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CHAPTER I 

INTRODUCTION 

Statement .of -the Problem. 

Undergraduate mathematics curriculums usually offer at least one 

course in modern algebra. 
' 1 

The Mathematical Association of America [7] 

recommends that.the training of teachers of mathematics at all levels 

from junior high school through college include at least one course in 

abstract algebra and more courses as the levels increase. In 1965 the 

Committee on the UndergraQuate Program in Mathematics [6] included a 

course, Algebraic Structures, in ,the upper .divisio_n of their recommen-

dations for undergraduate mathematics, The topics suggested for this 

course are topics normally contained in courses called modern algebra. 

Some students find modern algebra difficult. These students could 

possibly benefit from concrete examples which illustrate the abstract 

concepts. It is hoped that this dissertation will provide a source of 

such examples. 

Approach Given the Problem 

This dissertation is not meant·to be a textbook but a body of refer-

ence material to supplement textbooks. It is hoped that-this material 

1Numerals included in brackets [J will refer to references with 
corresponding numerals listed in the bibliography. 

1 
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. . · .. ·. ::,. · ....... _:_ 

can be used for independent study .as wel.l. as by. teachers· desiring a 
.. ,·. . .. :_. . . 

supply of examples to present to their.students. 
,· ,· . .· 

Examples··· a,te offered 

that depend on systems developed in elementary number theory. This 

source seems apptopria:te since. some, students exp.erience · these a~d simila'I'. 
I • • • • • • 

systems in junior and senior high school mathell!,atie:s courses. A glance 
·.· .· : 

at the index of junior and senior high:, school· tex.tbooks . such as those 
' ' ' 

listed. in the. bibliography ([10], [20], [22], .· and [23]) reveals clock 

arithmetic and modular .'systems as weli as ~thei: top~cs from el~ni.entary 

number theory. 'Previous experience.w::Lth.nuinber.theory is not, however, 

required to read and .i:Lppreciate this dib~ertation. .The, author does not 

assume' .that students .'of .unde;graduate ·mod~rn a],gebra have had a course 
. . . . . . . ·. : ~ . . . 

in number theory •. ·. 

This dissertation does ,riot. contain :p:roofS: ·of theorems -or reiteration 
.. .-· ... ··.. ':·. .. .. 

of · lengthy · discussions . found in textbooks~·· .. Theorems and definitions are 
. . ·. 

arranged in 'a 'logical sequence. which c~u:td 'be: adapted to courses .in ' 
.,·. 

modern algebra. ·. Definitiori.s were: sefected ori:the 'basis ~£ common usage 
. .· . 

and consistency with the ,theorems selected. · The wording o~ definitions. 

and theorems will someti.mes.be idei;it:i,i~l with that in one.or more text-

books. 

The author' has surveyed several of the current .undergraduate modern 

algebra textbooks '(l2], [5),, [9]; ·[f2],: [14], [16], [17], and [24]) to 
·.. . . . . ,"·"'.. .. : ·.. . . . . ... . ,· 

determine a body o;f,theorems .commori:it:o:tlle development i~'these texts. 

The Schaum·''s oUt:li~e for modern aigeb,i:a by ·:Ayres [l] was also. used to . . . . \ .. .... ' '. . . . . .. 

aid in selectio~ of ~he ,:the6rems .. F.rom· thi.s body of theor.e11,1s the .author 
. . . . . ' . 

then select~d: so~e for which he. couJd., dE3vel6~ exa~ples u1:1ing elementary 

number: the·ory. ·- .... E1_amples .ar,e also gi-v;¢~ :to help dem~nst;ate. th¢ impor-
. '· ... ·· :· . \·, \y ::·.-!·.,I.'':•," ·.·" ''. • : . 

tance of .careful . tea.ding of. . the~r·~ms ,· ;:b;oth the, hypotheses and conclusions. ' ' 
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Content 

This dissertation is restricted to material appropriate to an intro

ductory undergraduate modern algebra course. Consideration is given only 

to the theory of groups, rings, ideals, integral domains, and fields. 

All examples are derived from elementary number theory and are limited 

in difficulty because of the background of students normally in such a 

course. 

The author does assume the reader has had a course in college alge

bra or its equivalent in which he has become .somewhat familiar with sets, 

mappings, functions, the absolute value function, the maximum or minimum 

of a set of real numbers, 2X2 matrices, properties of the set of inte

gers~ and other topics normally in such a course. A knowledge of modu

lar systems from junior and senior high school mathematics courses or 

some other source is also assumed. 

Some theorems that are quite common in textbooks for modern algebra 

are not included in this dissertation because of the limitation of topics 

considered and the limitations set on the source of examples. Chapter 

II is reserved for the discussion of groups. In Chapter III, consider

ation is extended to topics in the study of rings and ideals. Finally, 

in Chapter IV a limited coverage is given to integral domains and fields. 

Significance 

The primary contribution of this dissertation is the development of 

reference material for a first course in undergraduate modern algebra. 

Through the use of this material it is hoped that students will develop 

a greater appreciation and understanding of modern algebra. This disser

tation relates topics from two fields of mathematics, modern algebra a.nd 
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number theory. The author hopes that through this relationship, students 

will become interested in number theory and will want to continue their 

study of abstract algebra. 



CHAPTER II 

GROUPS 

Simple Properties of Groups 

A formal definition of a set and set operations shall not be given 

in this dissertation. A knowledge of sets, operations on sets, and set 

notations shall be assumed on the part of the reader. 

A binary operation on a set S of mathematical objects is any rule ,~ 

that associates .with each ordered pair <a,b> of elements (not necessarily 

distinct) of Sa uniquely determined element, denoted a*h, which is in S. 

Some authors define a binary operation as a rule which associates with 

each ordered pair.<a,b> of elements of a set San element in a set T and 

say the set Sis closed with respect to the binary operation* if Tc S. 

In this dissertation a binary operation* on a set S shall always mean S 

is closed with respect to*· Furthermore, a binary operation shall be 

called simply an operation. Ordinary additio.n defined on the set of 

integers is an example of an operation but some rules defined on sets 

are not operations. 

Example 1 Let I be the set of all integers and ~~ be ordinary 

division. Throughout this disser.tation I .will be used to represent 

the set of all integers. Then* is not an operation on I since 3*0 

is not defined nor are quotients such as 3*2 defined in I. 

Example 2 Let S be the set of all odd integers and* be 

s 
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ordinary additio"Q., Then * is not an operation since· 1*3 is. not in S. 

Example 3 Let S be the set .. of all nonnegative integral .po"Wers 

of 5 and* be the "common divisor." Then* is not a l>inary oper-

ation since .5*25 =. 1 or 5 so that;. the .rule .. tc doe~. not- _det1armine a 

unique element of s~ 

A nonempty set of elements on "Which.an operation ie defined is 

called a groupoid. The.notation [G;*] will be.used for a.groupoid G 

wider the operation *, . When it is not necessary .. to refer to the operadon, 

the groupoid [G;*] .shall be denoted by G. 

If ·S is a groupoid wit_h .operation * such .-.tliat .for arbitrary 

a,b,c e: S, (a*b)*c = a*(b*c)., then.Sis an associative.groupoid or a . . . ' . . 

semigroup. If the operation satisfies certain additfonal properties, then 

the system is known as a group. 

Definition 2,1 A groupo~d-G .with operation *.is said to form a 

group with respect to* provided, for arbitrary a,b,c e: G, the following 

properties hold: 

(associati,ve law) 

P2 : There exists u e: G such that for eac~ a e: G, a*u = u*a = a 

(existence of identity element) 

P3: For each a e: G there exists a- 1 E ·. G such that a*a ... 1 = a- 1*a = u 

(existence of inverses) 

A groupoid sa,tisfying P1 of tlie definition of a group is a semigroup. 

Notice _that· _the identity element u, inferred in P2 of the .definition 

of a group G must satisfy both of the equati.ons · a*u =. a and u*a =. a for 

any element-a E G, 



Let [H;*] be a groupoid and u' E: H such that a*u' = a for every 

a E: H. Then.u' is called.a right identity for H. If u" E: H such that 

u"*a = a for every a E: H, then u" is called-a left identity for H. It· 

is easy to show that if u' and u" are right and left identities for H, 

respectively,. then.u' = u" and H has an-identity. Sometimes an element 

of a groupoid will be a right.identity and not a .left identity or vice 

versa. 

Example 4 Consider the setE-of even integers under the oper..,. 

7 

ation o defined by aob = (2·a)+b for any-a,b E: E where • and+ are 

ordinary multiplication and addition of integers. The integer Os E 

acts as .a left identity, i.e., Ooa = a for any a E: E, but not a 

right identity, i.e., aoO = 2·a;. a, if,a;. 0. Hence, 0 is not an 

identity for [E;o]. Furthermore, 0 is the only left identity for 

[E;o] since aob = (2·a)+b = b if and only if a= 0 so that [E;o] 

has no identity. 

In order to talk about the existence of inverses, a groupoid must 

have an identity element. This is true since the identity is one member 

of the equality conditio.ns in P3 of the definition of a group. Hence, 

if a groupoid has no identity element, it can have no inverses. 

Example 5 The set of all positive multiples of 2 under the 

operation, multiplication, is an associative groupoid but not a 

group since no identity and, hence, no inverses exist in the set, 

Let [H;*] be a.groupoid with identity u and x E: H such that a*x = u 

for a E: H. Then xis called a right inverse of a in H. Similarily, if 

Y*a = u for y,a E: H,- then y is called a left inverse of a in H, If an 
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associative groupoid [H;*] has a left inverse y and a right inverse x for 

some a EH, then x = y and a has an inverse in H. 

For any element a in the groupoid [E.;o] of Example 4, ao[2·(-a)] = 

[2,a]+[2,(-a)] = 0. We noted earlier that O is a left identity in [E;o]. 

Hence, for any a EE, 2·(-a) EE operates similar to a right inverse of 

a even though [E;o] has no identity. Also notice that 2,(-a) is not a 

left inverse for a EE. The elements -2 and 6 operate similar to left 

inverses for 4 and -12, respectively, in [E;o] but no such elements exist 

in [E;o] for 10 or -6. 

As mentioned before, a groupoid does not exist satisfying P1 and P3 

but not P2 of the definition of a group. However, groupoids satisfying 

P1 and P2 alone or P2 and P3 alone do exist. 

Example 6 Let S be the set of all integers n of the form 

n = p~ 1p~ 2 ···p~r where the Pi for i = 1, 2, •.• , rare fixed distinct 

primes and the a. for i = 1, 2, ... , rare equal to zero or one. De-
1 

fine the operation* on S to be n*m = (n,m), the greatest common 

divisor of n and m. Then u = pyp}···Pi is an identity for S since 

(u,n) = (n,u) = n for every n ES. Hence, for the groupoid [S;*], 

the largest element is an identity. [S;*] is also an associative 

groupoid but no element of S except u has an inverse. [ S; 1t] is an 

example of a groupoid that satisfies P1 and P2 but not P3 of the 

definition of a group. 

Example 7 Let I! dendte the set of all nonnegative integers 

n + n ... m 6 tn-m\ and let T = {6 :n E Io}. Define * on T by 6 --6 = for any 

+ [T; ,~] is groupoid and 60 an·identity for [T;*] n,m E Io, a is 

since 60*6n = 6n*6o 6n for any n + Notice that 6n*6n = 60 = E Io, 
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+ for any n E 1 0 , i.e., each element in T is its own inverse.. [T;td 

satisfies P 2 and P3 but not P1 o:I: the defin.ition of a group. 

For purposes of simplicity, the notation of ordinary multiplication 

or. addition will frequently be .. used to designate the operation in a group, 

i.e., ai~b will. be written as ab or a+b. If multiplicative notation is 

used for the operation ona group G and a E G, then an is the product 

having n factors of a for any positive integer n. The terminology of 

multiplication will sometimes be. used in referring to a~~b, i, e., a and 

b will be called "factors" and a~~b will be called the "product" of a and 

b. If additiye notation is used £or the operation on a group G, then 

na = a+a+ 0 , 0 +a (n summands of a). 

The negative sign will also be used. in a customary fashion, i.e., 

-n 
a - -l)n and -na = n(-a) where n is a positive int~ger and -a is the 

inverse of a in additive notation, The letters u and z will represent 

the identity element in multiplicative and additive notation, respec-. 

tively, For any a E Ga group, a 0 = u and Oa = z in the respective 

notations by definition. 

Theorem 2,2 A group has only one identity element. 

The se.t of integers under. ordinary addition is a group, denoted 

[I;+], whose only identity is 0. A groupoid such that the identity 

element is unique is not necessarily a group. 

Example 8 Let S be the set of all positive even integers and 

define* on S by a*b = [a,b], the least common multiple of a and b. 
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[S;*] is an associ.ative groupoid with 2 as·the .only identity. [S;*] 

is .not a group since only 2, which. is its own i~verse ,. llas an in-

verse in S, 

Theorem. 2.3 A group has only one. inverse associ.ated with, each 

element of·the group. 

The group [I;+] of integers und.er addition serves as a simple example 

for .this theorem since--n is.the unique ·additiv:e inverse of n.for any 

n e: I. A groupoid having :a unique inverse for eacl:l of its elements is 

not always, a .. group, 

Example, 9 + Let Io be the set of all nqnnegativ~ int~gers. Con-

+. I I sider. Io under. the operation a*b = .a-b , . tlie al:>solu;t:e v~lue ,of a-b. 

Notice ,that ,0 is th,e unique. identity .in· [r!,;*] i3,nd a is th,e unique. 

inverse· of a for each a + [I 0,;*] is not ·a group under. this 

Theorem 2 • 4 ·· (Cancellation Law) Let [G;*] be a group and 

While. the group [I;+]. is ,again .!I. simple ·:example of this theorem, 

+ [T;*] of Example. 7 and also [I 0 ;*] of ,Example 9 .show that ~ groupoid 

whic;:h satisfies th.e Can~ellation Law is not nec;.essarily a group, 

Theorem-2.5 Let ia and b b¢ elemen1ts of a group. [G;*] ~ Then each 

of the equations.a*~= band Y*a = b has,a unique solution, 

See· ('l'; *] of Example 7 or [ r!; *] of Example ,.9 for an example of a 

groupoid .whicl:l. is not· a group but ha.s unique -.solutions to the equations 

in Theorem 2.5. 
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Theorem 2.6 For every element a of a.group G, the inverse of the 

inverse of a .is a, Le., (a- 1)':- 1 = a. 

Again· [T.;*] of Example 7 and [I!;td of Example 9 provide examples 

of a groupoid G which. is not a group but such that (a- 1 )- 1 = a for every 

a E G, 

Definition 2. 7 . A group G with operation * is 

(i) An abelian .(or.commutative) group if for every a;b E G, a)~b = b~'.a. 

(ii) An additive group if )~ is addition. 

(iii) A multiplicative group if. ic is multiplication. 

(iv) An infinite.group (or group of infinite order) if G contains 

infinitely many elements. 

A finite group if G contains a finite number of elements. 

(vi) A [roup of order: E. if .. G contains exactly n elements. 

The group of integers [I;+] is an example of an infinite abelian 

additive. group. A finite group is given .in the following example, 

Example 10 Let M be the set of all 2X2 nonsingular matrices 

over the integers modulo 2. Then M = {a,b,c,d,e,f} where 

a"' (~ ~J b = (~ i) c = [i ~J 
d "" [ 0 1 j e = (~ t] f f 1 1 J = 

l O ll O . 

The following Cayley square is a table for products of elements in 

M. In a Cayley square the product x•y is the entry common to the. 

row labeled x and the column labeled y. For example, in the fol-

lowing Cayley square, c•d = e. 
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. a b c .d e £ 
a _a b c d e £ 
b b a e f c_ d 
c 'c f.a e d b 
d d e £ .a b c 
e e d b c f a 
f f, c d b a.e 

Mis a finite nonabelian multiplicative group of order 6 under ordi-

nary matrix multiplication with operations _in module 2 arithmetic. 

To see that M is nonab.elian note that b·c :/: c•b, Denote the group 

M by [M; •] • 

Theorem.2.8 If G is a group, the!). for every a,b i:: G, 

If (ab)- 1 = b- 1a- 1 for every ij,b E Ga groupoid, t~is does not imply 

G is a group, • '-I-For .exatnple, in [I 0 ;*] of Example 9, 2*4 = 12-41 = 2, 

2-l = 2, 4-l = 4, and -4-l~,2- 1 = j 4-l ... 2- 1 1· = j 4~21 = 2 so that (2*4)- 1 = 

2 = 4- 1*2- 1 • Similar statements are true for any pair a,b i:: I!but 

[I!;*] is not a.group. 

It is als.o important to note that Theorem 2. 8 states that (ab)- 1 = 

b- 1a- 1 , not that (ab)-1 = a- 1b~1 • The. group [M; •] of Example 10 can. be 

used to demonstrate why this is so stated. Notice that (c•d)- 1 = e- 1 = f 

but c- 1 ·d-1 = c•d =.e~ Hence, (c•4)~1 ~ c71~a-1 for this group but 

(c•d)-1 = d- 1 ·c-1 since d- 1 ··c-:-1 _.;. d·c = f. 

Theorem 2.9 For any element a contained in·a group G, 

(i) m n m+n a a = a and 

(ii) (am)n = amn, where m,n EI, the.set of integers. 

The groupoids ·given in Example, 7 and Example 9 satisfy both (i) and 



(ii) of Theorem 2.9 but neither is a group. 

Subgroups 

Discussion has thus far covered some of the simple properties of 

groups and some examples .related to these properties. Now some of the 

structural properti.es of groups will be considered. 

Any nonempty subset G' of a group G with operation* is called a 

subgroup of G if G' is .itself a group with.respect to*· If G' = G or 

G' = {u} where u is the identity of .G, then G' is an improper subgroup 

13 

of G; if G' is any other subgroup of G, it will be called a proper sub

group of G. The subgroup {u} is called the identity subgroup of G. 

Consider the group [I;+] of integers under addition. Then the set 

E of even integers under ordinary addition is a group and, hence, a pro-

per subgroup of[I;+l since EC I,. E :r I, E :r {O}, and [E;+] has the same . . 

operation as .[I;+J. The set K of the first 8 nonnegative integers under 

addition modulo 8 is .. a group and K CI but Kis not a subgroup of [I;+] 

since the operations .are not the same. 

Theorem.2.10 A nonempty subset G' of a group G is a subgroup of 

G if and only. if 

(i) G' is closed with ,respect to. the operation of G and 

(ii) G' contains the inverse of each of its elements • 

. Neitl;i.er (i) nor (ii) of Theorem 2.10, above, is sufficient to know 

that a subset of a group is a subgroup. ConsideJ:'. the group [I;+] and 

let G' be the set of .all.nonnegative integers. G' is closed with respect 

to + but is not a subgroup of [I;+] since .-2, the inverse of 2, for 

example, is -not in G' so th.at G' does not satisfy P3 of the definition 
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of a group. 

Example 11 Let G = {6n:n s I} and consider • ordinary multi-

plication of integers, as the operation on G. Then [G;·] is a group 

and G' = {6 2k+ 1 :k s I} is a proper subset of G such that every ele

ment in .G' has an inverse in G', i.e., for any 62k+l s G', 

(62k+l)-l = 6-2k-l = 62(-k-1)+1 s G'. However, G' is not a groupoid 

since G' is not closed with respect to multiplication, e.g., 

6 3 ·6- 3 = 6° i G'. Thus, G' is not a group and, hence, not a sub

group of G. 

Any collection of characteristics which is both necessary and suf

ficient in order to identify a mathematical entity is called a charac

terization of this entity. Thus, any definition is a characterization 

but is not necessarily the only possible characterization for the entity 

defined. Theorem 2.10 gave one characterization of.a subgroup. Another 

characterization of a subgroup is given in the following theorem. 

Theorem 2.11 A nonempty subset G' of a group G is a subgroup of 

G if and only if for all a,b s G', a-1b s G'. 

This characterization of a subgroup reduces the criterion for de

termining whether a subsystem of a group is a subgroup to checking 

special products. These products involve an element of the given subset 

with the inverse of some other element of the subset. By definition 

this inverse.exists as an element of the group, but it. is not necessary 

to assume that this.inverse is in the subset of the group. 

Subsets of another group will now be considered. 

Examplel2 Define* on the set S {0,2,3,4,5,6} by 
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ai,b = a+b-:-(a•b) .. for any a,b E: S where +, -, and • are addition, 

subtracti0n., and multiplication, respectively, in .modulo 7 arithme-

ti~, S con ta.ins all the residu~ clas.ses, modu:j.o 7 ,· except the one 

represented by:l ,,.and a*b =.l-+-+ a+b-ab = 1 m0d(7) ~ a(l-b) = 

.bb mod(7)-+-+ a.= l.·m0d(7)but a tl mod(7} since a·E: S. Hence, S 

is closed with respect to * and [8;*] is ,a groupoid. Straight for-

ward calculations ;.show that fS '; *l · is. associative, 0 is · the identity, 

and 0, 2, 5., 6; 3,.,and A .are, respectively, the inverses of O, 2, 

3, 4, 5, and,6 •. ,Thus, [S;~·] is, by definiti.on, a group. By Theorem 

2.11 the, subset of even residue classes 81 = {0,2;4,6} is not a sub-

group of.S since 2)~4-: 1 = 2*6 = 3 i. 8 1 , By using Theorem 2.11 a sub-:

set·of s conta.ining 2 and 4 can be a.subgroup of tS;*l only i~ it 

contains 3 ".. Theorem 2 ~ 11 can also . be used t0 verify that 82 = { 0, 2} 

and 83 = {0,4,6} .. are subgr,;:mps of [S;*] •. S4 = · {O} and 8 are, of 

course, the.improper subgroups.of· [S;*l· The following theorem 

gives .. an interesting way ,,to view the subgroups of S. 

Theorem .. 2 .• 12 . Let a·.be .an element of a group G. The· set . 

G' = {an :n E: L} of ... alL,.iRtegral powers of a is a subgroup of G. 

In the group,,(8;*.].of.,Etc:!,mple 12, S4 = {O} = {On:n E: I}, 

n· · · · n n 
S.2 = {0,2} = {2 :n.e I}, 83 = {0,4,6} = .{4 :n e: I}·= {6 :n e:: I}, and 

{ n } n 8 = {0,2,3,4,5,6} ::;: 3 ~n e:: I .. = {5 :n E: I}. It is interesting to note 

that in ·[S;*] an, i.e., a~a)h••*a (n ;'factors" of a), is ,equal to 

1-(1-a)n in module 7 ar:i:,thmetic~ Le., 1-(1.;,.a)n red:uced to one of the 

least positive<residue. classes modulo, 7, · 

Not all .subgroups ef a.group are.of·the type given by Theorem 2,12. 

