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PREFACE

The basic problem of this thesis is the study of the structure of
z-farthest point sets. In a normed linear space the z-farthest point
set of a set S is the set of all points which are at least as far from the
element z of S as from any other element of 3. This type of set is
analogous to one defined by Motzkin, [28] (numbers in square brackets
refer to the bibliography at the end of the paper), which will be called
a z-nearest point set of S in this paper. Phelps, [31], Motzkin, and
numerous others have found z-nearest point sets to be a fruitful and
interesting topic of research. In this paper, it is shown that z-farthest
point sets have many properties analogous to those of z-nearest point
sets and some properties which have no counterpart in the theory of
z-nearest point sets. Also, further properties of z-nearest point sets
are developed.

Chapter I is a brief survey of the research which has been done
on nearest point sets and z-nearest point sets. A nearest point set of
S relative to a point z ig the set of all points of S which are at least as
near z as are any other poinfts of S. The main topics of interest and
some open questions concerning nearest point sets and z-nearest point
sets are pointed out and explained. In Chapter II, farthest point sets,
sets analogous to nearest point sets, are defined, and research topics
are discussed. It is the purpose of Chapter [ and Chapter II to provide
motivation for this study of z-farthest point sets. It is hoped that the

inclusion of these two chapters will bring about some unification of the



theory of these four different types of sets.

In Chapter III, the properties of z-farthest point sets are
developed. It is shown that z-farthest point sets are closed and inverse
starlike. It is also shown that the set S can be counsidered to be closed
and convex when dealing with the z-farthest point set of S, QOther
results relate to translation and multiplication by a positive scalar of
z-farthest point sets and z-nearest point sets. Properties of the
element z of S which has a nonempty z-farthest point set are also
discussed in Chapter III. The element = must be a boundary point of
S. If the linear space is strictly convex then a z-farthest point set of
S is nonempty if and only if z is a boundedly exposed point of S,

The main topic of interest in Chapter IV is a characterization
of inner-product spaces in terms of z-farthest point sets. A normed
linear space is an inner-product space if and only if for each set S and
each element z of S, the z-farthest point set of S is convex. Other
results in Chapter IV relate to the representation of z-farthest point
sets and z-nearest point sets as intersections of closed half-gpaces
and unions of closed rays,

Chapter V deals with the approximation of a z-farthest point
set of S by a z-farthest point set of a polytope centained in S. Similar
results are shown for a z-nearest point sef. Finally, Chapter VIis a
summary of the paper and lists some unsolved and partially solved
problems that have been raised in the course of the investigation.

All notation and terminology which is not defined in this paper
can be found in Valentine, [36].

I wish to express my appreciation to all those who assisted me

in the preparation of this thesgis. In particular, I would like to thank
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Professor E. K. | McLachlan for his inspiration, advice, and assistance.
For their encéuragement and cooperation, my thanks go to Professors
John Jewett, John Jobe, and John Sheiton. Finally, I want to express
my deepest appreciation to my wife, Vicky, without whose help I could
never have finished my work.

I am indebted to the National Aeronautics and Space Administra-
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CHAPTER I
THE DEVELOPMENT OF NEAREST POINTS

The initial step in the study of nearest points came in 1935 in
the form of two articles by Mofzkin, [27], which appeared in the same
journal. In these articles two types of sets were discussed; the first

set is defined as follows:

Definition 1. 1. Let X be a normed linear space and let S C X,

If z € X, then
N(z,S) ={xeS: ||z -x]|| =inf { ||z - y||:yeS}}.

The elements of M(z,S) are called projections of z onto S, and

the set M(z,S) is called the set of nearest points of S relative to z.

Simply stated, the set M(z,S) is the set of all points x ¢ S which are at

least as near z as are any other points of S.

Example 1, 1. Let X be the space EZ and let S be the set

{(x,y):x=—"l—y2, -1 <y <1}.

If z is the point (1, 0), then M (z,S) = {(0, 1), (0, -1)}. This is illus-

trated in Figure 1. 1. It is apparent that for each point w = (a,0), a > 0,
that N(w,S) = T (z,S); however, N(0,S) =S. If T denotes the open set
bounded by the arc S and the line segment, {(0,y): -1 <y < 1}, then

Mz, T) is empty.



Figure 1. 1.

Since M(z,S) may sometimes be empty Phelps, [31], devised a

name for those sets S for which M (z, S) is not empty for any z.

Definition 1.2. Let S be a subset of the normed linear space X,

then S is proximinal if and only if for each z ¢ X, M (z,S) is not empty.

If a set S is proximinal and M(z,S) is always a singleton then
an acceptable terminology would be uniquely proximinal; however, the

name ""Chebyshev set"” seems to be predominant. Since the person

primarily responsible for the study of this type of set is Motzkin, the

terminology used here will be Chebyshev-Motzkin set. For example

a closed interval [a,b] on the real line is a Chebyshev-Motzkin set,

Definition 1.3. A subset S of the normed linear space X is a

Chebyshev-Motzkin set if and only if M(z,S) is a singleton for each

z ¢ X,



The following theorem appeared in 1935 in Motzkin's paper,
[27]. Although not mentioned in the statement of the theorem, Motzkin

also verified the converse in the same article.

Theorem 1..1. If each point of the plane cutside a closed set E

has a single projection on E, then E is convex.

This theorem was extended to sets in En by Jessen, [19], in
1940 and to straight line spaces by Busemann, [7], in 1947. Later
authors considered more general spaces and tried to find the relatioﬁa
ship of certain geometrical properties of the unit ball and Chebyshev-
Motzkin sets, An interesting result of this type is the following theorem

by Valentine, [36].

Theorem 1.2. Let X be a smooth and strictly convex finite
dimensional normed linear space, and let S be a nonempty closed sub-

set of X, Then S is convex if and only if S is a Chebyshev-Motzkin set,

A characterization of Chebyshev-Motzkin sets in terms of closed
convex sets is not possible as shown by Valentine, [36]; however,
Busemann, [7], showed that the implication in Theorem 1.2 can be

improved in one direction as follows.

Theorem 1.3. Let S be a closed set in the smooth finite dimen-

sional normed linear space. If S is a Chebyshev-Motzkin set then S

must be convex,

Theorems 1.1, 1.2, and 1.3 place conditions on the norm of X
and then show the relationship of Chebyshev-Motzkin sets to convex sets.

Motzkin, [27], noted that the relationship of Chebyshev-Motzkin sets to



convex sets determines a geometrical property of the unit ball i the
case of two dimensional spaces. This theorem pointed to another

avenue of research.

Theorem 1.4. A two dimensional Banach space X is smooth if

and only if every Chebyshev-Motzkin set in X is convex,

By reasoning similar to that used by Motzkin in Thecorem 1.4
it can be shown that in a finite-dimensional Banach space every
Chebyshev-Motzkin set is convex., However, the poszsible validity of
the converse, i.e., that if every Chebyshev-Motzkin set in a finite-
dimensional Banach space is convex then the space must be smooth,
was not resolved until some years later. Klee believed that the con-
verse was true (see [21]), but it was later proved by Bréndsted, [5],
in 1965 to be false. In fact, Brgndsted showed that counter-examples
exist for any dimension at least as large as three, Thus the question
of whether it is possible to characterize those finite-dimensional spaces
which are smooth in terms of Chebyshev-Motzkin sets was raised.
Brdndsted, [6], gave a partial answer in the following theorem which

appeared in a later article,

Theorem 1.5, Let X be a three-dimensional Banach space with

unit ball B, Then every Chebyshev-Motzkin set in X is convex if and

only if every exposed point of B is a smooth point of B,

Thus smoothness does not seem to give an entirely satisfactory
characterization, and a stronger theorem would be desirable. This is
accomplished by substituting the condition of strict convexity for

smoothness in Motzkin's theorem, Theorem 1.4. With this substitution
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the theorem is even true in arbitrary finite dimensional spaces. The
theorem, as stated below, appears in Bréndsted's paper, [5], but it is

not proved there,

Theorem 1.6. A finite dimensional Banach space X is strictly

convex if and only if every nonempty closed convex set in X is a

Chebyshev-Motzkin set.

The reader will notice that Theorem 1.6 leaves open the possi-
bility that not every Cﬁebyshev-Motzkin set is convex even though X is
strictly convex, The Russian mathematicians, Efimov and Stechkin,
[11], showed that the conditions of smoothness and strict convexity

together removes this possibility.

Theorem 1.7, A finite dimensional Banach space X is strictly
convex and smooth if and only if the Chebyshev-Motzkin sets are the

nonempty closed convex sets in X.

Thecorems 1.1 through 1.6 indicate that one of the maiﬁ topics
of interest in the theory of Chebyshev-Motzkin sets has been the
relationship of Chebyshev-Motzkin sets and convex sets in a finite
dimensional Banach space. Clearly the topic has been thoroughly
explored in the finite-dimensional case, but the infinite-dimensional
situation is more delicate. Several men such as Klee, Efimov,
Stechkin, and Vliasov have worked on this problem; however, eve1:1 in
Hilbert space it remains unknown whether a Chebyshev-Motzkin set
must be convex. One of the first published results concerning spaces
of arbitrary dimension is the following which is due to Efimov and

Stechkin, [15]:



Theorem 1,8. Let X be a smooth, uniformly convex Basrach

space, then every boundedly compact Chebyshev-Motzkin set is convex.

In a later paper by Klee, [21], a result similar to Theorem 1.8
is given., The conditions on the Banach space were strengthened some-~
what, and the conditions on the Chebyshev-Motzkin set were relaxed to
produce a theorem which is the first infinite ~dimensional characteriza-

tion of closed convex sets in terms of the Chebyshev-Motzkin property,

Theorem 1. 9. In a Banach space which is uniformly smooth and

uniformly convex, a set is closed and convex if and only if it is a

weakly closed Chebyshev-Motzkin set.

Another interesting theorem, due to Professor Ficken, but
never published by him, was also in the Klee article, [21], in which
Theorem 1.9 appeared. Ficken's method, which applies only in inner-
product spaces, establishes a close connection between the problem of
nearest points - '"Must a Chebyshev-Motzkin set be convex?'" - and a
related problem involving farthest points. This relationship will be
explained in more detail later, but the theorem due to Ficken is stated

below.

Theorem 1. 10. In a Hilbert space, every compact Chebyshev-

Motzkin set is convex.

The theorems from Theorem 1.1 to Theorem 1. 10 represent
the more interesting and perhaps the most important conclusions
drawn from the theory of ChebysheymMotzkin sets. It is obvious that
the theory of Chebyshev-Motzkin sets is not complete especially since

large gaps are present in the theory for infinite-dimensional spaces,



One open question is - '"Can the infinite-dimensioval Banach spaces in
which every Chebyshev-Motzkin set is convex be characterized? ' -
and another question mentioned before is - '"Is every Chebyshev-
Motzkin set convex in a Hilbert space?!', Theorems 1.7, 1,8, and
1.9 are all efforts in the direction of one of the two gquestions stated
above.

The class of non-Chebyshev-Motzkin sets is another facet in the
study of sets of nearest points, These sets have not been as interesting
as Chebyshev-Motzkin sets, and accordingly there is a paucity of results,
However, the following two theorems, due to Erdas; [16], are results

of this kind.

Theorem 1,11, Let S be a closed set in En“ Denote by M the
set of points z € En for which Wz, S) consists of more than one point,

Then the set M has Lebesgue measure zero.

The other interesting theorem in Erdos' paper states that the
union of all sets of nearest points in a closed set S has Lebesgue
measure zero. At first glance this does not seem toc surprising since

one expects the measure of the boundary of a closed set to be zero.

Theorem 1,12, Let S be a closed set in En’ and let x ¢ En \ S.
Then

U MN(x, S)

x ¢S
has Liebesgue measure zerc.
Valentine, [36], gives a more conventional type of thecrem

concerning sets of nearest points with the following theorem which

again deals with the properties of the set S rather than with MN(z,S).



Theorem 1. 13. Let S be a closed set in En" L.et P denote the

set of points z for which T(z,8) contains two or more points. If P
consists of only isolated points, then each bounded component of the
complement of S is a solid open sphere whose center belongs to P,

Moreover, bd conv S ( S.

Thus, according to Theorem 1.13, if a nonconvex set S8 has
"holes'' in it, then they must be '"perfectly round, " provided the set P
consists of only isolated points. This theorem and the two immediately
preceding it seem to be the major theorems relative to nearest points
of closed sets that may be non-Chebyshev-Motzkin sets, Some other
work has also been done by Pauc, [30]. Studies of this type are difficult

since the structure of nonconvex sets is so general,
Existence of Sets of Nearest Points

Up to now, nothing has been said about the existence of the set
N(z,S) even though each preceding theorem has been concerned with the
properties of S as related to M (z,S). If S is an open set in a normed
space then it is easily seen that N (z,S) is empty whenever z ¢ S, and
if S is nei_;ut her open nor closed M (z,S) will be nonempty for some points
z and empty for others. On the real line, if x is a number greater than
b, then x has no nearest point in the half-open interval [a, b), but if x
is less than a, then x has a nearest point, namely a, The following
three theorems which are stated by Phelps, [31], give some instances

when M (z,S) is not empty.

Theorem 1,14, If S is a compact set in a normed linear space

X, then M (z,S) iz not empty for any z ¢ X.



Theorem 1. 15, If X is a finite dimensional normed linear space

then each closed set is proximinal.

Theorem 1. 16. If S is closed and convex and if a normed space

X is reflexive, then S is proximinal,

The three theorems above are rather old, and their origins are
difficult to trace. However, work is still being done on finding suffi-
cient conditions for M(z,S). Most recently Edelstein, [12], has shown
under certain conditions that even though %(z,S) may be empty for
some z in a Banach space there are still sufficiently many points for

which o (z,S) is not empty to form a dense set in X.

Theorem 1. 17, Let S be a nonempty closed set in a uniformly
convex Banach space X. Then the set C of all points ¢ in X for which

there is a point s ¢ S with
[|s - cf| = inf {|]x-c||:xeS}

iz dense in X.

This theorem followed an earl;lji’er theorem by Edelstein, {11],
in which he showed that if S is a closed set in a uniformly convex

Banach spacé X the set C of all points ¢ such that
[{s-c]| = sup {||x-c]||:xeS}

is dense in X. In response to this theo‘rem, Asplund, [2], pub%ished a
paper in which he p'roved that if S ié closed and bounded in a reflexive
and locally uniformly convvex Banach space X, the complement of the
above set C is of first Baire category. Thus, since Edelstein was able

to prove a theorem about nearest points analogous to his first theorem



10

concerning farthest points, a logical conjecture would be as iollows:

If S is a closed set in a reflexive and locally uniformly convex Banach
space, then, except on a set of first Baire category, the points in X
have nearest points in S. Of course, more generally, the open problem
here is to characterize those spaces in which each closed set has sets

of nearest points.

The Theory of z-Nearest Point Sets

The set N(z,S) is always a subset of S. From Example 1.1 it
is obvious that if x is in T (z,S) then there are possibly more points w
in X such that x ¢ M(w,S). Hence, for a given x ¢ S another set of
interest related to x and S is the set of all z ¢ X such that x ¢ " (z,S).

This is defined more formally below.

Definition 1. 4. Let S be a subset of the normed linear space X

and let z ¢ S. Then let N(z,S) denote the set of all points x in X such

that

me ZH = inf{f[x ~yH:y‘e S}.

