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PREFACE 

In. the pr.ocurement of large or expensive components for a large job 

shop manufacturing facility many factors can arise to prevent on-time 

delivery by subc.ontractors or vendors. Many situations also arise in 

the construction industry in which an expensive, critical item with an 

uncertain delivery time must be procured to meet a fixed production 

schedule. Recognizing the high costs of late delivery and the chance 

that vendors may not be able to meet the specified delivery date, mate

rials management personnel typically specify a delivery date to vendors 

.that is several days or even weeks prior to the actual requirement date. 

This "safety time allowance," or buffer, is used to insure ()n-time de

livery; but the use·of long buffer periods can result in very high hold

ing costs for parts that do arrive on the contracted d~livery, date and 

then must be kept in inventory for long periods before being used. The 

problem approached in, this dissertation is that of determining.the opti

mal safety time allowance to be used in procurement situations where the 

delivery date may be considered as a random variable. Although deveJ

oped for a single-stage procurement situation, the models can-be applied 

in any situation involving uncertain delivery time where the number of 

items needed is fixed and a specific requirement date is known. The 

models developed in this dissertat;ion provide a useful decision aid for 

determining.the proper safety time allowance to use in specifying.the 

delivery date that will minimize the expected total variable cost of 

procurement. 
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The models developed in this dissertation employ a new method for 

dealing with the costs of lateness in delivery which may be useful in 

future research in the field of procurement and inventory theory. In 

particular, the models could be utilized in a vendor rating system that 

would quantify direct costs of uncertainty·in delivery time as well as 

bid prices and cost of quality. They could also be used to evaluate 

alternative expediting strategies. The methodology used could also form 

the basis for the development of models in which both the requirement 

date and the delivery date are random variables. It is the hope of the 

author that the models developed in this dissertation may be utilized in 

future research in this area. 
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velopment Foundation and the Department of Industrial Engineering and 
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CHAPTER I 

INTRODUCTION 

The objective of this research is to develop a new tool to aid in 

arriving at an optimal decision in specifying the delivery date for large 

critical components or subsystems in a large job shop procurement sit~

ation. It involves a new approach for dealing with lateness costs in a 

single-stage inventory model with a fixed order size and probabilistic 

delivery date. 

The Problem 

The problem is to determine the optimal safety time allowance, or 

buffer, between the requirement date for the item being ordered and the 

delivery date when the delivery date is uncertain. The typical pro

curement situation in which this problem arises is when a one-time order 

is being placed for an important subsystem or group of components in a 

large manufacturing job shop or for a construction project. These sub

systems are usually very expensive and/or large, and very high·holding 

.costs are incurred while they are in inventory. ~ut these subsystems 

are also very critical to the project; substantial expediting, resched

uling and other lateness costs are incurred if delivery is made behind 

schedule •. Because many factors may arise which may prevent on-time 

delivery, a buffer period is generally allowed between the date when the 

part is required and the delivery date specified to the subcontractor. 
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A short buffer period would tend .to minimize holding costs, but would 

result in high expediting and lateness costs. A long buffer would mini

mize lateness.costs but would often result in high holding costs. What 

should be the proper buffer. length to minimize the total variable-cost 

of procurement, composed of inventpry carrying costs and lateness costs? 

Examples of the items under consideration might be a special pur

pose computer, a generator with unique specifications, the air con

ditioning equipment for a large building under construction, the leading 

edge of a wing for an experimental aircraft or any made-to-order item. 

In addition to spec.ially built subsystems, the model to be developed can 

be used for any situation in which a single order is being placed to 

procure an expensive critical item or fixed number of items with a 

probabilistic lead time. 

Background of the Research 

It should be noted that this research was stimulated by a real 

world problem discussed with Dr. James E. Shamblin, Associate Professor 

of Industrial Engineering and Management at Oklahoma.State University on 

a consulting visit with a large aircraft manufacturer. One of the 

company's problems was that large amounts of capital were being tied up 

in inventory. For any given project, payment for procured items had to 

be made upon delivery, while income was delayed until work was completed. 

If f(t) represents expenditures for inventory items and g(t) represents 

income, the investment in materials and inventory for any given project 

might be represented by the shaded area in Figure 1. When the size of 

the shaded area is large, this means large amounts of capital are in

vested over extended periods of time. Although there must always be 
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some "work in process" inventory, at first glance it would appear de-

sirable to attempt to minimize this investment because capital is a 

scarce resource that generally must be rationed among the multitudinous 

needs for capital within a large firm. 

$ 

Time 

Figure 1. Typical Relationship Between Expenditures f(t) 
and Income g(t) for a Large Job Shop Project 

One practice resulting in an extended lag between the rises in 

f(t) and g(t) was the practice of ordering large items or subsystems 

with a large "safety time" allowance for delivery. Because of this 

practice, large items were usually arriving two months or more before 

being needed. By cutting this safety time allowance, the shaded area 

could be reduced considerably. But complete elimination of the safety 

time allowance on these items might result in suboptimization for the 

overall project because some items would arrive later than expected. 

The resulting delays and rescheduling of work could incur far greater 

expense than the costs of the static capital investment in inventory. 
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This problem of finding an optimal safety allowance was then pre

sented by Dr. Shamblin in a graduate course·· in inventory theory at 

Oklahoma State University. No papers have previously been written on 

this problem in the literature, as will be discussed shortly. In fact, 

most of the literature to date has dealt with models of retail distribu

tors; and Iglehart (1967) states in a recent survey of inventory theory 

that one ''large area that could stand more work is that of inventory 

installations run in conjunction with production facilities. 111 

The problem defined earlier occurs frequently in any large job 

shop, and similar situations occur often in large construction projects 

where the lead time on certain items is not constant. Common practice 

under these conditions is to add a safety time allowance, determined by 

intuition, to the lead time in placing the order. Because of the furor 

and problems caused when a critical part arrives late, it is probably 

the case that most safety time allowances are much larger than optimal 

in order to assure an "on-time" delivery and, thus, preclude procure

ment personnel from unnecessary embarrassment. An alternative procedure 

might be to use the longest possible lead time as the expected lead 

time. This procurement procedure should certainly result in.on-time 

delivery in most instances, but in so doing the unnecessarily large 

safety time allowances used would tend to inflate costs by tying up 

large amounts of capital and storage space. In the light of increasing 

competition in industry it is increasingly important for firms to uti

lize improved decision aids and cost models of the procurement process 

in order to improve their procurement policies and lower costs. Even 

in situations involvingcost-plus and other large federal contracts, 

the federal government is reducing contract prices when costly 
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inefficiencies are found. 2 The mod~l to be developed should be of con-

siderable value-in improving procurement decisions related to the prob-

lem of determining the optimal buffer period when the delivery date is 

probabilistic. 

Review of the Literature 

At this point it would be helpful to review_the·literature in the 

field of procurement and inventory theory to point out the relationships 

between the research in this dissertation and the work previously done • 

. It would be neither appropriate nor possible to attempt a complete re-

view here. As Veinott (1966) states in his survey article concerning 

the status of mathematical inventory theory,_ "It is naturally impossi.ble 

to summarize the enormous·literatu,re on inventory models. 113 However, a 

definition of the major areas within inventory theory is necessary so 

that the reader will have a perspective of the relationship that this 

research has to the broader field of proc1:1rement and inventory theory. 

-Also, since this research is characterized by a new approach to dealing 

with problems of probabilistic lead time, work in this field will be 

reviewed to illuminate the differences in approach . 

. In analyzing the developments in mathematical inventory theory it 

will be most helpful to refer to the classification of models as used 

by Starr and Miller (1962). The first cl:i,,stinction made-is between 

static (single-stage) ancl dynamic-(multi-stage) problems. "The dis-

tinguishing characteristic of static inventory problems is that only 

. one order is possible. 114 "The def;ining characteristic of dynamic in

ventory problems is that more than one order is possible."5 Within 

each of these classes, further classification is utilized for models of 



situations involving certainty, risk (where the random variables can be 

described with known probability density functions), and uncertainty 

(where the distributions of the random variables are unknown). Within 

this initial six class breakdown further classifi..cations are introduced 

as they appear necessary. Most other authors surveying the inventory 

field also utilize the static-dynamic dichotomy to classify inventory 

models, although some of the leadingworks in the·field denote·the 

single· order class of models as one-stage models as is dol)e in·. the well

known work of Arrow, Karlin and Scarf (1958). 

Tll.e great majority of effort in the·field of inventory theory has 

been directed towards develo~ent of dynamic·or multi-stage models. 

For many years following the pioneering article·of Arrow, Harris and 

Marshak (1951), most of the effort was directed toward single product, 

single·instdlation models. Examples of this type are the well-known 

economic lot size models and the ( S, s) mode ls in which· " •.. · if upon 

review it is discovered that stock on hand plus that on order has fallen 

to. the level x · s;;s, then the amount S-x. is. ordered. 116 According to 

Iglehart (1967), the theory for single product, single installation 

models.is reasonably complete; and since about 1963, " ••• the dominant 

theme in inventory research has been.the·concern with multi.product and 

multi"'.in!;!tallation models. 117 

The particular problem addressed in this dissertation isof the 

single-stage or static type since·only one order is to be placed for 

the item or i,.tems under consideration. Within this framework, two 

variables can take on a probability distribution: . the demand and the 

lead time. In an exhaustive search of the literature several single

stage models involving probabilistic demand were found. Typical 
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examples are the Christmas tree-problem (Starr and Miller, 1962) and the 

newsboy problem (Hanssmann, 1962). 

Regardingthe problem approached in this dissertation, no models 

dealing with a single-stage, variable lead time model were found although 

Starr and Miller (1962) go so far as to specifically define the problem 

within their classification framework. They comment ·that "If there is 

a probability distribution f.or the time· lag, we are really dealing with 

an example-of the static inventory problem under risk. 118 A specific 

model for this class of problem is not developed although they do de-

velop a dynamic model involving a probabilistic·lead time. The model 

they develop deals with the same type of items as the model of this 

dissertation: "frequently of the sort th.at are made to order and, 

hence, often on order. Typically such items are very expensive and, 

further.more, the out-of-stock cost on such an item is likely to be very 

h . h .. 9 1.g • The important distinct:i.on between the dynamic model under risk 

of Starr and Miller (1962) and the static model of this dissertation is 

that the dynamic model assumes the item under consideration has a de-

mand distribution lasting over several periods of t:i.me, i.e., that the 

·item.will be needed over and over againwith a specific probability 

distribution describing the demand. The model developed in this dis-

sertation assumes a one-time need for the item or group of items und~r 

consideration, and a s:i.ngle order is to be placed for these. The model 

to be developed determines the optiID.al safety time allowa.nce to minimize 

costs of lateness and carrying_ charges. Tl:].e multi-stage model of Starr. 

and ~'.1:iller (1962) utilizes queueing theory to find an optimal "reserve" 

or safety stock of items which minimizes the sum of carrying charges and 

out-of-stock costs. · Other authors that have dealt with_- the P.roblem of 
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low volume items with-probabilistic demand over a constant lead time 

include Arrow, Harris and Marschak (1951), Heyvaert and Hunt (1956), and 

Whitin and Youngs (1955). However, no work was found pertaining to the 

single-order procurement situation with variable lead time. 

One article has appeared which dealt specifically with inventory 

control in a job Shop·(Walls, 1966). However, this article described 

a computerized materials management system and.did not address the prob-

lem approachediµ th,;i.s research. 

Perhaps the most distinguishing characteristic of the problem under 

consideratiot;1. is.its assumption of a probabilistic delivery date. A 

survey of the literature produced very, little analytical work dealing 

with the problem of a probabilistic lead time or delivery date. The 

only model of this type found within the texts in inventory theory 

available to the author was the dynamic model just discussed from Starr 

and Miller (1962) •. An· intensive review was also made of papers pul;:,-

lished in Management.Science, _Operations Research, and Production_~ 

Inventory Management, and any. other papers dealing with lead time that 

_came to the attention. of the researcher through bibliography listings, 

. One paper found which dealt with a variable· lead time was by Fukuda 

(1964) in which optimal ordering policies were determined for a dynamic 

inventory.problem where three-different lead times could be·purchased 

at different prices through different modes of transportation, the 

l . . . h 1 . f d 1 · lO east expens1,ve requiring t e ongest time· · or e ivery. A dynamic 

progranuning ap?roach was used to determine the optimum policy as a 

function of the cost parameters, future demand, and stock on hand, 

Earlier papers by Barankin (1961) and others developed dynamic models 

in which a constant lead time was assumed but with.the possibility of 
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an immediate, emergency delivery at a premium cost. In each of these 

papers the problems approached differ from the problem of this disser

tation in that they did.not consider lead time as a random variable. 

Other differences were that they involved dynamic inventory situations 

and stock levels rathet than a single-order job shop situation which is 

analyzed in this dissertation. 

Relationship to Scheduling Algorithms 

During the research and preparation of this dissertation.the author 

interviewed several. individuals in operations research positions in a 

wide variety of United States companies concerning the problem approached. 

in this dissertation. One question that often arose concerned the re-

lationship of the model to be developed to scheduling algorithms such 

as PERT .. In the progress of a large job shop project, a PERT ~odel 

would generally be u,sed to develop the overall project schedule and, in 

so doing, establish the requirement dates for large parts or subsystems 

which are to be procured from outside. the organization .. The procurement 

model to be developed would then be·utilized to determine the proper 

buffer period between the requ,irement date and the delivery date to be 

specified to the vendor or subcontractor. Thus, PERT would establish 

requirement dates; and then the buffer time calculated with the models 

developed in this dissertation would be used in determining.the delivery 

date to be specified to vendors. 

Summary of Analytical Approach 

The iµ.tensive review of tl:ie literature in.the area of procurement 

and inventory theory resulted in a conclusion that the procurement 



problem involving a single order for expensive, critical items with a 

probabilistic lead time or delivery date has not yet been approached 

from.an analytical standppint. In thh <lissertation.the problem will 
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be approached by finding an optimal safety time allowance, or buffer, 

which will minimize the expected variable cost of procurement .. This 

variable cost of procurement is to have.three.components: the·cost of 

inventory value, the cost of storage space, and t~e cost of lateness. 

Delivery date will be defined as a random variable with a p;r,obability 

density function. The expected values of each component cost will be 

found analyticc:1lly, and the sum of these will give the expected total 

variable cost of procurement for a given buffer. Either differentic:1tion 

or a Fibonacci search procedure will be utilized to find that buffer for 

which·. the expected total variable cost is a minimum. 

The development will begin in Chapter II with.definition of the 

·component costs.and parameters to represent important variables. Chap

ters III, IV, and Vwill develop specific models to deal with the prob

lem for each of the following .distributions of delivery date; uniform, 

chi-square, and Poisson. The sensitivity. of the buffer to different 

parameters wiU be discussed in Chapter VI, and techniques are presented 

in Chapter VII which may be helpful to the user in theimplementationof 

the model in practical use. Results will then be summarized in the con

cluding.chapter. 

Cop.tril;>Utions of Re.search to Inventory Field 

In addition to providing a model to aid in procurement decisions 

of the type discussed above,. this dissertation utilizes a new approach 

to solving ;inventory problems which may be·helpful to others doing 



. 11 

research in the procurement area. Rather than relating cost components 

to stock levels or economic lot sizes, all component costs are expressed 

as functions of time. Also, the definition of lateness costs as a con

tinuous, inc;reasing functionof time is a new approach that may be uti

lized in further research. 

In addition to these·contributions, the research of this disser

tation lays the groundwork for further analytical developments which 

would be of considerable significance. This model determines the total 

variable cost of procurement as a function of the variance·in a vendorus 

delivery date. Analytical definition of this cost will allow develop

ment of a vendor rating system which·can reduce each of the important 

factors in procurement to a dollars and cents ratio. Previously vendor 

rating systems have been able to quantify differences in bid price and 

costs of quality but have been inadequate in evaluating costs stemming 

from differences in on-time delivery capability. The model to be de

veloped should enable materials management people to develop a straight

forward vendor rating system which can compare vendors on a strictly 

quantitative basis in all three important areas. 

Other possible extensions of this :i;-esearc::h include application of 

the model to evaluating alternative expediting procedures and to the 

enumeration of specific incentives to be written into construction con

tracts for on-time completion. 
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CHAPTER II 

DEVELOPMENT OF GENERAL.MODEL 

A job shop production system is generally used to manufacture 

· custom-bu:Ut items or low-demand items in small. lot sizes. In the job 

shop manufacturing facility a large volume, both.dollar value and number 

of components, must be fabricated or otherwise-collected and assembled 

into a relatively small num'ber of finished products. Components that 

are comrnon .. to many of the finished products can be economically procured 

with the aid of models which determine the economic order quantity. or 

other models as discussed in Chapter I. This chapter will outline the 

development of a model to aid in procurement of the components which 

are needed oply for the manufacture of a given finished product and, 

thus, must be procured specifically for that particular production run. 

The development will begin with the definition of the relevant points 

in the procurement of such components. 

Definition of the Procurement Process 

The procurement process will be defined as the procedures required 

to provide n~cessary material when needed. Certain dates are of sig

nificance· in t~e pr.ocurement process, such as the requirement date, 

availability date, delivery date, and order date, These "milestones" 

in the·procurement process and the important varia)Jles·of lead time and 

buffer time w:i.11 be defined. in this section and are graphically 

13 
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represented in Figure 2. 

Requirement Date 

As soon as possible after the decision is made to produce a given 

finished product, a schedule :for the manufacture and assembly of the 

product is established which will allow for the completion of the prod

uct by the desired date. The completion date is usually fixed by a c.on

tractual obligation, and the production schedule which c11lows for com

pletion on this date is typically very tight and may leave little or no 

time allowance for delays in deliveryof components or other delays in 

manufacturing. 

Whether the actual scheduling process is accomplished through PERT 

or some other scheduling algorithm, the resulting production schedule 

establishes the requirement date for components or subsystems which must 

be procured from outside the organization. For this procurement model, 

the requirement~ is defined as that date when a component is needed 

in order to maintain the production schedule. If the component is not 

available on the requirement date, then the production schedule is inter

rupted and a new schedule must be ·established and/or additional resources 

must be expended in order t;o bring the project back on the original 

schedule. 

Availability Date 

The availabilitydate for this model is the date at which the pro

cured component has been received, inspected and is ready for the use 

prescribed for it in the production schedule. 
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De 1i very Date 

The delivery ~ for this I11odel is the date at which the component 

is received from the vendor or subcontractor. In order to simplify the 

development of the model, it will be assumed that delivery and availa

bility occur on the same day as is indicated in Figure 3, This will 

likely be the case unless lengthy inspection procedures are required. 

If such procedures are likely to. cause availability date· to follow de-

livery date by a certain number of days, then this inspection time should 

be added to the optimal buffer in specifying the delivery date for the 

component. 

Order Date 

The order date is the date when the order is placed for the com

ponent being procured, and in this model it should precede the delivery 

date by the number of days in the expected lead time. In cases when 

the lead time is known to vary by only one or two days, the maximum lead 

time may be used to determine the order date since the small average in

crease in holding costs incurred by this practice would probably be less 

than the costs of calculations needed to determine the optimal buffer. 

In some cases the lead time is not used to specify an order date, 

.especially in the procurement of comple;&: subsystems and made-to-order 

items, Here the order is generally placed as soon as the requirements 

are known in order to allow as much lead time as possible. Here the 

decision is not "when to place the order'' but rather "when should de

livery be specified." The order is an essential part of the procurement 

process, but its chief importance in this model concerns its effect on 

the delivery date as the uncertainty in delivery date is of primary 
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interest. 

Uncertainty in~~ 2E Delivery Date 

The lead time is defined as that time between the order and de

livery of the component. In many procurement situations the lead time 

can be considered a constant. When "off-the-shelf items" with no trans

portation problems are bein~ procured or when components are being pro

cured from a vendor with a near perfect delivery record, lead time and 

delivery date should be considered a constant and no buffer time is 

needed. 

However, delivery date often varies considerably for a variety of 

reasons. Delays in transportation often contribute to uncertainty in 

delivery, and for the type of components under consideration the vendors 

or subcontract.ors themselves are· often unable to meet delivery schedules • 

. The vendors supplying these expensive or made-to-order parts typically 

manufacture them on rather tight production schedules of their own. 

Production delays and bottlenecks incurred by the vendor result in 

missed delivery dates. In other cases the vendor might have few proj

ects in progress and desire to complete work on a component ahead of 

schedule in order to keep his facilities in operation, to free machines 

for possible new contracts, or for other reasons. In some cases, sched

ules are disrupted by engineering changes which are made while work is 

in progress, These and other c;onditions within the vendor's own pro

duction facilities can easily result in completion of the component 

either before or after his scheduled completion date with resulting 

. changes in the delivery date to the prime contractor. 
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Furthermore, most of the conditions which result in variance in 

delivery can be considered random in nature. For example, a rail ship

ment may be "lost" for a period of days before it ismissed and expe

dited. In other instances it may take less time than expected. A vendor 

may receive a larger number of orders than anticipated during a given 

period causing missed production schedules. Or an unanticipated can

cellation of:work may enable the vendor to complete a component ahead of 

schedule, Engineering changes during production may or may not require 

extensive rework and liaison with the prime contractor. Any of these 

may arise without prior notice and affect the delivery date of the com

ponent. In fact, so many situations may arise that it would seem on-time 

delivery more the exception than the rule when procurement of expensive 

subsystems or made-to-orde-:r components is being considered. Whether the 

situations are felt as acting on lead timeor delivery date, the result 

of both is an uncertain delivery date. Thus, in this model the prime 

focus will be on the effects of variance in delivery date. 

Buff:er Time 

Because·of this general uncertainty in the delivery dates of the 

parts under consideration, most prime contractors utilize a safety time 

allowance between the·requirement date and the availability date which 

they regard as desirable. This safety time allowance will be referred 

to as the buffer. Since availability date is assumed to be the same 

as delivery date, this ~odel will calculate the optimal buffer between 

delivery date and requirement date that will minimize the total expected 

variable·cost of procurement. This relationship is illustrated in 

Figure.3 with the expected delivery date preceding the requirement date 
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by the length of the buffer. As was discussed ~reviously, any difference 

between deiivery and availability dates should be added to the optimal 

buffer time in specify:i,.ng the delivery date with respect to the require

ment date. 

Some general comments should be made concerning the expected be

havior of a model finding .. the optimal buffer time. It is logical that 

the optimal buffer time should increase as the uncertainty of the de

livery date increases. It should also increase as the lateness costs 

that will be :incurred for late delivery increase. The buffer should 

decrease as the components under consideration.incur higher levels of 

holding costs, i.e., as they become more expensive or require more 

storage space. The buffer calculated with the aid of any model should 

agree with these logical considerations. 

The buffer in this model will be expressed mathematically as "ycr" 

as shown in Figure.3 where 

y = a mathematical variable taking on positive real numbers 

a= the standard deviation of the delivery date random variable 

which will be discussed in the next section. 

The buffer is thus a function of the standard deviation of the delivery 

date distribution. The standard deviation of a distribution increases 

with the square root of the variance of the distribution and is thus 

proportional to the uncertainty of the random variable. The use of 

standard deviation as a measure of dispersion is quite·common, e.g., 

the use of three-sigma control limits in quality control. In this 

model as the deli.very date becomes less certain, the standard deviation 

increases; and the buffer time also increases.for a given component. 

Thus, the expression of buffer as "ya" gives this buffer the desired 
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capacity to vary with the uncertainty of delivery date. 

But how many standard deviations should be used in determining the 

optimal buffer? One would expect this to depend upon the relative magni-

tudes of holding and lateness.costs. The positive number·"y" will be 

found as a function of the cost parameters of the model, The buffer will 

be a function of the uncertainty·in delivery and the holding and late-

ness .cost parameters. For probability distributions that will not allow 

solution for an analytical expression for y, a search procedure will be 

applied to find the optimal buffer for a given set of parameters, 

Delivery Date as a Random Variable 

Although it may be distasteful to some in the procurement field to 

discuss delivery date as a random experiment, this approach will be used 

as part of the development of delivery date as a random variable, A 

random experiment is described by Hogg and Craig (1965) as an experiment 

whose outcome cannot be predicted with certainty, but such that the col-

lection of every possible outcome of the experiment can be described 

prior to its performance, In addition, 

If this kind of experiment can be repeated under the same 
sort of conditions, it is called a random experiment, and 
the collection of every possible outcome is called the 
experimental space or the sample space.l 

The uncertainties.inherent in specifying the delivery date for a com-

ponent have just been discussed, and the range of possible delivery 

dates can generally be described as occurring within a defined range of 

dates or sample space. In one sense no two delivery dates will ever be 

influenced by "the same sort of conditions." However, at the time when 

orders are placed (and delivery dates specified), the particular set of 

conditions that will be influencing the vendor during. the delivery date 
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period are either unknown or at best known only in general terms~ e.g., 

it may be known that the vendor will be unusually busy during that time. 

If these factors are unknown then each delivery date is being specified 

under the same sort of conditions, and the delivery date satisfies the 

definition of a random experiment. Even if limited information of a 

general nature is available, all delivery dates specified under a &iven 

general condition satisfy the requirements of a random experiment. For 

example, all delivery dates specified under knowledge that the vendor 

will be unusually busy are being specified under the same sort of con-

ditions. The difference·is that the sample space·for this random experi-

ment may differ from.those·random experiments made under other general 

conditions. Thus, the delivery date in our problem can be considered a 

random experiment. 

The defin,ition of a random variable.is then based on a random 

experiment as.follows. 

Suppose that the outcome of a random experiment can be 
expressed by a single number. Then the sample space A 
can be represented by a set of points on a directed line. 
U we denote the 2outcome by the symbol X, we call X a 
random variable. 

The outcome of the delivery date "experiment"· is the time at which de-

livery actually occurs, and the sample space of this random experiment 

is the collection of all possible times at which· delivery can occur. 

As this sample space can be represented by a set of points on a directed 

line, delivery date can be considered a random variable. The definition 

of delivery date as a random variable is important, for the probability 

of a random variable taking on its different possible outcomes can. be 

described by a probability density function (p. d. f.). 3 Also, the 

mean and variance can be found for most cases where a p. d, f. is known. 
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The assumption of a p. d. f, to describe the occurrence of the delivery 

date will make it possible to find the expected values of cost components 

and to develop a model for the expected cost of procurement. 

Definition of Total Variable Cost 

In defining the total variable cost of procurement the total cost 

will first be defined, and the fixed components eliminated to give the 

total variable cost. The total cost involved in procuring a specific 

component (or single group of components) for a specific production re

quirement is made up of the item cost, order cost, holding costs, and 

lateness costs. 

Total Cost= Item+ Order+ Holding+ Lateness. (2,1) 

Two of these components may be considered as fixed elements of 

total cost in this analysis. Item cost is fixed because the basic cost 

of the components is constant regardless of the delivery date specified, 

. The order cost is fixed also because one and only one order must be 

placed fer the components. 

Elimination of the fixed costs in the procurement process will 

allow the development to concentrate on the costs which can be varied 

by changes in the buffer which._ result in different delivery dates, The 

total variable cost will be composed of holding costs and lateness 

.costs, The traditional holding cost will be broken into two components 

related to the value of the component and to its storage space require

ments. This approach to holding_costs, developed by Shamblin and 

Ferguson (1966), is particularly useful since the traditional definition 

of holding_costs as a function of either space-or value would not be 

valid for many. of the items under consideration. For the unique, 
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specially-built items for which the model will be applied,. little· corre ... 

lation may exist between.size and value. For example, items such as 

compact electronic gear with high cost and comparatively inexpensive, 

bulky fuel tanks .require such a breakdown of holding costs. Lateness 

.costs are those costs incurred because of late delivery or anticipated 

· late delivery of an iteD;l. Some lateness costs 1;1re incurred as the re-

sult of various expediting procedures.taken when the pi;trt appears.to be 

arriving late •. Other lateness costs may pe incurred by production de-

lays, rescheduling and penalties for late completion of the project. 

These canbe expressed most conveniently along with expediting costs.in 

a single cost component, The total variable cost of procurement will 

be defined as the sum of the inventory value cost, the storage space 

cost, and the lateness cost. 

Total Variable Cost;,;: Inventory Value+ Storage Space+ Lateness. (2.2) 

Although_the researcher independently arrived at the need for con-

centrating analysis on only the holding costs and lateness costs, a 

search of the'literature found that other analysts had used similar ap-

preaches when dealing with low-volume items .. Heyvaert and Hunt (1956) 

minimized a total cost function composed of storing costs and costs of 

non-satisfaction. The storing cost was the·" ••• total of all costs.en-

4 gaged to keep one item in store for a time t." The cost of non-

satisfaction was the " ••• total of all co.sts resulting. from the non

satisfaction. of a customer's order. 115 Whitin and Youngs (1955) also 

neglected the traditional ordering cost in.their development. 

