609	3.296	mijled	2.892	bederghi
268688	862	3.278	ghi jkl	2.95 .1	cdefghi
268706	805	2.878	aboderg	2.688	$a b$
268711	632	2.689	abed	2.889	bedefgh
268726	697	2.896	abede	2.881	bederghi
268977	698	2.756	atede	2.933	bedefgh
268789	298	2.823	abodef	2.0004	*edergh
268767	427	2.848	abedef	2.894	bederghi
268752	423	3.378	$k 1$	3.050	ghi
268774	692	2.940	bedefghij	2.779	abede
268783	782	2.0968	abede	2.746	abed
268981	697	3.252	efghijkl	3.034	fghi
268785	701	2.848	sbedet	2.870	bedefgh
258790	435	2.749	abede	2.063	bedergh
268796	71%	2.814	abcde	2.816	bedefs
268816	737	3.058	coerghi JkI	3.091	hi
268824	942	2.784	abede	2.537	2
268826	388	3.166	efghijk.	2.804	bedefg
268834	751	3.160	erghijki	2.889	bedefgh
270786	459	2.993	bedetrgh jle	2.951	cderghi
270830	765	8.990	abcderghi	2.880	bedergni
270846	770	3.006	bederghijt	2.968	sedergh
270357	772	2.587	*	2.680	ab
290633	358	2.924	abederain	2.676	ab

Table 28．－Mean leaf damage ratings of peant entries by two evaluation methods，Experiment 8， 1966.

$\begin{gathered} \text { Entry } \\ \left(P . \text { Po No. }^{2}\right. \end{gathered}$	$\begin{aligned} & \text { OKIs. } \\ & \text { P-No. } \end{aligned}$	$\begin{gathered} \text { Stugye } \\ \text { huaf } \end{gathered}$	$\begin{aligned} & \text { Signio } \\ & \mathrm{E} \text { 弁.05 } \end{aligned}$	Maltiple L世木	$\begin{aligned} & \text { Signif. } \\ & \mathrm{Q} \leqslant .05^{*} \end{aligned}$
Argentine	2	2.836	sbe	2.776	abede
Pearit	12	3.298	codetighi jk	2.832	abodef
Stare	6	20878	sbed	2.782	abedef
NRM 2	474	3.023	abodetgh	2.820	abedef
P－35－1－1660	219	2.787	gh	2.837	abode＊
			Wr		
	970－F．	30286	bedefghijk	2.853	derg
229553	25	2.960	mbodefg	2.639	2
219824	38	3.150	bedergh 1 gk	2.848	abcdef
20.0546	558	30.407	Fghigkl	2.953	edefg
288759	548	30.108	coderghif	2.921	Sederg
259591	774	30258	cdefohijk	2.923	bodefg
259745	779	2.588	a	2.701	$a b$
259775	896	2.994	abedeta	2.732	abedef
259894	898	2.762	ab	2．788	aboder
261953	519	3.483	nijkI	2.987	defy
261974	523	30 ck 2	cuerghijk	2.852	abederg
26.976	525	30590	del	3.090	9
262055	796	30568	kI	3.016	Efr
268592	564	3.342	derghijk	2.837	abeder
268598	349	2.860	abe	2.743	abed
268622	841	3.412	ghijkl	2.828	abcder
268637	368	$3 \cdot 522$	i jkel	2.903	bedefg
268654	376	3.473	highe	2.960	ceterg
268660	708	3.420	ghijkl	2.894	bederg
268660	381.	2.896	nbeder	2.795	abouse
268669	601	3.347	efenijx		Cdety
268672	608	3.160	bederthi ije	2.839	abedef
268634	385	3.821	Doterghi jt	2.800	abcdef
268690	390	3.282	ederighi jer	2.805	abeder
268692	392	2．999	abodefg	2.723	abe
268706	627	2.900	abede	2.740	abed
268781	407	2．872	abe	2.857	abcderg
$268 \% 19$	687	2.981	abodetg	2.826	mbedef
268719	684	3.968	bedefghi	2.848	abodef
268735	657	2.868	abe	8.908	bedefg
268754	676	30822	1.	3.685	$f g$
268760	876	$3 \cdot 946$	efghijk	${ }^{2} .8 .859$	cebefa
268768	335	$5 \cdot 024$	abedergh	2.757	abced
268769	685	2.933	abede	2.828	abecief
268784	700	90．07\％	cederatuijk	8.743	mbed
268810	440	30146	bedefghi jk	2.902	bederg
268826	784	30.500	i jki	20863	abedefg
268823	748	3.086	bedetghif	2.781	abeder
268826	744	2.945	ebocter	2.738	abrs
268833	750	2.925	sbode	2.698	at
26971.0	827	3.072	bedefy ${ }^{\text {a }}$ i	2.887	abodef
270784	458	30804	fghifil	2.857	whederg
271017	76	3．000	sbedorg	2.784	abodef
271018	763	30.184	bedetgen jur	2.895	abodet

＊Means not followed by the sane lethor are significanty differento

Table 19. - Mean Deaf danage ratings of penmitemtries by wo evaluation methods, Experimeat 9, 1966.