This set was also introduced by Motzkin, [28], and was later
studied by Pauc, [30], Phelps, [31], and Klee, [23]. In this article the

set N(z, S) will be referred to as the z-nearest point set of S as opposed

to sets of nearest points for the set N (z,S). The elements of N(z, S)

will be called z-nearest points. In order to make clear the meaning of

the definition, consider the following example.

Example 1. 2. Let S be the closed unit disk in E2 and let z be

the point (1, 0) which lies on the boundary of S. Then N(z,S) is the
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ray {(x,0):.x > 1} (cf. Figure 1.2). Notice that S is convex and that

N(z,S) is a closed, convex cone.

Figure 1.2,

Example 1.3. Let S be the set of poipts in E2 whose first
coordinates are not greater than -1 together with the point (1, 0). Let
z be the point (1,0), then the set of points equidistant fromzandS \{ 7} is
- the parabola {(Xl’XZ) : XZZ = 4x1}‘.,'; ~Thus, it ,follows: that N(z,S) is the
set {(xl, XZ) : xg < 4}(1}° Note t};at again N(z,S) is convex but that it

is not a cone (cf. Figure 1. 3),.

" Motzkin, [28], first studied this set and pi‘ovided the first
important theorem concerning them. His theorem, Theorem 1. 18,
shows that the z-nearest point sets in Example 1.2 and Example 1.3

have to be convex because E2 is an inner product space.



Figure 1.3.

Theorem 1. 18. Suppose X is a two dimensional normed real

linear space., Then X is an inner-product space if and only if for each

set S and z ¢ S; N(z,S) is convex.

- Actually Motzkin required that X be a ﬁwo dimensional space in
which the unit ball is an ellipse, but this is known to be equivalent to an
inner product space (cf. Day, [8]). Motzkin's result was extended by
Phelps, [31], to include any finite dimensional inner product space.
Examples which illustrate Theorem 1. 18 are easily found. The
fol,l.dwing example shows a z-nearest point set which is not convex in

a normed linear space which is not an inner-product space.

Example 1.4, Let X be the space R, with

2
Nl = max { x|, %[}, %= (x),%,). Let8 ={(0,0), (1,0)}, then if

2 = (0, 0) the set N(z,8) = A U B, where

A={t:t= (x1:%,), % < 1/2}
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and

1’ 2), x, > 1/2, lxalle}

B={t:t=(x,,x 1

(cf. Figure 1.4).

N(z, 5) E (1,0) %

Figure 1.4,
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In the following extension of Motzkin's theorem, Theorem 1. 18,

Phelps required convexity of S.

Theorern 1.19. Suppose that the dimension of the normed linear

space X is at least three (equal to two). Then X is an inner-product
(strictly convex) space if and only if for each convex set S and z ¢ S,

N(z,S) ig convex,

Other authors have sought after the geometrical properties of
N(z,S). One of the earliest workers on this problem was Pauc, [30].
Pauc's theorems dealt with the boundedness and the interior points of

N{z, S).

Theorem 1.20. Let S be a subset of the Euclidean space En’
then each interior point of N(z,S) has only a single projection on S,

namely z.

Pauc also showed that, although z is always an element of N(z, S),
- the only way for z to be an interior pbint of N('z,S) is to be an isolated

point of S.

Theorem 1.21. In the space En’ the element z of the set S is

interior to N{(z,S) if and only if z is an isolated point of S,

Pauc further develcped the geometrical picture of N(z,S) with

the following theorem:

Theorem 1,22, In the space En’ the set N(z, S) is bounded for

a set S if and only if z is interior to the convex hull of S.
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This type of research was taken up much later by Klee. Klee
preferred to consider more general spaces, and his theorem illuminates
even better the geometrical shape of N(z,S). The following theorem of

Klee, [23], shows that the set N(z,S) is a cone if S is convex.

Theorem 1,23, Let X be a normed linear space and SC X. If

S is convex and z € S then N(z,S) is a cone with vertex z.

Example 1.4 illustrates a nonconvex set S where N(z, S) is not
a cone. If the norm on Rn is changed to the usual Euclidean norm in
Example 1.4, then N(z,S) becomes the set of points (xl,xz) such that

x, is not greater than one half. This set is a cone, but its vertex is

1
not z. Klee, [23], went on to state a partial converse of Theorem 1. 23;

however, he did not prove it. A proof can be found in Phelps' first

paper, [31], on nearest points. The theorem is as follows:

Theorem 1.24. Suppose S is closed and proximinal and that the
normed linear space X is smooth. Then S is convex if for each z € S,

N(z, S) is a cone with vertex z.

Since every closed subset of (smooth) En.is proximinal,
Theorems 1.23 and 1. 24 combine, as shown by Phelps, to prove the

following characterization of convexity of a closed set.

Theorem 1,25, A closed set S in En is convex if and only if

for each z ¢ S, N(z,S) is a cone with vertex z.

From the preceding theorems it is seen that the property that
N(z, S) is a cone has a similar relationship to S as the Chebyshev-

-Motzkin property has to S. That is, the two properties are both
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equivalent to convexity under suitable conditions, and one might suspect
thét if N(z,S) is a céne that each point of N(z, S) has one nearest point
in S, namely z. This‘ seems esbpecially possible in light of Pauc's
theorem, Theorem 1.20, which says that the interiors vofbtwo sets

N(z, S) and N(w, S), w # z, do not intersect. Phelps showed in [31],

that if S is a convex set in a strictly convex space X, then

N(z,S) ) N(w,S) is empty for z,w ¢ S and z # w.

The sets N(z,Sv) have ‘been shown to be convex, unbounded, and
cones, given favorable conditions. So a possible question at this point
is "what characterizes the spaces X such that for a set M there exists
a set S and a point z such that M = N(z,S8)?" Must all these sets be
convex, cones, or unbounded? The answer to these questions was
provided by Phelps, [32], in his second paper on nearest points. These
theorems are interesting inasmuch as their statements closely parallel

those in the Chebyshev-Motzkin series.

Theorem 1.26. In a complete iﬁper-product space X for each

closed convex set T there is a set S (C X and a point z € S such that

T = N{z, S).

For dimensions greater than three the converse of Theorem
1.26 is true; and hence, the first question asked above is answered

for finite dimensional spaces.

Theorem 1.27. Suppose that the dimension of X is not less

than three and that every closed convex subset T of X has the property
that there is a set S (C X and a point z € S such that T = N(z,S). Then

X is a complete inner-product space.
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Then from Motzkin's theorem, Theorem 1.1, it is known that
in a finite dimensional inner-product space each set N(z,S) must be
convex, so this together with Theorems 1. 26 answers the second
question. Phelps also presented some other results of a different

nature in his second paper.
Closest-Points

Definition 1. 5. Let A be a subset of the normed linear space X,

then y ¢ X is said to be point-wise closer to A than is x provided
lly-a|| < ||x-a]|| for each a ¢ A, If x is such that no point of X is

point-wise closer to A than x then x is called a closest-point to A.

Example 1. 5. Let X be the space E,, then if A is the open unit

2’

disk, each point of the boundary of A is a closest-point to A.

.The concept of closest-points and sets of closest-points was

originated by Fejér, [18], who proved the following theorem.

Theorem 1.28. If A is a subset of the complete inner-product

spacé X then conv(A) is equal to the set of all closest-points to A,

Phelps, [32], obtained a partial converse of Fejér's theorem
which showed that the complete inner-product spaces of finite dimen-

sion greater than two can be characterized in terms of closest points.

Theorem 1.29. Suppose that the dimension of the space X is at

least three and that for each closed convex set T (( X there exists a
set S (C X and a point z € S such that T = N(z,S). Then X is a complete

inner-product space,
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A theorem similar to Theorem 1. 28 and Theorem 1.29 was also
obfained by Phelps, [32], for spaces of dimension two by merely
requiring that X be strictly convex. The following theorem was also

shown by Phelps in the same article.

Theorem 1.30. Let X be a normed linear space of dimension

two, then for each subset A of X the set of closest-points to A is a

subset of conv A if and only if X is strictly convex.

The subject of closest-points does not seem to be well explored
as evidenced by the small number of articles written concerning them.
An open question here is to characterize the spaces such that the set

of closest points of any set A coincides with conv A.
Nearest Point Maps

A function f can be defined on a space X given a closed proximi-
nal set S as follows: If x € X let f(x) be a point ZeS such that x ¢ N(z, S),

This nearest point map can exist if and only if S is proximinal and a

Chebyshev-Motzkin set. The continuity of this function, when S is a
Chebyshev-Motzkin set, has been found by Klee, Phelps, Fan, and
Glicksberg to be closely related to the convexity of S. The following

two theorems are stated by Klee, [21].

“Theorem 1.31. In an arbitrary normed linear space, the

nearest point map onto a boundedly compact Chebyshev-Motzkin set is

continuous.

Theorem 1.32. In every uniformly convex Banach space X, the

nearest point map onto a closed convex set is continuous.
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When a set S is merely a Chebyshev-Motzkin set or when S is
a convex Chebyshev-Motzkin set, it is not known what circumstances
will cause the nearest-point map to be continuous. Even when S is a
Chebyshev-Motzkin set in a Hilbert space, it is not known whether the
associated nearest-point map.must be continuous. However, continuity
of the nearest-point map can be used to demonstrate the convexity of
Chebyshev—M&zkin sets as shown by Klee, [21], in Theorem 1. 33.
This theorem is a generalization of an earlier theorem by Klee, [25],
in which the Chebyshev-Motzkin set S was required to have a continuous

and weakly continuous nearest'—po'int map.

Theorem 1,33, Let S be a Chebyshev-Motzkin set in a smooth

reflexive Banach space X, and each point of X \(§ admits a neighbor-
hood on which th_e (restricted) nearest-point map is both continuous and

weakly continuous. Then S is convex.

An interesting concept in the theory of nearest-point maps is
that of a ""sun'', Some of the previous theorems could have been stated

using this term.

Definition 1. 6. Let S be a Chebyshev-Motzkin set in a space X,

and let f(x) be the nearest-point map of X onto S. Then S is a sun if
f(z) = f(x) for every x e X \\ S and every z on the ray emanating from

f(x) and passing through x.

Thus, Definition 1.6 says that S is a sun if N(z, S) is a cone for
each z ¢ bdS. Hence Theorem 1.25 by Phelps could be changed to
read--"A closed set S in En is convex if and only if S is a sun. ! Klee

[21] also proved the following theorem concerning nearest point maps.
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Theorem 1.34., If S is a Chebyshev-Motzkin set in a reflexive

Banach space X, and if each point in X\ 'S has a neighborhood on which
the restriction of the nearest-point map is continuous and weakly

continuous, then S is a sun.

Alternatively, L. P, Vlasov, [37], has shown that in any Banach
space every boundedly compact Chebyshev-Motzkin set is a sun, No
example is known of a Chebyshev-Motzkin set which is not a sun or
does not have a continuous nearest-point map, However, Brdéndsted,

[5], was able to prove the following theorem,

Theorem 1, 35. In any smooth normed linear space every sun

is convex.

Since nearest points and the structure of the norm are closely
related, as demonstrated by Theorem 1. 18, it follows that the nearest-
point map should be related to the norm. This has been shown by

Phelps, [31], who makes the following definitions.

Definition 1.7. Let f be the nearest-point map defined by the

Chebyshev~-Motzkin set S, then f is said to shrink distances if

|f(x) - £(y)|] < ||x-7v|| whenever x,y ¢ X.

Definition 1.8. The normed linear space X is said to have

property P if a nearest-point map shrinks distances whenever it exists

for a closed convex set S ( X.

Phelps,[31], proved a rather interesting theorem concerning
property P. The proof of this theorem is also interesting in that it

depends on a type of orthogonality defined by Birkhoff, [4], which is
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meaningful in a general normed space and coincides with the usual type

in an inner-product space.

Theorem 1.36. Let the dimension of the normed linear space X

be at least three (respectively, equal to two). Then X is an inner-
product space (respectively, strictly convex and orthogonality is

symmetric) if and only if 'X has the property P.

Phelps also showed that this ""shrinking' property of nearest-

point maps is restricted to those which exist for convex sets.

Theorem 1.37. Let the normed linear space X be strictlyv

convex and assume that a nearest-point map { exists for the closed

set S (C X. Then S is convex if f shrinks distances,

The theorems presented in the preceding pages represent the
main stream of research in the theory of nearest points. Not all
theorems by all authors working in this area have been presented, but
an effort has been made to present those which best illustrate the
general trend of research. The bibliography presented in this paper

is not complete, but it is extensive.



CHAPTER II
THE DEVELOPMENT OF FARTHEST POINTS

The obvious question at this point is whether or not analogous
sets of points, a set of farthest points and a z-farthest point set, could
be defined which would have some, or possibly all, of the analcgous
properties of sets of nearest points and z-nearest point sets, respec-
tively. Sets of farthest points have been defined and considered by
several authors; however, the properties of this set seem to be less
devel.oped than those of sets of nearest points. In Chapter III, sets
aralogous to z-nearest point sets will be defined and considered.

The definition of sets of farthest points is as follows:

Definition 2. 1. Let X be a normed linear space and let S { X.

If 5 ¢ X, then 8(z,8) = {x ¢ S: Hz-x” = sup{”z.~y”:y e S}}.

1t is obvious that the set S must be bounded in order for 8 (z,S)
toc be nonempty. Although the elements of the set 8 (z,S) have been
named, there appears to be no terminology in general usage. Let us
call the elements of 8 (z,S) the farthest points of z in S. The set

8{z,S) will be called the set of farthest points of S relative to z.

Example 2. 1. Let X be EZ and let

S={(xy:x=-V1-y% -1<y<1}.

If z is the point (1, 0), then 8(z,S) = {(-1,0)}, (cf. Figure 2. 1).

22
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Figure 2. 1.

If w=(-2,0), then &(w,S) = {‘(O, 1), (0,-1)}. Moreover, if p = (x,0) is
any point such that x > 0, then 8 (p,S) = {(-1,0)}, and if q = (%, 0) such
that x < 0, then & (q,S) = {(0,1), (0,-1)}. If T denotes the open set
‘bounded by the arc S and the line segment, {(0,y) : -1 <y < 1}, then

8 (z, T) is empty.

Example 2.1 shows that 8 (z,S) may sometimes be empty;
however, no one has bothered to name those sets S for which 8 (z, S)
is not empty for any z ¢ X, Following Phelps’ lead in defining proximi-
nal, a good name would be remotal, a combination of the words remote

and maximal.

Definition 2.2. Let S be a subset of the normed linear space X,

then S is remotal if and only if for each z ¢ X, 8 (z,S) is not empty.
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If a set S is remotal then there is the possibility that 3 (z, S)
is a singleton set for each z ¢ X, in this case S is said to be uniquely
remotal. If for each point z ¢ M, where M ( X, 8 (z,8) is a single-

ton set, then S is said to be uniquely remotal with respect to the set M.

If the set 3 (z,S) is to be closely analogous to J(z,S) then it is
necessary that .8 (z,S) is related to the convexity of S and the structure
of the norm of X. Very little has been done in this direction, perhaps
because of the difficulty of the problems or possibly the problems have
not been considered interesting. However, a few authors have pursued
the solutions of analogous problems to those of Motzkin. One of the
earliest such writers was Jessen, [19], who proved the following

theorem.