The following note is concerned with establishing an 
inventory control policy for items with extremely. low 
demand. In the event that the expected savings in 
ordering cost that would result ;from buying in lots is 
less than tne concomitant increase in carrying charges, 
it is uneconomical to use a lot size ·formula. · In. this 



event it is appropriate to use a system of placing orders 
as units are demanded.6 

Whitin and Youngs proceed to develop an expression for a desired re-

serve of stock by assuming a constant lead time, a Poisson demand for 

units.over the lead time, and minimizing the sum of holding costs and 
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stock-out costs. Although the problem under consideration is different 

and the mathematical expressions for cost components.ineach model could 

not be applied to the other, it is interesting to note the $imilarity 

of approaches to definition of total variable cost, 

Definition of Cost Components and Parameters 

Specific definition of each component of total variable cost in 

terms of industrial parameters follows. The expected values of these 

.components will be found for the inventory value cost and the storage 

space cost .. The procedure·for determining the expected lateness.cost 

will be outlined, and the expected value of this component will be found 

for three different distributions of delivery date in the succeeding 

.chapters. 

Inventory_Value ~ 

This is the cost of inventory on hand due to tied-up capital, 

taxes, instirance, and other cha;rges associated with inventory. value. 

The variable portion of this cost is that which is incurred between·the 

delivery date and the requirement date while the item is being stored 

awaiting use. Since the delivery date is a random variable with a p. 

d. f., its expected value is the mean of the distribution. Because the 

tl).ean is positioned YCJ days before the requirement date, the expected 

time of delivery is YCJ days before the requirement date. Therefore, the 
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expected time the component will be in inventory is ya days. 

Inventory value cost is a function of the component's yalue, the 

expected time in inventory, and a constant representing the cost of 

capital, taxes, insurance, and other charges that are proportional to 

the value of inventory. The expected value of inventory·value cost can 

be expressed mathematically as 

Inventory Value Cost = V [ 3!5] ya (2.3) 

where 

V the value of the component in dollars. 

p = a.decimal representing the company's annual cost of capital, 

the annual tax rate and insurance rate per dollar of inventory, 

and any other charges that can be expressed as a fraction of 

the value of inventory. 

Y<:J = the expected number of days the component will be in inventory. 

Storage Space Cost 

This is the cost of Ji>roviding storage space·for the part under con

sideration. This cost component may or may not be large with respect to 

the other two components of variable cost depending upon the size of 

the item and the quality of storage space required. If high cost stor

age space such as a sterile, dust-tree environment is required, the 

storage costs may be the largest component of total variable cost. The 

expected cost of storage space for a given delivery date can be deter

mined in a manner similar to the inventory value cost component. 

Storage space cost is a function of the size of the component, the 
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·,..:,·\ .. 
cost per unit of time f-0r the space·required and the expected time in 

· .... , 
storage .. The expected valu~ of storage space-cost will be expressed as 

\ 

Storage Space Cost• w[3~] ya (2.4) 

where 

W = the number of units of storage space required by t_he component. 

Ch= the cost per year of providing and maintaining.one unit of 

st .. orage space. 

ycr = the expected number of days the component will bein inventory • 

. Lateness Costs 

'l'hh topic will be coverecl in greater detail since no analytical 

work.of this nature regarding. lateness costs has been published previ-

ously. Lateness costs are incurred.due to a particular status of a 

com_panent in the procureu,ient eye le.;. If a component does net arrive by 

a certain time,_communications withthe vendor are initiated at extra 

cost to determine the status-of parts an order. If it appears special 

trans_portation and/or handling ar~ needed to assure delivery by the re-

quirement date, these·costs are incurred as a means of expediting. parts 

to av_oid schedule disruptions. If com.ponents are not delivered by the 

requirement daie, as sometimes will be the case, costly delays in pro-

duction are incurred necessitating rescheduling of the project. These 

-costs will depend primarily upon the amount of• "slack" in the production 

schedule, the degr~e · of urge.ncy of need for the part and the penalties 

:connected. with. lqte completj.on. If the part is so critical to. the 

·project schedule-that work ~ust stop pending its delivery and large 



numbers of men are idled, the lateness costs can become of tremendous 

magnitude. 
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Because the lateness cost incurred for a given component depends 

upon the date that it is delivered, lateness costs should be considered 

as a function over time. An extensive literature search failed to. re

veal any treatment of lateness costs as a function of time, and this 

assumption marks a new approach.to deali,ngwith problems of lateness in 

the procurement process. The related problem of costs of obsolescence 

due to spoilage or cancellationof demand have been defined as functions 

of time by Grassi and Gradwohl (1959) and others. However, these analy

ses involve relating costs of obsolescence to economic order quantity 

and solution for an EOQ. Here the lateness costs, which increase with 

time, must be related to the length of the buffer in order to determine 

that optimum buffer for which the expected total variable cost is a 

minimum. 

The form of the lateness cost function should depend upon how early 

in the procurement process.expediting costs are incurred and upon how 

critical on-time delivery is to the production schedule. One would 

expect the expediting and procurement policies of various firms to be 

different. However, it will be assutned that added expediting costs are 

incurred if delivery is not made by a certain date. This date may either 

precede or follow the expected delivery date, and for convenience in 

construction of the model it will be considered as "dcr" days before the 

requirement date as shown in Figure.4. The assumption that expediting 

procedures will start and the first lateness costs will be incurred 

"dcr" days before the requirement date also agrees with the logic that 

firms would start expediting procedures earlier on items with large 



Lateness 
Cost 

C(x) = Kxm 

2500 . 

2000 

1500 

1000 

500 

($) 

DATE WHEN 
EXPEDITING 
PROCEDURES 

START IF 
DELIVERY 
HAS NOT 
OCCURRED 

0 

. REQUIREMENT 
DATE 

m= 
K= 

3 
2 

c -r- 2000 I 

10 

c r 

I 
I 

c r 

I 
I 

I 
I 

l 

I m .:=r 
K= 

c = r 

2 
8 
800 

,--
_,,, m=1 

15 

K = 30 
C = 300 r· 

r--- dcr = 10 days ~ 

Date Delivery Is Made--X (Time) 

Figure 4. Lateness Cost c;(x) as a Function of Delivery Date 

29 



30 

uncertainty (a) in delivery than on.items with a more reliable delivery. 

After the first delivery date on which-lateness costs are incurred, 

delivery an subsequent dates would incur higher and higher lateness 

costs. Let C(x) represent the total hteness costs incµrred by a part 

if it arrives at time x (any given delivery date). Thus, C(x) at any 

point xis the summation of aH lateness.costs ~ccumulated up to and 

including time :x:. 

'X 

. C(x) = J (All lateness costs) dt. 
0 

(2.5) 

If costs of lateness were aoonstantA dollars per day qeginnirtg da days 

before the require~ent date at a paint designated as zero, t_hen 

C(x) = :t Adt - At ,: = Ax, x ;;-;: o. (2.6) 

If each day's•lateness costs increased linear1~·at a-rate B.dollars per 

day ab.ave the previous. day I s; c;:asts, tq.en 

C(x).=1 Bt dt =E~_2 ,,x = ~ x 2 , x ;;f.()~-
o •O 

(2. 7) 

In general, _the cumulative costs of lateness can.be represented by a 

function C(x) that represents the-costs of lateness incurred if a com-

ponent is delivered an day x. The general.form may be-expressed as 

C(x) m = Kx for.:x::.::: 0 
(2.8) 

= 0 . fer, x < ·-~. 



where 

K = a scaling constant in dollars per day 

x = the delivery time 

m exponent determining the rate of increase of lateness costs 
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with time; mis allowed to take on integer values 1, 2, and 3. 

Note that the point x = O.is defined to be d<J days prior to·the. require

ment date. The delivery date ·or time· of delivery X has been defined .. to 

be a random variable, and in succeeding chapters different probability 

distributions will be assumed to describe the behavior of the random 

variable X. The expected value of C(x) will then be found for each 

assumption of the delivery date dis.tribution. 

Some discus·sion of the parameters m and K may be helpful for those 

attempting to apply this model. l'hese·parame-ters determine the shape 

of the lateness cost function, and manipulation of Kand mallows a 

great deal of flexibility in defining a lateness cost function to ap

proximate the costs of a given procurement situation. A general comment 

concerning_the shape-of C(x) is that it is.composed of two basic parts: 

(a) the amount and timing of expediting costs incurred to assure delivery 

. on or prior to the requirement date, and (b) the magnitudes of cost in

curred if delivery is late. If there is slack in the production sched

ule, rescheduling is not of great expense and added costs are expected 

to be incurred at a. linear rate, then a power of m = 1 should be used. 

If expediting costs which.enable delivery prior to the requirement date 

are considerably lower than tl).ecosts of rescheduling and delays-for 

late delivery, a power of m = 2 might be used. If the costs of late

ness become very high when delivery is .not .made by the requirement date, 

. a power of m =-3 would be more appl;'opriate. The exponent m should be 
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chosen such that the lateness cost function "fits" a plot of points of 

lateness cost incurred at different delivery dates. It must also give 

a good representation of the costs that will be incurred if delivery 

takes place following the requirement date. If enough data is available, 

regression analysis might be used to determine m and other parameters; 

however, a subjective evaluation will probably be required to determine 

the value form. Cost functions for different values of m and Kare 

plotted in Figure 4. The case of m = 0 is discussed in Appendix F. 

The parameters d and K may be determined more readily. If the 

number of days prior to the requirement date that expediting procedures 

are begun is known, then d can be found by dividing cr into this number. 

Methods for determining cr will be discussed in subsequent chapters. In 

many cases K may easily be determined from knowing. t4e dollar amount of 

lateness costs that will be incurred if delivery is made·on the require-

ment date. This dollar amount is associated with a delivery date that 

is dcr days after expediting was first instigated. Since any point on 

the lateness cost function. C(x) is expressed as Kxm, for x = dcr the 

dollar amount of lateness co-st C(dcr) would be K(dcr )m. The parameter K 

can thus be expressed as 

c .,r 
K - ------m 

(dcr) 
(2. 9) 

where Kand mare defined as previously, 

C = the dollar amount of expediting cost that will be incurred 
r I 

i ) ' ! ' 

if delivery is not made until requirement date. 

dcr = the value of x at the requirement date. 

The point on C(x) that gives C is illustrated graphically in Figure 4. 
r 



33 

If PERT is used to determine the overall project schedule, the 

costs of delays due to delivery date after the requirement date may be 

found through time-cost trade-off calculations. Lt would first be 

necessary to determine the added costs to complete in a shorter time 

the remaining activities following the event where the component being 

procured is required. Then,. if the component arrives one day past the 

requirement date, one day will have to :be "made up" from the remaining 

schedule of activities; and the added lateness cost is the time-cost 

trade-off for a savings of one day. Jf it is two days late, two days 

must be made up, etc. Data for these time-cost trade-off calculations 

are generally available if PERT is being used to schedule the project" 

This and the other methods discussed for evaluating the parameters are 

not meant as the only means; they are included as suggestions and to 

give the reader a feel for the real-world meaning of the parameters" 

With the lateness cost function and p. d. f" of delivery date 

defined, the expected value of lateness cost can be determined" The 

expediting strategy has been defined such that the first lateness costs 

are incurred at time t = 0 which is dcr. days before the requirement date. 

as in Figure 4. Now introduce a change of variable such that the re

quirement date becomes the origin. 

C(x) = Kxm for x :.::o 

0 for x <oo 

Let t = x dcr at x = dcr, t ::: 0 

x = t + dcr at x = 0 t = · -clcr. ' 

Then C(t) = K(t+ dcr)m for t :.::-dcr (2ol0) 

= 0 for t <-d"'. 
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This lateness cost function C(t) gives the cost incurred if a component 

is delivered at time t. The new origin is illustrated in Figure 5. 

Next, assume that a p. d. f. for the delivery date distribution 

has been specified and adjusted such that its zero reference point is 

also the requirement date as shown in Figure 5. This can easily be 

accomplished by letting T be a function of X. Since a function of a 

random variable is itself a random variable, Tis a random variable. 

The p. d. f. of the random variable T gives the probability that de-

livery will occur at any time t. The expected lateness cost can be 

found by multiplying the cost of lateness incurred if delivery is at 

time t times the probability that delivery occurs at time t and 

integrating this product over the sample space oft. 

where 

E(LC) = 5 C(t) • f(t) dt 

T 

C(t) = the lateness cost function 

(2.11) 

f(t) = the p. d. f. of the random variable delivery date. 

Substituting C(t) from (2.10) and establishing the proper limits on 

the integrals gives 

-do ro 

E(LC) = s O • f(t) dt + K(t+do)m O f(t) dt. 
-oo -dcr 

(2.12) 

Since the first part of this expression will be zero for any p. d. f. 

of delivery date, the expected lateness cost reduces to 

E(LC) 
ro 

S K(t+do)m • f(t) dt. 
-do 

(2.13) 
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Although this development has involved continuous cost functions and 

assl.lllled a continuous p. d. f. for delivery date, an equivalent expres-

sion involving a discrete cost functiop can be developed for the case of 

a discrete p. d. f. for the delivery date. 

Summary 

To summarize this chapter, the e;icpected value-of total variable 

cost, hereafter r,eferred to as TVC, can be found for any'distribution 

of delivery date as 

TVC 

where 

V.= the value of the component in dollars 

P = a 'decimal fraction representing the annual cost of 

capital,_taxes apd insurance on.inventory value, etc. 

w = the number of storage space units required 

ch ::::; the annual c9st; of one unit of storage $pace 

ycr = the expected number of days the component will be in 

storage-prior to the requirement date <the buffer) 

dcr ::::; the number of days prior to requirement date that 

expediting procedures begin.if the component has not 

arrived 

K = a scaling constant 

m = the exponent of lateness cost 

t = the time at which . the co~ponent is delivered 

f(t) = t;he probability of delivery at time t. 



In Chapters III, IV, and V, the uniform, chi-square and Poisson 

distributions respectively will be assumed. for deUvery date. The 

expected lateness cost will be derived for each case, and the total 

variable· cost found .. in. terms of the cost parameters. Methods for 

solving.for an optimal buffer using. the .models developed will pe out-

lined, and e~a~ple problems formulated to !llustrate the solution 

process. 
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The uniform, chi-square and Poisson distributions are well-known, 

.and proofs concerning their p. d. f.'s may :be found in Hogg and Craig 

(1965). or any ot;\"1.er good text on mathematical statistics. For this 

. reason the p •. d •. f. 's will be stated wiihout detailed proofs as will 

be the formulae· for their means and variances. Emphasis will 1Je placed 

.on. the assumptions necessary to justify. use of a particular l;'rol;>ability 

distribution to describe. the delive:r;-y date random variable. 
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CHAPTER III 

UNIFORM DISTRIBUTION OF DELIVERY DATE 

In this chapter a uniform distribution will be assUU1ed to describe 

the probability of occurrence of the delivery date~. The expected value 

of tl:).e lateness cost component of TVC will be derived. An optimal value 

of the decision variable ywill be determined in terms of the cost 

parameters defined in Chapter II. The results.will thenbe interpreted 

with the aid of a sample problem. 

Assumption of Uniform Distribution 

Suppose it is reasonable to assume that the random variable de

livery date can. take·on any value within a certain range from a to band 

that the probability of the delivery date occurring at any time within 

this interval is proportional to the length of the interval. In other 

words, the probability that tl}e delivery date takes on a value of x 

within the interval (a, b) is uniform and becomes less as the length of 

(a, b) is enlarged. The length of (a, b) may be determined from past 

experience with the vendor under consideration or may be a subjective 

evaluation of the range of delivery deemed possible in the procurement 

of a particular component~ The greater the uncertainty, the larger 

should be the interval (a, b). 

If a uniform.distribution of delivery date is assumed, then the 

distribution of delivery,date could be graphically represented as in 

39 
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Figure 6. Once the delivery date is specified to the vendor, this date 

becomes the expected value of the delivery date random variable. The 

real world interpretation of this statement is that once the delivery 

date is contractually specified, it is assumed that actual delivery 

will take place within the time span frortl a to b, where a and bare 

equally distant from the contracted delivery date. 

EXPECTED 
f(x) DELIVERY 

DATE 

--L 
b~a I 

a µ b 

x (Time) 

Figure 6. Uniform Distribution of Delivery Date 

Under these assumptions the p. d. f. of the random variable de-

livery date may be written as developed in Hogg and Craig (1965). 

f(x) = _l_ 
b-a 

for a .~ x S: b 

= 0 · elsewhere. 

The mean and standard deviation of this distribution are 

IJ = b ... a and cr = E.:!. • 
2 Iii 

(3.1) 

(3.2) 
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l'hus, both the mean and the standard deviation are proportional to the 

length of the interval (a, b) in wllich the actual delivery date is ex-

pected to occur with uniform probability. It is also of interest to 

note that the ].ength of (a, b). is 2 µ and that µ is located at the mid-

point of (a, b) due to the symmetry. of the distribution. 

Jf a = 0, then b ,;,_ 2 µ where b is now the length of the interval 

in which delivery is expected to occur. For a = 0, equations (3.1) and 

(3.2) may be written. 

1 
f(x) = b for o.:s:x:s:. 2·µ·. 

' . ; --. 
(3 .3) 

b .µ = 2 and b 
(J = --

Jif 
(3,4) 

The buffer (ycr) has b~en defined as the time between the expected de-. 

livery date and the requirement date. The relationships between the 

interval (0, b), the expected delivery dateµ, the buffer ycr, and the 

requirement date can be expressed graphically as.in Figure 7. 

f(x) 

1/b 

0 

1,..- µ Days 

EXPECTED 
DELIVERY 

DATE 

REQUIREMENT 
DATE 

I 

--.+-- ye Days +µ-ye ~ 
· j.- µ Days -.I 

x 

· Figure 7. Procurement }1:ilestones and the Uniform Delivery 
Date Distribution 

•'. .-: . ·.,_'(" . .. 
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DevelQpment of F.;xpect~d Lateness Cost 

Tb,e first step in finding the expected lateness-cost component of 

TVC is to develop expressions for the probability of delivery and cost 

of deliv~ry.in terms of the random variable T that has a value of zero 

at the ?"eqi.iirement date. This will permit multiplication of a lateness 
; 

.cost ~t time t by the probabUity of its qeing incurred, and. integration 

over all possible delivery dates. will give the expected value of· lateness 

cost • 

. Firs.t a change of variable will be introduced to :move the arbitrary 

zero reference: _point on the p. d. f. of deli very date to coincide with 

-therequirement date. Let 

t ·- x- (µ+ycr) at x = 0, t = -µ-yc, 

x = t-iµ+ya x = µ, t = -y(J 

dx = dt x = µ+yo t = 0 

x = 2 µ t = µ-ya 

and f(t) = ! for -µ-ya :$:·.t's::µ_; ~ YrJ (3.5) 
b 

= 0 elsewhere. 

The effect of this change of variable operation is merely to ''shift" 

the origin as is illustrated. in. Figure 8. 

The lateness.cost function G(t),has also been defined.with the 

arbitrary zero. reference ,Point coinciding with the requ;Lrement date in 

(2,10) .. Both the probal>ility that de~ivery date occurs at time t and 

the lateness costs.incurred for delivery qt time t have now been.defined 

.. in terms· of functions of the same· random variable T with their c;,r~gins 

at t~e requirement date. The compatible equations (2,10). for C(t) and 



f(t) ::;:: l 

b\ 
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DELIVERY 

DATE 

REQUIREMENT 
DATE 
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C(t) = K(t:+dO')m 

. -dO' 0 

Figure 8. Uni:form Delivery Date Distributi.on and Lateness 
Co~t Function 
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(3 .5) fol!' f(t) aJ;'e sho"1n in Figure 8 for a vdue pf m = 2. Equation 

(2.t2) may now be ~mployed to find the expected value of lateness cost. 

Since the region of positive probability for f(t) is the interval 

(-µ-ye1, µ·ya) equation (2.12) takes the form 

E(LC) = 
·da 1 µ-ya 1 J O•bdt+J K(t+dcr)m•bdt. 

·µ-ya -dcr 

This reduces to 

K µJ-ycr m 
E(LC) = b (t+dcr) dt. 

-dcr . 
(3.6) 

Parenthetically it should be noted that the point -µ-ycr must be less 

than t::he point .. da in order for equationi, (3.5) and (3,6) to hold, that 

is, 

-µ-;ycr< -da. (3. 7) 

The de(inition of C(t) is such that this inequality should always be 

satisfied. It would not be reasonable to incur lateness costs on a de-

livery date occurring pr:i,or to the interval of positive probability. 

According to the ass1.1tnption of a un:i,form distribution, any delivery prior 

to the interval of positive probabi,lity has a probability of zero. Note 

also frolll Figure 8 that ;y may be greater or less than d, but both are 

positive real numbers, We shall not allow y to take on negative values, 

for it h ass1.1tned that man,agement would never set a delivery date later 

than the requiremept date for the part. 

ln order to facilitate the integration of equation (3.6), a change 
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of variable will be introduceq. Let 

w = t+da at t ::;; -da , w = O 

dw = dt t = µ-ya, w = µ+a(d-y). 

Then 
K µ+a(d-y) m K ~wm+l~· lµ+a(d-y) 

E (LC) = ""'. f w dw = - -· b O b m+l 
0 . 

K f. . \I m+l = b(m+l) ~+a(d-y)J • (3.8) 

Utilizing equation (3.4) forµ and a, equation (3.8) reduces to this 

expression for the expected lateness cost: 

K [ ··~1m+l m+l 
E; (LC) = l>(lll+l) Ji2J [},- (d+/j~ , y !:. (d+ J1). (3.9) 

The requirement y is. (d+ /f) is established because for y> d+~:,,'-;lle· prqba-

bility of incut'ring any. lateness cost is zero resuiting in ze-ro lateness 

cost. 

Del;'ivation of Expressions for y and TVC 

E;xpressions for optimal values of yin terms of the cost parameters 

will now be derived for lateness cost exponents m = 1, 2, and 3. First, 

the exl;'ected lateness cost component of TVC will be found to complete 

the expl;'esaion for TVC.developed i11 Chapter II. As most emphasis in 

this sect;i.Qn will be .with. lateness costs, the expression for TVC will be 

simplified by defining.one paramete~ to replace the four holding cost 
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parameters of equation (2.14). Let 

H = 
VP+w~ 

365 
(3.10) 

where H now represents the total daily holding costs which are composed 

of an inventory valµe cost and a storage space cost. The expression for 

the e~pected value of TVC may now be written as a function of y using 

equatipn (3,9) as the expected lateness cost component and equation 

( 3 • 4 ) for cr • 

b K f- -b lm+l m+l 
TVC (y) = (ll) Jjj y + b (m+l) L Ju [!- ( d+h ~ , o s; y s;:a+./3. (3.11) 

'I,'hedefinition of the interval 

(3.12) 

includes the feasible values y may a~sume for the case involving a uni-

form p. d, f. of delivery date. Values of y<O are ·stricfty pr'~hfbited 

since they give a· ''negative buffer" meaning th.at the contracted delivery 

date would be timed to follow the requirement date by ycr days. Values 

of y >dif3 are not; desirable for a uniform distribution of delivery date 

since they result in buffers so large that there is no probability of 

incurring lateness costs, as shown in Figure 9. The optimal values of 

y form= 1, 2, 3 all satisfy the requirement ys;dW, but negative 

valQ,s of y are computationally poss;i..ble as optimum values of y. The 

reason for this is that a continuous function of TVC must be assumed in 

order to take the derivative. When the critical point(s) thus found lie 

outside the required range of y, a special interpretation is necessary. 

The occurrence of negative values of y will be discussed in detail for 
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Figure 9. Position of Uniform Delivery Date Distribution and Lateness 
Cost Funcl:ion When y > d+ ,J'J'° 
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the case of m = i. Similar di.scussions.for m = 2 and 3 are omitted to 

avoid fedundancy. 

In solving for optimal (least cost) expressions for y the first 

derivative TVC'(y) will be employed to determine tbe critical value or 

valµes of TVC, The second derivative TVC"(y) will be used to establish 

the critical point as a m:i.nimutl).. After deriving an optimal expressi,on 

for yin terms of the cost parameters, this expression will then be 

utilized to obtain an equation for optimal TVC. Sample problems follow 

this section, 

Optimal Buffer form= 1 

For lateness cost exponent m·= 1, equations (3.9) and (3.11) become 

Kb [ . ~'1· 2 E (LC) = 24 y- (dtt3 ~ (3.13) 

(3.14) 

Equation (3.14) is valid only for yin the interval (0, d+/3). However, 

as stated previously continuity of TVC .over the range (-oo, oo) will be 

assmned to permit the derivative. If the resulting critical points do 

not lie in the interval defined by equation (3,12), they will still be 

hidpful in indicating the proper optimal value (:)f y. The first and 

second derivatives of TVC with. respect toy are 

~VC' (y) = bH + Kb 
ffi 12 

[y-(d+/3~ p.15) 

TVC"(y) Kb (3.16) =-.12. 
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Since TVC"(y) is positive for all values of y, the extremum defined by 

solving TVC'(y) = 0 for y isa minimum. This value of y resulting in a 

minimum TVC is found as 

bH + Kb [Y- (difJ)l = O 
/jj 12 ~ 

.P. Ju y-(d+v.,:,).= - - R . K 

y* = d+./,j - 'P H y~ o. (3.17) 

Equation (3.17) will result in y:s:d+'3 for all vdues of Kand H; thus, 

values above the interval (O, d+/3) are of no concern. However, equa-

tion (3.17) will give negative values for y when holding costs per day 

are substantially higher tha:n the daily increase in lateness costs, i,e., 

when 

d+/3 
· H >K(I:': ) • 

. -112 
(3.18) 

Although this condition should not often occur, it is of interest and 

de~erves comment. The situation resulting in negative values for 

optimal y is illustrated in Figure 1,.0. . Holding costs, lateness costs 

and TVC are plotted as continuous.· funct;:ions of y from equation p .14) 

just as they are ''seen" in the process of taking the first derivative, 

setting it equal to zero, and solving for the value of y which minimizes 

TVC. It inequality (3.18) holds, then the holding.costs are so high 

that the mini,mum point on the TVC curve lies to the left of th~ origin. 

In this situation equation p.17) gives a negative value of y since it 

was derived by setting TVC'(y) = O. The optimal value of y for 



I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

Cost 
($) 

/ 
/ 

-
0 

TVC(y) 

/ 

d+ 3 

/ 
·~ 

./ 

. _. 

/ 
/ 

/ 

50 

I 
I 
1/ 
// 

/, 
// 

I 
I 

I 

I 

I 

I 
l 

y 
(Standard Deviations) 

/ 1
4 ~ .. '------

------- Feasible y Values 
1 

. . 
~~ ___,.ffolding Costs as. a Function of y 

~~"""".Lateness Costs as a Function of y 

Figure 10,. Holding Costs, Lateness Costs, and TV~(y) as Functions of y 



51 

situations where inequality (3.18) is sat:(.sfied is t;o set y = O. This 

rule will always result in a minimum TVC because with the minimum point 

to the left of the origin TVC(y) will always be increasing in tbe inter

val (O, d+./3). 

If inequality (3,18) is satisfied.in a real world situation, it 

means that; costs of inventory value and storage are substantially higher 

than the expected costsof ~xpediting, rescheduling and production de

lays. If such is the case it is very possible that the production sched

ule is toollloose" and a rescheduling of the project might result in 

. considera.ble savings in work-in-process inventory. Thus, a negative 

value of y is a warning marker: it may signify a loose·production sched

ule with inflated work-in-process.inventory, or it may indicate the 

lateness cost function being used is disregarding some important cost 

resulting from production delays •. If the form.er is the problem, the 

project should be rescheduled and y recalculated using the new require

ment date. If the hteness cost function is in.error it should he 

corrected and Y.recalculated. If neither problem seems to have occurred 

and the value of y is only slightly negative, then. theTVCis very close 

toy= O; and a zero.buffer should be used. 

In most real-world cases, the substit;ution of parameter values.into 

equation (3.17) should result in a positive value of y as is illusttated 

in Figure 11. This value of y should then 1,e qiultiplied by the standard 

deviation of the deliv~ry date distribution. to determine the optimal 

buffer time. Toe optimal expected delivery date is then ye, days-prior 

to the require~ent.date, and thi,s optimal expected.delivery date should 

be specified to the vendor as the desired delivery date. 

,;: .•.. 
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The expected TVC for positive values of y (non-zero buffers) can be 

found by substituting equation (3.17) into equation (3.14). The result-

ing expression f6r optimal TVC form= 1 is 

TVC* = (d+/5)[ bHJ-[-2.J H2. ./12 2K 
(3.19) 

Optimal Buffer form= 2 

For lateness cost exponent m = 2, equation (3,9) becomes 

2 
E(LC) ;: -Kb [y- (d+./3)] 3 , 

36./12 
y ~ d+./3. (3.20) 

Although it appears the expected lateness cost is negative form= ·2, 

the quantity in the brackets will also produce a negative number :for 

all feasible values of y. Thus, for every fe.asible case, the expected 

lateness. c'ost will be non-negative. Equation (3 .14) for TVC and its 

derivatives are then found as 

bH ·. Kb 2 [ J 3 TVC(y) ;: - 'J. -: · y~ (d+ 3)J , 
Iii 36112 

0 ~ y s:,, d+../3 (3. 21) 

2 
TVC"(y) =.:-Kb [y-(d+h)], (3.23) 

6h2 

TVC 11 (y) wi,11 be positive for values of y<d+/5. Thus, in order for a 

critical point defined by equation (3.22) to be a minimum on TVC(y) it 

must satisfy the condition y<d+/3. If the critical point does not 
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satisfy the condition, i.e., if y>d+JJ~··efl.en·tne :txbemtim",it· describes 

is a maxim~. 