$\begin{gathered} \text { Entry } \\ \left(\mathrm{P}, \mathrm{I} . \mathrm{No}_{0}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { Leef } \end{gathered}$	$\begin{aligned} & \text { signifo } \\ & E \leq .05^{*} \end{aligned}$	$\begin{gathered} \text { Hultiple } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \text { Signifo } \\ & \underline{B} \leq .05^{*} \end{aligned}$
Brown Sel.-l	954	3.104	i jkIma	2.907	efghijkl
Starr	6	2.386	abed	2.563	abcdef
158838	977	2.130	ab	2.494	$a b$
161868	148	2.460	abede	2.613	abedefgh
162403	147	2.886	defghijkI	3.029	ghijkl
162408	149	3002.4	ghi jkimm	3.091	k1
234420	40	2.4 .74	abodef	2.560	abede
248757	546	2.933	efghijkl	2.524	abc
$248762 B$	822	3.302	1 mm	2.996	efghijkl
259592	775	3.456	n	2.938	efghijkl
259756	895	2.394	abed	2.631	abcdefghi
261918	798	2.786	defghijle	2.969	kim
261923	801	3.221	ma	2.760	des
261949	805	2.799	defghijkh	2.984	jk1m
268595	345	2.764	defghijk	2.873	hijklm
268598	348	3.256	klm	2.928	efoghikl
268613	569	3.246	jklink	3.811	1
268620	573	2.809	defghijkl	2.891	defghijkl
268625	576	3.146	jklmm	2.909	efghijkl
268626	363	2.916	efghijkl	2.354	a
268635	585	3.050	hijklmn	2.781	derigh
268637	587	2.904	efghijkl	2.825	defghij
268665	597	3.020	ghi jiklma	2.847	derghij
268695	616	2.758	defrgijk	2.805	efghijks
268702	623	2.8874	derghi jet,	2.979	evinn ifix
268707	801	2.891	defghi jkr	2.898	defonijkI
268782	648	2.590	bedergh	2.823	ergh jikha
268724	412	2.745	defghij	2.510	abe
268727	650	2.798	defghijk2	2.883	erghijkIm
268740	418	2.593	bederighi	2.698	abederghi
268759	225	2.864	derigh ijkI	2.856	defghijks
268762	679	8.859	cerghijkl	2.643	sed
2.68763	680	2.879	terghijkr	2.894	dergh ijkt
268771	208	2.814	detohijkI	2.989	efghijkl
268773	690	2.606	cdergh i	2.801	efghijks
268777	430	2.525	bedefg	2.699	bedefigh ile
268782	698	2.928	efghijel	2.859	defghi jpl
268789	773	2.880	deranikl	2.897	derghijks
268799	727	2.776	detehtik	2.843	ghijkIm
268803	781	3.060	hijkam	2.639	a.
268803	722	2.858	defighijkI	2.926	cfghijk
268811	750	2.816	dergh ijkz	2.956	erghijk
268820	738	2.972	fghijicm	2.953	erghijut
268822	740	2.830	derghijkI	2.796	detghi
268825	446	2.745	derghij	2.799	efghijkl
268828	452	2.802	defghi jki	2.502	ab
290599	989	2.028	a	2.377	3
299467	965	2.829	derghighz	2.748	ecte
299468	966	2.216	abc	2.539	abed

* Means not rollowed by the same Letter are sigmificantly different.

Table 20. - Mean leaf damage ratings of peanut ontries by two evalamtion methods, Experiment 10, 1966.

$\begin{aligned} & \text { Entry } \\ & \text { (P.l.No.) } \end{aligned}$	$\begin{aligned} & \text { Okla. } \\ & \text { Pono. } \end{aligned}$	Single Leaf	$\begin{aligned} & \text { Signif } \\ & \underline{p} \leq .05^{*} \\ & \hline \end{aligned}$	Multiple Leaf	Signifo $\underline{L} \leq .05^{*}$
Starr	6	2.388	abe	2.541	a ${ }^{\text {a }}$
NRM-9	475	2.788	defghijkl	2.774	abederghij
NRM -7	487	2.875	fghijkı	2.850	bedefghij
259805	298	2.688	bedefghijk	2.629	abcdef
268730	653	2.688	bederghijk	2.606	abed
234417	1.44	3.056	klm	2.756	abodefghij
234421	13	2.682	bederighijk	2.804	abodefghij
240555	559	2.706	bedefghijk	2.778	abcderghij
259753	780	2.606	abodergh	2.585	abo
259821	688	2.538	abedefo	2.756	abcdefghij
261895	508	3.344	m	3.716	k
261932	509	2.952	hijkz	2.900	fghij
263962	825	2.769	cderghijul	2.730	abedefgh i
261968	521	2.838	erghillet	2.729	abedefghi
262977	526	2.625	abederghij	2.931	ghijk
262049	795	2.850	efghijkz	2.846	bederghij
268573	343	2.762	edefghtikl	2.775	abcderghij
268597	565	2.319	ab	2.630	abedef
268601	352	2.706	bodefghijk	2.814	abcdefghij
268604	835	2.856	efghijkl	2.873	defghij
268633	364	3.012	ijklm	2.609	abed
268644	371	3.125	1 a	2.968	hijk
268651	851	2.982	hijka	3.024	jk
268660	858	2.856	ofghijkd	2.776	abedefghij
268669	602	2.894	tghijk	2.799	abedefghij
268688	388	2.756	edefghijk	2.803	
268689	389	2.550	abederg	2.681	abederg
268692	394	3.019	(${ }^{\mathrm{jkIm}}$	2.982	ijk
268700	621	2.888	Fohijkl	2.866	defghif
268704.	398	2.906	fghijkl	2.865	cdefghil
268708	403	2.475	abc	2.660	abederg
268709	630	2.700	bederigh ijk	2.757	abederghif
268723	645	2.712	cderghijk	2.798	abedefghij
268725	648	2.475	abe	2.789	abedefghij
268729	418	2.712	Gderghijk	2.696	abedeigh
268739	662	2.619	abedefghi	2.611	abede
268789	673	2.800	defghijk1	2.698	abedefgh
268766	683	2.119	abcd	2.690	abedef
268767	334	2.294	a	2.571	
268798	716	2.612	a.bedefgla	2.678	abederg
268815	733	2.850	orghijkl	2.727	abedefghi
270777	762	2.925	ghijkI	3.015	
270789	460	3.125	2*s	2.891	sighij
270804	461	2.682	bedefighijk	2.784	abecergh ij
270815	764	2.988	hijklm	2.809	abedefghij
270850	672	2.600	abodergh	2.882	
29986	967	2.519	abodet	3.579	ab
299472	969	20675	abederghi ${ }^{\text {dex }}$	2.607	2bed
487368	556	20969	hijkd	20888	derghij

* Means not followed by the same letter are significanty different.