Examine the mul.tiplicatian table of the·group ['.M;•] ef Example 10 to see 
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that [M;•] is not-of this type. A group having a proper subgroup not of 

the type of. Theo.rem. 2.12 is given next. 

Example 13 Let N be .the set .of all 2X2 matrices over the inte-

gers modulo 2... Then the set N under ordinary matrix ·addition, de-

noted by+, .is .. a group in which· the· zero-·matrix is the identity and 

every element. is its owrt · inverse·. Le.t S = {z, r, s, t} where 

r = (~ ~) s = (~ ~J t = (~ ~). 

Then [S;+] is a proper subgroup.of [N;+] and [S;+] is not of the 

type given .by Theorem 2.12. 

Let H. for i,= 1,.2, ••• ,n be subgroups ofa group G. Then the 
l. 

intersection of these subgroups is the set of all elements in G common 

to all the subgroups H. for i = 1, 2, ••• , n. 
l. 

Theorem 2.13 If Sis any set of subgroups of.a.group G, then the 

intersection of these.subgroups is also a subgroup of G. 

If . some subgro.ups. of a given group are known, then The_orem 2 .13 

furnishes a way of ,finding .. a different subgroup if the intersection, set 

wise, is. a proper .. subset of :the known subgroups. Considering, in _various 

ways, intersections,.ofcthe subgroups S, .. s2 , .s 3 , and s4 of the group [S;*] 

given in Examplec:12 illustrates the validity of Theorem 2.13. On ·the 

other hand,if the intersection of,a pair of subsets of a group.is a 

known subgroup,. this does·, not imply that either of the original subsets 

is a subgroup. If 81 = { 0, 2, 4, 6} and S s = {l, 3, 4, 5, 6}, then S 1 () S s = 

S3 = {0.,4;6}. 83 .is a known subgroup of [S;*] but neither 81 nor S5 is 

a subgroup of [8;*], 
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Cyclic Groups 

A group G is.called a cyclic group-if,· for some a_s G, every x E G 

m is of the form a .,wherem is someinteger~ The element a_is then called 

a generator of G and· G is said to be generated by a •. Hence, the subgroups 

of. the type given by Theorem 2 .• 12 are all cyclic groups. 

The order o-f ~ element· a of a' group''. G is the order of the cyclic 

subgroup of G generated by a. 

A number system which is an important· source :-of examples will now 

be defined. 

Definition 2.14 Letm be any fixed-integer greater than one and let 
I 

S = {0,1,2, ••.• ,.m,.,,1}.. The arithmetic··of residue classes modulo!!!,, or more 

briefly, m-arithmetic, is the arithmeti.c system defined on S · such that 

when the operations of ordinary·addition, subtraction, and multiplication 

are-performed on S the result-is replaced by its least nonnegative re-

mainder on division by m. 

The additive group in m-arithmetic. will be denoted by [Am;+] and, 

if mis a-prime,.the multiplicative group.of nonzero elements in m-arith-

metic will be denoted [A~-;·]. . If m is not a prime, then the set of non
m 

zero elements of A. does not·form a group under multiplication since-the m 

operation is not closed, i.e., if mis not a prime, then a product of 

the prime factors of m .t-.7ill ,.always give O. in m_;arithmetic • 

. Diagrams are often convenient visual aids in.presenting new: concepts. 

Finite cyclic groups,of small order.can easily.be represented in diagram 

form. Arrows will. be .. used .to indicate what _each element becomes when 

multiplied by.some fixed element of the group, 'Where multiplication is 

the group operation. 
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Example.14 Let As= {O,.l,2,3,4,5,6,7} and consider As unde.r 

addition in. 8,-,arithmetic .•... [Ag;+]. is a cyclic group with identity O 

and the additive inverse·" of a equal to . 8-a for every a E Ag, a ,fa O, 

The element.O.is.it.s ow inverse. Associativity holds since ordi-

nary addition .. of. integers is associative. The· addition diagrams 

for successively.adding .1 to itself, 2 to itself.,. and .3 to itself 

in s,.,.arithmetica:regiven,in Figures 1; 2, and 3, respectively. 

1 2 3 2 4 3 6 1 •+ci+• t--1 (\+•+• 

at !4 ot t4 
{- + t f 
fl"*~@"'l:;-& •+--• s+s+,e 

7 6 5 0 6 5 2 7 

Figure 1 Figure 2 Figure 3 

Figure 1 suggests.that [As;+l is a cyclic group and that 1 is a 

generator of the group. Figure 2 suggests that successively adding 

2 to itself generates a cyclic subgroup.of [Ag;+] of order 4. 

Figure 3 shows-that 3 is also a-generator of [Ag;+]. 

Theorem.2.15 An.element am of a finite cyclic group G of order n. 

is a generator of G if and.only if (n,m) =l; i.e., n and mare rela-

tively prime. 

Although the .. above theorem is. stated as found in some. texts, it _is 

not entirely correct. The·,element a must. be assumed to be a generator 

of G. 

Example.15 Consider the addit.ive group. [A5 ;+] defined. similar 

to [As;+] in Example 14. In additive notation Th.eorem 2.15 would 

be: An element m·a of a finite cyclic group G of order n is a 
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generator of G if and only if (n,m) = 1. Notice that 1•4 = 4 c: A5 

with (1,6) = 1 but 4 is not a generator of A5 as seen by Figure 4 

below. Try all.the elements of A5 to verify that the only gener-

ators of A5 are 1 and 5. Notice that 4 = 4~1 and 4 = 2•5 in A5, 

Also (4,6) 'f 1 and (2,6) fl so that 4 is not suppose to be a gener-

ator of A5 by Theorem2.15, assuming a.of the theorem is a generator 

of the group. 

2 

/\ 
•+-• 

4 0 

Figure 4 

A pecularity of cyclic groups is given in the following theorem. 

Theorem 2.16 Every subgroup of· a. cyclic·· group is itself a cyclic 

group. 

If every subgroup ofa·group is cyclic, then the group itself must 

be cyclic since any group is an improper subgroup·of·itself. However, 

if every proper subgroup of.a·group is cyclic, this·does not imply the 

group itself is cyclic. 

Example16 Let T = {<0,0>,<0,1>,<1,0>,<1,1>}. Then Tis the 

set.of all ordered pairs in 2-arithmetic and defined* on T by ele-

ment-wise addition in 2-arithmetic. · Then [T;*] is a group with 

<0,0> as identity and each element its own inverse. 

T1 = {<0,0>,<0,1>}, T2 = {<0,0>,<1,0>} and T3. = {<0,0>,<l,l>} under 

* are each proper cyclic subgroups of.[T;*] generated, respectively, 
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by <0,1>, <l~O>, and <1,1>. T1, T2, and T3 are the only proper 

subgroups of . [T; *] and each is cyclic but [T; )~] is not cyclic since 

no el~ment of T generates T. 

The group [A5;+] of Example 15 is cyclic with generators land 5, 

The elements 2 and 4 generate H1 = {0,2,4}; 3 generates H2 = {0,3}; and 

O generates H3 = {OL A6, H1, H2., and H3 are the only subgroups of 

[A5;+]. Hence, each subgroup of the cyclic group. [A5;+] is cyclic, 

Homomorphisms and Isomorphisms 

Certain types.of mappings from one group into another provide a 

means of describing esse.ntial properties of groups and provide a way of 

recognizing when two seemingly different.groups.are mathematically the 

same. 

Definition 2 .17 Let G. with binary operation i: and H with binary oper-

ation o be two groups, A (group). homomorphismof G into His a mapping 

a:G ~ H such that 

(i) Every a E.G has a.unique.image a01; EH. 

(ii) If a,b E G, then .. (a*b)a = aa:oba, 

If ·the mapping a.satisfies the-additional condition that every h EH is 

an image of some a E.G, i.e., h =aa, then a .. isahomomorphism of G onto 

Hand His called the homomorphic image of Gunder a. The set of all 

a€ G such that aa E Kise.called the preimage of Hunder the mapping a. 

Condition.(i) of Definition 2,17 is merely the condition most 

authors require of a-correspondence between.two sets in.order for the 

correspondence to be called a mapping.or function, Condition (ii) re

quires the mapping.to-be operation preserving. Both conditions are 
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spondences between.groups will now be considered. 

Example.17 Let [T;·] be the group having 1 and -1 as it~ ele~ 
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ment_s under the °.l'eration of ordinary multiplication and let [A4 ;+] 

be the additive group in 4-arithmetic. If a is the correspondence 

from Tinto A4 such that la= 0, -la =-1, -la= 2, and -la= 3, then 

(-l·l)a =-la= -la+O = (-la)+(la) so that for one choice of -la, 

a is operation preserving. Similar conditions.hold for other 

products in S. Also, a is onto [A4;+J but is not a homomorphism 

since (i) of the definition is not satisfied. If Sis defined from 

Tinto A4 such that.IS= 0 and ~1s = 1, then S satisfies (i) of the. 

definition but .(-1~-l)S = lS = 0 while .(-lS)+(-lS) = 1+1 = 2 so tha1;: 

S does not preserve operations and is not a homomorphism. If ·y is 

defined from T into.A4 such that ly = 0 and -ly = 2 then y is a 

homomorphism of-Tinto A4, 

Theorem 2.18 In any homomorphism between two groups G and G', 

their identity elements correspond; a~d if x E G and x' E G' correspond, 

then their inverses also correspond. 

All homomorphisms must satisfy Theorem 2.18 but.maps may satisfy the 

conclusion of the theorem without being homomorphisms. 

Example _18 Let [Ag;+] be _the additive group in 3-arithmetiG and 

let,[S;*] be the-group given.in Example 12. If Sis defined from 

A3 into S by OS= O, lS = 3, and 2$ = 5, then Sis a mapping that 

satisfies the. _conclusion of -Theorem 2 .18 but S is not a. homomorphism 

sine~, for example, (2+2)S = lS = 3 while (2Sh(2S) = 5*5 = 6. If 
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a is defined from A3 into S by Oa = O, la= 4, and 2a = 6, then a 

is a homomorphism and satisfies Theo.rem 2 .18 o Note that the image 

of A3 is the subgroup, S3, of [S;*], 

In Example 18, [Ag;+] is cyclic and its homomorphic image [S3;*] is 

also cyclic. The next theorem establisl1es this fact formally. 

Theorem 2 .19 The homomorphi.c image of any cyclic group is cyclic. 

If the image of a group Gunder a mapping !s a cyclic group, this 

does not imply that G is cyclic, 

Example 19 Let (T;*] be the group given in Example 16 and [A2;+] 

be the additive group in 2-arithmetic, Define a from T onto A2. by 

<O,O>a = <O,l>a"" 0 and <1,0>a"" <l,l>a = 1. Then A2 is the homo

morphic image of T under a and A2 is cyclic but Tis not.cyclic as 

noted. in Example l6o 

If a map from one group into another is known to be a homomorphism 

and satisfies some additional conditions, then the map establishes ad

ditional :relationships between the groups, 

Definition 2, 20 If 0/, is a homomorphism of a group G onto a group H 

such that a is a one-to-one mapping, then a is said to be an isomorphism 

and G and Hare said.to be isomorphic, 

The properties onto and one-to-one are both essential to an isomor

phism. In Example 19 the homomorphism a is onto A2. but is not one-to-one 

so that [T;*] and [A2;+] are not isomorphico 

Example 20 Let Alo= {l,3,7,9}, the set of all positive integers 
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less than 10 and relatively prime to 10. Al O under multipli.cation 

in 10-arithmetic is a cyclic group of order Lf with generators 3 and 

7. Let [Ag;+] be the additive group in 8-arithmetic. Define o:. 

from [A)' 0 ;•] into [As;+] by fo = 0, 3a. = 2, 7a "" 6, and 9o:. "" 4. 

The mapping o: is a one-to-one homomorphism of Alo into As but is 

not an isomorphism between A)o and Ag since a is not onto. However, 

a is an isomorphism between A)o and its image, the set {0,2,4,6} 

which, under addition in 8-arithmetic, is a cyclic subgroup of 

[Ag;+] of order 4 with generators 2 and 6. 

Not all onto, one-to-one maps are isomorphisms. 

Example 21 Let [A4;+] be the additive group in 4-arithmetic and 

define A~= {1,3,5,7} with operation ·, multiplication in 8-arith

rnetic. Then [A~;·] is a group of order 4 and many one-to-one maps 

exist from A4 onto A~ but none of these is a homomorphism and, hence, 

none are isomorphisms. [A~;·] is a representation of the noncyclic 

group of order 4, sometimes called the Klein-4 group. [A~;·] is 

isomorphic to [T;*] of Example 16 under the mapping a defined by 

lo:= <O,O>, Jo:."" <0,1>, Sa"" <l,O>, and 7a = <1,1>. 

Notice that if a group G is isomorphic to a group H, then His iso

morphic to G. For example, if y is defined from [T;*] to [A~;·] of 

Example 21 by <O,O>y = 1, <O,l>y 3, <l,O>y = 5, and <l,l>y = 7, then 

y is an isomorphism from T onto A~ where as o:. of Example 21 is an iso

morphism from A~ onto T. 

All cyclic groups are isomorphic to some arithmetic system based on 

the integers or some subset of the integers. 
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Theorem 2. 21 · (a) Every cyclic group of infinite order is iso-

morphic to the additive group I of integers,. (b) Every cyclic group of 

finite order n is isomorphic to the additive group I/(n) of integers 

modulo n. 

Since the integers do .not form a group under multiplication, ex-

amples of infinite order groups from this set must be subgroups.of the 

additive group [I;+], .. For any fixed integer k ,f., O, the set 

K = {a:a = ki for some i EI} is an additive group of infinite order 

isomorphic to [I;+] under the isomorphism na = kn for every n s I. 

The group [A1 0;·] of Example 20 is a cyclic group of order 4 and is 

isomorphic to theadditive group I/(4) under the isomorphism S defined 

by lS = O, 3S = 1, 7S = 3, and 9S = 2 where n denotes the equivalence set 

modulo 4 containing n. 

The additive group I/(n) of integers modulo n is a cyclic group of 

order n, with generator the set I in n"':'arithmetic for every integer n 

greater than.l; In the case when n = 1, I/(1) has only one residue 

class, O, and I/(1) is a group of order 1. Since [I;+] is a group of 

infinite order which is also cyclic, cyclic groups of .all orders exist. 

A one-to~one mapping of a set A onto itself is called a permutation 

of the set A •. The set S of nl permutations of n symbols with product 
n 

(composition) of maps as its operation is a group called the symmetric 

group on n symbols, Any subgroup of S is called a permutation grouE_ on n 

n symbols. If A is the ordered set <a,b,c,d>, then a= (ab c ddJ means 
c a.b 

the permutation of A which produces the ordered set <:c,a,b,d>~ Similar 

notation is used for permutations of any finite ordered set. 

Theorem 2.22 (Cayley) Every finite group of order n is isomorphic 
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to a permutation group on n symbols. 

Permutation groups on n symbols do not have to be isomorphic to a 

group of order n since permutation groups on n symbols do not have to be 

of order n. 

,:&ample 22 Let [Ab;•] be the group defined in Example 21. A 

multiplication. table for• [At•] is given in the Cayley square below. 

• 1 3 5 7 
1 1 3 5 7 
3 3 1 7 5 
5 5 7 1 3 
7 7 5 3 1 

A permutation group of order 4 which is isomorphic to [A~;·] is 

[P;o] where o is ordinary map composition and P = {p1,P2,P3,p4} where 

P 1 = l i ~ ; ; ) ' P 2 = (; i ~ ~) , P 3 = (; ; i ~) , and P 4 = ( ~ ; ~ i] · 
Notice Po is the ith column in the Cayley square for [A~;·]. A group 

1. 

constructed from the operation table of a group G, in a. manner similar 

to the way [P.;o] was constructed, is sometimes called the right regular 

representation of G. The Cayley square for [P;o] is given below. [P;o]. 

is a permutation group of the four symbols 1, 3, 5, and 7. 

0 P1 P2 P3 P4 
Pl Pl P2 P3 P4 
P2 P2 Pl P4 P3 
P3 P3 P4 Pl P2 
Pt+ P4 P3 P2 Pl 

An isomorphism a, from [A~;·] onto [P;o] is defined as follows; 

la= P1, 3a. = P2, Sa=; p3, and 7a = p4 • 
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Cose ts 

Suppose His a subgroup of a group [G;*l· Then for any a E G, the 

set aH = {a*h:h EH} is called the left coset of Hin G, generated by a~ 

Similarily, Ha= {h*a:h e H} is called the right coset of Hin G, gener

ated by a. Attention will be given primarily to right cosets; similar 

results hold for left cosets. Notice that cosets of Hin Gare subsets 

of G whose .elements can be represented in a special way. 

Example 23 Let [M;•] be the group of nonsingular 2X2 matrices 

under multiplication as defined in Example 10. If H = {a,b}, then 

[H;•] is a subgroup of [M;•] and cH = {c,f} since c = c•a and 

f = c•b, Also the right coset He= {c,e} since c.= a·c and e = b•c, 

Notice that cH ~ He, i.e., the elements of H do not commute under 

multiplication with c. By similar arguments, aH = bH =Ha= Hb = H, 

dH = eH = {d,e}, fH ~- cH = {f,c}, He= He= {c,e}, and 

Hd = Hf {d, f}. 

In Example 23 each coset of Hin [M;•] has two elements and there 

are the same number, three, of left cosets as right cosets. Notice that 

three times two, the order of the subgroup H, equals the order of the 

group [M;•]. 

Theorem 2,23 (Lagrange) The order of each subgroup of a finite 

group G is a divisor of the order of G. 

Example 24 Consider the additive group [A12;+]. 

K = {O,l,S,6,7,11} is a subset of A12 which .has six elements and 

each of these elements has its inverse in K but K is not a subgroup 

of A12 since it is not closed, Thus, if the order of a subset K 
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divides the order of the group, this does not imply K is a subgroup 

of A12, Ho= {O}, H1 = {0,6}, H2 • {0,4,8}, H3 = {0,3,6,9}, 

H4 = {0,2,4,6,8,10}, and H5 "'A12 are all the subgroups of [A12;+], 

The order of [A12;+] is 12 and Ho, H1, H2, H3, H4, and Hs are sub

groups having, respectively, orders 1, 2, 3, 4, 6, and 12. Hence, 

there exists a subgroup of order n for every positive integer n that 

divides the order of A12, 

If a group G has order n and mis a positive integer divisor of n, 

then a subgroup of G of order m may, but does not always, exist, The 

author has not found an example from elementary number theory demon

strating this fact. The alternating group, A4, on four symbols is a 

group of order 12 with no subgroup of order 6 although subgroups of 

orders 1, 2, 3, 4, and 12 do exist. The alternating group on four 

symbols is defined and these facts stated by Dean [8] on page 58, 

The m:de.r of an element of a finite group, like the order of a sub

group, must satisfy divisibility properties, 

Theorem 2,24 If G is a finite group of order n, then the order of 

any element a E G is a divisor of n. 

In the additive group [A12;+], 0 is of order l; 6 is of order 2; 4 

and 8 are of order 3; 3, 6, and 9 are of mcder 4; 2 and 10 are of order 

6; and 1, 5, 7, and 11 are of order 12, Every subgroup of A12 given in 

Example 24 contains the element O of order L The element 6 of order 2 

is contained in H1, H3, H4, and H5 of orders 2, 4, 6, and 12, respec

tively, but 6 is not contained in H2 of order 3, The other elements of 

A12 are also seen to satisfy Theorem 2,24. 

The alternating group on four symbols, A4 , mentioned above has no 
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element of order 6 since it has no subgroup of order 6. Since A4 is of 

order 12, it is seen that elements of every dividing order do not always 

exist in a group, 

Notice, also, that there is no element of order n in any noncyclic 

group of order n. If the order of a group G is a prime, there must be an 

element in G of order n where n is the order of G. 

Theorem 2,25 Every group of prime order is cyclic. Moreover, 

every element except the identity is a generator of the group, 

The additive group [A12;+] is cyclic with 1, 5, 7, and 11 as gener-

ators even though the order of A12 is 12, not a prime. Most of the ele-

ments of A12 do not, however, generate A12 but subgroups of A12· 

Example 25 The additive group [As;+] is of prime order 5 with 

identity element 0. Using the diagram form introduced before 

Example 14, Figures 5, 6, 7, and 8, respectively, show that 1, 2, 

3, and 4 are all generators of As, 

2 4 1 3 
1 /-i''\.. 3 ;71',,,1 . . 

,I ' 

4 ./ '\i. 2 2\ il 3/ c1.4 
\ ii !, \ it "" I-•+-. •+• ®+• e+• 
0 4 0 3 0 2 0 1 

Figure 5 Figure 6 Figure 7 Figure 8 

The order of an element of a finite group must be less than or equal 

to the order of the group by Theorem 2.24. The following is true of 

every element of a finite group. 

Theorem 2.26 If G is a finite group of order n with identity u, 

then an= u for each a E G. 
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Notice that the theorem is stated in multiplicative notation. The 

number 2 is an element of the additive group [A5;+] of order 6 with 

identity O, but 26 = 4 ,t: .. 0 in 6-arithmetic. For [A5;+] the theorem means 

that, for example, 2+2+2+2+2+2 = 6•2 = 0 and this is seen to be true in 

6-arithmetic. Similar equalities hold for all the elements in A5. 

n If G is a finite group with identity u and a = u for each a£ G, 

this does not imply G is of order n. Every element in the group [AK; • ] 

of Example 21 is of order 2,. . 2 i.e., a = 1 for every a £ p Ag, [A~;.] is 

not, however, of order 2 but of order 4. 

Invariant Supgroups 

A subgroup H of a group G is called an invariant .. (normal) subgroup 

of G and is said to be invariant in G if gH = Hg for every g £ G. 

A group may have some subgroups which are invariant and some which 

are not invariant; In Example 23 it was found that the subgroup 

H == {a , .. b} is not an-invariant . subgroup of the group [M; ·] since, for 

example, dH ::/: Hd. The subgroup K = {a,e,f} is an.invariant subgroup of 

M since it satisfies the definition. 

A characterization of an invariant subgroup is given in the fol-

lowing theorem. 

Theorem-2.27 If His a subgroup of a group G and if g- 1hg £ H for 

all g E G .and all h .£ H, then His an invariant subgroup of G. 

Since Theorem 2.27 is a characterization, it furnishes another way 

to determine .if a subgroup is invariant. For the subgroup Hof [M;·] 

defined in Example 23, c- 1bc = cbc = (cb)c = fc =di H so that His seen, 

independent of the.definition, to not be an invariant subgroup of M. 
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Checking the special products given in Theorem 2.27 is not sufficient to 

determine if any given proper subset of a group is an invariant subgroup, 

Example.26 Consider the additive group [A10;+] and the subset 

S = {0,3,7L The products g- 1·h•g e: S for all g e: A10 and all h c:: S. 