In solving equation.(3.22) for an optimum (least cost) value of y, 

two roots are found as follows. 

bH 

lu 
2 

Kb _ [ y- ( d+./3)] 2 = O 
121i2 

[y-(d+JJ)J 2 = i~ H • 

Taking the square root of both sides gives 

-~ 
y- ( d+./3) = ±J·Kf, H 

y = dif3+/i~ H 

y = dW -/i~ H . 

(3 .24) 

. (3, 25) 

Equations (3.24) and (3.25) give the two critical points or extrema of 

TVC(y). Equation (3,24) gives a value of y>d+/j for every real value 

of H, K, and b, Thus,. for every y detert1tined by equat;i.on (3.24), TVC" 

(y) is negative. Therefore, equation (3.24).determines a maximum for 

TVC. In any event equation (3.25).is of primary interest because the 

critical point it defines satisfies the condition y < d+/3 needed to de-

fine a critical point as a mini.mum by the second derivative test for 

extrema. l'hus, the optimal (least cost) value of y is 

_Y* = d+../3 -~, o s; y :s: a+l3. (3. 26) 
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As was the case form= 1, negative values of y are computationally 

possible. '.rhis will result under similar circumstances as previously 

and a similar interpretation is warranted. Again, small negative values 

of y should be rounded to zero, while larger negative values (y< -3) 

should be int~rpreted as warning signals, 

For optimal.yin the feasible interval, equation (3.26) can.be sup-

stit;uted into equation (3.2l)to derive the following expression for the 

minimum expected 'l'VC for the case m .= 2. 

TVC* = (d+/3{ b}!l- .f R /bH_ 
[~ 3 l"""i. 

Optimal Buffer !2! m =. 3 

(3. 27) 

For lateness cost component m = 3, equations (3.9) and (3.11) be-

come 

Kb3 [· ~ 4 
E(LC) = (144)4 y-(d+,/3~ (3. 28) 

bH · Kb3 · . 4 
TVC(y) = m y + (144)4 [!-(d+n)] ; Os; y s; d+/3 . ( 3. 29) 

TVC, ( ) = bH + Kb3 [y- (d+JJ)J 3 
· Y /::"": 144 

..t12 · 

(3.30) 

Kb3 ~ 2 TVC"(y) = 4B [y-(d+/3~· .• . (3.31) 

·Since TVC''(y) is positive for all values oLy, the critical point de-

fined by the first derivative will be a minimum. Solving for an 



expression for optimal y gives 

_Q!! + Kb 3 [Y- (d+/3)] 3 = 0 
"12 144 

y-.. (d+./3) =. - [12ill Hl 1/3 
· Kb 2 J 

y* ::; d+.{j _l.12/12 Hl 1/3 

L Kb 2 J 
Os;: ys;: d+ .3 • 
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(3 .32) 

Negative values of y should be treated as discussed in previous cases. 

]for optimal yin tl1,e fea~ible interval, equation (3.32) can lJe substi-

tuted into equation (3. 29) to derive the following expression for the 

minimum.expected value of TVC for the casem = 3. 

E Ul/3 
TVC* = (d+/3)(-12!! - 1 H Jill .· 

Ju 4 K 

Summary of Expressions for y* amd TVC* 

.(3.33) 

.The optimal (least cost).expressions derived for y and TVC. for the 

assumption of a uniformdistribtitionof the delivery. date randomvari-

able will be sunnnarized in this section. In some cases they will be 

rewritten to emphasize the c001n:,.on terms and differences between y* and 

TVC* for the different cases. The expressions have been proven to be 

optimal in the i,nterypl 

O s:y s:d+/3. (3.34) 



For the case m = 1, 
' 

For the case m = 2, 

For the case m = 3, 

TVC* • ( d+JJ}[ }ii] -H ~ J. 

y* :; (d+/3). -1! [ b: J 1/2 

[ Jl/2 
TVC* = ( d+Jj) [ bHJ· _ 2H bH 

.fij 3 .K 

y* (d+/3) - "P· [ ~] 1/3 

TVC* = (d+[j)i- .bH ]- 3H [ bHJ 1/3 . Lm 4 K 
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(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3,40) 

If negative values of y close to zero result from the substitution of 

parameter values into equations (3.35), (3,37), and (3.39), the value 

of y = 0 (a zero· buffer) should be used. If values of y<-2 result, 

either the project schedule may have too much slack or an improper late-

ness cost function may have been used as discussed previously. 

Sample Problem 

A contract has been.received by the Least Cost Co. to build an 
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exper~mental fighter for the Navy. The specifications call for a 

specially-designed computer to direct fire which will be proc~red from 

the Uncertain Delivery Co. The computer will cost $190,000 and require 

· 10 square feet of high quality storage space that costs $.50 per day or 

$182,50 per year per square foot. The firm's cost of capital, t~es and 

insurance on inventory items amounts to 15% of the inventory value per 

.year. 

PERT has been used to determine a project schedule. The computer 

will be need.ed' from the vendor to begin testing and assembly on October 

1 according to the project schedule. According to past experience with 

the Uncertain Delivery Co. on this type of component, delivery may be 

-expected to occur with eq1,1al probability anywhere in a fourteen day 

interval which.is determined by the week before and the week after the 

contracted delivery date. If the component is not delivered 8.days 

prior to the requirement date (October 1), expediting procedures will 

start, One man will be assigned to "track.down" the computer, deterll).ine 

.its status, and see that it is delivered as soon as possible~ The proj

ect schedule is ra~her "t;igllt," and costs of production delays will be 

very high; therefor~,- an exponent; of m = 3 on lateness cost is considered 

appropriate. The value of K = 10.results .in a lateness cost function 

that gives a good representation of the total·lateness costs incurred 

for delivery at any giventime. It is desired to find the delivery date 

whichwill minimize the variable costs of procurement and to find the 

expected value of TVC. 

The parameters of the problem are 

V = $190,000 

P = · .15 per year 



W = 10 square feet 

Ch= $182.50 per square foot per year 

b = 14 days 

K = 10 

m = 3 

d = 8 days/a= 8/f2/14 ~ 2 

H = (VP + WCh)/365 = $82.93/day or $83.00/day 

From equation (3.39), 

- /0._12 [(14)(83)]113 
y* = 2+n 14 i. . io -

= 2.52 

The optimal buffer is ycr = (2.5)(14//Iz) 10.20 days. 
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For a requirell\ent date of October 1, the de!livery date specified to the 

Uncertain Delivery Company should be September 20 in order to minimize 

the expected variable costs of inventory value, storage space and late-

ness. 

The expected TVC* of procurement for the Least Cost Co. may be 

·found from equation (3,40). 

TVC* = ( 2-,jj )f lFti 83 l 
= $948,95. 

(32(83) [(14)(83)] 113 
, 4 , 10 



CHAJ,>TER IV 

CHI-SQUARE DISTRIBUTION OF DELIVERY DATE 

Assumption of a uniform distribution for delivery date resulted in 

an easily differentiable expression for TVC, and the resulting expres

sions for y* and TVC* provide simple and easy-to-use tools for procure

ment personnel. However, many procurement situations will arise in 

which the assumption of a un;i..form distribution is not appropriate in 

that it assumes equal probability of delivery within a given range. In 

many situations it will be more reasonable to assume that delivery is 

most likely to occur near the expected delivery date with decreasing 

probability of delivery as time moves away from the expected delivery 

date, The chi-square distribution may be U!;led to approximate this situ

ation. 

Although the shape of the chi-square distribution makes it appro

priate for use in many procurement situations, it is rather difficult 

to deal with mathematically in the problem being approached here. In 

fact, the mathematical derivation of the expected lateness cost com

ponent of TVC involves an original approach to dealing with the chi

square that may in itself be of interest to some. Unfortunately the 

resulting expression for expected lateness cost does not allow develop

ment of simple expressions for y* and TVC*. In order to facilitate 

use of the model two FORTRAN programs were written. One calculates cost 

components and TVC for a given set of parameters and buffer. The second 
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utilizes a Fibonacci search procedure to look at a wide range of pos-

sible y values and find they~ and TVC* for the optimal buffer. The 

sample problem presented in Chapter III will be solved using the assump-

tion of a chi-square distribution for delivery date. 

Assumption of Chi-Square Distribution 

The chi-square probability distribution is a likely candidate to 

represent the random variable of delivery date .. It is reasonable to 

assume the probability of delivery before a certain date is zero. Fol-

lowing this earliest possible date the probapility of delivery increases 

slightly for each succeeding day. As the contracted delivery date is 

approached, the probability of delivery increases to a maximum .. The 

mode of the distribution is reached a short time b,efore the mean or 

expected delivery date. Following the expected delivery date the proba-

bility of delivery occurring tapers off gradually (into a long "tail" 

of the distribution). Thus, the distribution of probability over x of 

the chi-square distribution agrees logically with what should be used 

to describe th~ behavior of a random variable of delivery date over time. 

The p. d. f, of the chi-square is plotted in Figure 12for 8 degrees of 

freedom. 

f(x) 

.15 

.10 

EXPECTED 
DELIVERY 

DATE 

REQUIREMENT 
DATE 

.os.J-~~--t~--l-...-1--~.:::::::::'.i::::::::;:===.====='====----~ 
0 5 µ 10 20 µ+yo-

,~ yo- --~~- x 

Figure 12. The Chi-Square Probability Distribution 
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In addition, the dispersion of the chi~square can be changed by 

changing its degrees .of freedom; thus, different levels of uncertainty 

in delivery can easily be accounted for by changing this pararneter. 

These characteristics make the chi-square distribution a very suitable 

p. d. £. to assume in describing the random variable delivery date. The 

probability density function for the chi-square may be written as 

1 (r/2)-1 -x/2 
f(x) = --------- x· e 

(r /2)2r 12 
O<x<c;,, (4.1) 

= O, elsewhere 

where r is called the number of degrees of freedom of the chi-square 

p. d. f. The mean and standard deviation of the chi-square are 

µ = r and (4. 2) 

The chi-square distribution will be used to describe the probability 

. of deli very on a given date in . the following manner: 

a. the mean of the chi-square distribution of delivery date will 

be defined as being located at the contracted delivery date, 

which is to·be determined by the model, 

b , a 9 0%. or 9 8% range on the de livery of the component wi 11 be 

determined by procurement personnel, and 

c. the length. of this interval will be used to specify the dis-

tribution parameter r. 

·. rn step (a) above, the expected delivery, date (the chi-square rnean) is 

.being defined as the contracted delivery. date. Concerning steps (b) 

and (c), the assumption of .the chi-square to describe occurrence of de-

·Uvery, dates·in the procurement process is a new application, and some 
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co~ent on proper use of the extensive chi-square tables is.in order. 

In step (b) above it is necessary that the procurement analyst define 

"ranges" within which he feels delivery will occur with a given proba

bility. For example, a ".90 range"·on delivery date would be an inter

val of a len~th such that there is a 90% chance that delivery will occur 

within this span of time. Table :C g;ives.interval len~ths for 98% chance 

of delivery and 90% chance·. of. delivery within the given interval and 

indicates . the procedure in their calculation. . If a history of delivery 

performance is available for a particular vendor, this past record may 

. be used to determine a •. 90 qr • 98 confidence. ipterval on his. delivery 

performance. If the orde.r is being placed with a new vendor qr under 

special circumstances, a subjective evaluation of the '1• 90. range II or 

". 98 range II on delivery dai:e is necessary. 

Once. the range·. is determined, step (c) is accomplished through the 

use of Table I to determine -the proper degrees of freedom to use in 

calculations for TVC and y. The use of even numbered degrees of freedom 

is a requirement imposed by an essential step in.the mathematical.form1;1-

lation of expected lateness cost. This development follows. 

Development of Expected Lateness Cost 

The development of expected lateness cost involves some interesting 

u;1.athematical manipulations. A change of variable will be used to 

llshift 11 the zero reference point of the chi-square to coincide with 

the requirement date. This will give the probability of .delivery Qc

curring at time t such that this probability can be multiplied by the 

cost incurred by delivery at time t represented by the lateness cost 

function'of equation (2.10). A second change of variable ·will then be 



TABLE I 

PROBAJ3ILITY INTERVALS OF 90% AND 98% F<ll DETERMINATION OF CHI-SQUARE PARAMETER r 

1-t. it~ .. 
"'t.~ 

~ .. ~· 

x~ 
Value of x 2· for Probability Quantiles .98 Range on Delivery Date .90 Range on Delivery Date r Value to 

. . 

X2 -X2 2 2 Use 
P = .01 P = .05 P = .95 P = .99 .01 .99 x .05-x .95 

.02 .10 5.99 9.21 9 .2 days 5.9 days 2 

.30 .71 9.49 13.28 13.0 days 8.8 days Li 

.87 1.63 12.59 . 16.81 15.9 days 11.0 days 6 

1.65 2.73 15.51 20.09 18.4 days 12.8 days 8 

2.56 3.94 18.31 23.21 20.7 days 14.4 days 10 

3.57 5.23 21.03 26.22 22.7 days 15.8 days 12 

4.66 6.57 23.69 29.14 24.5 days 17.l days 14 

5.81 7.96 26.30 32.00 26.2 days 18.3 days 16 

7.02 9.39 28.87 34.81 27.8 days 19.5 days 18 

8.26 10.85 31.41 37.57 29.3.days 20.6 days 20 

9.54 12.34 33.92 40.29 30.B days 21.6 days 22 

10;86 13.85 36.42 42.98 32.1 days 22.6 days 24 

12.20 15.38 38.89 45.64 33.4 days 23.5 days 26 

13.57 16.93 41.34 48.29 34.7 days 24.4 days 28 

14.95 18.49 43.77 50.89 35.9 days 25.3 days 30 

Source (x2 Values): A. Hald, Statistical Tables and Formulas (New York, 1951), Table V, pp. 40-3. Approximate formula for r::>30 is 
· x 2 = \( J'[i':! + z ) 2 where z is the standard normal deviate of probability p. 

p . p p "' ~ 
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necessary to adjust the lower bound on the integral to zero enabling 

integration over the eritire range of the chi-square distribution. Next 

a binomial expansion of the term involving t :i.s necessary. After dis-

tributing the integral sign, each term of the binomial expansion will 

be manipulated into a constant times the integral of a chi-square p. d. 

f. from zero to infinity. Each of these integrals reduces to a value 

of 1, and the expected lateness cost canthen be expressed in terms of 

a finite serie~ of terms. 

The first change of variable will move the zero reference point of 

the chi-square delivery date distribution to coincide with the origin 

defined to be at the requirement date in Figure 1.3. For the p. d. f. 

of equation (4.1), let 

x = t + µ +·ycr and at x = o, t - (µ+ycr) 

t = x - (µ +ycr) x = oo, t = co. 

Now 

I . - t:+y, +yq 
f(t) = 1 I (t-tµ+ycr)(r Z)-le 2 , -(µ+ycr)< t< oo, 

Ur/2)2r 2 

= 0 elsewhere. (4.3) 

·Note that the change of variable does not change the shape of the p. d. 

f. but only shifts the zero reference point to the requirement date. 

The probability of delivery occurring is still zero until the point 

t =-(µ+ycr) is reached. For all J;>Oints t>-(µ.+ycr), the value of (t-tµ+ycr) 

is the same as the value of x at the correspondingpoint. Thus, at any 

,given time prior to the requirement date the probability given by f(t) 

.is identical to the probability given by f(x) at that point in.titne. 

The relat:i.onship of tl1e chi-square delivery date distribution.f(t) and 
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the lateness cost function C(t) from equation (2.10) is illustrated in 

Figure 13. 

The expected value of lateness cost will be found as described in 

equation (2.12). 

-dcr oo 

E(LC) J O .~ f ( t) d t + J K( t+dcr )m • f ( t) d t 
-(µ+ycr) -dcr 

= j K(t+dcr)m n . 1 r/2 (t-tµ+ycr)(r/2)-le 
-dcr . (r)2)2 

t-tµ+yq 
2 dt. (4.4) 

The above integral when properly evaluated will yield an expression for 

the expected lateness cost. First it will be necessary to introduce a 

change of variable so that the integral is taken over the interval zero 

to infinity. In order to simplify notation the parameter a will be 

introduced to represent (r/2). Let 

a= (r/2). (4.5) 

The change of variable will now be performed. Let 

w = t + dcr at t = -dcr, w = O 

dw dt t = 00 W = 00, 

E(LC) = f Kwm l 
O l(a)2a 

_ ~w-do::h 1+yq] 
a-1 2 (w-dcr-tµ+ycr) e dw 

-~µ+~(;-a)l 
[ 2· ] oo 

Ke . .· J' m [ J a - 1 = ''r ·. ' ' w w-+µ+cr(y-d) 
(a)2a O 

-w/2 
e dw. (4.6) 

To simpU.fy notation in following steps, let the following constant 

terms be reduced to a single parameter. 



-µ-ycr 

EXPECTED 
DELIVERY 

DATE 

REQUIREMENT 
. DATE 

0 

0 

T 

T 

Figure ·.13. Chi.-Square Delivery Date Distribution and Lateness Cost 
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Let 

_11,,L+o-~y-d)J 
Ke L 

c =------
-r(a)2a 

and 

s = I-+ + cr(y-d). 

Equation (4.6) may .now be written 

E(LC) = C f wm (w+s)a-l e -w/Z dw 
0 
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(4. 7) 

(4.8) 

(4.9) 

If the requirement is made that (a-1) be aninteger, that is, if r is 

even, then the term (w+s)a-l may be replaced with its binomial expansion. 

E(Lc.)'--··c t m[ a-1 + (a-1) a-2 + (a-l)(a-2) a-3 ,-,, i w w . 1! · w s 2! w 
2 

s + .. ·•. 

. . . + (a-l)(a-2) .•• (a-l;k+l) a-1-k k 
k! w s + ... 

m 
If w is now distributed, equation (4.10)-becomes 

E(LC) = C Jl.m+a-1 +[a-~Jwm+a-2 s +- ••• 
. o I - l. 

... + [<a-l)(a-2) ••. (a-k)J m+a-1-k sk + 
k! w 

. m a-1} --w/2 + w s e · · dw. 

(4.10) 

(4.11) 
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Distributing the integral isign and manipulating coefficients, equation 
. .~·; 

(4 .11) becomes 

E(LC) ·-w/2 e dw+ 

00 m+a-2 r m+a-1 f w .. · -w/2 + (a-1 )sl (m+a.-1) 2 r, m+a- l e dw + 
0 1 (m+a-1)2 · 

· oo m } +. a-1 r( 1)2m+l s--w ___ e· -w/2 dw 
• • • s. l (m+ . n m+l 

· 0 (m+1)2 
(4.12) 

where k' = m + a - kin the ~th term. Each of the integrals in equation 

(4.12) is the integral of a chi-square p. d. f. over its interval of 

positiv~ probability (zero to.infinity). Each of these integrals re-

duces to a value of one by the definition of a p. d. f., and equation 

(4.12) reduces to a finite series made up of the terms preceding each 

of the integral signs. The gamma functions in equation (4.12).may be 

·replaced by factorials according to the identity: 

r(n+l) = n! (4.13) 

. Substitution of the expressions for C, s, and a, equation (4.13), and 

algebraic manipulation results in the following expression for expected 

lateness cost;:. 

-[µ+qiy-d)J 

E(LC).=·_2nx_ ...... e__,,...,_·___,.....,__ ~-1 ( + /2-1-"),[µ+q(y-d)Ji (r./2-'1)! 
( r I 2-1) ! i = 0 m r · · 1 l 2 ( r I 2-l- i) ! i ! · 

(4.14) 
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Fibonacci Search for y* and TVC* 

Although the binomial expansion and other techniques resulted in 

successful·ihtegration of equation C4.6), the expected lateness cost 

expressionis not easily differentia:ble with respect toy, which is the 

decision variable it is desired to optimize. The series in equation 

C4, 14) is a binomial series except for the term (!n+Cr /2.)-1-i }! ~ This 

term when combined with the binomial expression is of a nature that 

eliminates the possibility of finding an easily expressed sum for the 

series. The expression for the expected value of TVCfor the case of 

a chi-square delivery date must include this series as part of thee~-

pression for the expected lateness cost cQ!fi~nent. Substituting equa-
' . 

tions C4,14) and C4,2).for µ and r:r into equation C2.14) for TVC gives 

an expression for TVC in terms of the cost parameters of interest, 

TVC(y) = [ V:'1,][i;:,y + (COEFFICIENT) x (SUM), for ·y~ 0, C4 .15) 

. _ IJ+~(y-d)J 
2~e L where COEFFICIENT=~---~~~~~-

[Cr /2)-1] ! 

and SUM 
r /2~ 1 [ Ji [ ] = ?' [m + Cr /2)-1-i] ! r+~(y-d) . (r /2)-'-1 ! 
i = o [Cr/2)--1-i]!:i! 

The relative ~agnitudes of the series terms were examined to determine 

wllether only one or two of them were significant. A computer program 

was written which calculated each. term separately and its P,ercentage 

of the sum of the series .. Although a few terms of the series were small 

with respect to others, .several terms were of similar magnitude for any 



set of parameters. Thus the procedure of ignoring all but one or two 

tepns would not result in a valid approximation. 
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Slide rule calculation o:I; TVC in equation (4.15)· is a·tediousproc

ess, but calculation.can easily be accompl:i.shed with the aid of a com

puter. It is reasonable to assUIJJ.e that any large job-shop manufacturer 

that would have occasion to use this model would also have a digital 

computer available. Also, the components under consideration in this 

problem are expensive, critical items and a computer an~lysis of the 

variable costs of procurement will in most cases be justified. For this 

reason a FORTRAN canputer program was Wl:itten to calculate TVC as a 

function of y, d, tl.1e degrees of freedom of the chi-square delivery date 

distribution, and the cost parameters defined in equation (2.15). This 

program is included as Appendi:ll: A. 

The program in Appendix A punches out the. input parameters. It 

calculates and punches the components of TVC and the expected TVC.for 

the value of y used, Values of buffer and the expediting period do- are 

· calculated and punched. . This program also was used to investigate the 

relative magnitudes of terms in the lateness cost series. If sense 

switch two is turned on, values of the three parts of each.term along 

with the value of their product will be punched. If switch .. two is off, 

only the terms and their percentages of the sum are punched. 

Since differenti.;1tion of the TVC expression in equation (2.15) will 

not allow for a simple expression for y, it will be necessary to solve 

for an.optimal value of y by other methods .. This can·be done thro,µgh 

an efficient search procedure because of the "U-shaped" nature of the 

TVC(y) curve as shown in Figure 14. Ttte expected 11.olding costs (the 

sum of inventory value and storage space) increase linearly as the 
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buffer y increases. As the buffer y is decreased, the probability of 

incurring higher lateness costs is increased; and the expected lateness 

cost increases. TVC(y) is thu.s the Slllil of one increasing and one de

creasing cost component .. This would result in a "U-shaped" curve for 

TVC(y) for positive values of the cost parameters. 

If TVC(y) is at a minimum for a positive value of y, it is desir

able to locate that value of y to use in calculating.the optimal buffer, 

If TVC(y) reaches a minimum at some negative y, then TVC(y) will be an 

increasing function for positive values of y, as was illustrated in 

Figure 10. ln this case the optimal buffer is of zero length. Fortu

nately, several efficient search procedures exist for finding the mini

mum point within a given interval for a function such as TVC(y). 

A particularly useful and interesting procedure for findin~ the 

optimum (least cost) .value of a function of one variable such as TVC(y) 

is Fibonacci search. In searching for the minimum TVC(y) it will be 

necessary to evaluate TVC(y) for different values of y. As this re

quires considerable computation it would be desirable to minimize the 

maximum number of evaluations necessary. Under the criterion of mini

mizing the maximum· mimber of function evaluations required to find the 

optimum, the Fibonacci search is the best one-dimens::i,cmal search pro

cedure as discussed in Nemhauser (1966) and in Wilde (1964). 

The Fibonacci search procedure is discussed in Appendix E. In 

order to find the optimum (least cost) values of y and TVC, the range 

of y from • 01 to 9, 8'6 was considered to be 986 discrete points with a 

minimum occurring at one.of these points. Thus, the Fibonacci search 

procedure finds y* to within .• 01 and the TVC* associated with y*, and 

accomplishes this in only fourteen evaluations of TVC(y). A FORTRAN 
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computer program was written to perform this search and is included in 

Appendix B. 111,is program finds the optimal buffer and corresponding 

TVC* for a given set of cost parameters and expediting strategy (defined 

by dcr, the first day that expediting begins if delivery has not oc

curred). 'I'lie progra~.logs each of they values and TVC evaluations such 

that a curve of expected TVC vs. y can be plotted to illustrate the 

sensitivity of y for the given set of parameters. This program will pe 

u_sed to solve a sample problem. 

Satilple Problem 

The same prob1em presented in Chapter III will be solved using the 

assumption of a chi-square distribution. All cost parameters will re

main the same. -But instead of a uniform _delivery date distribution, the 

past performance of the Uncertain Delivery Company i~dicates that the 

probability of delivery at different times preceding and following_ the 

contracted delivery date is approximated by a chi-square distribution 

as-illustrated in Figure 12. Under $imilar circumstances in the past, 

_ the delivery has been made within a -13 day interval 90% of the time. 

From Table I, the proper chi-square degrees of freedom_to use in cal

culations.is found t;o be r = 8. For this distribution of delivery date, 

µ = r ::;: 8 and cr =fir = /i6 = 4 day!:!. The firm's policy reg1:1.rding ez

pediting, is the saqie as previously, with the·. first lateness costs being 

:incurred 8 days prior to the requirement date if the part has not yet 

been received. 

In P;revious dealings with the Uncertain Delivery Co., procurement 

people for the Least Cost Co. have used a standard buffer of 4 weeks :in 

.setting delivery dates. It is desired.to calculate the expected value 
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of TVC associated with this buffer and to determine the optimal buffer 

c;lnd TVC*. 

The cost parameters are as follows: 

V = $190,000 

P = .15 per yea')'." 

W = 10 square feet 

Ch = $182.50 per square foot per year 

K = 10 

m - 3 

d = 8 days/cr = 8/4 =·2 

.90 Range on Delivery Date= 13 days 

r from Table I= 8 . 

. From equation (4.15) the expected TVC may be found for a value of 

y = 28/cr = 28/4 = 7. 

TVC = [(190.000)( .15)+(10)(182.50)] fi'6 + 365 7#10 

+ [ (23)(10)8+4~7-2~] 5:2-1 [8+4(7-2)li 

. (8/2-1). . i = O 2 ~ 
(3+8/2-1-i)! (8/2-1 

(8/2-'1-i) ! i! 

For y = 7, the components of TVC as calculated by the FORTRAN program 

in Appendix A are as follows. The printout for this calculation is 

shown in Figure 15. 

Expected Inventory Value Cost= $2186.30 

Expected Storage Space Cost = 140.00 

Expected Lateness Cost .40 

Expected l'VC of Procurement = $2326. 70 
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PARAMETERS ARE AS FOLLOWS -- R= 8.0 
Y= 7e000 
D= 2.000 
EXPEDITING COST POWER= 3e000 
EXPEDITING COST SCALE FACTOR= lOeOOO 
SPACE REQUIRED= 10.00 
COST/SPACE/YEAR= 182.5000 
VALUE OF PART = l90000e00 
COST OF CAPITAL= el500 

EXPEDITING STARTS D*SIGMA = 5.00 DAYS BEFORE REQUIREMENT DATE. 

NO FACTORIAL PART POWER PART BINOMIAL PART PRODUCT OF 3 
TERM NO. l 7e2000000E+02 1.oooooooE+oo 1.oooooooE+oo 7e2000000E+02 
TERM NO• 2 le2000000E+02 l.3999998E+Ol 3.0000000E+OO 5.0399991E+03 
TERM NO• 3 ·2e4000000E+Ol le9599994E+02 3.0000000E+OO l e4l ll 995E+04 
TERM NOe 4 6eOOOOOOOE+00 2e7439989E+03 1.oooooooE+oo le6463993E+04 

LATENESS COST MAGNITUDE PERCENT 
SERIES OF TERM OF SUM 

TERM NUMBER ! • 72000000E+03 1.981 
TERM NUMBER 2 e50399991E+04 13.870 
TERM NUMBER 3 .14lll995E+05 38.837 
TERM NUMBER 4 .16463993E+05 45.310 

THE LATENESS COST SUM FOR THIS SET OF M,R,Y,D = 
THE LATENESS COST CONSTANT COEFF FOR THIS SET= 

.36335987E+05 
oll087060E-04 

THE LATENESS COMPONENT OF TOTAL VAR. COST= 

THE STORAGE SPACE COMPONENT OF TOTAL COST= 

THE INVENTORY VALUE COMPONENT OF TOT COST= 

THE TOTAL VARIABLE COST OF PROCUREMENl = 

e4028 

2186.3012 

THE BUFFER FOR THIS TVC CALCULATION IS (Y*SIGMA) = 2a.o DAYS· 

Figure 15. Sample Problem Output of FORTRAN Program of Appendix A 
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Calculation of·the optimal buffer is done with the aid of the program 

in Appendix B. After evaluating TVC(y) at the·fourteen values of y 

indicated, the buffer resulting in the least expected TVC was found to 

be at y = 2.98 or 11.9 days as shown in.the oµtput of Figure 16. The 

expected value of TVC.is $1220.58 for this buffer. Rounding the buffer 

to the nearest whale day, the correct delivery date to specify to the 

Un.certain Delivery Co. is 12. days before the requirement date. Note 

that use of the optimal buffer of 12 days rather than the old 28 day 

buffer results in expected savings of $2327-$1221 or $1106. 