Table 26. - Mean leaf damage rating of peanut entries in late season Experiment A, 1966.

$\begin{gathered} \text { Entry } \\ \text { (P.I. Number) } \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	$\overline{\mathrm{x}}$	$\begin{aligned} & \text { Signif. } \\ & p \leq .05 \% \end{aligned}$	Quartile in spring test
Argentine	2	1.530	abcde	Lowest
Starr	6	1.661	bcdef	Lowest
152125	330	1.707	defg	Highest
161300	17	1.611	abcdef	Lowest
247378	557	1.680	bcdef	Lowest
248762A	551	1.612	abcdef	Lowest
259579	789	1.683	cdef	Lowest
259591	775	1.934	h	Highest
259678	339	1.718	efg	----
259753	780	1.699	cdef	Lowest
259800	332	1.454	a	Lowest
259835	899	1.596	abcde	Second
268597	565	1.496	abc	Lowest
268635	365	1.675	bcdef	Highest
268648	849	1.805	fgh	Highest
268649	376	1.885	gh	Highest
268703	625	1.640	abcdef	Lowest
268706	400	1.526	abcde	Lowest
268708	403	1.507	abed	Lowest
268711	407	1.439	a	Lowest
268729	652	1.584	abcde	Lowest
268740	418	1.690	cdef	Lowest
268766	683	1.480	ab	Lowest
268773	690	1.618	abcdef	Lowest
268794	711	1.452	a	Lowest
268823	445	1.521	abcde	Lowest
270857	672	1.573	abcde	Lowest

* Means not followed by the same letter are significantly different.

Table 27. - Mean leaf damage rating of peanut entries in late season Experiment $B, 1966$.

Entry	Ok1a. $\mathrm{P}-\mathrm{No}$	X	Signif.	Quartile
		X		
Starr	6	1.521	abcd	Lowest
155053	973	1.814	h	Highest
221708	912	1.750	fgh	Highest
259771	784	1.554	abcde	Lowest
259834	898	1.498	ab	Lowest
259860	791	1.630	bcdefg	Lowest
261985	528	1.601	bcdefg	Lowest
268599	351	1.721	efgh	Lowest
268633	844	1.829	h	Highest
268647	373	1.668	bcdefgh	Highest
268654	594	1.679	cdefgh	Highest
268706	870	1.804	gh	Highest
268708	629	1.767	gh	Highest
268711	631	1.536	abcd	Lowest
268724	647	1.571	abcde	Lowest
268734	656	1.516	abcd	Lowest
268735	657	1.582	abcdef	Lowest
268737	659	1.589	abcdef	Lowest
268741	663	1.522	abcd.	Lowest
268754	676	1.718	efgh	Highest
268767	334	1.511	abc	Lowest
268769	428	1.429	a	Lowest
268773	691	1.561	abcde	Lowest
268804	723	1.424	a	Lowest
268808	439	1.688	defgh	Lowest
268817	735	1.605	bcdefg	Lowest.
270857	772	1.551	abcde	Lowest

* Means not followed by the same letter are significantly different.

Table 28. - Mean leaf damage rating of peanut entries in late season Experiment C, 1966.

$\begin{gathered} \text { Entry } \\ \text { (P.I. Number) } \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { p-No. } \end{aligned}$	$\overline{\mathrm{X}}$	$\begin{aligned} & \text { Signif. } \\ & \mathrm{p} \leq .05 \% \end{aligned}$	Quartile in spring test
Starr	6	1.638	abcd	Lowest
Strat. Span. ${ }^{\text {a }}$	11	1.491	abc	Lowest
NRM 6	486	1.483	abc	Lowest
145045	979	1.895	d	Highest
161312	15	1.632	a.bed	Lowest
259821	688	1.541	abc	Lowest
259821	788	1.608	abe	Lowest
262000	810	1.615	abc	Highest
268600	566	1.596	abc	Lowest
268644	371	1.709	bed	Highest
268661	971	1.530	abc	Lowest
268678	610	1.526	abc	Lowest
268704	626	1.745	cd	Lowest
268716	410	1.526	abc	Lowest
268721	642	1.433	$a b$	Lowest
268738	660	1.650	$\mathrm{b} e \mathrm{~d}$	Lowest
268739	416	1.576	abe	Lowest
268747	671	1.695	bcd	Lowest
268764	681	1.551	abc	Lowest
268777	695	1.356	a	Lowest
268781	712	1.487	abc	Lowest
268790	435	1.484	abc	Lowest
268791	707	1.614	abc	Lowest
268796	714	1.579	abc	Lowest
268802	720	1.486	abe	Second
268828	746	1.588	abc	Lowest
270789	460	1.595	$a b c$	Highest

* Means not followed by the same letter are significantly different.
a Stratford Spanish

Table 31. - Mean leat dsmage ratings of peamt entries by two evaluetion methods, Experiment i, 2967 .