Theorem 2.1. In a Euclidean space, a bounded, closed, convex

set S is uniquely remotal with respect to its complement if and only if
it has interior points and contains the centers of all osculating spheres

of its boundary.

An osculating circle in the plane is a circle that is tangent to a
given curve K at a point p of K which has a higher degree of contact
with K at Ebarthan has any (;ther circle. This is similar to the case when
consideri;g surfaces in spaces of greater dimension. To find the
osculating spheres at a point g of the boundary F of a closed, bounded,
convex set K in En’ let H be a support hyperplane to K at q and let h
be the ray with end-point q which is f)erpendicular to H and lies on the
same side of H as K. (cf. Figure 2.2), Then for each point p ¢ F let
Q' be that sphere with center p'-on h which passes through q and p.

Every limit point q' of this set of centers is called an osculating center



Figure 2. 2.

for F on h. The corresponding spheres passing throﬁg‘h:q'éf.é?called
the o5 c‘iil’a:vting’-sphe res for F for ..the-,,__element q of H.

Theorem 2.1 seems to be the only theocrem which characterizes
convex sets as sets which are uniquely remotal with respect to their
complements. Most authors have been content to study sets which are
uniquely remotal with respect to the entire space X. Such sets are
really not as structurally interesting since the results indicate that if
a set is uniquely remotal, then it is a singleton set, [36]; however,
this has not been shown in very general spaces, in fact, it has not
been shown for a Hilbert space.

An interesting result along this line is one by Ficken, which
was never published by Ficken but appears in an article by Klee, [21].

As mentioned before, Ficken's method of proof relates a basic problem



in the theory of nearest points to a basic problem in the theory of
farthest points. By a process involving an inversion in spheres he
establishes a close connection between the problem--""Must a2 Chebyshev-
Motzkin set be convex?''--and the related problerm--"Must & set which
is uniquely remotal be a singleton? "

In order to present Ficken's result it is necessary to make the

following definition.

Definition 2. 3. In a normed space X, a set M is Chebyshevian

at a point z € X provided z ¢ M and M is uniquely proximinal for each
. point y ¢ X for which
lly -zl| <inf {|]y-x|[ :x e M}.

Ficken's theorem, with some sharpening and embellishment by

Klee, is as follows:

Theorem 2.2. Let E be an inner product space, A and A

classes of subsets of E such that A and A are related as follows:
Whenever X ¢ A, x € (conv X)\ X, and £ is the inversion of

E in a sphere centered at x, then conv § X ¢ A;
Whenever Y ¢ A, v is an inner point of a line segment in Y, and

111 ig the inversion of E in a sphere centered at y, then n(Y \(y}) e A
Then the following two statements are equivalent:

1. IfX ¢ A and X is Chebyshevian at y, then y ¢ cony X;

2., 1f YeA and Y is uniquely remotal, then Y is a single point.

A legs complicated result by Motzkin, Straus, and Valentine,

[29], is stated here as Theorem 2. 3.
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Theorem 2.3. If a subset Y of En is uniquely.remdtal, then Y

must be a single point.

Klee, [21], points out that the convexity of Chebyshev-Motzkin
sets in En may be de,ducéd from Theorem 2.2 and Theorem 2. 3;
mofeove r, Theorem 2.2 indicates that if the unique nearest pbint
problem can be solved in a Hilbert space then the corresponding
uniqué farthest point problem will be solved. Thus, in the setting
of an inner-product space Ficken has tied the theory of nearest and
farthest points together.

Motzkin, Straus, and Valentine, [29], have contributed to the
theory of farthest points by no‘t only considering sets which are uniquély
remotal, but also sets for which 8(z,S) has a constant,finite number
of elements. Their results give some insigI;t into the makeup of the
boundary of a rernotai set and the shape of some sefs. The following

theorem describes the boundary of a certain type of remotal set.

Theorem 2.4. Suppose S is a continuum in a two-dimensional

normed linear space. If S is uniquely remotal with respect to S, then

8 =
Uxe S (%,S) = bd conv S.

The following theorem shows the structure of S when & {x,S)

consists of exactly two points for each x ¢ S.

Theorem 2. 5. . Suppose $is a compact set in the plane EZ’ and

suppose that for each x ¢ S the set of farthest points &(x,S) has at
least two points. Then S is contained in the union of a finite number
of line segments. If 3 (x,S) has exactly two elements for each x ¢ S,

then S must be disconnected.



Farthest Point Maps

Motzkin, Straus, and Valentine in their paper, [29], considered
a farthest point map which is analogous to the nearest point map
defined in previous paragraphs., Although they did not demonstrate
very many properties of this map, the map was useful in the proofs of

some of their theorems.

Definition 2.3. Let S be a remotal subset of the normed linear

space X, then the map Y, such that ¥Y(x) = 8 (x,S), x ¢ X, is called

the farthest point map of X onto S.

Most of the properties and defintions given for the nearest point
map have no analogies here, It is obvious that closest-points could
have no analogy. But even so, the farthest point map does have some
similar properties such as the following by Motzkin, Straus, and

Valentine, [29].

Theocrem 2.6. Suppocse S is a subset of the normed linear space

X and suppose S is uniquely remotal with respect to T (C X. Then
¢, where ¢(x) = Hx «»y(x)”, for x ¢ T and y(x) ¢ Y(x), is continuous

on T,

Finally, to close the discussion of the properties of 8 (z,S),
notice that Jessen's theorem, Theorem 2.1, shows that the convexity
of a set S depends on 8(z,S), but the set 8(z,S) can also be shown to
determine the convex gset S in a manner similar to that of the extreme
points and exposed points of S. The Krein-Milman theorem, see:
Valentine, [36], states that under suitable conditions, the closed convex

hull.ef. 2 set.S.is. equal to the-closed convex hull of its 'e_xtrefvne_' points.
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Straszewicz, [34], showed the exposed points of S could replace the

extreme points of S in the Krein-Milrman theorem. More recently

Asplund, [1], has shown the following theorem, but the theorem can be

deduced from Straszwicz's theorem or from a theorem by Klee, [22].

+

Theorem 2.7, ILet$S be a closed, bounded, an‘d'c“:'énvex set in

G(Z',S).

a Hilbert space X, then § = conv U.z %

It is evident from Thec;rem' ‘2.7 and the previous theorems
that farthest points are important building blocks ofu a convex set.
Thus it is unfortunate that so little has been done with the theory of:
farthest points. The articles by Asplund, Jessen, Klée’, and thveg -

article by Motzkin, Straus, and Valentine appear to be the ‘only ﬁapé:rs

which relate farthest points to convex sets.
The Existence of Farthest Points

Finally, to close this discussion, the existence of fa_Lrlthe's_'t‘
peoints will be considered. Again, as in the case of neares't'.poin’&,
there are certain theorems dealing with the existence of 8(2’:;8) which
canuot be attributed to any 'one person. An example of this is the

following theorem.

Theorem 2.8. A compact subset of a finite-dimensional normed

linear space is remotal,

It is also true that if a set S is compact in a normed linear
spmue then S is remotal; however, not all closed and bounded sets are
compact. The reader will recall that every closed convex set S is

proximinal if the normed space X is reflexive; however, apparently
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it is not known whether a closed, bounded, and convex set $ ‘is rermotal
in a reflexive space. |

Edelstein, [11], has worked on the problem of the existence of
3 (z,5), and although he has not shown that a closed, bounded set rnust
be remotal, he has shown that the points x in a certain type of space
such that 8 (x,S) is not empty must be dense in the space. This

theorem is very similar to Theorem 1. 17,

Theorem 2. 9. Let S be a nonempty closed and bounded set in

a uniformly convex Banach space X. Then S is remotal with respect

to a dense subset of X,

Asplund, [2], following Edelstein's lead, discovered a similar
theorem. Instead of a dense set, Asplund's theorem deals with a set
of Baire category one, a set that is the union of a countable number of

nowhere dense sets,

Theorem 2. 10. If S is a bounded, closed subset of a reflexive,

locally uniformly convex Banach space X, then, except on a set of

first Baire category, S is remotal.

Edelstein's theorem and Asplund's theorem are both interesting,
but they fail to answer the basic question herem”What conditions on
the space X will insure that each clc;sed and bounded set is remotal?
Perhaps the only answer is that X must be finite dimensional.

The preceding paragraphs and theorems demonstrate the
direction of the research in the theory of nearest and farthest points.
This chapter is meant to be only a sufvey so many results had to be

omitted.



CHAPTER III
PROPERTIES OF THE SET F(z, S)

In 1935, T. Motzkin, [27] defined, for a given set S and a point
z ¢ S, the sets N(z,S) and ®(z,S). Later authors such as Asplund,
Edelstein, and Klee investigated the set 8 (z,S), which was defined in
a natural manner analogous to that of M (z,S). Hence an obvious exten-
sion in the theory of nearest and farthest points would be a definition

analogous to that of N(z,S). This definition is as follows:

Definition 3.1, Let S be a subset of the normed linear space X

and let z ¢ S, then
F(z,8) = {xe¢ X: Hz—x“ ‘= sup {Hy—x” :yeS}}.

Simply speaking, the set F(z,S) is the set of all x ¢ X which are
at least as far from z as from any other point of S or, alternatively,
the set F(z,S) is the set of all x ¢ X such that z is an element of 8(x,S).

The elements of the set F(z, S) will be called z-farthest points of S, and

the set F(z,S) will be called the z-farthest point set of S. The following

examples should illustrate the concept of F(z, S).

Example 3.1. Let X be the space E2 and let S be the closed

unit disk (cf. Figure 3.1). Then if z = (-1,0), F(z,S) = {(x,0):x > 0}.

Ifw=(t0)¢ {(x,0) : x > 0}, then the circle having equation

Hp HWH = HWH + 1 passes through the point z and contains in its

31
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Figure 3, 1.

interior the set S; hence, Hz WH > Hp ~WH for all p ¢ S. Since
z€S, ||z-w]||is equal tosup {||p-w]||:p e S} and, therefore,
w e F(z,8). On the other hand, if w = (u,v) ¢ F(z,S) then the circle

llp-w]|| = ||w]|| + 1 passes not through z, but through

»e (e R s
wl v . 2
so that ||z -w]| < ||w'-w]||. Hence w { F(z,S) and, therefore,

F(z,8) = {(x,0): x > 0}.

Example 3.2. Let X be the space EZ and let

S ={(0,0), (1,0), (0,1), (2,2)}.

Then if z = {0, 0),
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F(z,8) = {(x,0) : x> 1/2} M {(0,y) 1 y>1/2} () {{x,y) : x +y > 2},

(cf. Figure 3.2).

- In this example, the set of points farther from z than from
(1,0) is {(x,0) : x > 1/2}; the set of points farther from z than (0, 1) is
{(0,v): vy > 1/2}; and similarly the set of points farther from z than
(2,2) is the set {(x,y) :x +y > 2}. Hence, the intersection of these
three sets is F(z,S). Note that F(z,S) is closed and convex, but it is

not a cone.

Although a z-farthest point set need not be a cone, it must
always be closed. This is shown by the following theorem. The
theorem is proved for more general sets than z-farthest point sets by

not requiring z to be an element of S.

Figure 3.2.
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Theorem 3. 1. Let X be a normed linear apace, S C X, and-

z ¢ X. Then
F={xeX:||x-2z|| =sup {||x-y]|| : v ¢S}}
is a closed set.
Proof: If F is empty then the theorem is true., Suppose F is
not empty and assume that w is a limit point of F. There exists a

sequence {xn} of points of F such that {xn} converges to w. So for

each real number ¢ > 0 there exists a positive integer N such that
= - wll < /2, n>N, (3. 1)
Suppose that ye¢ S and that n > N, then from (3. 1)

fz == [l = Iz - w+w-x|

<llz=wil + lw - = ]

< |z - wl|| + €/2. (3.2)
" Hence,
Hy = wil =1y -= +x -wl
<y == =, - wi] (3.3)
But since X ¢ |, nynH < Hz=x:nH. Hence from (3. 2), (3,3)
becomes

Hy - wil <z - = |l +]]x

A

Ilz =WH +e/2 + €/2

I

2 - wl] +<.

Therefore, since ¢ is arbitrary
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lly - wl] < |]z -wl]. (3. 4)

If z € S, then the theorem is proved; however, if z ¢ S then consider the

following:

Let € > 0 be given, then there exists a positive integer N such

that

llw-=x_ || <e¢/3, n>N (3. 5)

This means that

1

Hz—x ||z-w+w—x

ol ]
>z - wl] - llw - =gl
> ||z - wl| - </3. (3.6)

Since Xy € F, there exists Yo € S such that

1z = x|l - e/3 < [lyg - =yl (3.7)
Then from (3.5), (3.6), and (3.7),
Hyg = wll = llyg - 2y + 2y - %]
> [lyg - xpll - Iy - wll
> lyg - xyll - €/3

> |z - x - 2¢/3

il

\Y

- wl| - .

Therefore, for each ¢ > 0 there exists Yo € S such that

z -wil -« <]lyg - wll] (3. 8)

Thus, from (3.4) and (3. 8),

|z - wl|| =sup {[|ly - w|| : yesS}.
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Hence w ¢ F and F is closed.

In addition to being closed, the set F(z, S) must be inverse star-
like relative to a point y, that is, there exists a point y such that if

x ¢ F(z,S) then

wxa={at+alx-2a):a>1} C F(z,9).

Theorem 3.2. If X is a normed linear space, z ¢ S C X, such

that F(z,S) # 0, then F(z,S) is inverse starlike with respect to z.

Proof: The set F(z,S) is assumed to be nonempty so let

x ¢ F(z,S), then

llz - x|| = sup {||y - x|] : y e S}. (3.9)

Letw=x+a(x - z), where ¢ > 0, then

HW»-ZH H(l+ae)x—ozz-z'”

(1+a)||x-2z]]. (3.10)

1

For each y ¢ S it follows from (3. 9) and (3. 10) that

lw - vl]

= Hx-l-a(x - Z) -yH
<= -yl +allx - 2|
< = - z]] +al]x - 2]

11

(1 + ) Hx - z”

llw - 2]]. (3. 11)
Since z ¢ S it follows that
HW»-szsup{Hw-yH:yevS}

and; therefore, w ¢ F(z,S). Since w ¢ wxz is arbitrary, oxz ( F(z,S).
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A similar situation exists for z-nearest point sets, since it is
well known (cf. Phelps, [31]) that if x € N(z, S) then the line segment
{ax+ (1 -a)z : 0 <a <1} is a subset of N(z,5). Hence N(z,S) is
always starlike with respect to z; moreover, if S is convex then N(z, S)
is inverse-starlike also, which means that N(z,3) is a cone,

Pauc, [30], has shown that in Euclidean space N(z,S) and
N(w,S), w # z, z and w elements of S, do not intersect except possibly
at boundary points. Phelps, [31], has shown that this is also true in
case X is strictly convex. A similar situation holds true for z-farthest

point sets as the following theorem shows.

Theorem 3.3. Let X be a strictly convex normed space and

letSC X. Ifze Sand we S, z # w, such that F(z,S) # 0 and
F(w,S) # 0, then F(z,S) and F(w, S) have only boundary points in

comimon.

Proof: Letx e F(z,S) ) F(w, S) and assume that x is an

interior point of ¥(z,S). Then there exists a numbere¢ > 0 such that
{y:|lx-v]|l <e} C F(z8).