For example, (-8)+3+8 = 2+3+8 = (2+3)+8 = 5+8 = 3 in 10-arithmetic 

and 3 ES. Seven contains the identity of [A10;+] and inverses for 

each of its elementsbut S is:not an invariant subgroup of.[A1 0;+] 

since S.is not closed and, heqce, is not a subgroup of A10, e.g., 

3+3 = 6 /; s. 

The property.of.a subgroup being invariant in a group G.carries over 

to certain subgroups of G. 

Theorem .. 2. 28 If His an invariant subgroup of a group.G and if H 

is also a subgroup of.a subgroup K of G, then His an invariant subgroup 

of K. 

Example.27 Let [G;•] be the group of all nonsingular 2X2 matri-

ces over 3-arithmetic with matrix multiplication as the group opera

tion. [G;•] is a group of order 48 with [K;•] as a subgroup.of 

order 12 where K is the set of all upper-triangular matrices.in G. 

Every element _in the group K is nonsingular and has Oas its lower 

left entry. If H = {(t ~) ,(~~)},then [H;•] is a subgroup of [K;•] 

and [G;·]. Notice ,that each matrix in H commutes under multipli

cation with every matrix in G so that gH = Hg for every g E G. 

Hence, H is an invariant subgroup of·. G. But, since H C K C G, 

kH = Hk for every k EK and His an invariant subgroup of K. The 

conclusion of Theorem 2.28 says notQing about whether K is an 
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invariant subgroup of G. In fact, K is not an invariant subgroup 

of G since, for example, if g = (~ ;J, k = (; i), and h = (i ~), 
then g e G, k e Kand k•g =he.Kg but hi gK. 

Invariant subgroups arise naturally when considering homomorphisms 

between groups. 

Theorem 2.29 Under any homomorphism of a group [G;*] with identity 

element u into a group [G';o] with identity element u', the subset S of 

all elements of G which are mapped onto u' is an invariant subgroup of G. 

Thus, if a is a known homomorphism from a group G into a group G', 

then the preimage of the identity of G' is an invariant subgroup of G. 

If, however, a is a map which maps an invariant subgroup of G onto the 

identity of G', a is not necessarily a homomorphism. 

Example 28 Let [A10;+] and [As;+] be the additive groups in 10 

and 5-arithmetic, respectively. Define a from As into A10 by 

aa = 2a for each a e As. a is a homomorphism from As into A10 and 

the subgroup {O} of As is the preimage of the identity, 0, of A10· 

{O} is an invariant subgroup of As, H = {0,5} is an invariant sub

group of [A10;+]. If OS= SS= 0 and aS = 3 for all a e A10 such 

that a# 0 and a f 5, then Sis a mapping from A10 into As and the 

preimage of the identity of As is an invariant subgroup of [A10;+] 

but Sis not a homomorphism since (l+l)S = 2S = 3 but (lS)+(lS) = 

3+3 = 1 in As. 

The homomorphism of Theorem 2,29 from G into G' may be onto G' with

out changing the conclusion of the theorem. Define y from [A10;+] onto 
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[A5;+] by Oy = Sy = O, ly = ·6y ·= 1, 2y = 7y .= 2, 3y = 8y = 3, and. 

4y = 9y = 4. Then y is an onto homomorphism and {O,S} is an invariant 

subgroup of A1 o. 

Quotient Groups 

Definition 2. 30 Let H be an invariant subgroup of a group G with. 

binary operation*· The set, denoted G/H, consisting of all the (right) 

cosets of Hin G, is called the set of:cosets of Hin G. Define the 

binary operation 52_ on G/H by (Ha)o(Hb) = {(h1*a)*(h2*b):h1,h2 EH} for 

all Ha,Hb E G/H. 

The subgroup Hof Definition 2.30 must be invariant in order for o 

to be a binary operation. 

Example 29 The subgroup H = {a,b} of the group [M;·] of Example 

10 is not an invariant subgroup.of M, (Hc)o(Hd) = {a,b,c,e} = S 

which is not a right coset. of Hin M so that o is not a binary oper-

ation on M/H. The subgroup K = {a,e,f} is an invariaq.t·subgroup of 

Mand o is a binary ope:i;:ation on M/K. In .fact; M/K under o is a 

group with the following Cayley square, 

o K Kb 
K K Kb 
Kb Kb K 

Thi.s resµl t , generalizes as seen by the next theorem. 

Theorem 2.31 The set G/H with binary operation o is a group 

(called a quotient group or a factor group) if His an invariant subgroup 

of G. 
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It can be.proved that .if His a subgroup of th~ group G, .the product, 

o, of any two,right.cose.ts. o~ Hin G is again a right coset of H in.G if 

and only if ,H..is an.invariant subgroup of.G. He11,ce, if the set G/H is a 

group under the .. product,. o, then H is an invariat1,t .subgroup of G. The 

set M/H of Example ... 29,.. under . the product, o, is not a .group while M/K 

under o is a group. ,.Both.H.and Kare subgroups of M but only K is an· 

invariant subgroup of M. 

The order of a quotient group.of a finite group G depends on the 

order of G. 

Theorem.. 2. 32 · If H, of c:>rder·m, is ,an.invariant subgroup of group. 

G, of ordei;- n, then the quotiet1,t group G/H is of,order n/m. 

The order of the-group M of-Example 29 is 6, the order of K is J, 

and the order of M/K is 2 = 6/3, Another example of Theorem 2.32 is now 

given. 

Example 30 Censider the ·additive group [A12;+] and the invariant 

subgroup [H;+] .of [A.12 ;+] where H = { 0, 3, 6,. 9}. The orders of A12, 

H, and A12/H are, respectively,'12,. 4, and 3. For every divisor n 

of -12, there exists an. invariant. subgroup of A12 of order n. and, 

hence, there also exists; a ·quotient greup of Ai2 of order n. 

If m is'.a positive integer.divbor of n; the order of a group G, 

this does not-imply tha~.G·has a quotieti-t group of order n/m. The only 

subgroups of order 2 of;the group [M;•] of Example 10 are·H1 = {a,b}, 

H2 = {a,c}, an4 H3 = {a,d} but none of these subgroups is an invariant 

subgroup of.M since Hie .'f ell1 _for i·= 1, 2, or 3. Hencet no qt,1otient 

group,of [M;•] exists of order 3.= 6/2 although.2 divides.6, the order 
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of M. 

If the quotient group of a group G is of finite order, this does not 

imply G is of finite order. 

Example 31 Consider the subset H = {3n:n EI} of the integers I. 

[H;+] is an invariant subgroup of [I;+] since H+a = a+H (additive 

coset notation) for every a E I. I/H = {H,H+l,H+2} is; a quotient 

group of I under the coset operation o defined by (H+a)o(H+b) = H+c 

for a,b,c E {0,1,2}.where.c is.equal to a+b modulo 3. [I/H;o] is a 

finite group of order 3 although [I;+] is; of infinite order. 

Homomorphisms exist between a group and any of its quotient groups. 

Theorem 2.33 If His an invariant subgroup of group G, define the 

mapping a from G to G/H by aa = Ha for all a E G. Then a is a homomor

phism of G onto G/H. 

For the groups [I;+] and [I/H;o] of Example 31, the mapping a de

fined in Theorem 2.33 may be .described as follows: aa = H if a= 3n, 

aa = H+l if a= 3n+l, and aa = H+2 if a= 3n+2 where n is any integer. 

Notice that a is a mapping from I onto I/H since Oa = H, la= H+l, and 

2a = H+2. Straight forward calculations can.be used to verify that a 

is a homomorphism, e.g., [(3n+1)+(3m+2)]a = [3(n+m)+3]a = [3(n+m+l)]a = H 

while (3n+l)ao(3m+2)a = (H+l)o(H+2) = H so that [(3n+l)+(3m+2]a = 

(3n+l)ao(3n+2)a. 

If _the subgroup Hin Theorem 2.33 is not invariant in the group G, 

then a of the theorem cannot be a homomorphism since G/H is not a group. 

The structure .. of a particular quotient group is limited by the 

structure of the original group. 
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Theorem 2.34 Any quotient group of a cyclic group is cyclic. 

The quotient group [I/H;o] of [I;+] given in Example 31 is cyclic 

of order 3 with. generators H+l and H+2. [I;+] is cyclic with generators 

1 and -1. 

A quotient group of a group G may be cyclic even though G is not 

cyclic. M/K of Example 29 is cyclic of order 2 with generator Kb even 

though [M;•] is not cyclic. 

Products of Subgroups 

Definition 2.35 Let Hand K be two subgroups of a group G with binary 

operation*· The product of Hand K is denoted HK where 

HK= {as G:a = h*k,h s H,k s K}. 

Notice that the product of two subgroups Hand Kofa group G need 

not be a group, i.e. , HK need not be a subgroup of G, 

Example 32 The subgroups H = {a,b} and K = {a,c} of [M;·] of 

Example 10 are not invariant in M. HK= {a,b,c,e} which is not a 

subgroup of Mand, hence, is not a group. KH = {a,b,c,f} is not a 

group either. The product of subgroups is not commutative since 

HK 'f KH. ILL is the subgroup of [M;•] with elements a, e, and f, 

then HL = LH =Mis a group. Notice Lis invariant in M. 

The product of two subgroups of a group G may be a proper subgroup 

of Gas seen in the next example. 

Example 33 Consider the subgroups H = {0,6} and K = {0,4,8} of 

the additive group [A12;+] in 12-arithmetic, HK= L = {0,2,4,6,8,10} 

and L of order 6 is a proper subgroup of [A12;+] of order 12. 
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Notice that H, K, and Lare all invariant subgroups of A12· 

Example 33 also serves as an example of the next theorem. 

Theorem 2.36 If Hand Kare invariant subgroups of a group G, then 

HK is an invariant subgroup of G. 

If Hand Kare subgroups of a group G such that HK is an invariant 

subgroup of G, this does not imply that both Hand Kare invariant sub-

groups of G. In Example 32 HL = M which is obviously invariant in M but 

His not invariant in M. 

Composition Series 

An invariant subgroup Hof a group G is called a maximal invariant 

subgroup of G provided there exists no proper invariant subgroup K of G 

having H as a proper subgroup. The invariant subgroup K of [M; •] given 

in Example. 29 is a maximal invariant subgroup of M since no proper sub-

group of M properly contains K. The subgroup H given in the same example 

is maximal in M but is not a maximal invariant subgroup of M since it is 

not invariant in M. 

Definition 2.37 Let G be a group with identity element u. A finite 

sequence of subgroups G = Ho, H1,,,,, Hr= {u} is called a composition 

series of G if each H. is a maximal invariant subgroup of H. 1 for 
1 1-

i = 1, 2, ••• , r. This composition series is said to have r+l terms and 

be of length r+l. The groups Ho/H1, H1/H2,•••, H 1/H are called the r- r 

quotient groups of the composition series. 

Example 34 The addit.ive group [A4 ;+] in 4-arithmetic has a maxi-

mal invariant subgroup K = {0,2}. The series A4 = Ho, K = H1, 



37 
1. 

{O} = H2 is the only composition series of A4. A4/K and K/H2 are 

the quotient groups of the compositio-q. series. 

Not every group has a composition series. The additive group [I;+] 

of integers has the series of.su]:>groups I= Ho, H1, H2,•••, Hi,••• where 
' i . 

H1 = {2n:n EI}, H2 = {4n:n EI}, and, in general Hi= {2 n:n EI} for 

every nonnegative integer. i. · Each Hi is invariant in I· anc\, hence, Hi . 

is invariant in each Hj for (i) S. j ~ i. Furtl:i..ermqre, Hi ,is maximal in 

Hi-l for every positive integer i. Butii Ho, H1, H2,···, Hi'··· is not a 

compositio.n series since the series is not .. finite-in fact, no composi"7 

tion series exists. for [I;+]., Th~ quotient groups Ho/H1, Hi/H2,., ~, 

I I { i-1} Hi-l Hi,••• still exist and Hi-.1 H;1, = H1 ,Hi+2 is a cyclic group of. 

order 2 .for every positive ,integ~r i. 

Theorem 2.38 Every finite group.has at least·one composition 

series. 

[A4;+] was seen, in Example 34, to have only one composition series. 

Some groups , have more .than one composition series .. 

Example,35 Con.sider ·the additive group [A.12;+] in, 12-arithmetic. 

K2 = {0,6}, and H3 = K3 = {O}. Then,the Hi and Ki are invariant sub

groups .of· [A12;+] for i = O, 1, 2, 3. Furthermore, both Ho, H1, H2, 

H3 and Ko, K1, K2, K3 are.composition series since the H. and K 
l. i 

satisfy t.he maximal, invariant conditions of Definitio-q 2.37, The 

series Ho, H1,' K2, H3 is another composition series for the group 

A12· A12 has two .distinct.maximal in.variant subgroups, H1 and K1. 

H1 also has two distinct maximal invariapt subgroups,. H2 and K2. 
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Notice .that all three composition series of the group [A12;+] in 

Example 35 are of .the same length, 4. Quotient groups of .. the composition 

series are also re.lated as .seen. in· the next theorem • 

Theorem 2.39 .. (Jordan-Holder) For any finite group with distinct 

composition series, all. series have the same number of terms and·· the 

quotient groups of.any.two series can.be put intq one-,.to-one·correspond

ence so. that corresponding quotient groups are·· isomorphic, 

Example 36 Each composition series given . in ExE1,mpl~ 35 ha.s three 

quotient groupf;l associated with it, The quotient groups of the. 

composition series Ho, H1, H2, H3 are Ho/H1 = A12/H1, Hi/H2, and 

H2/H3. The composition series Ko, K1, K2, K3 has the quotient groups 

Ko/K1 = A12/K1, K1/K2, and K2/K3 while the composition series Ho, 

H1, K2, H3 has the quotient groups Ho/H1 = A12/H1, H1/K2, and K2/H3. 

Many one-to-one correspondences exist between the. quotient groups 

of any two of the givet1 series. In fact, tl).ere may be more than one 

of these.one~to-one correspondences such ihat the corresponding 

quotient groups are isomorphic. The quotient groups Ho/H1, Hi/H2, 

and H2/H3 are of ordeJ:.'.s 2, 2, and 3, respectively, while the· 

quotient groups Ko/Ki, K1/K2 and K2/K3 h~ve orders 3, 2, and 2, re

spectively. Groups must be.of the same order if they are isomorphic. 

For this example, the .mapping a, which associates H0/:a1 with Ki/K2, 

Hi/H2 with K2/K3, and H2/H3 with Ko/Ki, is one.correspondence which 

satisfies Theorem 2, 39. Ho /H1 is isolijorphic to K1 /K2 urider the ·. 

isomorphism a, defined from :Efo/H1 into Ki/K2 by H1a1 = K2 and 

(H1+l)a1 = K2+3. The map a2 defined by H2a2 = .K3 and (lI2+2)a2 =K3+6 

is an isomorphism from H1/H2 into K2/K3, Similarily, a3 defined by 



39 

H3a3 = K1, (H3+4)a3 = H1+l, and (H3+8)a3 = K1+2 is an isomorphism 

from H2/H3 into Ko/K1. Another corre,spondence satisfying Theorem 

2.39 for the quotient groups of the same two series is defined by 

the mapping 13 which associates Ho/H1 with K2/K3, Hi/H2 with Ki/K2, 

and H2/H3 with Ko/K1, Similar correspondences can be established 

for the quotient groups of any two composition series of [A12 ;+]. 

It was helpful in Example 36 to know the number of distinct,cosets 

in each quotient group since isomorphic groups must be of the same order. 

The number of distinct (right) cosets of the subgroup Hin the group G 

is called the index of Hin Q and is denoted by [G:H]. For the groups 

given in Example 35, [A12:Hi] = 2, [A12:Ki] = 3, and [A12:H2] = 4. 

The next theorem gives, for a finite group G, a characterization of 

a subgroup of a quotient group of G, using the concept of the index of a 

group. 

Theorem 2.40 Let H be an invariant subgroup of a finite group G. 

A set P of cosets of His a subgroup of index t of G/H if and only if K, 

the set of group elements which belong to the cosets in P, is a subgroup 

of index t of G. 

A set P of cosets of H, referred to in Theorem 2.40, is just a sub

set of the known group G/H. Hence, the theorem reduces the problem of 

recognizing subgroups of·a quotient group to recognizing subgroups of an 

ordinary group. 

Example 37 Consider the additive group [A20;+] in 20-arithmetic 

and the quotient group A2o/H of A2o where the invariant subgroup 

H = {0,10}. A20/H = {H,H+l,H+2,H+3,H+4,H+S,H+6,H+7,H+8,H+9} is a 
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group of order 10 •. Each coset .of H has two elem.ents of A20, e.g., 

H+l = {1,11} and H+4 = .{4,141. By Lagrange's theorem, Theorem 2,23, 

the order,of a subgroup of A20 divides 20. Thus, a subset P of 

A20/Hmay, by,Theorem 2.40, be a subgroup of A20/H only if P con-,

tains 1, .2, 5, or 10 cosets·of.H since then the set K of Theorem 

2.40 would be.of order 2, 4, 10, or 20 and these numbers are the. 

only positive ,even\divisors of 20, the ,order of A20• The.·subset 

S = {H+2,H+8} contains two cosets of H but is not a subgroup of 

A20/H since (H+2) U (H+8) = {2,12} U {8,18} = {2,8,12,18} = N does 

not.contain the identity of A20 and is, hence, not a subgroup of 

A20· The subset T = {H,H+2,H+4,H+6,H+8} of A20/H is a subgroup of 

index 2 of A20/H since k.= {0,2~4,6,8,10,12,14,16,18} = 

H U (H+2) U (H+4) U (H+6) U (H+8) is! a subgroup of index 2 of 

A20, 

A characterization of an invariant subgroup of a quotient group is 

given.in the next theorem. 

Theorem 2. 41 . Let G be a group of order n = rpt, K be a subgroup of 

order rp of G, and H·be an it).variant subgroup.of order r of both Kand G, 

Then K is an invariant subgroup of G if and only if.K/H is an invariant. 

subgroup.of G/H, 

The subgroup M of A20, given in Example 37, is an invariant subgroup 

of order 2•5 = 10 of the group [A20;+] of order 2•2•5 = 20. H = {0,10} 

is an invariant subgroup of order 2 of both Mand A20, Hence, by Theorem 

2.41, T of Example 37 is an invariant subgroup of A20/H since T = M/H. 

In Example 27 the group [G;•] is of order 48 = 2•6·8, K is a sub

group of order 12 = .2•6of G, and His an invariant subgroup of order 2 
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of both Kand G. It was found that K is,not an invariant subgroup of G. 

Hence, without further investigation, it is known by Theore~ 2.41 ·that 

the subgroup K/H of G/H is not invariant in G/H, 

An interesting isomorphism involving a quotient group of a quotient 

group appears in the next theorem. 

Theorem 2.42 Let Hand K be invariant subgroups of G with Han 

invariant subgroul? of K, and let P = K/H and. S = G/H. Then the. quotient 

groups S/P and G/K are isomorphic, 

Notice that S/P of Theorem 2.42 is (G/H)/(K/H) and that S/P and G/K 

are representations of the same abstract group, i.e., S/P and G/K are 

isomorphic. 

Example 38 The additive group [As;+] in 8-arithmetic has invari-

ant subgroups H = {0,4} and K = {0,2,4,6}. His also invariant in 

K so that As/H, K/H, and As/Kare groups by Theorem 2.31. Since K 

is invariant in As, Theorem 2.41 implies that K/H is invariant in 

As/H so that (As/H)/(K/H) is also a group. As/K = {K,K+l}, 

As/H = {H,H+l,H+2,H+3}, and K/H = {H,H+2}, Hence, (As/H)/(K/H) = 

{(K/H),(K/H)+l} and the mapping a from (As/H)/(K/H) into As/K de

fined by (K/H)a =Hand [(K/H)+l]a = H+2 establishes the isomorphism 

asserted in Theorem 2.42. 

A group G is said to be simple or a simple group if the only invari

ant subgroups of Gare itself and the identity subgroup. Any group 

having no.proper subgroups is, of course, simple, e.g., the additive group 

[As;+] in 5-arithmetic is simple. 

The author has not found an example from elementary number theory of 
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a · simple group having proper subgroups. . In some .. of the more 'advanced 

courses in modern,algebrastudents are asked·in a problem to prove that 

the alternating ,-group, Ai:i is. simple if n ~ 5. Barnes [3} defines the 

alternating group .A .. and states. the above mentioned problem on page 45. 
n 

The alternating group As is ,a simple ~roup.of order 60. The permutation 

[l 2 3 4 5) 
2 1 4 3 5 is an.element of As of order·2 and, hence, generates a proper 

subgroup of As of order 2. Thus, the alternating group As is a simple 

group having a.proper subgroup. 

A characterization of a si~ple quotient group is given in the next 

theorem. 

Theorem 2.43 Let H be an invariant· sul;igroup of group G. Th.en H 

is a maximal invariant subgroup of G if and only if G/H is simple, 

Example,39 Con.sider the additiv~ group [A20 ;+] and its subgroups 

H = {0,2,4;6,8,10,12,14,le,l8} and K = {0,4;8,12,16}. By Theorem 

2.43 A20/H is simple while A20/K is not simple.since His maximal 

invariant in A20 while .K is invariant .but not maximal invariant in 

The next theorem establishes isomorphisms between special types of 

quotient groups. 

Theorem 2.44 Let I:l and K be ,dist:l,nct.maximal invariant subgroups 

of a.group G. Then 

(i) D = H c\ K is an invariant subgroup of G · 

(ii) H/D is isomorphic to G/K and K/D is isomorphic to G/H. 

Example 40 Let G be the additive ,group [A12;+] in 12-arithmetic 
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which has two distinct maximal invariant subgroups H = {0,2,4,6,8,10} 

andK = {0,3,6,9L Then D = H Ii K = {0,6} is an.invariant subgroup 

of G and, hence,-is an invariant subgroup of both of the subgroups H 

and K of G. Thus, H/D, G/K, K/D, and G/H are groups by Theorem 2.31 

and are of orders 3, 3, 2, and 2, respectively, by Theorem 2.32. 

The mapping a defined from H/D = {D,D+2,D+4} into G/K = {K,K+l,K+2} 

by Da = K, :(D+2)a = K+l, and (D+4)a = K+2 establishes the isomor

phism between H/D and G/K. If a mapping (3 is.defined from K/D = 

{D,D+3} into G/H = {H,H+l} by D(:3 = H and. (D+3) (3 = H+l; then (:3 is an 

isomorphism between K/D and G/H, 

Direct Products 

Given a group G, other groups may be associated with Gin a natural 

way. The study of subgroups and quotient groups provid.ed ways of con

structing new groups from the given group G. Another useful way of con

structing new groups from a set of given groups will now be considered. 

