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PREFACE 

The basic problem of this thesis is the study of the structure of 

z -farthest point sets. In a normed linear spa.ce the z -farthest point 

set of a set S is the set of all points which are at least as far from the 

element z of S as from any other element of S. This type of set is 

analogous to one defined by Motz kin, [28] (numbers i.n square brackets 

refer to the bibliography at the end of the paper), which will be called 

a z-neares t point set of S in this paper. Phelps, [31 ], Motzkin, and 

numerous others have found z-nearest point sets to be a fruitful and 

interesting topic of research. In this paper, it is shown that z--farthest 

point sets have many properties analogous to those of z -nearest point 

sets and some properties which have no counterpart in the theory of 

z-nearest point sets. Also, further properties of z-nearest point sets 

are developed. 

Chapter I is a brief survey of the research which has been done 

on nearest point sets and z--nearest point sets. A nearest point set of 

S relative to a point z is the set of all points of S which are at least as 

near z as are any other points of S. The main topics of interest and 

some open questions concerning nearest point sets and z -·nearest point 

sets are pointed out and explained. In Chapter II, farthest point sets, 

sets analogous to nearest point sets, are defi.ned, and research topics 

are discussed. It is the purpose of Cha.pter I and Chapter II to provide 

motivation for this study oi z--fa.rthest: point tH:.ts. It is hoped that the 

inclusion of these two chapters will bring about some unification of the 
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theory of these four different types of sets. 

In Chapter III, the properties of z-farthest point sets are 

developed. It is shown that z -farthest point sets are closed and inverse 

starlike. It is also shown that the set S can be considered to be closed 

and convex when dealing with the z .. fa'rthes t point set of S. Other 

results relate to translation and multiplication by a positive scalar of 

z-farthest point sets and z-nearest point sets. Properties of the 

element z of S which has a nonempty z ·-farthest point set are also 

discussed in Chapter III. The element z must be a boundary point of 

S. If the linear space is strictly convex then a z .. fa:tthest point set of 

S is nonempty if and only if z is a boundedly exposed point of S. 

The main topic of interest in Chapter IV is a characterization 

of inner-product spaces in terms of z -farthest point sets. A normed 

linear space is an inner--product space if and only .if for each set S and 

ea.ch element z, of S, the z-farthest point set of S is convex. Other 

results in Chapter IV relate to the representation of z-farthest point 

sets and Z·-nearest point set:s as intenH~,ctions of closed half--spaces 

and unions of closed rays. 

Chapter V deals with the approximation of a z --farthest point 

set of S by a z-farthest point set of a polyt:ope contained in S. Similar 

results are shown for a :;,; .. nean:st point set. Finally, Chapter VI is a 

summary of the paper and lists some unsolved and partially solved 

problems that have been raised in the course of the investigation. 

All notation and terminology Yvhich is not defined in this paper 

can be found in Valentine, [36]. 

I wish to expresB my appreciation to all those who assisted me 

in the preparation of this thesis. In particular, I would like to thank 
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John Jewett, John Jobe, and John Shelton. Finally, I want to express 

my deepest appreciation to my wife, Vicky, without whose help I could 

never have finished my work. 
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CHAPTER I 

THE DEVELOPMENT OF NEAREST POINTS 

The initial step in the study of nearest points came in 1935 in 

the form of two articles by Motzkin, [27], which appeared in the same 

journal. In these articles two types of sets were discussed; the first 

set is defined as follows: 

Definition 1. 1. Let X be a normed linear space and let S C X. 

If z e X, then 

IJl(z,S) = {x e S: /lz - xlJ = inf { llz - y/1:ye S}}. 

The elements of !l'?(z, S) are called projections of z onto S, and 

the set !l1(z, S) is called the set of nearest points of S relative to z. 

Simply stated, the set !l1(z,S) is the set of all points x e S which are at 

least as near z as are any other points of S. 

Example 1. 1. Let X be the space E 2 and let S be the set 

{(x,y):x=-P, -l~y~l}. 

If z is the point (1, 0), then !YI (z, S) = {(O, 1), (0, -1)}. This is illus-

trated in Figure 1. 1. It is apparent that for each point w = (a, 0), a> 0, 

that !l'?(w,S) = !l1 (z,S); however, !l1(0,S) = S. If T denotes the open set 

bounded by the arc Sand the line segment, {(O,y): -1 ~ y ~ I}, then 

!l?(z,T) is empty. 
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Figure 1. 1. 

Since !Jl (z, S) may sometimes be empty Phelps, [31 ], devised a 

name for those sets S for which !Jl (z, S) is not empty for any z. 

Definition 1. 2. Let S be a subset of the normed linear space X, 

then S is proxirriinal if and only if for each z e X, !n (z, S) is not empty. 

If a set S is proximinal and !n (z, S) is always a singleton then 

an acceptable terminology would be uniquely proximinal; however, the 

name 11 Chebyshev set" seems to be predominant. Since the person 

primarily responsible for the study of this type of set is Motzkin, the 

terminology used here will be Chebyshev-Motzkin set. For example 

a closed interval [a, b] on the real line is a Chebyshev-Motzkin set. 

Definition 1. 3. A subset S of the normed linear space X is a 

Chebyshev-Motzkin set if and only if !J1 (z, S) is a singleton for each 

Z EX. 



3 

The following theorem appeared in 193 5 in Motz kin I s paper, 

[27]. Although not mentioned in the statement of the theorem, Motzkin 

also verified the converse in the same article. 

Theorem 1..1. If each point of the plane outside a closed set E 

has a single projection on E, then E is convex. 

This theorem was extended to sets in E by Jessen, [19], in 
n 

1940 and to straight line spaces by Busemann, [7]. in 1947. Later 

authors considered more general spaces and tried to find the relation-

ship of certain geometrical properties of the unit ball and Chebyshev-

Motzkin sets. An interesting result of this type is the following theorem 

by Valentine, [36 ]. 

Theorem 1. 2. Let X be a smooth and strictly convex finite 

dimensional normed linear space, and let S be a nonempty closed sub-

set of X. Then S is convex if and only if S is a Chebyshev-Motzkin set. 

A characterization of Chebyshev-Motz.kin sets in terms of closed 

convex sets is not possible as shown by Valentine, [36 ]; however, 

Busemann, [?], showed that the implication in Theorem 1. 2 can be 

improved in one direction as follows. 

Theorem l. 3. Let S be a closed set in the smooth finite dimen-

sional normed linear space. If S is 'a Chebyshev-Motzkin set then S 

must be convex. 

Theorems 1. l, l. 2, and 1. 3 place conditions on the norm of X 

and then show the relationship of Chebyshev-Motzkin sets to convex sets. 

Motz.kin, [27], noted that the relationship of Chebyshev-Motzkin sets to 



convex sets determines a geometrical property of the unit ball in the 

case of two dimensional spaces. This theorem pointed to another 

avenue of research. 

4 

Theorem 1. 4. A two dimensional Banach space X is smooth if 

and only if every Chebyshev-Motzkin set in X is convex. 

By reasoning similar to that used by Motzkin in Theorem 1. 4 

it can be shown that in a finite-dimensional Banach space every 

Chebyshev-Motzkin set is convex. However, the possible validity of 

the converse, i.e., that if every Chebyshev-Motzkin set in a finite

dimensional Banach space is convex then the space must be smooth, 

was not resolved until some years later. Klee believed that the con

verse was true (see [21] ), but it was later proved by Br¢ndsted, [5], 

in 1965 to be false. In fact, Br¢ndsted showed that counter-examples 

exist for any dimension at least as large as three. Thus the question 

of whether it is possible to characterize those finite-dimensional spaces 

which are smooth in. terms of Chebyshev··Motzk.i.n sets was raised. 

Br¢ndsted, [6], gave a partial answer in the following theorern which 

appeared in a later article, 

Theorem l. 5. Let X be a three·-dimensional Banach space with 

unit ball B. Then every Chebyshev-Motzkin. set in X is convex if and 

only if every exposed point of B is a smooth point of B. 

Thus smoothness does not seem to give an entirely satisfactory 

characterization, and a stronger theorem would be desirable. This is 

accomplished by substituting the condition of strict convexity for 

smoothness in Motzkin 1s theorem, Theorem l. 4. ·with this substitution 
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the theorem is even true in arbitrary finite dimensional spaces. The 

theorem, as stated below, appears in Br¢ndsted 1s paper, [5], but it is 

not proved there. 

Theorem 1. 6. A finite dimensional Banach space X is strictly 

convex if and only if every nonempty closed convex set in X is a 

Chebyshev-Motzkin set. 

The reader will notice that Theore1n 1. 6 leaves open the possi

bility that not every Chebyshev-Motzkin set is convex even though X is 

strictly convex. The Russian mathematicians, Efimov and Stechkin, 

[11], showed that the conditions of smoothness and strict convexity 

together removes this possibility. 

Theorem 1. 7. A finite dimensional Banach space X is strictly 

convex and smooth if and only if the Chebyshev-Motzkin sets are the 

nonempty closed convex sets in X. 

Thedrems 1. 1 through 1. 6 indicate that one of the main topics 

of interest in the theory of Chebyshev-Motzkin sets has been the 

relationship of Chebyshev-Motzkin sets and convex sets in a finite 

dimensional Banach space. Clearly the topic has been thoroughly 

explored in the finite-dimensional case, but the infinite--dimensional 

situation is more delicate. Several men such as Klee, Efimov, 

Stechkin, and Vlasov have worked on this problem; however, even in 

Hilbert space it remains unknown whether a Chebyshev-Motzkin set 

must be convex. One of the first published results concerning spaces 

of arbitrary dimension is the following which is due to Efimov and 

Stechkin, [15]: 
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Theorem 1. 8. Let X be a sn10oth, uniformly con,rffx: R<ii:-•a<'h 

space, then every boundedly compact Chebyshev-Motzkin set is convex. 

In a later paper by Klee, [21 ], a result similar to Theorem 1. 8 

is given. The conditions on the Banach space were strengthened some

what, and the conditions on the Chebyshev-Motzkin set were relaxed to 

produce a theorem which is the first infinite~dimensional charact:eriza

tion of closed convex sets in terms of the Chebyshev-Motzkin property. 

Theorem 1. 9. In a Banach space which is uniforn1ly smooth and 

uniformly convex, a set is closed and convex if and only i£ it is a 

weakly closed Chebyshev-Motzkin set. 

Another interesting theorem, due to Professor Ficken, but 

never published by him, was also in the Klee article, [21], in which 

Theorem 1. 9 appeared. Ficken 1s method, which applies only in inner

product spaces, establishes a close connection between the problem of 

nearest points - 11 Must a Chebyshev-Motzkin set be convex? 11 ·- and a 

related problem involving farthest points. This relationship will be 

explained in more detail later, but the theorem due to Ficken is stated 

below. 

Theorem 1. 10. In a Hilbert space, every compact Chebyshev

Motzkin set is convex. 

The theorems from Theorem 1. 1 to Theorem 1. 10 represent 

the more interesting and perhaps the most important conclusions 

drawn from the theory of Chebyshev-Motzkin sets. It is obvious that 

the theory of Chebyshev-Motzkin sets is not complete especially since 

large gaps are present in the theory for infinite-dimensional spaces. 
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One open question is .. 11 Can the infinite-dimensional Banacb l'lf'"'J.:t~s in 

which every Chebyshev·~Motzkin set is convex be chara.cterized? 11 -· 

and another question mentioned before is - 11 ls every Chebyshev-· 

Motzkin set convex in a Hilbert space? 11 • Theorexns 1. 7, 1. 8, and 

1. 9 are all efforts in the direction of one of the two questions stated 

above. 

The class of non-,Chebyshev-Motzkin sets is another facet in the 

study of sets of nearest points. These sets have not been as interesting 

as Chebyshev-·Motzkin sets, and accordingly there is a paucity of results. 

However, the following two theorems, due to Erdos, [16], are results 

of this kind. 

Theorem 1. 11. Let S be a closed set in E . Denote by M the 
n 

set of points z e E for which !n(z, S) consists of more than one point:, 
n 

Then the set M has Lebesgue measure zero. 

The othe::r interesting theorem in Erda s I paper states that the 

union of all sets of nearest points in a closed set S has Lebesgue 

measure zero. At first glance this does not seem too surp:rising since 

one expects the measure of the boundary of a closed set to be zero. 

Theorem L 12. Let S be a closed set: in E , and let x E E \ S, 
n n 

Then 

U x , S !n(x, S) 

has Lebesgue measure zero. 

Valentine, [36], gives a more conventional type of theorem 

concerning sets of nearest points with the following t:heorern which 

again deals with the properties of the set S rather than with ~(z,, S). 



Theorem I. 13. Let S be a closed set in E . Let P denote the 
n 

set of points z for which ~(z, S) contains two or more points. If P 

consists of only isolated points, then each bounded component of the 

complement of S is a solid open sphere whose <;:enter belongs to P. 

Moreover, bd conv S C S. 

Thus, according to Theorem 1. 13, if a nonconvex set S has 

8 

"holes II in it, then they must be "perfectly round, " provided the set P 

consists of only isolated points. This theorem and the two in1mediately 

preceding it seem to be the major theorems relative to nearest points 

of closed sets that may be non-Chebyshev-Motzkin sets, Some other 

work has also been done by Pauc, [30 ]. Studies of this type are difficult 

since the structure of nonconvex sets is so general. 

Existence of Sets of Nearest Points 

Up to now, nothing has been said about the existence of the set 

!TI (z, S) even though each preceding theorem has been concerned with the 

properties of S as related to !TI (z, S ). If S is an open set in a normed 

space then it is easily seen that !Jt (z, S) is empty whenever z ~ S, and 

if S is neither open nor closed !Jt (z, S) will be nonempty for some points 
lr 

z and empty for others. On the real line, if x is a number greater than 

b, then x has no nearest point in the half--open interv~.l [a, b). but if x 

is less than a., then x has a nearest point, namely a. The following 

three theorems which are stated by Phelps, [31], give some instances 

when !Jt (z, S) is not empty. 

Theorem 1. 14. If S is a compact set in a normed linear space 

X. then !Jt (z, S) is not empty for any z E X. 

.. ·:;;2-· 
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Theorem l. 15. If X is a finite dimensional normed linear space 

then each closed set is proximinal. 

Theorem 1. 16. If 5 is closed and convex and if a normed space 

X is reflexive I then S is proximinal. 

The three theorems above are rather old,· and their origins are 

difficult to trace. However, work is still being done on finding suffi-

cient conditions for !Jl (z, 5). Most recently Edelstein, [ 12 ], has shown 

under certain conditions that even though !11 (z, 5) may be empty for 

some z in a Banach space there are still sufficiently many points for 

which !11 (z, S) is not empty to form a dense set in X. 

Theorem 1. 17. Let 5 be a nonempty closed set in a uniformly 

convex Banach space X. Then the set C of all points c in X for which 

there is a point s E 5 with 

lls - ell= infJllx-cll:xES} 

is dense in X. 

This theorem followed an earlier theorem by Edelstein, [11], 

in which he showed that if S is a closed set in a uniformly convex 

Banach space X the set C of all points c such that 

11 s - c 11 = sup { 11 x - c 11: x ES} 

is dense in X. In response to this theorem, Asplund, [2], published a 

paper in which he proved that if S is closed and .bounded in a reflexive 

and locally uniformly convex Banach space X, the complement of the 

above set C is of first Baire category. Thus, since Edelstein was able 

to prove a theorem about nearest points analogous to his first theorem 
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concerning farthest points, a logical conj ec tu:ce would be a:s folLm;vs: 

If S is a closed set in a reflexive and locally uniformly convex Banach 

space, then, except on a set of first Baire category, the points in X 

have nearest points in S. Of course, more generally, the open problem 

here is to characterize those spaces in which each closed set has sets 

of nearest points. 

The Theory of z-Nearest Point Sets 

The set 1)1 (z, S) is always a subset of S. From Exarnple L l it 

is obvious that if xis in lF(z, S) then there are possibly more points w 

in X such that x E IJl(w, S). Hence, for a given x E S another set of 

interest related to x and S is the set of all z E X such that x e ff} (z, S). 

This is defined more formally below. 

Definiti.on L 4. Let S be a subset of the normed linear space X 

and let z E S. Then let N(z, S) denote the set of all points x in X such 

that 

11 x ··· z, 11 = inf { 11 x - y 11 : y e S} . 