Since x ¢ F(z,9),

sup {||x - y|| : y € S},

IERE)

and since x ¢ F(w,S),

[[x - wl| = sup {||x - y|| : yeS};
hence,

1= - wi] = [Ix - 2]]. (3.12)

Letd = ||w - x||, then for each @ such that 0 < a < ¢,
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1t

Hw~=§x+a/d (x~w)]_._,H 'H(W~X)‘+oz/d(vvwx)”

1

(1 +a/d) ||w - x|] (3.13)
= (1 +a/d) ||z - x|
> ||z - x]]. (3. 14)
But x + «/d(x - w) ¢ F(z,8) since 0 <a < ¢. Hence,
llz - [xta/dx-w)]1]|| = sup {||y = [x+a/dx-w)]]]| 1y € S},

Now note that if there exists a scalar A > 0 such that
(z - x) = Mw - x), then Hz - XH = )\“w - XH, and (3. 12) implies that
A = 1. But this implies that x = w, which is contfary to hypothesis.
Furthermore, note that in a strictly convex space (cf. Wilansky, [38]),
ilu+ v|| = ||ul] + ||v]] for vectors u and v if and only if there exists

A > 0 such that u = Av. Then it follows from (3.12), (3. 13), and (3. 14)

Iz - [x +a/dx - w)]|| = [[(z - x) +a/d(w - x)]]

A

1z - =] Ha/d)|]w - x]]

It

HW’ - x” +(a/d)”w - x”

i

| w - [x+a/dx - wl]].

Hence, x + a/d(x - w) is farther from w ¢ S than z so that x + al/d{x - w)
cannot be an element of F(z,S). But this contradicts (3. 12); therefore,

an interior point of either F(z,S) or F(w, S) cannot be an element of

F(z,S) M F{w,S).

Theor‘em 3.3 depends on the fact that in a strictly convex space,
Hui-v” = Hu” + HVH if and only if u and v are linearly dependent, It
can be shown that this property, Hu+v” = Hu” + []v]l if and only if

u and v are linearly dependent, implies that the space X is strictly
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convex {cf, Wilansky, [38]). Hence, the technique of proof indicates
that X must be at least a strictly convex space in Theorem 3.3, The
following example shows that ¥(z,S)( ) F(w,S), z # w, can contain

interior points if X is not a strictly convex space.

Example 3,3, Let X be the space im(Z) and let S = {z, w},

where z = (1,0) and w = (0,0). Then it can be shown that F(z,S) = Al B

and F(w,S) = C U D, where
A={(xy) :x<1/2}
B={(x,y):x>1/2, |y|>x}
C={(xy) :x>1/2}
D={(y):x<1/2, |y|> |x - 1]}.

To see that F(z,S) = AU B, lett=(x,y) € A, then

It - z|]| =max {|x - 1|, |y|}. (3.15)
Since Ht - WH = HtH it follows that

[t - wl] = max {|x], |y[}. (3.16)
suppose [[¢ll = Iy, if [[¢ - 2| = |y| then ||t - a]| > ||t - w]| and
therefore t € F(z,S). If Ht - zH = ]x - 1[ then, from (3. 15),
[x - 1'! > Iy] = HtH Hence [[t - ZH > Ht WH, which implies
t e F(z,S).

1f |[t]] = |x| and [[t - z|| = |y], then from (3. 15) and (3. 16),

]x] > [X - 1], Suppose [x] > lx - 1[ and x > 0, then since t ¢ A,
|x - 1| = -x + 1. Hence, x> -x + 1, which implies that x > 1/2 and
contradicts the fact that t ¢ A, If ]xf > Ix - 1] and x < 0, then lx] = -x

and 1X~ 1[ = -x + 1. Hence, -x > -x + 1 which implies 0 > 1. Thus,
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|x| = |x - 1| and it follows that [x| = |y|. Therefore, [[t|] = |v],
which is the preceding case.

Suppose ||t|| = |x| and ||t - ]| = |x - 1]|. 1f 0 <x < 1/2 then
2x < 1 which implies x < -x + 1 or that |x| < |x - 1|. Ifx <0, then
-x+ 1> -xand so |x - 1| > |x|. Thus, in any case, ||t - z|| > ||t]|
so that t ¢ F(z,S). Hence, A ( F(z,8S).

Let t = (x,y) ¢ B, then again [|t ~ z|| and [[t|]| are given by
(3.15) and (3. 16), respectively. Now ||t]| = |y]| since, from the
definition of B, |y|>x> 1/2. From (3.15), ||t - z]|| > ||t]| which
implies t ¢ F(z,S) which in turn implies that B C ¥(z,S). Thus,
AU B (C F(z8S).

Let t = (x,y) ¢ F(z,8), then either x < 1/2 or x> 1/2. Ifix<1/2

then t is an element of A. If x> 1/2 and [[t]| = |y]| then, from (3. 16),
x < |y| which implies that t ¢ B. Ifx > 1/2 and [It]] = |x| = %, then,
since Ht - ZH > HtH it follows that Ht - zH = {x - ll. Hence

lx - 1[ >x = [xi But, from this, if 1/2 <x <1, then -x + 1 > x, or
1/2 > x which is a contradiction. If 1 <x, thenx - 1>xo0or -1>0
which is again a contradiction. So if x > 1/2, fyf > x which implies
that t ¢ B. Therefore, F(z,S) (C A U B which implies that

F(z,S) = AU B.

By a similar argument, F(w,$) = C U D, Thus

F(z,8) M Fw,sS) =B U E U D,
where

E={(x,y) :x=1/2}.

The point t, = (1/2, 1) is common to both F(z, S) and F(w, S) and a

0

neighborhood N of radius 1/4 about t, is properly contained in

0
F(z,S) M F(w,S), (cf. Figure 3.3).
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Figure 3. 3.

The preceding theorems dealt with the structure of a z-nearest
point set and its relationship to the norm of the space X. It is also of
interest to deterrpine how F(z, S) might be related to F(z, Sl)’ where
S C Sl. For exa;rnple, S1 might be conv S or ¢l S. A special case of

the following theorem shows that F(z,S) = F(z, conv S).

Theorem 3.4. Let S be a subset of the normed space X and

let z ¢ X. Then E = F, where
B = fxc [[x - sl = sup {[[x - y]] 1y € S}

F={x:||x-z|] =sup {||x-v]| : ye convS}}.

Proof: Let x ¢ E, then Hz ~xH > Hy - x” for each y ¢ S.



Suppose w ¢ conv S, then there exists a finite set {yl, .
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Yy C8

such that
n n
w=z Z a.y., @, >0, 1<i<n, and Z @, = 1.
i=1 VP T - i=1
Then
n n
o -xll = ] 2 ay; - (2 a)«l]
=1 i=1
n
(= a)lly;- =
n
(= o)==l
i=
= ||z - x| (3.17)
Hence, ||z - x|| is an upper bound for the set {|]y - xH 1y € conv S}.
If z ¢ S, then
|z - x[| = sup {[]y - || : v ¢ conv 8}

and; therefore, E (( F. But suppose z ¢ S.

Vo € S such that

Then if ¢ > 0, there exists

2 - =] - e <|lyy - =[] <[]z - x]].

But y, ¢ S ( conv S; hence, Yo € conv S and

[z - =[] - e <|lyg -] <[]z - x]].

Therefore, from (3. 17) and (3. 18),

2 - x| =

(3. 18)

sup { ||y - x|| : v € conv S}

which means that x ¢ F. This implies that E (C F.

Now assume that x € F, then Hz - xH > Hy - xH for y € conv S,

So ||z - x|| > ||y - x|| for y ¢ S since S C conv S,

If z ¢ S then



Iz - x| = sup { Iy - x|| v« 8)

and, therefore, F (( E, However, if z ¢ S, then since

12 - x|| = sup {|ly - x| :y ¢ conv S},

for each ¢ > 0 there exists Yo € conv S such that

[z - x| - e <|lyy - x| <]z - x|l
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(3.19)

Since Vo € conv S there exists a finite set {Yl’ Vose-o ,y_ﬂ} ( S such

that

n 1
YO = Z aiyi, a. > 0, 1 <i<n, Z .
i=1 i=1

Lety e {Yl’ e ,yn} such that

[y - %[l =max {{ly) - x[l, Hy,-x=Il.... Iy, =]}

Then from (3. 20) and (3. 21)

1]
<
i
o

T (3.20)

(3.21)

(3.22)

Note that y ¢ S, If e > 0, from (3.22) there exists y ¢ S such

that
lz - =[] - e <|ly - =[] <[]z - x]].
Therefore,

2 - x| = sup {Iy - xl| : ye s},
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which means that x ¢ E and ¥ (( E. Hence, F = E.

Note that Theorem 3.4 means that there is no loss in generality
if S is assumed to be convex when properties of ¥(z,5) are being
considered., This is not true; however, in the case of N(z, 8). A
theorem analogous to Theorem 3.4, where '"sup' is changed to "inf"
in the definition of the sets E and F is not possible. However, if z is
required to be an element of S then :a set inclusion is possible, Note
that in the following theorem, N(z, conv S) and N{z,S) are analogous to

F and E, respectively, of Theorem 3. 4.

Theorem 3.5. IfSis a su]é)set of the normed linear space X

and z € S, then N(z, conv 8) (C N(z, S).

Proof: Let x ¢ N(z,conv S), then
[[x - z|| =inf {||x - y|| : v € conv S}
which implies that Hx - zll < Hy - XH for each y in conv S. Since
S C conv S, it follows that ||x - z]|| < ||y - x| for each y ¢ S. Since
z €S,
lx - z|| = inf {||x - y]|| : vy € 8};

hence, x ¢ N(z,S). Therefore, N(z,conv S) ( N{(z,S).

The following examples show that Theorem 3.5 is the strongest

result that can be obtained.

Example 3.4. Let X be the space E,, S = {w,t}, and z = (1, 0),

29
where w = (~1,1) and t = (-1, -1). Then A = BU C, where

A={p:p=(x7y), |lp~2z]| =inf {||p-ql] : q € S}}
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2x + 1/2, x> - 1/4)

1

B={p:p=(xv)7v
C={p:p=(xy) y=-2x-1/2, x> - 1/4}

(cf. Figure 3.4). A point p can be in A if and only if Hp-z.” = Hp ~tH

when |[|p-t|| < [|p-w|[ or [|p-z]| = |[p-wl|| when ||p-w|] < ||p-t]].

Thus, if p is in the upper half- plane, then Hp - wl| < Hp tH which
means that p must lie on the perpendicular bisector of the line segment
zw. Hence p must be an element of B. Likewise, if p is in the lower
half-plane, p ¢ C. Therefore, A =B C.
Now, conv S is the line segment tw (cf. Figure 3.5)., It can be
shown by reasoning similar to that above that D = E U F U G, where
D={p:p=(x79), ||p-z]| =inf {|[p-ql]l : qe conv 8}}

E={p:p=xy), V2=4x, 0<x<1/4}

2x + 1/2, x> 1/4}

F={p:p=1(x7y),v

1l
i

G={p:p=(x9), vy=-2x-1/2, x> 1/4}.

(-1,1)
w .

£ |
("17"'1) Y

Figure 3. 4.
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('111)

v
»

convS

-1,-1)
~ N(z, conv S)

Figure 3.5,

The point (0, 0) is an element of D, -but it is not an element of A.

The next example will show that N(z, conv S) can be a proper

subset of N(z, S).

Example 3.5, Let X be the Euclidean space EZ’ let

S = {(-1,0), (1,0)}, and let z = (1, 0). Then N(z,S) = {(x,y) : x > 0};

‘but, since
conv S = {a(-1,0) + (1 -d)(1,0) : 0 <a< 1},
N(z, conv S) is the set {(x,y) : x> 1}. Obviously, N(z,S) properly

contains N(z, conv S), (cf. Figure 3. 6).

As was mentioned before, another set of interest which is

closely related to S is ¢l S. It will be seen that c1 S fits S so closely
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2 ¥
(2, 5) o
N(z,convS)
(" 1‘,0) A(l, 0)«‘ a_ (,, 1 ,O) (1 , 0) ,m
TR T s L.,
_ N(=z,8)
(2) (b)

Figure 3.6.

that any point which is farther from z than any point of S must also be

farther from z than any point of ¢l S, This is shown as a special case

of the following theorem.

Theorem 3.6. Let X be a normed linear space, let S ( X,

and let z ¢ X, Then F = E, where

F={x:||x-z

1

sup { [[x - y|| sy e cl 8}}

1
H

sup {||x - y|| : y € S}}.

Proof: liet x ¢ F, then Hx ZH > Hx - yH for vy ¢ ¢l S; hence

since S ( ¢l S

lx ~z]] > [lx - yl|], yeS. (3.23)

If z ¢ S, then
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[z - x| = sup [y - x| v e ),

which implies x ¢ E. If z ¢ S, then for each ¢ > 0, there exists w e ¢lS
such that

Hz -»va -e/2<”z ~~W|'§£‘ZmXH, (3. 24)

since x ¢ F. There exists Yo ¢ S such that ||w - yOH < €/2, since

w e clS., Then

|z - x[| -e/2 <[z - wl]

f

HZ - YO +Y0 - W’“

<z = yoll + llyg - wll
<”z—yOH+€/2. (3.25)
From (5024) and (3. 25),
llz - x|[ - e <|lz ~yyll <z -=]]. (3.26)

Therefore, from (3. 23) and (3. 26),

[z - x| =sup {{]y - || :ye8}
which implies that x ¢ £. Hence, F (_ E.
Suppose x ¢ E, then Hx - ZH > Hx »yH fory € S. Let we clS,

then for each € > 0 there is a Yo € S such that HW - YOH < €, Then

5 - wli

=y + (vg - w)]]

A

1% = yoll # Ilyg - wll

A

[|x - z|] +e. (3.27)

Since € > 0 was assumed to be arbitrary, it follows from (3. 27) that
Hx - vH < Hx ZH, Thus, for each w e cl S, Hx W“ < |ix - ZH

and, therefore, ||z - x|| is an upper bound for the set {||x-y]|| :y ¢ S}.
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For each ¢ > 0 there exists y ¢ S such that
Hz - =[] -« <[ly - =[] <[z - x]].
Butye S (C clS, so that for each ¢ > 0 there exists y ¢ ¢l S such that

.

o - xll - ¢ < lly - =l < ||z - x
Therefore,

Hz ~XH =sup{Hx—yH A CIS},

which implies that E (¢ F. Hence, E = F.

It was shown that in the case of z-nearest point sets that it was
not true in general that the sets N(z,S) and N(z, conv S) are equal.
This might cause some doubt then as to the existence of an analogous
theorem to Theorem 3.6. However, the analogous theorem here for
N(z,S) and N(z, cl S) is true, figuratively speaking, because cl S fits
S much more closely than does conv S. This is shown as a special

case of the following theorem.,

Theorem 3.7. Let X be a normed linear space, let S ( X,

and let z ¢ X. Then N = M where
N= ot |lx-zl] =inf {|]x - y]] ty e S
M={x:||x -z|| =inf {||x - y]] : yeclS}}.
Proof: Letx e M, then ||x -~ z|| < ||x - y|| for eachy e ¢l S;
hence, since S (C ¢l S
llx - z]] <|lx-yllyes. (3.28)
Let € > 0, then there must exist y ¢ ¢l S such that

Iz - =] <lly - x|l <z - x]] +e/2. (3.29)
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But since y e ¢l S there must also be w ¢ S such that
[lw - yll <e/2 (3. 30)

Then from (3. 30)

Hy - =l = [ty - w - (x - W]
> lx - wil - |ly - wl}
> |lx ~wl| - e/2.
Hence, from (3.29)
2 - wi| - e/2 < |ly -x|| < ||z - x|] +</2,
[z - =[] < {lx - wll <{lz -x[] +e. (3.31)

Therefore, from (3. 28)_and (3.31)
Iz - x|| = inf {{|y - x|| : y ¢ S}.