$\begin{gathered} \text { Entry } \\ (\mathrm{P} \text { lo No. }) \end{gathered}$	$\begin{aligned} & \text { OKlino } \\ & \mathrm{P} \boldsymbol{\mathrm { H }} \mathrm{Ho} \end{aligned}$	Single Luaf	$\begin{aligned} & \text { Sigmifo } \\ & \underline{L} \leq .05^{*} \end{aligned}$	$\begin{aligned} & \text { MustipIo } \\ & \text { Lear } \end{aligned}$	$\begin{aligned} & \text { signifo } \\ & 2 \leq .05^{*} \end{aligned}$
Starm	6	2.275	chedevghi	2.419	abedef
Tennessee Red	1.67	2.500	ghijk2		
Va. Bunch 67	959	So832	W	2.806	defy
NO-5	958	2.129	abe	2.500	bedery
VA5SR	288	2.200	abcdevs	20306	abod
162524	14.	2.138	abode	2881	abcde
259650	326	2.569	- jRelimm		
259753	780	2.475	fgni jkil	2.425	abedef
259814	304	2.275	abedaroht	2.588	cderg
259826	309	2.825			
259860	791	2.150	abede	2.206	$a b$
261946	806	2.619	jalma		
262958	520	2.356	bedergh jiky		
261977	524	2.425	detghi jkS		
262000	810	2.698	k2mm	2.789	0
262012	476	2.629			
262915	486	2.475	fghijicz		
262597	556	2.650	2mm		
268677	609	2.131	abed	2.412	abcdef
268708	629	20.398	bcdefghi!	2.691	efg
268710	920	20.325	bederghij		
268726	649	2.244	absdergh	2.562	cdefg
268769	428	- 2331	bedefghij	2.356	abede
268771	829	1.994	a	2. 169	a
268787	704	20.888	Qucderghi	2.38	abedes
268787	338	2.584	at jey		
269729	828	2.438	ergh ijk		
276798	886	2.275	abedefghi	2.425	abedef
270831	766	2.800	bedefghi ik.		
277197	942	8.429	cedefgh jita		
290606	950	2.256	abecefgh	2.460	abeder
290781	8139	2.350	cedergin jat		
291983	2184	2.312	相第	2.706	88
298638	1177	2.256	abcoergh	2.512	bedsta
298880	1179	2.181	abodef	2.325	abcter
298843	2182	2.212	36	20469	abcuer
298853	1192	2.346	bedefghi		
298861	1198	2.281	medertion	2.569	costg
298871	12004	2.269	abede	2. 225	abseter
298874	1207	2.344	buedergh i jR		
300244	1219	2.275	abedefigh	9.288	abe
306218	1295	20.22	sbodefig	20.44	dbedef
306228	1248	2.250	abede	2.312	abed
306359	1247	2.475	Fghijpr		
306368	1249	2.519	hijk?		

[^1]Table 32. - Mean leaf damage ratings of peant antries by two evaluation methods, Experiment 2, 1967 .

$\begin{gathered} \text { Entry } \\ \left(\mathrm{P}, \mathrm{l}_{\mathrm{ol}} \mathrm{No}_{0}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 0 \times 130 \\ & P=N_{0} . \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { Cgaf } \end{aligned}$	$\begin{aligned} & \text { Signifo } \\ & \text { g } \leq .05^{*} \end{aligned}$	Mantiple Leáf	$\begin{aligned} & \text { signifo } \\ & \underline{g} \leqslant .05^{*} \end{aligned}$
Dixie Runner	983	2.538	codergh i jklm		
Starr	6	2.275	abredera	2.432	abe
VA6IR	289	2.550	defigh jklm		
	76.	2.275	cbeders	2.538	abed
1.58838	977	2.400	aboderghij	2.569	abed
161300	17	2.288	aboderg	2.512	ebed
223683	160	2.781	klm	2.769	cd
229656	34	2.491	aboderghij		
229685	26	2.706	hijk ${ }^{\text {m m }}$		
234422	32	20419	abedefghij		
242100	35	2.431	abcdefghijk		
248760	549	2.150	ab	2.456	abed
259536	306	2.350	abodergh	2.475	abca
259585	300	2.288	abaderg	2.588	abed
259675	314	2.794	19	2.781	d
259742	319	2.725	ijkrlm		
261956	811	2.575	cefgijklim		
261988	529	2.231	abedefghijk		
262046	495	2.556	efghijklm		
262052	498	2.550	defghi jklm		
262087	547	2.532	cdefghijklm		
268564	342	2.375	abederghi	2.625	bed
268598	349	2.569	erghijklm	2.648	bed
268639	581	2.406	abederghij		
268649	376	2.783	klm	2.775	cd
268723	646	2.188	absd	2.431	abe
268724	647	2.231	abeda	2.600	abed
268732	654	2.400	abedeighif	2.606	abed
268755	878	2.750	jkn		
268766	683	2.281	$a b c$	2.400	2b
268777	695	2.281	abedera	2.281	3.
268790	435	2.262	abedeia	2.538	abed
268823	445	20.294	abodefg	2.375	2 a
268829	881.	2.329	abodefg	2.532	abed
270795	887	2.338	abederg	2.600	abod
290580	943	2.606	Fhigimat		
298686	1147	2.625	ghi je3m		
294647	3188	2.862	m	3.088	${ }^{\text {c/ }}$
295974	1158	2.575	efon! gikn		
298826	1167	2.412	abecieighij		
298835	2178	2.481	berorighijkl		
298845	1184	2.412	abederghij		
298850	1189	2.582	bcdurghiklm		
298877	1209	2.075	botogn jum	2.469	abcd
300588	1225	2.600	Phat jelta		
306358	1296	2.2.84	abede?	2.762	ed
306360	1288	2.ala	bederghi jkg		
307603	235	2.288	obederg	2.719	bed

[^2]Table 330-Meam Iesf damage patings or penwut entries by two evaluation methods, Expertwent 3, $196 \%^{\circ}$