This set was also introduced by Motzkin, [28], and was later 

studied by Pauc, [30], Phelps, [31], and Klee, [23]. In this article the 

set N(z, S) will be referred to as the z-nearest point set of Sas opposed 

to sets of nearest points for the set 1)1 (z, S). The elements of N(z, S) 

will be called z~-nearest points. In order to make clear the meaning of 

the definition, consider the following example. 

Example 1. 2. Let S be the closed unit disk in E 2 and let z be 

the point ( 1, 0) \vhich lies on the boundary of S. Then N(z, S) is the 
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ray {(x, 0): x > l} (cf. Figure 1. 2). Notice that S is convex and that 

N(z, S) is a closed, convex cone. , 

~~--t-~---=-~~:-~-: __ -i-, ____ ~------~--.-.-~~~ xl 
-- -- z N(z, S) 

Figure 1. 2. 

Example 1. 3. Let S be the set of points in E 2 whose first 

coordinates are not greater than -1 together with the point ( l, 0). Let 

z be the paint ( 1, 0), then the set of points equidistant from ~--~~_q S. \{ z} is 

- the parabola {(x 1, x 2 ): x} = 4x1J:;i Jhus/ .it follows th,a\ N(z, S) is the 

2 set {(x 1,x2): x 2 < 4x1}. Note that again N(z,S) is convex but that it 

is not a cone (cf. Figure 1. 3). 

· Motzkin, [28], first studied this set and provided the first 

important theorem concerning them. His theorem, Theorem 1. 18, 

shows that the z -nearest point sets in Example 1. 2 and Example 1. 3 

have to be convex because E 2 is an inner product space. 
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Theorem 1. 18. Suppose X is a two dimensional normed real 

linear space. Then X is an inner-product space if and only if for each 

set S and z e S, N(z, S) is convex. 

Actually Motzkin required that X be a two dimensional space in 

which the unit ball is an ellipse, but this is known to be equivalent to an 

inner product space (cf. Day, [8]), Motzkin's result was extended by' 

Phelps, [31 ], to include any finite dimensional inner product space. 

Examples which illustrate Theorem l. 18 are easily found. The 

following example shows a z-nearest point set which is not convex in 

a normed linear space which is not an inner-product space. 

Example 1. 4. Let X be the space R 2 with 

IJxjj =max{lx 1 j, Jx2 j},x=(x1,x2). LetS={(O,O), (1,0)}, thenif 

z = (0, 0) the set N(~':"·s) ='AU B, where 
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and 

(cf. Figure L 4). 

N( z, S) z ( 1, 0) xl 

Figure l, 4. 
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In the following extension of Motzkin 1s theorem, Theorem 1. 18, 

Phelps required convexity of S. 

Theorern l. 19. Suppose that the dimension of the normed linear 

space X is at least three. (equal to two). Then X i.s an inner-product 

(strictly convex) space if and only if for each convex set S and z E S, 

N(z, S) is convex. 

Other authors have sought after the geometrical properties of 

N(z, S). One of the earliest workers on this problem was Pauc, [30]. 

Pauc 1s theorems dealt with the boundedness and the interior points of 

N(z, S). 

Theorem 1. 20. Let S be a subset of the Euclidean space E , 
n 

then each interior point of N(z, S) has only a single projection on S, 

narnely z. 

Pauc also showed that, although z is always an ·element of N(z, S), 

the only way for z to be an inte.rior point of N(z, S) is to be an isolated 

point of S. 

Theorem 1. 21. In the space E , the element z of the set S is 
n 

interior to N(z, S) if and only if z is an isolated point of S. 

Pauc further developed the geometrical picture of N(z, S) with 

the following theorem: 

Theorem l. 22. In the space E , the set N(z, S) is bounded for 
n 

a set S if and only if z is interior to the convex hull of S. 
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This type of research was taken up much later by Klee. Klee 

preferr,ed to consider more general spaces, and his theorerr1 illuminates 

even better the geometrical shape of N(z, S). The following theorern of 

Klee, [23], shows that the set N(z, S) is a cone if S is convex. 

Theorem 1. 23. Let X be a normed linear space and SC X. If 

Sis convex and z ES then N(z,S) is a cone with vertex z. 

Example 1. 4 illustrates a nonconvex set S where N(z, S) is not 

a cone. If the norm on R is changed to the usual Euclidean norm in 
n 

Example 1. 4, then N(z, S) becomes the set of points (x 1, x 2 ) such that 

x 1 is not greater than one half. This set is a cone, but its vertex is 

not z. Klee, [23 ], went on to state a partial converse of Theorem 1. 23; 

however, he did not prove it. A proof can be found in Phelps' first 

paper, [31 ], on nearest points. The theorem is as follows: 

Theorem L 24. Suppose S is closed and proximinal and that the 

normed linear space X is smooth. Then S is convex if for each z E S, 

N(z, S) is a cone with vertex z. 

Since every closed subset of (smooth) E . is proximinal, 
n 

Theorems 1. 23 and 1. 24 combine, as shown by Phelps, to prove the 

following characterization of convexity of a closed set. 

Theorem L 25. A closed set Sin E is convex if and only if 
n 

for each z E S, N(z, S) is a cone with vertex z. 

From the preceding theorems it is seen that the property that 

N(z, S) is a cone has a similar relationship to Sas the Chebyshev-

Motzkin property has to S. That is, the two properties are both 
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equivalent to convexity under suitable conditions, and one might suspect 

that if N(z, S) is a cone that each point of N(z, S) has one nearest point 

in S, namely z. This seems especially possible in light of Pauc's 

theorem, Theorem 1. 20, which says that the interiors of two sets 

N(z, S) and N(w, S), w :/: z, do not intersect. Phelps showed in [31 J, 

that if S is a convex set in a strictly convex space X, then 

N(z, S) n N(w, S) is empty for z, w E s and z :/: w. 

The sets N(z, S) have been shown to be convex, unbounded, and 

cones, given favorable conditions. So a possible question at this point 

is "what characterizes the spaces X such that for a set M there exists 

·a set Sand a point z such that M = N(z,S)? 11 Must all these sets be 

convex, cones, or unbounded? The answer to these questions was 

provided by Phelps, [32], in his second paper on nearest points. These 

theorems are interesting inasmuch as their statements closely parallel 

those in the Chebyshev-Motzkin series. 

Theorem 1. 26. In a complete in~er-product space X for each 

closed convex set T there is a set SC X and a point z e S such that 

· T = N(z, S). 

For dimensions greater than three the converse of Theorem 

1. 26 is true; and hence, the first question asked above is answered 

for finite dimensional spaces. 

Theorem 1. 2 7. Suppose that the dimension of X is not less 

than three and that every closed convex subset T of X has the property 

that there is a set SC X and a point z e S such that T = N(z, S). Then 

X is a complete inner-product space. 
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Then from Motzkin 's theorem, Theorem 1. l, it is known that 

in a finite dimensional inner-product space each set N(z, S) m.us t be 

convex, so this together with Theorems 1. 26 answers the second 

question. Phelps also presented some other results of a different 

nature in his second paper. 

Closest-Points 

Definition 1. 5. Let A be a subset of the normed linear space X, 

then y e X is said to be point-wise closer to A than is x provided 

IIY- a// < !Ix -a I/ for each a e A. If xis such that no point of Xis 

point-wise closer to A than x then xis called a closest-point to A. 

Example 1. 5. Let X be the space E 2 , then if A is the open unit 

disk, each point of the boundary of A is a closest-point to A. 

The concept of closest-points and sets of closest-points was 

originated by Fejer, [18], who proved the following theorem. 

Theorem 1. 28. If A is a subs et of the complete inner-product 

space X then conv(A) is equal to the set of all closest-points to A. 

Phelps, [32 ], obtained a partial converse of Fejer I s theorem 

which showed that the complete inner -product spaces of finite dimen

sion greater than two can be characterized in terms of closest points. 

Theorem 1. 29. Suppose that the dimension of the space X is at 

least three and that for each closed convex set T C X there exists a 

set S C X and a point z e S such that T = N(z, S ). Then X is a complete 

inner-product space. 
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A theorem similar to Theorem 1. 28 and Theorem 1. 29 was also 

obtained by Phelps, [32], for spaces of dimension two by merely 

requiring that X be strictly convex. The following theorem was also 

shown by Phelps in the same article. 

Theorem 1. 30. Let X be a normed linear space of dimension 

two,· then for each subset A of X the set of closest-points to A is a 

subset of conv A if and only if Xis strictly convex. 

The subject of closest-points does not seem to be well explored 

as evidenced by the small number of articles writteh concerning them. 

An open question, here is to characterize the sp;;tces s.uch that the set 

of closest points of any set A.coincides with conv A. 

Nearest Point Maps 

A func;tion f can be defined on a space X given a closed proximi

nal set S as follows: If x e X let f(x) be a point i/E S such that x e N(z, S ). 

This nearest point map _can exist if and only if S is proximinal and a 

Chebyshev-Motzkin set. The continuity of. this function, when S is a 

Chebyshev-Motzkin set, has been found by Klee, Phelps, Fan, and 

Glicksberg to be closely related to the convexity of S. The following 

two theorems are stated by Klee, [21 ]. 

• Theorem 1. 31. In an arbitrary normed linear space, the 

nearest point map onto a boundedly compact Chebyshev-Motzkin set is 

continuous. 

Theorem 1. 32. In every -q,niformly convex Banach space X, the 

nearest point map onto a closed convex set is continuous. 
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When a set S is merely a Chebyshev-Motzkin set or when S is 

a convex Chebyshev-Motzkin set, it is not known what circumstances 

will cause the nearest-point map to be continuous. Even when S is a 

Chebyshev-Motzkin set in a Hilbert space, it is not known whether the 

associated nearest-point map must be continuous. However, continuity 

of the nearest-point map can be used to demonstrate the convexity of 

Chebyshev-Motzkin sets as shown by Klee, [21 ], in Theorem 1. 33. 

This theorem is a generalization of an earlier theore1n by Klee, [2 5 ], 

in which the Chebyshev-Motzkin set S was required to have a continuous 

and weakly continuous nearest-point map. 

Theorem 1. 33. Let S be a Chebyshev-Motzkin set in a ,smooth 

reflexive Banach space X, and each point of X "'S admits a neighbor-

hood on which the ( restricted) nearest-point map is both continuous and 

weakly continuous. Then S is convex. 

An interesting concept in the theory of nearest-point maps is 

that of a 11 sun 11 • Some of the previous theorems could have been stated 

using this term. 

Definition 1. 6. Let S be a Chebyshev-Motzkin set in a space X, 

and let f(x) be the nearest-point map of X onto S. Then S is a sun if 

f(z) ::: f(x) for every x e X '-. S and every z on the ray emanating from 

f(x) and pas sing through x. 

Thus, Definition 1. 6 says that S is a sun if N(z, S) is a cone for 

each z e bdS. Hence Theorem 1. 25 by Phelps could be changed to 

read-- 11 A closed set S in E is convex if and only if S is a sun. 11 Klee 
n 

[21] also proved the following theorem concerning nearest point maps. 
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Theorem 1. 34. If S is a Chebyshev~Motz.kin set in a reflexive 

Banach space X, and if each-point in X'\ S has a neighborhood on which 

the restriction. of the nearest-point map is continuous and weakly 

continuous, then S is a sun. 

Alternatively, L. P. Vlasov, [37],. has shown that in any Banach 

space every boundedly compact Chebyshev-Mobkin set is a sun. No 

example is known of a Chebyshev .. Motzldn set which is not a sun or 

does not have a continuous nearest-point map, However, Br<.6ndsted, 

[5], was able to prove the following theorem. 

Theorem 1. 3 5. In any smooth normed linear space every ~un 

is convex. 

Since nearest points and the structure of the norm are closely 

related, as demonstrated by Theorem 1. 18, it follows that the nearest

point map should be related to the norm. This has been shown by 

Phelps, [3 1], who makes the following definitions. 

Definition 1. 7. Let f be the nearest-point map defined by the 

Chebyshev-Motzkin set S, then f is said to shrink distances if 

II f(x) - f(y) 11 < 11 x - y 11 whenever x, y E X, 

Definition 1. 8. The normed linear space X is said to have 

property P if a nearest-point map shrinks distances whenever it exists 

for a closed convex set S C X. 

Phelps, [31 ], proved a rather inter es ting theorem concerning 

property P. The proof of this theorem is also interesting in that. it 

depends on a type of orthogonality defined by Birkhoff, [4], which is 
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meaningful in a general normed space and coincides with the usual type 

in an inner -product space. 

Theorem 1. 36. Let the dimension of the normed linear space X 

be at least three (respectively, equal to two). Then Xis an inner

product space (respectively, strictly convex and orthogonality is 

symmetric) if and only if'X has the property P. 

Phelps also showed that this 11 shrinking 11 property of nearest

point maps is restricted to thos.e which exist for convex sets. 

Theorem 1. 37. Let the normed linear space X be strictly 

convex and assume that a nearest-point map f exists for the closed 

set S C X. Then S is convex if f shrinks distances, 

The theorems presented in the preceding pages represent the 

rnain stream of research. in the theory of nearest points. Not all 

theorems by all authors working in this area have been presented, but 

an effort has been made to present those which best illustrate the 

general trend of research. The bibliography presented in this paper 

is not complete, but it is extensive. 



CHAPTER II 

THE DEVELOPMENT OF FARTHEST POINTS 

The obvious question at this point is whether or not analogous 

sets of points, a set of farthest points and a z-farthest point set, could 

be defined which would have some, or possibly all, of the analogous 

properties of sets of nearest points and z-nearest point sets, respec

tively. Sets of farthest points have been defined and considered by 

several authors; however, the properties of this set seem to be less 

developed than those of sets of nearest points. In Chapter III, sets 

analogous to z-nearest point sets will be defined and considered. 

The definition of sets of farthest points is as follows: 

Definition 2. I. Let X be a normed linear space and let SC X. 

If 7; e X, then i3 (z,S) = {x e S: llz -x/1 = sup { llz -yjj:y e S}}. 

It is obvious that the set S must be bounded in order for i3 (z, S) 

to be nonempty. Although the elements of the set i3 (z, S) have been 

narned, there appears to be no terminology in general usage. Let us 

call the elements of i3 (z, S) the farthest points of z in S. The set 

i3 (z, S) will be, called the set '2! farthest point~ of S relative to :z. 

Exail'1;ple 2. 1. Let X be Ez and let 

S = {(x, y) : x = - J 1 - y 2 , -1 < y < 1}. 

If z is the point (1, 0), then i3(z,S) = {(.-1, O)}, (cf. Figure 2. 1). 
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Figure 2. 1. 

If w = (-2, 0), then O(w,S) = {(O, 1), (0, -1)}. Moreover, if p = (x, 0) is 

any point such that x > 0, then u (p,S) = {(-1, O)}, and if q = (x, 0) such 

that x < 0, then u (q,S) = {(O, 1), (0, -1)}. If T denotes the open set 

bounded by the arc Sand the line segment, {(O,y): -1 < y < l}, then 

0 (z, T) is empty. 

Example 2. 1 shows that u (z, S) may sometimes be empty; 

however, no one has bothered to name those sets S for which u (z, S) 

is not empty for any z e X. Following Phelps' lead in defining proximi-

nal, a good name would be remotal, a combination of the words remote 

and maximal. 

Definition 2. 2. Let S be a subset of the normed linear space X, 

then S is remotal if and only if for each z e X, u (z, S) is not empty. 
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If a set S is remotal then there is the possibility that 13 (z, S) 

is a singleton set for each z e X, in this case S is said to be uniqu~ly 

remotal. If for each point z e M, where M C X, i3 (z, S) is a single-
. 

ton set, then Sis said to be uniquely remotal with respect to the set M, 

If the set u (z, S) is to be closely analogous to !JI (z, S) then it is 

necessary that i] (z, S) is related to the convexity of S and the structure 

of the norm of X, Very little has been done in this direction, perhaps 

because of the difficulty of the problems or possibly the problems have 

not been considered interesting. However, a few authors have pursued 

the solutions of analogous problems to those of Motzkin. One of the 

earliest such writers was Jess en, [19 ], who proved the following 

theorem, 

Theorem 2. 1. In a Euclidean space, a bounded, closed, convex 

set S is uniquely remotal with respect to its complement if and only if 

it has interior points and contains the centers of all osculating spheres 

of its boundary. 