This implies that x ¢ N. Hence M ( N,

Ifxe N, then ||x - z|| < ||x - y|| for eachy ¢ S. Letwe clS,

then for each ¢ > 0 there exists a Vo € S such that Hw - yOH <€, Then

Hx - wll = [l - v - (w -yl
> = - yoll - Hlw -yl
> [lx - ygll -
> [lx -zl -«

Hence,

- al] < |]x - wl] + ¢,
and since € is arbitrary,

llx -wl| > |]x - z]]. (3.32)
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Furthermore, for each ¢ > 0 there must exist y ¢ S such that
Iy -xll < lz-xll +e. 3.33)
ButyeS C clS, sofrom (3.32) and (3. 33) |
o - x|| = inf {Ily - x[| : y  cL S},

Hence, x ¢ M so that N (C M. Therefore, N = M.

Theorem 3. 6 and Thebrem 3.7 mean that there is ﬂo loss in
generality in assuming that S is closed when considering the sets F(z,S)
and N(z,S). When considering F(z,S), S must be bounded; otherwise,
F{z,5) would always be einpty. Thus Theorem 3.4 and Theorem 3.6
mean that in a finite-dimensional spa.ce,_ the set S may be assumed to
be compact and convex when cqns_idering tile; set F‘(Z, S).

Since for each s.e‘at S and:z ¢ S, F(g,:S') and N(z,S) are sets, we
can consider F(z,S) and N{(z, S) to, be the images of functions whose
domains are subsets of the cross product of the space X aﬁd t'h.e‘powe'r
set of X, The question now is, "What properties do these functions

have?'' The following theorems partially answer this question.

Theorem 3.8. Let X be a normed linear space, S (( X and

z ¢S, IfA\>0, then \F(z,S) = F(\z, \S).

Proof: If F(z,S) is empfy, then \F(z,S) is empty. But if
F(\z, AS) is not empty, then there is x ¢ F(};z, AS) such that
IIxz - x|| = sup {||y - || : v ¢ \S}.
This implies
|z - 1/x x| =(1/Vsup {||y - x|} : v e xS},

Since 1/\ > 0, it follows that
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2 - Un x|

"

sup {(IMN)||y - x| : v € xS}

1

sup {||1/A(y -x) ]| : vy e xS}

I

sup {||]y - 1/x x|| : y ¢ S}.

Thus 1/\X x ¢ F{z,S), which is a contradiction. Hence, if F(z,S) is
empty, then F(\z,\S) is also empty.

If F(z,S) is not empty, let x ¢ F(z,S). Then
[Ihz - axl] = x|z - x]|
=X sup {||y - x| : y e S}.

Since X\ > 0,

lInz - ax|] = sup {A]|y - x]|| : y ¢ 8}
= sup {|[My-=)|| : y ¢ S}
= sup {Hy - x| : y. € XS},

Hence, Ax ¢ F(\z,\8) and so \F(z,S) C F(\z,\S)." Since F(Az,1S) is -

not empty, let x ¢ F(\z, \S). Then

[Ixz - =|]

1

sup {||y - x|| : v ¢« \S}

sup (|[ry - x|| :y € 5}

i

sup (M ||y - /A x]|| 1y s}

1

nsup {||y - 1/xx]||:y e S},
It follows then that
e~ /xxl] = sup Iy - 1axl] cy €S},

Hence, 1/A x € F(z,S) which implies that x ¢ \F(z,S). Therefore,

AF(z,S) = F(\z, \S).
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In Theorem 3.8 if f‘(z,S) is n;)t empty then \ cannot be zero
because 0F(z,8) = { ¢}, but F(¢,{¢}) = X. Further complications arise
if F(z,S) is empty, for thén 0F(z,S) = 0, but still F(é,{d}) = X. Hence
we must restrict \ to only positive numbers. |

The next theorem shows that N(z,S) has the same multiplicative

property as F(z,S).

Theorem 3.9. Let X be a normed linear space, S C X, and

ze¢eS. If x>0, then AN(z,S) = N(\z, \S).
Proof: If N(z,S) is empty, then AN(z,S) is also empty. Howa
ever, if N(\z, \S) is not empty, then there is x € N(\z, \S) such that
[Inz - x|| = inf {|]]y - x|| :y € S}.
Hence ’
[z - 1/x x|| =(1/Ninf {|ly - x]|| : y € A8},
and since X\ > 0,

[lz - 1/x x|

H

inf {(I/X) lly - x|| : vy e xS}

inf {||1/Ny - 1/xx]|]:y e \S}

"

inf {||y - 1/xx]| : yeS}.
Therefore, 1/\ x ¢ N(z,S) which is a contradiction, hence N(\z, \S)
must also be empty.

Suppose x ¢ N(z,S), then

[z - x|l = mf {{ly - x[] : y e S} ,

Hence

lInz -] = a][z - x]|

A\ inf {||y - x|| : y € S}.

1]
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Since \ > 0,

i

Ninf {|]y - x|| 1y € 8} = inf {\]|y - x|| : vy ¢S}

inf {||ny - xx]|] : vy € S}

i

inf {|ly - ax]| : v ¢ AS}.

1

Hence Ax ¢ N(\z, \S) and so AN(z,S) C N(\z,\8). If x ¢ N(\z,\S), then
[Inz - x|| = inf {|]y - x|[ : y € AS}.
However, by factoring out \,
Az - 1/nx|| = Ninf {[J1/Ny - 1/x x]] :ye AS}.
Hence,
2 - 1 x| = int {lly - 1n x|y € sh,

which implies that 1/\ x € N(z,S). Thus, x € \N(z,S), and it follows

that A\N(z, S) = N(\z, \S).

1f, in Theorem 3.9, X = 0 and N(z,S) # 0, then A N(z,S) = {¢}.
But N(Xz, AS) = N(¢, {¢}) = X, hence \ cannot be zero.

It seems intuitively obvious that given a set S and a point z € S
one should be able to translate S and z by the same element y and the
(z + y) - farthest point set qf S + y would be equal to the translate of
the z-farthest point set of S. This is a special case of the following

theorem.

Theorem 3.10. Let X be a normed linear space S (C X, and

z ¢ X. If A and B are nonempty sets such that
A={x: lx -zl =sup (|[x - v :ves})

and
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B={x:|[x-(z+y)]| =sup {|[x-v[[:veS+y}},

then A +y = B.

Proof: Letxe¢ A+y, thenx -y e A, Hence, for veS§5,

[lv - (x - )]

H

(v +y) -x]]|
<z - (= -wi
= |[(z + y) - x|]. (3.34)
For each ¢ > 0, there is a v ¢ S such that
z - x -l -e<|lv-(x-9l. (3.35)
But (3. 35) can be written as
iz +y)-x]| -e<|[tvty) -x]]. (3.36)
Hence, from (3.34) and (3. 36), |
[z +y) - x|| =sup {[[(v+7y) -x]|] : veS}.

Therefore, x ¢ B which implies A +y C B.

If xe B, thenforveS, v+yeS +y, and
v - x -9l = [[(v+y) - x|
< [z +y) - x]]
= 1lz - (x =] (3.37)
For each ¢ > 0 there exists v ¢ S + y such that
l(z+y) - x]|| -e<[lv-x]|]. (3.38)
Then since v=w +y, we S, (3.38) can be written

lfz - (x -] -e<|lw-(x-y)]]. (3.39)

Hence, from (3.37) and (3. 39),
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]z - (x - y)|] = sup {||v - (x - v)|] : v eS}.

Thus, x -y € A, which implies that x ¢e A+ yand A+ vy =B,

The set N(z,S) also has the same additive property shown for

F(z,S) by Theorem 3, 10,

Theorem 3.11, Let X be a normed linear space, S ( X, and

z ¢ X, If A and B are nonempty sets such that

Az (x: [x- sl =it {[lx-v] :ves))
and

Ba{x:|lx-(z+yl]=inf{|[x-v][:ves+y}},

then A + v = B.

Proof: Letxe A+y, thenx -y ¢ A, Hence for ve S

3

Hz+y)-x|| = ||z - (x -]
<llv- -9l
= |[(v+y) -x]|]. (3.40)
For each ¢ > 0, there is a v ¢ S such that
v - (x -yl <llz - x -y)|] +e. (3.41)
Then (3.41) can be written as
Hiv+y) -x]| <llz+y) -x]|] +e. (3.42)
Hence, from (3.40) and (3. 42),
[z +y) - x[| =inf {[[(v+y) - x]] :ves}.

Thus, x ¢ B which implies A +y ( B.

Ifxe B, thenforveS, v+yeS+y, and
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|z - (x -yl = |[(z + y) - x|
< v +y) - xlf
= |lv - (= -] (3.43)

For each ¢ > 0 there exists v e S + y such that
v - x| < [[(z +y) - x]|| +e. (3.44)

Then since v=w +y, we S, (3.44) may be written

Hw - x -yl <z - = -] +e. (3.45)
Hence, from (3.43) and (3.45),
Hz - (x - y)|| = inf {||v - (x - y)|| : v e S}.
Thus, x - y ¢ A, which implies that x e A+ yand A+ vy = B,
Also of interest is the element z as related to the set in ques-~
tion, 8. If z € S, then can z be an interior point? If z is a boundary

point of S then what type of boundary point must it be? The next series

of theorems will shed some light on the properties of the element z.

Theorem 3.12. LetS be a subset of the normed linear space

X and let z ¢ S. If F(z,S) is nonempty, then z is a boundary point of S.

Proof: Suppose that z is an interior point of S. Then there
exists a number r > 0 such that

{w:||lw-z|| <z} Cs. (3.46)

Suppose x ¢ F(z,S‘), then Hx - zH > Hy - x” for eachy ¢ S, Consider
the element z + d (z - x), where d = r/(ZHX - ZH). Its distance from

x is given by
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|z + d(z - x) - x| = [[(1 +d)(z - x)|

"

(1 +4d) ||z - x|

\Y

llz - x]||. (3.47)
Its distance from z is given by

llz - (z + d(z - x)|| = d ]z - x|
=r/2<r. (3.48)

Hence, from (3.46) and (3.48), z.+ d(z - x) ¢ S, but from (3.47) its
distance from x is greater than ||z - x|| which is a contradiction.

Therefore, z must be a boundary point. .

The property of z shown in Theorem 3. 12 still does not pinpoint
the nature of z. However, in order that z might be limited to some
special type of boundary point it is neicessafy to place a restriction

on the norm of the space X. This res\\triction is simply thaf X be

strictly convex.

Theorem 3. 13. Let X be a normed linear space, S (C X, ahd

z ¢ S such that F(z,S) is nonempty. If X is strictly convex then =z

must be an extreme point of S.

Proof: Suppose z is not an extreme point of S, then there exists
XxeS,yveS, x#¢vy, suchthatz=1/2x+ 1/2y, Letwe F(z,S), then
[lw -zl = |[w-1/2x-1/2 ]|
<QR)|[w - x[| +W/2)|[w-y]|. (3.49)

Suppose ”W - xH < HW - zH and ”W - y” < HW - z“, then

(I/Z)Hw - XH <(1/2)HW - z” and(l/Z)Hw - yH <(1/2)Hw - zH, so that



59

a/2)f|w - x|| +@/2allw - yl| < ||w - =]|.

Hence, we may assume without loss of generality that |jw.-z|| < ||w - x|].
But;-since w ¢ F(z,S)and x ¢ S, ||w - z|| > ||w - x|| so that

||w - z]|| = ||w - x||. Moreover, since
tw -zl <@/2)flw - x|[ +a2) {[w - y]]

=W/2f|w - z|| +02) |[w - y][,

it follows that||w - || < ||w - y||. But since ||w - z|[> |Jw - y]| it
follows that ||w - z|| = ||w - y|| Thus all three points, x,.y, and z
are on the boundary of the sphere {p : ||w - p|| < ||w - x|}, but éi.n'ce_

X is strictly convex, intv xy must be a subset of the interior of this
sphere, Hence a contradiction exists since z=1/2x+ 1/2 yis a
boundary point of the sphere. Therefore, z is an extreme point of S

when X is strictly convex.

The following example shows that if X is not strictly convex

then z need not be an extreme point of S.-

Example 3. 6. Let X be the Hilbert space, £%(2), let
S={(xvy) :x=-1, -1 <y<1},
and let z = (~1,0). Then the origin, (0, 0), is an element of F(z,S)

since its distance from each element of S is one. Hence, F(z,S) is

nonempty, but z is not an extreme point of S.

It should be noted that no requirements were placed on the set
S in the preceding theorem other than F(z,S) be nonempty. So, the
only restriction placed on S was the implicit restriction that S be

bounded, for otherwise sup { ||y - x|| : y ¢ S} never exists. By placing
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more restrictions on the set S if is possible to relax conditions on X
and to determine more precisely the character of z. These revisions

are made in the following theorem.

Theorem 3.14. Let S be a closed, strictly convex set in the

normed linear space X. If z ¢ S such that F(z,S) is nonempty, then z

is an exposed point of S.

Proof: By Theorem 3.12, z is a boundary point of S, Since in
a linear topological space each boundary point of a closed, strictly
convex set S is an exposed point of S, then z must be an exposed point

of S (cf. Valentine, [36], p. 94).

The following example shows that if S is a convex body which is

not strictly convex then z need not be an exposed point of S.

Example 3.7. Let X be the Hilbert space, J&m(Z), let S be the
closed unit ball of X, and let z = {1,0). Then F(z,S) is not empty since
the distance of the origin from =z is at least as great as its distance

from any other point of S. However, z is not an exposed point of S.

Another type of boundary point, which is not as well known, is
the boundedly exposed point. An element z of the subset S of the
normed linear space X is a boundedly exposed point of S if and only if
there exists an open sphere B such that z is a boundary point of B and
S\ z C B. This definition, as well as theorems which verify the |
existence of these points for a closed bounded set in a Hilbert space

are found in a paper by Edelstein, [10].

Theorem 3.15. Let S be a subset of the strictly convex space
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X and let z ¢ S, Then F(z,S) is nonempty if and only if 2 is a boundedly

exposed point of S.

Proof: Suppose F(z,S) is not empty and let w ¢ F(z,5). Then
[lw - z || > ||w - y|| for each y ¢ S; however, there may be some
element Yo of S for which ||w - zH = ||w - YOH" Therefore, let
wo = w+d(w - z), where d = ||w - z|| "', Since z ¢ S, Theorem 3.2
implies that w ¢ F(z,S), hence HWO -yl < HWO - z|| for each y ¢ S.