Definition 2.45 Let [G;o] and [H;G] be two groups and let GxH = 

{<g,h>:g E G,h E H}. Define the binary operation!:_~ GxH by 

<g,h>*<g',h'> = <gog',hGh'> for all g,g' E G and h,h' EH. 

The rule* given in Definition 2.45 is indeed a binary operation if 

[G;o] and [H;G] are groups since * is equivalent to the elementwise b:inary 

operations o and 8. 

Theorem.2.46 If [G;o] and [H;G] are groups and if GxH with binary 

operation* is defined as in Definition 2.45, then [GxH;*] is a group 

(called a direct product of G and H). 
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The group [GxH;*] is sometimes called an external direct product of 

the groups G and H to distinguish it from a similar construction called 

an internal direct product in which G and Hare invariant subgroups of a 

known group. A variety of groups may be constructed in the form of direct 

products. 

Example 41 Consider the additive group.of integers .[I;+] and the 

group [M;·] of Example.10,. Then Theor~m 2.46 asserts that [IxM;*] 

is a group •. The element <1,a> is·seen to be the. identity and 

<-n,x~ 1> is the inverse of <n,x> for each n EI and·x EM.where x- 1 

is the inverse of x in M (see the Cayley square given in Example 

10). The. operation * is associative since + and • are associative 

in I and M, respectively. Notice that rxM is an infinite noncyclic 

nonabelian group since infinitely many different ordered pairs are 

in the set IxM and since, for example, <3,b>*<2,c> = <5,e> while 

<2,c>*<3~b> = <5,f> and f # e. rxM is noncyclic since no element 

of M generates M, i.e., Mis not cyclic and, hence, no ordered pair 

in rxM can generate all of the group. 

The direct product of two finite groups yields a finite .group. 

Example 42 Consider the group [A~;·] of positive integers less 

than 8 and relatively prime to 8 under multiplication in 8-arith

metic, A~= {1,3,5,7} is a noncyclic group of order 4. The group 

[A3;+] is a cyclic group of order 3, [A3xA~;*] is a noncyclic group 

of order 12 since 12 different .elements exist in A3xA~ and since 

each of the el~ments <0,1>, <0,3>, <0;5>, and <0,7> is of order 1 

while each of the other eight elements is of order 3. 
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Cyclic groups can also be constructed in the form of a direct 

product •. 

Example 43 · The dire~t product of .the cy~lic additive groups 

[A2;+] and [A3;+].in.2-arithmetic and 3-arithmetic, respectively, 

is a cyclic group of order 6 with generator <1,1>. The group [T;*] 

o'f Example 16 may be thought of as the direct product of [A2 ;+] with 

itself. T is noncyclic even though [A2;+] is cyclic. 

Some quotient groups of a direct product of groups are of particular 

interest. 

Theorem 2·. 47 Let G and H be t~o groups, GxH their direct product, 

and IG arid, IH the identity subgroups of Gand H, respectively. Then the 

quotient group (GxH)/(GxIH) :i.s,isomorphic to IGxH, and the quotient group 

(GXH)/ (IGx.~) is isomorphic to GXIH, 

Example 44 Let G< = A3 and H = AK. Theri . the direct product 

[A3XA~;*] of Example 42may be.denoted [GxH;*] and the identity 

subgroups are IG = {O} and IH = {l), IXH =.{<O,l>,<0,3>,<0,5>,<0,7>} 
G 

and GxI = { <O, l>, <l, l>; <2, l>}. 
.H . Both I1/H. and GxIH are invariant 

subgroups of GXH so that the quotient groups of Theorem 2.47 do 

exist.· (GxH) / (GxIH) = {GxIH' (GxIH) *<O, 3>, (GxIH) *<0 ,5>, (GxIH) *<O ,7>}. 

(GxH)/(GxIH) is isomorphic to IGxH under the isomorphism a defined 

from IGXH into (GXH)/(GxIH) by.<O,l>a = GXIH' <0,3>a = (GxIH)*<0,3>, 

<0,5>a = (GXIH)i~<0,5>, and <O, 7>a = (GxIH)*<O, 7>. If (3 is a mapping 

defined from IGxH into H by <0,1>(3 = 1, <0,3>(3 = 3, <0,5>(3 = 5, and 

<0,7>(3 = 7, then (3 is an isomorphism from IGxH into H. Hence, GxH 

contains a subgroup isomorphic to H.. It can be proved that if K1, 
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K2, and K3 are groups and K1 is isomorphic to K2 and K2 is isomor

phic to.K3, thenK1 is isomorphic to K3. Hence, (GxH)/(GxIH) is 

isomorphic to H. The isomorphism between (GxH)/IGxH) and GxIH, 

asserted in Theorem. 2.47, can be constructed in a manner similar to 

the construction.of a above. An isomorphism between (GxH)/(IGxH) 

and. G can. also be established by arguments. similar to those above. 



CHAPTER III 

RINGS AND IDEALS 

Simple Properties of Rings 

In this chapter an important algebraic system called .a ring having 

two binary operations will be studied. The study of groups required the 

system to have only one binary operation. It will be seen that for some 

of the examples of groups given in Chapter II, an additional binary oper

ation can be defined to qualify these examples as rings. 

Definition 3.1 Let R be a nonempty set on which two binary operations 

(designated as addition and multiplication) have been defined. R is said 

to be a ring provided the following properties are satisfied 

(i) R is an additive abelian group. 

(ii) Risa multiplicative semigroup. 

(iii) For arbitrary elements a,b,c £ R, the following distributive laws 

hold: a(b+c) = ab+ac and (b+c)a = ba+ca. 

For simplicity, the usual notation of addition and multiplication 

of integers will be used in referring to the ring operations as is done 

in Definition 3.1. If addition and multiplication on the ring Rare de

noted. by* and o, respectively, then the distributive laws would be 

ao(b*c) = (aob)*(aoc) and (b*c)oa = (boa)*(coa), respectively, The no

tation [R;*;o] will be used to denote a set R with two binary operations, 

* and o, called addition and multiplication, respectively. The additive 

47 
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identity of a ring R is called the zero of Rand will be denoted by z. 

From condition (i) of Definition 3.1, it is seen that it is impossi-

ble to define multiplication ona group [G;*] so that G will be a ring 

if* is not abelian. - Hence, the nonabelian group [M;•] of Example 10 

cannot be extended to a ring by defining a multiplication on Mand using 

the original operation on M as addition.. The original operation on M 

would qualify as :multiplication on M. If addition on Mis defined as 

ordinary matrix addition-modulo 2, then M still is not a ring since, for 

example (~ ~)+'(~ ~] = (~ ~) i M. 

Condition (ii) of .Definition 3.1 requires that multiplication be an 

associative operation on the set R, Not all sets with two operations 

which satisfy (i) and (ii) of Definition 3.1 are rings. 

Example 45 Consider the additive group of integers [I;+] and 

define multiplication o on.I by mon = least common multiple of m 

and n where m,n e:: I. [I;o] is a semigroup and [I;+] is an abelian 

group but [I;+;o] is not a ring since, for example, 2o(3+4) = 2o7 = 

14 while (2o3)+(2o4) = 6+4 = 10 so that 2o(3+4) ~ (2o3)+(2o4), 

A set may have two operations that satisfy (ii) and (iii) of Defi-

nition 3.1 and still not be a ring. 

Example 46 Consider the group [M;•] of Example 10. Mis the 

set of all nonsingular 2X2 matrices over the integers modulo 2 with 

• being ordinary matrix multiplication modulo 2. Consider this 

operation• as addition on Mand define a new multiplication on M 

by xoy = (~ ~] = a e:: M for every x,y e:: M. Then. [M;o] is a semi

group because Mis associative and closed with respect too. 
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Furthermore,, xo(y•z) =a= a•a =,(xoy)•(xoz) and (y•z)ox =a= a•a 

= (yox) • (zo.x) for. arbitrary x,y,z. e: M so that both distributive laws· 

hold. Hence,. . [M; ~; o] satisfies (ii) and (iii) of the .. definition of. 

a ring but is ·not,. a rin,g since [M; •] is a nonabelian group. 

An example of an infinite set having two operations satisfying (ii) 
I 

and· (iii) of·the definition of a ring but which is not a.ring is the set. 

+ I of .all positive integers under the usualoperations of.addition.and 

multiplication of integers. [!+;+;•] is not a ring since [I+;+] is not 

a group. 

Other algebraic systems may lack a combination of a.few of the 

properties required of a ring. 

Example 47 Consider the additive abelian group [A2;+] in 2-

arithmetic and define multiplication .. o on A2 by aob = 0 e: A2 for 

every a,b e: A2 except the product Ool in that order which .is defined 

by Ool = 1. Then [A2;+;0] satisfies the distributive law ao(b+c) =. 

(aob)+(aoc) for every a,b,c e: A2. [A2;0] is not a semigroup since 

o is not associative, e.g., lo(lol) = lo(O) = O but (lol)ol = Ool = 1 

so that lo(lol) ~ (lol)ol. ,ence, [A2;+;o] is not.a ring. Also, 

[A2;+;0] does not.satisfy the second distributive law, e.g., 

(l+l)ol = Ool = 1 while (lol)+(lol) = o+o = O so that (l+l)ol ~ 

(lol)+(lol). 

The .. order of a ring R is· the same as the .order of th.e additive group 

R. Rings of.finite as well as inf:inite order exist. 

Example.48 The set of all even integers is a ring, denoted, 

[E;+;·], of infinite order under the operations .of ordinary addition 
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and multip],ication .of integers. The set;: of_ oq.d · intege+s under the · 

same operations ,is,not a,ring since additi~n is. not closed; 

Example.49 Consider.the group [A~;·] of all-positive integers 

less than 8 .. and, relatively_ prime to ,.8 under the operation of multi

plication• in 8-arithmetic. Consider • as addition and define a 

new multiplication o on At= {1,3,5, 7} by aob = 1 for every a,b e: A~. 

[A~;·; o] is .a finite ring of order 4. 

A ring R. is called a.ring with unity or a ring with identity if 

there is a multiplicative identity, called the unity.and d,enoted by u, 

in the ring, i.e•,:-if there.exists·an ... element u.e: R such thai au= ua = a 

for every a e: R .. Neither the ring [E;+;·] of Example 48 nor the ring 

[A~;·;o] of Example.4Q-has a unity. 

Example-SO Consider the set N of all 2X2 matrices over 2-arith-

metic~. Let,+and_• be, respective;t.y, ordinary addition and multi

plication of, :ma tr-ices. in. 2-a.rithmetic. Then [N ;+; ·] is a ring with 

unity u = (~'.·~}. , ---

A r~ng R-is called a coinm~tative ting if multipl:i;cation in R is 

commutative-, i.e., ab= .ba for every-a,b e: R. [E;+;·] and [A~;·;o] of. 

Examples 48 and 49, respectively; are .,both .commt.1tative rings having no 

unity. [N;+; •] of ,Example 50 is a· noncommuta:(:ive ring with unity. Many 

commutative rings ,with unity exist.. -The, set of integers I under ordinary 

addition and multiplication of integers.is an.infinite commutative ring 

with unity u =, 1. . An interesting finite commutativ_e ring with unity is 

given ·next. 
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Example 51 .LetS.= {0,1,2,3,4,5,6,7,8,9} and define* and o, 

addition and.multiplication, respectively, on S by a*b = a+b-1 and 

aob = a+b.-ab .where the ·indicated operations on the right side of 

each of .the equations are .performed in. lQ-arithm~tic. Then [S;*;o] 

is a commuta:tive.ring .of ord.er .. 10 with unity. The unity of S is 

u = 0 and.the zero of Sis z = L 

Theorem.3.2 ... · .If a .. ring has a.unity, it is unique. 

The unity u = 0 of' the ring [S;*;o] of Example.51 is unique as is 

the unity u =-1 of the ring of.integers.[I;+;•]. ([I;+;·] will always 
. . 

denote the ring of integers with theusual operations of addition and 

multiplication of .integers.) An abelian group having an additional oper-

ation, multiplication, and having a unique unity need not be a ring. 

Example .. 52 Consiqer.the _additive abelian group [A2;+] with-

multiplication o defined by the following Cayley square. 

0 0 1 
0 0 1 
1 1 0 

Then O is a unique unity for A2 but [A2;+;0] is not a ring since the 

distributive laws are not .. satisfied~ e.g., lo (l+O) = lol= 0 while 

(lol)+(loO) ""O+l·= 1 so that lo(l+O) ::/: (lol)+(loO). 

A ring may have sever~l eletll.ents which satisfy one of the equality 

conditions in the-definition of_a unity. 

Example 53 Let T. be the set .. of all 2X2 matrices . of the form 
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(~~)where n,m e: I, th~ set of integei;-s. Define the operations on 

T te be ordinary-matrix additien and :multiplication. Then [T;+;·] 

is a -ring arid elements of the form . (~ ~J for every k e: I satisfy 

the equation (t. t) • (~ ~J ~ (~ ~), i.e., (~ -~J is a left unity for 

every k e: I. However, T has . no unity. 

If Risa ring with .unity u, then_ an element a e: R is said to have 

a multiplicative inverse in .R if there exists an element .b e: R such that 

ab = ba = u. Then .the element b is called .-the multiplicative inverse of 

a and .bis denoted a- 1 • The ring [T;+;•] of Example 53 had no unity so 

that no element ef T has a multiplicative inverse. 

Theorem 3.3 An ele.ment ·of : a ring R with unity has at most one 

multiplicative inverse. 

In the ring [S;*;o] .of Example 51, the unique ~ultiplicative in

verses of O, 2; 4, and 8 are, respectively, O, 2, 8, and 4 while the 

other elements in S .have no .multiplicative inverses. In some rings every 

element except the zere has -a multiplicative inverse. 

Example 54 Consider the ring [A5;+;·] with the usual operations 

in 5-arithm~tic. Then the zero and ·unity of the ring [A5;+;•] are 

z = 0 and u . = 1, respectively. The multip.licative inverses of 1, 

2, 3, and 4 .are, respectively, 1, 3, 2, and 4. 

No multiP,lic~tive inverse -.exists for the zero of ring R, even . if the 

other elements of R do have multiplicative inverses. This fact is es

tablished by the next theorem~ 
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Theorem 3.4 For each element a of a ring R with zero z, 

az = .za = z. 

Any of the rings given in Examples 48 through 51 or53.or 54 can be 

used to illustrate the ~valid.ity of this theorem. 

Since the product.of zero with a~y other element of a ring always 

yields zero, no elem~nt -multiplied. by zero equals. the unity so that no 

multiplicative inverse exists for zero. Using this special property of 

multiplication .by zeI",o, one may. constru~t a ring given any abelia.n group 

[G;*]. Simply define multiplication o on G by aob = z for any a,b E G 

where. z is the identiiy of, the group. G and. let * be considered as addi

tion in the newly formed .ring. The ring [A~;·;o] of Example 49 was con

structed in this manner. 

Not every abelian. group having a .se.cond operatioµ_ whi_ch satisfies 

Theorem.3.4 is a ring. 

Example.SS Consider the additive abel.ian group [A4 ;+] and define 

multiplication o on A4 by aoa = 1 for every a~ O, a E A4 and define 

all other products of.two elements in A4 to be O. Then [~4;+;0] 

satisfies Theorem 3. 4 but. is not a ring since the dis.tributive laws· 

are not satisfied, e.g., 2o(l+l) = 2o2.= 1 while (2ol)+(2ol) = 

o+o = 0 so that 2o (l+l) ~ • (2ol)+(2ol). 

An _important relationship between multiplication and addi_tive in

verses is.given next. 

Theorem 3 • 5 · If Risa ring, then (-a)b = a(-b) = -al;> and 

(-a)(-b) = ab for every a,b ER. 

This theorem acknowledges . that all rings. have properties sim.ilar to 
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the "rules of.signs" for multiplication of integers. The ring of even 

integers [E;+; ·] of Example 48 is an infinite ring satisfying The.orem 

3.5. Notice that.the theorem-is true for all rings, hence, for finite 

rings as well .• 

Example 56 Consider the ring [As;+;·] of integers 

As= {0,1,2,3,4,5} with the usual operations in 6-arithmetic. As 

is a ring of order 6. Addi_tive inverses of O, 1, 2, 3, 4, and 5 are 

O, 5, 4, 3, 2, and l;- respectively. The equalities (-2)•5 = 4•5 = 

2 = -4 = ~(2•5) and (-4)·(-3) = 2•3 = 0 = 4•3 demonstrate Theorem 

3.5. Of course, all such product~ of e~ements of As satisfy the 

thebrem. 

Some sets having.two.operations satisfying.the equalities in Theorem 

3.5 are not rings. 

Example 57 + Consider the groupoid [Io;*] given in Example 9. If 

+ multiplication o is defined on I 0 as ordinary multiplication of 

integers, then all equalities of the form given in Theorem 3.5 hold 

for [I!;*;o], This is easily seen since every element in [I!;*] is 

its own additive inverse. [I!;*;o] is not a ring since [r!;*] is 

not a .group • 

The next two definitions establish .some notation.for future use in 

dealing with rings. 

Definition 3,6 For an element a of a ring Rand the integer n the 

scalar product an= na is defined to be: 

(i) a+a+···+a, n summands of a if n > O, 

(ii) z if n = 0 and where z.denotes the zero of R, 



55 

(iii) (-a)+(-a)+• • •+(-a), lnl summands of. (-a) if n < O. 

Definition 3,7 For an element a of the ring R, 

(i) a 1 = a, 

(ii) ak+l = aka, fork any positive integer, and 

(iii) if a has a multiplicative inverse, a 0 = u the unity of Rand 

-k ( -1.)k f k . . . a = a or - any positive integ,er, 

The notation introduced in the last two definitions is equivalent 

to that used in high _school and college algebra for scalar products and 

powers of a variable x. In rings whose elements-are not represented by 

integers, no confusion should occur,. Confusion may occur in examples 

involving a ring whose elemen.ts are represented by integers, 

Example 58 Consider the ring [A4;+;•] with the usual operations 

in 4-arithmetic. Then 8•2 and 3•4 are clearly scalar products in-

valving the.scalars.8 and 4, respectively, .since.8 and 4 are not in 

the set A4, .. On .. the ·other hand, 2•3 mi~ht mean a scalar product or 

a product of two elements in A4, bu~ either interpretation yields 

the same result, so tha.t the misunderstanding is not critical. The 

exponent in the expression 28 and similar .expressions must be con-

sidered as a sc!:llar and the whole expression interrupted as given 

in Definition-3.7. Thus, 8 t A4 but 28 = 0 in A4, Notice that 8 

is congruent to O modulo 4 but 2° has not been.defined since 2 has 

no inverse. 

Several simple results of.Definitions 3,6 and 3.7 are given in the 

next theorem. 

Theorem 3,8 Let R be a ring, m and n be any integers, and hand 
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k be positive integers. Then, for any a,b e: R: 

(i) 
k n•z = z, the zero ofR and u = u, the unity of R. The latter is 

valid only if Risa ring with unity. 

(ii) n(a+b) = na+nb and· (abl = akbk. The latter holds if and only if 

Risa commutative ring. 

(iii) (m+n)a =·ma+na and h+k h k a = a a . 
(iv) mn(a) = m(na) a.rid (ah)k hk = a 

Any of the rings given previously can be used to demonstrate the 

validity of the first.equalities in. (i) and (ii) and both of the equali-

ties in (iii) and (iv) of Theorem 3,8, The second equality of (i) may 

be demonstrated by.using the ring [N;+;·] of Example 50, [S;*;o] of 

Example 51, [As;+;•).of Example 54, [A 6;+;•] of Example 56, or the ring 

of integers [I;+;·]. The elements of the rings [E;+;·], [A~;·;o], 

[S;*;o], [As;+;·], and [A5;+;·] of Examples 48, 49, 51, 54, and 56, re-

spectively, all satisfy the second equality of (ii) of Theorem 3.8 since 

each of these rings is commutative. Either the ring [N;+;·] of Example 

50 or the ring [T;+;•] of Example 53 may be used to show that not all 

products of elements in a noncommutative ring satisfy the second equality 

in (ii) of Theorem 3.8. For example, with k = 2 in [N;+;·], 

A set with two binary operations satisfying one or even several of 

the equalities of Theorem 3.8 need not be a ring. 

Example 59 The system [I!;+;·] of nonnegative integers under the 

usual addition.and multiplication of integers satisfies all the. 
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equalities of Theorem 3.8.if the scalars are restricted to the set 

of positive .integer.s. The second equality in each part of the 

theorem are always true, [rt+; •Lis not a ring since [I!;+] is not 

+ a group,. e.g., .(.,,-2) .is ·not in ! 0 • 

Example.60 + .The system [! 0 ;*;0] of .. Example 57 satisfies all of 

. the equalit:i,es. of .Theo.rem ).8. e~cept. the .. first one in (iv), The 

equalities invol.ving exponents· are easy. to verify since multip.l,i-

catio.n in the system. is tq.e usual multiplication of in.tegers. The 

scalar product -properti~s are . harder . to verify, .. For .. ~xample, 

n(a*b) = nla-.bJ =. la-bJ if n is odd and n(a*b) = 0 if.n is even 

while .na*nb = a*b = la-bl if n is odd and na*nb = 0*0 = lo-ol = 0 

if n is even so that the equality, n(a+b) = na+nb, of (ii} is true 

for this system. Similar arguments can be used to verify the other 

' 
parts of th.e theorem claimed to be . true. for th.is system, If m is 

even, n odd and a.,f,. O, then mn(a) =awhile m(na) = m(a) = 0 so that 

mn(a) ,f,. m(~a), [r!;*;o] is not a ring since* is not associative, 

Subrings 

A nonempty subset S of·a ring Risa subring of R if S itself is a 

ring with respect to the binary operations of·R. Thus the·ring [E·+··] 
. ' . ' ' 

of"E:X:ample 48 is a subring of the ring of integers(!;+;·]. Other sub-

rings can be. _formed by .. taking all the multiples. of any· fi:x:ed · integer 

under the operations of [I;+;•]. [I;+;•] i~, of course, a subring of 

itself. 

It -may be tru~ that a ring S is not._a subring of the ring R even 

though Sis a.subse.t·of R. For example, the ring [AK;.-;o] of Example 49 

is a subset of·. the ring [As;+;•] with the :usua+ operations in 8rarithmetic, 
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but A~ is not a.subring of As since the operations of A~ are not the 

operations of A13. If T :::;=.{0,2,4,6}, then [T;+;•] with. tpe operations of 

[Ag;+;·] is a subring of [As;+;·]. 