An osculating circle in the plane is a circle that is tangent to a 

given curve K at a point p of K which has a higher degree of contact 

with K at · than has any other circle, This is similar to the case when 

considering surfaces in spaces of greater dimension. To find the 

osculating spheres at a point q of the boundary F of a closed, bounded, 

convex set K in E , let H be a support hyperplane to Kat q and let h 
n 

' be the ray with end-point q which is perpendicular to H and lies on the 

same side of Has K. (cf. Figure 2. 2). Then fo.r each point p e F let 

Q' be that sphere with center p' on h which pass es through q and p. 

Every limit point q' of this set of centers is called an osculating center 
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Figure 2. 2. 

for F on h. The corresponding spheres passing through ·q arl.'called 

the osculating spheres for F for the. element q of H. 

Theorern 2. l seems to be the only theorem which characterizes 

convex sets as sets which are uniquely remot:al with respect to their 

cornplernents. Most authors have been content to study sets which are 

uniquely remotal virith respect to the entire space X. Such sets are 

really not as structurally interesting since the results indicate that if 

a set is uniquely remotal, then it is a singleton set, [36]; however, 

this has not been shown in very general spaces, in fact, it has not 

been shown for a Hilbert space. 

An interesting result along this line is one by Ficken, which 

was never published by Ficken but appears in an article by Klee, [21 ]. 

As ment:ioned before, Ficken 1s method of proof relates a basic problem 
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m the theory of nearest points to a basic problem. in. the theory of 

farthest points. By a process involving an inversion in spheres h~ 

establishes a close connection between the problerr1··"· 11 Must a. Chebyshev

Mot:zkin set be convex? 11 - -and the related problem.·--· 11 Must a. set which 

is uniquely remotal be a. singleton? 11 

In order to present Ficken 1 s result it is necessary to make the 

following definition. 

Definition 2. 3. In a normed space X, a set Mis Chebyshevian 

at a point z e X provided z i M and M is uniquely proxirninal for each 

point y e X for which 

11 y - z 11 < inf { 11 y - x II : x e M } . 

Ficken' s theorem, with some sharpening and en1bellishment by 

Klee, is a.s follows: 

Theorerr1 2. 2. Let E be an inner product space, A and L::.. 

class es of subsets of E such that A and L::.. are related as follows: 

Whenever X e A, x e (conv X) \ X, and g is the inversion of 

E in a sphere centered at x, then conv ; X e L::..; 

Whenever Y e L::.., y is an inner point of a line segment in Y, and 

Tl is the inversion of E in a sphere centered at y, then ri(Y '\. { y}) e L::.. 

Then the following two statements are equivalent: 

1. If x E A and x is Chebyshevian c1,t y, the.;;-y·-i-=~onx.:_X; 

2. If Ye L::.. and Y is uniquely remotal, then Y is a single point. 

A less complicated result by Motzkin, Straus, and Valentine, 

[29], is stated here as Theorem 2. 3. 
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Theorem 2. 3. If a subset Y of En is uniquely. remdtal, then Y 

must be a single point. 
' 

Klee, [21 ], points out that the convexity of Chebyshev-Motzkin 

sets in E may be deduced from Theorem 2. 2 and Theorem Z. 3; 
n 

moreover,. Theorem 2. 2 indicates that if the uµique nearest point 

problem can be solved in a ~ilbert space then the corresponding 

unique farthest point problem will be solved. Thus, in the setting 

of an inner-product space Ficken has tied the theory of nearest and 

farthest points together. 

Motzkin, Straus, and Valentine, (29 ], have contributed to the 

theory of farthest points by not only considering se.ts which are uniquely 

remotal, but also sets for which i! (z, S) has. a cbnstant,finite number 

of elements. Their results give some insignt into the makeup of the. 

boundary of a remotal set and the shape of some sets. The following 

theorem describes the boundary of a certain type of remotal set. 

Theorem 2. 4. Suppose S is a continuum in a two-dimensional 

normed linear space. If S is uniquely remotal with respect to S, then 

U S iJ (x, S) :: bd conv S. 
XE 

The following theorem shows the structure of S when iJ (x, $) 

consists of exactly two points for each x E S. 

Theorem 2. 5, Suppose $ is a compact set in the plane E 2, and 

suppose that for each :x E S the set of farthest points iJ (x, S) has at 

least two points. Then S is contained in the union of a finite number 

of line segments. If iJ (x, S) has exactly two elements for each x E S, 

then S must be disconnected. 
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Farthest Point Maps 

Motzkin, Straus, and Valentine in their paper, [29 ], considered 

a farthest point map which is analogous to the nearest point map 

defined in previous paragraphs. Although they did not demonstrate 

very rnany properties of this map, the map was useful in the proofs of 

some of their theorems. 

Definition 2. 3. Let S be a remotal subset of the normed linear 

space X, then the map Y, such that Y(x) = i3 (x, S), x E X, is called 

the farthest point map of X onto S. 

Most of the properties and defintions given for the nearest point 

map have no analogies here. It is obvious that closest-·points could 

have no analogy. But even so, the farthest point map does have some 

similar properties such as the following by Motzkin, Straus, and 

Valentine, [2 9 ]. 

Theorem 2. 6. Suppose S is a subset of the normed linear space 

X and suppose S is uniquely remotal with respect to TC X. Then 

cj>, where q>(x) = I Jx -y(x) JI, for x e T and y(x) E Y(x), is continuous 

on T. 

Finally, to close the discussion of the properties of u (z, S), 

notice that Jessen 1s theorem, Theorem 2. 1, shows that the convexity 

of a set S depends on G (z, S), but the set u (z, S) can also be shown to 

determine the convex set S in a manner similar to that of the extreme 

points and exposed points of S. The Krein-Milman theorem, see -,-..... ,. 

VaJeritfoe·, [36-J, s·tat:es that: under suitable conditions, the closed convex 

hµll,,e.L a s eL~~tis,, .. ,~qi\ia.1 to the,, clo1ied convex hull of it.s extreme: points. 
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Straszewicz, [34]. showed the exposed potnts of S could replace the 

extreme points of S in the Krein-Milman theo'rem. More recently 

Asplund, [ 1 ], has shown the followirtg theorem, but the theorem can be 

deduced from Stras zwicz 1 s theorem or from a theorem by Ktee, (22 ]. 

Theorem 2. 7. Let S be a closed, bounded, and i~nvex s:ef' i~· 

a Hilbert space X,, th~n ~ = conv U· x· 3(z','$). 
Z E · 

It is evident from Theorem ·2. 7 and the previous theorems 

that farthest points are important building bl°ocks of a conve:xj se~. 

Thus it is unfortunate that so little has been done with the theory 0£1 1 

farthest points. The articles by Asplund, Jes sen, Klee, and the·.·. 
. . . 

article by Motzkin, Straus, and Valentine a~pear to be the only pape:rs 

which relate farthest points to convex sets. 

The Existence of Farthest Points 

Finally, to close this discussion, the e:x;istence of farthest 

points will be considered. Again, as in the case of nearest points, 

there are certain theorems deali11g with the existence of iJ(z, S) which 

cannot be attributed to any one person. An example of this is the 

following theorem. 

Theorem 2. 8. A compact subset of a finite-dimensional normed 

linear space is remotal. 

It is also true that if a set S is compact in a normed linear 

sp,,n.<-:: then S is rernotal; however, not all closed and bounded sets are 

cornpact. The reader will recall that every closed convex set S is 

p:roximinal if the normed space X is reflexive; however, apparently 
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i.t is not known whether a closed, bounded, and convex set S is rernotal 

in a reflexive space. 

Edelstein, [ 11 ], has worked on the problem of the existence of 

t3 (z, S), and although he has not shown that a closed, bounded set rnust 

he remotal, he has shown that the points x in a certain type of space 

such that t3 (x, S) is not empty must be dense in the space. This 

theorem is very similar to l'heorem 1. 17. 

Theorern 2. 9. Let S be a nonempty closed and bounded set in 

a uniforrnly convex Banach space X. Then S is remotal with respect 

to a dense subs et of X. · 

Asplund, [2], following Edelstein1 s lead, discovered a similar 

theorem. Instead of a dense set, Asphmd 1s theorem deals with a set 

of Bai re category one, a set that is the union of a countable number of 

nowhere dense sets. 

Theore1n 2. 10. If S is a bounded, closed subset of a reflexive, 

locally uniforrnly convex Banach space X, then, except on a set of 

fi:rst Baire category, S is remota.L 

Edelstein I s theorem and Asplund I s theorem are both interesting, 

but they fail to answer the basic question here-- 11 What conditions on 

the space X will insure that each closed and bounded set is remotal? 11 

Perhaps the only answer is that X must be finite dimensional. 

The preceding paragraphs and theorems demonstrate the 

direction of the research in the theory of nearest and farthest points. 

This chapter is meant tc;> be only a survey so many results had to be 

ornitted. 



CHAPTER III 

PROPERTIES OF THE SET F(z, S) 

In 193 5, T. Motzkin, [27] defined, for a given set S and a point 

z e S, the sets N(z, S) and !n(z, S). Later authors such as Asplund, 

Edelstein, and Klee investigated the set a (z, S), which was defined in 

a natural manner analogous to that of. m (z, S). Hence an obvious exten

sion in the theory of nearest and farthest points would be a definition 

analogous to that of N(z, S). This definition is as follows: 

Definition 3. 1. Let S be a subset of the normed linear space X 

and let z E S, then 

F ( z, S) = { x E X : I/ z - x II = sup { II y - x / I y E S} } . 

Simply speaking, the set F(z, S) is the set of all x E X which are 

at least as far from z as from any other point of S or, alternatively, 

the set F(z, S) is the set of all x E X such that z is an element of a (x, S). 

The elements of the set F(z, S) will be called z-farthest points of S, and 

the set F(z, S) will be called the z-farthest point set of S. The following 

examples should illustrate the concept of F(z, S). 

Example 3. 1. Let X be the space E 2 and let S be the closed 

unit disk (cf. Figure 3. 1). Then if z = (-1, 0), F(z,S) = {(x, 0) :x :::_ O}. 

If w = (t, 0) E { (x, 0) : x > O}, then the circle paving equation 

I/ p - w II = / I w II + 1 pass es through the point z and. contains in its 
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Figure 3. 1. 

interior the set S; hence, II z - w II ~ 11 p - w II for all p e S. Since 

z E S, II z -w II is equal to sup { II p - w II : p e S} and, therefore, 

w e F(z, S). On t:q.e other hand, if w = (u, v) ,/. F(z, S) then the circle 

II p - w II = II w II + 1 pass es not through z, but through 

w' = 

s o that II z - w II < II w' - w 11-
F ( z, S) = {(x, 0): x > O}. 

( -u -v ) :;· s . fwl, ' . Fl. ~ . 

Hence w ,/. F(z, S) and, therefore, 

Example 3. 2. Let X be the space E 2 and let 

S = {(O, 0), (1, 0), (0, 1), (2, 2)}. 

Then if z = (0, 0), 
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F(z,S)={(x,O) x>l/2}11 {(O,y) y~_l/2}(1 {(x,y):x+y?_2}, 

(cf. Figure 3. 2). 

In this example, the set of points farther from z than fron1 

(1, 0) is {(x, 0) : x > 1/2}; the set of points farther from z than (0, 1) is 

{ (0, y) : y ~ 1 /2}; and similarly the set of points farther from z than 

(2, 2) is the set {(x, y) : x t y ::_ 2}. Hence, the intersection of these 

three sets is F(z,S). Note that F(z,S) is closed and convex, but it is 

not a cone. 

Although a z -farthest point set need not be a cone, it must 

always be closed. This is shown by the following theorem. The 

theorem is proved for more general sets than z-farthest point sets by 

not requiring z to be an element of S. 

' 
y 

' 
' ·(2,2) 

( 0, 1 
- - - - -- -- - - - --- - -- -- -r -- - ---,---·-::._ ___ ,. -· 

---·- ___ J____ '+--··-·---~ x 
z I (1,0) ', 

'-

Figure 3. 2. 

' ' 
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Theorem 3. 1. Let X be a normed linear :;pace, S C X, and 0• 

z e X. Then 

F = {x e X: llx-zll = sup {/jx-yl/: y ES}} 

is a closed set. 

Proof: If F is empty then the theorem is t:rue. Suppose F is 

not empty and assume that w is a limit point of F. There exists a 

sequence {x } of points of F such that {x } converges to w. So for 
n n 

each real number E > 0 there exists a positive integer N such that 

llxn-wll<e/2, n~N. (3. l) 

Suppose that ye Sand that n ~ N, then from (3. 1) 

llz-x II= //z-w+w-x II n n 

< llz ·-wll + /lw-x II n 

< llz - wll + e/2. (3. 2) 

' Hence, 

-!ly-x +x ·-wl/ n n 

(3. 3) 

becomes 

Jjy - wll < llz - x Jj+jjx - wjj n n 

< 11 z - w 11 + E /2 + e/2 

Therefore, since E is arbitrary 



35 

IIY - wll < llz -wlj. (3. 4) 

If z e S,. then the theorem is proved; however, if z I S then consider the 

foUowing: 

Let e > 0 be given, then there exists a positive integer N such 

that 

This means that 

llw-x II <e/3, n>N. n 

llz -xNII = llz -w+w-xNII 

?_ II z - w 11 - 11 w - XN II 

> llz - wll - e/3. 

Since xN E F, there exists y O E S s'l,lch that 

Then from (3. 5), (3. 6), and (3. 7), 

II y O - w II = II y O - XN + XN - w II 

?_ II y O - XN II - II XN - w II 

> II y O - XN II - E I 3 

> II z - XN II - 2 e /3 

>llz-wll-e. 

Therefore, for each E > 0 there exists y O e S such that 

llz - wll - e < IIYo - wlJ. 
Thus, from (3. 4) and (3. 8), 

11 z - w 11 = sup { 11 Y - w 11 : Y E S} · 

r· 

(3. 5) 

(3. 6) 

(3. 7) 

(3. 8) 
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Hence w e F and F is closed. 

In addition to being closed, the set F(z, S) must be inverse star

like relative to a point y, that is, there exists a pointy such that if 

x e F(z, S) then 

oox a= {a+ a(x - a): a 2: l} C F(z,S). 

Theorem 3. 2. If X is a normed linear space, z E SC X, such 

that F(z, S) -1- 0, then F(z, S) is inverse starlike with respect to z. 

Proof: The set F(z, S) is assumed to be nonempty so let 

x E F(z, sr; then 

II z - x 11 = sup { 11 y - x 11 : y E S}. 

Let w = x + a (x - z), where a > 0, the_n 

11 w - z 11 = 11 (1 + a )x - a z - z 11 

= (1 +a) llx - zll, 

For each y e S it follows from (3. 9) and (3. 10) that 

II w - y 11 = 11 x + a (x - z) - y 11 

Since z e S it follows that 

~ llx - YII + allx - zll 

< llx - zll +ajlx - zll 

= (1 +a) !Ix - zjl 

= llw-zll, 

II w - z 11 = sup { II w - y 11 : y e S} 

(3. 9) 

(3. 10) 

(3. 11) 

and; therefore, w e F(z, S). Since w e oo ;x z is arbitrary, oox z C F(z, S ). 
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A similar situation exists for z-nearest point sets, since it is 

well known (cf. Phelps, [31]) that if x E N(z 1 S) then the line segment 

{ax+ (1 -a )z: 0 :::_a< l} is a subset of N(z,S). Hence N(z,S) is 

always starlike with respect to z; moreover, if S is convex then N(z, S) 

is inverse-starlike also, which means that N(z, S) is a cone, 

Pauc, [30 ], has shown that in Euclidean space N(z, S) and 

N(w, S), w # z, z and w elements of S, do not intersect except: possibly 

at boundary points. Phelps, [31 ], has shown that this is also true in 

case X is strictly convex. A similar situation holds true for z-farthes t 

point sets as the following theorem shows. 

Theorem 3. 3. Let X be a strictly convex normed space and 

let S C X. If z e S and w E S, z # w, such that F(z, S) 1 0 and 

F(w, S) 1 0, then F(z, S) and F(w, S) have only boundary points in 

common. 

Proof: Let x E F(z, S) n F(w, S) and assume that x is an 

interior point of F(z, S). Then there exists a number E > 0 such that 

{y: l!x - YII < e} C F(z,S). 