PARAMETERS ARE AS FOLLOWS R• 8,0 
D= 2,000 
EXPEDITING COST POWER• 3,000 
EXPEDITING COST SCALE FACTOR= 10,000 
SPACE REQUIRED• 10,00 
COST/SPACE/YEAR= 182,5000 
VALUE OF PART 190000,00 
COST OF CAPITAL•' ,1500 

EXPEDITING STARTS D*SIGMA = 7,99 DAYS BEFORE REQUIREMENT DATE, 

EVAL NUMBER 14 Y = 6, 100 BUFFER • 
THE LATENESS COMPONENT OF TOTAL VAR, COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST• 
THE INVENTORY VALUE COMPONENT OF TOT COST 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

E VAL NUMBER 13 Y • 3, 770 BUFFER = 
THE LATENESS COMPONENT OF TOTAL VAR, COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST 
THE TOTAL VARIABLE CO.ST OF PROCUREMENT = 

EVAL NUMBER 12 Y = 2,330 BUFFER= 
THE LATENESS COMPONENT OF TOTAL VAR, COST 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT• 

EVAL NUMBER 11 Y = 4,660 BUFFER= 
THE LATENESS COMPONENT OF TOTAL VAR, COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST= 
THE IN~aNTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

EVAL NUMBER 10 Y • 3,220 BUFFER• 
THE LATENESS COMPONENT OF .TOTAL VAR,· COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST• 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

EVAL NUMBER 9 Y = 2,880 BUFFER= 
THE LATENESS COMPONENT OF TOTAL VAR, COST 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TCTAL VARIABLE COST OF PROCUREMENT= 

EVAL N'JM~ER 8 Y = 2,670 BUFFER = 
T,iE LATENESS COMPONENT OF TOTAL VAR, COST= 
THE STC;,!AGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST 
THE TOTAL VARIABLE COST OF PROCUREMENT• 

EVAL NUMBER 7 Y = 3,010 BUFFER= 
TrlE LATENESS COMPONENT OF TOTAL VAR, COST= 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT• 

EVAL NUMBER 6 Y • 3,090 BUFFER = 
THE LATENESS COMPONENT OF TOTAL VAR, COST 
THE STCRAGE SPACE COMPONENT OF TOTAL COST• 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

EVAL NUMBER 5 Y = 2,960 BUFFER= 
THE LATENESS COMPONENT OF TOT·AL VAR, COST 
THE STCIAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

EVAL NUMBER 4 Y • 2,9j0 BUFFER• 
THE LATENESS COMPONENT OF TOTAL VAR, COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST• 
THE INVENTORY VALUE COMPONF.NT OF TOT COST 
THE TOTAL VARIABLE COST OF PROCUREMENT • 

EVAL NUMBER 3 Y • 2,980 BUFFER• 
THE LATENESS COMPONENT. OF TOTAL VAR, COST• 
THE .STORAGE SPACE COMPONENT OF TOTAL COST• 
THE l~VENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PROCUREMENT• 

EVAL NJMBER 2 Y = 2,990 BUFFER• 
THE LAToNESS COMPONENT OF TOTAL VAR, COST• 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE INVENTORY VALUE COMPONENT OF TOT COST• 
THE TOTAL VARIABLE COST OF PR.OCUREMENT • 

EVAL NUM~ER l Y • 2,970 BUFFER • 
THE LATENESS COMPONENT OF TOTAL VAR, COST 
THE STORAGE SPA(E COMPONENT OF TOTAL COST• 
THE INVENTORY VALUE COMPONENT OF TOT COST 
THE TOTAL VA.RIABLE COST OF PROCUREMEN; • 

24,400 

15,080 

18,640 

12,880 

11,520 

10,680 

12,040 

12,360 

ll,840 

11,720 

11,920 

11,960 

11,880 

1.7924 
121,9999 

1905,2053 
2028,9976 

71,5593 
75,3999 

1177,4793 
1324,4385 

576,6073 
46,5999 

727, 7259 
1350,9333 

18,1457 
93,1999 

l455o4n9 
1566,7975 

162.3447 
64,3999 

1005,6985 
1232,4431 

265,9120 
57,5999 

899,501>7 
122300188 

358,6776 
53.3999 

833,9177 
1245.9953 

220,4686 
60,1999 

940,1095 
1220.7780 

196,2994 
61,7999 

965,0956 
1223,1951 

236,9918 
59,1999 

924.4930' 
1220.6848 

247,4664 
~8.5999 

915,1232 
1221,1896 

230,2453 
59,5999 

930,7396 
1220,5850 

226.9413 
59,7999 

933,8629 
1220,6042 

233,5953 
59,3999 

927,6163 
1220,6117 

THE MINIMUM EXPECTED .VARIABLE COST OF PROCUREMENT 1220,58 
THE OPTIMAL BUFFE.R FOR THIS TV~ IS AT Y • 2,98 OR Y*SIGMA • 11,91 DAYS, 

Figure 16. Sample Problem Output of FORTRAN 
Program of Appendix B 
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CHAPTER V 

POISSON DISTRIBUTION OF DELIVERY DATE 

A third distribution, the Poisson, will be used to describe the 

probability of occurrence of delivery date. Like the chi-square, the 

distribution of probability (or 'shape) of the ._Poisson is what one would 

logically assume for a rand.om experiment such as delivery of a component. 

Many procurement analysts attempting.to apply this model w:lll find the 

Poisson much more familiar and thus easier to deal with than the chi-

square. In addition the discrete nature of the Poiss.on should make it 

easy to apply l:iince the probabilities of delivery and lateness costs can 

be specified for given days rather than as continuous·functions over 

time. The Poisson is no stranger to applications of this type as it is 

used,in 'queueing theory to describe the arrival probabilities of units 
;,,, 

to be serviced. However, the de,velopment of the expected lateness cost 

and TVC(y) under the 85:<Sumption of a Poisson distribution of delivery 

date does not provide an easily differentiable TVC(y) expression. As 

in the case of the chi-square, computer programs were writ.ten to cal-

culate TVC given y and to use Fibonacc:l search to find y* and TVC*. The 

sample problem of Chapters III and IVis again solved under the assump-

tion of a Poisson distribution for delivery date. 

Assumption of Poisson Distribution 

The manner in which the Poisson distributes probability over 
,v, ... •,::' 
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different possible delivery dates is very similar to that of the chi-

square as shown inFigure 17. The greatest difference·is that the 

Poisson is a c;liscrete and the chi-square is a continuous distribution. 

Both have positive probability for values between zero and infinity and 

have similar shapes for values ofµ and r of four or more. When the 

· Poisson parameter µ is of this magnitude, the probability of occurrence 

at a particular integer is very small for small integers. In the-cop-

text of a delivery date distribution, this means·the probabilityof 

delivery on the very early possible delivery dates is small. The proba-

bility of delivery increases for each succeedingday until the mode is 

reached on or near the expected delivery dateµ. Following this date, 

the probability of de livery tapers :off inh·, a long tail .as· with: the chi-

square. Another important similarity is that the Poisson distribution 

is determined by a single parameterµ and the proper value of the param-

eter to be used in calct,1lations for a given situation can 1;,e determined 

.in a manner similar to that used to ;find r in the case of the chi-square. 

The p. d. f. of the Poisson distribution is 

. t 

f (t) = i.i ~-µ 
t. 

t = 0,.1, 2, ••. (5 .1) 

= 0 elsewhere. 

The mean and s~andard deviation of the Poisson ~re both determined by 

the parameter µ, which is. the mean of the distribution .• 

µ=µ . GT=./µ • (5,2) 

Poisson distributions .for different values of the parameter µ are shown 

in Figure· 1.7 • 
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Figure·l7. Poisson Distribution of Delivery Date forµ= 4, 
, 8, and 12 
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The Poisson will be used to describe the probability of delivery 

on a given date in. the same manner as was done for the chi-square in 

Chapter IV: 

a. the mean value of the Poisson distribution of delivery date 

will be specified at the contracted delivery date which is 

to be detentJ-ined by the model, 

b. a 90% range on.the delivery of the component is specified 

by procurement personnel, and 

c. 'the length. of this interval will be used to specify the 

Qistribution parameter µ. 
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The mean of the Poisson.will 'be defined as the expected delivery date, 

and this will be specified as th_e delivery date to the vendor when the 

proper buffer time is. calculated, In steps (b) and --(c), the process 

used to find the properµ for. calculations will be similar to that e~

ployed to find r in Chapter IV. A.90 range-on delivery date will be 

defined either from a subjective evaluation by the procurement personnel 

or by establishing a confidence-interval on delivery date from past 

performance-of the vendor. The length of this 90% range should then·be 

used to determine the proper value ofµ to use in calculations with the 

aid of Table U, For example, if there is a 90% chance-of delivery 

occurring within a 13 day interval, the properµ to use in calculations 

isµ= 16 from Table II. Because of the discrete nature of the Poisson, 

. it is seldom possible. to obtain a 90% range with exactly. .05 probability 

on each side for each value ofµ •. However, this was done when possible 

and the remaining probability was balanced as evenly as possible-on 

both sides of the • 90 range £.or .other values of µ in Ta.ble II. 
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TABLE II 

PROBABILITY INTERVALS OF 90% FOR DETERMINA',UON OF POl;SSON · PARAMETER µ 

I I 11 I I 
T 

Cumula,tive Probabi,1:1,ty·fl)r · Interval l?robability of Value, of µ for . . . ,; 

Values of T Length Delivery This Interval 

tl Pr T Stl. t2 Pr Ts t,2 
Within Interval· Length 

0 .050' 6 .960 6 days .910 3 

1 .040 8 .932 7 days .892 5 

2 .062 10 .957 8 .days .894 6 

3 .042 · 12 _- .936 9 days .894 8 

4 .05,5 14 .959 10 days .904 9 

5 .038 16 .. 944 11 days .• 906 11 

7 .054 19 .957 12 days .903 13 · 

9 .043 22 .• 942 13 days .899 16 

11 .055 25 .955 14 days .900 18 

13 .043 28 .• 944 15 days .901 21 

16 .056 32 . ,953 16 days - • 897 24 

Source (Cumulative Probabilities for Poisson): W. J. Fabrycky and 
Paul E. Torgersen, Operations_Economy (Englewood Cliffs,N-.J.,_1966), 
App~ndix table A.~ pp. 446-9. -Additional cumulative probabilities II).ay 
be computed from .l,.(µXeil/x!) for larger values ofµ. 
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Development of Expected Lateness Cost 

In Chapter II the lateness costs were expressed as a continuous 

function of time in .. equation (2.10). The development of a discrete 

function to represent.latenei:;s costs would.involve the same·logic. If 

delivery has not occurred by a certain number of days (d~) prior to the 

·requirement date, expediting and other lateness.charges begin to be-in

curred as shown in:Figure·lB. As.each day passes, higher and higher 

lateness costs are incurred. Thus, the total lateness cost incurred 

if delivery occurs.on a given day rises as the requirement date ap-

preaches. If delivery does not occur as the requirement date is reached 

and passed, rescheduling and production.delays are incurred which result 

in higher and 11.igher total lateness costs.incurred-for each succeeding 

delivery date. The lateness.cost incurred by a part if delivery is 

made-on day x will be represented by the following_discrete function 

C(x) where the value of x on the requirement date is d~. · 

m 
C(:x:) = Kx 

= 0 

where K = a scaling constant 

where x = 0, 1, 2, ••. 

x< O, 

x the delivery time (a random variable) 

(5.3) 

m - an exponent determining the rate of increase of lateness 

.costs with time. 

A change of variable will now be made-in equation (5.3) in order to 

make -the prigin of the lateness cost function coincide with the Poisson 

distribution of delivery date. The conunon origin for this development 

will be theorigin of the·Poisson delivery date distribution instead of 

the requirement date as was the case in previous developments although 
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Figure 18. Discrete Lateness Cost Function C(x) form·= 1 
and m. = 2 
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the requirement date will be used as the reference point in relating 

the cost function to the delivery date distribution. As is shown in 

Figure 19 the value oft for the delivery date distribution is (µ+ycr) 

at the requirement date. 'Ihe change of variable must be such that the 

m value of the cost function at the requirement date is K(dcr) , since the 

present value of x at the requirement date is dcr. The proper change of 

variable for the lateness cost function is then to let 

at 

for 

x = t - (µ+ycr-dcr) 

t = x + (µ+ycr-dcr) 

x = o, t = µ + ycr - dcr = µ + cr(y-d) 

x = dcr, t =µ+Yer 

C ( t) = K[ t "'.' (µ +ycr- dcr ~ m, t = µ + cr(y-d), 

µ + cr(y--d) + 1, 

µ + cr(y-d) ,t, 2, 

= 0 t<µ + cr(y-d), 

µ = o, 1, 2, 

Yer = 0, 1, 2, 

~cr = o, 1, 2, ' .... 

(5 .4) 

(5.5) 

(~.6) 

(5.7) 

This change of variable does not change the value of the lateness cost 

function from its previous value in equation (5.3) at any date before 

or after the requirement date; it merely changes the arbitrary zero 

reference point such.that lateness cost may be expressed in terms of 

the random variable T. The requiret11ents .of equations (5.5), (5.6), and 

(5.7) are the most practical way of insuring that the quantity 

t - (µ+ycr-dcr) (5.8) 
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is an integer for all, integer values oft • 

. Now that the probability of delivery on day t is expressed in the 

same terms as the l.ateness. coi:it incurred if delivery is on day· t, an 
. I 

equation similar to equation (2,13) may be developed to define the ex-

pected lateness.cost. 

. ao µ+.w::il-1 
E(LC) = -~ O!f(t) + 

. t = (i) 
.. Z: K[ t-(µ+y11-da)] m •, t(t), 

t = µ+cr(y-d) 

In order to simpli;fy notation, let 

s = µ + ya . - dcr = µ + e;r (y-d) • · (5.10) 

Then equation (,5.9) will.reduce to 

co t -µ 
~ m U, e E(LC) = .,L..;. K(t-s) v t! • 
t=s 

(5 .11) 

It is necessary to manipulate equation,.(5.11) into an expression involv-

ing a finite series. This can be accomplished by expressing equation 

(5.11). as the difference between·an infinite .series with a known sum 

and a finite series as in equation (5.12), 

m t -µ s-1 t -µ 
~ m.µ e ~ m.µ e 

E(LC) = ...::::__ K(t-s) t ! - ..c;_ K(t-.s) - t ! . 
~o ~o · 

(5.12) 

Equation (5,12) will n0W be manipulated to give expressic:;ms for expected 

lateness. cost for the· cases· of m = · 1, 2, and .. 3. 
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. Expected Lateness . .£2§.! !.2!,m = 1. 

Form= 1 equation (5.12) becomes 

· cc t .;.µ s-1 t -µ 
E(LC) =2:.K(t-s)Ut~. -._L K(t-s) µ, ~' · .• 

t=O ' t=O .. 
(5.13) 

If the·quarttity (t-s). is distributed and f(t) used to represel'.l.t the 

p. d. f. of equation (5,1), 

{ 

oo . . ao s-1 s-1 } 
E(LC). = K L_· .. t~:f(t) - S.L f(t). '." .2:. tf(t) + S.~ f(t) , 0 

e -. . .· o o o 
. . . (5~14) 

.By the-definition of a p •. d.· £,,.the Poiss·on p. d. £. summed over its 

. interval of positive ,robability is equal to .1.0. Thus, 

.'i::_ f(t) = LO. -(5.15) 
t=O 

Also, the first moment of the Peisson p. q •. £. is found to be its mean; 

thus, 
EICI 

E(t) = ~ t f(t) = µ. 
t=E> 

Substitution of equations .(5.15) and (5,16) into.(5.14) gives 

{ 
s.-1 -s-1 } 

E(LC) = K µ-- s(l) --~ tf(t) + s::E: f(t) , • 
. · . t=O · O 

. (5.16) 

(5 .17) 

Since s = µ + er(y-d) and Ci1 =;./'ii, equation (5,17),can be reduced to t;l:te,,, 

·. following expressien for expected. lateness. cost for a value· of m = 1. 
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E(LC) = K{-/µ(y-d) + sf= f(t) - >l t~f(t)l, fort - O, 1, 2, . " 
t=O t=O j 

(5.18) 

Expected Lateness Cost form= 2 

for m = 2 equation (5 .12) becomes 

ro s-1 
E(LC) = ~ K(t-s) 2f(t) - ~ k(t-s) 2f(t). 

t=O t=O 
(5.19) 

The first series· of equation (5 .19). can be reduced from an infinite 

series to a general expression for the su,m. 

CX) 2 
. Series 1 = L K(t-s) f(t) 

t=O 

eo 2 . 2 
= ~ K(t -2st+s )ft 

t=O 

= K{s 2 ·:f:.· f(t)-2si:= tf(t) + ~ t 2£(t)l. (5.20) 
0 0 0 'J 

The second moment of the Poisson is 

( 5. 21) 

Substituting equations (5.15), (5.16), and (5.21) into (5.20) gives 

Series 1 = K [s 2-2s(µ) + (µ 2-tµ)J . (5.22) 
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Substitution of s = µ + C:1(y-d) and a =./µ allows reduction of the infi

nite series of equation (5.19) to 

Series· 1 = Kµ [ 1 + (y-d/J .. (5.23) 

The :Unite· series of equation (5 -l~ )-'. cai:i: be mai;l;i.piil.ated :·to. give 

Series 2 = K s2 L f(t)-2s 2:tf(t) + L t 2f(t) .• 
0 0 0 

{
, s-1 . s-1 . s-1 } 

. . (5.24) 

Combining equations (5 .. 23) and (5.24) into. equation (5,19) results in 

the following expression .. for e:,i:pected lateness cast for the case m = · 2. 

{
. ~ . 2] . 2 s-1 . s-1 s-1 2 } 

. E(LC) = K µ l+(y-d) . -s .L.f(t) +·2s.L t!'f(t). ".'~ t f(t) . 
0 0 0 

. for t = O,. 1,. 2, •••. (5.25) 

Expected _Lateness-~ 1,.Q,L m =. 3 

. For m ·= 3, eq\,latian. (5 .12) becames 

·.m . 3 s-1 3 
E(LC) = ~ K(t-s) f(t),- ~ K(t-s) f(t). (5. 26) 

t=O t=O. 

Proceeding as befare, the first series.cap be reduced ta a $eneral ex

pression. Exp~nsion of (t-s)3 and distribution of.the summatian ~ives 

Series 1 = K{.-s3 f: f(t) + 3s2.:f: t;f(t) -
. .o O 

3s:.f:t2f(t) +.i:t3f(t)}, 
0 0 

.(5.27) ,, 
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The third moment of the Poisson,is 

, (5.28) 

Substitution of equations (5,15), (5.16), (5,21), and (5.28). into equa-

tion (5.27) gives 

(5. 29) 

Substitution of s = µ + e,-(y-d) and er =./µ allows reduction.·of the infi-

nite seri•s,of equatiori (5.26) to 

Series 1 = Kµ [ 1-3./µ(y-d).-./µ.(y-d) 3 ] • (5.30) 

The finite series of equation (5.26)can be manipulated to give 

S~ries. 2 = K{-s3~ f (t) 
0 

+ 38 2 ~l tf (t)-3s ~l t 2f (t) + ~l t 3 f (t)J. 

(5.3i') 

These·canbe·combiried according to equation (5.26) inte the fellowing 

expressi,op. for expected lateness. cost for the case m = 3. ·. 

{ [ 3] 3 .s-l 
E(LC) = K µ 1 .. 3/µ(y-d),,-./µ(y-d) + s ·~· f(t) 

s-1 s-1 s-1 } 
-3s 2.L tf(t) + 3s -·~ t?f(t) - -~ .. t 3f(t) . , 

O .o O 

for t = O, 1, 2, ••• (5.32) 
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Fibonacci Search for y* and TVC* 

Expressions for TVG(y) may now be written utilifing the expected 

cost components.of inventory value-and storage space from equation (2.14) 

and the expected lateness cast components just developed •. Far the case 

of m = 1, 

~
VP+Wch] · { . s-1 s-1 } 

TVC(y) = 365 y/µ + K · .. ./µ(y-d) + s L f (t) - L t;f(t) , 
t=O t=O 

. -· 

Far the· case af m .·= 2, 

TVC(y) 

s-1 . } 
- ~ t 2f(t) . 

For the case of m.= 3, 

fer t = 0, 1, 2, ..•. 
,i,: 

t = 0,.1, 2, •.. 

. (5,33) 

(5.34) 

[Vl'+w'li] { . [ . 3] 3 s-1 TVC(y) = 365 y-/µ+K µ ;t-3./µ(y-d)-./µ(y-d) + s ~_f(t) 
. ~o 

s~l s-1 s-1 } 2 · 2 · · 3 
. -3s -~ t.•f(t) + 3s 2: t f(t) - L t f(t) . , 

t=O t=O t=O 

t =·o, 1, 2, .••• (5.,35) 

Also, the restrict:i.ans of equations (5,5), (5.()), and (5.7) must pe met 

for the TVC expressions to be val.id. 
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µ = 0, 1, 2, (5.5) 

Ya = o, l, 2, (5.6) 

dcr = 0, 1, 2, (5.7) 

Equation (5.6) restricts the buffer to a whole number of days, and equa

tion (5.7) requires that expediting procedures are started a whole number 

of days prior·to the requirement date. 

The parameters appears.in.both the summand and as the terminal 

value·of the index of summation in each of the expressions for TVC(y). 

Recalling equation (5.10) it i, import;~nt to note thats.is a function 

of y. 

s = ·µ +'1'µ(y-d) (5.10) 

Thus, TVC(y) is net easily differentiable with respect toy. As a 

result the optimal TVC* and y* must 'be found utilizing a search pro-

cedure as was the case with the·chi-square distribution of delivery 

date. Again, a Fibonacci search can pe employed; and a computer program 

was written t.o facilitate the calculations for an optimal buffer and 

TVC* for the assumption of a Poisson distribution for delivery date. 

A program to calculate TVC for a given set of cost parameters is 

included in Appendix C •.. This pregram, ,written. in FORTRAN, will calcu-

· 1ate TVC based oh the expressions stated in equations(5.33), (:i.34), 

and (5. 35) depending. on which v.alue of m is spec:i,fied in the input d,;1ta. 

This program will pe m1;>st helpful.in calculating the expected l'VC of 

procurement fer a given<buffer time,. expediting strategy, and set of 

cost parameters. 

A program utilizing Fibonacci search. to find the optimal buffer 

and TVC* is.included in Appendix D •. This pragram searches TVC(y) over 
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a range of buffer lengths from Oto 88 days. It converts the integer 

value of the buffer to the corresponding value of y, calculates TVC(y), 

and continues further evaluations of buffer and TVC(y) until the optimal 

buffer is found, Searching values of buffer from 1 to 88 days requires 

9 evaluations of TVC, and the different values of buffer evaluated are 

logged as the search progresses. If the optimal buffer is found to be 

·one day after the nine evaluations of TVC, a tenth evaluation will be 

made for a zero buffer to determine if it is the minimum TVC. Each 

evaluation of TVC(y) is recorded in the output, and a.curve-can be plot

ted from these-to determine the sensitivity of TVC to buffer for any 

set of cost parameters, 

Sample Problem 

The same problem presented in Chapter III will pe solved under the 

assumption of a Poisson distribution of delivery date ta compare the re

sultsobtained under the three distribution assumptions. All cost 

parameters will.remain the-same. This time itis decided to use a 

Poisson distribution to describe-the delivery date-random variable-of 

the Uncertain Delivery Company. Since delivery can be expected within 

al3 day interval with probability of .90, the distribution parameterµ 

is found to beµ =·16 from Table II. The Least Cost Company's policy 

concerning:expediting procedures is the same as previously with-expe

diting inquiries and other procedures beginning eight days prior to the 

requirement date if the part has not been received. 

It is.desired to calculate the expected TVC·of procurement for-the 

buffer time of four weeks that is generally used .in dealings with the 

Uncertain Delivery Company. Calculation of the optimal buffer and TVC* 



is also desired. 

The cost parameters are as follows: 

V = $190,000 

P = .15 per year 

W = 10 square feet 

Si= $182.50 per square foot per year 

K = 10 

m = 3 

d = 8 days/Iµ= 2 

.90 range on Delivery Date= 13 days 

µ from Table II= 16 

· For a buffer of 28.days, y = 28/4 = 7 .o. 
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From equation (5435) the expected TVC of procurement may be calculated. 

TVC = c·(190.000) ( .15) + (10)<182 .50)] ( 7 )(4 ) 
365 

{ [ J 35 t -16 
+ 10 16 1-(3)(4)(7-2)-4(7-2} ·+ 363 ~ 1\1 

·. . 35 16t~-16 35 16t~-16 
• -<3)(36/ L t t! + (3)(36) L t 2 t: 

t=O t=O 

(5.36) 

From the.computer program;in Appendix c,.thecost compop.ents and ex-

pected TVC-for the 28 day buffer are calculated as follows. 



· Expected Inventory Value Cost = $2186,30 

Expected Storage Space Cost = 140.00 

Expected Lateness Cost = .35 

Expected TVC of Procurement = $2326.65 
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As in the case of the chi-squc;1re the expected lateness cost for this 

buffer is ne.gligible. . The expected TVC of procurement under the· assump

tion of a Poisson del:i,.ve:t;"y date differs by only $.05 fromtheTVC calcu

lated under the assumption of a .chi-square distribution. The output of 

the program.in Appendi,x C for this problemis given in Figure-20. 

Calculation of the optimal buffer is done tllrough a Fibonacci 

search of TVC with the aid of the computer program in Appendix D. The 

optimal buffer is found to be 11 days and the minimum TVC* is $1,059.07 . 

. This cotn_pa:t;"es with an optimal l:!uffer of 12.days and TVC* of $1,220.58 

calculated under the assumption of a chi-square distribution of delivery 

date. The two solutions-for the optimal buffer vary by less.than 10% 

and the-expected TVC* by slightly over 10%. Thus,_ tlle assumption of 

the Poisson and the chi-square to describe the delivery date produce 

very similar re$ults. 

The· output of the FORTRAN program of Appendix D is shown. in Figure 

·2L It should be noted that use of anll day (optimal). buffer instead 

of the 28day buffer would result in expected savings in the TVC of 

procurement of $2,376.70-$1,059~07 = $1317.63. Although $145 additional 

lateness.cost can be expected with the shorter buffer, substantial 

savings can be· expected fr-om. lower holding. costs. 

Expopential Lateness Cost With Poisson Delivery 

All developments of TVC. in Chapters III·, IV, and V have· used 
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PARAMETERS ARE AS FOLLOWS -- U=MEAN OF POISSON= 16e0 
Y= 7.000 

. D= 2 eOOO 
EXPEDITING COST EXPONENT CM)= 3e000 

.EXPEDITING COST SCALE FACTOR= 10~000 
SPACE REQUIRED= lOeOO 
COST/SPACE/YEAR= 182 .. 50000 
VALUE OF PART= 190000e00 
COST OF CAPITAL= el500 
NUMBER OF TERMS IN SERIES= 35 

EXPEDITING STARTS D*SIGMA = 8 DAYS BEFORE REQUIREMENT DATE. 

THE LATi:NESS COMPONENT OF TOTAL VAR. CPST = .3460 

THE STORAGE SPACE COMPONENT OF TOTAL COST= 139.9999 

THE TIED-UP CAPITAL COMPONENT OF TOT COST= 2186.3011 

THE TOTAL VARIABLE COST OF PROCUREMENT= 2326.6470 

THE BUFFER FOR THIS Y = 1.00 IS Y*SIGMA OR 28 DAYS. 