A useful characterization of.a proper subring.is giyen next. 

Theorem3.9 Let R be a· ring and S be .a proper subset of th.e set 

R. Then Sis a subring of,R if and only if. 

(i) Sis closed.with.respect .. to the ring operations, and 

(ii) for each a e S, -a ES. 

The set· S of all. multiples .of 6,. say, under the .. operations of [I;+;·],. 

is a subring of I ... This.is .easy to. verify using.Theorem 3.9 s!nce addi

tion or multiplication of multiples .ot 6 always gives a .multiple of 6 and, 

secondly, if .a.::; 6k is.in.the set S, then -a= 6(-k) is also in S since 

6(-k) is a multiple of 6. 

The set.T::; {0,1,3,5,7,9}.is a subset of the ring [A10;+;·] with. the 

usual operations in 10-arithmetic. The additive inverse of each element 

of T is in the set T but T. is not a subring of A1 0 · since T is· not cl.osed. 

with respect to addition. Tis closed with respect to. multiplication. 

Examples satisfying some but not.all of the other conditions of Theorem 

3.9 may be constructed similarily. 

Homomorphisms and Isomorphisms 

The existence of certain types of mappings between groups yielded a 

wealth of information in.Chapter II. Ce~tain mappings between.rings, 

similarily, provide much.information. 

Definition 3.10 . Let [R;+;•] and [S;*;o] be two rings. A mapping a 

from R intq S ·is said to be a (ring) homomorphism if (a+b)a = aa*ba and 
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(a·b)a = aaoba for all a,b ER. If the homomorphism a is a mapping from 

R onto S, then a .is.called.a homomorphism of B:_ onto.§.. and Sis call~d a 

homomorphic.image of.Rand R is called the preimage of Sunder the 

mapping a. 

The-two equality.conditions of Definition 3.10 require that a homo-

morphism preserve both of the operations·of the ring R. Hence, a ring 

homomorphism is a group homomorphism between the underlyi~g additive 

groups which also preserves multiplication. 

Example 61 Consider the rings [A~;·;o] and [N;+;·J·of Examples 

49 and 50, respectively. Define the mapping a from A~ into N by 

la = (~ ~), 3a = (~ ~J' Sa= (~i], and 7a = (~ ~J. a preserves the 

addition • of A~, e.g., (3•5)a = 7a = (~ ~) while 3a+5a = 

[l 0)+(1 11 = (0 11 so that (3•5)a = 3a+5a. a does not preserve the 
0 1 0 lJ O OJ 

multiplication o of A~, e.g,, (3o7)a =la= (~ ~J while 3a•7a = 

(l OJ ·l·O 1) = ro 1) so that (3o7)a ~ 3a•7a. Hence, a is a group o 1 o o loo 

homomorphism between the underlying groups which is not.a ring 

homomorphism. 

Example 62 Consider the ring [W;+;·] of 2X2 matrices over 4-

arithmetic and the ring [A4;+;•] with the usual operations in 4-

arithmetic. If a is defined from A4 into W by Oa = (0 OJ 
0 0 ' 

la= (~ ~J, 2a = (~~),and 3a = (~ ~], then a is a homomorphism from 

the ring [A4;+;~] into the ring [W;+;·] since both operations are 
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preserved by a. The set.M = {(~ ~], (~ ~], [~ ~), [~~]}is the homo-

morphic image of A4 and A4 is the .preimage of Munder a. Notice 

that both [A4;+; ·] and [M;+; •] are commutat.ive rings, 

Ring homomorphisms may be .. used to coristruct subrings of a known ring, 

Theorem 3.11 Let a be a homomorphism of ring R into ring S. If S' 

is the homomorphic.image.of R .in S, then S' is a subring of S. 

By Theorem 3.11, [M;+;•] of Example 62 is known to be a subring of 

[W;+;·]. Another subring of W can be.constructed by defining a different 

map which satisfies the definition of a ring homomorphism. 

Example 63 Consider the ring [W;+;•] of Example 62 and the ring 

[A4 ;+; •] with the usual operations in 4-arithmetic. Notice that 

(~ ~J is a unity for all elements of W of the form (; ~J where 

a E A4, Define B from A4 into W so that the zeros correspond, i.e., 

0/3 = (~ ~). Since 1 is the unity of.A4 and is also a generator of 

, (1 OJ the additive group of A4, define .113 == 0 0 , Now, since 2 is its 

i 
own additive inverse and has no multiplicative inverse, define the 

image of 2 to be a.similar acting element of the form(; ~J in W, 

i.e., 2/3 = (~ ~J. 1+2 = 3 in A4 so one must define 3/3 = (6 ~J = 

(10 0°)+(20 °0J --.. 1P+2/3. s h d f' a b h · f ~ . t .us e ine preserves ot operations o 

A4 and is a ring homomorphism. Hence, by Theorem 3.11, the set 

P = {(~ ~J,(~ ~),(~ ~],(~~)}with the operations of [W;+;•] is a 
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unity of W. 
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The image of a map from a ring R into a ring S might be a subring of 

S without the map being a homomorphism, 

Example 64 Consider the rings [A2;+; •] and [A10;+; ·] with the 

usual operations in 2 and 10-arithmetic, respectively. If y is de

fined from A2 into A10 by Oy = 5 and ly = O, then the image of y 

in A10 is the set S = {0,5} which under the opel'.'ations of [A10;+;·] 

is a subring of A10, y is not a homomorphism, however, since 

(l+l)y = Oy = 5 while ly+ly = O+O = 0 so that y does not preserve 

addition. 

Both of the subrings [M;+; •] and [P;+;.•] of [W;+; ·] given in 

Examples 62 and 63, respectively, are one-:-to-one with [A4;+;•] under the 

homomorphisms of the respective examples. Homomorphisms of this special 

type are defined next. 

Definition 3 .12 If a is a homomorphism of ring R onto ring S such 

that a is a one-to-one mapping, then a is called an isomorphism. Rings 

Rand Sare said to be isomorphic if there exists an isomorphism of R 

onto S. 

The homomorphism .. S in Example 63 is not an isomorphism from Ai+ 

into W but it is an isomorphism from A4 into the ring [P;+;•]. The 

homomorphism of Example 62 is of a similar type, Some homomorphisms 

cannot be thought of as isomorphisms. 

Example 65 Consider the rings [A12;+;·] and [A3;+;·] with the 
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usual operations in 12 and 3-arithmetic, respectively. Then¢ de

fined by 0¢ = 3¢ = 6¢ = 9¢ = O, 1¢ = 4¢ = 7¢ = 10¢ = 1, and 

2¢ = 5¢ = 8¢ = 11¢ = 2 is a homomorphism of A12 onto A3. ¢ is not 

a one-to-one map from A12 into any subset of A3, Hence, ¢ cannot 

be thought of·as an isomorphism between A12 and a subring of A3. 

Isomorphisms exist for rings of infinite as well as finite order. 

Example 66 Consider the ring of integers [!;+;•] and the ring 

[S;+;·] of all 2X2 matrices over the integers with the usual opera

tions of addition and multiplication of matrices. The set 

S' = {[~ 2~]:n Er} under the operations of [S;+;·] is a subring of 

s. -- [no 2no) The mapping a defined by na for every n EI is an iso-

morphism from I into S'. Other isomorphisms between I and subrings 

of Scan be established similarily. 

Earlier it was noted that some rings have a unity while others do 

not have a unity. However, the next theorem asserts that every ring can 

be considered as isomorphically equivalent to a subring of a ring with 

unity. 

Theorem 3.13 For any ring R, there exists a ring S with a unity 

such that a subring S' of Sis isomorphic to R. (R is said to be im

bedded in S.) 

The ring of even integers [E;+;•] under ordinary addition and multi

plication of integers is naturally imbedded in the ring of integers 

[!;+;·]. The imbedding isomorphism is the identity map a defined from 

E into I by aa = a for each a EE. Similarily, all rings with unity, 
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such as [S;*;o] of Example 51, are imbedded in themselves by the identity 

map. 

If a ring R has no unity, it is not, in general, easy to find a ring 

S with unity in which R can be imbedded. Some proofs of Theorem 3.13 are 

of the constructive nature, i.e., some proofs consist of constructing the 

needed ring with.unity. The construction technique is demonstrated in 

the next example. 

Example 67 The ring [A~;·;o] of Example 49 has no unity. Let 

[I;+] and [At·] denote the additive abelian groups of the ring of 

integers [I;+;•] and the ring [A~;·;o], respectively. Then the 

direct product A~xI = {<a,n>:a E A~,n EI} under addition* defined 

by <a,n>*<b,m> = <a•b,n+m> for every a,b EA~ and n,m EI is an 

additive group by Theorem 2.46. Since addition in A~xI is defined 

by elementwise additions in A~ and I and each of these additions is 

abelian, A~xI is an abelian group. Now define multiplication 0 on 

A~ xr by <a, n>G<b, m> = < (aob) -·ma •nb, n •in> for every a, b E A~ and every 

n,m EI. The operations indicated in the left component of the pro

duct are the operations in the ring [A~;·;o] with scalar products 

denoted by-adjunction while the operation in the right component of 

the product is ordinary multiplication of integers. This multipli

cation on A~xI is closed since [A~;·;o] and [I;+;·] are rings. 

Verifications that multiplication is associative and that the dis

tributive laws hold are left to the reader. The element <1,1> is a 

unity for A~xI since <1,l>B<a,n> = <(loa)·i·a,l•n> = <l•l•a,l•n> 

= <a,n> and, similarily, <a,n>G<l,l> = <a,n>. Hence, [A~xI;*;e] is 

a ring with unity. T = {<a,O>:a E A~,O EI} can be shown to be a 

subring of A~xI. If the mapping a is defined from A~ into T by 



aa = <a,O> for every a e A~, then a is an isomorphism. Hence, 

[A~;·;o] has been imbedded in the ring [A~xI;*;0] with unity. 
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Much work is involved to determine if a given mapping is a ring iso

morphism. Some identifying properties of isomorphisms are given next. 

Theorem3.14 In any isomorphism a of·a ring R onto a ring R': 

(i) if z and _z 1 - are.the zeros of R and R' ,- respectively, then za. = z'. 

(ii) if aa = a', then (-a)a = -a I• 

(iii) if u and u' are .the unities of R and R', respectively, then ua = u'. 

(iv) if R is a commutative -ring, then so is R'. 

All of the ring isomorphisms given-previously necessarily satisfy 

all four of the conclusions of Theorem 3.14. The isomorphism a of 

Example 67 satisfies (iii) of the theorem vacuously since neither the 

ring [At·;o] nor the ring [T;*;0] has a unity. 

Some one-to-one maps from a ring R onto a ring R' satisfy most or 

all of the conclusions of Theorem 3.14 but are not isomorphisms. 

Example 68 The subset H = {0,2,4,6,8} of the ring [A10;+;•] 

with the usual operations in 10-arithmetic is a subring of A10, 

Consider the map a. from the ring [As;+;•] with the usual operations 

in 5-arithmetic onto the ring [H;+;•] defined by Oa = O, la= 2, 

2a = 4, 3a = 6, and 4a = 8. a satisfies (i), (ii), and (iv) of 

Theorem 3.14 but is not an isomorphism since a does.not satisfy (fil), 

2 is not a unity for H. In fact, H. has no unity so that As and H 

are not isomorphic. 

Example 69 Consider the ring [As;+;•] with the usual operations 

in 5-arithmetic and-the map a defined from As into itself by Oa = O, 
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la= 1, 2a = 3; 3a = 2, and 4a = 4. Then a.is a one-to-one onto map 

and satisfies.all four conclusions of Theorem 3.14 but a is not an 

isomorphism, e.g., (3+3).a =la= 1 while 3a+3a = 2+2 = 4 so that 

addition is not preserved by a. 

Ideals 

In Chapter II the study of group homomorphisms and isomorphisms was 

closely related to a special class of subgroups known as invariant sub

groups. The study of ring homomorphisms and isomorphisms is, similarily, 

closely related with.a.special class of subrings now to be defined. 

Definition 3.15 ... A nonempty subset N of a ring R is.called a left 

(right) ideal inR iLN is a subgroup of the additive group of Rand 

rn EN (nr EN) for every r ER and every n EN. A nonempty subset M of 

a ring R is called .an .. ideal . ( two-sided . ideal) in R if M is both a left 

and· a right ideal in R. 

Any left, right, or two-sided ideal Nin a ring Risa subring of R 

by Theorem 3.9 since N is closed with respect to both operations and 

additive inverses for.every element of N are in N since N is a subgroup 

of the additive group of R. If N is a left ideal in a commutative ring 

R, then N is a two-sided ideal since the condition rn EN for every 

r ER and every n EN implies nr = rn EN. Similar statements are true 

for right ideals so that only noncommutative rings have right or left 

ideals which are not two-sided ideals. 

Example 70 The subring H = {0,2,4,6,8} of the ring [A10;+;•] 

with the usual operations in 10-arithmetic is an ideal, two-sided 

ideal, in the commutative ring Aio· 
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Example 71 Let [R;+;·] be the ring of 2X2 matrices over 3-arith-

metic under matrix addition and multiplication in 3-arithmetic. Let 

B = {(~ ~} :a,b E A3}, C = {(: ~J:a,b E A3}, and D = 

{(: ~}:a,b,c E A3}. Theorem 3.9 can be used to verify that B, C, 

and Dare subrings of [R;+;·]. Bis a right ideal in R since 

(; ~}. (~ ~J = (<ac~be) (ad~bf) J E B for every a,b,c,d,e,f E A3, B 

is not a left ideal in R, e.g., (~ ~] ·(~ ~] = (~ ~] i B. Similarily, 

C can.be shown to be a left ideal but .not a right ideal in Rand D 

can be shown to be a subring of R but neither a left nor a right 

ideal in R. 

Let R be a ring with zero z and Nan ideal in R. Then N is a proper 

ideal in R if N 1' {z}, and N # R. The ideal H in Example 70 is a proper 

ideal in the ring (A10;+;·]. 

A special type of ideal may be .constructed using the next theorem. 

Theorem 3.16 If a is an arbitrary element of a commutative ring R 

with unity, then A= {ar:r ER} is an ideal in R. Furthermore, if Mis 

an ideal in Rand a EM, then ACM. 

Theorem 3.16 applies to both finite and infinite rings and implies 

that A is the smallest ideal containing a. 

Example 72 The ring of integers [I;+;·] is a commutative ring 

with unity of infinite order. A= {2n:n EI}, B = {3n:n s I}, 

C = {4n:n s I}, D = {Sn:n s I}, and E = {6n:n EI} are all ideals 

in I. Since 6 EA and 6 EB, EC A and EC B, Similarily, C CA 
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since 4 EA. No other nontrivial subset relations can be established 

between these five ideals. Notice that 10 E A n D but that A cf. D 

since 2 ¢ D and D <t A since 5 ¢ A. 

Example73 The ring [A12;+;·] with the usual operations in 12-

arithmetic is .a commutative ring with unity of finite order 12. 

A = { 2n : n E A 1 2 } , B = {3n:n E A12}, c = {4n:n E A12}, D = 

{ Sn : n E A 1 2 l, and E = {6n:n E A12} are all ideals in A12, In fact, 

A ·= {0,2,4,6,8,10}, B = {0,3,6,9}, c = {0,4,8}, D = A12, and 

E = { 0, 6}. Notice that E C B C D, E C A CD, and C c A C D, as 

would be expected if Theorem 3.16 were used. 

If the ring R of Theorem 3.16 has no unity, then the ideal A need 

not conta.in a. 

Example74 Consider the ring [A~;·;o] of Example 49. 

{l•r:r EA~}= {3•r:r EA~}= {S•r:r EA~}= {7·r:r EA~}= {l} = A. 

There is only one ideal of the type given in Theorem 3.16. A~ is a 

commutative ring but it has no unity. Notice that 3, 5, and 7 are 

not contained in A. B = {1,3}, C = {1,5}, and D = {1,7} are the 

only proper subrings of A~ and each of these is an ideal since each 

is closed with respect to multiplication o but elements of A~. The 

other ideal in this ring is A~ itself, Theorem 3.16 is easily veri

fied for all possible cases for this example. 

The ring R in Theorem 3.16 must be commutative to be assured that 

A is a two-sided ideal. In the ring [R;+; ·] of Example 71, each element 

of the right ideal Bis equal to at least one product of the form 

(~ ~) ·(~~)where a,b,c,d E A3. Hence, Bis of the form given in Theorem 
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3.16 but Bis not a left ideal and, hence; not an ideal. 

The operation of set intersection is closed with respect to ideals 

of a given ring. 

Theorem. 3,17 .. .. The intersection of any collection of. ideals in .a 

ring is an ideal in the ring. 

\ 
All the ideals of the ring [A~;·;o] are given in Example 74. It is 

clear that the intersection of any collection of these ideals in A~ is 

an ideal. If the intersection of a collection of sets is an ideal, this 

does not imply that each set is an ideal, even if some of the sets inter-

sected are known to be ideals. 

Example 75 Consider the ring [A12;+;·] with the usual operations 

in 12-arithmetic, If B = {0,2,6,10} and C = {0,4,6,8}, then 

B () C = {0,6} = D and Dis an ideal in A12 but neither B nor C is 

an ideal since neither is closed under addition. The subset 

E = {0,4,8} is an ideal in A1 2 and E n C = .E so that E n C is an 

ideal even though C is not an ideal. Other ideals in A12 are 

F = {O} and A12, the trivial ideals, as well as _G = {0,2,4,6,8,10} 

and H = {0,3,6,9}. Intersections of any of the ideals in A12 always 

yields one of these ideals. 

The intersection of all ideals (right ideals) in a ring R which 

contain a given nonempty set K of elements of R is called the ideal 

(right ideal) generated by K. If K is a singleton set {a}, then the 

ideal in R generated by the element a of R is called the principal ideal 

generated by a and is denoted by (a). 

If the ring R has no unity, then the ~rincipal ideal generated by an 



element a ER might not contain a as seen in Example 74, e.g., (3) = 

{1} =Abut 3 I:. A. If the ring has a unity, then the principal ideal 

generated by an element a ER must contain a. 
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Example 76 In Example 75, the ideal generated by the set {0,8} 

is A12 n G n E = E, the ideal generated. by the set {0,3} is 

A12 n H = H, and the ideal generated by the set {3,4,8} is A12 

since no other.ideal in A12 contains this set. All the ideals in 

A12 are seen to be principal ideals since F = (0), D = (6), 

E = (4) = (8), H = (3) = (9), G = (2) = (10), and A12 = (1) = (5) 

= (7) = (11) and .each of these princ:i,pal ideals contains each of its 

generators. 

In Example 71, the right ideal.Bin the ring .[R;+;·] is the princi

pal right ideal generated by the matrix (~ ~). Other matrices in B also 

generate B. The right ideal generated by the set of matrices· 

{(~ ~) ,(~~)}is also B. 

If every ideal in .a commutative ring Risa principal ideal, then R 

is called a principal ideal ring, In Example 76 it was note.d that al], 

the ideals in A12 are principal ideals so that [A12;+;•] is a finite 

principal ideal ring. 

Theorem 3.18 

ring. 

The ring [I;+;·] of integers is a principal ideal 

The ring of integers has only one finite ideal, (0) = {O}. Every 

other ideal has two genera tors, i. ~. , if the ideal N = (n) , the_n -n is 

also a generator of N. It is interesting to notice that the intersection 
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of any collection of ideals in [I;+;•] is a principal ideal generated by 

the least common multiple of.the positive generators of the ideals in the 

collection, e.g., (2) n (3) n (4) n (6) = (12). 

Prime Ideals and Maximal Ideals 

If N is an ideal in a commutative ring R such that ab EN only if 

a EN orb EN, then N is called a prime ideal in R. The ideal B = {1,3} 

in the commutative ring . [A~;·; o] given in Example 74 is not a prime ideal 

since any product of two elements of A~ equals 1 EB, e.g., 5o7 = 1 EB 

but 5 t Band 7 ¢ B. Similarily, every ideal in A~ can be shown to not 

be a prime ideal except A~ itself. Rings may have some proper ideals 

which are prime and some which are not prime. 

Example 77 The ring [A20;+;•] with the usual operations in 20-

arithmetic is a principal ideal ring with ideals J = {O}, K = {0,10}, 

L = {0,5,10,15}, M = {0,4,8,12,16}, N = {0,2,4,6,8,10,l2,14,16,18}, 

and A20 itself with generators O, 10, 5, 4, 2, and 1, respectively. 

N and Lare proper prime ideals. Kand Mare proper ideals but are 

not prime since 2•5 = 10 EK and 2•6 = 12 EM while the factors are 

not elements of the respective ideals. 

A ring having no proper ideals is called a simple ring. Thus, 

[A11;+;•] with the usual operations in 11-arithmetic is a simple ring 

since no subgroup of the additive group [A11;+] exists by Theorem 2.23. 

In Example 77, [A20 ;+; ·] was found to have several proper ideals so that 

A20 is not simple. 

An ideal Nin a ring R is called a maximal ideal if N ~Rand if 

N CM CR implies N =Mor M = R for any ideal Min R. The ideals N and 



71 

L of [A20;+;•] given in Example 77 are maximal ideals. Since KC Land 

Mc N, Kand Mare not maximal ideals in A20, Recall·that N and Lare 

also prime ideals. This observation is formalized in the next theorem. 

Theorem- 3.19 -Any maximal ideal in a commutative ring with unity 

is a prime ideal., 

The ideals G and Hin the ring [A12;+;·] of Example 75 are maximal 

ideals. Since A12 is a commutative ring, G and H.must also be prime 

ideals. 

In a .commutative ring without a unity, a maximal ideal need not be 

a prime ideal. 

Example 78 The ideal. C in the.ring [A~;·;o] of .Example 74 is a 

maximal ideal.b~t it is not a prime .ideal since 3o7 = 1 EC while 

3 ¢ C and 7 ¢ c. Th~ ideals Band D of the same example are simi

larily seen to be maximal but not prime ideals in A~. 

Not all prime ideals in a commutative ring with unity are maximal. 