Since x e F(z, S), 

11 x - z II ::: sup { 11 x - y 11 y e S}, 

and since x e F(w,S), 

1/x-wll:::sup{llx-yll yeS}; 

hence, 

llx - wll::: l!x - zll. (3. 12) 

Let d::: llw - xii, then for each a such that O <a< e, 



llw - kx +a/d (x - w)]~II = ·lj(w - x).+a/d(w - x)jj 

= ( 1 + a/ d) 11 w - x 11 

= ( 1 + a/ d) 11 z - x 11 

> I lz - x II. 

Butx +a/d(x ~ w) e F(z,S) since O .<a < e. Hence, 

llz - [x+a/d(x-w)] II= sup {jjyi-[x+a/d(x-w)] II :y ES}. 

Now note that if there exists a scalar I\ > 0 such that 

(3. 13) 

(3. 14) 

(z - x) = 'X.(w - x), then llz - xii= }\llw - xii, and (3. 12) implies that 

I\ ::: 1. But this implies that x = w, which is contrary to hypothesis. 

Furthermore, note that in a strictly convex space (cf. Wilansky, [38] ), 

llu+vll = llull + llvll forvectorsuandvifandonlyifthereexists 

I\> 0 such that u = /\V, Then it follows from (3. 12), (3. 13), and (3. 14) 

llz - [x +a/d(x - w)] II= ll(z - x) +a/d(w - x)II 

< 11 z - x 11 +( a Id) 11 w - x 11 

= 11 w ., x II +( a Id) 11 w - x 11 

= 11 w - [x + a /d(x - w)] 11, 

Hence, x + a I d(x - w) is farther from w e S than z so that x +a/ d(x - w) 

cannot be an element of F(z, S). But this contradicts (3. 12); therefore, 

an interior point of either F(z, S) or F(w, S) cannot be an element of 

F(z, S) ('~ F(w, S). 

Theorem 3. 3 depends on the fact that in a strictly convex space, 

Jlu+vll = llull + llvll if and only if u and v are linearly dependent. It 

can be shown that this property, llu+vll = llull + llvll if and only if 

u and v are linearly dependent, implies that the space X is strictly 
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convex (cf. Wilansky, [38]). Hence, the technique of proof indicates 

that X must be at least a strictly convex space in Theorem 3. 3. The 

following example shows that F(z, S) n F(w, S), z :I w, can contain 

interior points if X is not a strictly convex space. 

Example 3, 3, Let X be the space lcx:,(2) and let S = {,z,w}, 

where z = ( 1, 0) and w = (0, 0). Then it can be shown that F(z, S) = AU B 

and F(w, S) = C U D, where 

A = { (x, y) : x ~ 1 /2} 

B={(x,y):x>l/2, IYl~x} 

C = {(x,y): x ~ 1/2} 

D = {(x,y): x< 1/2, IYI > Ix - II}, 

To see that F(z, S) =AU B, let t = (x, y) E A, then 

llt - zll = max { Ix - 11, IYI}. 

Since lit - wll = Jltll it follows that 

11 t - w II = max { I x I , I y I } . 

(3.15) 

(3. 16) 

Suppose lltll = Jvl, if llt - zll = IYI then llt - zll > llt - wll and 

thereforetE F(z,S). If llt-zll = lx-11 then, from(3.15), 

Ix - l j ~ I y I = II t II , Hence 11 t - z II ~ II t - w II , which implies 

t E F(z, S). 

If lltll = !xi and lit - zll = Jyl, then from (3.15) and (3. 16), 

Ix I :::., Ix - l j. Suppose j x I > j x - l j and x > 0, then since t e A, 

Ix - l j = ·-x + I. Hence, x > -x + l, which implies that x > 1/2 and 

contradicts the fact that t E A. If jxj > jx - l j and x < 0, then jxj = -x 

and j x - l j = -x + 1. Hence, -x > -x + l which implies O > 1. Thus, 
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!xi= Ix - l I and it follows that jxj = !YI· Therefore, /ltll = jyj. 

which is the preceding case. 

Suppose lltll = !xi and lit - zll = Ix - lj. IfO <x< 1/2 then 

2x < 1 which implies x < -x + 1 or that !xi< jx - lj. Ifx < 0, then - - - -
-x + 1 > -x and so Ix - lj > jxj. Thus, in any case, lit·· zll :::_ lltll 

so that t E F{z, S). Hence, A C F{z, S). 

Let t = (x, y) E B, then again II t - z II and 11 t II are given by 

(3.15) and (3. 16), respectively. Now lltll = !YI since, from the 

definition of B, !YI> x > 1/2. From (3. 15), llt - z 11 > lit.II which 

implies t e F(z, S) which in turn implies that B ( F(z 1 S). Thus, 

AU B ( F(z,S). 

Lett= (x,y) E ~(z,S), then either x < 1/2 or x > l/2. If x < 1/2 

thentisanelementofA. Ifx> l/2and lltll = /YI then, from(3.16), 

x ~ !YI which implies that t EB. Ifx > 1/2 and lltll = lxl = x, then, 

since 11 t - z II > 11 t II it follows that II t - z II = j x - 1 j. Hence 

Ix - ll > x = jxj. But, from this, if 1/2 < x < 1, then -x + 1 > x, or 

l /2 ~ x which is a contradiction. If 1 < x, then x - 1 ~ x or -1 > 0 

which is again a contradiction. So if x > l /2, I y I > x which itnplies 

that t E B. Therefore, F(z, S) C A U B which implies that 

F(z, S) = AU B. 

By a similar argument, F(w, S) = C U D. Thus 

F(z, S) n F(w, S) = B U E U D, 

where 

E = {(x,y), x = 1/2}. 

The point t 0 = (l /2, 1) is common to both F(z, S) and F(w, S) and a 

neighborhood N of radius l / 4 about t 0 is properly contained in 

F(z, S) n F(w, S), (cf. Figure 3. 3). 
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The preceding theorems dealt with the structure of a z-nearest 

point set and its relationship to the norm of the space X, It is also of 

interest to deter11,1-ine how F(z, S) might be related to F(z, S 1), where 

S C S 1. For exarnple, S 1 might be conv S or cl S. A special case of 

the following theorem shows that F(z, S) = F(z, conv S). 

Theorem 3. 4. Let S be a subset of the normed space X and 

let z E X. Then E = F, where 

E={x: /lx-zll =sup{//x-yj/ :yeS}} 

F = {x: 1/x -- zj/ = sup {llx -y/j: ye convS}}. 

Proof: Let x e E, then 11 z - x II > II y - x 11 for each y e S. 
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Suppose we conv S, then there exists a finite set {y 1, ... , yn} CS 

such that 

w= 

Then 

n 
I: Ql.y., 

i= 1 l l 

n 
QI. > 0, 1 _< i ~ n, and ~ 
1-

i= 1 

n (n II w - x 11 = II !; QI • Y. - E QI ·) x 11 
'lll ·1 l 1= l= 

~ (~1 QI i) 11 Yi - x 11 

~(~1 Qli)llz - xii 

= 11 z - x 11 

QI. = 1. 
l 

(3. 17) 

Hence, 1/z -x/1 is anupperboundfortheset{IIY-xll :ye convS}. 

If z e S, then 

/ I z - x 11 = sup { 11 y - x I / : y e con v S} 

and; therefore, E C F. But suppose z I S. Then if e > 0, there exists 

y O E S S UC h that 

1/z ·- xi/ - e < l/y0 - x/1 ~ llz - x/1, 

But y 0 e S C conv S; hence, y 0 e conv Sand 

llz - xi/ - e < l/y0 - xi/~ 1/z - x/1. (3. 18) 

Therefore, from (3. 17) and (3. 18), 

11 z - x I/ = sup { II y - x J / : y e conv S} 

which means that x e F. This implies that E C F. 

Now assume that x e F, then llz - xii:::_ jjy - xjj for.ye conv S. 

So llz - xii> 1/y - xi/ for ye S since SC convS. If z e S then 
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1/z, ... xii= sup { jjy ·· xii : YES} 

and, therefore, F C E, However, if z r/ S, then since 

11 z - x /I = sup { 11 y -· x 11 : y E conv S}, 

for each e > 0 there exists y 0 e conv S such that 

IJz - xii - e < IIYo - xii 2- llz ·· xjj. (.3.19) 

Since y 0 e conv S there exists a finite set {y 1, y 2 , ... , yn} C S such 

that 

n 

Yo= ~ a. y., a. > 0, 
i= 1 l 1 1 -

Let y e { y 1 , .•. , yn} such that 

1 2- i :.s_ n, 
n 

1:; CK· = 1. 
i= l l 

11 Y - x II = max { 11 Y 1 - x 11, II Y 2 - x II , , · · , II Yn -x 11 } · 

Then from (3. 20) and (3. 21) 

llz - xii·· e < IIY0 - xii 

= II ;a.y. -(; cc) xii 
i= l l l i= l l 

= lly-x/1. 

· (3. 20) 

(3. 21) 

(3. 22) 

Note that: y E S. If e > 0, from (3. 22) there exists y e S such 

that 

Therefore, 

11 z - x /I = sup { 11 Y ·- x JI : Y ~ SL 
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which means that x E E and F ( E. Hence, .F E ·- . 

Note that Theorem 3. 4 means that there is no lass in generality 

if S is assumed to be convex when properties of F(z, S) are being 

considered. This is not true; however, in the case of N(z, S). A 

theorem analogous to Theorem 3. 4, where "sup'' is changed to II inf 11 

in the definition of the sets E and F is not possible. However, if z is 

required to be an element of S then a set inclusion is poss ible 1 Note 

that in the following theorem, N(z, conv S) and N(z, S) are analogous to 

F and E, respectively, of 'rheorem 3. 4. 

Theorem 3. 5. If S is a subset of the norm.ed linear space X 

and z e S, then N(z, conv S) C N(z, S). 

Proof: Let x e N(z, conv S). then 

!Ix··· zll = inf {J/x - YII: y E convS} 

which implies that I/ x - z 11 :::_ 11 y - x JI for each y in conv S. Since 

S ( conv S, it follows that II x - z 11 < II y - x II for each y E S. Since 

Z ES, 

I / x - z I/ = inf { 11 x - y 11 : y e S} ; 

hence, x E N(z, S). Therefore, N(z, conv S) C N(z, S). 

The following examples show that Theorem 3. 5 is the strongest 

result that c:an be obtained. 

Exarn~ 3.4 .. Let X be the spac;e E 2 , S = {w,t}, and z = (1,0), 

where w = (·-1, 1) and t = (·"l, ·-1). Then A= BU C, where 

A = { p : p = (x, y), II p ,,. z II = inf { 11 p -· q 11 : q E S}} 
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B::: {p: p::: (x,y), y = 2x+ 1/2, x~.·-· 1/4} 

C = { p : p = (x, y), y = -Zx ·- l / 2, x ::.. ·· l / 4} 

(cf. Figure 3. 4). A point p can be in A if and only if IJp- z II = IIP - t/1 

when II P - t 11 ~ 11 P - w II or II P - z 11 = 11 P - w 11 when 11 P - w II ~ 11 P - t 11. 

Thus, if p is in the upper half- plane, then 11 p -· w 11 ~ 11 p ·· t 11 which 

means that p must lie on the perpendicular bisector of the line segment 

z w. Hence p must be an element of B. Likewise, if p is in the lower 

half-plane, p e C. Therefore, A = BU C. 

Now, conv S is the line segment tw (cf. Figure 3. 5). It can be 

shown by reasoning similar to that above th~t D = EU F U G, where 

D = { p : p = (X, y), 11 p - z II = inf { II p - q II : q e conv S}} 

2 
E = { p : p = (x, y), y = 4x, 0 ~ x < 1 / 4} 

F = {p: p = (x,y), y = 2x+ 1/2, x~ 1/4} 

G={p:p=(x,y), y=-2x-l/2, x~l/4}. 

w 

t 
(-1, -1) 

y 

z 
-------> x 

Figure 3. 4. 
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(-1,1) 

convS 

,... N(z, conv S) 

Figure 3. 5. 

The point (0, 0) is an element of D, but it is not an element of A. 

The next example will show that N(z, conv S) can be a proper 

subs et of N(z, S). 

Example 3. 5. Let X be the Euclidean space E 2 , let 

S = {(,-1,0), (1,0)}, and let z = (1, 0). Then N(z,S) = {(x,y): x~O}; 

but, since 

conv S = {a (-1, 0) + (1 -a)(l, 0): 0 ~a~ l}, 

N(z, conv S) i.s the set {(x, y) : x ~ l}. Obviously, N(z, S) properly 

contains N(z, conv S), (cf. Figure 3. 6). 

As was mentioned before, another set of interest which is 

closely related to S is cl S. It will be seen that cl S fits S so closely 

46 
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fy 
..... N(z,S) 

N(z,convS) 

( l, 0) -·-···-- ,,. x 

N(z, S)-

(a) (b) 

Figure 3. 6. 

that any point which is farther from z than any point of S must also be 

farther from z than any point of cl S. Thii;; is showri. as a special case 

of the following theorem. 

Theorem 3. 6. Let X be a normed linear space, let S C X, 

and let z E Xo Then F = E, where 

F = { x : IJ x -· z II = sup { JI x ·- y II : y e cl S}} 

E = {x : II x ·· z I J = sup { 11 x -· y II : y E S}}. 

Proof: Let x E F, then jjx ··· zlJ::. !Ix - y/1 for ye cl S; hence 

since S C cl. S 

IJx-zlJ>llx··YII, yeS. (3. 23) 

If z e S, then 
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112, ·- X 11 ::: sup { 11 y ,_ X 11 : y E s}, 

which irnplies::,.;. E E. If z ,/ S, then for each E > 0,, there exists w E clS 

such that 

/jz - xi/ - e/2 < llz -· wll < 1/z - xlJ, (3. 24) 

since x e F, There exists y 0 e S such that llw ·-y0 11 < f. /2, since 

we cl S. Then 

/I z - x II - e /2 < II z - w Ii 

From (3. 24) and (3. 25), 

:,: llz - Yo+ Yo - wJI 

~ liz - Yoli + i!Yo ·- w// 

< //z - Yo/I+ e/2. 

Therefore, from (3. 23) and (3. 26), 

11 z - x 11 = sup { 11 Y -· x 11 : Y e S} 

which implies that x E E. Hence, F C E .. 

(3. 25) 

(3. 26) 

Suppose x e E, then !Ix - z/1 > 1/x ·- yJJ for ye S. Let we cl S, 

then fo:r each E > 0 there is a y0 e S such that //w ·· y0 Jj < e. Then 

11 x ·- w 11 - r I (x -·Yo)+ (yo .. w) I I 

</Ix-· Yoll + IIYo - w·II 

</Jx-zll+e. (3.27) 

Since E > 0 1,vas assumed to be arbitrary, it follows from (3. 27) that 

/Ix - ¥/II~ Jlx ,,, z/1. Thus, fo:r each we cl S, /Ix··· w/1 :::. !Ix - z/1 
and, the:refore, JJz "xi/ is an upper bound for t:he set { /lx-yl/ :ye S}. 
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For each e > 0 there exists y E S such that 

llz - xii - E < IIY ·-xii< llz - xii, 

But y e S C cl S, so that for each e > 0 there exists y e cl S such' that 

llz -xii - E < lly-xjl < Jlz -xii. 
Therefore, 

II z - x 11 = sup { 11 x - y II : y e cl S}, 

which implies that E C F. Hence, E = F. 

It was shown that in the case of z-nearest point sets that it was 

not true in general that the sets N(z, S) and N(z, conv S) are equal. 

This might cause some doubt then as. to the existence of an analogous 

theorem to Theorem 3. 6. However, the analogous theorem here for 

N(z, S) and N(z, cl S) is true, figuratively speaking, because cl S fits 

S much more closely than does conv S. This is shown as a special 

case of the following theorem. 

Theo_!'~~-· Let X be a normed linear space, let S C X, 

and let z e X. Then N = M where 

N = {x : 11 x ~ z 11 = inf { 11 x - y 11 : y E S} } 

M={x: llx-zll =inf {llx-yll :ye clS}}. 