If y ¢ S is such that there does not exist a positive number A such that

w -z = Aw - y), then since X is strictly convex,

Hwo =yl = llw+dlw - 2) -yl

A

lw -yl +dllw - 2||

i

[|w - y]| +1

IA

w - z]] +1

1}

HWO—-ZH. ' (3.50)

If, on the other hand, w - z = A\(w - v) for some X > 0, then

Hw - =]l = x]|w - yl].
Hence
lw -yl
1/ = ————— < 1.
ljw - 2|] —

If 1/x < 1, then ||w - y]] < ||w - z|| and

4i

[lwo = yll = lw+ [Jw - 2] w - 2) - y]]

[Jw - y]] +1

IA

A

[iw -~ 2] +1

1

[lwg - 21l (3.51)
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If 1/\ = 1 then z = y. Hence, for
B ={x: “WO "XH < ”WO - Z” |

we have from (3. 50) and (3. 51) that S\{Z}CB and z is a-boundary point
of B so that z is a boundedly exposed point of S.
If z is a boundedly exposed point of a set S then there exists an

element w of X and a number r > 0 such that

S\ {z} C{x:|lw-x| <}

and such that ||z - w|| = r. Hence ||z - w|] > ||y - w|| for each y ¢ S

so that w ¢ F(z,S).

Note that in Theorem 3. 15, if z is a boundedly exposed point
F(z,S) is nonempty even if X is not strictly convex. The following
example shows that X must be strictly convex in order to guarantee

that if ¥(z,S) is nonempty then z is a boundedly exposed point of S.

Example 3.8. Let X be £7(2), let S be the unit ball, and let

z = (1,0). Then F(z,S) is not empty since the origin is an element of
it. Each sphere in X is a square similar to S except for size and a
translation. Hence, any sphere which contaiﬁs S and has z as a
boundary point must have a side which intersects the boundary of S

in a line segment.



CHAPTER IV

THE RELATIONSHIP OF F(z,S) AND THE

NORM OF X

Having thus far discussed the propertieé of the sets. F(z,S) and
N(z,S) and the properties of the element z as related to the set S, it is
now appropriate tobconsider the set F(z,S) as related to the norm of X.
The first theorems will be concerned with geometric methods of con-
structing F(z,S) and N(z,S). These methods will aid in the proof of
the main theorem of this chapter. The first two theorerﬁs show that
F(z,S) and N(z,S) can be found from the intersection of a certain

collection of sets.

Theorem 4.1. LetS be a subset of the normed linear space X

and let z ¢ S. Then

F(z,8) = N g Fz {2y}

Proof: For simplicity let

F=0 . g Flz {z,v}).

Furthermore, let x ¢ ¥(z,S) and let y ¢ S, then Hx - zH > ||x - yH
Since z ¢ {z, vy},
llx - 2] = sup {{|x - wl|| : we {z,y}},

and it follows that x ¢ F(z, {z,y}). The element y ¢ S was arbitrary

so that x ¢ F. Hence, F(z,S)(C F.

63
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If x ¢ F then for eachy ¢ S, x ¢ F(z,{z,y}). Hence
||x - z||>|]x - y|| for each y ¢ S. Since z ¢ S it follows that

1= - 2] = sup {||x - y[[ : v e 8}

This in turn implies that x ¢ F(z,S). Hence, F (C F(z,S) and there-

fore, F = F(z,S).

Corollary 4.1, Let S be a compact set in a normed linear space

X. If z € S, then F(z,S) = F where

F = mXGE F(Z,{Z,X})

and E denotes the set of extreme points of cl conv S.

Proof: By the Krein-Milman theorem (cf. Valentine, [36],
p. 138), cl conv E = cl conv S. By Theorem 3.4 and Theorem 3.6,
F(z,S) = F(z, cl conv S). Theorem 3.4 and Theorem 3.6 also imply
that F(z,E) = F(z, cl conv E). By Theorem 4. 1, F(z,E) = F. There-

fore, F(z,8) = F.

Theorem 4.2, LetS be a subset of the normed linear space X

and let z ¢ S. Then N(z,S) = M N(z, {z, v}).
veS

Proof: For simplicity let
N= myes N(Z,{Z,Y})-

Furthermore, let x ¢ N(z,S) and let y ¢ S. Then ||x - z|| < ||x - y|].

Since z € {z,y}, it follows that
l|x - z]] = inf {|[x-w|| : we {z,y}};

and, therefore, that x ¢ N(z, {z,y}). Since y was arbitrary, x ¢ N and

therefore N(z,S) C N.
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If x ¢ N, then ||x - z|] < l|x - y|| for eachy ¢ 5. Since z €85,

l|x - z|| = inf {||x - y[| : y e S},
and it follows that x ¢ N(z,S). Hence, N C N(z,S) and therefore,

N(z,S) = N.

As was shown by Example 3.5, N(z,S) is not in general eQual

to N(z, conv S) so that we can say only that ‘

N(z,S) =M yeS N(z,‘ {zt.,y}).
Of cburse it does little good to know t.hat F(z,S) and N(z,S) can be
expressed as the intefsection of certain sets if one does not know more
é.bout these sets. In EZ’ as has béen sﬁown in preceding examples,
F(z, {z,y}) and N(z, {z, y}) are closed half-spaces. This is sho§vn by

the next two theorems to be true in any inner-product space.

Theorem 4.3. Let X be a real inner-product space, then
F(z,{z,x}) is a closed half-space for any pair of distinct elements z

and x of X.

Proof: Lét the fun_lct:ion f:X -Rbe aefined by £{y) :1 (x -z, v),
then f is a linear‘fqnctional. LetH be the closed half-space defined by
H={y: f(Y)‘E_(l/Z)[(X, x) - (z,2) [}

If v ¢ H then from the bilinearity of the inner-product
(x,%) - 2(x,5) + {y,y) <(2,2) - 2(z,y) + (y, V). (4. 1)
‘Hence, by symmetry of the inner product, (4. 1)becomes

(X:X) - (an) - (Y: X) + (Ys Y) __<__ (Z, Z) - (Z, Y) - (Y’ Z) + (Y: Y):
(4.2)

and consequently,
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(%, x-y)-(y, x-y)<(z, z2z-Y)-(y, 2-Y),
or
x-y, x-y)<(z-vy, z2-Y)
Hence, ||x - y|| < ||z - y||]. Since z ¢ S,
|z - y|| = sup {||x - y[| : x e S}.
Therefore, H C F(z,{z, x}).

Ity ¢ F(z,{z,x}), then ||x - y|| < ||z - y|| from which it
follows that '
| x-y, x-y)<(z-y, 2 -y).
Hence,

(%) - 2009) + LY S (m2) ~ 223+ ny),
or

(x -2, y)>012) [(x,%) - (z,2) ]
Hence y ¢ H; and, therefore, H = F(z,{z, x}).
A similar result is true for N(z, {z,x}) as the following theorem
shows.

Theorem 4.4. Let X be a real inner-product space, then

N(z, {z,x}) is a closed half-space for any pair of distinct elements z

and x of X,

Proof: Let y e N(z,{z,x}), then ||z - y|| < ||x - y||. Hence,
y ¢ F(x,{z,x}). Likewise, if y ¢ F(x, {z,x}), then ||z - y]| < Hx - yl].
Hence, y ¢ N(z, {z,x}). Therefore, N(z,{z,x}) = F(x,{ 2, x}) which is

a closed half-space by Theorem 4. 3.

Since it is possible to represent F(z,8) and N(z,S) as
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intersections, it is interesting to see if they can also be represented
as unions, This is also true in an inner-product space as will be
shown by the next two theorems, Theorems 4.5 and 4.6. However,

first it is necessary to make two definitions.

Definition 4. 1. Let X be a real inner-product space and let H

be a hyperplane of support to the set S at the pointz ¢ S. If we X,
w # z, is such that (w - z, x - z) = 0 for eachx ¢ Hand (w - 2z, y-2) <0

for each y ¢ S, then the set

RW(z)z{z+ A(w - z) x>0}

is called an outward normal ray to H at z relative to S.
Similarly an inward normal can be defined.

Definition 4. 2. Let X be a real inner-product space and let H

be a hyperplane of support to the set S at the point z ¢ S. If we X,
w # z, is such that (w -z, x - 2z) = 0 for eachx¢ Hand (w~z, y-2)>0

for each y ¢ S, then the set

Rw(z)z{z+)\(vv—z):)\_>_0}

is called an inner normal ray to H at z relative to S,

These two definitions will help us to state the theorems which
will show that N(z,S) and ¥(z,S) can be represented as a union of sets,
The first theorem will deal with N(z,S) and it shows that N(z,S), for a
boundary point z of the compact convex set S, is just the polar cone of

the supporting cone of S at z (cf. Valentine, [36], p. 135).

Theorem 4. 5. Let X be a real inner-product space, LetS be

a compact, convex set and let z be a boundary point of S. Then N(z,S)
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is the union of the outward normal rays at z of each plane of support

of S at z.

Proof: Without loss of generality we may assume that z = ¢,
Suppose that x ¢ N(¢,S), x # 6, then ||x]|| < ||x - y|| for each y ¢ S.
Consider the hyperplane, H = {w : (w,x) = 0}. Then H() S # 0 since
(¢, x) = 0 and x ¢ H+ = {w:(w,x) > 0} since (x,x) > 0. Now suppose
that y € S such that (y,x) =a > 0. Then Ay ¢ S for 0 < A< ] since S is

convex. Define the real valued function
2
£ = [y - x]]”
Then f is just a second degree polynomial in \ since

(Y - %, Ay - x) = Ao(y, ) - 2\(y, %) + (x, ),

Then f(A\) has a minimum value at )\O = (y,x)/(y,y) since (y,y) > 0, and

since (y, x) is positive, A, is positive, Since ||x - y|| > ||xH we have

0
(x -y, x-y)=(x-y, x)~(x -y, y)
=(x -y, x)+(y ~ %, V)
> (x, x). (4.3)

Then from (4. 3),

Hence, (y,y) > (x,y) and therefore 1 > (x,y)/(y,y). Thus, \.,y is an

0

element of 5, but )\Oy is nearer to x than is ¢. This is a contradiction .
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since x ¢ N(¢,S). Hence, (y,x) < 0 and x is an element of an cutward
normal ray to H at ¢ relative to S. Therefore, N(¢,S) is a subset of
the union of all outward normal rays to S at ¢.

Now let x be an element of an outward normal ray of the hyper-
plane H relative to S. By definition, (x,w) < 0 for each w ¢ S. Since

deH, H={y:(x,y)=0}. LetyeH, then

% -yl|% = -y, x - y)
= (x,x) - 2(x,y) + (y,Y)
= [[x]1% + Iy] /2
> ||x]|%.

Hence, [|x - y]| > l|x|| for eachy ¢ H. If w ¢ S, the segment
{(Aw+(1-N)x:0<N< 1}
must intersect H for some A\, between zero and one since w and x are

0

on opposite sides of H. Let y = )\Ow + (1 ~ )\O)x be this element of H.

Then

1=l < M= -yl

11

[ - (\gz + (1 - xg)x) ||

0

N llx - =]
< {]x - =] (4. 4)

Hence, x is an element of N(¢,S). Therefore, N(¢,S) is equal to the

union of the outward normal rays relative to S at ¢.

In an inner-product space it was possible to use all outward
normal rays since N(z,S) must be a cone when S is convex (cf. Phelps,

(31] ). However, in general F(z,S) is not a cone in an inner-product
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space even though S is convex (cf. Example 3.2 and Theorem 3. 4).
Hence, in the case of F(z,S), it is more difficult to state this type of

theorem and it is somewhat more difficult to prove.

Theorem 4. 6. Let X be a real inner-product space and let S be

a compact convex subset of X. Let I be the collection of all inward

normal rays toS at z ¢ S, Let

N={ne X:Rn(z) ¢el, ||z -nl| =1},
let

N, = Sup {||x - sz/ [2(n-2z,x-2)]:x€8,x# z}
for n € N, and let

N' = {ne N : N, 18 finite}.
Then

F(z,S) = U ne N {An - z)+z:\ >N}
Proof: Without loss of generality we may assume that z = ¢.
For simplicity, let
U = UnEN' {\Mn - z) +Z’)‘Z)‘n}’
‘lety ¢ F($,S), and let H = {x: (y,x) = 0}. Then H is a hyperplane and
¢ € H since (y,) = 0. Suppose w € S, then ||y - w[] < HyH, and so
(v, y) - 2(y, w) + (w,w) < (y,y).

This implies that (y,w) > 1/2(w,w) > 0. If HMNS # {4}, then there

exists w # ¢ such that w ¢ H/\ S. But then

(y-w, y-w) = (y,y) - 2(y, W) + (w, w)

(y,y) + (w, w). (4.5)
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Hence, from (4. 5),

Uy - wll® = 1y l1% + [1wi]®.
Since ||w]|| >0, ||y-w]|| > ||y]|| which is a contradiction. Thus,
HM S = {¢} which implies that H is a support hyperplane to S. There-
fore y belongs to an inward normal ray relative to S at ¢,
Letn = I|y||"ly, thenn ¢ N and y = \n where X\ = ||y]|]. =

Furthermore, since ||y]|] > ||y - w|| for each w ¢ S we have

(An, An) > (An, An) ~ 2(An, w) + (W, w). (4.6)
From (4.6) it follows that X > (w,w) / 2(n, w) for each w ¢ S. Hence,
N, is finite which implies thatn ¢ N'. Therefore, y ¢ U and F(z,8)C U.

Let y ¢ U, then y = \n where n ¢ N'and \ > )\n. Hence,

x> (FW,W)/Z(H, w) for eachw e S, w # ¢, Hence
2\Mn, W) > (W, w)

or

-2\ (n, w) + (w,w) < 0. ’ (4.7)
By addition of ||y||%, (4.7) becomes

2 2
A (Tl, 1’1) - 2)\(ns W) + (W, W) __<_ A (nan)

or

(y -w, v -w)<(y,v).

Hence, Hy - WH < HY” which means that v € F(¢,S). Therefore,

F(¢,5) = U.

A boundedly exposed point is an exposed point in a real inner-
product space, but Theorems 3. 14 and 4.6 permit us to give an

example of an exposed point which is not a boundedly exposed point.
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Example 4.1. Let X be the space E,, let

S={xy) :0<x<1, y*<x},

and let z = ¢. Then ¢ € S and ¢ is an exposed point of S. Since S is
smooth at ¢, the only hyperplane of support to S at ¢ is the y-axis.
Hence the only inward normal relative to S at ¢ is Rn(cb), where n= {1, 0).

Let w € S be denoted by (x,y), then

2 2
wW.ew _ X +vy
2n - w 2x

On the curve y4 = x this becomes
W - W _y8+y2
2n - w 4
2y
— 1\ 4 1
=2(Y *tZ
Yy

Hence w- w/2n- w tends to infinity as y tends to zero for points (x,y)

on this curve. Therefore,
sup{w-w/2n.- w:weS, wi ¢} = .

Hence, F(4,5) = 0 and ¢ is not a boundedly exposed point.