$\begin{gathered} \text { Entry } \\ (\mathrm{P}, \mathrm{loNo}) \end{gathered}$	$\begin{aligned} & \text { Ofla. } \\ & \text { Panoo. } \end{aligned}$	Singte Lex	$\begin{aligned} & \text { signifo } \\ & \underline{2} \leq 05^{*} \end{aligned}$	multiple Lear	Signifo $0 \leq 05^{*}$
Fyoriglant	906	2.375	qubal	2.538	abede
Sterr	6	2.362	abed	2.606	abode
I52422	159	2.894	abede		
162659	13	2.846	ab	2.694	bede
163279	29	20000	abede		
221707	91.	8.806	abede	2.831	cesf
229553	8	2.275	ab	$\therefore .569$	abede
234426	30	20.272	abeda		
234119	93	2.498	abede		
242207	38	2. $8^{3} 0^{0}$	abede		
246389	915	2.462	abede		
259594	321	2.256	a	2.400	e
259599	313	2.750	(8)	3.156	gh
25972 \%	321	3 ys 4	abede		
259776	786	2.638	bede		
259000 A	950	20806	abere	20775	def
262971	522	2. 238	abcde		
262062	499	2.675	cde		
262105	885	2.562	abcde		
268601	567	2.719	do	2.775	def
268619	839	2.548	abede		
268668	600	3.338	abe	2.981	89
268678	610	2.600	abode	2.425	ab
268689	865	2.325	sbe	3.732	cdef
268706	406	20330	cisede	89.85	abe
268727	$6{ }^{6} 3$	2.262	3	2.506	abead
268731	678	2.550	sbere		
268780	489	2.538	abode		
268779	675	2.713	de		
268791	76	20.56	abede	30.6\%	6beda
268793	706	9.906	-bede		
268602	720	60475	ghede	2.685	bede
268804	723	2080	25	2.375	abede
268812	722	2.869	abese		
268827	785	2. 898	gbcce		
273500	1.50	2.362	0 mbe	20 ${ }^{\text {de }}$	cis
290582	96.4	2.950	sbecter		
231986	120\%	20.29	abcue		
298554	1155	2.62	abeda		
29598	2150	2.262	4	2.662	26ede
295989	1.65	8.259	$a b$	8.85	8
299463	966	3.36	2bos	2.681	bence
300242	2217	$2{ }^{2} 76$	c	3834	tr
506287		2.368	abeb	2.800	4
306222	1297	9.929	abs	2.875	Cbe
311262	125	2.668	cote		

Table 34. - Mean leaf damage ratings of peamt witries by two evaluation methods. Experiment 4019670

$\begin{gathered} \text { Entry } \\ \left(p . \mathrm{I}_{0} \text { No. }\right) \end{gathered}$	$\begin{aligned} & \mathrm{OREIN} \\ & \mathrm{P}-\mathrm{No} . \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { L-qaf } \end{gathered}$	$\begin{aligned} & 8 i g i f o \\ & g \leq .05^{*} \end{aligned}$	Multiple Leaf	$\begin{aligned} & \text { Signif. } \\ & \underline{\underline{L}} \underline{0.05^{*}} \end{aligned}$
Sterr	6	2.232	ab	2.462	a
Argentinu Sel.	290	20294	abed	2.492	ab
Argentine Sol.	256	20250	ab	2.612	abe
Tiftom Spanish	985	2. 3000	abed	2.656	abe
$128070-1$	108	2.332	abedsf	2.481	a
121070.3	212	2.369	abederp	2.598	abe
155053	973	2.761	8	3.425	9
16252.2-3	255	2.331	abedef	2.798	bode
219824	38	2.612	ghijkI		
259705	778	2.682	jkl	2.950	efg
259771	784	2.338	abedef	2.681	abed
259777	305	2.238	ab	2.631	$a b c$
261989	470	2.475	bedefghij		
261995	531	20406	abedefghi	2.894	defg
262034	488	2.656	i jk!		
262108	481	2.683	jkl		
268596	832	2.606	fobill		
268616	360	2.4 .38	bederghij		
258686	598	2.450	bedorghij		
268661	978	2.319	abede	20.384	$a b$
258676	608	2.625	hijks		
2.68680	860	2.581	fghijkl		
268682	862	2.450	bedefghij		
268701	396	2.350	abedef	2.562	abe
268708	203	2.238	3 l	2.256	3
268"78	4.97	2. ${ }^{\text {St }}$	abueds c^{4}	2.888	a
268713	69	2.869	abe	2.531	ab
268758	929	2.388	abedstgh	2.531	3 b
26877	688	2.285	\&	2.600	abs
268833	750	2.544	defghijk2		
270783	$7{ }^{8} 8$	2.306	extmim ${ }^{\text {a }}$		
270849	465	2.538	6etghigt		
274267	286	2.306	dued	2.600	abe
25069	$183{ }^{3}$	2.398	wbedergh	2.788	cdef
286215	1136	2.533	defgh ijk		
290607	952	2. ${ }^{\text {a }}$ 星	mb	2.675	ared
291982	11.89	2.808	Gederghij		
294689	2350	2.8888	bederignij		
298842	1181	2.512	cderghij		
304243	1215	2.506	cdefgin ${ }^{\text {j }}$		
300585	1222	2.485	bocerghi		
300586	1223	2.362	erghijk		
300587	12 c	2.748	kl	2.981	P\%
300993	1228	3.288	abod	2.600	\% ${ }^{\text {a }}$
300596	2233	2.481	bederghij		
311265	2256	2.4.4	bederghij		

Table 35. - Mean leat dumge ratings of peamut entries by two evaluation methods, Experiment 5, 1967.