Figure·20. Sample·Problem Output of FORTRAN l'rogram of Appendix.C 
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PARAMETERS ARE AS FOLLOWS-- U= MEAN OF POISSON= 16.0 
D• 2 oOOO 
EXPEDITING COST EXPONENT CM)= 3.ooo 
EXPEDITING COST SCALE FACTOR= 10.QOO 
SPACE REQUIRED= lOoOO 
COST/SPACE/YEAR= 182.50000 
VALUE OF PART= 190000.QO 
COST OF CAPITAL= .1soo 

FIBONACCI SEARCH NO. 9, BUFFER FOR THIS CALCULATION OF 
THE LATENESS COMPONENT OF TOTAL VAR. COST 

T.v.c. IS 
.5430 

274.9999 
4294.5204 
4570.0633 

THE STORAGE SPACE COMPONENT OF TOTAL ~OST 
THE TIED-UP CAPITAL COMPONENT OF TOT COST= 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

~!BONACCI SEARCH NO. 8, BUFFER FOR THIS CALCULATION OF 
THE LATENESS COMPONENT OF TOTAL VAR. COST 

T.v.c. Is 
.4570 

169.9999 
2654.7944 
2825.2513 

T'lE STORAGE SPACE COMPONENT OF TOTAL COST 
T.iE TIED-UP CAPITAL COMPONENT OF TOT COST= 
THE TOT.\L VARIABLE COST .OF PROCUREMENT= 

FI BONA CC I SEARCH NO. 7., 8UFFER FOR TH IS CAL CU LAT I ON OF 
THE LATENESS COMPONENT OF TOTAL VAR. COST 

T.v~c. 1s 
.3410 

10409999 
1639.7259 
1745.0668 

THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE TIED-UP CAPifAL COMPONENT OF TOT COST= 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

FIBONACCI SEARCH NO. 6, BUFFER FOR THIS CALCULATION OF 
THE LATENESS COMPONENT OF TOTAL VAR. COST 

T.v.c. 1s 
49.9080 
64.9999 

101500684 
1129.9763 

THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE T)ED-UP CAPITAL COMPONENT OF TOT COST= 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

FIBONACCI SEARCH NO. 5, BUFFER FOR THIS CALCULATION OF 
THE LATENESS COMPONENT OF TOTAL VAR. COST 

T.v.c. IS 
593.3150 

39.9999 
624.6574 

1257.9724 

THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE TIED-UP CAPITAL COMPONENT OF TOT COST= 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

FIBONACCI SEARCH NO. 4, BUFFER FOR THIS CALCULATION OF 
T~E LATENESS COMPONENT OF TOTAL VAR. COST 

T.v.c. 1s 
8.2910 

79.9999 
1249.31:>0 
13'.:l7.6059 

THE STC~AGE SPACE COMPONENT OF TOTAL COST 
THE TIED-UP C~PITAL COMPONENT OF TOT.COST= 
THE TOTAL VARIA8LE COST OF .PROCUREMENT = 

FIBONACCI SEARCH NO. 3, dUF~ER FOR THIS CALCULATION 
THE LATENESS COMPONENT OF TOTAL VAR. COST 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE Tl ED-.UP CAPITAL COMPONENT .OF TUT COST = 
THE TOTAL VARIABLE COST OF PROCUREMENT = 

FIBONACCl SEARCH NO. 2, BUFFER FOR THIS CALCULATION 
THE LATENESS COMPONENT OF TOTAL VAR. COST 
THE STORAGE SPACE COMPONENT OF TOTAL. COST 
THE TIEb-UP CAPITAL COMPONENT OF TOT COST= 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

I JBONAC~I SEARCH NO. l, BUFFER FOR THIS CALCULATION 
THE LAT~NESS COMPONENT OF TOTAL VAR. COST 
THE STORAGE SPACE COMPONENT OF TOTAL COST 
THE TIED-UP CAPITAL COMPONENT OF TOT COST 
THE TOTAL VARIABLE COST OF PROCUREMENT= 

OF T~v.c. IS 
145.1730 

54.9999 
858.9040 

1059.0770 

OF T .v.c. IS 
238.1040 

49.9999 
78008218 

1068.9258 

OF T. V • C • IS 
86.2350 
59.9999 

936.9862 
1083.2212 

55e0 DAYS 

34.0 DAYS 

21.0 DAYS 

13.0 DAYS 

a.a DAYS 

16.0 DAYS 

11.0 DAYS 

10.0 DAYS 

12.0 DAYS 

THE OPTIMAL TOTAL EXPECTED VARIABLE COST OF PROCUREMENT IS 
THE BJFFER TIME RESULTING IN THIS MINIMUM TVC IS 11.Q DAYS. 

1059.07 

Figure· .21. Sample· Problem Output of FORTRAN Pro~ram of Appendix D 
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equation (2.8) to represent the costs of lateness over time •. In equation 

. m 
. (2.8), C(x) = Kx for x -~ O, integer values,-of 1, 2 and 3 were allowed 

form. This is because integer values for m_were required as a.part of 

each of the mathematical developments of e::icpected lateness. cost pre-

sented thus-far, Manipulation of K for ~ifferent integer values-of m 

should allow sufficient flexibiUty in defining lateness.costs so that 

there should be no difficulty_ in applyip,g _ the model to rea_l-world. pro-

curement S,ituatiQns. The consistent use of equation (2.8) also resulted 

in models with_commop, parameters which will facilitate comparisons in 

later chapters. 

However, an even more flexible expression of !ateness.cost is pos-

sible·for the assumption of a Poisson distribution of delivery date. 

The Poisson. p, d. f. is. such. that exponential terms are easily manipu-

lated in conjunction with_ it. This section will develop a TVC equation 

for an exponential lateness cost function for those who may prefer its 

use. 

AssUit1e that lateness costs are incurredin the saQte manner as 

-previously, but now assum,e that they are approximated by the function 

C(x) = K;e'!IIX x = 0, 1, 2, ... 
.(5 .37) 

= 0 x< 0 ' 

where Kand mare both non-negative scaling constants. Since there is 

no requirement for m to be an integer, equation (5. 37) is a more flex-

ib1e cost function than _equation (2-.8). 

A.change of variable is now introduced to put the lateness.cost 

fu11ction in the same. terms of the Poisson- p •. d •. ;f. of equation (5.1). 

The changeof variable will be the same as that used to obtain.equat;on 



(5 .4). Let 

at 

x = t-(µ+yo--dcr) 

t = x+(µ+yo--do-) 

x = O, t = µ+ycr-dcr = µ+cr(y-d) 

x = dcr , t = µ +ycr 

C(t) = Kem[t-(µ+ycr-dcr)] , t = µ+cr(y-d), 

µ+cr(y-d)+l, 

µ +cr (y-d)+2, 
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= o, t < µ+cr(y-d). (5.38) 

As was the case previously thechange of variable does not alter the 

value of the lateness cost function at any point with respect to the 

requirement date;. it merely shifts· the origin. The relati.cmship of 

C(t) and the p. d. f .. of delivery date is shown in Figure 22. 

The expected' lateness cost can now be represented as 

·~·(y-d)-1 .t -µ ' 00 r; . ,1'·t·.;.µ 
E (L. C) = ·. . (0) ~ + -.:::::--- K mLt-(µ+ys--dO").Jµ e 

t' L.- e t'. • 
t=O • t=µ+cr(y-d) ' 

(5.39) 

In order to simplify notation, equation (5.10) will be employed as 

before. 

. s = µtycr-dcr = µ+cr(y-d). (5.10) 

Equation (5.39) can be manipulated to give a finite series expression 

for expected lateness cost as follows. 



f(t) 

• • (. rl 
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~ ·µ 
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Figure 22. Poisson Delivery Date Distribution and Exponen
tial Lateness Cost Function 
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CQ t ·-µ 
...: ~ m(t-s)1,1 e 

E(LC) - .L__ Ke , 
t=s t. 

(5.40) 

CQ. t -ti 

""'""". m ( t- s )µ e """ = .,c..._ Ke , 
t=O . t, 

s-1 t -µ 
~ K m(t-s) µ e 

- ,L_ e I 

t=O t. 

·t m 
-ms-µ~em ~ (µem) ·e -µe 

.- Ke · . .L....;.. ·· t ! · 
t=O 

s-1 t -µ 
_ ~ K tri(t-s) µ e 

,.L.__ e t' 
t=O • 

(,5.41) 

· s-1 t -µ 
= KJl(em-1-m)-mlµ(y-d) [ 1 ]-~ Kem(t-s) l,l ~! (5 .42) 

Similar manipulations can be employed to the finite series to give the 

following.expression for lateness.cost . 

. Tii.is expression may be readily evaluated for giv.en values of K, µ, m, 

y, and d. It is the product of a constant times a probability. The 

term in the brackets J.:s 1.0 minus the C'l,lmulative probability of a 

Poisson random variable with mean= µem from zero to[µ+./µ(y-d)] . Be

cause the tables available on the Poisson are quite extensive, this 

quantity may be·evaluated easily 1 Tii.is will facilitate ,the calculation 

of expected lateness cost,. 

The expected TVC of procurement may be expressed as follows for 

the·case of exponential lateness.cost, 

·[·VP+W~J: TVC(y) = 365. y/µ. 

m ~ + Keµ(e ~m-1)-m./µ (y-d)Ll µ+r~_v-d)-1 m.t -µemj .: . -Cue ) e 
• I . • 

O t. 
t = (5~44) 
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Integer values are required for µ, y.(µ (the buffer), and diµ (the 

number of days prior to requirement date that expediting starts if de

livery is not made). Tlle optimal buffer may be found through a Fibanacci 

search of noti-zerQ buffer times as was done for the case of the Poisson 

distribution of delivery with m = 1, 2, and 3 in p,rev~ous sections bf 

this.chapter. 



CHAPTER VI 

SENSITIVITY ANALYSIS OF PARAMETERS 

In the preceding chapters models were developed to aid in the solu

tion of a diffict1lt procurement problem: howlarge a buffer should be 

allowed when the requirement date is firm and the delivery date for an 

item is uncertain. This chapter will discuss the sensitivity of respon

siveness of the models to changes.in parani,eters. The emphasis in Chap

ter VI will center on answering questions of the follqwing type: if 

the estimate of a certain parameter is in error by a certain amount, by 

how much will the buffer be in error and what increase in the total 

variable cost can be expected? In addition to the sensitivity of the 

cost parameters, this chapter will discuss dHferences in the buffer 

and TVC* calculated under the models developed in Chapters III, IV, and 

V for dif~erent assumptions for the delivery date distribution. 

In many instances sensitivity analyses such as these can be ac

complished quite readily with the introduction of error ratios and 

algebraic manipulation of TVC equations. Unfortunately the TVC expres

sions of the TVCmodels in Chapters III, IV, and V do not allow for 

this type of analysis. Rather, computer simulation was used to find 

optimal buffers and TVC* for several different combinations of paran:teters 

representing a variety of procurement situations •. This computer simu

lation provided a very efficient method of analysis for the models de

veloped under the assumptions of the Poisson and chi-square distributions 
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of delivery date since·theFibonacci search procedure provided TVC 

evaluations·for a wide·range•of buffers around the optimum. For calc1,1-

lations involving the assumption of a uniform delivery date distribution, 

a des~-top•logrithmic computer proved quite satisfactory. 

Analysis of the sensitivity of the models is further complicated 

by. the large number of p~:rameters in:volved. A. complete analysis of all 

possi.ble combinations of delivery date time intervals, lateness cost 

parameters, holding cost parameters,. and the different delivery date 

distributions is beyond the scope of this paper. Thus, the discussion 

will be limited to specific examples which illustrate the degree of re

sponsiveness of tb.e models to changes in one particular parameter of 

the models while holding other parameters constant. 

Sensitivity of Buffer to Assumptions 

. in Delivery Date Distribution 

If the wrong assumption is made·concerning the proper p. d. f. to 

be used to describe the delivery date random variable,.how does this 

affect the optimum buffer and the expected TVC of procurement? The 

same 0 problems that necessitated a Fibonacci search for optimum TVC als() 

prevent a general mathematical formulation of sensitivity. However, 

considerable insight into this.question can be gained through compari

sons of opti,mal buffers and TVC* calculated under the three models de

veloped for similar procureme1;1t situations. For a valid comparison the 

calculations sho·uld involve the same cost parameters and level of un

certdnty in delivery. As discussed previously, the standard deviation 

of a ·probability distribution is a weU-accepted measure of uncertainty, 

and the sample problems in Chaptersl;II, IV, and V were formulated such 
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that the standard deviations in each case were very similar (a= 2.0). 

Thus, the question concerning.sensitivity of the buffer to errors in 

the distribution.assumption will be discussed with respect to the sample 

problem presented in. earlier chapte;rs. 

Comparison of the calculations .for the sample pro.blem. shows the 

three different assumptions give very similar results for the optimal 

buffer and TVC*. The results are summarized in Table III along with 

·. the averages of results for the three distributional assumptions and 

the per cent deviation.from the average for each case. Tlie three opti-

· mal buffers. deviate from. the average by less than 10% while the expected 

TVC* varies. from the average. by slightly more than that for the as sump-

tions of a uniform and a .chi-square distribution for delivery date. 

Buffer (days) 
% Difference 

TVC*($) 
% Difference 

TABLE. III 

OPTIMAL BUFFER AND TVC* IN SAMPLE PROBLEM 
FOR THREE DISTRIBUTION.ASSUMPTIONS 

Uniform Chi-Square Poisson 

10,2 11.9 11.0 
7.5% 7.9% 0.3% 

949 1221 1059 
· 11.8% · 13.5% 1.6% 

Average 

11.03: 
--

1076 
. --

Calculations involying an assumption of uniform pr0bability of de-

livery over an interval wquld certainly be expected to give a slightly 

smaller buffer and. lower TVC than those calculated Ullder an assumption 



: 108 

of the chi-square or Poisson at the same level of uncertainty. This is 

·because the uniform dist;ribution has equal probability of incqrring 

• lateness charges at all delivery dates within a given interval, and 

thus has more·of its probability-weighted in the very early possible 

deU,yery elates where· lateness costs. are negligible than do the Poisson 

and chi-square. Also, the unifo;rm.distribution does·not have a· long 

"tail" which allows pr19bability of delivery at times :well past the re

quirement date when lateiless costs are extremely high. Thus,. one would 

expect optimal buffers calculated under a uniform distripution to be 

slightly: less than those for the chi-square and Poisson as is shown-in 

the results of Table III. 

One might as~just how.much of an.increase in cost might be ex

pected if the wrong assumption is made· in. the choice of a p'. d. f. for 

the delivery date random.variable with all other things equal.·· The 

compl:!,risap. of all. combinations. of erroneaus assumptions in delivery date 

p. d. £. are given in Table IV. for the data of the sample problem solved 

earlier. For example if a uniform distribution. is ass~ed, calculations 

will yield an-optimal buffer of 10.2 days. If, in fact, the randam 

variable deU,verydate·has a chi-squaredistributian with equal variance, 

the 10.2 day. buffer used because of the erraneous assumption gives an 

.expected TVC.of $1272 which.is $51 or 4.2% above the TVC* that would b.e 

expected if the chi-square distribution had. been correctly assumed and 

the optimal buffer of 11.9 days used. If the true distribution were a 

Poisson, the 10.2 day, buffer used wquldresult.in an expected TVC of 

$1069 which is $40 or 0.9% above the TVC* of $1059 for the Paisson which 

would be expected if the aptimal buffer of 11 days had been used. Note 

that the 10. 2 day. buffe:i;- specified by the uniform must be "rounded" to 
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10 days in order to calculate the expected TVC which would result under 

the true Poisson distribution since only integer values of buffer are 

allowed in. the P.oisson calculations. 

Assumed 

TABLE IV 

BUFFER, TVC,. AND PER CENT ERROR RESULTING FROM 
INCORRECT ASSUMPTIONS FOR DELIVERY DATE 

DISTRIBUTION IN SAMPLE PROBLEM 

True Distribution 

Distributi,on 
·Uniform Chi-Square 

Uniform. 10.2 days · 10. 2 days 
$949 $1272 

Optimum 4.2% 

Chi-Square 11.9 days 11.9 days 
$1007 $1221 
6.1% Optimum 

.. 
Poisson 11 days ·:lLdays 

$963 $1234 
1.5% .• 1.1% 

Poisson 

10.days 
$1069 
0.9% 

12 days 
$1083 

2.3% 

11 days 
$1059 

Optimum 

Examination of Table IV shows that errors in assumption of the de-

livery datep. d. f. result in very small increases in the expected TVC. 

The largest error combi,nationof 6.1% results if the chi-square is as-

sumed when the delivery date actually has a uniform distribution. If 

there is no information which would indicate the true form of the de-

livery.date p. d. f.~ Table IV would.indicate the Poisson.should be 

assur~ed to calculate the optimal buffer to use in establishing. delivery 
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date., This is because the optimal buffer fo.und under the Poisson as

sumption: lies petween the two ~pecified by the uniform and chi-square 

assumptions, and e;xpected increases in TVC are only 1.5% .and 1.1% re

spectiyely if the Poisson is being ass~ed erroneously. 

The true distribution of delivery date in a given situation may.be 

of a form.other than those considered in this dissertation, even though 

the distributions .used .in mathematical developments were chosen both 

·for their appropriateness to descr:lbe the delivery date random variable 

and to facilitate real world application of the models. If it is desired 

.to examine the effects of assumptions involving.other distributions, 

models to find TVC and optimal.buffers for these distributiens must l>e 

derived. 

Not only do the models derived present similar results.for the 

optimal buffer decision and TVC, but they also produce very similar 

resµlts for expected TVC over a complete range·of buffer lengths. Table 

V·presents a tabular eomparison, of the expected·TVC.for each distri

buticmal assumption. for buffer lengths ranging from 28 .days, where late-

. 11ess costs .are negligible, down to a zero buffer. Note that the expec.ted 

TVC's are of the same magnitude at each·buffer length and that they fol

low a similar pattern. Note also. that the expected TVC calculated under 

the assumption of a·uniform distribution is less than the expected TVC 

calculated.under the assumption of the chi-square and Poisson distri

butions•for large buffers.as was discussed earlier. TVC ealculations 

are·possible for the uniform case only in the feasible region 

O s; y s; (d +"3) which for the sample problem becomes the interval 

(O, 3.77). 
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7.00 

6.00 

5.00 

4.00 

3.50 

3.00 

2.75 

2.50 

2.25 

2.00 

1.50 

1.00 

. o. 75 

0.50 

0.25 

o.oo 

TABLE V 

COMPARISON OF TVC CALCULATIONS FOR DIFFERENT 
BUFFER LENGTHS IN. SAMPLE PROBLEM 
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Buffer Total Variable Cost for Each Distribution 

(Days) Chi-square Poisson Uniform 

28 $2327 $2327 -
24 1996 1994 -
20 1672 1662 -
16 1380 . 1338 -

14 1270 . 1191 $1175 

12 1221 1083 1021 

11 1234 ·1059 968 

. 10 . 1286 1069 949 

9 1391 . 1128 985 

8 .. 1567 1258 1100 

6 2231 1838 1686 

4 3537 , 3088 2990 

3 4540 4075 4019 

2 5846 5373 5366 

·1 7513 7036 7087 

0 960.0 9121 9242 
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This concludes the discussion of the sensitivity of the models-of 

this dissertation to diffe:rences and errers in the assumption concerning 

the farm of the de],iverydate distribution. The sensitiyity of dif

ferent assumption combinations will p,rebably vary slightly with dif-

· ferent cost parameters and leveh of uncertainty. However, the in-depth 

analysis-presented for this case should give tl:ie·reader some feel for 

the magnitude·of errors thatmight·be encountered in this assumption. 

The analysis of Table IV.indicates that these.errors are slight, espe

cially if the Poisson is. chosen. in situations where there is complete 

uncertainty. cencerning the true form of the distribution •.. The method

ology presented here should also aid those applying the models in de

termining the siensitivity of a buffer decision for a particular prq

curement situation. 

Sensitivity of Buf:f:er to Uncertainty.in Delivery.Date 

One of the tl\<>St impertant decisions in the application of the models 

derived is the determination of the 'time interval within wh.ichdelivery 

will most likely occur. In the case of the uniform.delivery date dis

tribution the length of the interval which should brac~et the true de

livery date is denoted. by the parameter "b." In the case of the chi

square delivery date distribution, a 90%, or 98% range on delivery date 

must 1:le specified in erder to determine the degrees of freedom "r" to 

use in TVC calculations. A 90%range may also be·used in tb,e case of 

the Poisson, distribution. to determine the proper value ef 'µ." for TVC 

calculations. Each of these distribution parameters is proportional to 

the standard deviation ef the delivery. date distribution associated with 

it. The greater the uncertainty concerning the actual time when 
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delivery might occur, the longer the time interval necessary in order to 

bracket the actual delivery date at a given probability level. 

If thewrong_time interval is used in calculations, to what degree 

does this affect the optimal buffer and e:,i;pected TVC of procurement? 
\ . 

This question will be ·~xamined in detail for the case of the Poisson 

delivery date distribution only since in the previous section it was 

shown.that calculations under the three different assumptions for de-

livery date distribution produced very similar results. The TVC for 

different buffer lengths was calculated for values ofµ= 8, 11 and 16 

corresponding to 90% ranges on delivery date of 9, 11, and P days, 

respectively, The curves of TVC vs. buffer length were plotted as shown 

·in Figure 23. The error resulting from incorrect assumptions in tl).e 

90% range: -on delivery date are shown. in Table VI. 

Assumed 
Value 

of Range 
(µ) 

;;:~· . 
,--

,9 days 
(µ. =.: 8) 

-

. 11 days 
(µ = 11) 

- -

13 days 
(µ = 16) 

TABLE VI 

BUFFER, rvc, AND PER CENT ERROR RESULTING FROM 
INCO:RRECT ASSUMPTIONS OF DELIVERY DATE RANGE 

I --
True Value of Range (µ) 

9 days 11 days 
(µ = 8) (µ = 11) 

-

7 days 7 days 
$678 .$870 

1~ptimum -4.6% 

.- 8 days 8_days 
$714 $832 
5. 3% Optimum 

-- --- ---

11 days 11 days 
$919 $940 

35.5% 11.5% 
-

13 days 
(µ = 16) 

7 days 
$1484 
40.1% 

8 days 
$1258 

·18.8% 
--

11 days 
$1059 

Optimum 
--
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Note in Figure 23 that the curves of TVC vs. buffer all approach 

. a straight line as the buffer gets large. This line is the expected 

holding cost and can. be drawn as shown in the figure. The difference 

between the expected"TVC curve and the expected holding costs is the 

expected lateness cost which approaches zero as the buffer becomes 

·large (15.days or more). In.the following sections other examples may 

, be observed in which. the curves of TVC vs. 1:mffer approach the same line 

·for large buffers, and tlle same reasoning.can be applied in those cases • 

. In Table VI the buffer, expected TVC, and per cent error resulting 

from errors in estimating the delivery date range are given for the 

sample problem. U a 90% range on delivery of .11 days is assumed when 

the actual 90% range is 9 days, the 8 .day buffer specified by the range 

of 11 days:results in an expected TVG that is 5.3% above the optimum 

for the 9 day range. Thus a 22% error results in a 5.3% increase in 

TVC. If the true value of 90% range is 11 days and a range of 13 days 

is erroneously assumed, this 18% error results in an increase in ex-

. pected TVC of only, 11.5%. If a range of 11 days is erroneously assumed 

for a true range·of 13 days, this 15% error results in an increase in 

expected TVC of 18.8%. Thus, the sensitivity of the II).odels to.errors in 

choosing the 90% range·of delivery date varies according to the magni

tude of the range. The larger the range, the greater the per cent 

error in TVC. 

Part of this increase in sensi,tivity,with larger ranges may be 

attributed to the fact that the parameter "d" is being held constant 

in the analysis. As the range ipcreases, the Poisson parameterµ and 

the standard.deviation <J alsa increase. If dis held canstant, then 

de:r (the number of days before requirement date that expediting starts) 
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also increases as cr increas~s. This is in keeping with the assumption 

that as the uncertainty,increases, expediting would begin earlier. 

Earlier timing.of expediting.tends to.increase the optimal buffer and 

TVC* and, thus, sensitivity. If this assumption does not .hold and the 

quantity d<.:1 were held constant, the sensitivity of TVC to errers in de

livery date range would probably net be as great. 

It should alsope noted in sensitivity comparisons involving the 

Poisson that the use of the Poisson requires.integer values.for the 

buffer, and.the resulting error comparisons are not as accura,te as 

would be the case if the chi-square model were being used. Even though 

only.integer buffers (whple days)·would pe used in a real world appli

cation of the models, the decimal fractions are helpful in gaining a 

perspective of the trends in sensitivity. 

Sensitivity of Buffer to Errors.in 

Lateness Cost Parameters 

In the development of the models of previous chapters, three 

parameters were used to define the costs of lateness incurred for de

. livery a,t any ~iven.time. The lateness cost function was defined in 

equation (Z.8) as 

C(x).= Kxm 

= 0 

where K = a scaling constant 

for 

. for 

x•~ 0 

x .< 0 

x = the delivery date (a .. random variable) 

m - an exponent determining the rate of increase of lateness 

costs with.time. 

(6.1) 
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Lateness costs were defined to s.tart at a point x = 0 defined to be ds

days prior to the requirement date. Thus, another important parameter, 

"d," may be defined as ) 

d = the number of standard deviations of the delivery date 

distributionbefore tll.e requirement date that lateness 

costs are first incurred. 

As the parameter "d" determines the origin of the lateness cost func

tian with·.re1:1pect to the requirement date, it indicates the "timing" of 

the first of the costs of lateness. incurred •. For this reasan, "d" will 

be referred to as the "timing parameter"·of lateness costs. The rate 

of increase af lateness costs with time for different possible delivery 

dates depends upon the urgency with which the part is needed and the 

costs of clelays stemming fl;'om late delivery. The rate of increase of 

lateness costs with tim~, "m," will thus be referred to as the "urgency 

. parameter" of lateness cost. The parameter "K" will be referred to as 

the llscaling parameter.,'' The sensitivity of TVC to each of these late

ness cost parameters:will pe discussed separately. 

-Sensitivitv.2.f Model _to_Scaling.Farameter "!S" 

If the·wrong.value·of K is-used in calculations, how does this af

fect the optimal buffer and expected TVC, of procurement? This questicm 

will be exatllined for the procurement $ituation involved in the sample 

pro.blem discussed previously under the assumption of a ¢hi-square dis

tribution of delivery date. The curves of TVC vs. puffer are plotted 

in Figure 24 for values of K = 8, 10, 12, 20, and 30. Note that the 

cU.rves are much fa:tther apart far K = 8, 10, and 1;2.than they would be 

fer values of K = 28, 30, and 32. Thus the optimal buffer is i::i-ot a 
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linear function of K. However, it is also of interest to note that the 

locus of minimum points-of the TVC curves is a straight line which 

-would indicate that the optimal buffer is directly proportional to some 

function of I<,. The effect of er:t;"ors in the estimation. at,:·:the,-:sc·al:;,l';ijf. 

paral\leter K for the sample problem are summarized in Table VII. 

In the procurel\le:n,t situation of Table VII, the lrnffer and expecte~ 

TVC of procurement are not greatly sensitive to errors in I<,. If the 

true value of K.is e.o and a value of 12.0.is assumed (an error of 50%), 

the resulting increase ··in expected TVC is only 1.4%. It is noticeable, 

however, that errors on the low side of the true value of Kare more 

costly than errors on the qigh side. For example, if the true value of 

K_is 20.0 and a lower value of K = 8,0 is assumed and I.\Sed in calcula

tions (an error of 60.%), .the increase in expected TVC. is 10.1.%. However, 

if the.true value of K is a.o and a-higher value.of K = 20.0 is assumed 

(an error of 150%), the increase in expected TVC is only 6,3%, Also, 

for a true· vahte of K = ·· 10 as. in. the sample problem, a 20% error on the 

low side(K = 8) giyes aTVC increase of p.4% while the sal\le 20%.errqr 

(K = 12) ·on the high side gives a TVC.increase of Q.3%~ 

Although this point is of some interest, the fact that errors of 

20%.result in less than 1% increase in TVCis: of much greater importance. 

This relative insensitivity, of the model to the parameter K suggests 

_: that procurement analysts· need not go to great expense in determining a 

highly precise yaluefor K, but should concentrate more effort on other 

parameters where errors result in a greater increase in the expected 

TVC. 



Assumed 
Value 
of K 

f3. 0 

10.0 

.. 12.0 

20.0 
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TABLE VII 

BUFFER, TVC, AND PER CENT ERROR RESULTING FROM INCORRECT 
ASSUMPTIONS· FOR SCALING PARAMETER "K" 

True Va.lue ef K 

i . 

8.0 10.0 . 12.0 20.0 

.. 11.3 days 11,3 days .11. 3 days 11.3 days 
$1169 $1227 $1285 $1517 

Optimum 0.4% 1.8% . 10.1% 

11.9 days 11,9 days 11. 9 days 11.9 days 
$1175 $1221 $1267 $1451 
0.5% Optimum 0,4% 5.3% 

12.4 days 12,4 days 12.4 days 12.4 days 
$1186 $1224 $1262 $1415 

1.4% . Q.3% Optimum 2. 7% 

13.9 days 1,3.9 days 13.9 days 13.9 days 
$1243 $1265 $1288 $1378 

6 .• 3% 3. 7% .2.1% Optimum 
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· Sensitivity of Model _!g Timing_ Parameter "d" 

In this section the responsiveness of the model to changes in the 

timing parameter is discussed. Curves of TVC vs. buffer were computed 

and plotted for values.of d = 2, 2.5, 3, and 3.5 for the same procure-

ment situation as in. the last section with the exception that the ur

gency parameter m - 2 instead of 3. These curves are shown in Figure 

25. Examinationof the results of these·curves·produces a very inter

esting_observation: the optimal value of y_is.exactly. 1.00 less than 

the value of din each case. As d increases from2.0 to 3.0, y* i.n

c:reases from l.O to 2.0 in this particular procurement situation. A 

very similar result is found in procurement situations represented by 

other combinations of paran.ieters. For example,. in the sample pro.blem 

in which m = 3, as the parameter d was increased from 2.0 to 3.0, y* 

i.ncreased from 2.98 t!al, 3 •. 98. :·This would suggest a relationsl:lip. between 

y and d for the chi-sqt,1are asslimptionof delivery date that is.identical 

to that found for the case of the uniforJl\. Recalling equation (3.35) 

for the case ·ofm = 1, 

y* = d + rJ - 'f [ b: ~ .. (6.2) 

The curves of Figure 25 indicate that an intensive analysis of different 

procurement situations as represented by a variety of combinations of 

cost parameters might yield a similar equation for y* for the assumption 

of the chi-square and/or Poisson distri;butions for delivery date •. Such 

an expression would greatly facilitate application of these models as 

it would make the computerized Fibonacci search unncessary. 
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The responsiveness of y* and buffer length to changes ind presents 

an interesting.insight into the determination of the optimal buffer 

length. One might feel that the sole purpose of the buffer is to insure 

delivery by the requirement date, and that buffer lengths should be 

specified solely to insure on-time delivery. However, a more efficient 

purpose of the buffer is to minimize the total variable cost of procure

ment, including the costs of lateness .. Under this latter approach to 

defining.buffer length, which is the :foundation of this dissertation, 

the optimal buffer bears a more direct relationship to the timing of the 

expediting and other lateness costs than to the uncertainty. of the de

livery date. The responsivenessof optimal buffer length to changes.in 

buffer length can also be observed in Table VIII. 