Lastly, let us discuss the relationship of F(z,S) to the norm of
the space X. It has been shown by Motzkin, [28], that a2 two-dimensional
space is an inner-product space if and only if each set N(z,S) is convex
for each set S when z ¢ S. Phelps, [31], was able to extend this to any
finite dimensional space. The analogous theorem is also true for
F(z,S), and this will be the object of the following discussion. To

simplify the proof of the theorem two lemmas will be presented first.
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Lemma 4.1. Let X be a two-dimensional normed linear space
and let S = {b, -b} where b= (8,0), p >0. If F(b,S) () F(-b,S) are
convex, then F(b,S) () F(-b,S) is a symmetric closed convex subset

of a line passing through the origin.
Proof: The set F(b,S) M) F(-b,S) is closed and convex since
both F(b,S) and F(-b,S) are closed and convex. Now
F(b,S) M F(-b,S) = {x e X : ||x -b]] = ||x +b][;

hence, the set is not empty since ¢ € F(b,S) ) F(-b,S). Let

z = \b + (1 - \)(-b)
= -b+2\b
and assume that ||z - b|| = ||z + b||]. Then for A <0,
[|-2b + 2\b|| = |[2ab]]. ‘ (4.8)
Then (. 8) becomes
| SRR RIS NN (4.9

Thus, from (4.9), 1 - X = -\ which implies 1 = 0. Therefore, \ cannot

be negative. If 0 <A < 1, then

(1 - ) {[p]] = \||b]] (4. 10)

1]

which implies that A\ = 1/2, or that z = ¢. If 1 <X, then
(- 1) [[b]] =x]|b]| (4.11)

0. Hence, \ cannot be greater than one. Finally,

{l

which means that -1
note that neither b nor -b are elements of F(b,S) M F(-b,S). There-
fore, the only point (x, 0) which is equidistant from b and -b is the

origin.
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"Now let zq # ¢ and z, # ¢ be elements of F(b,S) () F(-b,S) such

that zy and z, are not collinear with the origin. If z, and Zy have

second coordinates with opposite signs, then the line segment z,2,

must contain a point (x,0), x # 0, but

2,2, C F(b,8) M F(-b,8).
Hence, there is a contradiction. If Zy and z, have second coordinates
with the same signs then let z'2 = -Z,. Comparing the distances of z'2
from b and -b we find that

Iz, - bl = ||-2, - bl
= ||z, + b]| (4.12)
and
[z, + ] = || -z, +b]]|
= |2, - bi]. | (4.13)
Hence, from (4. 12) and (4. 13),
1z, - bl = ||z, + ]|

and

z, ¢ F(b,S) M F(-b,S).

This shows that F(b,S) M) F(-b,S) is symmetric. If there exists a
real number \ such that ¢ = )\zz' + (1 - )\)z1 then it can be shown that
are collinear with

z, = [(1 - \)/A] Zy - But this means that z. and z

1 2
the origin which is a contradiction. Therefore, the line segment zlzé
must contain a point (x, 0) with x # 0, but this also is a contradiction.
Therefore, all elements of F(b,S) () F(-b,S) must be collinear with ¢,
Hence, F(b,S) () F(-b,S) is a subset of a line passing through the

origin,
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Now the tools are available to prove the next lemma.

Lemma 4.2. Let X be a two-dimensional normed linear space
such that F(z,S) is convex for each set S and each z. ¢ S. Then X is an

inner-product space.

Proof: Since, by hypothesis, F(z,S) is convex for each set S,
let S = {b, -b} where b = (§,0), > 0. Then F(b,S) # 0 since -b ¢ F(b,S),

and F(b,S) and F(-b,S) are both closed and convex. Let
Fb,8)0 = {xe X { [|x - b|| > ||x +b]|}.

Then F(b,5)? # 0 since -b ¢ F(b,S)? and F(b,S)? is open since

0

F(b,S)” = X \ F(-b,S).

Furthermore,
F(b,S) = F(b,$)°U (F(b,S) M F(-b,S)). (4. 14)

Letx e F(b,S) M F(-b,S) and let € > 0. Let w = x + t(x + b),

- where t = e/(ZHx+bH). Then

[lw+b|] = ||x+ t(x +b) +b]|

"

(1 +t)||x+b]], (4.15)
and

[lw - Bl] = ||+ tx +b) - b]]

i

IA

[l - bl +t[lx+ bl

fl

=+l +¢t][x+b]|

n

(1+¢t)||]x+bl]

1l

[[w +b]]. (4. 16)

Hence, from (4.16), ||w +b]|| > ||w - b]|| which implies that w ¢ F(-b,S).
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If HW + bH = HW - bH, then w, x, and ¢ must be collinear from
Lemma 4.1, But this is impossible since w, x, and -b are collinear.

Therefore, |]w+ bH > Hw - b|| and w 4 F(b,:Sv).v;-,r:.,;rFurtherrhore,

l|w - x|| = ||x+tex+b) -x||

tl]x +b]|

=e/2
<'e, _ (4.17)

Since ¢ was arbitrary, each neighborhood of x contains a point of

X \F(b,S). Thus, x is a boundary point of F(b,S), and
F(b,S) M F(-b,S) C bd F(b,S).

Then, since F(b, S)0 is open and can contain no boundary points of
F(b,S), (4. 14) implies that

bd F(b,S) = F(b,S) M F(-b,S). (4.18)
Therefore, F(b,S)0 is the interior of a convex body and must be convex
)° |

Hence F(b,S) and F(-b,S) are complementary convex sets since

F(b,S)O U F(-b,S) = X
and;

Fb,$)° M F(-b,S) = 0.
)o

Then, V = lin F(b,S)" M lin F(-b,S) is either a hyperplane or

S

it is the entire space X (cf. Valentine, [36]). According to Valentine
([36], p. 11), lin F(b, S)OC cl F(b,S)O: F(b,S) and lin F(-b,3)C F(-b,S).
Therefore, V ( F(b,S) M F(-b,S) which implies that V is a hyper-
plane., Furthermore, F(b,S) M F(-b,S) is a subset of a line b;lr'
Lemma 4.1. Hence V = F(-b,S) M F(b,S) and F(-b,S) M F(b, S),

the set of points equidistant from b and -b, is a straight line.
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Obviously, the preceding discussion can be applied to any pair
of points x and y of X after a suitable rotation and translation of axes,
Hence, the set of points equidistant from any pair of points of X is a
straight line. A theorem of Day, [8], states that a normed linear
space L is an inner-product space if and only if the set of points equi-
distant from any pair of points of L is a flat. Therefore, the space X

is an inner-product space.
Now we are ready to prove the theorem.

Theorem 4.7. A normed linear space X is an inner-product

space if and only if for each set S and z ¢ S, F(z,S) is convex.

Proof: Suppose X is an inner-product space and that S C X
and z ¢ S. If F(z,S) is empty then it is convex. If F(z,S) is not empty,
then by Theorem 4.1 and Theorem 4.3, F(z,S) is the intersection of
closed half-spaces, A closed half-space is always convex and the
intersection of convex sets is always convex. Therefore, F(z,S) must
be convex.

Suppose that F(z,S) is convex‘for each set Sand z ¢ S. Let L
be any two-dimensional subspace of X and let S C L. Ifz ¢ S, F(z,S)
must be convex which implies that F(z,S) M) L is convex. F(z,S) M L
is just F(z,S) for the space L. Hence, in the space L, F(z,S) is
convex for each set S and z eb S. Therefore, by Lemma 4.2, L is an
inner-product space. Day, [8], has showﬁ that a normed linear space
is an inner-product space if and only if every two-dimensional sub-
space of the space is an inner-product space. Hence, the space X is

an inner-product space,
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In Example 3.3, X is the norfned linear space, £ OO(2), which
is not an inner-product space. For the set S = {z,w}, where z = (1, 0)

and w = (0, 0), it was shown that F(z, S) is not convex.



CHAPTER V
APPROXIMATIONS BY POLYTOPES

The problem of determining the set F(z,S) for a given set S and
‘a point z is usually difficult unless in an inner-product 3p§ce the set S
is a smooth convex set. Hence, it\‘would be desirable to develop
geometric methods for finding F(z,S) or for‘approximating F(z,S) in
some sense. In order to approximate F(z,S) the procedure will be to
approximate S by some set W, then consider the set of z-farthest
points, F(z, W), which, hopefully, will be nearly equal to F(z, S).
O_bviously,» W must be a set such that F(z, W) is readily found. Poly-
topes have been used to approximate sets, Thus, if F(z, P) for a
polytope P (C S can be found easily, then this might lead to an approxi-
‘mation of F(z,S).

By a polytope, we mean a bounded convex set which is the
intersection of a finite number of closed half-spaces. This definition
has been shown by Klee, [24], to be equivalent to the definition that a
polytope is the convex hull of a finite number of points. These two
equivalent definitions will be used interchangeably throughout the
remainder of the discussion,

For a polytope P and a point z ¢ P, we shall determine F(z, P).
The following theorem by Fan, [17], will be useful: Let L be a real
linear space of arbitrary dimension, finite or infinite. Then a system

of inequalities

79
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where fl’ fz, e fp are linear functionals on L and sy .- ay are
real numbers, is consistent if and only if for any p non-negative

numbers )\i the relation

implies

Of course, by consistent, we mean that there exists a point Xy € L, such
that

>a., 1<i<p.

Now the tools are available to determine F(z, P) for a polytope P and -

z ¢ P.

Theorem 5.1. Let P = conv {z,x . ,xm} be a polytope in the

1"
real 'mnef-product spaceX such that z is an extreme point of P and
z # X, 1 <i<m. Then F(z, P) is not empty and is the intersection of

a finite number of half-spaces.
Proof: Whether F(z, P) is empty or not,
F(z,P) = F(z, {z,x

by Theorem 3.4. Then by Corollary 4.1,

l""’xm})

m
F(z, {Z’XI’ ,xm}) = F(z,{z,z}) M m F(z, {Z’Xi})'

i=1

However, F(z, {z,z}) is just the space X so that

m
F(z, {Z’Xl’ . -:Xm}) = f\l F(z, {Z’Xi})-
1=
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From Theorem 4.3 we see that each set F(z, {g,xi}), 1 <i<m, is the

half space

H, = {x; (xi - z,x) >(1/2) (%, -2, x +2z)}, 1<i<m.

Hence, F(z,P) is the intersection of a finite number of half-spaces,

and F(z, P) will be nonempty if the system of inequalities
(xi- z, X) 2(1/2)(xi -7, X+ z), 1<i<m (5.1)

is consistent. So assume there exist real numbers )\.i >0, 1<i<m,

sugh that

m
.Z' )\i (xi- z,vx) = 0
i=1

for each x € X. Then by the bilinearity of the inner product

m .
('Z )\i(xi—z),x)zo
i=]

for each x ¢ X. Hence

m .

Z Nx-2z)=¢
. i

i=1

If there is some )\j > 0, then we may write

m N

== B 0w M
o Z M

k=1 '

If just )\J. > 0, then z = xj, a contradiction. If more than one number

)\j is greater than zero then z ¢ conv {xl,. .. ,xm} since
¢ .
m N
z L =,
i=1 3
b )\k
k=1
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However, in such a case z cannot be an extreme point of P. Hence,

)‘i = 0 for each i such that 1 < i'__<_ m. Thus,

m
ii&l)\i(xi— z, xi+ z) =0,

and the system (5.1) is consistent by Fan's theorem.

Corollary 5. 1. Each vertex of a polytope P in an inner-product

space X is a boundedly exposed point of P.

Proof: By Theorem 5.1, F(z, P).is nonempty for a vertex z of
P. By Theorem 3. 14, F(z,P) 4 0 if and only if z is a boundedly

exposed point.

From Theorem 5.1 we see that F(z, P) is easily found in an
inner-product space by intersecting the half-spaces determined by the
perpendicular bisectors of the line segments joining z to each of the
other vertices or extreme points of P. Since F(z, P) is easily found
it seems possible té determine when F(z, P) is a cone. The following

theorem gives sufficient conditions for F(z, P) to be a cone. °

Theorem 5.2. Let X be a real inner-product space and let

P = conv {z,x ,xm} be a polytope such that z is an extreme point

17

of Pand z # X, 1 <i<m. If, after a suitable rearrangement of the

set {xl, e ,xm}, there exists a point x, ¢ F(z, P) and an integer n, ,

0
0 <n <m, such that

(xi -z, xo) =(1/Z)(xi' z, Xi+ Z),

1 <i<n, and the points x., nt 1 <r <m, are in the convex cone with
vertex z and extremal rays z + in, 1 <i<mn, then F(z, P) is a convex

cone with vertex Xq-
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Proof: Without loss of generality, we may assume that z = ¢.
Then the set of inequalities (5. 1) which define F(¢, P) becomes
o3 > W% 15 1<i<m.
i’ i i s — v__ .

Furthermore, this syster_h is consistent since xq € F(¢, P). Since each
X, 0 + 1< r<m, is in the cone with vertex ¢ and extremal rays in,

1 <i<n, we have that

n .
x = Z N _X., \N_>0, 1<i<n, (5.3)

Then since (xi,xoi) =(1/2) Hxi]lz, 1 <1i<mn, it follows that

n 2
? )\ir(I/Z)HxiH E: Ny (%%
i=1 1—1

( z s )
TN X.,X
i=1 irTi?70

o)

H]

(%, %4)

>l 1% (5. 4)

To show that F(¢, P) is a cone it is necessary to show that for each
x ¢« F($,P), {(1 - N)xy +Xx:\>0} is a subset of F(¢, P). So let

x ¢ F(¢,P), and let A > 0. If 0<N <1, then (1 - M)xy+ Ax ¢ F(¢, P)
since, as shown by Theorem 4.7, F(9, P) is convex. If A\ >.1, then

for each X 1 <i<n, wehave
(x5, (1 = Mxg +Ax) = (1 - N)(x;, %g) + A(x;, %) ’
= (1-0(172) [ | P+ M%)
2 2
2(1')‘)(1/2)”}{‘1” +">\(1/2)Hxi”

=1/2)] ;] [%. (5. 5)
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Ifn+1<r<m, then from (5.3) and (5. 4) it follows that

(xr, (1 —X)x0+)\_x) = (1 - )\)(xr, xo) + )\(xr, x).

e m , n
=(1—)\)(E \. x.,x) +)\(Z7\. x.,x)
ir'i’7o ir7i

i=1 i=1
oon ' on
= (.1 -A) _E )‘ir (xi, xo) + A .E hir(xi,x)

i=1 1=‘1

‘ n - 2 n .
= (1-2) iiJIkir(l/Z)llxill +xri§1xir (x;,%)

o n 2 n 2
>(1-0) 3 A W2 7+ x = N 12)]]x]]

i=1 i=1

n 2
=(1/2) Z )\ir Hxl”

i=1

2
I

>1/2) ||=_[|°. (5. 6)

Thus by (5. 5) éﬁd (5.6), (1 - )\)x~0+ AX alwayls satisfies tﬁe system of
inequalities (5.2) when X'_.>_ 0 and x ¢ F(¢, P). Therefore, F(¢,P) is a

convex cone with vertex xo.

In a geometric sense, Theorem 5.2 Sé,ys that the points X5

1 <i<nall lie on the surface of a sphere with center x_ and radius

0
on ||. The othér vertex points: of the pol&topé-l P lié; within th%s sphiére
and also within the convex cone with;.\r'er'j:ex ¢ aﬁd:extrémal rays in,
1<i<n, |

Since now the strﬁ(:tu_rle'. of F'(zz:, P) for a i)olytope P has been
detﬁrmined', we are ready tét‘ai;proximate F(z,S), for a compact convex

body S. The distance between two closed bounded sets A and B is

denoted here by d(A, B) where
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d(A,B) = inf {p : A C Bp, B C Ap},
and
Ap = ayA K(a,p), 0<pe R,

and
K(a,p) = {x : ||x - a]| <p}.