Example 79 Consider the two rings [A3 ;+; •] and· [A4 ;+; •] with the 

usual operations in 3 and 4-arithmetic, respectively. Let A3xA4 = 

{<a,b>:a E A3,b E A4}. By Theorem 2.46, [A3xA4;*] is an additive 

group.if* is defined by <a,b>*<a' ,b'> = <a+a' ,b+b'> for every 

a,a' E A3 and for every b,b' E A4, [A3xA4;*] is an abelian group 

since additio.n in A3 and A4 is abelian. If multiplication o is de

fined on A3xA4 by <a,b>o<a',b'> = <a•b,a'•b'> for every a,a' E A3 

and for every b, b' E A4 wher.e the multiplications indicated on the 

right side of the equation are in the respective rings, then multi

plication is. closed in A3xA4 since.multiplication is closed in the 
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respective rings •. It is easy to verify that [A3xA4;*;0] thus de

fined is a commutative ring with unity element <1,1>, The subsets 

N = {<0,0>.,<0,2>,<l,O>,<l,2>,<2,0>,<2,2>} and M = {<0,0>,<0,2>} are 

proper prime ideals. in A3xA4 but M is obvi.ously not a maximal ideal. 

in.A3xA4 since M is properly contained in tb,e N, . Hence, [A3xA4;*;0] 

is a commutative ring with unity which has a prime ideal which is 

not a maximal ideal. 

The next theorem gives an.easy way to identify prime ideals in the 

ring of integers [I;+;·]. 

Theorem3.20 In. tb,e ring of integers [.I;+;•.], a proper ideal 

J = {mr:r,m EI, fixed m ~ O} is a prime ideal if and only if mis a 

prime integer. 

Recall that by Theorem .3,18, all ideals in [I;+;•] are principal 

ideals •. Hence, if the generator of an ideal in I can be identified, it 

is easy to determine if the ideal is a prime ideal. Notice that in 

Theorem 3.20, J = (m), Thus, (2), (3), (5), (7), and (11) are prime 

ideals while (4), (6), .. (8), (9), and (10) are not prime ideals. If m = O, 

then (m) = (0) = {Q}:which is also a prime ideal in I. (1) is obviously 

a prime ideal since (1) = I. 

Quotient Rings 

Knowing an ideal in a ring enables one to construct another ring by 

defining an additioQ.al operation on an additive quotient .group. 

Definition 3. 21 Any ideal Nin a ring R is an invariant subgroup of 

the additive abelian group R so that the additive quotient group 
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R/N = {N+a: a E R} is the set .of all distinct cosets. of N in R. Addition 

on R/N is defined by (N+a)+(N+b) = N+(a+b) for any a,b c: R. Multipli

cation may be defined on R/N by (N+a)•(N+b) = N+ab for any a,b ER. 

Theorem .. 3. 22 If N.is an ideal in a ring Rand if additio~ and 

multiplication are,.defined as in Definition 3. 21, then the quotient group 

R/N is a ring (called a quotient.ring) with respect to these binary opera-

tions. 

Notice that multiplication and.additiqn.in.a quotient ring of a.ring 

Rare defined.in terms.of the.operations in R • 

Example. _80 .. [N; • ;o] . is an ideal in the ring [A~;·; o] of Example 

49, where N = {1,.3}. Kee,p in mind that the operations • ap.d o are 

called addition and multiplication, respectively, on A~. Conse-

quently, the operations.defined in Definition 3.21 for a quotient 

ring of A~ would have to be symbolized accordingly. Hence, 

A~/N = {N,N•5} whe_re N•5 = {5, 7} = .N•7. Tables I and II below give 

the Cayley squares ·for the operations of addition and multipli_cation, 

respectively, in A~/N, 

+ :N N•5 
N N N•5 

N•5 N•5 N 

TABLE I; 

N N•S 
N N N 

N•5 N N 

TABLE II 

Notice that the.product of any two elements in A~/N gives N because 

the product,pf any two .elements in A~ gives 1. Hence, the unique 

product property of AK is inherited.by A~/N. 
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If Nin Theorem 3,22 is a subring which is not an ideal in the ring 

R, then the conclusion of the theorem is not valid. 

Example81 The right ideal B = {(~ ~):a,b E A3} in the ring 

[R;+;·] of 2X2 matrices over 3-arithmetic is a subring of R which is 

not an ideal in R (see Example 71). Bis of·order 9 and R is of 

order 81.so.that.R/B is an.additive quotient .group of order 9 by 

Theorem 2.32. R/B consists of .nine cosets, each representable in 

the form B+(~ ~) where a,b E A3. Notice that the coset B+(~ ~) can 

also be represented by.B+(~ ~) since (~ ~) E [B+(~ ~]]. Also, 

(~ ~). (~ ~) = (~ ~) E [B+(~ ~)] while [~ ~). (~ ~) = (~ ~) E [B+(~ ~)]; 

Since B+[~ ~) and B+(~ ~) are distinct cosets in R/B, the product of 

f O a·,, (0 OJ the cosets B+l2 2_ and B+ 1 1 , as defined in Definition 3.21, is 

not well defined, i.e., the product depends on the choice of repre-

sentatives, Hence, this definition of product does not define a 

binary operation on R/B so that R/B is not a ring, Recall that Bis 

a right ideal in R but not a two-sided ideal in R. 

Some homomorphisms between rings and quotient rings are closely re-

lated to certain ideals, If a. is a homomorphism of a ring R into a ring 

Sand if z is the zero of s, then the set·za.- 1 = {a E R: aa. = z} is called 

the kernel of the homomorphism a.. 

Theorem3.23 Let N be an ideal in a ring Rand let a. be a mapping 

of R onto R/N such that aa. = N+a for every a ER. Then a. is a (ring) 

homomorphism with kernel N, 
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The mapping a in Theorem 3.23 is called the natural homomorphism of 

R onto R/N, The natural homomorphism from the ring A~ onto A~/N of. 

Example 80 is defined .. bythe equations la= 3a = N and Sa= 7a = N•5. 

From Table I it is .seen.that N is the zero of A~/N and, hence, by the way 

a is defined, N is.the·kernel of a, Straight forward verification that 

a preserves both addition.and.multiplication shows that a is indeed a 

homomorphism, e.g., (1•3)a = 3a. = N = N+N = .la+3a and (5o7)a. = la. = N = 

(N•5)•(N•5) = (5a.)•(7a). 

Consider another example of Theorem 3.23. 

Example.82 The ring [A20;+;•] with the usual operations in 20-

arithmeti~ has many ideals and, hence, many corresponding natural 

homomorphisms can be constructed. The subset M = {0,5,10,15} is an 

ideal in A20 so that A20/M with the operations given in Definition 

3.21 is a quotient ring. Define the mapping 8 by 08 = 58 = 108 = 

158 = M, 18 = 68 = 118 = 168 = M+l, 28 = 78 = 128 = 178 = M+2, 

38 = 88 = 138 = 188 = M+3, and 48 = 98 = 148 = 198 = M+4. Straight 

forward calculations show that S preserves both of the operations 

of A20, He~ce, Sis a homomorphism and by the way Sis defined, the 

kernel of Sis M. 

If. N is.a subring of a ring R; then the mapping defined in Theorem 

3,23 need not be a.ring homomorphism. 

Example,83 Consider the subring B of the ring Rand the corres-

ponding quotient group R/B given in Example 81. Define the mapping 

a from R onto R/B by [~ ~) a = B+(~ ~) for every (~ ~) E R, Then a. 

. [ (1 OJ (0 2)] (1 2) (0 OJ preserves addition, e.g., 2 1 + 2 0 a.= 1 1 a.=B+ 1 1 and 
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(! ~)a+(~ ~)a = [B+(~ ~)J+[B+(~ ~)] = B+[(~ ~]+(~ g]J = B+(~ ~] so 

that [(!~)+(~-~]]a= (! ~Ja+(~ ~)a. But, a does not preserve 

multiplication, e.g., [(; ~J ·(i ~)]a= (i g)a = B+(~ ~] while 

(; ~Ja· (i ~Ja = [B+(~ ~]] '[B+(~ ~)] = B+[(~ ~) • (~ ~)] = B+(~ ~) so 

that [(; ~)·(i g)Ja ¥ (~ ~Ja·(i gJa. He~ce, a is a group homomor-

phism between the additive groups Rand R/B but a is not a ring 

homomorphism. This .is not surprising since in Example 81 it was 

found that R/B is not a ring. 

Theorem 3, 23 and_ the next theorem are sometimes combined as one 

theorem and called the fundamental homomorphism theorem for rings. 

Theorem 3.24 Let a be a homomorphic mapping of a ring R onto a 

ring R' with kernel N. Then N is an ideal in Rand the ring R/N is iso-

morphic to R' , 

Many of .the examples in this dissertation have been developed using 

m-arithmetic systems. Theorem 3.24 can be used to show that [A;+;·] 
m 

with the usual operations in m-arithmetic is isomorphic to the quotient 

ring I/(m), where [I;+;·] is the ring of integers and (m) is theprinci-

pal ideal generated by the integer m. 

Example 84 Consider the ring of.integers [I;+;•] and the ring 

[A10;+;•] with the usual operations in IO-arithmetic. For any inte-

ger n EI, n = !Oq+r where q,r EI and O ~ r < 10. Define a from I 

onto_A10 by na = r, where n has the representation just given, for 

any n EI. Then a can be shown to be a homomorphism and a maps I 
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onto A10 since each element in A10 .has at .least one .preimage, Le,, 

Oa. = O, la.= 1, 2a. = 2, .•• , 8a. =.8, and 9a. = 9. The zero,of A10 is 

O so that the kernel.a£ a. is. the .set {lQn:n £I}= N. Theorem.3.24 

asserts that N is an .. ideal. In .fact, N is recagnized as .the princi

pal ideal. generated by .. 10, (10). The cosets in the qµotient ring 

I/(10) can all be represented in the form (lO)+n where. n = 

0, 1, 2, ••• , . 9 •.. The isomorphism asserted in Theorem 3. 24 ·is · the 

mapping S from I/(10) .into.A10 defined.by [(10)+n]f3 = n .for every 

n = O, 1, 2, ..• , 9. 

The . fact that .. the kernel. N of a mapping a. from a, ring R onto a ring 

R' is an ideal in R does not imply that a. is a homomorphism or.that R/N 

is isomorphic to R' • 

Example 85 Considei:: the rings [A12 ;+; ·] and [A4 ;+; •] with . the 

usual operations in 12 and 4-arithmetic, respectively. The subset 

N = {0,6} i~ an ideal in A12, Define a. from A12 onto A4 by Oa. = 

6a. = O, la.= 1, 2a. = 2, and 3a. = 4a. =.Sa.= 7a. = 8a. = 9a. = lOa. = 

lla. = 3. Then the kernel of a. is the ideal Nin A12· a. is riot a 

homomorphism sine~ a. does not preserve the operation1:1 of A12, e;g., 

(2+5)a. = 7a. = 3 while .2a.+5a = 2+3 = .. l so that (2+5)a. r/: 2a.+Sa.. 

A12/N is not isomorphic to A4, eit-her, since A12/Ni~ of order'6 

whil.e A4 is of order 4. 

Polynomial Rings 

Polynomials .,in. one variable with real numbers .as coefficients are 

dealt ·with extensively .in .elementary algebra. Many of the results, deri# 

for these polynomials are special case~ of more general theorems now to. 
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be considered .• 

-Definition 3. 25 .Let Rbe a.ring and let x,..callei;\.an indeterminat~j 

be any symbol not representing an elem~nt of R, A polynomial in-~-~~ 

R is any expression of the form f(x) = aox 0+a1x1+a2x2+··· = Iakxk, 

ak s R in which only a finite number of the ak.'.s, called coefficients, 

are different from z, the zero of R. 

Two polynomials~ f(x) = fakxk and g(x) = Ibkxk, in _x over the ring 

R will be called.equal,. denoted f(x) = g(x), provided ak = bk for all 

1 f k If f ( ) "' k . . . h . h . va ues o -. , . x = L.,akx. is written ·wit out. using. t e summation 

symbol, then only the powers of x having nonzero coefficients will be 

written explicitly. All powers of x not present in such an expansion of 

f(x) implicity have z as coeffici~nt where z is the zero of_R. 

Example 86 Consider the ring [As;+; • ] with the usual . operations 

in 8-arithmetic. f(x) = 7x0+zx 1+3x 5 and g(x) = 7xO+zx1 +4x 5 are 

polynomials in x over Ag since each has only a finite number of 

coefficients different from O, the zero of Ag. f(x) and g(x) are 

not equal since the coefficients of x 5 are not.the same. 

h(x) = 7x0+ox1+2x1+ox2+ox 3+ox4+3x 5+ E Oxi is also a polynomial in x 
i=6 

over As since only a finite-number of the coefficients are different 

from 0. It isl clear that f(x) = h(x) and that the way f(x) is 

written.issimp.ler. and,..hence, the preferred.way of writing this 

polynomial. 

Some polynomials.may be written identically but not be equal because 

the coefficients-are~from different rings • 

Example 87 ... . f (x) == zx0+1xs, where 1, 2 s I, is a polynomial over 
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the ring of integers [I;+;·]. g (x) = 2x 0+1x8, where 1, 2 s A3, is a 

polynomial over the ring [A3 ;+; •] with the usual operations in J-

arithmetic.. f(x) and g(x) are written identically but are not equal 

in the sense defined above since the coefficients are elements of 

different rings • 

Definition 3.26 . Let R[x] denote the set of all polynomials in .x over 

the ring R. Define addition+ and multiplication • on R[x] by f(x)+g(x) 

k k k k 
= E(ak+bk)x and f(x)•g(x):::;: I:ckx, where f(x) = fakx and g(x) = Ebkx 

k 
are elements of R[x] and where ck= ,E 0a,bk .• 

1= 1 -1 

Theorem·3.27 The set of all polynomials, a[x], in x over the ring 

Risa ring with respect to the addition and multiplication defined, in 

Definition 3.26. This ring is called a ring of polynomials in ~~B:. 

or, briefly, a polynomial ring. 

Theorem 3.27 establishes that.addition and multiplication as defined 

on R[x] are binary operations. These operations obviously depend on the 

operations in the ring R. 

Example 88 Let A~[x] represent the ring of polynomials in x 

over the ring [A~;·;o] of Example 49, The zero of AK[x] is the 

polynomial f(x) = Elx since 1 is the zero of [A~;·;o]. Recalling 

that each .element in A~ is its own additive inverse allows one to 

recognize that every polynomial in A~[x] is also self inverse under 

addition. Multiplication of polynomials in At[x] always yields the 

polynomial, f(x) = Elx, since products.in At always yield 1 and 1 

added to itself any number of times is 1 in A~, The ring [A~;·;o] 

is a commutative ring and, hence, so is the ring A~[x]. [A~;·;o] 
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has no unity and.neither does A~[x]. 

Not • all the. properties .,of · a ring R are inherited by the ring of 

polynomials R[x]. •.. Fo,r.exa,mple, the ring [A~;·;o] is a ·finite .ring of 

order .4 while .the ,polynomial :ring A~[x} is. of infinite order. In fact, 

all polynomial. rings :are of .in.finite order .•.. The .. next ,theorem states. one. 

prop~rty which is al,ways inherited by a polynomial ring. 

Thee>rem.3.28 Let R .. be. a ring and let x be -.an indeterminant. Then 

R[x] is a commµtativ.e.ring if .and only if R is a commutativ.e ring. 

In Example .88 it.was.nqted that.both -[A~;·;o] and, A~[x] are commu-

tative rings •. The rin,g [R;+;.•] of Example 71 is noncommutative. One can 

show th.9:t R[x] for. this -ring R is ·,µoncommuta.ti.v:e by computing the pro

duct of·(~ ~Jx and(~ ~Jx in l:,oth o;ders. On-.the other.hand, [AG;+;•] 

with the usual operations in 6-arithmetic is a comtnuta,tive ring and so 

is -the ring A6 [x] of polynomials .in x over A6. 

Some definitions made :for the study; of polynomials over the real 

numbers in. elementai;:-y algebra are _special clil.ses .of definitions. asso.ciated 

with the study of polynomial rings. If Risa ring and·f(x) e: R[x], 

k 
where f (x) = }:akx - ,- .. th~n -the degree £!. f (x) is n and an is t~e leading 

coeff.ic.ient £!. f (x) if an ::f, z, the zero of R, while ak = z for all k > n. 

The polynomial ~zxk e: R[x] is. called the~ polynomial of R[x]. If 

the ring R ha.s a unity u, th~n any polynomial f (x) of· degree ;m over R 

with leading coefficient.u is callecl monic. 

The degree .of each of the polynomials f(x), g(x), and h(x) in 

i 

Example 86 is 5 and their respective leading coeff:l,cients are 3, 4, and 

3. The .polynorQ.ial f(x) of Ex.ample 87 is of. degree 8 and has leading 
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coefficient 1, the unity of the ring [I;+;!], and, hence, f(x) is manic. 

The zero polynomial of the ring A~[x] of Example 88 is nxk while .the 

zero polynomial of the ring Ag[x] of Example 86 is EOxk. 

A result similar to the DivisionAlgorithmfor the ring of integers 

can be established for a ring of polynomials over a ring with unity. The· 

terminology used.will be analogous to that associated~with the Division 

Algorithm for the ring of integers. One may say that one polynomial is 

divided by another obtaining a quotient and remainder., etc. 

Theorem. 3. 29. (Division Algorithm) Let R be a commutative ring 

with unity u, f(x) = ~akxk E R[x] be either the zero polynomial or a 

k polynomial of degree m, and g(x) = Ibkx E R[x] be a manic polynomial of 

degree n, Then there exist unique polynomials q(x),r(x) E R[x] with 

r(x) either the zero polynomial or of degree less than n such that 

f(x) = [q(x)·g(x)]+r(x). 

Example .89 The commutative ring [A10;+;•] with the usual opera-

tions in 10-arithmetic has a unity, 1. Hence, Theorem 3.29 applies 

to the ring of polynomials A1o[x], The zero polynomial of A1o[x] 

is ~Oxk. Let f(x) = 2x0+ix 1+2x2+3x4 and g(x) = 7x0+1x2 • Since 

g(x) is manic, Theorem 3.29 implies that unique polynomials q(x) 

and r(x) exist such that f(x) = [q(x)·g(x)]+r(x) where r(x) = EOxk 

or the degree of r(x) is less than 2, the degree of g(x). Simple. 

division shows that q(x) = lx0+3x2 and r(x) = sx0+ix1 • Notice the 

degree of r(x) is 1 which is less than 2. If h(x) = 3xD+lx1 , then 

f(x) = [s(x)•h(x)]+t(x) wher.e s(x) = 4x0+9x 1+lx2+3x 3 and t(x)= Wxk. 

The polynomial g(x) in Theorem 3.29 must be manic in order for 

unique polynomials q(x) and r(x) to exist satisfying the given conditions. 



82 

Example 90 Consider the polynomials over the ring [A12;+;·] with, 

the usual .operatioris .in_ .12-arithmetic. Then A1:2. [x] is_ a commutative 

ring with -unity. The .. zero polynqmial. is Wxk. If f (x) = 4xD+2x4 

an_d g (x). -"" .. 8xD+2xl, the-q._ f (x) = [h(x) •g(x) ]+Wxk where 

h(x) = 2x0+4x 1+2x2+lx 3 .and f(x) = [k(x)•g(x)]+Wxk where. 

k(x) = 2x 0+4x1+2x2+7x 3• Hence, the representation of f(x) in the_ 

form f(x) = [q(x)~g(x)]+r(x) is not unique where.r(x) is the. zero 

polynomial . or.- is .. o; . degree· less .. than 1, . the degree of g (x) • 

The ring R in-. Theorem 3.29 must ha~e a unity. 

Example,.91 The commutat;:ive ,ring .[A~;~ ;o] of _Example 49 has ._no 

unity. Hence, there are no.manic. polynomials in A~[x}. Still for 

any f(x),g(x) .e:.A~, there exi1:1t q(x),r(x) e: A~ such.that f(x) = 

[q(x)•g(x)]+r.(x). Any polynorilia,1 in A~[x] can.be use.d for q(x) but. 

r (x) will be unique, r (x) = f (x) , Hence, r (x) may, but ne·ed not. 

be, the zero polynomial .or have degree less than g(x). 

If Risa ring with unity, then forf(x) and g(x) as given in. 

Theorem 3.29, there exists unique polynomials 

qR(x),rR(x),q1 (x),r1 (x) e: R[x] with rR(x) and r1 (x) either the.zero_ 

polynomial or .of degree -less __ than the degree_ of g (x) such that 

f(x) = [qR(x)•g(x)]+rR(x) and f(x) = [g(x)•q1 (x)]+r1 (x). Thus, Theorem 

3.29 is a special case of this fact when R is commutative so that 

qR(x)•g(x) = g(x)~qR(x) and, hence,·qR(x) = q1 (x) and rR(x) =-r1 (x). 

Ex~mple 92 Consider the noricommutative .ring of 2X2 matrices over 

2-arithmetic. Let. the ring be denoted- [N;+; ·] where + and • are, 

resp~ctively, ordinary addition and multiplication of matrices.in 



2-arithmetic. The unity of N is (~ ~J. The ring of polynomials 

N[x] is also noncommutative by Theorem 3.28. Let 

f(x) = [~ ~Jxo+(~ ~Jx 3 and g(x) be the monic polynomial 

(~ ~Jxo+(~ OJ 1 1 x O 

qL (x) = (~ 

polynomials such that f(x) = [qR(x)•g(x)]+rR(x) and 
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f(x) = [g(x)•q1 (x)]+r1 (x) where the degree.of rR(x) and of r 1 (x) is 

O which is less than 1, the degree of g(x). Notice that qR(x) :/: 

q1 (x) and rR(x) :/: r 1 (x). 

In algebra, stud,ents learn that if a product of two real numbers is 

zero, then at least one of the factors must be zero. Similarily, pro-

ducts which equal the.zero of a,ring are important in ring theory. Let 

R be a ring with zero z, An element a:/: z of R is called a divisor of 

zero or a zero .. divisor if there exists an element b :f, z of R such that 

ab= z or ba = z. 0-f course, if R is commutative, then ab= z if and 

only if ba = z. 

Example.93 The, ring [A1 o ;+; •] with the usual operations in 10-

arithmetic is a commutative ring with zero element 0. Since 

2•5 = 0, 4·5 = O, 6·5 = O, and 8•5 = 0, the elements 2, 4, 5, 6, 

and 8 are all divisors of zero in A10, 1, 3, 7, and 9 are not. 

divisors of zero since a product of two elements of A10, one of 

which is 1, 3, 7, or .9, wi1l·eq1.1,al O only if O is the other factor. 

Many elements in the noncommutative ring [N;+;•] of Example 92 are 

divisors of zero. . (0 lJ (1 lJ (0 OJ [l OJ (0 OJ (0 OJ Since O O • O O = 0 0 and _l O • 0 1 = 0 0 ' 
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. . . (0 1) (1 1) [l · OJ ( 0 OJ the:zero of N, each pf the elements O O , 0 0 , l·O and lo 1 is a 

divisor .. of ·zero. 

Theorem..: 3. 30 · .If :.R be. a conunuta1;:ive ring without divisors· of .zero, 

then R[xl-is-also, fr.ee .of divisors of ze.ro. 