If the wrong value of dis chosen for calculations, how does.this 

affect the optimal buffer and TVC of procurement? An analysis of this 

question.is presented in Table VIII. The timing parameter dis more 

sensitive than the scaling parameter K, but less sensitive than the 

assumption concerning the deli very date range. If a value of d 2. 0 

is used when the true value is 2.5, the resulting increase in TVC is 

only 4.4%. In general, an error of 20% in estimating d results in an 

increase in the expected TVC of only about 5% in Table VIII. It should 

also be noted that it is slightly more costly to underestimated than 

to overestimated by the same amount. For example, if the true value 

of d is 2.5, a "low estimate" of d = 2,0 results in an increase in TVC 

of 4.4%, while a "high estimate" of d = 3.0 results in a 3.9% increase. 

However, both.of theE!e errors.ind of 20% produced increases in expected 

TVC of less than 5%. 



Assumed 
Value 
of d 

2.0 

2.5 

3.0 

3.5 

TABLE VIII 

BUFFER, TVC, AND PER CENT ERROR RESULTING FROM INCORRECT 
ASSUMPTIONS FOR TIMING PARAME'l'ER "d" 

True Value of d 

2.0 2.5 3.0 

4 days . 4 days 4 days 
$650 $852 $1132 

Optimum 4.4% 15.3% 

6 days 6 days 6 days 
$682 $816 $1018 
4.9% Optimum 3. 7% 

8 days 8 days 8 days 
$765 $848 $ 982 

17.7% 3.9% Optimum 
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3.5 

4 days 
$4174 

.264 % 

6 days 
$1298 

. 13 .1 % 

8 days 
$1185 
3.2% 

10 days 10 days 10 days ·10 days 
$884 $931 $1014 $1148 

36 % 14.1% 3 .3% Optimum 



Es~imati.on of d should present few problems as a company Should 

have a definite expediting strategy concerp.ing the timing of certain 
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expediting procedures as a part of their overall policies concerning 

mate;riais.,manage111ent. After determining the standard deviation of the 

deliver~ d.ate distributi.en, the value ef d can be easily determined. 

Sensiti '\tity 2.£. Model .!.Q. l!rgency Parameter "m" 

In this section the responsiveness of the model to changes in the 

urgency parameter m will· pe examined for the sample problem under 'the 

assumptien of a Pois.son distribution of delivery. date. The plots of 

TVC vs •. buffer form= 1, 2, and 3 is shown in Figure 26. These·curves 

indicate that buffer and TVC are ~ore sensitive to changes in m .than to 

changes in any,otber para111eter with all other parameters held constant • 

. Note also that changes in·m have a dramatic effect on the shape·of the 

TVC curves where changes in the other parameters usually altered the 

·pesition of the minimum.but otherwise did not change the shape of the 

curve greatly. It must be·ref!lembered that the urgency parameter mis 

the exponent of the· delivery time in the la.teness cost function and de-

termines the rate of i;ncrease of lateness. costs with· time. Since·. m. has 

. such an important role in .. determining. the shape of the lateness cost 

.function, it is.easy to understand the high/s€'nsitivity of buffer and 
·' · .. / 

TVC .to changes in m. In addition. to Figure 26 the h:igh sensitivity of 

buffer and TVC to changes in tl)e urgency parameter m :can,pe observed in 

Table IX. 

If the wrong va1ue of m. is used. "in calculations, how does this 

affect the buffer and expected TVC of pracurement? ·Tb.is question is 

answered in Table IX for the sample problem discussed earlier under th,e 
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assumption of a P~isson dfstribution of delivery date. If the true 

value of mis t.O, the assumption of m = 2.0 (a 100% error). increases 

the expected TVC by 37% while the assumption of tri = 3.0 (a 200% error) 

increases .the expected TVC by 1050%. For a true value of m = 2.0, 50% 

errors in m_result; in increases in expected TVC of 25% and 46%. However, 

for a true value of m = 3, errors .incurred by assuming m_ = 2.0 and m 

LO result in expected TVC increases -of 192% and _762% respectively. 

Assumed 
Value 
of m 

1.0 

2.0 

3.0 

i 

TABLE IX 

BUFFER, l'VC, AND PER CENT ERROR RESULTING FROM INCORRECT 
ASSUMPTIONS FOR URGENCY PARAMETER "m" 

True Value of m 

__ LO 2.0 
' 

0 days O.days 
$80 $800 

Optimum 25% 

4 days 4 .days 
$37.5 $643 
37% Optimum 

. 11, days 11 days 
$919 $938 

-~,1050% 46% 

3.0 

.o days 
$9121 
'762%: 

.4 days 
$3088 
.192% 

11 days 
$1059 

Optimum 

·- A.,~thpugh errors in the selection of m result in increases in ex-

pected TVC of 25% and more, the selection. of a value of m should not be 

of too great c;lifficulty as_only three possible values are permitted in 

the models._ l'he urgency of a part and the magnitude of lateness costs 
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incurred for different delivery dates should be such that m~an be 

·readily determined. However, if there is complete uncertainty &bout the 

shape of the lateness cost function, Table IX would indicate the use of 

a value of m - 2 would result in a smaller increase in expected TVC if 

the true value of m were in fact one or three. 

S·ensitivity of Buffer to Errors 

inHolding Cost Parameters 

The models developed earlier each have four holding cost parameters 

as defined in equation (2.14): 

V = the value of the component in dollars 

P = a decimal fraction representingthe annual cost of capital, 

taxes, and insurance on inventory value 

W = the number of storage space units required 

Ch= the annual cost of one unit of storage space. 

Of these four parameters, two should be known with certainty in most 

procurement situations. At the time the order is.being placed, the 

value or price·of the component and the amount and quality of the stor

age space needed sho.uld be known. Errors may arise in the evaluation 

of P and Ch.although the accounting department should be able to give 

very good estimates. It should be noted that tl).ese parameters have 

probably already been evaluated several times as they are essential 

parameters in the well-known and widely used economic order quantity 

models. 

In order to evaluate the sensitivity of the models to changes or 

errors.in l).oldingcosts, it will be most convenient to lump all param

eters. into a single parameter ''H" as was done in equation (3 .10): 
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H= 
VP+wSi 

365 (6.3) 

·H represents the total·holding.costs per day for a component or group 

of cODiponents·wbich·inc:lude·both the inventory value cost and the stor-

age space \cost. Evaluation of response of Jnodels to changes in H will 

give ~ore general results than.could be·ol;>tained from.examining eitl).er 

P or St· The v1:1lue of P would be important only if the value of V were 

large, and the value of Ch·only if W were large. But by lumping all 

. holding cost parameters into the total da;i.ly holding cost H, the re-

sponse of the models to different general levels of holding costs can 

be determined. 
{ 

Curves of TVC vs. buffer are plotted.in Figure 27 for values of 

H = $40, $60, and $80 per day for the procurement situation of·the 

sample problem under an assumption of a cl}.i-square deliyery date·. dis-

tribution. Changes in Halter the shape of the TVC curve somewhat, 

especially to the right of the minimum point where the largest compo-

nents.in the expected TVC are the expected holding costs •. The changes 

in the optimal buffer are indicated i,n Table·X. 

If the estimate of the daily holding cost His in error, how does 

this affect the optimal buffer and expected TVC of procurement? Table 

X shows that the buffer and expected TVC have very low sensitivity to 

errors.in H for th,e·procurement situation of sample problem discussed 

previously under a chi-square distributionof delivery date. For a 

, true value c,f H = $60/day, .errors of 33%. result in increases in ex-

pected TVC of less than 2%. If the true value of H.is $40/day and 

H =-$80/day is assumed, this 100% error results.in an increase in 
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expected TVC of only 5.2%. Although the sensitivity of the model to 

changes in His very low in the sample problem (where the ~rgency param-

eter m = 3), procurement situations in which m = 2 or 1 might result in 

higher sensitivity to changes in H. l'his possibility should be in-

vest:igat:ed in the context of the particular procurement situation. 

Assumed 
Vdue 
of H 

$40/day 

$60/day 

$80/day 

TABLE X 

BUFFER, TVC, AND PER CENT ERROR RESULTING FROM ;I:NCORRECT 
ASSUMPTIONS FOR DAILY HOLDING COSTS "H" 

True Value of H 
. 

$40/day $60/day $80/day 

14,0 days 14.0.days 14.0 days 
$667 $947 $1227 

Optimum 1,3% 3.6% 
. 

12.8 days 12.8 days 12.8 days 
$678 $935 $ll92 
2.8% Optimum 0.5% 

12.0 days 12.0 days 12 .0 days 
$702 $943 $1184 
5.2% 0.9% Optimum 

Summary 

In this chapter the responsiveness o~ the models developed earlier 

to changes in values of the pat"ameters has been investigated. Curves 

of expected TVC have been calculated and plotted for different values 

of each parameter while holding the other parameters constant. Although 
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no mathematical derivations to indicate the general sensitivity for the 

individual parameters were possible, this examination of changes in ex

pected TVC for particular situations should be of some help to the 

reader in evaluating the models. 

The sensitivity of the optimal buffer and expected TVC,of procure-

~ent to errors -in parameters was also analyzed for the procurement situ

ation of the sample problem of Chapters III, IV, and v. The relative 

sensitivity of the different cost parameters can be compared for errars 

of about 20% in the estimation of their values in the sample problem. 

The parameters are rank;ed as :f;ollows in order of sensitivity with the 

most sensitive parameter listed first, 

l. Urgency parameter ''m'' 1 discussed below 

2, 90% Range on delivery: ,error of 18% low increases TVC by 4,6% 

err.or of 18% high increases TVC by 11.5% 

. 3. 'J;iming parameter "d": error of 20%1ow increases TVC by 4.4% 

error of 20% high increases TVC by 3.9% 

4. Scaling parameter ''K'': error of 20% low ipcreases TVC by O .4 % 

error of 20% high increases TVC by 0.3% 

5. . Daily holding cost; "H": error of 2,5% low increases TVC by O. 5% 

error of 38% high increases TVC by 0.9% 

.The expected TVC of procurement was highly sensitive to .errors. in the 

urgency parameter of .lateness.cost "m" because this parameter can only 

take cm values. of _one, two, and three. Errors in specifying m can re

sult in increases in expected TVC of from 25% to 1050%.for extreme 

errors. However, the procurement analyst should be able to select the 

proper value of m from the three choices quite reaclily in most situ

ations. Except; for the choi~e of a value form, the mqdels were not 
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extremely sensitive to errors in estimatin~ parameters in the sample 

problem with errors in parameter values of 20% resulting in TVC ii::i.

creases of only 5% or less. However, it should be noted that in other 

procurement situations the sensitivities might be somewhat higher or 

lower, especially,for di:f;ferent values of m. 

The sensitivity of the buffer and expected TVC to errors in. the 

assumption of a p. d. f. to represent the delivery date distribution 

was also analyzed. It was found that most errors resulted in an in

crease in TVC of less than 5% for the sample problem. The only e~cep

tion was the case where a chi-square distribution was erroneously as

sumed when tl:ie true distribution of delivery date was a uniform.distri

bution, and this error resulted in an increase of only 6.1% in the ex

pected TVC. Thus, the sensitivity of the buffer and expected TVC to 

an error in this assumption is not substantial. It should pe remembered, 

however, that each of the sensitivity analyses examined the effects of 

errors in parameters for the sample prob~em only. In other particular 

situations, the sensitivity of the parameters may be different. Sensi

tivity analyses.on a particular situation should be performed whenever 

the sums of money involved.justify the added information concerning 

sensitivity. of parameters and the distribution assumption. 

rn.the sensitivity analyses of f;!ome parameters, very, interesting 

relationships between the parameters and the variable·y were observed. 

In particular, the loct,1s of minima of the TVC curves was a straight 

line.in most cases. Thh· would suggest that empirical relationships 

between y and the parameters might be found for the assumptions of the 

chi-square and Poisson distributions .of the delivery date random 

variable. lf such relatioi::i.ships could be found that are as simple and 
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easy to use as they* and TVC* expressions for the assumption of a uni

form delivery date dist+ibution, these expressions for the chi-square 

and Poisson assumptions would preclude the computerized search for y* 

and TVC* and greatly facilitate the application of these models. 



CHAPTER VII 

AIDS IN APPLICATION OF MODELS 

In some instances a great deal of analytical effort.is spent in the 

mathematical development of highly sophisticated operations.research 

models whose maximum potential will probably never be realized. One 

reason for this in the opinion of the author is that when the individuals 

faced with the real~world decisions attempt to apply these models, they 

either apply them.erroneously or do not apply them at all because of 

difficulty in understanding the articles in which the models are pre

sented •. It has been the objective of the author to write this disser

tation in a manner such that a procurement analyst might read and under

stand the development of the models and the meaning.of the parameters 

usecl. As each parameter was introduced, methods were discussed for 

evaluation of the par~eter in specific p:r-acu.rement.E?ituations. The 

parameters and their evalt,1ation.·were discussed somewh.at further in ,the 

s.ensitiyity discussions of Chapter VI. Before evaluat·ing ·:the parameters 

.of holding costs and 1.ateness costs, those sections of Chapters :II and 

VI dealing with those par~eters should be studied thoroughly. The 

d:Lstribut.ion parameters ·for each distribution of th.e de.livery. date ran

dom. variable are discussed in detail in .the secti.ons of Chapters III, 

IV, and V dealing _with the assumption. o;f the partic·ular distrib.ution. to 

describe the delivery. date random variable •. 

·135 .. 
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In-the case of the assumption of a uniform distributian af the de-

livery date random variable, the expressions developed for y* and TVC* 

'provide a simple and readily applied decisian aid for determining the 

optimal buffer in.situatHms involving uncertain deli.very. However, if 

the chi-square or Poisson distributicm is chosen. to describe. the de

livery date random variqble, a.computerized search of the TVC equation 

j.s necessary to determine the optimal buffer. In some situations such 

a procedure migh,t be inconvenient or infeasible b,ecause of other demands 

on the computer. In any eyent tl:i.e procurement analyst's time will be 

consumed in.preparing the computer input for the analysi.s. The time 

consumed in this procedure will undoubtedly reduce the number of appli

cations of the models in a given .. firm. 

In order to insure easy applicability, of the models, especially 

under the chi-square or Poisson assumptions for the delivery date dis

tribution, a set of decision tables may be calculated which would pr.o

vide -a decision.concerning_the optimal buffer for a wide-range-of pro

curemet1t situations. These precalculated tables g:i,vingthe optimal 

buffer and expected TVC* for a given procurement situation ·would sim

plify greatly-the use of these models in that procurement analysts can 

refer to them and readily determine-the proper buffer and expected TVC* 

of procurement. Examples.of such.tables are presented as Tables XI, 

XII, XIII, XIV, XV,. and XVI. Five variables. are needed to specify tl:i.e 

optimal buffer and expected TVC* for any given prc,curement situation: 

H, K, m, d, and a distribution parameter designated by tqe range on 

delivery date. On-these tables the three ·latter parameters are h,eld 

constant, and the optimal puffer and TVC* are given for different 



Valqe of 
Scaling 

Parameter 
K 

5 

10 

20 

30 

50 

Note: 

TABLE XI 

TABLE FOR DETERMINING OPTIMAL.BUFFER AND TVC* FOR 
90% RANGE ON DELIVERY DA!E OF 12.8 DAYS.AND 

URGENCY PARAMETER m = 3 

Value of H 
(Daily Holding Cost) 

$20/day . $50/day $80/day 
-· 

14.0 days 11.4 days 10.0 days 
$334 $709 $1028 

15.9 days 13.4 days 12.0days 
$370 $804 $1184 

. 17 .8 days 15 .• 3 days 14.0 days 
$406 $897 $1335 

18.8 days 16.4 days 15.1 days 
$427 $950 $1421 

2().1 days 1.7 .8 days 16.5 days 
$453 $1016 $1528 

137 

$110/day 

9.0.days 
$1312 

11.1 days 
$1530 

13.1 clays 
$1740 

14. 2 days 
$1861 

15.6 days 
$2010 

Calculations involve the assumption of a chi-square distribution 
with 8 degrees of freedom to describe the delivery date random variable. 
Expediting is assumed to·begin 8_days prior to the requirement date 

. (d = 2.0,.a = 4.0, da = ~.o days). 



Valµe of. 
Scaling 

Parameter 
K 

5 

10 

20 

30 

50 

Note: 

. TABLE. XII 

TABLE FOR DETERMINING OPTIMAL BUFFER AND TVC* FOR 
90% RANGE ON DELIVERY DATE OF 12.8 DAYS AND 

URGENCY PAR.M:lETER m.= 2 

-

Value of H 
(Daily Holding Cost) 

$20/day $50/day $80/day 

7.1 days 3.0 days O.O days 
$208 $355 $400 

9.6.days 6.2days 4.2 days 
$2.52 $483 $637 

11.8 days ~3. 8 days 7,1 days 
$294 $596 $833 

13.0 days 10.1 days 8.6 days 
$317 $659 $938 

. 14.5 days 11,8 days .10.3 days 
$346 $734 $1064 

138 

$110/day 

O.O days 
$400 

2.5 days 
$737 

5.8 days 
$1026 

7.4 days 
$1177 

9. 2 days 
$1356 

.Calculations involve the assumption of a chi-square distribution 
with 8 degrees oi freedom to describe the delivery date random variable. 
Expediting is assumed to begin 8 days prior to the requirement date 
(d = 2.0,.er = 4.0, d<:1 = e.o days). 



Value of 
Scaling 

Parameter 
K 

20 

30 

50 

70 

100 

Note: 

TABLE XIII 

TABLE FOR DETERMINING OPTIMAL BUFFER AND TVC* FOR 
90% RANGE ON DELIVERY DATE OF 12.8 DAYS AND 

URGENCY PARAMETER m = l 

Value of H 
(Daily lfolding Cost) 

$20/day $50/day $80/day 

0.0 days 0.0 days 0.0.days 
$160 $160 $160 

5. 8 days 0.0 days Q.O days 
$199 $240 $240 

8.4 days O. 2 days 0.0 days 
$238 $400 $400 

9.7 days 5.4 days 0.0 days 
$261 $483 $560 

lLO days 7,4 days 4.6 days 
$284 $554 $733 

139 

$110/day 

0.0 days 
$160 

0.0 days 
$240 

0.0 days 
$400 

Q.O days 
$560 

0.0 days 
$800 

Calculations involve the assumption of a chi-square distribution 
with 8 degrees of freedom to describe the delivery date random variable. 
Expediting J_s asstlllled to begin 8 days prior to the requirement date 
(d = 2.0, a= 4.0, da = 8.0 days). 
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Scali pg 

Parameter 
K 

5 

10 

20 

30 

50 

Note: 

TABLE XIV 

TABLE FOR DETERMINING OPTIMAL BUFFER AND TVC* FOR 
90% RANGE.ON DELIVERY DATE OF 19.5 DAYS AND 

URGENCY PARAMETER m = 3 

Value of H 
(Daily H9lding Cost) 

$20/day $50/day $80/day 

22. 7 days 19.4 days 17.6 days 
$520 $1144 $1698 

25.0 days 21.9 days 20.2 days 
$565 $1262 $1892 

27 .3 days 24.3 days 22. 7 days 
$608 $1376 $2079 

. 28.6 days 25.6 days 24. 1 days 
$633 $1441 $2185 

30. 2 days 27.3 days 25.8 days 
$665 $1521 $2315 

140 

$110/day 

16.4 days 
$2209 

19 .1 days 
$2481 

21.5 days 
$2741 

23.0 days 
$2889 

24. 7 days 
$3072 

Calculations involve the assumption of a chi-square distribution 
with 18 degrees of freedom to describe the delivery date random variable. 
ExpE!diting is assumed to begin 12 days prior to the requirement date 
(d = 2.0, cr = 6.0, dcr = 12.0 days). 



Value of 
Scaling 

Parameter 
K 

,5 

10 

20 

30 

50 

Note: 

TABLE XV 

TABLE FOR DETERMINING OPTIMAL BUFFER AND TVC* FOR 
90% RANGE ON DELIVERY DATE OF 19. 5 DAYS AND 

URGENCY PA,RAMETER m =2 

Value of H 
(Da,ily Holding Cost) 

$20/day $50/day $80/day 

12. 8 di;iyS 7.7 days 4.1 days 
$344 $644 $819 

16.1 days -11. 7 days 9.1 days 
$402 $811 $1121 

19,0 days 15.1 days 12.8 days 
$455 $959 $1377 

20,6 days 16.9 days 14.8 days 
$484 $1040 $1513 

-22.6 days 19.0 days -17.1 days 
$520 $1137 $1676 

.141 

. 

$110/day 

1.0 days 
$895 

7 .O days 
$1361 

11. 2 days 
$1737 

13.3 days 
$1934 

· 15. 7 days 
$2167 

Calculations involve. the assumption of a cl:li-square distribution 
_with 18 degrees:.of freedom to describe the delivery date random variable. 
Expediting is assumed to begin 12 days prier to the requirement date 
(d = 2.0, a= 6.0, dcr = 12.0 days). 



Value of 
Scaling 

Parameter 
K 

20 

30 

50 

70 

100 

Note: 

TABLE XVI 

TABLE FOR DETERMINING OP1IMAL BUFFER AND TVC* FOR 
90% RANGE ON DELIVERY DATE OF 19.~ DAYS AND 

URGENCY PARAMETER m = 1 

Value of H 
(Daily Holding Cost) 

$20/day $50/day $80/day 

0.0.days 0.0 days • 0.0 days 
$240 $240 $240 

8.9 days Q.O days 0.0 days 
$301 $360 $360 

12.8 days 0.0 days Q.O days 
$357 .$600 $600 

14.9 days 8.2 days 0.0 days 
$390 $732 $840 

16.7 days 11.3 days 6. 8 days 
$421 $836 $1110 

142 

$110/day 

0.0 days 
$240 

0.0 days 
$360 

0.0 days 
$600 

0.0 days 
$840 

0.0 days 
$1200 

Calculations involve the assumption of a chi-square distribution 
with 18 degrees of freedom to describe the delivery date random variable. 
Expediting is assumed to begin 12 days prior to the requirement date 
(d = 2,0, a= 6.0, dcr = 12.0 days). 
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combinatioI!.s of Hand K. The timing parameter d should be fixed by the 

firm's expediting policies .for dif!erent levels of uncertainty and.for 

urgency. For example, the value of d = 2.0.was used in the calculation 

.of all six tables. If t;he firm.has a well-defined expediting strategy, 

only three tables are necessary for each level of uncertainty as repre

sented by, t;he different ranges :on de 1i very date. In these examples 

Tables XI,. XII, and XIII are calcu~at;ed for a 90% range on .delivery date 

of 12.B_dc;iy under tl:).e assumption of a chi-square distribution tor the 

delivery date random variable. Tables XIV, XV, and XVI are also cal-

. culated under the chi-square assumption but for a 90%, rang.e on .delivery 

date 19,5 days. :Secause of the low sensitivity of optimal buffer and 

expected TVC* to errors.in Kand H, interpolation can be used to de

terI11ine v1;1lues · for t;he optimal buffer and expected TVC* for yalues. of 

Kand H between those listed in the table. After determining the proper 

values of the parameters in a given proc1.,1rement situation, quick refer

ence to a set of tl:).ese decision tables would give tl:).e optimal buffer to 

use in specifying the delivery date and the expected total variable cost 

of procureI11ent. 

A second I11ethod ;for increas.ing · the applicability of the models is 

to c.onstruct a set of nomographs wl:).ich would give th,e optimal buffer 

and expected TVC* of procurement for a given set of param,eters. The 

nomographs could be constructed from tlw tables calculated .. by the firm 

for·its particular expediting. policies. An example of such a nomograph 

wasconstructed :l;rom th,eoptii:nal 1;,uffer lengths given.in TableXI and 

i.s included in Figure 28, The advantage of using nomographs is that 

interpolation, when paraI11eters lie between those-1,1sed in calculations, 

. is much easier with a nomograph tl:).an with a .table •. However,. the tables 
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list both. the optimal buffer and expected TVC* of procurement together 

wllere separate nomographs would be needed to giye both the optimal buf

fer and.the expected TVC* of P,rocurement, 

It is hoped that these suggestiens canl?e utilized by precurement 

analysts to facilitate the application of the models developed •. Even 

i,n the case·of the uniform assumption of delivery date, precalculated 

tables and/or nomographs might improve the applicability of the models. 



CHAPTER VIII 

CONCLUSION 

.'I'he problem approached in.this dissertation is that of determining 

the optimal safety. time allowance, or buffer, to be used in procurement 

situations where the delivery date is uncertain and may pe defined as 

a random variable. Although developed for a single-stage J?rocurement 

situation, the models can be applied in any situation:in which the num

ber of items tobe orderedhas been determined and it is desired to de

termine the proper buffer to use in specifying delivery date that will 

minimize the expected total variabl,e cost of procurement •. 'I'b,e type of 

pr.ocuretnent situation. where these· models w:i.11 l)e .most useful is the pr.o

curement -of large or expensive.items or subsystems needed in a job shop 

man,ufacturirtg_situation. Many_situations also arise in the construction 

.indu$try. in wll,tch an expensive, critical itemwit\1 uncertain delivery 

time must be procured to meet a fixed con.struction schedule. The tllodels 

developed in t:his dissertation provide a userful decision aid fQr de

termining the optimal buffer a,nd del;i.very date far these procl;l.rement 

si,tuaticms. 

Summary of Approach 

In dealing with the problem of uncertain d-elivery time,. models 

were developed to find that buffer length which minii;nizes the to.tal 

variable cost of procurement:, compo$ed_o;E holding costs and lateness 
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costs. Ordering cost!:i were not a factor in the analysis as only,one 

order is being placed and economic lot size·. is not a factor. 'Ibe hold

ing costs were brol<;en downinto two components: the cost of providing 

storage space for the part while in inventory and the costs of tied-up 

capital, taxes, and insll.rance that are associated with the inventory 

value. 'Ibe expected total variable cost of procurement was thus defined 

to have the following components: 

TVC = Inventory Value Cost+ Storage Space Cost+ Lateness Cost .(8,1) 

'Ibis dissertation utilizes a new approach.to dealing with the·costs 

.of lateness in procurement situations that may have applicability in 

the develqpment of other procurement models. 'Ibis approach is based on 

the assumption that the total·lateness costs.incurred in a given pro

curement situation depend upon the time at which the part is delivered. 

This assumption recognizes that if delivery is made several days before 

the requirement date, no lateness charges are incurred •. However, if 

delivery is not made by a certain number of days prior to tqe require

ment date,. e:x:pedi ting procedures are begun in an effort to locate the 

item and insure its delivery by the requirement date. As the require

ment date approaches, higher and higher expediting costs are incurred 

if the part has not arrived, If the p,;:1,rt does not arrive by. the re

quirement date, reschedulingof the project is necessary •. Depending 

upon the urgency of the part, prodll.ction facilities may be idled or 

substantial penal ties for late completion of the project may l:,e in .. ·· 

curred. Each of these would increase the total costs of lateness in

curred by the delivery of the part at different times after the require

ment date with costs increasing significantly for every day that 
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delivery is not made. Thus, the costs of lateness C(x) should be de-

fined as a mathematical function.of the delivery date as in equation 

(2.8): 

C(x) = Kxm for x ;;;,: 0 
(8.2) 

= 0 for x < 0 

where K = a scaling constant 

x the delivery date (a random variable) 

m = an exponent determining the rate of increase of lateness 

costs with time. 

Lateness costs were defined to start at the time x = 0 defined to be 

da days prior to the requirement date, where dis a positive number and 

cr is the standard deviation of the distribution of the delivery date 

random.variable. 

In summarizing the development of expressions for TVC, it will be 

convenient to lump the inventory value cost and storage space cost into 

a single parameter representing·the total daily holding costs: 

where H = the total 

v = the value 

H = 
VP+wCh 

365 

inventory holding.costs/day 

of item or items ordered 

(8.3) 

p = a decimal fraction representing the annual cost of capital, 

taxes, and insurance .on inventory value 

w = the number of storage space units required 

~ the annual cast of praviding and maintaining.one unit of 

storage space. 
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The expected TVC o;E procurement may now be expressed as the·sum of ex-

pected holding costs and expected lateness.costs: 

TVC = H(ycr) + f C(x)·f(x) dx (8.4) . x 

where ya= the expected number of days that the item will 1:>e in 

inventory (the buffer length) . . 

X = the delivery date random variable 

C(x) = the lateness cost as a function of delivery date 

f(x) = the p. d •. f. of the·random variable X. 