$\begin{aligned} & \text { Entry } \\ & (P .1 . \text { Noo }) \end{aligned}$	$\begin{aligned} & \text { Onlu. } \\ & \text { Pallo. } \end{aligned}$	$\begin{gathered} 3 \text { ingle } \\ \text { henaf } \end{gathered}$	$\begin{aligned} & \text { sigmife } \\ & \mathrm{Q} \leq .05^{*} \end{aligned}$	Lesaf	$\begin{aligned} & \text { 8ignifo } \\ & \underline{E} \leq .05^{*} \end{aligned}$
Starr	6	2.456	2 ab	2.550	ab
NO 2	36	2.619	abedefa	2.662	$a b e$
F416-2	938	2.862	derghi		
234375	28	2.702	bedefgh		
234418	31	2.719	bedefgh		
234420	40	2.575	abcede	2.656	abc
280579	563	3.025	hij		
248755	543	2.612	abouef	2.700	abc
259592	775	3.975	ij	2.85	c
259617	299	2.581	abcdes	2.780	bo
259662	295	2.598	abedef	2.538	$a b$
259665	303	2.850	dwighi		
259678	333	2.706	berefg		
262045	498	2.875	efgh		
262076	504	2.475	abe	2.694	abe
262088	478	2.681	bedefg		
268597	565	2.588	abedet	2.556	2 b
268648	374	2.900	efghi		
268686	61.4	2.725	bederigh		
268667	599	2.888	efigh		
268703	397	2.912	fghi		
268737	4.15	2.182	bedefgh		
268748	672	2.681	bedefy		
268764	688	2.53	beders	2.575	\%
268767	79	2.878	bestug	20684	abe
268770	636	2.306	a	$20.40{ }^{2}$	a
268778	432	2.669	bedmp		
26879 A	781	20975	abe	2.531	abo
268838	847	2.393	abedes	2.519	36
270768	753	2.881	crigh		
270776	75	2.788	catrghi		
27080 A	868	. 2.288	abe	2.594	abc
280690	1193	2.583	abedef	2.575	ab
294653	2150	3.694	ij	3.250	d
295982	1159	2.712	bedefgh		
295987	1168	2.850	ab	2.562	20
298828	11.69	3026I	j	3.100	d
298648	1187	2.919	260	2.562	3 b
298869	1197	2.688	bedery		
298855	1202	2.862	derghi		
300589	1296	2.758	abed	2.988	$a b c$
300592	1229	2.619	abcdeta	2.600	abc
306594	1291	2.938	ghi		
306224	1239	8.181	abo	2.538	0\%
306227	128.2	2.600	abeder	2.669	abo
306362	2250	2.825	derghi		

* Mons not followed by the same Buther are significemedy difrerent.

Table 36. - Men leaf damage ratings of penut entries by two evaluation methods, Experiment 6. 19670

$\begin{gathered} \text { Entry } \\ (P, 1, N o o) \end{gathered}$	$\begin{aligned} & \text { OKILa } \\ & \text { Pu 阿 } \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { ligaf } \end{gathered}$	$\begin{aligned} & \text { igmifo } \\ & \pm \leq .05^{*} \end{aligned}$	Maltiple Leqf	Sigifo $\underline{E} \leq 05^{3}$
Start	6	2.806	boderghi jk	2.488	bede
Argentine	?	2.862	costgh i ill	2.100	abe
Spanette	5	20606	beder	2.531	bode
Valentia Sel.	923	2.931	Fghi jklan		
121070-1	20	2.644	bedergh	2.625	beder
162537008	358	3.281	\%	3.000	n
263177	155	4.969	Fghijk]m		
223684	175	20800	derghi jed		
248763	55	20989	efghijklm		
259591	293	3.169	kla	2.850	figh
259594	323	2.794	bederghi		
259660	31.7	2.938	fghijklm		
259663	312	3.094	ijklm		
259805	$23^{4} 4$	${ }^{2} .925$	fobilk		
$25983{ }^{4}$	888	2062	beder $\therefore \therefore$	2.651	ceder 9
262001	592	2.96%	Pght jkg [m		
262020	483	2.750	buderghi		
262059	538	8.969	Pghijk 2π		
262094	2280	3.081	ijklm		
262099	839	3.006	ghijklm		
268621	840	30012	hijpkIm		
268644	372	2.519	ve	2.612	beder
268653	853	8.956	fohn iklm		
268666	598	2.869	Fghigum		
968681	861	2.922	efowl ikd		
268703	625	Sos ${ }^{3} 3^{3}$	Bed	2.744	Efgh
268710	639	2.663	bedergh	2.388	cetoty
268780	178	2.988	b	2.54.4	beder
268746	669	2.723	bederght	8.731	certuh
268756	873	2.769	boderighi		
268638	849	\%0883		2.050	
27085	772	8.669	dsotergh	2.35	beder
27842	2132	2.695	boders	2.319	26
280688	926	9.456	a	2.394	2.
29.651	2152	5.238			
295984	1162	2.622	beger	2.588	bedef
29883	2178	90881	coterab ifky		
298897	1876	2.785	Bedereghi	2.569	boder
29885	2190	30.82		2.323	, ${ }^{\text {gha }}$
398855	1195	C06\%	brocefgh	20.45	abed
298859	219\%	2.389	ligatrghi jer		
298866	1902	2.550	Brede	2.615	bosder
39967	2210	20.783	b-tmpinid		
299869	367	2.859	Laedstini ik	8.806	Beder
306297	1236	20800	boxicrign ijle		
306225	1290	20.58	Ced	2.588	bestar
906296	1294	2.6.0h	beetrs	2.519	8 \%

* Mewn wot rol Lowed by the same Letter are signiticanty differanto

Table 37. - Mean duaf damage pathigs of panut entries by two evaluation methods, Experiment 7, $\$ 9670$