The prope:i;-ty of being.free.of.divisors of zero is.thus.seen.to be 

another property o:1; a ,ring R inherited by ,R[x.]. He.nee, since the ring 

[A7;+; •] :with the.usuaLoperations in 7-,,arithmetic ... hae; no .divisors of 

zero,. 01,1e .knows. that. the po+ynomU.l ring Adx] also has no divisors of 

zero-•... It .,is, of_ course,, eas,ier .to det.erm:1,ne. if theI"e are. divisors of 

is of infinite order. 

Recall that in the ring [A~;·;o] of Example 49.every element except 

1, the zero o:I; At is ·a divisor of zero. Similarily, every element;: 

except nxk, th~ zero of A~[x] is a divisor of.zero:in the ring A~[x]. 

Some polynomial rings have bot;:h'zero divisors·and elements other than the 

zero polynom:1.al wh;i.ch .are not · zero div.isors •. 

Example- 94 . In Example 93 it was.found that;: 2, 4, 5, 6, and 8 

are.zero-divisors in the ring [A10;+;·] while;l, 3, 5, 7, and 9 are 

nonzero .elements of .. Alo which are not zero di vis.ors. The· poly

nomials .4x5, 5x 3 , zxD+6x8 , and 5x0+5x2 are divisors of zero in 

A1 o [x] since. 4x5 • 5x~ = Wxk and (2x0+6x8 ) • (5x0+5x~) = EOxk, the zero 

polynomial in. A10 [xl. One can. easily show that f (x) = 7xD+zx?. and 

g (x) = ·· .. 6x~+9x8 are ,nonzero polynomials· in A1 o [:x] whic}:i are not 

divisors o:I; zero... g(x) is not a. divis.or of zero since any nonzero 

polynomial of ,degree n multiplied li>y g(x) will.yield a polynomial 
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· h ff· · of ·.Xn+s · 9 · t d · · f wit a nonze.ro coe icient since. is no a ivisor o zero 

in A1 o. A similar type ,of argument can be used to. show that f (x) 

is not a.divisor of zero. 

Euclidean Rings 

Definition 3.31 Let R be a.commutative ring. If it is possible to 

define a (valuatiocy) mapping 8 on.the .set of nonzero elements of R into 

the nonnegative .integers such that: 

(i) for a,b ER, (ab)8 ~ a8 if ab 'f z, the zero of R, and 

(ii) for every a E R and b :# z E R, there exis.t elements q, r E R such 

that a= bq+r.where either r = z or re< b6, 

then R is called a Euclidean ring. 

The ring of integers [I;+;·] is a Euclidean ring since the absolute 

value function is a mapping from I into.the nonnegative integel'.s satis-

fying all the properties of Definition 3.31. Oth,er Euclidean.rings have 

different valuati.on maps, 

Example 95 The ,ring of polynomials As [x] over the ring [As;+;·] 

with the usual operations.in 5-arithmetic is a Euclidean ring. The 

valuation mapping 8 on.the nonzero elements of As[x] is the mapping 

that assigns.to each nonzero polynomial f(x) in A5[x] the integer 

corresponding to ~ts degree, i.e., [f(x)]e = n if the degree of 

f(x) is n. 

If a polynomial ring has zer.o divisors then the degree map will not 

serve as a valuation map. 

Example 96 Consider the polynomial ring A1o[x] over the ring 
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[A-1 o; +; • ] with . the usual . operations · in .,.lQ-ari thme tic. Let; e be de-

fined from the.nonzero elements. of A1o[x] into the nonnegative inte-

gers by.[f(x)]S = n if·n h the degree of f(x). e is not a valuat:ibn 

map for A1o[x] since.(7x0+sx 1)·(2x0) = 4x 0 ,t. EOxk, the zer.o poly

nomial, but (4x0)e = O.< 1 = (7x~+Sx 1)e so that (i) of Definition 

3.31 is not satisfied. 

Finite Euclidean rings .. al$o .exist, Any finite ring in. which every 

nonzer·o element has a multiplicative inverse can .. be shown .to be .a Eu-

clidean ring by a tec.hrtique . s iµlilar to . that used in. the next example • 

Example ,.97 · . The finite ring. [A7;+; ·] with the .usual operations 

in 7-.arithmetic is .a .ring .. in which every nonze:to element has a 

multiplicative .inverse. If ·a map'a. is.defined frQm the nonzero ele-

ments ·of -A7 into [I;+;•.] by aa. = 0 for every a rf, .Q £ .A7, then a is 

a valuation map for A7 • Part (i) of Definition 3.31 is satisfied 

by a since .(ab}a. = .o = aa. if ab r/: Q. Part (ii)· of Definition 3.31 

is also satisfied. since r .i= 0 in all cases .. for the ring A7. Hence, 

[A7;+; •] is a .finite Euclidean ring. 

Every ring. [Am.;+;• l with the usual operations in m-arithmetic, where 

m is an integer greater .. than 1, is a Euclidean ring. If. m is· not a prime, 

then the valuation map for the Euclidean.ring A can be es:tablished·in a 
m 

manner similar to the next example • 

Example98 . . Consider. the ring (A6 ;+; •] with the .usual oper.ations 

in 6-arithmetic. One can.show that.a map.similar to. that defined 

in Example 97 does not work foi; A6 since (ii) of Definition 3. 31 is. 

not-satisfied. Re~alLthat the order.of an.element a,£ A6 is the 
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order .of the additive subgroup of A6 .which is generated·by a. 

Hence,. 0 .is of orde_r 1; 1 and 5 are of order 6; 2 and 4 are of order. 

3; and .. 3 is of-order .. 2. Define the map. S from the nonzero elements 

of A5 into the,,nonnegative .. integers by lS = SS = 1, 2S = 4S = 2, 

and 3S =.3. Notice that aS = :a for each a :f, 0 e: A6 wherena de-

notes the order of the element a e: A5. One can show that Sis ,a 

valuation.map for ~he Euclidean.ring [A5;+;:], e •. g., (3•5)S = 3S = 

3 > 1 = SS and 2 ::;, ~5·4)+0 in A5 so .that q = 4 and r = O. 

The next .two theorenis es_tablish ,some .properties that all Euclidean 

rings possess. 

Theorem 3.32 Every Euclidean.ring.is a principal ideal ring. 

Theorem 3.33 Every Euclideaµ, ring has a unity. 

Example .. 99 As .mentioned. above, the ring of integers [!;+;•] is 

a Euclid~an .ring with the absolute value function as its valuation.· 

map. 'l'he·orem.3.18 es.tablished that·[!;+;•] is a principal ideal 

ring. Notice .also that.l is the unity for I. Hence [I·+·•] ' ,. ' 

satisfies both Theorem.3.32 and Theorem 3.33. 
' ' 

The Euclidean.ring [A7;+;•] of .Example 97 has-1 as its unity. Since 

the only.ideals'in.A7 are .the ideals (Q) = {O} and (1) = A7, A7 is seen 

to satisfy The,arem. 3.32 and Theorem 3.33. 

In Example 98 the ring [A 6 ;+; •] was found . to be Euclidean. Since 

an ideal is a subring and since every subring of A5 is generated by a 

single element of A5, A5 is seen. to be a principal ideal ring. The .unity 

of A5 is 1. 
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Theorem 3. 32 ... is particularly valuable when . considering the . ring 

A5[x] of Example .95. It would be difficult to establish dire_ctly that 

As [x] is a principal ideal .ring .since an .infinite, .number of ideals exist 

in •the :ririg, .i.e •. , . .(~x11) is an .. ideaLfor each nonnegative integer n and 

n ·. m 
(lx ) 'F (lx,) .if ,n .r/: :111 • . By Example 95, As [xl is a Eucl4,,dean ring so th.at 

Theorem 3. 32 .can .be ... used .. to .easily .-e~tablish .that ·.A5[x] is a princi,pal. 

ideal rin~. 

Rings do exist .. satisfying. the conclusion of Th_eorem 3. 32 or Theorem 

3.33 but which are not Euclidean rings •. The.ring,of.all even.integers 

under_ ordinary additioIJ..and .multiplication.of integ~rs.is a principal 

ideal ring but--is ,not acEuclidean ring since-it ha~ .no.unity._ The ring 

of 2X2 mat:i;ices .over. 2,-:,arithmetic is .a ring with _unity_ (10. ·10) but.is not 

a Euc.lidean ring since. the. ring is not. _commutative • 

. .. Noetherian Rings 

Some properties of the set of al_l ideals in a ring R are of interest. 

A ring R is .said to .. satisfy .the. ascendin~ .chain condition for ideals if 

every sequence of ideals N1, N2, N3, ••• in R, such that N1 C N2 C N3 C ···, 

has only a finite .number of distinct terms, 

If ·Risa commutative ring in which.every ideal in R is generated by 

a finite number of elements of R, then.R has the basis. property. A com-

mutative ring which_ has the.basis property.is-called aNoetherian ring. 

~otice _that,. contrary to some definitions, a.Noeth.erian ring does·not 
i 

necessarily have-a unity. Noetherian rings can be characterized in terms 

of the ascending chain condition. 

Theorem3.34 In any commutative ring R the following conditions 
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are equivalent: 

(i) Risa Noetherian ring. 

(ii) R satisfies the ascending chain condition.for ideals. 

(iii) Every nonemptyset .of ideals in R contains at.least one maximal 

ideal, i.e., .one ideal which is not contained in any other proper 

ideal in.the set. 

The .ring of integers [I;+;.~] .is a Noetherian ring with unity 1. 

Subrings of I such as E = {2n:n EI} and S = {6n:n EI} are also Noethe

rian rings but have no unity. Since, by Theorem 3.18, I is a principal 

ideal ring, I is easily seen to. be Noetherian and, hence, to. satisfy (ii) 

and (iii) of ·Theorem 3.34. Since Eand Sare·s4brings of I, they must 

also be Noetherian. Similarily, the finite ring [A 8 ;+;•] with the usual 

operations in 8-arithmetic and its. subrings can be shown to be Noetherian 

and, hence, satisfy (ii) and (iii,) of Theorem 3,34. 

Theorem. 3. 35 . (Hilbert Basis Theorem) If R is any Noetherian ring 

with unity, thenso is the ring of polynomials R[xj, 

The.ring of·integers·[I;..+;•] with,unity_ 1 is.Noeth.erian. Thus, I[x] 

is also Noetherian .and satisfies the.ascending chain-condition and maxi

mal conditi_on of Theorem 3.34. The-unity of I[x] is lx0 • 

If Risa Noetherian ring but has no unity, then R[x] has no unity 

either. 

ExamplelOO The ring [A 12 ;+;·] with the usual operations in 12-

arithmetic is a Noetherian ring with,unity. T = {0,2,4,6,8,10} 

under the operations of. [A12;+; ·] is .a Noetherian ring without unity. 

T[x] is a Noetherian ring since it is a subring of A1 2 [x] which is 
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Noetherian by Theorem 3.35, However, T[x] has no unity since lx0_, 

the unity of Ai 2 [x], is not in T [x] , 



91 

CHAPTER IV 

INTEGRAL DOMAINS AND FIELDS 

Integral Domains 

·Many algebraic structures have two operations, called addition and 

multiplication. Aring is a nonempty setR having two operations, addi

tion and multiplication, such that R is an.additive abelian group, R is 

a multiplica,tive.semigroup,and two distributive.laws relating addition 

and multiplication hold for elements of R.- .Different types of rings such 

as commutative rings --and rings with unity are obtained, as in. Chapter 

III, by imposing various conditions cm the multiplicative semigroup of a 

ring. Rings-satisfying~more than one condition on their multiplicative 

semigroups are considered in.this chapter. 

Topics are .not .considered as extensively in this chapter as in. 

previous chapters. Examples in this chapter illustrate. the conten.t of 

the definitions and theorems as stated.. Systems developed in this and 

previous chapters can be used to show what happens if some.of the hy

potheses.of a theorem are ignored. 

Definition .4 .1 A commutative ring with unity which has no divisors 

of zero.is.called an integral domain. 

Notice that the existence of a unity is asserted in this definition 

of an integral domain; a few authors do not·require an integral domain 

to have a unity. Thus, the ring oLintegers [I;+;•] is an integral 
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domain but the subring [E;+; •] of evetl. .. integers is not an integral domain 

since E does not contain the unity 1 of I. 

Finite .integraL domains also exist. The ring [A7;+; • J with the 

usual operations. in z,-arithmeti~ is. an.·integraL domain whi1le the .ring 

[A5 ;+; •.] with the .usuaLoperat:i,.ons in 6.,-arithmetic is .not. an integral 

domain since A5 contains divisors of zero, i.e., 2•3 = 0 but .2 1: 0 and 

3 ,/: o. 

Theorem 4.2 A commutative ring Rwith unity.is an.integral-domain 

if and only if each equation ab= ac and ba = ca implies b = c, for a in 

R but not the zero of Rand for arbitrary b,c ER. 

Theorem 4.2 is a characterization of an integral domain, Hence, the 

integral do~ains [I;+;•] and· [A7 ;+; •] mentioned above satisfy the only if 

part of: the theorem. The only if part of the theorem can be used. to show 

that a given commutative ,ring with unity is not an.integral domain, 

Example 101 The ring . [A12 ;+; •] with the usual operations in 12.,.. 

arithmetic is a commutative ring with unity. By Theorem 4.2, since 

2•3 = 6 = 2•9 while 3 f: 9, A12 is not an integral domain •. 

A character:i,.zation of when a quotient ring·is.an integral domain.is 

given next. 

Theorem 4.3 Let N be .a proper ideal in a commutative ring R with 

unity. Then the .quoti,ent ring R/N is an integral domain if and only if 

N is a prime ideal in R. 

Example 102 The ring of integers [I;+;·] is an integral domain 

with ideals.N = {3n:n EI} and·M = {8n:n.E I}. By Theorem 3.20, N 
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is a prime ideal·while Mis not a,prime ideal. since 3 is a prime 

whUe 8.is not a.:prime •. Henc.~, by.Theorem.4.3, I/N is iin integral 

domain .while .I/M is .not an integral doma·in. Notice that ·.I/M is a 

commutative.ring-with unity but I/M has divisors of zero, e.g., 

(M+4) .. • (M+2.) =- M. which .is the, .ze·ro- of. I/J:!I. while M+4 . .;. M and M+2 'f M. 

The ring R in_ Th~qrem 4 .• 3. do~s not · hav,e to . be an _in teg_ral ,domain as . 

was .the.case.in.Example 102. 

Example:.103 . ·-··· Conside-r .the :commutati:ve- ring [A12 ;+;·].with the · 

. usual .operations--.in.,12-arithmeti~ •. The .ideals .. A-12, -CZ)., (3), anq 

(O) are the .only. prime ideals in A12 • .(4) and. (6) are the only 

ideals ·in.A12-which.are_,not,prime. A12 a~~ .(0) are .. improper ideals 

in.,A12• A12/-(2) and A12/(3) are, by 'I'heorem,4.3, integral domains 

while A12/.(4) and A1 2/(6) are not integral domains. The quotient 

ring A12/(4) .. is a ·commuta:tive ring with. unity (4)+1 but is-not an 

integral doma_in .since t (4)+2] • [ (4)+21 = (4)+0 = (4L which is -the 

zero of Ai2/ (4) while neither factor .of the product ._is ·equal to_ (4). 

Similar statements are 1:=ru~ for .A12/ (6). 

If _N is an improper ideal in _the ring R~ the~ the double implication 

of, Theorem 4 •. 3 is not true. In Example 103 the ideal: (©) is a prime 

ideal bµt A12/(0).is not an int:egral domailil since A12/(0) is isoI11orphic 

to Ar2 which has divisors of.zero~ 

An integral. domain -D may have multiplicative inverses for only a few 

of its el,.ements. If an elem~nt a.of·an integral.domain D has a multi-: 

plicative inverse in D, then-acis called a µnit. An element li> of.an 

integral -demain P is.e~lledan associate ef a.e: D if b = ca for some 

unit c e: D. 
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Examplel04 The integral domain of integers [I;+;·] has only two 

unit elements, 1 and -1. Hence, an element b E: I is an associate of 

a E: I if and only if b = a orb= -a, the additive inverse of a. 

Every element except zero in the integral domain [A7 ;+; ·] with the 

usual operations in 7-,arithmetic has a multiplicative inverse in A7. 

Hence, all six nonzero elements of A7 are units. Also, every nonzero 

element of A7 is an associate of each of the other nonzero elements while 

O is an associate of itself. 

An element a of an .integral domain D .is .. called a divisor of b E: D 

if there exists an .. element .c E: D such that b = ac. If a is a divisor of 

· b, then a. divides b .and this relationship is denoted a/b. A nonzero ele

ment a .. of an integral ,domain D is called .a. trivial divisor of b E: D if a 

is a unit or: an associate of b. Notice that.in the integral domain 

[A7;+; ~.] mentioned above, every nonzero element.of ,A7 is a trivial divi

sor of every element of A7 including O since each nonzero element is a 

unit. Since O does not divide .,any element of A7, A7 has no nontrivial 

divisors. 

Nontrivial divisors of elemet1.ts in [I;+;·] of Example 104 do exist. 

For example, 2 is a nontrivial divisor of every even integer except 2 

and -2. 

A no,nzero, nonunit element b of an integral domain. D having only 

trivial divisors .is,called a prime. (irreducible element) of D. No ele

ment in A7 is a prime .since .every nonzero element is a unit. On the 

other hand, an infinite number of elements in the integral domain [I;+;·] 

of integers.are prime; e.g., 2, 3, 5,.and 7. Notice that by this defi

nition of prime, -,,,2, .,,.3, -5, and -7 are also primes. 
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Theorem-4.4 Let D be .an integral domain.which is al,so a Euclidean 

ring with valuation.mapping e •. The;n, for.a:/, z,. b.rf, z elements o:e D with 

zero z,(ab).6 ""-ae if .. and Ot?,lyif, bis a unit of P. 

The integ;ral ,domain. [A7 ;+; •] with ;the .usuaL opera.tions in. 7-arith-

.· me tic is a Eucl:{..¢1.ean.ring under the valuation. map a. defiµed · in Example 

97. Since aa = 0 for .any·a :f,.O E A7 an,d since .ab =·OE A7 for a,b E A7 

only if a = 0 or b .= .o, (ab)a ·"" aa for· all a rf, O, b ,,t. O. Hence, Theorem 

4.4 implies that .all the nonzero elements of A7 are units,. which is true 

as noted previously. 

The integral.domain of integers [I;+;•l has the. absolute value func

tion as its valuation mapping. Since lnml "" lnl.~ lml = lnl for n,m E I 

only if··. lml = 1, it follows from Theorem 4.4 that the ,pnly .units of I 

are 1 and · -1. 

If D of Theorem 4.4 is a Euclidean ring which is .not an integral 

domain, then -.the double .implicat:ion of ·the theorem .is not valid~ 

Example 105 .. Let.T = {<a,b>:a,b E A2} where A2 denotes the ring 

[A2;+;•] with .the.usual operatioI).s in 2-arithmetic. '.r is·thus the 

set of all.ordered pairs of elements in A2. If addition and multi-

plicatio11,, .respectively, are defineQ on T .. by· <a,b>+<c,d> =: 

<a+c,b+d> and.<a,b>•<c,_d> = <a~c,b•d> for any a,b,c,d E .A2 where 

th~ operations on the right side of .each equation are those of A2, 

then Tis a commutative ring with unity <l,l>. Define S from the 

nonzero elements.of Tinto tq.e nonnegative integers by <l,l>S = 0 

and <1,0>S = <0,1>8 = 1. Then Tis a Euclidean ring with valuation 

map S. Notice that (<1,0>•<1,0>)S = <1,0>S even though.<1,0> is 

not a unit in T; i.e., <l,O> has no multiplicative inverse in T. 



T, however, is not an integral domain since T has zero divisors, 

e.g., <1,0>•<0,1> = <0,0> while <1,0> 'f, <O,O> and <0,1> # <O,O>. 

Subdomains 
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A subset Hof an integral domain D,.which is.itself an integral 

domain with respect to.the binary ring operations.of D, is called a sub

domain of D. 

Theorem4.5 If Dis an.integral domain with unity u, the subset 

H = fou:n.E I} is contained.in every subdomain of D. 

The integral domains [I;+;•] and [A7 ;+; •] mentioned previously have 

no proper subdomains. For.each of these integral domains, the.subset 

H = {nu:n.E I} is the whole integral domain so that these integral domains 

trivially satisfy Theorem 4.5. A nontrivial example of Theorem 4,5 is 

given next. 

Example 106. . Consider the set .S of all 2X2 matrices over. the .inte.,. 

gers of the form (;b ~J where a,b E I, the integral domain of inte-_ 

gers. One can.show that-the set Sunder the usual matrix addition 

+ and multiplication· is an integral domain with unity(~ ~J. The 

only proper subdomain.of Sis the.domain T .consisting of all matri-

ces of the _form(;:) where a EI, Notice that T = {n(~ ~J :n Er} 

=Hof Theorem 4.5. Since T =Hand Tis a subdomain of S, S satis,,

fies Theorem 4.5. 

The result of repeatedly adding an element of an integral domain to 

itself helps classify integral domains. Let R be a ring with zero z and 
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suppose there exists a positive integer n such that na = z for every 

a c: R. Then the smallest positive integer n such·that na = z for every 

a ER is called the characteristic of R. If no such integer exists, then 

R is said to have characteristic .zero. (If no such integer exists, some 

authors say that R has characteristic infinity.) The characteristic of 

an integral domain D is the. characteristic of the ring D, 

Theorem4.6 The characteristic. of an integral domain is either 

zero or a positive prime integer. 

Both of the integral domains [I;+;•] of integers and [S;+;·] of 

Example 106 have characteristic zero. The characteristic.of the integral 

domain [A7;+; ·] with the usual operations in 7-arithmetic is 7, which is 

a prime. 

Unique Factorization 

Definition 4. 7 Let D be an integral domain and a c: D be any nonzero 

the. ai and bj are prime .elements of D, implies that n = m and each ai, 

1 ::;. i .::::;_ m is an associate of some b,, 1 ::;. j f,_ n and conversely each b, 
J J 

is an associate.of some a,, then we say the unique factorization theorem 
l. 

holds in Dor D has unique factorization. 

The unique.factorization theorem does not hold for all integral 

domains. 

Example 107 Consider the integral domain [S;+;·] of Example 106. 