Proof: Let x e M, then !Ix - z II~ !Ix - YII for each y E cl S; 

hence, since S C cl S 

JJx - zll ~ !Ix - Yll,Y ES. (3. 28) 

Let e > 0, then there must exist ye cl S such that 

llz - xii~ IIY - xii< llz - xii+ e/2. (3. 29) 



But since ye cl S there must also be we S such that 

Then from (3. 30) 

Hence, from (3. 29) 

llw - Yll < e/2. 

11 y - x 11 = II (y - w) - (x - w) 11 

> llx-wll -,IIY-wH 

> llx"' wll - e/2. 

llx.., wll - e/2 < IIY - xii< llz - xii+ e/2, 

llz - xii< llx - wll < llz ""xii + E, 

Therefore, from (3. 28) and (3. 31) 

11 z - x 11 = inf { 11 y - x 11 : y e S} . 

This implies that x e N. Hence M C N, 
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(3 .• 30) 

(3.31) 

Ifxe N, then llx-zll ~llx-yll foreachyeS. -Let we clS, 

then for each e > 0 there exists a y 0 e S such that llw - y0 11 < e, Then 

Hence, 

!Ix - 'VII= ll(x -y0) - (w -y0 )11 

>· llx,.. Y0 11 - llw - Y0 11 

> llx - Yoll - E 

>llx-zll-e, 

!Ix - zll < llx - wll + e, 

and since e is arbitrary, 

llx - wll > llx - zll, (3. 32) 
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Furthermore, for each E > 0 there must exist ye S such that 

IIY-xll < llz-xJI +e. (3. 33) 

But ye S C cl S, so from (3. 32) and (3. 33) 

JJz - xii= inf {jjy - xii ye c~S}. 

Hence, x E M sci that N C M. Therefore, N = M. 

Theorem 3. 6 and Theorem 3. 7 mean that there is no loss in 

generality in assuming that S is closed when considering the sets F(z, S) 

and N(z, S). When considering F(z, S), S must be bounded; otherwise, 

F(z 1 S) would always be empty. Thus Theorem 3. 4 and Theorem 3. 6 

mean that in a finite-dimensional space,. the ~et Smay be'.assumed to 

be compact and convex when consiq.e;ring t:tie: fet F(z, S). 

Since for each set Sand z e S, F(z,S) stnd N(z,'S) are sets, we 

can consider F(z, S) and N(z, S) to. be the images of Junctions whose 

domains are subsets of the cross product of the space X and the power 

set of X, The question now is, "What properties do these functions 

have? 11 The following theorems partially answer this question. 

Theorem 3. 8. Let X be a normed linear space, S C X and 

z e S. If:>-..> 0, then X.F(z,S) = F(X.z, X.S). 

Proof: If F(z, S) is empty, then X.F(z, S) is empty. But if 

F(X.z, X.S) is not empty, then there is x e F(X.z, X.S) such that 

IJX.z - xii= sup { IIY - xlJ : ye X.S}. 

This implies 

1/z - 1/X. xii =(1/X.)sup { IIY - xii ye X.S}. 

Since 1 /X. > 0, it follows that 



llz - 1/'A. xii= sup {(1/X.)IIY - xii : y E >..S} 

= sup { JI 1 />.. (y - x) JI : y E >.. S} 

= sup {Jly - 1/A xlJ: y ES}. 

Thus 1/A x e F(z, S). which is a contradiction. Hence, if F(z, S) is 

empty, then F(Az, AS) is al.so empty. 

If F(z, S) is not empty, let x e F(z. S). Then 

Since>..>O, 

II >..z - >..x J I = >.. JI z - x IJ 

= A sup { 11 y - x 11 : y E S}. 

11>..z - >..xJI = sup {>..lly - xii : ye S} 

= sup { IIMy-x:)1/ : y ES} 

= sup { 11 y - . A.X 11 : y E >..S} . 
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Hence 3 AX E F(Az, >..S) and so >..F(z, S) C F(>..z, :>...S).: Since F(>..z, >..S) is · 

not empty, let x e F(Az, >..S). Then 

I J AZ - x 11 = sup { 11 Y - x 11 : Y E 7'.S} 

= sup {/1>..y - xi/: y ES}. 

It follows then that 

= sup {>..jjy - 1/>.. xii : y ES} 

= A sup { 11 y - 1 I A x /I : y e S} . 

llz - 1/>.. ,xii= sup { 1/y - 1/X. xii : y e'S}. 

Hence, 1 /A x e F(z, S) which implies that x E AF(z, S). Therefore, 

>..F(z, S) = F(>..z, >..S). 
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In Theorem 3. 8 if F(z,S) is not empty then X. cannot be zero 

because OF(z, S) :: { <j>}, but F(<j>, { <j>}) :: X. Further complications arise 

if F(z,S) is.empty, for then OF(z,S):: 0, but still F(<j>,{<!>}):: X. Hence 

we mus_t restrict X. to only positive numbers. 

The next theorem shows that N(z, S) has the same multiplicative 

property as F(z, S). 

Theorem 3. 9. Let X be a normed linear space, S C X, and 

z E S. If X. > 0, then X.N(z, S) :: N(X.z, X.S). 

Proof: If N(z, S) is empty, then X.N(z, S) is also empty. How-

ever, if N(X.z, X.S) is not empty, then there is x E N(X.z, X.S) such that 

Hence 

and since X. > 0, 

11 X.z .:f x I J :: inf { II y - x II :y e S}. 
;, 

llz - 1/X. xii =(1/X.)inf {IIY - xii : ye X.S}, 

II z - 1 IX. x II :: inf {( 1 IX.) 11 y - x II : y e X.S} 

= inf { II I h. y - I IX. ~ 11 : y E X.S} 

= inf { II y - 1 IX. x II : y e S} . 

Therefore, l /X. x E N(z, S) which is a contradiction, hence N(X.z, X.S) 

must also be empty. 

Suppose x e N(z, S), then . 

II z - x II :: inf { II y - x II : y e S}. 

Hence 

II X.z - X.x II :: x.11 z - x II 

= X. inf { 11 y ~ x 11 : y E S}. 



Since "- > 0, 

X. inf { 11 y - x 11 : y E S} = inf { x.11 y - x 11 : y e S} 

= inf {IIX.y - )I.xii : y ES} 

:: inf { 11 y - X.x 11 : y E >i.S} . 
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Hence X.x e N(X.z, X.S) and so X.N(z,S) ( N(?\z, ?\S). If x E N(X.z, X.S), then 

II X. :z; - x II = inf { II y - x II : y E \S } . 

However, by factoring out X., 

X. II z - 1 / \ x II :: X. inf { 111 IX. y -· 1 IX. x 11 : y E 11.S} . 

Hence, 

11 z - 1 I X. x II = inf { II y - 1 I X. x JI : y E S}, 

which implies that 1 Ix. x E N(z, S ). Thus, x e X.N(z, S), and it foUows 

that X.N(z, S) = N(X.z, \S). 

If, in Theorem 3, 9, X. = 0 and N(z, S) "f O, then X. N(z, S) = { cp}. 

But N(X.z, \S) = N(cp, {cp}):: X, hence X. cannot be zero. 

It seems intuitively obvious that given a set S and a point z E S 

one should be able to translate S and z by the same element y and the 

(z + y) - farthest point set of S + y would be equal to the translate of 

the z -farthest point set of S. This is a special case of the following 

theorem. 

Theorem 3. l 0. Let X pe a normed linear space S ( X, and 

z e X. If A and B are nonempty sets such that 

A={x: jjx-zll =sup{llx-vll :veS}} 

and 



B = { x : II x ~ ( z + y) 11 = sup { II x ·· v 11 : v e S + y} }, 

then A+ y = B. 

Proof: Let x E A+ y, then x - y E A. Hence, for v E S, 

ll(v + Y) - xii= llv - (x - y)jl 

~ 11 z - (x - Y> 11 

= ll(z + y) - xii. 

For each E > 0, there is a v E S such that 

II z - (x - y) 11 ,. e < II v - (x -· y) j J . 

But (3. 35) can be written as 

11 ( z + y) - x II - E < 11 ( v + y) - x II . 

}Ience, from (3. 34) and (3. 36), 

11 (z + y) - x II = sup { II (v + y) - x II : v E S}. 

Therefore, x E B which implies A + y C B. 

If x E B, then for v E S, v + y E S + y I and 

II v - (x - y) II = II (v + y) - x 11 

~ll(z+y)-xll 

= II z - (x ., y) 11. 

For each E > 0 there exists v E S + y such that 

11 (z + y) - x II - E < II v - x II. 

Then since v = w + y, w E S, (3. 38) can be written 

/I z - (x - y) 11 - E < II w - (x - y) 11-

Hence, from (3. 37) and (3. 39), 
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(3. 34) 

(3. 35) 

(3. 36) 

(3. 37) 

(3. 38) 

(3.39) 
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fl z - (x - y) 11 = sup { II v - (x - y) 11 : v E S}. 

Thus, x - y e A, which i;rnplies that x E A+ y an.d A+ y = B. 

The set N(z, S) also has the same additive property shown for 

F(z, S) by Theorem 3. 10. 

Theorem 3. 11. · Let X be a normed linear space, S C X, and 

z e X, If A and B are nonempty sets such tha.t 

A = { x : 11 x - z 11 = inf { 11 x: - v 11 : v e S}} 

and 

B :;: {x : !Ix - (z + y) II = inf { !Ix - v II : v E S + y}}, 

then A+ y = B. 

Proof: Let x E A+ y, then x - y E A. Helice for v E S, 

II (z + y) - x II = II z - (x - y) II 

< II v - <x - y) II 

= II (v + y) - x II. 

For each E > 0, there is av E S such that 

llv - (x - y)II < llz - (x - y)II + E, 

Then (3. 41) can be written a1;1 

II (v + Y) - x II < 11 (z + y) - x 11 + E • 

Hence, from (3. 40) and (3. 42), 

II (z + y) - x II = inf { II (v + y) - x II : v E S}. 

Thus, x e B which implies A + y ( B. 

If x E B, then for v e S, v + y e S + y, and 

(3.40) 

(3.41) 

(3. 42) 



I I z - (x - y) 11 = 11 ( z + y) ·· x l I 

< II (v + y) ,. x II 

= llv - (x - Y)IJ. 

For each e > 0 there exists v E S + y such that 

11 v - x II < II (z + y) - x 11 + E • 

Then since v = w + y, we S, (~. 44) may be written 

II w - (x - y) II < II z - (x - y) 11 + €. 

Hence, from (3.43) and (3.45), 

llz - (x -y)II = inf {llv - (x -y)II: v ES}. 

Thus, x - ye A, which implies that x e A+ y and A+ y = B, 
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( 3. 43) 

(3. 44) 

(3.45) 

Also of interest is the element z as related to the set in ques

tion, S. If z e S, then can z be an interior point? If z is a boundary 

point of S then what type of boundary point must it be? The next series 

of theorems will shed some light on the properties of the element z. 

Theorem 3. 12. Let S be a subset of the normed linear space 

X and let z e S. If F(z,S) is nonempty, then z is a boundary point of S. 

Proof: Suppose that z is an interior point of S. Then there 

exists a number r > 0 su,ch that 

{ w : 11 w - z 11 < r} c s. ( 3. 46) 

Suppose x e F(z, S), then I Ix -· z 11 ~ I J y - x 11 for each y E S, Consider 

the element z + d (z - x), where d = r/(2llx - zll). Its distance from 

xis given by 
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II z + d(z - x). - x 11 = 11 ( 1 + d)(z - x) 11 

= ( 1 + d) 11 z - x 11 

> 11 z - xi 1. (3. 4 7) 

Its distance frorn z is given by 

II z - (z + d(z - x)) II = d II z - x II 

= r/2 < r. (3.48) 

Hence, from (3. 46) and (3. 48), z + d(z - x) l S, but from (3. 47) its 

distance from x is greater than 11 z - x 11 which is a contradiction. 

Therefore, z must be a boundary point . .' 

The property of z shown in Theorem 3. 12 still does not pinpoint 

the nature of z. However, in order that z might be limited to some 

special type of boundary point it is necessary to place a restriction 
I \ . 

on the norm of the space X. This restriction is simply tha~ X be· 

strictly convex. 

Theorem 3, 13. Let X be a normed linear space, S C X, and 

z e S such that F(z, S·) is nonempty. If X is strictiy convex then z 

must be an extreme point of S. 

Proof: Suppose z is not an extreme point of S, then there exists 

x e S, ye S, x-:/. y, such that z = 1/2 x + 1/2 y. Let we F(z,S), then 

llw - :t:11 = llw - 1/2 x - 1/2 yjl 

~(1/2)1lw - xii +(l/2)1lw-yll-

Suppose llw - xii< llw - zll and llw - vii< llw - zll, then 

(3.49) 

(1/Z)llw - xii <(1/2)1lw - zll and(l/2)1lw - vii <(1/2)llw - zll, so that 
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( 112) 11 w - x 11 + (1/ 2) 11 w - Y 11 < 11 w - z 11 · 

Hence, we may assume without loss of generality that I lw.- z II~ 1 lw -x II· 
BtH1fcs-ince we F(z, S) and x e S, I lw - z II > llw - xii so that 

I lw - z II = llw - xii, Moreover, since 

I l w - z 11 .:: (1/ 2) 11 w .. x 11 + (112) 11 w - y II 

= (l/2)llw - z II + (1/2) llw - YII; 

it follows thatllw - zll <II·:"'.- YII· But since llw ·_ zll~ liw - y.JI it 

follows that 11 w - z 11 = 11 y, - y JI. Thus all thre-e poin:ts, :x;, y, and z 

are on the boundary of tl:ie sphere·{p: llw - PII < llw - xii},· b~t si.nce 

X is strictly convex, intv xy :must be a subset of the interior of this 

sphere. Hence a contradiction exists since z = l /2 x + 1 /2 y is a 

boundary point of the sphere. Therefore, z is an e~treme point of S 

when X is strictly convex. 

The following example shows that if X is not strictly convex 

then z need not be an extreme point of S. · 

Example 3.6. Let :x; be the Hilbe1:t space, .e'n(2), let 

S = { (x, y) : x = - l, -1 ~ y ~ 1}, 

and let z = (-1,0). Then the origin, (0, 0), is an element of F(z,S) 

since its distance from each element of S is one. Hence, F(z, S) is 

nonempty, but z is not an extreme point of S. 

It should be noted that no requirements were placed on the set 

S in the preceding theorem other than F(z, S) be nonempty. So, the 

only restriction placed on S was the implicit restriction that S be 

bounded,for otherwise sup { IIY - xii : ye S} never exists. By placing 
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more restriGtions on the set S it is possible to relax conditions on X 

and to determine more precisely the charactti:r of z. These revisions 

are made in the following theorem. 

Theorem 3. 14. Let S be a closed, strictly convex set in the 

normed linear space X. If z e S such that F(z, S) is nonempty, then z 

is an exposed point of S. 

Proof: By Theorem 3. 12, z is a boundary point of S, Since in 

a linear topologicc1,l space each boundary point of a closed, strictly 

convex set S is an exposed point of S, then z must be an exposed point 

of S (cf. Valentine, [36], p. 94). 

The following example show$ that if S is a convex body which is 

not strictly convex then z need not be an exposed point of S. 

Example 3. 7. Let X be the Hilbert space, ..ecx\2), let S be the 

closed unit ball of X, and let z = (1, 0). Then F(z,S) is not empty since 

the distance of the origin from z is at least as great as its distance 

from any other point of S. However, z is not an exposed point of S. 

Another type of boundary point, which is not as well known, is 

the boundedly exposed point. An element z of the subset S of the 

normed linear space X is a boundedly exposed point of S if and only if 

there exists an open sphere B such that z is a boundary point of B and 

S \ z C B. This definition, as well as theorems which verify the 

existence of these points for a closed bounded set in a Hilbert space 

are found in a paper by Edelstein, [10]. 

Theorem 3. 15. Let S be a subset of the strictly convex space 
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X and let z e S. Then F(z, S) is nonempty if and only if 7., is a. boundedly 

exposed point of S. 

Proof: Suppose F(z,S) is not empty and let w E F(z;,S). Then 

J Jw - z J J 2_ J Jw - y J J for each y E; S; however, there may be some 

element y O of S for which JI w - z JI = JI w - y OJ J. Therefore, let 

w 0 = w + d(w -· z), where d::: JJw - zJJ- 1 . Since z ~ S, Theorem 3. 2 

implies thatw0 e F(z,S), hence Jlw0 - yJJ ~ Jlw0 - zlJ for each ye S. 