Th,e mathematical variable y is the number of standard deviations of de-

livery date distribution, in the puffer length and is. required,. to be a 

non-negative :real number.. The· variable y determines the buffer length 

YG for any ~iven.distribution .of the delivery date·random variable.once 

the mean and standard deviation of the random variable are specified 

for 'the procurement situation. 

After a.change of variable wh1ch moves the origin of the delivery 

date, .random variable to coincide with tl:ie requirement date, the expected 

TVC can be expressed as 

CD 

TVC = H(ya) + .f K(t+da)m f(t) dt. 
-dcr 

(8,5) 

where dG is the number of days prior to the requirement date.that ex-

pediting procedures.start which indicate the beginning of lateness 

.costs. 

The assumption.of tl').ree·different probability distributions is 

made.to describe the behavior·of the delivery date random·variable, and 
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.expressions for the expected value of TVC are derived for each case. 

The mean of the delivery date distribution is the expected delivery date, 

and this expected delivery date· is specified to be ya days prior to the 

·requirement date, ya being the length of the buffer. Much.of the·re-

search of this dissertation involves the evaluation of equation (8.5) 

for different probability distribution assumptions for f(t) in order to 

find expressions for TVC that can be manipulated to determine.the least 

cost buffer for a given procurement situation. 

Sui;nmary of TVC Models and Sensitivity 

In Chapter IIi a uniform distribution was assumed for the delivery 

date random variable. The expected TVC.of procurement as a function of 

y was.found to be 

[ HbJ· . K [ -b Jm+l . . m+l TVC(y) = -.- y + b( +l) ·-.-.. y-(d+/r) m .. m. li2 

for 0 :s; y :s; d+n (8.6) 

.where bis the interval in days.in which delivery will occur. Differen-

tiation of TVC(y) form= 1, 2, and 3 provided the following expression 

for the optimal y for a given set of cost parameters: 

Y* = (d+./3)- 'P [ ~H 11/m ' (8.7) 

for O ~ y :s; d+{J. The Value found for y* should be multiplied by the 

standard deviation (a = b/ill) to determine the optimal butfer. A de-

livery date which is y*a days before the requirement date·should then 

be specified to the vendor or sub-subcontractor. If the value of y 
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given by this equation.is negative, a value of y = 0 should be used 

indicating, that the optimal decision is to have no buffer,·. i •. e., the 

delivery date should be. specified on the requirement date •. If the 

optimal buffer is used, the optimal expected TVC.of proc1.;1ren,.ent is.found 

to be 

TVC* = (d+/3) [ bHJ - mH [bHJ.1/m 
. (f2 m+l K 

.(8.8) 

.for values-of· y* in the·interval (O, d+./3). The equations for y* and 

. TVC* developed for the assumption of a uniform distrib4tion of delivery 

.date thus provide a.convenient tool for use·indetermining the optimal 

buffer in procl!,rement situations. inv·olving a probabilistic delivery 

date. 

In Chapter IV.a chi-square distribution is assumed for the delivery 

date '-random variable. The shape of th.e chi-square· distribution is such 

that it describes very.well thebeb,avior of random.variable such as.the 

delivery date •. The proper chi-square degrees of freedom.r to use in 

. calculations. can be determined by defining a· 90%. or 98% range· er confi-

dence. interval on delivery date~ The length ,of this interval can t'h.en 

be compared with the len~ths of confidence intervals of the chi-square 

distribution for different degrees of freedom with.the aid of Table I 

in order to determine r.. For the case of the chi-square assumption for 

the-delivery date qistribution, the expected TVC,of procurement as a 

function of y·is found to.be 

rvc(y) = (H./ir)y + (COEFFICIENT) x (SUM), for y.~ 0, (8.9) 
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where COEFFICIENT = · [(r/2)-l] 

_ [r+/zr(y-d)J 
2~e 2 

A requirement that the degrees of freedom r be an even number is imposed 

by one of the steps in the development of expected TVC. 

Calculation of TVC(y) is very difficult without the aid of an elec-

tronic computer. Since most firms having a use for the_models devel9ped 

· would also have a digital computer at their disposal, FORTRAN programs 

were written to calculate TVC(y) for a given set of parameters and 

buffer length and to find the optimal buffer and minimum expected TVC 

of procurement. The optimal buffer is found through a Fibonacci search 

for the minimum.point on the TVC(y) curve. These computer programs are 

included in Appendices A and B, and the Fibonacci search procedure is 

outlined in Appendix E, 

In Chapter V a Poisson distribution. is assumed for the delivery 

date random variable, .and the method suggested for evaluating the dis-

tributi,on parameterµ is similar to that employed to find r for the case 

of the chi-square distribution in Chapter IV. Table II was constructed 

to aid i,n evaluating µ after defining a 90% .range on delivery date. The 

discrete nature of the·Poisson results.in a slightly different develop-

ment. for the expected TVC·of procurement, and essential steps in the 

development require that µ, the buffer ya, and the· expediting time da 

all. be non-negative·inte&ers. The expected TVC of procurement as a 

function of y was found for the cases m =·l, 2, and 3. For the case of 
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m == -·_l, 

· . { s-1 s-1 } 
TVC(y) = (HJµ)y + K - ./µ.(y-d) + s ~ f(t) - L tf(t) . (8.lQ) 

t=O t=O 

. For the case of·m = 2, 

s-1 · 
s 2 L f(t) 

t=O 

s-1 s-1 
+ 2s ~ tf(t) - ~ t 2f(t) 

t=O t=O 

For the case of m = 3, 

TVC(y) • (ll(µ)y + K f µ[1-Yµ(y-d)-lµ(y-d) 3]+ s 3 ~ f (t) L t=O 

s-1 · s-1 s-1 } 
- 3s 2 L t·f(t) + 3s _L t 2f(t) - ~ t 3f(t) (8.12) 

t=O • - t=O t=O 

where s = µ +/µ(y-d). A FORTRAN program was written to calculate 

TVC(y) with these equations for a given procurement situation and buffer 

length •. This program is included in Appendix C. A second. FORTRAN pro-

gram was written udlizing_a Fibonacci search procedure to find the 

minimum expected TVC and buffer length and is included in Appendix D. 

· A sample problem demonstrating the use of the models was formu-

lated a,;id solved in each.of the three chapters. In Chapters IV and V 

the computer outputs for the sample·problemcalculated using the pro-

grams . in the appendices are -included. 
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In Chapter VI the-responsiveness of the models to changes.in param

eters was analyzed. Curves of expected TVC were calculated and plotted 

for different values of each parameter while holding the other parameters 

constant. The sensitivity. of the optimal buffer and expected TVC of 

procurement to errors in parameters was also analyzed for the sample 

problem.of Chapters III, IV, and V. Tables were constructed to show 

the difference in buffer length and per cent increase in expected TVC 

for different errors in the parameters. ·_ It was found that the expected 

TVC increased only about 5% or less for errors in parameter values of 

20% for all of the parameters except the urgency parameter of lateness 

cost "m." This parameter may take on only the values 1, 2, and 3; and 

few errors should be ma(le in evaluating it. If there were complete un

certainty about m, however, a value of m = 2 would result in an increase 

in expected TVC of 25% or 46% if the correct value of m were 1 or 3 for 

the date of the sample problem, 

_The sensitivity of the buffer and expected TVC to errors in the 

assumption of a p. d. f, to represent the delivery date was also ana

lyzed for the procurement situation of the sample problem. It was 

-found in Table IV that these errors in assuming the wrong distribution 

resulted in an increase of only 6% or less in the expected TVC -of pro

curement. If the-Poisson were assumed and used in calculations, the 

increase in expected TVC would be only about 1.5% if the true distri

bution were the uniform or the chi-square. 

The expressions for y* and TVC* developed under the assumption of 

a uniform distribution oJ the delivery ,date random variable provide an 

easily used tool to aid procurement analysts in decisions where they 

are applicable .. The need for computer solution for the optimal buffer 
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in the.case of the chi-square and Poisson assumptions may hamper the 

application of these models. It is suggested.in Chapter VII that firms 

calculate a set of decision tables for ready decisions concerning opti

mal buffer length and TVC* for a wide range of procurement situations . 

. These tables would be specifically computed to embody the timing of 

.expediting procedures of that particular firm as recognized in the 

value of the timing parameter ''d" used in the calculations. Nomographs 

could be constructed from these decision tables which would also be of 

value, Examples-of each are included in Chapter VII. 

Areas of Further Study 

During the progress of the research and writing of this disserta

tion certain areas worthy of further study have been discovered. In 

the sensitivity analyses of some parameters, very interesting relation

ships between the parameters and the variable y were observed. In par

ticular, the·locus of the minimum·poin:ts on the TVC.cl.lrves was a straight 

li~e in most cases. This would suggest that empirical relationships be

tween y and the parameters might be found for the assumptions of the 

·chi;,.square and Poisson distributions of the delivery date random vari

able. If simple expressions for y* and TVC* could be found for the 

cases of these distribution assumptions, the computerized search of 

TVC(y) for the minimum TVC and optimal buffer would no longer be neces

sary. This would greatly facilitate the application of these models. 

In addition to the additional research proposed above, many pro

curement situations involve the problemapproached in this.dissertation 

but with the additional complication that the requirement date is not 

firm. The models developed in this.dissertation assume that the 
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requirement date is fixed and known, and lateness costs before and after 

this date are a function of the time at which the item.is delivered. If 

the· requirement date is also a random variable· the models developed ,..+/' 

would net directly apply. -Further research might be undertaken to de-

velop models .. f0r the case where both. the delivery date and the .require-

ment date are random variables. This might be accomplished threugh-de-

fining a jQint probability density function to.describe-the behavior of 

the two random variables_. However, st0chastic. independence of the - two 

variables may net be justified. H some 9egree. of correlation exists 

between the· two random variables, the biva_riate normal distribution might 

be used to develop models f0r the optimal buffer. The questien of a 

variable requirement date presents an interesting problem worthy of 

further research. 

The new approach to dealing with lateness costs embodied in this 

research also provides a method for evaluating alternative expediting 

policies. The costs and timing of the various alternative policies 

could be used to determine a lateness.cost function for each particular 

set of expediting_procedures. The.different lateness cost functions 

co_uld then be used to find the optimal buffer and TVC* that would result 

from use.of each of the alternative expediting policies. If other fac

tors .influencing the decision were equal, the policy resulting in the 

lowest expected TVC* of procurement should be used. If other factors 

were also being considered, this evaluation of alternative policies 

would at least eliminate those policies.resulting in a substantially 

h:i.gher expected total vari,able cost 0f procurement than the others. 

The models of this d;(.ssertation also provide a toel which may be·of 

s't.l.bstantial value in vendor rating_ systems. It has -long been. recognized 
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that proc:urement should not be based on the bid price-quoted by the 

vendor alone. Because of poor quality and/or uncertain delivery time, 

the vendor quoting_the lowest bid price may not be-the·best source of 

procurement for a component. _The costs.incurred as the result of poor 

quality can readily be evaluated; these are the increased costs.of in

spection and rejects. No methods for determining the cost of uncertain 

or unreliable delivery performance have been presented prior to this 

"dissertation, and attempts to quantify this factor have-included such 

m_ethods as finding. the ratio. of prOO\ises made· to promises kept as sug

gested in Feigenbaum.(1961) on page 512 • 

. The TVC models of this dissertation provide·not only a method for 

determining the optimal bu;ffer for uncertain delivery, but also provide 

a means for evaluating the total variable cost of procurement as afunc

tion of the uncertainty in a vendor's delivery capability. In comparing 

the alternative bids of two vendors for a large subsystem, the prime 

contractor could.evaluate.the two vendors-on the·basis-of the-total cost 

of procurement .. This total cost would be composed of the vendor's bid 

price for the item, the added quality costs, and the total variable-cost 

· of procurement as a function of the upcertainty of delivery. 

Total Cost= Bid Price+ Quality Costs+ TVC • (8.13) 

. The bid price·is known, and the probable quality costs.can be-determined 

from past experience with.the vendor. Past experience-can also 1:>e-used 

to determine a 90% .range of delivery for each contractor, and this value 

used to determine the expected TVC of procurement for the given sub-

. system. if procured from each vendor. 
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For example, assume that a given item must be procured from either 

subcontractor A or B. In terms of the rnqdels developed earlier, assume 

that this item has an urgency parameter m = 3, scaling.constant K = 10, 

and daily holding costs H = $50/day. From experience with each vendor, 

the 90% range on delivery for each is estimated to be 13 days .for vendor 

A and 20 days for vendor B. Assuming the delivery date for this item 

is approximated by a chi-square p, d. f. in both cases, Tables XI and 

XIV of Chapter VII give an expected TVC~~ of $804 and $1262 for vendors 

A and B, respectively. In the case of vendor Ba buffer of 22 days is 

needed whereas in ·the case of vendor.A only 13 days are needed. Thus 

the greater uncertainty in the delivery time of vendor B results in a 

longer buffer and a higher expected TVC·of procurement. The values of 

expected TVC can now be inserted into equation (8.13) and the total 

cost of procurement that can be expected for each vendor has been quan

tifi.ed. If the quality costs are equal, then vendor B I s bid price must 

be lower than A's by at least $1262-$804 or $458 in order to justify 

awarding the contract to vendor B. 

The capability to evaluate the uncertainty of delivery in terms.of 

dollars and cents enables the factor of on-tirne delivery capability to 

. be· brought directly into. the award of contracts. This factor is usually 

a qualitative or subjective factor in contract awards, but the models 

of this dissertation provide a means to define and evaluate this factor, 

and thus give quantitative cost data to justify a decision. Further 

research and development work should be undertaken to facilitate.the 

application of the models in.vendor rating systems. 

Whereas much remains to be done, it is hoped that this research 

and dissertation have contributed in some small measure to the body of 



knowledge in the field of procurement and.inventory control and that 

the models-produced by the research will be-of some aid to those who 

must make the very difficult procurement decisions of industry. 
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APPENDIXES 



FOREWORD TO THE APPENDICES 

The programs presented in this Appendix were·written in.FORTRAN 

II-D for use on an IBM 1620~1311 Model I with 20K storage and 1622 Card 

Read-Punch. Tne programs can easily be adapted for use on other systems, 

Appen(;licesA, B, C, and D ·each include a brief summary of the cal

culatians performed by the program, a description of input farmat for 

data, and a program·. listing. An example of the output of each program 

is presented in the text as part of the solution to the sample·prablems. 

Docum_entation of the programs is accomplished by the use of "COMMENT" 

statements within the J;>rogram listing rather than with the aid of a de

tailed flow chart. The ''COMMENT" statements are used to describe the 

calculations, the variables used, and,/or the stepsbeing performed in 

different sections of the program. It is felt that this type of docu

mentation will facilitate the adaptation. of the programs to run on sys

tem configurations other than that for which they were written. 

Appendix E.is a Sllilltl).ary. of the Fipanacci search procedure which is 

used in the programs of Appendices Band D to find the TVC* of pro

curement and the buffer associated with this minimum cost. The Fibonacci 

.search is presented in many different texts, and the purpose of the dis

cussion in Appendix Eis to briefly describe the procedure and show how 

it is applied in the search for the minimum TVC within this dissertation. 

Examples illustrating the logic of the search are taken from the context 

of the sampte problem solution under the chi-square assumption of de-

li very date. 
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APPENDIX A 

CALCULATION OF TVC FOR A GIVEN -BUFFER LENGTH UNDER 

CHI-SQUARE DEiIVERY DATE DISTRIBUTION 

The program.listed in this appendix will calculate the expected 

TVC of procurement for a given set of cost param.eters and a given buffer 

length under the assumpt:i.en of a chi-square delivery date distribution. 

The expression used to calculate TVC is that given in equation (4.14). 

-__ However, dnce the PO l00p used to calculate the lateness cost series 

require the index ef summation to begin with the integer one instead of 

zero, the initial and terminal values of the index of summation were 

adjusted to one and r/2. The series of the expected lateness cost is 

thus \talculated in the program as 

t/2 
SUM = ~ [m+(r /2)-i] 

i=l 

· [ r + .../zr22r ( y- d )] i- 1 ..,.........-....-[_.....r..._/..,..2 ....,-,...1.........____,~ 
(r/2)-1 ! (i-1)! 

in program statements 41 through 62. 

T!:iis program was also used to study the relative magnitudes of 

terms in the lateness cost series. If Sense Switch 2is on, the three 

basic partsof each term.in the lateness cost series above will b.e 

punched o.ut as well as the value of each term and its per cent of the 

sum of the series. If sense switch 2 is off, only the series terms and 

their per cent of the sum.will be punched. 

The input data for this pregram should be placed on seven.cards 
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organized as follows with the parameter values punched in each card as 

indicated: 

Card 1: · Degrees of Freedom, r· '. col. 1-3 with no decimal places 

Card 2: No.of Std. Deviations. in Buffer, y; col. 6-10 with 3 

decimal places 

Card 3: Timing Para~eter, d· 
' 

col. 11-15 with 3 decimal places 

Card 4: Urgency Parameter, m· 
. ' col. 16- 20 with 3 decimal places 

Card 5: Scaling Parameter, K· 
' col. 21-30 with 3 decimal places 

Card 6:. Space Units Required, W; col, 31-40 with 5 decimal 

places, and Annual Cost of Space Unit, Ch; col, 41-50 

with 5 decimal places 

Card 7: Value of Item, V; col, 51-60 with 5 decimal places, 

and Annual Cost of Capital, etc., P; col. 61-70 with 

5_decimal places. 

If the data does not "fit" theprescribed format, decimal points punched 

in the cards take precedence over those specified in the format state-

ments. If it is desired to change the order qr format of input data, 

this can easily he accomplished by changing statements 1-7 and 10-16, 

However, the same variable names should be used in the new READ state-

ments so that the variables will he defined. 

A sample of output from this program is included in the solution 

to the sample problem of Chapter IV.in Figure 15, page 76. 

A listing of the statements of this program follows on the :next 

·page. 
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C PROGRAM TO CALCULATE THE EXPECTED TOTAL VARIABLE COST OF PROCUREMENT FOR THE 
C ASSUMPTION OF A CHI-SQUARE DISTRIBUTION OF DELIVERY DATE FOR A GIVEN BUFFER. 
C READ IN DATA 

l READ lC, R 
2 READ 11, Y 
3 READ 12, D 
4 READ 13, POI.JER 
5 READ 14, SCALE 
6 READ 15, W,CSPACE 
7 READ 16, V,COFCAP 

C CONVERT M FROM FLOATING POINT TO FIXED POINT 
8 MPOWER =POWER+ Ool 

C CALCULATE THE 'NUMGER OF DAYS BEFORE REQUIREMENT DATE EXPEDITING 
C SHOULD STA~i. THIS IS D•STANDARD DEVIATION• 

9 DSIGMA = D*((2.0*R>**Oo5l+Oo00001 
C INPUT FOR~AT STATEMENTS 

10 FORMAT(F3.0I 
11 FORMAT(5X,F5o3) 
12 FORMAT!lOX~F5o3l 
13 FORMAT(l5X,F5o3) 
14 FORMAT!20X,Fl0o31 
15 FORMAT(30X,21FlOo5)) 
16 FQRMAT!50X,2FlOo5) 

C CALCULATION OF OFTEN USED TERMS AND INITIALIZATION 
C RPART IS R+SIGMA!Y-Dl OVER 2 

17 RPART=(R+( !2oO*Rl**Oo5)*(Y-Dll/2~0 
C N IS THE TERMINAL VALUE OF INDEX OF SUMMATION--(R/2) 

18 N=R/2o0 + Ool 
19 S'JM::;o.o 

C PUNCd OUT INPUT DATA 
20 PUNCH lJl, R 
21 PUNCH 102, Y 
22 PUNCH 103, D 
23 PUNCH 104, POWER 
24 PUNCH 105, SCALE 
25 PUNCH 132, W 
26 PUNCH 133, CSPACE 
27 PUNCH 130, V 
28 PUNCH 131, COFCAP 
29 PUNCH 109, DSIGMA 
30 DIMENSION A(221, PERCNT(221, FACTOR(221 

C IF SENSE SWITCH 2 IS ON, THE 3 PARTS OF EACh TERM IN THE LATENESS COST SERIES 
C WILL BE PuNCHED our. IF 552 OFF, PROCEED. 

31 IF (SENSE SWITCH 21 32,33 
32 PUNCH 122 

C CALCULATE FACTORIALS TO BE USED IN LATENESS COST SERIES. 
33 L = N-l+MPOWER 
34 FACTOR(ll = leO 
35 DO 37 I = 2,L 
36 S = I 
37 FACTOR(!) = FACTOR(I-ll*S 
38 J = L+l 
39 DO 40 I = J,20 
40 FACTOR([) = OoO 

C CALCULATE AND SUM THE LATENESS COST SERIES. EACH TERM OF THE SERIES IS 
C COMPOSED OF 3 PARTS--PARTA, PARTB, PARTC. 

41 DO 62 I=l,N 
42 U=I 

C PARTA = (M+N-II FACTORIAL 

43 J = MPOWER+N-1 
44 PARTA = FACTOR(JI 

C PARTB = ~+ SIGMA!Y-DI OVER 2 RAISED TO THE 11-llTH POWER 
45 PARTB=RPART**IU-loOI 

C PART:= BINOMIAL TERM-- (N-ll FACTORIAL/(N-IJFACTORIAL*(I-l)FACTORIAL. 
46 P,\RTC = FACTOR(N-ll 



C IF (N-ll J.i ZERO"' ·DEFINE O FACTORIAL AS loO 
.47 IF <N-1 I 48,48,50 
48 FACT= loO 
49 GO TO 52 
50 J =N-1 
51 FACT =FACTORIJI 
52 PARTC ~ PARTC/FACT 

C IF 11-11 IS ZERO, DEFINE O FACTORIAL AS loO 
53 IF I 1-11 54,54,56 
54 FACT= loO 
55 GO TO 57 
56 FACT= FACTORII-11 
57 PARTC = PARTC/FACT 

t Alli IS THE IJH TERM OF THE LATENESS COST SER(ESo 
58 Alli= PARTA*PARTB*PARTC 

C SUM ACCUMULATES EACH TERM Alli AS IT IS CALCULATED IN THE DO LOOP 
59 SUM= SUM+AIII 
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~ IF SENSE SWITCH 2 IS ON, PUNCH PARTA, PARTB, PARTC, AND THEIR PRODUCT--AIII 
60 IF !SENSE SWITCH 21 61,62 
61 PUNCH 123,I,PARTA,PARTB,PARTC,AIII 
62 CONTINUE 

C END OF SERIES .CALCULATIONSo PUNCH OUT HEADINGS FOR LISTING OF EACH SERIES 
C TERM AND 1rs PERCENTAGE OF TOTAL SUM. USED TO EVALUATE SIGNIFICANCE OF TERMS. 

65 PUNCH 100 
67 PUNCH 110 
68 PUNCH 111 
70 DO 73 I=l,N 
71 PERCNTlll=IAll)/SUMl*lOOoO 
73 Pi.JNCH 112, I, Alli•· PERCNTIIJ 

C CALCULATE CONSTANT COEFFICIENT OF SERIES SUM IN EXPECTED LATENESS COST, 
75 CONST=ISCALE*l2oO**POWERl)/IFACTORIN-ll*EXPFIRPART)) 

C CALCULATE EXPECTED LATENESS COST . 
76 COSTLC = CONST*SUM 
77 PUNCH 100 

( PUNCH OUT LATENESS COST COEFFICIENT AND SUM OF SERIES,THEN LATENESS COST• 
78 PUNCH 115, SUM 
80 PUNCH 116, CONST 
Bl P'JNCH 100 
82 PJNCH 117,COSTLC 

C CALCULATE ~XPECTED STORAGE SPACE COST 
85 COSTSS= W*CSPACE*Y*( (2.0*Rl**Oo5)/365oO 

C CALCULATE EXPECTED INVENTORY VALUE COST 
86 COSTTC= V*COFCAP*Y*((2.0*Rl**Oo5)/365o0 

~ CALCULATE EXPECTED T.v.c. FOR THIS SET OF COST PARAMETERS. 
87 TOTC= COSTSS+COSTTC+COSTLC 

c CALCULATE THE BUFFER IY*SIGMA) FOR THIS EVALUATION OF T,v.c. 
BB BUFFER= Y*((2,0*Rl**0,51 + 0.00001 

c PUNCH OUT REMAINING COST COMPONENTS AND EXPECTED T.v.c. OF PROCUREMENT, 
89 PUNCH 100 
9,0 PUNCH 125,COSTSS 
91 PUNCHlOO 
92 PUNCH i26, COSTTC 
93 PUNCH 100 
94 PUNCH 127, TOTC 

c PUNCH THE BUFFER USED IN THIS EVALUATION OF T.v.c. 
95 PUNCH 100 

96 PUNCH 128, BUFFER 
C TYPES-~ENT~R NEW DATA AND PUSH START--ON CONSOLE TYPEWRITER. 

97 TYPE 129 
C COMPUTER THEN PAUSES WHILE NEW DATA IS READIED, Pi.JSH START TO PRODEED, 

98 PAUSE 
99 GO TO l 

C OUTPUT FORMAT STATEMENTS. 
100 FORMAT(lXl 
101 FORMATl5X,34H PARAMETERS ARE AS FOLLOWS -- R= ,F6,ll 
102 FORMATl35X,4HY= ,FB,31 
103 FORMATl35X,4HD= ,FB,31 
104 FORMAT(35X,24HEXPEDITING COST POWER= ,FB,3) 



105 FORMATl3$X,31HEXPEDITING COST SCALE FACTOR• 1F803l 
107 FORMAT12Fl6o5l 
108 FORMAT12Fl6o5l 
109 FORMATl29H EXPEDITiNG STARTS D*SIGMA • ,F6.2,31H DAYS BEFORE REQU 
109iI1EMENT DATE.I . 
110 FJRMAT12X,15H LATENESS COST110X,25H MAGNITUDE PERCENT) 
111 FORMATUX16HSERIES116X,25H OF TER,M OF SUMI 
112 FORMATl16H TERM NUMBER ,I3,5X,El6•8•5X~F7o3l 
115 FORMATl49H THE LATENESS COST SUM FOR THIS SET OF M,R,Y,D = ,El6o8l 
116 FORMATl49H THE LATENESS COST CONSTANT COEFF FOR THIS SET• 1El608l 
117 FORMAT 15X,45H THE LATENESS COMPONENT OF TOTAL VARo COST• ,Fl6o41 
1220FORMATl10X,65HNO FACTORIAL PART POWER PART BINOMIAL PART 
1221 PRODUCT OF 31 

, 123 FORMAT19HTERM NOo ,I3,3X,41El5•711 
125 FORMAT(5X,45H THE STORAGE SPACE COMPONENT OF TOTAL COST= 1Fl6041 
126 F0RMAT(5X,45H THE INVENTORY VALUE COMPONENT OF TOT COST= 1Fl604l 
127 FORMATl5X,42H THE TOTAL VARIABLE COST OF PRO~UREMENT = ,F19.41 
1280FORMATl51H THE BUFFER FOR THIS TVC CALCULArION IS IY*SIGMAI =1F6el 
1281,7H DAYS.) . 
129 FORMAT(31H ENTER NEW DATA AND PUSH START.) 
130 FORMATl35X,1BHVALUE OF PART = ,Fl2o21 
131 .FORMATl3SX~lBHCOST OF CAPITAL= ,Fl4•41 
132 FORMATl35X,18HSPACE REQUIRED= ,Fl2o21 
133 FORMATl35X,1BHCOST/SPACE/YEAR= ,Fl4o41 
210 END 
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APP;ENDJ:X B 

SOLUTION FOR OPTIMAL BUFFER AND TVC* UND~R 

CHI-SQUARE DELIVERY DATE DISTRIBUTION 

The program listed in this appendix will find the Jninimum expected 

TVC of procurement and they* and optimal buffer associated with this 

minimum expected TVC for a given.set of cost parameters under t;he as

sumption of a chi-square delivery date distribution. In order to find 

the eptimum v1:1lues of y and TVC*, the intel;'val of y from .• 01 te 9. 86 

was considered to be·986 discrete points. The programevaluates TVC at 

14 of these points in finding that value of y which results in the·low

est TVC. Thus, the optimal y is found to within .01 and the optimal 

TVC. to within a few cents. The lagic of the Fibonacci search procedure 

.is outlined ;in Appendix; E. The evaluation of TVC.for a given y value 

is accomplished essentially with the program of Appendix A that has been 

adapted for use wi,th the Fibonacci search; thus the programs ef Appen

dices A and B have many, conunon statements and variable names. 

The input data and format for this program are the same as these 

for the program.in Appendix A with the exceptien that no card for the 

parameter y ,,is needed. The input. for this program should be placed on 

six cards organized as follows with the parameter v1:1lues · punched as 

indicated: 

_Card 1: Degrees of Freedom, r; col. J-3 with no decimal places 

Card 2: Timing :Parameter,,d; coi. 11-15 with3 decimal places 
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Card 3: Urgency Parameter, m; col. 16- 20 with 3 decimal places 

Card 4: Scaling Parameter, K; col. 21-30 with 3 decimal places 

Card 5: Space Units Required, W; col. 31-40 with 5 decimal places, 

and Ann1..1,al Cost of Space Unit, Ch; col. 41-50 with 5 

decimal places 

Card 6: Value of Item, V; col. 51-60 with 5 decimal places, and 

Annual Cost of Capital, etc., P; col. 61-70 with 5 decimal 

places. 