Notice that (~ !] = (~ ~J • (~ ~J and (~ ~J = (; i) • (-; _tJ. It can 



be shown that each of (~ ~), (; i], and (-; -i) is a prime in 

[S ;+; ·] and that ( ~ ~J is not an associate of (; i] OI'. (-; _i). 
These fact:s are. proved by Steward [21) on page 284. Hence, the 

integral domain [S;+;•] does not have unique.factorization. 
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The work involved in determining, by use of the definitipn, if the 

unique factorizat:ion theorem holds for a.particular integral domain could 

be lengthy. The next .theorem is helpful when it applies. 

Theorem 4.8 Let D be an integral domain which is also a.Euclidean 

ring. Then the unique factorization .theorem holds in D. 

The integral domain[!;+;·] of integers is a Euclidean ring with the 

absolute value function as its valuati.on mapping. Hence, [I;+;•] must 

have uniqu~ factorization by Theorem 4.8. In high school algebra students 

are taught th.at the unique. factorization theorem. holds in I. 

The integral domain [A7 ;+; •] with the usuaL operations in ]-arith-. 

metic is also a.Euclidean ring under the valuation mapping aa = 0 for 

every a,:/: 0 E: A7. He-q.ce, A7 has unique factorization. Notice that A7 

has no.prime elements so A7 vacuously satisfies Definition 4.7. 

Equality or inequality can be established between principal ideals 

in an integral domain by use of the next·theore~. 

Theorem.4.9 Let.J,'f (z) and K 'f (z) be principal ideals in an 

integral domain D with zero z, Then J =Kif and only if their gener~ 

ators are associate elements in D. 

This theorem can, be used to compare .all ideals not. equal to (O) in 

the integral domain [!;+;•] of integers since all ideals in I are 
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principal ideals by Theorem,3,18, Since 18 = 9•2 and neither 9 nor 2 is 

a unit in I, Theorem 4.9 asserts that (18) .'f (9) and (18) 'f (2), On the 

other hand, since .. 6 .. =;;.6•(.,-1) and -1.is a unit in I, (6) = (-6), Theorem 

4.9 is more valuable.when,applying it to less familiar ,integral domains. 

Example 108. Co:g.sider. the integral domain [S;+;·] of Example 106. 

is a unit in S. (; tJ is not a unit in S since it has no multipli-

cative .inverse .in S, Notic~ that (-; -~J • (; i] = [; i) • (-; -~J = 

( 3 -1) . 
-5 3 ' Hence, by Theorem 4.9 the principal ideals generated by 

(; i) and (_; -;J are equal while neither of these ideals is equal. 

to the principal ideal generated by (-;·-~). 

A familiar division property of.the integral domain [I;+;•] of inte-

gers is generalized to any integral.domain by the next theorem, 

Theorem 4.10 Let a, b, and p be elements in an integral domain D 

which is also a principal ideal ring. If P.is a prime element in D such 

that p/ab, then p/a or p/b, 

Example 109 Since the integral domain. [As;+;•] with the usual 

operations.in 5-arithmetic is.a commutative ring without divisors 

of zero, A5[x] is also free of divisors of zero by Theorem 3,30. 

Since A5[x] also has a unity, lx0, and is commutative by Theorem 

3.28, A5[x] is an integral domain. The onlydivisors of 3x0+zxl 

are units .or associates of 3x0+2x 1 so that 3x0+zx1 is a prime in 
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A5[x]. 3x0+zx1 divides the product 4x0+3x 1+3x2 = (2x0+1x1 ) 0 '(,2x0+3x1), 

in fact, 3xO+zx1 = 4(2x0+3x1) so that 3x0+2x 1 divides one of the 

factors. The polynomial 4x0+3x 1 does not divide 4x0+3x 1+3x2 since 

4x0+3xl, 2x0+1x1 , and 2x0+3x1 are.each primes·in.A5[x] and since 

4x0+3x1 does not divide either of these other primes. 

Prime elements and prime ideals are related by the next theorem. 

Theorem 4.11. .If the unique factorization theorem holds in an.inte-

gral domain D, then every prime element in.D generates a prime ideal. 

This theorem applies.to the.integral domain [I;+;•] of integers but 

Theorem 3.18 and Theorem 3.20 together imply even a stronger result. All 

ideals in I are principal and an ideal in I is prime if and only if its 

generator is a prime in I. 

The integral domain A5 [x] of Example 109 is a Euclidean.ring under· 

the degree mapping (see Example 95). By Theorem 4.8, A5[x] has unique 

factorization. Hence, the prime 2x0+1x1 generates a prime ideal in A5[x]. 

Notice that the ideal generated by 4x0 is also a prime ideal in A5[x] 

although (4x0)·(4x0) ~ lxo, the unity of A5[x], so that 4x0 is a unit, 

not a prime in As [x] • 

The greatest common divisor.concept for the ring of integers ~an be 

generalized for any Euclidean ring. 

Definition 4.9 Let R be a Euclidean ring with valuation mapping 8. 

Let a,b,c ER such that b ~ z, the zero of R. Then d ER is called a 

greatest common divisor of a and b if: 

(i) d/a and d/b and 

(ii) whenever c/a and c/b, then c8 ~ de. 
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Example llO Consider the Euclidean ring [T;+;•] of Example 105, 

<1,0> is the greatest comQ1on divisor of <1,0>: and <1,1> since <1,0> 

and <1,1> are the only common divisors in this case and <l,l>S = 

0 < 1 = <l,O>S, Similarily, the greatest commondivisor of <0,1> 

and <1,1> is <0,1>. For the pair of elements <0,1> and <1,0> and 

the pair .of elements <1,1> and <O,O>, <1,1> is the only common 

divisor so that .-,.1,1> is the greatest common div,isor. <1,0> and 

<0,1> are each greatest common divisors of the pair of elements 

<1,1> and <1,1> so that a greatest common divisor.is not unique, 

A greatest common divisor d of t't4o.elements a,b ER, where Risa 

Euclidean ring, can always be written as a linear combination of a and b 

as in the next theorem. This property of a greatest common divisor is 

often stated when R is an integral domain as well as a Euclidean ring, 

Theorem4.10 Let D be an integral domain which is also a Euclidean 

ring and let a E D and nonzero b E D. Let: d be. a greatest common divisor 

of a and b. Then there exist elements x,y E: D suchthat d = ax+by. 

As stated in the paragraph before this theorem, D need only be a 

Euclidean ring in. order for a greatest .common divisor to have the repre

sentation given.in the theorem. One can show that a greatest common 

divisor of two elements of the Euclidean ring [T;+;•] of Example 105 can 

always be represented in the form given in Theorem 4.10 even though 

[T;+; •] is no,t an integral domain. The theorem is, of cc;,urse, valid if 

the additional hypothesis is satisfied. 

Example lll A5[x] is an integral domain by Example 109 and is a 

Euclidean ring under the degree mapping by Example 95. Hence, 
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A5[x]. satisfies.the hypothesis.for.D of Theorem.4.10, 2x0+3x 1 is a 

greatest-common.divisor.of.the polynomials .f(x) = 2x0+3x 1+4x 2+lx 3 

and g(x) = 3x 1+2x2.. One-representation of,2x0+3x 1 satisfying 

Theorem .. -4.10 .. is .. the following:_ 2x0+3x 1= 

. [ (2xq+3xl+4x2.+1x?) -~ix9]+[ (3xl+2x2).~2x 1 ]., _. A manic greatest common 

divisor.of .f(x) and.g(x). is 4x 0+ix 1 and 4x0+1x 1 = 

[ (2x 0+3x1+4x2+lx3) .•2x0]+[ (3x 1+2x2) •lx1]. 

Fields 

Definiti.on 4 .11. .A ,ring.whose nonzero.elem~nts.form an·abelian multi-

plicative.group.is called a field, 

The ring [I;+;,•] .of integers .is·not.a .. field.since-the multiplicative 

inverse,of any integer.other-than 1 and ,,,,Ldoes not exist in I. 

If the _nonzero elements of a ring R. form .. a .multiplicative group, 

then R.is .. called.a.division.ri11g or.shew fiel~.- Notice that a·division 

ring is.a.fieid.only if.multiplicationiscommutative, Hence, a field 

is a special ::type of divi~ion ring • 

Example _112 . The. ring .. [A3 ;+; •] .with the usual. operations in -3-

arithmetic ,is.;a field,. Each .nonzero.element. of A3 is its own multi

plic~tive inverse.,and multiplication is. cc,mmutativ.e. '.Notice that 

A3 is also a division ring, 

Theorem4.12 A field i~ necessa:i;-ilyan integral domain. 

This theorem;formally acknowledges.that;: a .field is a special inte

gral domain .. Some,of·the .examples of integral domains given previously 

are fields. 
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The characteristic of a field Fis the characteristic of.the ring F. 

Since every.field.is an integral domain, Theorem 4.6.can.be stated in 

terms of a fie.ld • 

Theorem-4,13 . . The.characteristic of a.field 0is.either .. zero or a 

positive.prime integer • 

. The .. characteristic of the field [A 3 ;+; •] of Example 112 is the prime . 

integer 3. 

In grade school.arithmetic students.study the set~Q of all numbers 

of the for~ :-where a,b E.!, the setof:integers, and.b .. ;'.O. Addition+ 

a ·c (a •d)+(b •c) a c a•c 
afid multiplication• on,Q are defined by b+d = b•d and b.d = b·d' 

· 1 f a.c h d h . h ·a f h respectl.ve y, or b'd E Q were+ an • on t e rl.g t s1 e o eac equa..-

tion are ordinary addition and multipJ.ica:tion, respectively, in the.ring 

[I;+;·]·of integers. The set Q under these two operations is a field 

known as the field of rational numbers. Q has characteristic_zero 1 

As mentioned above, some of the examples of integral domains given 

previously are fields, The next theorem provid.es an easy way,_ to recog- · 

nize which of those,examples of.integra],.·domains are fields; none of 

those examples of.integral domains which,are Qf infinite order are fields. 

Theorem .. 4 .14 . Every integral domain.having a finite number of 

elements is a field. 

Example .113 .. Let T be the set of .all 2X2 matrices of. the form 

(;b:) where a and.b.are elements of the field [A3;+;•] of Example 

112. .If _addit,ion .+ and mult~plicatic:m • are defined on T as the 

usual matr.ix addition and multiplication· in J.;..arithmetic, then it 
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can be shown. that.[T;+;.•] .is an. integraLdomain •.. Since the order 

.of.Tis 9,..Theorem.4,14 can be.used to.prove that [T;+;•] is a field. 

Hence,. use .. of the-theorem. avoids the .work .. of .finding the· multipli ... 

cative .inverses ... of eac~.of the .elements of T. 

The following .. theorem ... gives another interesting result relating 

integral domains and fields. 

. . : 

Theorem.4~15 ... For_ any integral domain. D-,. .. there exists· a f ielq F 

such that a subset .. F ! . of .F is isomorphic to D.. .(D ill! .saicf to be illlbedded 

in F.) 

The.integral.domain of.integers ... (I;+;•]-can,be .. imbeclded in the 

field Q of . rationaLnumbers. by the . mapping .. 6 from I. intq. Q · def_ined by · 

n . 
ne = l E Q for every n E I. 

The nexi .. exaiµ.ple illustrates that .. any finite. integral _domain D can 

beimbedded in D itself which is known to be a field by Theorem 4.14. 

The example-also gives a more interesting imbedding map. 

Example .114 . The integral domain [A3;+; ·] with the usual operations 

in 3-arithmetic can. be imbedded in the field [A3 ;+; •] ~y the identity 

mapping a.; i.e. , aa. = a for every a e: A3. The integral domain. 

[A3;+;:] can also be imbedded in the_fielc;l [T;+;·] of Example.113. 

(a 0) Define the mapping 13 from A3 _ into T by al3 = 0 a for every a .e: A3. 

Then. 13 is the imbedding map for A3 in T. · 

Any subset S .. of a field F, which is. itself a field with respect to 

the binary op~rations of·F, is called a subfield of .F •. Thu~, the field 

[T;+;-] of _Example.113 has three subfields, namely U""" {(~ ~l e::T}~ 
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V = {(~ ~J :a E A3}, and T itself. 

A subfield F' of a field Fis called a proper subfield of F if 

F' =/: F and F '. 'f {z} , .. the field consisting of the zero of. F only. If a 

field F has no.proper. subfields, then F .is.called.a prime field, Thus, 

V = {[; ~J :a E A3} is a proper subfield of [T;+;•] of Example 113 and T 

is not a.prime field, The field [A3;+;•] of Example 112 is a prime field. 

Theorem .. 4 .16 Let F be a prime field. If F has characteristic 

zero, then Fis isomorphic to the field Q of rational numbers. If the 

characteristic of Fis the prime p, then Fis isomorphic to I/(p), where 

I is .the ring of integers, 

The next example illustrates the second half of Theorem 4.16. 

Example.115 Consider the field [As;+;·] with the usual operations 

in 5-arithmetic. If the disti.nct co sets of I/ (5) are represented 

by (5)+0, (5)+1, (5)+2, (5)+3, and (5)+4, where [I;+;·] is the ring 

of integers, then the mapping a. defined from As into I/ (5) by 

aa.= (5)+a for each a E As is an isomorphism between As and I/(5). 

A result for maximal ideals, similar to that stated in Theorem 4"3 

for prime ideals, is given next. 

Theorem4.17 If N is an ideal in a commutative ring R with unity, 

then the quotient ring R/N is a field if and only if N is a maximal 

ideal in R. 

In Example 102, N is a maximal ideal in I while Mis not a maximal 

ideal. Hence, I/N is a field while.I/Mis not a field. The rings 
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A12/(2) and A12/(3), in Example 103, are fields since (2) and (3) are 

maximal ideals.in A12, Hence,.the quotient rings in.Example 103 which 

are integral domains.are also fields but, recalling Theorem 4.14, this 

is not surprising. 

Polynomials Over a Field 

In this section ideas.introduced in.Chapter III for polynomials in 

an indeterminant .x over a ring Rare extended to polynomials over.a 

field F. 

The reader should review the definitions, theorems, and notation 

introduced for the study of polynomial rings in Chapter III. 

Definition 4 .18 A mapping a from a ring R 

nomial function if there is a polynomial f(x) 

into R is called a~

= Eakxk (only a finite 

number of the ak are nonzero in R) in the polynomial ring R[x] such that, 

for any bi::: R, ba = aob 0+a1b 1+a2b 2+··· = Ea·bk (+ denotes addition in R 
k 

k k and akb means ak•b where· denotes multiplication in R). 

Every polynomial g(x) in the polynomial ring R[x] can be associated 

with a polynomial function.from the ring R into R. The polynomial func-

tion which is associated with the polynomial g(x) s R[x] will be denoted 

g. Hence, the polynomial function f from the ring R into R is the map

ping defined by f(b) = aob 0+a1b 1+a2b2+··· = Eakbk for each bi::: R where 

f(x) = Eakxk s R[x]. 

Some customary simplifying notations will be used in referring to 

polynomials over a field F. In particular, aox 0 will be denoted a 0 , 

a1x 1 will be denoted a1x, and if u is the unity of F, then uxk will be 

k denoted x. Also, ax-b will denote (-b)+ax where-bis the additive 
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inverse of bin F. 

Theorem_4,19 (Remainder .Theorem) Let Fbe a field and let .b E F. 

If f(x),(x-b) E-F[x],the remainder when f(x) is div:ided by x-b is f(b). 

Exampl~zll6 Let f(x) = 2+3x2+4x3.andx,,...2 be polynol!lials in A5[x] 

where [As;+;•] is the field with the usuaL operations in 5-arithmetic. 

Then x-2 = 3+x and f (x). =. [ (2+x+4x2) • (x..,.2) ]+l, -i.e,, the remainder 

when f(x) is divided by x,,...2 is 1, f(2) = 2+[3•(2) 2 ]+[4•(2) 3] = 

2+2+2 = 1 so that f(2) = 1 is the remainder when f(x) is divided by 

x,,...2, 

If Fis a field and f(x),g(x),h(x) E F[x] such tl).at f(x) = g(x)•h(x), 

then g (x) (also .. h.(x)) is a factor of f (x), If a is· an .. element of F such 

that f(a) = z, the zero of F, then a is called a~ of f(x), Hence, 

common terminology is employed for polynomial$ over any field.· 

Theorem-4.20 (Factor Theorem) Let F be a field. If f(x) E F[x] 

and b.E F, then x-b is a factor of f(x) if and only.if bis a zero of. 

f (x), 

In Example 116, x-2 was found to not be a factor of f(x) since the 

remainder is 1 = f(2) ~ 0 when f(x) is divided by x-2. Theorem 4.20 can 

be used to find all factors of degree 1 of any polynomial. 

Example.117 For.the polynomial f(x) =·2+3x~+4x3 E A5[x] discussed 

in Example 116, .f(O) = 2, f(l) = 4, f(2) = 1, f(3) = 2, and f(4) = 1 

so that,f(a) ~ 0 for any a E A5• Hence, f(x) has no zeros and no 

factors.of degree one. Notice that checking whether 1+2x, for 

example, is a factor of f(x) is equivalent to checking if x-2 is a 



108 

factor since 3(1+2x) = 3+x = (-2)+x = x-2 in A5[x],. 

g(x) = 4+2x+x2+x 3+4x4 E A5[x] has one zero, 3, since g(3) = 0 and 

g(x) = f(x)•(2+x). 

Theorem.4.21 Let F.be a field and f(x) EF[xl have degree n > 0 

and.leading coefficient·a. If b1,b2,,,.,bn E F are.n distinct. zeros of 

f(x), then f(x) = a(x-b1)(x-b2)•••(x-bn), 

f(x) in Example 117 is of degree 3 but has no zeros so that f(x) 

cannot.be represented.in the form of.Theorem 4.21, An example of when 

this theoremapplies.is given next, 

Example,118. Consider A11[x] where [A11;+;·] is the field with 

usual.operations in 11-arithmetic, Let f(x) = 2x+9x2+10x3+3x4 . 

f(x) is of degree 4 with leading coefficient 3,. f(O) == O, f(7) = O, 

f(9) = 0, and f(lO)::: 0 so that O, 7, 9, and 10 are 4 distinct zeros 

of f (x) •. Hence, f(x) = 3(x-0) (x-7) (x-9) (x-10). 

In.Example 118, f(x) was of degree 4 and had 4 distinct zeros. Two 

examples of polynomials which have fewer distinct.zeros than their degrees 

are given in Example 117. The next theorem sets a maximum for the number 

of distinct zeros of a polynomial. 

Theorem4.22 Let F be a field. Every polynomial f(x)E F[x] of 

degree n > 0 has at most n distinct zeros in F. 

Example.119 The polynomial h(x) = 2+5x3 E A11[xl of Example 118 

has . at most 3 distinct zeros, However, h(a) i: 0 for l:!-ny a E A11 

except a = 5., Hence, 5 is the only zero, Also k (x) = 10x+x2 has 

at most 2zeros and since k(O) = k(l) = O, Theorem 4.22 implies 
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that no other distinct zeros exist for k(x), 

If.Fis a finite field, then a limit, other than the one given in 

Theorem·4.22, exists fer thenumber of distinct zeros of a polynomial. 

For example, any polynemia.1 in A3[x], where [A3;+; •] is the field with 

usual operations in 3-,,arithmetic, has at most 3 distinct.zeros since only 

3 distinct elements exist in A3, 

The last.theorem considered in this dissertation is particularily 

int~resting because it points up a difference .petween the study of poly

nomials. over a finite field and the study of polynomials over the real 

number field studied in.college algebra. 

Theorem,.4 •. 23 Let f (x) .and g (x) be polynomials over a field F with 

the property . that . f (a)· .. = g (a) for every a E F. If the number of elements 

in F exceeds the degrees of both f(x) and g(x), then necessarily f(x) = 

g(x). 

If f(a) = g(a) for every real number a, where f(x) and g(x) are two 

polynomials over the real field, then f(x) = g(x) which means that the 

coefficients of corresponding powers of x are identical, This is not 

the case for finite fields. 

Examplel20 Let f(x) = 2x and g(x) = 2xs be two polynomials in. 

As [x] where [As;+;·] is the field with the usual operations in 5-

arithmetic. The polynomial f(x) +.g(x) since corresponding coef

ficients are not identical. Notice, however, that f(a) = g(a) for 

every a E As so that the polynomial functions f and·g describe the 

same mapping from As.into As. Theorem 4.23 does not imply that 

f (x) = g (x) . since the degree of, g (x) is 5 which .is the same as the 
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number of elements in A5 •. Using Theorem 4.23, one is assured that 

if h(x) E: A5[x], the degree of h(x) is less than 5, and h(a) = f(a) 

for every a E: A5, then f(x) = h(x), Le,, h(x) = 2x, 



CHAPTER V 

SUMMARY 

In this dissertation, topics in modern algebra were illustrated 

using number theoretic,.systems. The number theoretic systems used in 

examples are discussed in current junio;r and senior high school mathe

matics courses. However, if the reader is not knowledgeable of these 

systems, little time is necessary to develop an understanding sufficient 

to appreciate .the examples. It ,is hoped that these examples will deepen 

·the reader's understanding and appreciation of modern algebra. 

Consideration was given.to the theory of groups, rings, ideals, 

integral domains, and fields, In Chapter I the procedure used by the 

author, the content of .the dissertation,. and.its significance were dis

cussed. In :Chapter II.groups,. subgroups, and homomorphisms and isomor

phisms between groups were considered. Rings, .subrings, ring homomor

phisms and isomorphisms, ideals, and special types of rings were investi

gated in Chapter III. In Chapter IV integral domains, subdomains, and 

fields were considered. Throl,lghout the dissertation, reference was made 

to previously presented definitions, theorems, and examples to avoid 

repetition as well· as to recognize the relatio:nships between the. topics 

discussed. 

The techniques and systems used in thi_s dissertation could be em

ployed to illustrate topics whicl).were excluded but which are found in 

textbooks for introductory modern algebra.as well as topics included in 

111 
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additional modern algebra courses. 

An approach similar to that used by the author might be employed to 

develop refer.ence material for other mathematics courses such as geometry 

and analysis courses. Elementary number theory seems to be particularily 

useful as a source of examples. Barnett [4] expressed his interest in 

the theory of numbers when he quoted from the essay "A Mathematician's 

Apology" by G. }!. Hardy: 

"'the .elementary theory of numbers should be one of the 
very best subjects .for early mathematical·instruction. It 
demands very lit:tle.previous knowledge; its subject matter 
is tangible and familiar; the processes of reasoning which 
it employs are.simple, general and few; an4 it is unique 
among the mathematical sciences in its appeal to natural 
human curiosity •. A month's intelligent instruction in the 
theory of numbers ought .to be twice as instructive, twice 
as useful, and at least ten times as entertaining as the 
same amount of Calculus.for Engineers." 

The author has undoubtedly benefited from the experience of writing 

this dissertation. It.is hoped that others will benefit from reading 

it. 
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