If y e S is such that there does not exist a positive number A such that 

w - z = A{W -· y), then since Xis strictly convex, 

Jlw0 - ylJ = Jlw + d(w ~ z) - Yil 

< Jlw - ylJ + dJlw - zJI 

= Jlw - yJJ + 1 

<Jlw-zlJ+l 

If, on the other hand, w - z = A(W - y) for some A> 0, then 

Hence 

1 /A = 
llw-yJI 

I /w - z 11 
< l. 

If 1 / A < 1, then IJ w - y JI < JI w - z 11 and 

II WO - y II ~ II w + II w -· z 11 - 1 ( w - z) -· y II 

<Jlw-yll+l 

<Jlw-zll+l 

(3. 50) 

(3. 51) 
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If 1/'A. = 1 then z = y. Hence, for 

B={x: llw0 -xlJ<llw0 -zjj}, 

we have from (3. 50) and (3. 51) that S \ {z}CB and z is a buundary point 

of B so that z is a boundedly exposed point of S. 

If z is a boundedly exposed point of a set S then there exists an 

element w of X and a number r > 0 such that 

S \ {z} C {x: llw - xii < r} 

and such that II z - w II = r. Hence II z - w II > II y - w II for each y e S 

so that we F(z,S). 

Note that in Theorem 3. 15, if z is a boundedly exposed point 

F(z, S) is nonempty even if X is not strictly convex. The following 

example shows that X must be stric;tly convex in order to guarantee 

that if F(z, S) is nonempty then z is a boundedly exposed point of S. 

Example 3. 8. 
00 • 

Let X be t (2), let S be the unit ball, and let 

z = (1, 0). Then F(z,S) is not empty since the origin is an element of 

it. Each sphere in Xis a square similar to S except for size and a 

translation. Hence, any sphere which contains S and has z as a 

boundary point must have a side which intersects the boundary of S 

in a line segment. 



CHAPTER IV 

THE RELATIONSHIP OF F(z,S) AND THE 

NORM OF X 

Having thus far discussed the properties of the sets F(z, S) and 

N(z,S) and the properties of the element z as related to the set S, it is 

now appropriate to consider the set F(z, S) as related to the norm of X. 

The first theorems will be concerned with geometric methods of con-

structing F(z, S) and N(z, S ). These methods will aid in the proof of 

the main theorem of this chapter. The first two theorems show that 

F(z, S) and N(z, S) can be found from the intersection of a certain 

collection of sets. 

Theorem 4. 1. Let S be a subset of the normed linear space X 

and let z e S. Then 

F(z,S) = n S F(z, { z,y}). ye . 

Proof: For simplicity let 

F = n S F(z, {z, y} ). ye 

Furthermore, let x e F(z, S) and let ye S, then I Ix - z 11 > I Ix - YI I· 
Since z e {z, y}, 

llx-zll =sup{llx-wll :we {z,y}}, 

and it follows thatx e F(z, {z,y}). The element ye S was arbitrary 

so that x e F. Hence, F(z,S) C F. 
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If x e F then for each ye S, x e F(z, {z, y} ). '.Hence 

!Ix - zlJ~ llx - YII for each y ES. Since z ES it follows that 

11 x - z 11 == sup { 11 x - Y 11 : Y E S} • 

This in turn implies that x e F(z, S). Bence, F C F(z, S) and there-

fore, F ::: F(z, S). 

Corollary 4. 1. Let S be a compact set in a normed linear space 

X. If z e S, then F(z 1 S) = F where 

F = n E F(z, { z, x}) 
XE 

and E denotes the ~et of extreme points of cl conv S. 

Proof: By the Krein-,Milrnan theorem (cf. Valentine, [36]. 

p. 138), cl conv E = cl conv S. By Theorem 3. 4 and Theorem 3. 6, 

F(z, S)::: F(z, cl conv S). Theorem 3. 4 and Theorem 3. 6 also imply 

that F(z, E)::: F(z, cl conv E). By Theorem 4. 1, F(z, E) = F. There-

fore_., F(z, S) = F. 

Theorem 4. 2, Let S be a subset of the normed linear space X 

and let z E s. Then N(z, S) ;:: n N(z, {z, y} ). 
yeS 

Proof: For simplicity let 

N = r\ S N(z 1 {z, y}). ye 

Furthermore, let x E N(z, S) and let ye S. Then I Jx - z 11 < J Jx - y J J. 

Since z e {z,y}, it follows that 

11 x - z 11 ::; inf { 11 x - w II : w E { z, y} } ; 

and, therefore, that x e N(z, {z, y} ). Since y was arbitrary, x e N and 

therefore N(z, S) C N. 
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If x e N, then llx - zll < llx - YII for each.y ES. Sinc;e z eS, 

! 

11 x - z 11 = inf { 11 x - Y 11 : Y E S}, 

and it follows that x e N(z, S). HE:ince, N C N(z, S) and therefore, 

N(z, S) = N. 

As was shown ,by ExamplE:! 3. 5, N(z, S) is not in general equal 

to N(z, conv S) so that we can s'ay only that 
I 

I 

.N(z,S) = n yES N(z, {z,y}). 

Of course it does littl~ good to know that F(z, S) and N(z, S) can be 

expressed as the intersection of certain sets if one does not know more 

about these sets. In E 2 , as has been shown in preceding examples, 

F(z, { z, y}) and N(:z, {z, y}) are closed half~spaces. This, is shown by 

the ne.:x;t two theorems to be true in any inner-product space. 

Theorem 4~ 3. Let X be a real inner-product space, then 

F(z, {z, x}) is a closed half-space for any pair of distinct elements z 

and x of X. 

Proof: Let the function f X ... R be defined by f(y) ... (x - z, y), 

then f is a linear functional. Let H be the closed half-space definecl by 

H = {y : f(y) ~ (1/2) [(x, x) - (z, z) ]} . 

If y E H then· from the bilinearity of the inner-product 

(x, x) - 2(x, y) + (y, y) < (z, z) - 2(z, y) + (y, y). (4. 1) 

Hence, by symmetry of the inner product, (4. 1) becomes 

(x, x) - (x, y) - (y, x) + (y, y) ~ (z, z) - (z, y) - (y, z) + (y, y), 
(4. 2) 

and consequently, 
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(x, x - y) - (Y, :k - y) < (z, z - y) - (y, z - y), 

or 

(x - y, x - y) < (z - y, z - y). 

Hence, llx - YII < llz - YII· Since z ES, 

11 z - Y 11 = sup { 11 x - Y 11 : x E S} · 

Therefore, H C F(z,{z,x}). 

Ify E F(z,{z,x}), then llx -YII < llz -YII from which it 

fo Hows that 

(x - y, x - y) < (z ,. y, z - y). 

Hence, 

(x, x) - 2(x, y) + (y~ y) < (z, z) - Z(z, y) + (y, y), - ' . . 

or 

(x - z, y) > (1/2) [ (x, x) - (z, z) ]. 

Hence y E H; and, therefore, H = F(z,{z, x}). 

A similar result is true for N(z, { z, x}) as the following theorem 

shows. 

Theorem 4. 4. Let X be a real inner-product space, then 

N(z, { z, x}) is a c;losed half-space for any pair of distinct element$ z 

and x of X, 

Proof: Let y E N(z,{z,x}), then llz - YII < llx - YII· Hence, 

y E F(x,{z,x}). Likewise, if y E F(x, {z,x}), then llz - YII ~ llx - YII-

Hence, y E N(z, {z, x} ). Therefore, N(z, {z, x}) = F(x,{ z, x}) which 1.s 

a closed half-space by Theorem 4. 3. 

Since it is possible to represent F(z, S) and N(z, S) as 
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intersections, it is interesting to see if they can also be represented 

as unions. This is also true in an inner -product space as will be 

shown by the next two theorems, Theorems 4. 5 and 4. 6. However, 

first it is necessary to make two definitions. 

Definition 4. 1. Let X be a real inner-product space and let H 

be a hyperplane of support to the set S at the point z e S. If w e X, 

w f. z, is such that (w - z, x - z) = 0 for each x E Hand (w - z, y- z) ~ 0 

for each y E S, then the set 

R ( z) = { z + X. (w - z) : X. > 0} 
w -

is called an outwai-d normal ray to H at z relative to S. 

Similarly an inward normal can be defined,. 

Definition 4. 2. Let X be a real inner-product space and let H 

be a hyperplane of support to the set S at the point z e S. If w e X, 

w f. z, is such that (w - z,·x- z) = 0 for eachx e Hand (w-z, y-z):::_0 

for each y e S, then the set 

R (z) = {z + X. (w - z) : X. > O} w -

is called an inner normal ray to H at z relative to S. 

These two definitions will help us to state the theorems which 

will show that N(z,S) and F(z,S) can be represented as a union of sets. 

The first theorem will deal with N(z, S) and it shows that N(z, S), for a 

boundary point z of the compact convex set S, is just the polar cone of 

the supporting cone of Satz (cf. Valentine, [36], p. 135). 

Theorem 4, 5. Let X be a real inner-product space, Let S be 

a compact, convex set and let z be a boundary point of S. Then N(z, S) 
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is the union of the outward norinal rays at z of each plane of support 

of S at z. 

Proof: Without loss of generality we may assume that z = cp. 

Suppose that x E N(cj,,S), x-:/. cj,, then llxll ~ llx -· YII for each y ES, 

Consider the hyperplane, H = {w: (w,x) = O}. Then H (1 S -.f:. 0 since 

(cj,, x) = 0 and x E H+ = {w: (w, x) :::_ O} since (x, x) > 0. Now suppose 

that y E S such that (y, x) = a > 0. Then X.y E S for O < \. < 1 since S is 

convex. Define the real valued function 

2 
£(>..) = llx.y - xii . 

Then f is just a second degree polynomial in X. since 

2 . 
(X.y - x, X.y - x) = \. (y, y) - 2X.(y, x) + (x, x), 

Then£(\.) has a minimum value at x. 0 = (y, x)/(y, y) since (y, y) > 0, and 

since (y,x) is positive, x. 0 is positive. Since llx - YII:::. llxll we have 

(x - y, x - y) = (x - y, x) ~ (x - y, y) · 

= (x - y, x) + (y - x, y) 

:::_ (x, x). (4. 3) 

Then from (4. 3), 

(y - x, y) > (x, x) - (x - y, x) 

= (x, x) + (y - x, x) 

= (y~ x) 

> 0. 

Hence, (y, y) > (x, y) and therefore 1 > (x, y)/(y, y). Thus, x. 0y is an 

element of S, but x. 0 y is nearer to x than is cj,. This is a contradiction. 
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since x e N(<j>, S). Hence, (y, x) ~ 0 and xis an elernent of an outward 

normal ray to Hat <j> relative to S. Therefore, N(<j>, S) is a subset of 

the 1,mion of all outward normal rays to S at <j>. 

Now let x be an element of an outward normal ray of the hyper

plane H relative to S. By definition, (x, w) ~ 0 for each w E S. Since 

cp E. H, H :: { y : (x, y) :: O}. Let y E H, then 

2 
llx-yjj ==(x,,-y,x-y) 

:: (x, x) - 2(x, y) + (y, y) 

:: llxll 2 + IIYll 2 

> llxll 2 , 

Hence, !Ix - yjj > llxll for eachy EH. If w ES, the segment 

{ 'X.w + ( 1 - 'X. )x : 0 .s_ 'X. .s_ 1} 

must intersect H for some "X. 0 between zero and one since wand x are 

on opposite sides of H. Let y:: "X. 0w + (1 - "X. 0 )x be this element of H. 

Then 

llxll < llx - YII 

:: llx - ('X. 0z + (1 - "X. 0 )x)II 

='X.ollx-zll 

< llx - zlJ. (4. 4) 

Hence, xis an element of N(<j>, S). Therefore, N(<j>, S) is equal to the 

union of the outward normal rays relative to S at <j>. 

In an inner-product space it was pas sible to use all outward 

normal rays since N(z, S) must be a cone when S is convex (cL Phelps, 

[3 1] ) . However, in general F( z, S) is not a cone in an inner-product 
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space even though S is convex (cf. Example 3. 2 and Theorern 3. 4). 

Hence, in the case of F(z,S), it is more difficult to state this type of 

theorem and it is somewhat more difficult to prove. 

Theorem 4. 6. Let X be a real inner-product space and let S be 

a compact convex subset of X. Let I be the collection of all inward 

normal rays to S at z E S, Let 

N = { n e X : Rn ( z) E I, 11 z - n 11 = 1} , 

let 

X. = sup { !Ix - zll 2 / [2(n-z,,x-z)]:xeS,x;tz} 
n 

for n E N, and let 

N' ~ {n E N X.n is finite}. 

Then 

F(z,S) = U .N' {X.(n - z) + z :X. > X. }. ne - n 

Proof: Without loss of generality we may as sum~ that z 

For simplicity, let 

= ,I,. 't'. 

· let y e F{cj>, S), and let H = {x : (y, x) = O}. Then His a hyperplane and 

cj> EH since (y,cj>) = 0. Suppose w ES, then IIY - w/1 ~ /ly/1, and so 

(y, y) - 2(y, w) + {w, w) ~ {y, y). 

This implies that (y, w) ~ 1 /2(w, w) ~ 0. If H (1 S f. {cj>}, then there 

exists w f. cj> such that w E H n s. But then 

(y-·w, y-w) = {y,y) - 2{y,w) + (w,w) 

= (y, y) + (w, w). (4. 5) 
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Hence, from (4. 5), 

Since 11 w 11 > O, 11 y - w 11 > 11 y 11 which is a contradiction. Thus, 

H n S = { cp} which implies that H is a support hyperplane to S. There-

fore y belongs to an inward normal ray relative to S at cp. 

Letn= IIYll-1y, thennE Nandy=X.nwhere>..= IIYII, 
Furthermore, since 11 y 11 ~ 11 y - w 11 for each w E S we have 

(X.n, X.n) ~ (X.n, X.n) .,. 2(X.n, w) + (w, w). (4. 6) 

From (4. 6) it follows that>..~ (w, w) I 2(n, w) for each w E S. }Ience, 

X. is finite which implies that n e N'. Therefore, y E U and F(z,S)C U. 
n 

Let ye U, then y = X.n where n e N' and X. > X. . Hence, 
- n 

X. > (w, w)/2(n, w) for each w e S, w f. cp, Hence 

2X.(n, w) ~ (w, w) 

or 

-2X.(n, w) + (w, w) ~ 0. 

2 
By addition of I/ y 11 , (4. 7) becomes 

2 2 
X. (n, n) - 2>..(n, w) + (w, w) ~ X. (n, n) 

or 

(y - w, y - w) ~ (y, y). 

(4. 7) 

Hence, JI y - w 11 < IIY II which means that y e F( cp, S ). Therefore, 

F(cp, S) = U. 

A boundedly exposed point is an exposed point in a real inner-

product space, but Theorems 3. 14 and 4. 6 permit us to give an 

example of an exposed poip.t which is not a boundedly exposed point. 
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Example 4. 1. Let X be the space E 2 , let 

4 
S = { (x, y) ; 0 < x < 1, y < x}, - - , -

and let z = cj>. Then cj> e S and cj> is an exposed point of S. Since S is 

smooth at cj>, the only hyperplane of support to S at q, is the y-axis. 

Hence the only inward normal relative to S at <j> is R (<!>), where n = (1, ,0) .. 
n 

Let w e S be denoted by (x, y), then 

w. w 
2n · w 

On the curve /'= = x this becomes 

W• w 
Zn, w = 

= 

2 + 2 = x y 
.2x 

Y.8 + y2 

2y4 

t ( y4 + )) 

Hence w · w /2n · w tends to infinity as y tends to zero for points (x, y) 

on this curve. Therefore, 

sup {w· w/2n, w: we S, w #- <j>} = oo. 

Hence, F(cj>, S) = 0 and <j> is not a boundedly exposed point. 

Lastly, let us discuss the relationship of F(z, S) to the norm of 

the space X. It has been shown by Motzkin, [28], that a two-dimensional 

spac'e is an inner-product space if and only if each set N(z, S) is convex 

for each set S when z e S. Phelps, [31], was able to extend this to any 

finite dimensional space. The analogous theorem is also true for 

F(z, S), and this will be the object of the following discussion. To 

simplify the proof of the theorem two lemmas will be presented first. 