$\begin{gathered} \text { Entry } \\ (\text { Pol. No. } \end{gathered}$	$\begin{aligned} & \text { OKIa. } \\ & \text { P~No. } \end{aligned}$	Single Leat	$\begin{aligned} & \text { Signifo } \\ & 2 \leqslant .05^{*} \end{aligned}$	Mustiple heaf	$\begin{aligned} & \text { signifo } \\ & \mathrm{E} \leq .05^{*} \end{aligned}$
Starr	6	2.600	a	2.575	a
Argentine Sel.	327	2.606	ab	2.656	abc
Va 0462	290	2.719	abode	2.631	$a b$
T-400mi	21	2.819	abodisfg	2.780	abe
T-437	22	2.612	abe	2.712	2 bc
145045	979	3.238	k	3.269	,
230328	27	2.788	aboder	2.975	ederg
240543	825	3.106	ghijk		
2487624	55%	2.914	codrighij	2.922	bedef
259648	996	2.969	derghijk		
259670	320	2.956	defghijk		
259745	779	2.781	abcder	2.675	abe
259746	898	3.225	k	3.081	defg
259775	308	2.925	defghij		
259800	382	2.952	derghijk	2.306	abed
259800	310	28831	abedsf8	2.912	bedef
259805	322	2.900	bederahi		
261935	512	2.806	abeder	2,962	edef
261940	516	3.100	ghijk		
262014	477	3.094	ghijk		
262019	482	3.138	hijk		
262038	498	3.162	i jk	3.175	fg
262080	505	3.000	efighijk		
262104	54.	3.1244	hijk		
268640	88.6	2.925	derghij		
268688	84.9	2.86%	abederghi	2.922	beder
268674	606	2.982	defghijk		
268701	406	2.769	abedef	2.944	bedef
268721	648	2.906	bedefghij	2.688	abe
268724	412	2.812	abedefg	2.806	abed
268821	79	2.775	abcedef	3.238	erg
268826	8.87	3.0000	efghifk		
268828	45	2.850	abcergh	2.804	abede
268831	748	2.875	abederigh!	2.850	abede
270778	755	3.662	fghijle		
270817	463	2.775	abedef	2.769	abed
289297	1198	2.889	abcderghi	2.756	abs
290597	94.7	2.681	abed	2.562	,
290599	949	2.856	abedefgh	2.738	abc
298831	2171	2.906	bedefghij		
298833	2172	3.000	efghijk		
298852	1192	2.881	abcdefghi	2.756	abe
298857	3195	2.998	trghi jk		
300595	1232	3.194		30319	9
306231	1295	2.912	cdergilij		

Table 38. - Mean leaf damage ratinge of peanut entries by two evaluation methods, Experimemi 8. 1967.

$\begin{gathered} \text { Entry } \\ (\text { P. I. No. }) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { OkIs. } \\ & \text { P-Mo. } \end{aligned}$	Single	$\begin{aligned} & \text { signifo } \\ & \underline{E} \leq .05^{*} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Multiple } \\ \text { Leaf } \end{gathered}$	$\begin{aligned} & \text { Signifo } \\ & p \leq .05^{*} \end{aligned}$
Starr	6	2.394	abedefgh	2.569	abe
Strat. Span* ${ }^{\text {a }}$	11	2.104	abederg	2.525	abe
94168 1271	112	2.382	abcde	2.538	abe
121298	174	2.375	abede	2.475	$a b$
162538	16	2.525	abodefghij	2.469	ab
185632	150	2.344	abed	2.462	ab
196740	975	2.800	klmin		
226249	23	2.606	defghijklm		
240561	560	2.569	cdefghijkl		
259597	324	2.512	abedefghi	2.656	abc
259728	301	2.431	abedef	2.669	bc
259772	315	2.788	jklma		
259985	2162	2.550	bedefighijkI		
262934	510	2.606	defghijkerm		
261955	808	2.712	ghijklma		
261970	469	2.825	abeder	2.594	obe
262087	493	2.769	ijklmn		
262075	503	2.800	klma,		
262100	540	2.931		3.200	d
268516	340	2.800	$k \mathrm{mn}$		
268595	831	2.725	hijklmn		
268634	584	2.7112	ghijklmn		
268647	592	2.719	hijklma		
268724	922	2.569	cdefghijkI		
268725	648	2.475	bocdefgh	2.531	abe
268753	675	2.698	fghi jklmon		
268773 268800	792	2.594 2.706	bederghijk ghi jklmn	2.619	abe
270767	882	2.938	ghomen	2.806	6
270793	885	2.819	1 mm	2.650	abc
270816	888	2.575	cdefohigkim		
275497	1128	2.433	abcdef	2.500	26
2754.99	11.29	2.625	efghijkra		
280689	1132	2.394	abede	2.606	abe
290633	953	2.731	hijklm		
295971	1156	2.494	abedergh	2.550	$a b c$
298827	1168	2.506	abcdefgh!	2.656	abo
298836	1175	2.725	hijkimm		
298844	2183	2.731	hijkimm		
298847	1186	2.325	abe	2.506	$a b$
298849	21.88	2.894	abedefgh	2.629	abe
298863	1200	2.388	abode	2.375	a
299468	1218	2.262	a ${ }^{\text {a }}$	2.394	ab
299469	1212	2.588	cefergl jkim		
300239	1215	2.884	mn	2.800	c
311264	1255	2.294	26	2.588	abe

* Means not followed by the same letter are significansly different.
a Stratford Spanish

Table 39. - Mean leaf danage ratings of peanut entries by two evaluation methods, Experiment 9, 19670