The functional d satisfies all the properties of a metric (cf. Valentine,
[36] ). We shall say that a sequence {Ai} of sets converges to the set
A if and only if

lim d(A;,A) =0

i—>cw
and we shall write Ai A,

An important theorem related to this metric is the Blaschke
selection theorem which is as follows: Let M be a uniformly bounded
infinite collection of closed convex sets in a finite-dimensional normed
linear space Xn' Then M contains a sequence which converges to a
nonempty compact convex set. A uniformly bounded collection of sets
is a collection which is contained within some solid sphere (cf.
Valentine, [36]). This theorem provides a method of approximating a
set S with polytopes with the additional property that a given boundary

point z is a vertex of each polytope.

Theorem 5.3. Let S be a compact, convex body in the normed

space X and let z be an extreme point of S. Then there exists a
sequence of polytopes {Pn} such that

1. p_Cs,n=1,2,...,

2. P, C P .n=12,...,

3. =z is a vertex of each Pn’ n=1,2,..., and

N

lim d(P_,S) = 0.
n->ow n
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Proof: Consider the sphere, B, = {x:||x - 2]} <1}. This set
is open so that S \B1 is compact if it is not empty, If S \Bl is empty,
let P1 ={z}. 1f S‘\B1 is not empty then cover S \Bl with open spheres
of radius one and centers in S \Bl' Since S \B1 is compact, there
exists a finite subcovering of n open spheres with centers
{xl, Xy oo ,xn}. Then consider P1 = conv {z, STRE

P1 CcsC (Pl)l; and, furthermore, z is an extreme point of Pl since

.»X_}. We have
n

it is an extreme point of S.

- Assume that Pl' PZ’ v Pn~1 have been chosen such that Pn

is a polytope with vertices {z),xl, cees xN}. Assume that P, C P,

-1
10

1<i<n-2; PiCSC(Pi) 1<i<n-1;andthat z is a vertex

1/1’
of_eachPi, 1<i<n-~-1.. Let

N
B = .L_Jo{x = - Xi” < 1/n}

where x; = z. Then S \Bn is compact or empty. If S \B_(1 is empty

then let P = P
n

-1 however, if S\Bn is not empty then cover S \Bn

with open spheres of radius 1/n and centers in S \Bn' There exists

a finite subcovering which defines a finite set of points {XN+1’ cees xN+t}'

Let P = conv {z,x Then, whether S \Bn is empty or

LRRRRE IR
compact, Pn—lg- P ; z is a vertex of P_; and PnC S C (Pn)l/n'
Therefore, by induction, a sequence of polytopes having the properties
(1), (2), and (3) has been defined. Note that if S \B1 is empty then
there must exist some integer n such that S \{x : [|x - z|| < 1/n} is

not empty. If not, then S = {z} and would not be a convex body.

Hence, there exists an integer, n, such that Pn is not a degenerate

polytope.
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We have that PnC S for each integer n; hence, PnC Sp for any

p>0. AlsoS C (Pn)l/n for each n, hence

d(P_,8) = inf {p : P_C Sp, S C (P )p} < 1/m.

Therefore, lim d(Pn,S) = 0,

n-»w
Theorem 5.3 really gives a non-constructive method, which
is usually not practical, of finding a sequence satisfying the properties
(1), (2), (3) and (4) of Theorem 5.3. If the space X is finite-dimensional,
then it is possible to use a much more systematic method to achieve

the same results.

Theorem 5.4. LetS be a bounded, convex body in a finite-

dimensional normed space X and let z be an extreme point of S. Then
there exists a sequence of convex polytopes {Pr} such that

1. PnCS,nzl,Z,...,

2. PnQ Pn+1,n=1,2,...,

3. =z is a vertex of each Pn’ n=1,2,..., and

4. lim d&(P_,S)= 0.

n-»cw
Proof: Since a linear topological space of dimension r is always

‘linearly isomorphic to E_, we may assume X = E_ (cf. Valentine, [36]).

For eachm, m=0,1,2,..., let

\ | pl pr
L = — ., — | :p. =0, %1, £2,...,1=1,2,...,1
m om e i

(5.7)
Then for each m there exists only a finite number of points from Lm
which are contained in S. Let L;nC L, be that set.
Let P = c:onv(L;n U {z}), then P_C S since L]'m U {z} Cs

and S is convex. Again z is an extreme point of Pm since z is an
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extreme point of S.

! 1 . .
Now LmC L .1 since if
P P
_1 , .._HE_ e L'
2™ 2
then
ZPy 2P, L
2m+1 recc? 2m+1 m+l’

Hence PmC Pm+1'

Each P is closed and convex and the sequence {Pm} is
uniformly bounded since S is bounded. Therefore, the Blashke con-
vergence theorem implies that there exists a compact, convex set C

and a subsequence {P__ } such that
e

lim d(P ,C) =0, (5.8)
k—>w mye

We shall show that Pm C C for each k. Suppose there exists
k

xe€ P \C for some k> 0. Let
S

8(x,C) = inf {||y - x|| : y e C}.

Then 66/2 does not contain Pmk. By (5. 8), there is some integer

h > k such that

d(C, th) < 8/2.

Since

d(c, th) = inf {p : C C (th)p, pth Cp}

and since C does not contain th‘, d(C, th) > &/2. But this is a

6/2
contradiction; hence Pka C for é‘;‘ach k> 0.

Liet € > 0, then there exists an integer k > 0 such that
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d(P, ,C) <e for eachh > k. Now suppose m >m,, then Py C P .

mh’

t;
hence, PmC Pth C. If the number p is such that C (Pmk)p,

Since {Pm } is a sequence, there is an integer t such that m <m
k

then C C (Pm')p. Hence
{p:CcC (Pmk)p, Pka Cp} C{p:C C (P )p, P C Cp}
and it follows that

dP_,C)<d(P_ ,C)<ece.
m -_ mk

Therefore,

lim (P_,C) = 0.

n-—>w
Now S (C C, for suppose there exists x ¢ S \C. Then since C
is'compact there exists an open sphere of radius 6 and center x,
NB(X)’ such that N6(x) M C=0. Since x e‘ S and S is a convex body,
N6(X) must intersect the interior SO of S; hence, there must exist a

point

P, P

since this set of points is dense in Er. But then

ZMlp ZMrp
1,..., T c P CC
2M 2M M
where
r
M= 2 m,
. i
i=1
and
r
MJ.= Zmi, 1<j<r
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But this is a contradiction; hence, S (( C and

lim d(P_,S) = 0.
n

n-—»w

Now that a set S can be ""approximated" by polytopes, it is
possible to ""approximate'" F(z,S) and N(z,S) in an inner-product space.

In fact, the intersection of the sets F(z, Pn) is F(z,S).

Theorem 5. 5. Let S be a convex body in an inner-product

space X such that z ¢ S is a boundedly exposed point of S. Let {Pn} be
a sequence of polytopes such that

1. P Cs,n=12,...,

2. PnC. Pn+1’ n=1,2,...,

3. zis a vertex of each Pn’ n=1,2, ...,and

4. lim d(P_,S) = 0,

n-—>w

Then

F(z,S) = nrjl' F(Z,Pn).

If X is finite~-dimensional and R is a closed sphere with center z such

that R (M F(z,S) # 0, then

lim d(R M F(z,S), R M F(z,Pn)) = 0.

n-—>w
Proof: First it will be shown that

[a e}
F(z,S)= (M F(z,P.).
n=1 n

Suppose x ¢ F(z,S), then l|x - z]| > ||y - x|| for eachy ¢ S. Since
P_(C S for eachn, ||x -zl > |y - x|| for eachy ¢ P . Sinceze P,
x e F(z, P ). Hence F(z,8) C F(z, P_) for each integer n.

Now suppose
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o]
X € nleF(z,,Pn),
then ||z - x|| > ||y - x|| for y e P;ﬂ, n=1,2,.... ButsupposeyeS

and there is not an n such that y ¢ Pn. Let € > 0, then there is an N> 0
such that for each n > N, d(Pn,'S) < ¢. Hence, there exists w ¢ PN

such that ||w - y|| <e. Then

[ -yl < = - wl] + []w - yl]
< |lx - z]|| +e. (5.9)

Since ¢ was arbitrary, |[x - yH < Hx - z|| which means that x ¢ F(z,S).

Hence

Suppose now that X is also finite-dimensional and that R is a
closed sphere with center z which intersects F(z,S). Let
RO = F(z,8) M R. Since F(z,S) C F(z, P ) for eachn, F(z, P ) M R is
not empty. Let R_ = F(z,P ) MR, then since F(z,P_, ) C F(z, P ),
Rn+1 g_ Rn' Each set Rn is closed and convex and the collection of
sets is uniformly bounded. By the Blashke Convergence Theorem,
there exists a subsequence {Rn' } which converges to a nonempty

k .

compact, convex set C.

Suppose that there exists a positive integer N such that
C\Ry #0. Letxe C\Ry. Then

8(x, Ryy) = inf {[}x - y[] sy e Rygb = e >0

since RN is closed, There_ exists n > N such that d(C, Rm) < e/2 for

m > n. By definition

d(C,R ) = inf {p: C C (R )p, R C Cp},
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but for p = € /2 we have
(Rn)e /2 C (RN)E /2

which implies that ('Rn)e/2 \C # 0. Hence ¢/2 is a lower bound for the

set

{p :Cc C R p, R C Cp}.

Hence d(C, Rm) > ¢ /2, but this is a contradiction. Therefore C Rn
forn =1,2,..,, which means that C Rg-
Now if p is such that R C Cp, then R (Ry)p and so

d(RO, Rn) < d(C, Rn)' Hence

nIerO)a d(RO, Rn) = 0,
Suppose Ry \N\C#0. Ifxe R, \ C then §(x,C) =¢ > 0 and there exists

N > 0 such that for n > N, d(C,Rn) <e/3. So Ry C cC but ROC Ry

/2’
which implies that x e CE /2 Hence, there is a contradiction. There-

fore, RO = C.

The next theorem shows that the same type of result is true

for nearest point sets.

Theorem 5.6. Let S be a convex body in the real-inner product

space X and let z ¢ S. Let {Pn} be a sequence of polytopes such that
1. P C S, n=1,2,...,
n.
2. pPCpP . ,n=1,2,..., and
n n+1
3. lim d4d(P_,S) = 0.
n-—>o n

Then

[o 0]
N(z,S) =~ M N(z, P_),
n=1 n

If X is also finite-dimensional and R is a closed sphere with center z,
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then

lim d(R M N(z,S8), R M N(Z,Pn)) = 0.

n—>x
Proof: First it will be shown that
«w
N(z,S) = M N(z,Pn).
n=1 ‘
Suppose x ¢ N(z,8), then ||x - z|| < ||y - x]|| for each y ¢ S. Since
PnC S for eachn, ||x - z|| < ||y - x|| for each y ¢ P Since z ¢ P
x € N(z, Pn). Hence N(z,S) ( N(z, Pn) for each positive integer n.

Now suppose

@

xe (Y Nz, P),

n
n=1

then ||z - x|| < lly -~ x|| for y e P,n= 1,2,.... Butif ye S such
that y ¢ P for any n, then let ¢ > 0 be an arbitrary number. There
exists an integer N such that for n > N, d(Pn, S) < €. Hence, there

exists w ¢ P such that ||w - y|| <e. Then

N
= -yl = {l(x-w) - (v - W]
> = -wil - ly - wl|
> [lx - wi| - e (5.10)
But w ¢ P implies that ||x - w|| > ||x - z||; hence, from (5. 10),
[l - y|| > ||x - z]| - €. Since e is arbitrary, it follows that
llx - yll > llx - z||. Thus, ifyes, |[[x-y||>[|x-2[]. Therefore,

x ¢ N(z,S) from which it follows

s

N(z,8) = N(z, P_).

n=1

H

Now suppose X is finite-dimensional and that R is a closed

sphere with center z. Then Ry = R/ N(z,S) is a nonempty compact
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convex set. Let R_ = N(z,P_) () R, then since P Cp ,
n n =~ T ntl

N(z,P_.,) C N(z,P_)and N(z,P_,,) N R C N(z,P_) M R. The

sequence {Rn} is a uniformly bounded collection of compact convex
sets; therefore, the Blashke selection theorem implies that there
exists a subsequence {Rnk} which converges to a nonempty, compact,
and convex set C.

Suppose there exists an integer k > 0 such that C \Rnk;é 0. Let

xe¢ C\R_ and let
P

8(x,R_)=1inf {||x -y]|| :ye R_}
Pk Pk
Then 6(x, Rn ) > 0 since Rn is closed. There exists h > k such that

k k
d(c, Rnh) < e/2. But (Rnh)e/‘2 C (Rnk)e/2 which implies that c\Rnh;é 0.

Hence, €/2 is a lower bound for the set
{p:CC (R )p, R, C Cp}.
h h

Thus, d{(C, Rn ) > € /2 which is a contradiction. Therefore, C ( Rn ,
h k
k=1,2,.... Since the sequence {Rn} is monotone it follows that

lim R_=Cand C ( R_ for each positive integer n, Since C (C R_ for
n-—w n n n

each positive integer n, it follows that C R,. Hence, by reasoning

similar to that of Theorem 5.5, it follows that lim d(Rn’ RO) = 0.

n-—+o



CHAPTER VI
SUMMARY AND CONCLUSIONS

The basic purpose of this study has been to examine the struc-
ture of z-farthest point sets and to determine properties of z-farthest
point sets which are analogous to properties of z-—néarest point sets.

It was found that in a normed linear space, a z-farthest point set must
be closed. Further investigation showed that a z-farthest point set is
inverse starlike with respect to z. In a strictly convex normed linear
space, F(z,S) and F(w,S), z # w, have only boundary points in common.
The z-farthest point set lof S is equal to the z-farthest point set of

conv S and cl S. The z-nearest point set of S is equal to the z-nearest
point set of ¢l S, but it is not, in general, equal to the z-nearest point
set of conv S.

Another topic of interest was the element z which determines
the z-farthest point set of S. If the z-farthest point set‘is nonempty,
then z is a boundary point of S. If the normed linear space is strictly
convex and the z-farthest point set of S is nonempty, then z is an
extreme point of S. A z-farthest point set of S is nonempty in a strictly
convex space if and only if z is a boundedly exposed point of S.

It was shown that in a real inner-product space a z-nearest
point set and a z~farthest point set of S can be represented as the
intersection of closed half-spaces and the union of closed rays. This

led to a characterization of inner-product spaces in terms of z-farthest
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point sets. A normed linear space is an inner-product space if and
only if for each set S and each element z of S, the z-farthest point set
.of S is convex. |

Finally, the structure of the z-farthest point set of a polytope
- P Was found. Sufficient conditions for the z-farthe)st point set of P to
be a cone were developed. Then, methods of approximating z-farthest
point sets and z-nearest point sets were found.

There are several problems which have been raised by this
study which would be of interest for further consideration. One such
problem is the characterization of sets which contain at least one point
z whose z-farthest point set is a cone. The problem of completely
characterizing the points z of a given set S whose z-farthest point set
of S is nonempty has not been solved. It would be desirable to extend

Theorem 2.1 to infinite dimensional inner-product spaces.
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