73 

Lemma 4. 1. Let X be a two-dimensional normed linear space 

and let s = {b, -b} where b = (13 I 0), .13 > 0. If F(b, S) n F(-b, S) are 

convex, then F(b,S) n F(-b,S) is a symmetric closed convex subset 

of a line passing through the origin. 

Proof: The set F(b,S) n F(-b,S) is closed and convex since 

both F(b,S) and F(-b,S) are closed and convex, Now 

F(b, S) n F(-b,S) = {:x: E x : 11:x: ,.. b 11 = llx + b 11; 

hence, the set is not empty since <j> e F(b, S) n F(-b, S). Let 

z=}..b+(l ->,.)(-b) 

= -b + 2 >,.b 

and assume that llz - bjj = llz + bjj. Then for>,.< 0, 

11-Zb + 2>,.bjj = jj2>,.bjj. 

Then (4. 8) becomes 

(4. 8) 

(1 - >,.) llbll = 1>,.I llbll- (4.9) 

Thus, from (4. 9), 1 - >,. = ->,. which implies 1 = 0. Therefore, X. cannot 

be negative. If O < >,. < 1, then 

(4. 10) 

which implies that X. = l /2, or that z = <j>. If 1 < >,., then 

(4.11) 

which means that -1 = O. Hence, X. .cannot be greater than one. Finally, 

note that neither b nor -b are elements of F(b, S) ("') F( --b, S). There

fore, the only point (x, 0) which ~s equidistant from b and -b is the 

origin. 



74 

Now let z l -:/; cj> and Zz -:/; cj> be elements of F(b, S) fl F( ,-b, S) such 

that z 1 and z 2 are not collinear with the origin. If z 1 and z 2 have 

second coordinates with opposite signs, then the line segment z 1z 2 

must contain a point (x, 0), x -:/; 0, but 

Hence, there is a contradiction. If z 1 and z 2 have second coordinates 

with the same signs then let z~ = -z2 . Comparing the distances of z~ 

from b and -b we find that 

II z2 - b 11 = ll-z2 -bll 

= I lz2 + bjj (4. 12) 

and 

llz~ + b 11 = 11-zz +bjj 

= 11 z 2 - b 11. (4. 13) 

Hence, from (4. 12) and (4. 13), 

llz~ -bll = llzz +bll 

and 

z2 E F(b,S) (1 F(-b,S) .. 

This shows that F(l::>~S) n F(-b,S) is symmetric. If there exists a 

real number ;>... such that cj> = AZz + ( 1 - ;>...)z l then it can be shown that 

z 2 = [(1 - ;>...)/;>...] z 1 . But this means that z 1 and z 2 are collinear with 

the origin which is a contradiction. Therefore, the line segment z l Zz 
must contain a point (x, 0) with x-:/; 0, but this also is a contradiction. 

Therefore, all elements of F(b,S) fl F(-b,S) must be collinear with cj>, 

Hence, F(b, S) n F( ~b, S) is a subset of a line passing through the 

origin. 
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Now the tools are available to prove the next lemma . 

. Lemma 4. 2. Let X be a two-dimensional normed linear space 

such that F(z, S) is convex for each set S and each z E S. Then X is an 

inner-product space. 

Proof: Since, by hypothesis, F(z,S) is convex: for E;iach set S, 

let S = {b, -b} where b = (~, O), ~ > 0. Then F(b, S) #, 0 since -b E F(b, S), 

and F(b,S) and F( ... b,S) are both closed and convex. Let 

0 ' 
F(b,S) = {x EX: llx • bjj > llx + bjj}. 

Then F(b, S)O #, O since -b E F(b, S)O and F(b, S)O is open since 

o· 
F (b, S) = X \ F ( ~ b, S). 

Furthermore, 

F(b,S) = F(b,S)OU (F(b,S) (") F(-b,S)). (4. 14) 

Let x E F(b,S) (") F(-b,S) and let E > 0. Let w = ~ + t(x + b), 

where t = E/(2 llx + bjj). Then 

and 

llw+bjj = llx+t(x+b)+bll 

=(l+t)llx+bll, 

II w - b 11 = 11 x + t(x + b) - b II 

< llx-bll +tllx+bll 

= llx+bll + tllx+l:>11 

= (1 + t) llx+bll 

= llw+bll. 

(4. 15) 

(4. 16) 

Hence, from (4. 16), llw + bll ~ llw - bll which implies that w E F(-b,S). 
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If 11 w + b 11 = j jw - b II, then w, x, and cp must be collinear from 

Lemma 4. 1. But this is impossible since w, x, and -bare collinear. 

Therefore, II w. + b II > II w - b II and w ¢ F(b, S) . .; <Furthermore, 

II w - x 11 = 11 x + t(x + b) - x II 

=tllx+bll 

= E /2 

<e. (4. 17) 

Since e was arbitrary, each neighborhood of x contains a point of 

X \F(b,S). 'l'hus, xis a boundary point of F(b,S), and 

F(b,S) n F(-b,S) C bd F(b,S). 

Then, since F(b, S) O is open and can contain no boundary points of 

F(b, S), (4. 14) implies that 

bd F(b, S) = F(b, S) n F(-b, S). (4. 18) 

Therefore, F(b, S)O is the interior of a convex body and must be convex. 

0 
Hence F(b,S) and F(-b,S) are complementary convex sets since 

F(b, S)O U F(-b, S) = X 

and 

0 
F (b, S) n F ( -b, S) = 0 . 

Then, V = lin F(b,S)O n lin F(-b,S) is either a hyperplane or 

it is the entire space X (cf. Valentine, [36]). According to Valentine 

([36]. p. 11), lin F(b, S)OC cl F(b,S)O= F(b,S) and lin F(-b,S)C F(-b,S). 

Therefore, V C F(b,S) n F(-b,S) which implies that Vis a hyper

plane. Furthermore, F(b, S) n F( -b, S) is a subs et of a line by 

Lemma 4. 1. Hence V = F(-b, S) n F(b, S) and F(-b, S) n F(b, S), 

the set of points equidistant from b and -b, is a straight line. 
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Obviously, the preceding discussion can be applied to any pair 

of points x and y of X after a suitable rotation and translation of axes, 

Hence, the set of points equidistant from any pair of points of X is a 

straight line. A theorem of Day, [8], states that a normed linear 

space L is an inner-product space if and only if the set of points equi

distant from any pair of points of L is a flat. Therefore, the space X 

is an inner -product space. 

Now we are ready to prove the theorem. 

Theorem 4. 7. A normed linear space X is an inner-product 

space if and only if for each set S and z E S, F(z, S) is convex. 

Proof: Suppose X is an inner-product space and that S C X 

and z E S. If F(z, S) is empty then it is convex. If F(z, S) is not empty, 

then by Theorem 4. 1 and Theorem 4. 3, F(z, S) is the intersection of 

closed half-spaces. A closed half-space is always convex and the 

intersection of convex sets is always convex. Therefore, F(z, S) must 

be convex. 

Suppose that F(z,S) is convex for each set Sand ze S. Let L 

be any two-dimensional subspace of X and let S C L. If z E S, F(z, S) 

must be convex which implies that F(z, S) n L is convex. F(z, S) n L 

is just F(z, S) for the space L.' Hence, in the space L, F(z, S) is 

convex for each set Sand z e s~ Therefore, by Lemma 4. 2, L is an 

inner-product space. Day, [8], has shown that a normed linear space 

is an inner -product space if and only if every two-dimensional sub

space of the space is an inner-product space. Hence, the space X is 

an inner-product space. 
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aJ 
In Example 3. 3, Xis the normed linear space, J, (2), which 

is not an inner-product space. For the set S = {z,w}, where z = (1, 0) 

and w = (0, 0), it was shown that F(z, S) is not convex. 



CHAPTER V 

APPROXIMATIONS BY POLYTOPES 

The problem of determining the set F(z, S) for a given set S and 

a point z is usually difficult unless in an inner-product space the set S 

is a smooth convex set. Hence, it would be desirable to develop 

geometric methods for finding F(z, S) or for approximating F(z, S) in 

some sense. In order to approximate F(z,S) the procedure will be to 

approximate S by some set W, then consider the set of z-farthest 

points, F(z, W),, which, hopefully, will be nearly equal to F(z, S). 

Obviously, W must be a set such that F(z, W) is readily found. Poly

topes have been used to approximate sets, Thus, if F(z, P) for a 

polytope P C Scan be found easily, then this might lead to an approxi

mation of F(z, S). 

By a polytope, we mean a bounded convex set which is the 

intersection of a finite number of closed half-spaces. This definition 

has been shown by Klee, [24], to be equivalent to the definition that a 

polytope is the convex hull of a finite number of points. These two 

equivalent definitions will be used interchangeably throughout the 

remainder of the discussion. 

For a polytope P and a point z e P, we shall determine F(z, P). 

The following theorem by Fan, [17 ], will be useful: Let L be a real 

linear space of arbitrary dimension, finite or infinite. Then a system 

of inequalities 
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where f 1, f 2 , ... , fp are linear functionals on Land a 1,a2, .•• ,ap are 

real numbers, is consistent if and only if for any p non-negative 

numbers >... the relation 
1 

implies 

p 
:E 

i = 1 

p 

:E 
i = 1 

>... f. = 0 
1 1 

>... a. < 0. 
1 1 -
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Of course, by consistent, we mean that there exists a point x 0 E L such 

that 

Now the tools are available to determine F(z, P) for a polytope P and 

z E P. 

Theorem 5.1. Let P = conv {z,x1, .•. ,xm} be a polytope in the 

real inner-product spaceX such that z is an extreme point of,p an~ 

z 'I x., 1 < i < m. Then F(z, P) is not empty and is the intersection of 
1 - -

a finite number of half-spaces. 

Proof: Whether F(z, P) is empty or not, 

F(z, P) = F(z, {z,x1, ... , xm}) 

by Theorem 3. 4. Then by Corollary 4. 1, 

m 
F(z, {z,x1, ... ,xm}) = F(z, {z, z}) (') (1 F(z, {z,x.}). 

i = 1 1 

However, F(z, {z, z}) is just the space X so that 

m 
F(z, {z,x1, .•. ,x }) = (') F(z, {z,x.}). 

m i = 1 1 
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From Theorem 4. 3 we se~ that each set F(z, { ~· :1\}), 1 < i ~ m, is the 

half space 

H. = {x ; (x. - z, x) > (1/2) (x. - z, x. + z)}, 1 < i < rri. 
l ,· l - l l · --

Hence, F(z, P) is the intersection of a finite nu±nber of half-spaces, 

and F(z, P) will be nonempty if the system of itlequalities 

(x. - z, x) >(l/2)(x. - z, x. + z), l < i < m 
l - 1 l - -

( 5. 1) 

is consistent. So assume there exist real numbers "'i ~ 0, l ~ i :::_ Jn, 

suc;h that 

m 
:E 

i = 1 
>... (x. - z, x) = 0 

l l 

for each x E X. Then by the bili:11-earity of the inner product 

for each x e X. Hence 

m 
( :E 

i = l 
>... (x. - z), x) = 0 

l l 

m 
:E 

i = 1 
>... (x. - z) = <j,. 

l l 

1£ there is some >... > 0, then we may write 
J 

m >... 
l z = :E x. 

i = ,l m l 

:E "'k 
k=l 

. 

If J·ust >... > 0, then z = x., a contradiction. If more than one number 
. J J 

>... is greater than zero then z e conv {x1, ... , x } since 
J ~ 

t 
m . >... 
:E l 1, = 

i = l m 

!: "'k 
k:: l 



HQM"eve r, in such a case z cannot be an extreme point of P. Hence, 

>... = 0 for each i such that 1 < i < m. Thus, 
1 

m 
~ >... (x. - z, x. + z) = 0, 

. 1 l 1 1 
1 = 

and the system (5. 1) is consistent by Fan's theorem. 

8~ 

Corollary 5. 1. Each vertex of a polytope P in an inner-proc;luct 

space X is a boundedly exposed point of P. 

Proof: By Theorem 5. 1, F(z, P) Js nonempty for a vertex z of 

P. By Theorem 3. 14, F(z, P) j O if and only if z is a boundedly 

exposed point. 

From Theorem 5. 1 we see that F(z, P) is easily found in an 

inner-product space by intersecting the half-spaces determined by the 

perpendicular bisectors of the line segments joining z to each of the 

other vertices or extreme points of P. Since F(z, P) is easily found 

it seems possible to determine when F(z, P) is a cone. The following 

theorem gives sufficient conditions for F(z, P) to be a cone. 
' 

Theorem 5. 2. Let X be a real inner-product space and let 

P = conv {z,x1, ... ,xm} be a polytope such that z is an extreme .point 

of P and z -:/:. x., 1 < i < m. If, after a suitable rearrangement of the 
1 - -

set {x1, ... , xm}, there exists a point x 0 e F(z, P) and an integer n, , 

0 < n < m, such that 

1 ~ i ~ n, and the points x , n + l < r < m, are in the convex cone with 
r - -

vertex z and extremal rays z + Rx., l < i < n, then F(z, P) is a convex 
.. !. - -

cone with .vertex x 0 . 
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Proof: Without loss of generality, we may assume that z = cp. 

Then the set of inequalities (5. 1) which define F(cp, P) becomes 

Furthermore, this system is consistent since x 0 E F(<j>, P). Since each 

x , n + 1 < r < m, is in the cone with vertex <I> and extremal rays Rx.; 
r . - - , 1 

l < i ~ n, we have that 

x = r 

n 
~ >... x., 

1r 1 
i = l 

>... > 0, 
1r -

., 

l < i < n. 

. 2 
Then since (xi, x 0 ) = (1/2) 11 xi 11 , l < i < n, it follows that 

n . 2 n 
!: >... (1/2)/lx, 11 = ~ >... (x.,x0 ) . 1 1r 1 . 1 1r 1 

l = l = 

( n -~ ) = ~ x.. x.,xo 
i = 1 1r 1 

:::_(1/2) / f xr 11·2 .. 

( 5. 3) 

(5.4) 

To show that F(<I>, P) is a cone it is necessary to show that for each 

XE 

XE 

F(<I>. P). {( l - >..)x0 + >..x : >.. :::_ O} is a subset of F(<I>, P). So let 

F(<I>, P), and let >.. :::_ 0. If O ~ >.. ~ l, then ( l - >..)xo + >..x E F(<I>, P) 

since, as shown by Theorem 4. 7, F(<I>. P) is convex. If>.. >.l, then 

for each xi, l < i ~ n, we •have 

(x., (1 - >..)xo + >..x)::: (1 - >..)(x., xo) + >..(x.,x). 
l . l l 

2 . = (l - >..){1/2) II xiii + >..(xi'x) 

::'.. (1 ->..)(l/2)llxill2+ >..(l/2)ilxill2 

= (1/ 2) 11 x. 11 2 . 
1 

( 5. 5) 



If n + 1 ~ r ~ m, then from" (5. 3) and (5. 4) it follows that 

= (1-~)( ~. >.. .. x.,x0) + >.. (; >... x.,x) 
i=l ir l i::l lr l 

n n 
=(1->..) ~ >..i (x., xo) + >.. !: x. (x .• x) .. · l: r 1 . 1 1r 1 

l = . l = 

= (1->..) 
n · n 
!: >... ( 1/2.)j J x. J J 2 ·+ >.. . !: >.., (x., x) 

... 1 1r 1 . 1 1r i 
l~ 1= 

> (1 - >..) 
n n 
!: >... (l/Z)lix,112+>.. !: X.. (l/Z)i!x,112 

i=l lr l i::l lr l 

n 
= (1 /2) !: >... 

i = 1 1r 
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~(1/2) JJxrJ12· ( 5. 6 

Thus by (5. 5) and (5.6), (1 - >..)x0+ >..x always satisfies the system of 

inequalities (5. 2) \J{hen X ~ 0 and x E F(cj>, P). Therefore, F(cj>, P) is a 

convex cone with vertex x 0 . 

In a geometric sense, Theorem 5. 2 says that the points x., 
. l 

1 ~ i ~ n <;tll lie on the surf~ce of a sphere .with center x 0 and radius '. 
! 