$\begin{gathered} \text { Entry } \\ \text { (P.1. No.) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { PoNo. } \end{aligned}$	singit Leaf	Signito $\underline{\mathrm{g}} \leq .05^{\circ}$	Multiple Leaf	Signif. $\underline{1} \leq .05^{*}$
Starr	6	2.332	ab	2.581	$a b$
NC $4 \times$	208	2.369	abcem	2.662	abe
OAEP 58-16 ${ }^{\text {a }}$	78	2.269	*	2.556	$a b$
0168275	116	2.388	abede	2.612	abc
161867	206	2.975	k	3.258	ef
161868	148	2.362	abed	2.825	abed
221708	912	2.825	hijk	2.862	bed
237337	033	2.4569	abedefgh		
240572	561	2.72 .5	fohijk		
247375	824	2.638	edefghi		
2.48756	54.	2.444	abcdef	2.788	abed
259598	776	2.412	abede	2.725	abcd
259680	725	2.669	efghij		
259824	897	2.669	efghij		
261997	471	2.798	fghi jh		
262004	818	2.484	abedef	2.862	bed
262022	484	2.839	hijk		
262037	490	2.506	abedef		
262066	537	2.462	abedef		
262073	501	2.556	abcdefgh		
262074	502	2.569	abedefgh		
262098	821	2.938	jk	20984	ede
268609	355	2.506	abedef		
268612	836	2.806	ghijk		
268626	577	2.293	36	2.688	abc
268655	855	$2.64{ }^{\text {a }}$	- derigh i		
268716	410	2.338	abe	2.675	abe
268722	64.	2.388	ubede	2.694	zbe
268771	336	$2 \cdot 282$	2	2.642	268
268778	696	2.419	abede	2.538	ab
270784	756	20475	abodef		
270785	757	2.406	abesie	2.812	aised
270842	889	2.59	bedefigh		
274201	506	2.819	hijk		
291628	1141	2.450	abedef		
291629	1148	2.638	cdefghi		
291984	1185	2.388	abecte	2.781	abed
294652	1153	2.881	1 jk		
295973	1157	2.375	abcde	2.675	abc
298623	1166	2.550	abcdefgh		
298830	1170	2.494	abeder		
298856	1198	2.944	jk	3.392	f
298862	1299	2.500	abodef		
298869	1203	2.300	ab	2.506	a
298872	1205	2.356	abed	20.934	8
299470	1283	2.988	k	3.081	08
300247	1221	2.382	abede	2.700	abc
306229	1248	26.50	derati		
311009	125	2.525	abeders		

[^3]Table Qu. - Mesin lar dameg ratings of peanut entriss by two evaluation methodso Experiment 10, 1967.

$\begin{gathered} \text { Enfry } \\ (\mathrm{P}, \mathrm{I} \text {. Na. }) \end{gathered}$	$\begin{aligned} & \text { Okla. } \\ & \text { P-No. } \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { Single } \\ \text { Luaf } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 3 \text { igmifg } \\ & \mathrm{g} \leq 0.05^{*} \end{aligned}$	Multiple Leaf	$\begin{aligned} & \text { signiro } \\ & \underline{\leq} \leq \cdot 05^{*} \\ & \hline \end{aligned}$
Early Runner	215	2.719	1 1 k 1		
Spanette	984	2.350	abcde	2.700	ab
Starr	6	2.356	abede	2.744	gheod
Fla.-393	960	3.081	m	9.206	$\stackrel{\mathrm{Fg}}{5}$
NRM-5	479	2.506	, bederghijk		
162541	154	2.381	abedefg	2.788	abed
259600	297	2.628	defghijkI		
259605	890	2.456	abedofghij		
259677	318	2.744	jkL		
259681	298	2.556	bedefghijk		
259767	783	2.250	ab	2.669	$a b$
259774	302	2.388	abedefgh	2.775	abed
259800	307	2.525	bedefghl jk		
262954	807	2.475	abedefghijk		
261959	812	2.788	kI	3.231	9
261965 262036	599	2.898	1 m	3.125	fig
262040	492	2.681	sghi		
262052	497	2.588	cdefghi ${ }^{\text {g }}$		
262095	820	2.700	cdefghijk		
268654	379	2.375	abeder	2.794	abed
268686	386	2.681	fghijkI		
268729	65	2.594	ederghi jkI	3.012	ef
258734	656	2.352	abe	2.738	abe
268781	663	2.412	abederghi	2.862	Seder
2687718	931	20800	abedergh	2.846	bede
268795	718	2.882	abedergh !	2.788	abed
268801	438	2.506	bedefigh ijk		
268828	453	2.531	bedefghijk		
287796	1137	2.532	bodefghijk		
288214	1235	2.525	bedorghilk		
290599	988	2.306	atioce	20788	abed
290978	1100	2.4 .48	abederght		
29864\%	1149	2.575	bederghi jik		
298650	1151	2.738	jkl		
295986	1163	2.384	abede	2.694	20
298839	1178	\%.381	atocers	2.648	8*
298848	1180	\% 838	abedorghij		-
298846	3185	2.834	cbadefy	2.744	abe
298873	1206	2.412	abcdergi	2.781	abod
298876	3208	$2.35{ }^{2}$	abo	2.975	def
299472	1214	2.569	bederghijk		
300240	1216	2.698	efghikl		
300246	1220	2.352	abe	2.775	sbed
300590	1227	2.498	bedefgh ijk		
300593	1230	2.335	abederghij	2.894	bede
306223	1238	2.156	-	2.569	©
321263	1858	2.788	$k 1$	2.933	cdef

VITA
6
Sharon Clairene Young
Candidate for the Degree of
Doctor of Philosophy
Thesis: FIELD AND LABORATORY TESTS FOR GENETIC RESISTANCE OF PEANUTS TO THE TOBACCO THRIPS, FRANKLINIELLA FUSCA (HINDS)
Major Field: Entomology
Biographical:
Personal Data: Born in E1k City, Ok1ahoma, August 3, 1942, the daughter of Clair E. and Eva Mae Young.
Education: Attended grade school at Crawford, and Berlin, Oklahoma;
graduated from Cyril High School, Cyril Oklahoma in 1960; received the Bachelor of Science degree from Bethany Nazarene College, with a major in Biology, in May, 1964; received the Master of Science degree from the Oklahoma State University, with a major in Natural Science in August, 1965; completed requirements for the Doctor of Philosophy degree in May, 1969.
Professional Experience: Bethany Nazarene College, 1962-1964; National Science Foundation Academic Year Institute, Oklahoma State University, 1964-1965; Graduate Research Assistant in Entomology Department, Oklahoma State University, 1965-1968.
Organizations: Phi Delta Lambda, Phi Sigma, Sigma Xi.

[^0]: * $\mathrm{p} \leq .05$

[^1]: * Mean mot followed by the same letfer aro significanty different.

[^2]: * Means not rollowed by the same idetter are signilicandy different.

[^3]: * Means not followe by the same letter are signifiemtly dirterent.
 a. Argentine Selection