J /x0 11, The other vertex points of the polytope P lie; within this sph~re 

and also within the convex cone with-ver'tex <I> and extremal rays Rx., 
l 

1 < i < n, 

Since now the structure of F(z 1 P) for a polytope P has been 

detirmined, we are ready to approximate F(z, S), for a compact convex 

body S. The distance between two closed bounded sets A and B is 

denoted he re by d(A, B) where 
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d(A,B) = inf {p: A ( Bp, B ( Ap}, 

and 

Ap = a~ A K(a, p), 0 < p e R, 

and 

K( a, p) = { x : II x - a II ~ p} . 

The functional d satisfies all the properties of a metric (cf. Valentine, 

[ 36] ). We shall say that a sequence {Ai} of i;;ets converges to the set 

A if and only if 

and we shall write A. -+ A. 
l 

lim d(A .. , A) = 0 
i-+co 1 

An important theorem related to this metric is the Blaschke 

selection theorem which is as follows: Let M be a uniformly bounded 

infinite collection of closed convex sets in a finite-dimensional normed 

linear space X . Then M contains a sequence which converges to a 
n 

nonempty compact convex set. A uniformly bounded collection of sets 

is a collection which is contained within some solid sphere (cf. 

Valentine, [36]). This theorem provides a method of approximating a 

set S with polytopes with the additional property that a given boundary 

point z is a vertex of each polytope', 

Theorem 5. 3. Let S be a compact, convex body in the normed 

space X and let z be an extreme point of S. Then there exists a 

sequence of polytopes {P } such that 
n 

1. P C S, n :::;: 1, 2, . , . , 
n 

2. P n C P n+ 1, n = 1 ~ 2, ... , 

3. z is a vertex of each P, n = 1,2, ... , and 
n 

4. lim d( P , S) = 0. 
n-+co n 
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Proof: Consider the sphere, B 1 = {x: llx - zll' < l}. This set 

is .open so that S \B 1 is compact if it is not empty, If S \ B 1 is empty, 

let P 1 = {z.}. If S_\B 1 is not empty then cover S \B 1 with open spheres 

of radius one and centers in S \ B 1. Since S \ B 1 is compact, there 

exists a finite subcovering of n open spheres with centers 

{x1,x2 , ... ,xn}. Then consider P 1 = conv {z,x1, ..• ,xn}. We have 

P 1 C S C (P 1 )1 ; and, furthermore, z is an extreme point of P 1 since 

it is an extreme point of S. 

Assume that P 1, P 2 , ... , P n-l have been chosen such ~hat P n-l 

is a polytope with vertices {z,,x1,, .. ,xN}. Assume that Pi C Pi+l' 

1 < i < n - 2; P. C S C (P.) 1 I., 1 < i < n - 1; and that z is a vertex 
-- - l l l 

of each Pi, 1 < i < n - l. Let 

N 
B = U {x: llx -x.11 < 1/n} 

n i = 0 l 

where x 0 = z. Then S \ B is compact or empty. If S \ B is empty · n n 

then let P = P 1; however, if S\B is not empty then cover S \ B n n- n n 

with open spheres of radius 1 /n and centers in S \ B . There exists 
n 

a finite subcovering which defines a finite set of points {xN+l' ... , xN+t}. 

Let P n = conv {z, x 1, ... , ~+t}. Then, whether S \ Bn is empty or 

compact, P 1 ( P ;zis a vertex of P ;andP (S ( (P )l/. n- - n n n n n 

Therefore, by induction, a sequence of polytopes having the properties 

(1), (2), and (3) has been defined. Note that if S \B 1 is empty then 

there must exist some integer n such that S \ {x : I Ix - z 11 < 1 /n} is 

not empty. If not, then S = {z} and would not be a convex body. 

Hence, there exists an integer, n, such that P is not a degenerate 
n 

polytope. 
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We have that P C S for each integer n; hence, P C Sp for any 
n n 

p > 0. Also S C (P n)l /n for each n, hence 

Therefore, lim d(P , S) = 0. 
n-+a:, n 

Theorem 5. 3 really gives a non-constructive method, which 

is usually not practical, of finding a sequence satisfying the properties 

(1), (2), (3) and (4) of Theorem 5. 3. If the space Xis finite-di~sional, 

then it is possible to use a much more systematic method to achieve 

the same results. 

Theorem 5. 4. Let S be a bounded, convex body in a finite-

dimensional normed space X and let z be an extreme point of S. Then 

there exists a sequence of convex polytopes {P } such that 
n 

1. P C S, n = 1, 2, ... , 
n 

2. PnCPn+l'n=l,2, ... , 

3. z is avertexofeachP, n= 1,2, ... , and 
.n 

4. lim d(P ,S) = 0. 
n-+a:, n 

Proof: Since a linear topological space of dimension r .is always 

linearly isomorphic to E , we may assume X =-E (cf. Valentine, [36]). r r 

For eachm, m= 0,1,2, ... , let 

L , = {(_:_!_ , ... , 2) 
m 2m · zm Pi = 0, ± 1 , ±2 , . . . , i = 1 , 2 , . . . , r} 

. ( 5. 7) 

Then for each m there exists only a finite number of points from L 
m 

which are contained in S. Let L 1 C L be that set. 
m m 

Let Pm= conv(L~ U {z}), then PmC S since L~ U {z} CS 

and S is convex. Again z is an extreme point of P since z is an 
m 



extreme point of S. 

Now L~ C L~+l since if 

( _:j_ '• • • ~)· E 
2m 2m 

then 

Hence Pm C P m+l' 

L' 
m 

Each P is closed and convex and the sequence { P } is 
m m 

uniformly bounded since S is bounded. Therefore, the Blashke con-

vergence theorem implies that there exists a compact, convex set C 

and a subsequence { P } such that 
mk 
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lim d(P , C) = 0. (5. 8) 
k-+oo mk . 

We shall show that P C C for each k. Suppose there exists 
mk 

x E P \ C for some k > 0. Lat 
mk 

6(x, c) = i~f { II y - x 11 : y E C}. 

Then C 612 does not contain Pmk· By (5. 8), there is some integer 

h > k such that 

d(C, P ) < 6/2. 
mh 

Since 

and since c 612 does not contain Pmh' d(C, Pmh) ::-_ 6/2. 

contradiction; hence Pm C C for ~iach k > 0. 
k ····. 

But this is a 

Let E > 0, then there exists an integer k > 0 such that 
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d(P , C) < e for each h > k. Now suppose m > mh' then Pm C P . 
mh - h m 

Since {P } is a sequence, there is an integer t such that m < mt; 
mk 

hence, P C P C C. If the number p is such that C C (P )p, 
m mt mk 

then C C (P m)p. Hence 

{p : C C (P mk)p, P mk C Cp} C { p: C C (P m)p, Pm C Cp} 

and it follows that 

Therefore, 

d(P , C) < d(P , C) < e. 
m - mk 

lim ( P , C) = 0. 
n-+oo n 

Now S C C, for suppose there exists x E S \ C. Then since C 

is compact there exists an open sphere of radj.us 6 and c:enter x, 

N 6(x), such that N 6 (x) n C = 0. Since x E S and S is a convex body, 

N 6 (x) must intersect the interior s 0 of S; hence, there must exist a 

point 

sinc;e this set of points is dense in E . 
r 

where 

r 

But then 

M= :E m. 

and 

i = l 
1 

r 
M. = :E mi, l :::_j :::_r. 

J i = l 
i J j 



But this is a contradiction; hence, S C C and 

lim d(P , S) = 0. 
n 

Now that a set S can be "approximated" by polytopes, it is 
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possible to "approximate" F(z, S) and N(z, S) in an inner-product space. 

In fact, the intersection of the sets F(z, P ) is F(z, S), 
n 

Theorem 5, 5. Let S be a convex body in an inner-product 

space X such that z E S is a boundedly exposed point of S. 

a sequence of polytopes such that 

1. P C S, n = 1, 2, ... , 
n 

2. Pn(Pn+l'n=l,2, ... , 

Then 

3. z is a vertex of each Pn, n= 1, 2, •.. , and 

4. lim d(P ,S) = 0. 
n n--oo 

. F(z,S) 
CD 

= n .F(z, P ) . 
n=I n 

Let {P } be 
n 

If X is finite-dimensional and R is a closed sphere with center z such 

that R 11 F(z, S) -, 0, then 

lim d(R 11 F(z, S), R 11 F(z, P )) = 0. 
n-CD n 

Proof: First it will be shown that 

CD 
F(z, S) = 11 F(z, P ). 

n =l n 

Suppose x E F(z,S), then !Ix - zll ~ IIY - xii for eachy e S. Since 

Pn CS for eachn, llx - zll > IIY - xii for eachy e Pn. $ince z e Pn' 

x e F(z, Pn). Hence F(z,S) C F(z; Pn) for each integ~r n. 

Now suppose 
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x E n F(z, Pn)' 
n=l 

then llz - xii:::'... IIY - xii for y E Pn' n = 1, 2~ •• ,. But suppose y ES 
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and there, is not an n such that y E P . Let E > 0, then there is an N > 0 
n 

such that for each n :::'... N, d(P n' S) < E. Hence, there exists w E PN 

such that II w - y 11 < E • Then 

llx - YII < !Ix - wll + llw - YII 

< 11:x; - zll + E, (5. 9) 

Since E was arbitrary, 11 x - y 11 < 11 x - z 11 which means that x E F(z, S ). 

Hence 

00 

F(z, S) = n F(z, P ). 
n = 1 n 

Suppose now that Xis also finite-dimensional and that R is a 

closed sphere with center z which intersects F(z, S). Let 

R = F(z, S) (1 R. Since F(z, S) C F(z, P ) for each n, F(z, P ) (1 R is 
O n n 

not empty. 

R +l C R . n - n 

Let R = F(z, P ) n R, then since F(z, P +l) C F(z, P ), n n n - n 

Each set R is closed and convex and the collection of 
n 

sets is uniformly bounded. By the Blashke Convergence Theorem, 

there exists a subsequence {R ·} which cc;mverges to a nonempty, 
nk 

compact, convex set C. 

Suppose that there exists a positive integer N such that 

C \RN f; O. Let x E C \RN. Then 

since RN is closed. There. exists n > N such that d(C, R ) < E /2 for . m 

m > n. By definition 



92 

but for p = e /2 we have 

which implies that (Rn)e 12 \ C # 0. Hence e /2 is a lower bound for the 

set 

Hence d(C, R ) > E /2, but this is a contradiction... Therefor,e C C R 
m - · n 

for n = 1, 2, .. , , which means that C C R 0 . 

Now if p is such that Rn C Cp, then Rn C (R0 )p and so 

d(R0 , R ) < d(C, R ). Hence 
n - n 

lim d(R0 , Rn) = O. n.-+co 

Suppose R 0 \ C # 0. If x e R 0 \ C then c5(x, C) = e > 0 and there exists 

N >Osuch that for n ~ N, d(C, Rn)< e /3. So RN C Ce /Z' but R0 ( ~ 

which implies that x e Ce 12 . Hence, there is a contradiction. There

fore, R 0 = C. 

The next theorem shows that the same type of result is true 

for nearest point sets. 

Theorem 5. 6. Let S be a convex body in the real-inner product 

space X and let z E S. Let { P } be a sequence of polytopes such that 
n 

Then 

1. P CS,n=l,2, ... , 
n· 

2 . P n ·C P n + 1 , n = 1, 2, . . . , and 

3. lim d( P , S) = 0. 
n-+co n 

co 
N(z, S) = n N(z, P n), 

n=l 

If Xis also finite-dimensional and R is a closed sphere with center z, 
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then 

lim d(R n N(z, SL R _(') N(z, P n)) = 0. 
n-+co 

Proof: First it will be shown that 

CX) 

N(z, S) = (') N(z, P ). 
n= l n 

Suppose x e N(z,S), then !Ix - zll < IIY - xii for each y ES. Since 

P n C S for each n, 11 x - z II ~ II y - x II for each y e P n. Since z e P n' 

x e N(z, P ). Hence N(z, S) C N(z, P ) for each positive integer n. 
n n 

Now suppose 

co 
x E n N(z, p ), 

n 
n=l 

then II z - x II ~ II y - x II for y e P n' n = l, 2,. . . . But if y E S such 

that y J P n for any n, then let e > 0 be an arbitrary number. There 

exists an integer N such that for n > N, d(P , S) < e. Hence, there 
- n 

exists w e PN such that 11 w - y 11 < e. Then 

II x - y II = II (x - w) - (y - w) II 

>llx-wll-llY-wll 

> llx - w II - e. (5. 10) 

But we PN implies that I Ix - w 11 > I Ix - z 11; hence, from (5. 10), 

II x ·_ y II > II x - z II - e. Since e is arbitrary, it follows that 

llx - YII > !Ix - z II. Thus, if ye S, jjx - YI! > llx - z II. Therefore, 

x e N(z, S) from which it follows 

co 
N(z, S) = (') N(z, P ). 

n::; 1 n 

Now suppose Xis finite-dimensional and that Risa closed 

sphere with center z. Then Ro = Rn N(z, S) is a nonempty compact 



convex set. Let R ;:: N(z, P ) n R, then since P C P +l' n n n- n 

N(z, Pn+l) C N(z, Pn) and N(z, Pn+l) n R c; N(z, Pn) n R.. The 

sequence {R } is a uniformly bounded collection of compact convex 
n 

sets; therefore, the Blashke selection theorem implies that there 
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exists a subsequence {R } which converges to a nonempty, compact, 
nk 

and convex set C. 

XE 

Suppose there exists an integer k > 0 such that C \ Rnk:J 0. 

C \R and let 
nk 

6(x, R ) ;:: inf { 11 x - y 11 : Y e R } 
nk nk 

Let 

Then 6(x, R ) > 0 since R is closed~ There exists h > k such that 
. ~ nk 

d(C, Rnh) < e /2. But (Rph) e/ 2 C (Ruk)E 12 whi~h implies that C \Rnhi 0. 

Hence, E /2 is a lower bound for the set 

{ p : C C (R )p, R C Cp}. 
nh nh 

Thus, d(C, R ) > e /2 which is a contradiction. 
nh -

Therefore, C C Rn , 
k 

k ;:: 1, 2, .... Since the sequence {R } is monotone it follows that 
n 

lim R = C and C C R for each positive integer n, Since C C R for 
n-oo n n n 

each positive integer n, it follows that 'C C R 0. Hepce, by reasoning 

similar to that of Theorem 5. 5, it follows that lim d(R , R 0 ) = O. 
n-oo n 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The basic purpose of this study has been to examine the struc

ture of z-farthest point sets and to determine properties of z-farthest 

point sets which are analogous to properties of z-nearest point sets. 

It was found that in a normed linear space, a z-farthest point set must 

be closed. Further investigation showed that a z-farthest point set is 

inverse starlike with respect to z. In a strictly convex normed linear 

space, F(z, S) and F(w, S), z # w, have only boundary points in common. 

The z -farthest point set of S is equal to the z -farthest point set of 

conv S and cl S. The z -nearest point set of S is equal to the z-nearest 

point set of cl S, but it is not, in general, equal to ~he z-nearest point 

set of conv S. 

Another topic of interest was the element z which determines 

the z-farthest point set of S, If the z-farthest point set is nonempty, 

then z is a boundary point of S. If the normed linea,.r space is strictly 

convex and the z-farthest point set of Sis nonempty, then z is an 

extreme point of S. A z-farthest point set of S is nonempty in a strictly 

convex space if and only if z is a boundedly exposed point of S. 

It was shown that in a rea,.l inner-produc;t space a z -nearest 

point set and a z-farthest point set of S can be represented as the 

intersection of closed half-spaces and the union of closed rays. This 

led to a characterization of inner-product spaces in terms of z-fa:r;thest 
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point sets. A normed linear space is an inner-product space if and 

only if for each set Sand each element z of S, the z-farthest point set 

. of S is convex. 

Finally, the structure of the z-farthest point set of a polytope 

P was found. Sufficient conditions for the z-farthest point set of P to 

be a cone were developed, Then, methods of approximating z-farthest 

point sets and z-nearest point sets were found. 

There are several problems which have been raised by this 

study which would be of interest for further consideration. One such 

problem is the characterization of sets which contain at least one point 

z whose z-farthest point set is a cone. The problem of completely 

Gharacterizing the points z of a given set S whose z-farthest point set 

of S is nonempty has not been solved. It would be desirable to extend 

Theorem 2. 1 to infinite dimensional inner-product spaces. 
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