The order or format of input data can pe changed by altering statements 

1-7 and 10-16. If it is desired to use this program to calculate de-

cision tables as suggested in Chapter VII, it will pe advisable to 

change the program to replace the four holding cost parameters with the 

daily holding costs H. This can be accomplished by changing the fol-

lowing statements: numbers 6, 7, 24, 25, 26, 27, 85, 86, 87, 90, 92, 

and removing format statements 15, 16, 1,25, 126, 130, 131, 132, and 133. 

Essentially the changes required are 

(1) Provision of a READ statement for H 

(2) Provision of an output listing for H with the other 

parameters 

(3) Elimination of statements 85 and 86 which calculate storage 

space and inventory value costs separately and replacing 

them with a statement to calculate total expected holding 

costs as done in equation (8.9) 

(4) · Change TVC equation to include total holding costs 

(5) Modify output statements and format. 

In.the calculation of tables it may also be desired to have the computer 
• 

generate values of certain parameters. This can easily be done by 



elimination of READ statements for those parameters and inclusion of 

logic statements which will accomplish the desired sequence of cost 

parameter values. 
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It may also be desired to change the number of evaluations of 

Fibonacci Search, and thus the number of y values searched. For example, 

12 evaluations search for minimum TVC within the interval (.01, 3.77) 

rather than the interval (.01, 9.86) that is searched with 14 eval1,1-

ations. In the Fibonacci procedure, additional evaluations greatly, in

crease the size of the interval of y values searched. But as most 

optimal buffers will be as.sociated with values of y.·less than 5, addi

tional evaluations are unnecessary. However, if the optimal value of y 

for a given set·of parameters is the upper limit of the interval in 

which evaluations were made, the number of evaluations Should be in

creased so as to evaluate higher values of y. The number of evaluations 

can easily be changed by changing the following statements; numbers 617, 

619, 623, and 629. If the number of evaluations desired is "n," these 

statements Should read as follows: 

617 K = "n" 

619 MIN = · "n" 

623 K = -!ln-1 11 

629 IF (K- "n"), 630, 623 ,, 62.3 

where n is a positiv~ integer. Note that any number of evaluations may 

be perform~d up to and including n = 16. 

A sample of output from this program is included in tl:).e solution 

to the sample problem, of Chapter IV. i.n Figure 16, page 78. Note that 

the program logs each of they values and TVC evaluations such that a 

curve·of expected TVC vs. y can 'l;>e plotted to illustrate the sensitivity 



172 

of TVC to different buffer lengths-for the given set of parameters. In 

the calculation of decision tables as suggested in Chapter VII, the oqt

- put of successive TVC evaluations can be eliminated if desired by re

moving statements 77, 79, 82, 90, 92, and 94 and their corresponding 

format statement.s. 

A listing of the statements of this program, follows on the ne:x;t 

page. 
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C FIBONACCI SEARCH OF TVCIYI TO FIND THE OPTIMAL BUFFER FOR CHI-SQUARE DEL.DIST 
C READ IN DATA !DISTRIBUTION PARAMETERS, LATENESS AND OTHER COST PARAMETERS) 

l READ 10, R 
3 READ 12, D 
4 READ 13, POWER 
5 READ 14, SCALE 
6 READ 15, W,CSPACE 
7 READ 16, V,COFCAP 

C CALCULATE THE NUMBER OF DAYS BEFORE REQUIREMENT DATE EXPEDITING 
C SHOULD START. THIS IS D*STANDARD DEVIATION. 

9 DSIGMA = D*ll2oO*Rl**Oo5) 
C FORMAT STATEMENTS FOR INPUT OF DATA 

10 FORMATCF3.0I 
12 FORMATllOX,F5o31 
13 FORMATC15X,F5o3) 
14 FORMATl20X,Fl0o3l 
15 .FORMAT130X,21Fl0o511 
16 FORMATC50X,2FlOo51 
17 DIMENSION Al221, FACTORC22) 

C PUNCH OUT INPUT· DATA 
20 PUNCH 101, R 
21 PUNCH 1031 D 
22 PUNCH 104, POWER 
23 PUNCH 105, SCALE 
24 PUNCH 132, W 
25 P'JNCH 133, CSPACE 
26 PJNCH 130, V 
27 PUNCH 131, COFCAP 
28 PUNCH 109, DSIGMA 

C CALCULATION OF OFTEN USED TERMS AND INITIALIZATION 
( CONVERT M FROM FLOATING POINT TO FIXED POINT 

29 MPOWER =POWER+ Ool 
C N IS THE TERMINAL VALUE OF INDEX OF SUMMATION--IR/21 

30 N=CR/2.0l+Ool 
C L IS THE NUMBER OF F.ACTORIALS THAT WILL BE NEEDED• 

31 L = N-l+MPOWER 
32 FACTORCl) = loO 

C DO LOOP 33 TO 35 CALCULATES FACTORIALS. NOTE MAX PERMITTED VALUE OF L IS 22. 
33 .DO 35 I = 2,L 
34 S = I 
35 FACTOR!!) = FACTORll-ll*S 

C DIMENSION STATEMENT FOR VARIABLES INVOLVED IN FIBONACCI SEARCH 
600 DIMENSION Mll61i Yll61, TOTC(l61 

C FIBONACCI NUMBERS 
601 MIU=l 
602 MC21=2 
603 Ml31=3 
604 MC4l=5 
605 MC5l=8 
606 MC6)=13 
607 M(7)=21 
608 MC81=34 
609 M19l=55 
610 MC101=89 
611 Mllll=l44 
612 M(l2)=233 
613 MC13)=377 
614. Mll4)=610 
615 M(l5)=987 
616 Mll6l=l597 

C FIBO.IACCI INITIALIZATION FOR FIRST EVALUATION OF TV( 
617 K ... 14 
618 BOUND= OoO 
619 MIN= 14 
620 B=MIKI 
621 YIKl=B*OoOl 
622 GO TO 39 



C FIBONACCI INITIALIZATION OF Y AND BUFFER FOR SECOND EVALUATION OF TVC 
623 K = 13 
624 B=MIKI 
625 YIKl=IB*OoOll+BOUND 
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C RPART IS R+SIGMAIY-DI OVER 2• A NEW RPART MUST BE CALCULATED FOR EACH Y VALUE 
39 RPART=IR+ll2oO*Rl**Oo5)*1YIKI-Dll/2oO 

C REINITIALIZE SUM FOR EACH TVC EVALUATION 
40 SUM=OoC 

C CALCULATE AND SUM THE LATENESS COST SERIES. EACH TERM OF THE SERIES IS 
C COMPOSED OF 3 PARTS--PARTA, PARTB, PARTCo 

41 DO 62 I=l,N 
.42 U=I 

C PARTA = IM+N-11 FACTORIAL 
43 J = MPOWER+N-1 
44 PARTA = FACTORIJI 

C PARTB = R+ SIGMAIY-DI OVER 2 RAISED TO THE 11-llTH POWER 
45 PARTB=RPART**IU-loOI 

C PARTC = E31.~0MIAL TERM-- IN-11 FACTORIAL/IN-IJFACTORIAL*li-llFACTORIAL. 
46 PARTC = FACTORIN-11 

C IF IN-I I IS ZERO, DEFINE O FACTORIAL AS loO 
47 IF IN-II 48,48,50 
48 FACT= loO 
49 GO TO 52 
50 J =N-1 
51 FACT =FACTOR(JI 
52 PARTC = PARTC/FACT 

C IF 11-11 IS ZERO, DEFINE O FACTORIAL AS loO 
53 IF 11-11 54,54,56 
54 FACT= loO 
55 GO TO 57 
56 FACT= FACTOR! 1-11 
57 PARTC = PARTC/FACT 

C Alli IS THE ITH TERM OF THE LAlENESS COST SERIES. 
58 A:11= PARTA*PARTB*PARTC 

C SUM ACCUML~ATES EACH TERM All I AS IT IS CALCULATED IN THE DO LOOP 
59 SUM= SUM+All). 
62 CONTINUE 

C END OF LATENESS COST SERIES CALCULATIONS 
C CALCULATE CONSTANT COEFFICIENT OF SERIES SUM IN EXPECTED LATENESS COST. 

75 CONST=ISCALE*12.0**POWERII/IFACTORIN-ll*EXPFIRPART) I 
C CALCULATE EXPECTED LATENESS COST . 

76 COSTLC = CONST*SUM 
77 PUNCH 100 

C CALCULATE BUFFER FOR THIS TVC EVALUATION. +0.00001 IS FOR ROUND OFF ERROR 
78 BUFFER= YIKl*(l2oO*Rl**0·51~0.00001 

C PUNCH K, BUFFER, COST COMPONENTS, AND TVC 
79 PUNCH 112, K, VIKI, BUFFER 
82 PUNCH 117,COSTLC 

C CALCULATE EXPECTED STORAGE SPACE COST 
85 COSTSS= W*CSPACE*YIKl*ll2oO*Rl**0•5)/365oO 
CALCULATE EXPECTED INVENTORY VALUE COST 
86 COSTTC= V•COFCAP*YIKl*ll2.0*Rl**0.5l/365oO 

c CALCULATE EXPECTED T.v.c. FOR THIS SET OF COST PARAMETERS ANDY. 
87 TOTCIK)=COSTSS+COSTTC+COSTLC 
90 PUNCH 125,COSTSS 
92 PUNCH 126, COSTTC 
94 PUNCH 127, TOTCIKl 

C IF THIS IS THE FIRST TVC EVALUATION IK=l4l, BRANCH BACK TO CALC K=l3 
629 IFIK-14) 630,623,623 

C IS TVCIKI JUST CALCULATED LESS THAN THE PRESENT TVC MINIMUM 
630 IF ITOTC(K)-TOTC(MIN)) 640,640,631 

C IF NOT, BRANCH TO CALCULATE THE NEW BUFFER AND TVC DEPENDING ON WHETHER 
c THE VALUE OF y JUST USED IN CALCULATING TVC(K) rs LESS THAN y FOR TVC(MIN) 

631 IF (YIMIN)-Y(K)) 651,651,635 
635 BOUND=YIK) 
636 K=K-1 
637 B=MIK+ll 
638 r~ (K-1) 700,625,625 



C IF N~W TVCIMINI• STORE NEW MIN AND BRANCH BACK TO ANOTHER EVALUATION 
640 IF IYIMINI-YIKII 645,650,650 
645 BOUND=YIMINI 
646 MIN= K 
647 K=K-1 
648 B=MIK+ll 
649 IF IK-11 700,625,625 
650 MIN=K 
651 K=K-1 
652 IF IK-11 700,624,624 

C PUNCH OPTIMAL BUFFER AND MINIMUM TOTAL COST IN INTERVAL 
700 PUNCH 100 
701 PUNCH 100 
702 PUNCH 134, TOTCIMINI 
703 BUFFER= Y(MINl*IIR*2~0l**Oo5J 
704 PUNCH 135, YIMINI, BUFFER 
705 TYPE 129 
706 PAUSE 
707 GO TO~ 
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C FORMAT STATEMENTS FOR LISTING OF PARAMETERS AND FOR OUTPUT OF EXPECTED COSTS 
100 FORMATClXI 
101 FORMATC5X,34H PARAMETERS ARE AS FO.LLOWS -- R= ,F6oll 
102 FORMAT(35X,4HY= ~F8o3l 
103 FORMATl35X,4HD= ,F8o31 
104 FORMATl35X,24HEXPEDITING COST POwER= 1F8031 
105 FORMATl35X,31HEXPEDITING COST SCALE FACTOR= ,F8o31 
107 FORMATl2Fl6o5l 
108 FORMAT12Fl6o51 
109 FORMAT(.29H EXPEDITING STARTS D*SIGMA: ,F6o2,31H DAYS BEFORE REQU 
1091IREMENT DATEol 
112 FORMATl15H EVAL NUMBER ,I3,5X,3HY =,F8o3,5X,8HBUFFER =,F10o31 
117 FORMAT 15X,45H THE L~TENESS COMPONENT OF TOTAL VAR. COST= ,Fl6o41 
125 FORMATl5X,45H THE STORAGE SPACE COMPONENT OF TOTAL COST= ,F16o41 
126 FORMATl5X,45H THE INVENTORY VALUE COMPONENT OF TOT COST= ,Fl6o41 
127 FORMATl5X,42H THE TOTAL VARIABLE COST OF PROCUREMENT= ,Fl9o41 
129 FORMATl31H ENTER NEW DATA AND PUSH STARTol 
130 FORMATl35X,18HVALUE OF PART ,Fl2o2l 
131 FORMATl~5X,18HCOST OF ·CAPITAL= 1Fl4o4) 
132 F1RMAT(35X,18HSPACE REQUIRED= ,Fl2o2) 
133 FJRMAT135X,18HCOST/SPACE/YEAR= ,Fl4o4l 
134 FORMATlj4H THE MINIMUM EXPECTED VARIABLE COST OF PROCUREMENT = ,F 
134110.21 
135 FORMATl42H THE OPTIMAL BUFFER FOR THIS TVC IS AT Y =,F6.2,13H ORY 
135l*SIGMA =,F7o2,6H DAYSol 
210 END 



APPENDIX C 

CALCULATION OF TVC FOR A GIVEN BUFFER LENGTH 

UNDER POISSON DELIVERY DATE DISTRIBUTION 

The program· listed .. in this appendix will calculate the expected 

TVC of procurement for a given set of cost parameters and a given buffer 

length under the assumption of a Poisson delivery date distribution. 

The expressions used to calculate TVC are those given in equations 

(5.33), (5.34), and (5.35). Note that all necessa+y m~ents of the 

Paisson are calculated initially, then the program branches·to calculate 

TVC depending upon the value of m specified. 

The input data a.nd format for this program are the same as that for 

the program in Appendix A with the exception that the first card gives 

the value of the Poisson parameterµ. The seven input cards should be 

organized as follows with the parameter values punched as indicated: 

Card 1: Mean of Poisson,µ; col. 1-3 with no decimal places 

Card 2: No. of Std. Deviations in buffer, y; col. 6-10. with 3 

decimal places 

Card 3: · Timing Parameter, d; col. 11~15 with 3 decimal places 

. Card 4: Urgency Parameter, m; col. 16-20 with 3 decimal ,places 

Card 5:. Scaling Parameter, K; col. 21~30 with 3 decimal places 

Card 6: Space Units Required, W; col. 31-40. with 5 decimal 

places, and Annual Cost of Space Unit,~; col. 41-50 

with 5 decimal places 
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Card 7: Value,of Item, V; col. 51-60.with 5 decimal places, and 

Annual Cost of Capital, etc., P; col, 61-70with 5 

decimal places • 

. Note that integer values are required for the meanµ, the buffer yr;r, 

and the expediting time dcr, Thus the proper values of y and d to use 

in a particular situation must first be calculated from the buffer 

length and expediting time after the proper range on delivery date has 

been determined. When the 90%. range·on delivery date is established, 

Table II can be used to determineµ. The values.of y and d can then be 

found as 

y = Buffer/,/µ 

d = Expediting Time/'1µ 

where/µ is the standard deviation of the delivery date distribution and 

Buffer and Expediting Time are expressed as positive integers in days. 

The order or format of input data can be changed by altering statements 

1-7 and 11~17. 

A sample of output from this program is included in the solution 

to the sample problem of Chapter Vin Figure 20, page 98. 

A.listing of the statements of this program follows on the next 

page. 
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C CALCULATION OF EXPECTED TVC OF PROCUREMENT FOR GIVEN VALUES OF Y, Do AND COST 
C PARAMETERS UNDER AN ASSUMPTION OF A POISSON DELIVERY DATE DISTRIBUTION• 
C READ IN DATA 1DISTRIBUTION PARAMETERS, LATENESS AND OTHER COST PARAMETERS> 

1 READ 11, U 
2 READ 12, Y 
3 READ. 13, D 
4 READ 14, EXPON 
5 READ 15, SCALE 
6 READ 16, W~ CSPACE 
7 READ 17, V, COFCAP 

~ FORMAT STATEMENTS FOR INPUT OF DATA 
11 FORMAT ( F 3 • 0 I 
12 FORMAT15X,F5o31 
13 FORMATl10X,F5o31 
14 FORMATtl5X,F5o31 
15 FORMATl20X,Fl0o31 
16 FORMATi30X,21FlOo511 
17 FORMATl50X,2Fl0.51 

C CALCULATION OF GENERAL PARAMETERS 
61 s~u+((L~-0.51*1Y-DII 
62 ETOU=EXPFI-UI 
63 N=S-Oo99 

C INITIALIZE SUMS TOO TH TERM SINCE DO LOOPS START WITH T = 1 
C SUMO WILL BE USED TO ACCUMULATE THE SUMMATION OF FITJ 
<. SUMl WILL BE USED TO ACCUMULATE THE SUMMATION OF T*FITJ, ETC. 

64 SUMO = ·. ETOU · 
65 SUMl = a.a 
66 SUM2 = a.a 
67 SUM3 = a.a 

KBUFF = Y*IU**Oo5J+Ool 
KEXPED = D*IU**0.51+0.l 

( PUNCH OUT INITIAL PARAMETERS 
21 PUNCH 501, U 
22 PUNCH 502, Y 
23 P'JNCH 503, D 
24 PJNCH 504, EXPON 
25 PUNCH 5J5, SCALE 
26 PUNCH 506, W 
27 PUNCH 507, CSPACE 
28 PUNCH 508, V 
29 PUNCH 509, COFCAP 
69 PUNCH 510, N 

PUNCH 515, KEXPED 
C CALCULATE SUMS OF SERIES (l TO S-lJ FOR DIFFERENT MOMENTS OFT 

80 DO 95 I=l,N 
C CALCULATE FACTORIAL PART OF POISSON PROBABILITY DENSITY FUNCTION 

81 FACTOR= loO 
82 L = I 
83 DO 85 J=l,L 
84 X=J 
85 FACTOR= FACTOR*X 

C CALCULATE THE ITH TERM OF THE PDF FOR EACH SERIES 
86 T=I 
87 PROB=IU**Tl*ETOU/FACTOR 
88 TERMl=T*PROB 
89 TERM2=1T**2oOl*PROB 
90 TERM3=1T**3o0l*PROB 

C ACCUMULATE SUMS FOR EACH SERIES 
91 SUMO=SL.~O+PROB 
92 SUMl=SUMl+TERMl 
93 SUM2=SUM2+TERM2 
94 SUM3=SUM3+TERM3 
95 CONTINUE 

C BRANCH TO CALCULATE LATENESS COST DEPENDING ON EXPONENT OF LC FUNCTIONl1,2,3J 
96 M;..EXPON+OoOl 
97 GO TO 1100,200,3001, M 



( CALCULiTION O~ L~TENESS COST FOR _LC FUNCTION EXPONENT l 
100 PARTA = IU**0~51*CY-Dl 
101 PARTS= S*SUMO 
102 P\RTC = SUM1 
.104 CJSfLC = SCALE*C-PARTA+PARTB-PA~TC) 
110 GO TO :+00 

C CALCULATION 6F LATENESS COST FOR LC jUNCT!ON EXPONENT 2 
200 PARTA = U*floO+IIY-Dl**21l 
201 ~ARTB = IS**21*SUMO 
202 PARTC = 2oO*S*SUMl 
203 PARTD = SUM2 
204 COSTLC = SCALE*IPARTA-PARTB+PARTC-PARTDI 
210 GO TO 400 

C CALCULATION OF LATENESS COST FOR LC FUNCTION EXPONENT= 3 
300 PARTA = U*I lo0-13oO*IU**Oo5l*IY-DI 1..:1 IU**0.51*1 IY-01**3111 
301 PARTB IS**31*SUMO 
302 PARTC = 3oO*IS**2oOl*SUMl 
305 PARTD = 3ob*S*SUM2 
304 PARH = SUM3 
305 COSTLC = SCALE*IPARTA+PART8-PARTC+PARTD-PARTE1 
310 GO TO 400 
400 CONTINUE 

0 CALCULATION OF STORAGE SPACE COMPONENT OF TOTAL VARIABLE COST 
401 COSTSS = W*CSPACE*Y*IU**Oo~l/36500 . 

C CALCULATION OF TIED-UP CAPITAL COMPONENT OF TOTAL VARIABLE COST 
402 COSTTC = V*ICOfCAP/365oOl*Y*JV**Oo51 . 

C CALCULATlON OF THE TOTAL VARIABLE COST OF PROCUREMENT 
403 TOTC = :osTLC+COSTSS+COSTTC 

t PUNCH COST COMPONENTS AND TOTAL .VARIABLE COST 
410 PUNCH 500 
411 PUNCH 511, COSTLC 

PUNCH 500 
412 PUNCH 512, COSTSS 

PUNCH 500 
413 PUNCH 513, COSTTC 

-PUNCH 500 
414 PUNCH 514, TOTC 

PUNCH 500 
416 PUNCH 51~, Y,KBUFF 
425 TYPE 599 
42.6 GO TO l 
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~ F6RMAT STATEMENTS FOR LISTING OF PARAMETERS AND FOR OUTPUT OF EXPECTED COSTS 
560 F1RMAT llX I 
501 FJRMATC5X,50H PARAMETERS ARi AS FOLLOWS -- U=MEAN OF POISSON= tF5 
5011.11 
502 FORMAT(35X,4HY= ,F8o3) 
503 FORMATl35X,4HD= ,FB.31 
504·FORMATl35X,31HEXPEDITING COST EXPONENT IMI= eF8o31 
505 FORMATl35X~31HEXPEDITING COST .SCALE FACTOR= ,F8o31 
506 FORMATl35X,17HSPACE REQUIRED• ,Fl5o21 
507 FORMATl35X,18HCOSTrSPACE/YEAR= ,Fl7o51 
508 FORMATC35X,17HVALUE OF PART = ,Fl5e21-,_, 
509 FORMATl35X,18HCOST OF CAPITAL= 1Fl6041 
510 FORMATC35X,29HNUM8ER -OF TERMS IN SERIES,= ,131 
511 FO.RMAT 15X,45H THI:. LATENESS COMPONENT OF TOTAL VARo COST = ,Fl6o41 
512 FORMATl5X,45H THE STORAGE SPACE COMPONENT OF TOTAL COST~ ,Fl6~41 

·513 FORMAT15X,45H 1HE TIED-UP CAPITAL COMPONENT OF. TOT COST = ,Fl6,41 . 
514 FORMATC5X,42H THE TOTAL VARIABLE COST OF PROCUREMENT= ,Fl9o4l 
515 F'ORMATi29H EXPEDITING STARTS D*SIGMA = tl3,31H DAYS BEFORE REQU.IR 
5151EMENT DATE.I . 
Sl60FORMATl25H THE BUFFER FOR THIS Y = 1F6,2,16H IS Y*SIGMA ~R ,I3,7H 
51.61 DAYS. I 
599 FORMATl31H ENTER NEW DATA AND PUSH STARTol 
600 END 



APPENDIX D 

SOLUTION FOR OPTIMAL BU,FFER AND TVC* UNDER 

POISSON DELIVERY DATE DISTRIBUTION 

. The program listed in this appendix will find the minimum TVC of 

procurement and the optimal buffer associated with this minimum expected 

TVC for a given set of cost parameters under the assumption of a Poisson 

delivery date distribution. In order to find the optimum buffer and 

TVC*, integer values of buffer from 1 to 88 days were searched using a 

Fibonacci search procedure to find that buffer length yielding the mini

mum TVC. If after the 9 evaluations needed to search the interval of 

buffer lengths from 1 to 88 it is found that the minimum TVC is at a 

buffer length of one day, the TVC for a buffer length of zero days is 

evaluated to determine if this is the minimum point. The optimal buffer 

is thus found from all possible integer buffer lengths fromO.to 88 

days~ and the minimum expected TVC associated with this buffer length. 

The Fibonacci search logic is the same as that used in the program.of 

Appendix B with the exception that integer values of buffer are repre

sented by the Fibonacci numbers. The value of y used in the TVC calcu

lations is then calculated as 

y = Bt,1ffer /./µ. (D.l) 

·'Ihe TVC calculations are performed in the same manner as done in.the 

program of Appendix C. Thus the program of Appendix D has many 
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statements common to the programs of Appendices Band C. 

The input data and format for this program are the same as these 

for the program in Appendix C with the exception that no card for the 

parameter y is needed. The input for this program should be placed on 

six cards organized as follows with the parameter values punched as 

indicated: 

Card 1: Mean of Poisson,µ; col. ~-3 with no decimal places 

Card 2: Timing Parameter, d· 
' col. U-15 with 3 decimal places 

Card 3: Urgency Parameter, m; col. 16-20 with 3 decimal places 

Card 4: Scaling Parameter, K· 
' 

col. 21-30 with 3 decimal places 

Card 5: Space Units Required, W; col. 31-40 with 5 decimal 

places, and Annual Cost of Space Unit, Ch; col. 41-50 

with 5 decimal places 

Card 6: Value of Item, V; col. 51-60 with 5 decimal places, 

and Annual Cost of Capital, etc., P; col. 61-70 with 

5 decimal places. 

The program is written such that only integer values of buffer are used 

in TVC evaluations, but the procedure outlined in Appendix C must be 

followed to calculate a value for the parameter d that will guarantee 

an integer value of da. The order or format of input data can be 

changed by altering statements 1-7 and 11-17. If it is desired to use 

this program to calculate decision tables as described in Chapter VII, 

changes simi.lar to those described in the discussion of Appendix B may 

be utilized to facilitate calculation of the tables. 

If it is desired .. to change the range of buffer values searched, 

this can be accomplished in the same manner described in Appendix B. 

For "n" evaluations of TVC, statement numbers 45, 46, 63, and 425 should 



read 

45 K = "n" 

46 MIN = "n" 

63 K = · ''n-1" 

425 IF (K-''n'1) 430, 63, 63 
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where n.is a positive integer, Note that any number of evaluations may 

be performed up to and including n = 11. However, the·time needed to 

perform a single evaluation of TVC increases greatly as the integers 

used become large. Thus, mqr~ than 9 evaluations should be used only 

"1hen the optimum.buffer lies at the top of the range searched for 9 

.evaluations, which.is 88 days. 

A sample·of output from this program.is included in the solution 

to the sample problem of Chapter V. in Figure 21, page 99. 

A-listing of the statements of this program follows on the next 

page. 
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C FIBONACCI SEARCH OF TVCIY) TO FIND THE OPTIMAL BUFFER FOR POISSON DEL. DIST. 
C READ IN DATA (DISTRIBUTION PARAMETERS, LATENESS AND OTHER COST PARAMETERS) 

l READ 11, U 
3 READ 13, D 
4 READ 14, EXPON 
5 READ 15, SCALE 
6 READ 16, W, (SPACE 
7 READ 17, V, COFCAP 

C LAST WILL BE USED IN CALCULATING TVC FOR ZERO BUFFER IF MIN BUFFER 15 1 DAY. 
8 LAST= 1 

C FORMAT STATEMENTS FOR INPUT OF DATA 
11 FORMAT(F3.0l 
13 FORMAT(l0X,F5o3) 
14 FORMAT(l5X,F5o3) 
15 FORMAT(20X,Fl0o3) 
16 FORMAT(30X,2(Fl0~5l) 
17 FORMAT(50X,2Fl0o5l 

C PUNCH OUT INITIAL PARAMETERS 
21 PUNCH 501, U 
23 PUNCH 503, D 
24 PUNCH 504, EXPON 
25 PUNCH 505, SCALE 
26 PUNCH 506, W 
27 PUNCH 507, CSPACE 
28 PJNCH 508, V 
29 PUNCH 5J9, COFCAP 

C DIMENSION STATEMENT FOR VARIABLES INVOLVED IN FIBONACCI SEARCH 0 

3CJ DIMENSION Mill), BUFFER(ll), Ytll), TOTC(lll 
C FIBONACCI NUMBERS 

31 Mlll=l 
32 M(2)=2 
33 M(3)=3 
34 M(4)=5 
35 Ml5J=B 
36 M(6l=l3 
37 Ml7J=21 
38 M(8)=34 
39 M(9)=55 
40 M(l0)=89 
41 M(ll)=l44 

C FIBONACCI INITIALIZATION FOR FIRST EVALUATION OF TVC 
45 K = 9 
46 MIN= 9 
47 BOUND= O.O 
48 B = M(K) 
49 BUFFER(i<) = B 
50 Y(K) = BUFFER(K)/(U**0.5) 
51 GO TO 71 

C FIBONACCI INITIALIZATION OF Y AND BUFFER FOR SECOND EVALUATION OF TVC 
63 K = 8 
64 B = M(i<) 
~5 BUFFER(K) = B+BOUND 
66 Y(KJ = BUFFER(K)/(U**0.51 

C CALCULATION OF GENERAL PARAMETERS 
71 S=U+( (U**0.5)*(Y(K)-D)) 
72 ETOU=EXPF(-Ul 
73 N=S-Q.99 

C INITIALIZE SUMS TOO TH TERM SINCE DO LOOPS START WITH T = 1 
C SUMO WILL BE USED TO ACCUMULATE THE SUMMATION OF F(Tl 

C SUMl WILL BE USED TO ACCUMULATE THE SUMMATION OF T•F<T>, ETC. 
74 SUMO ETOU 
75 SUMl = OoO 
76 SUM2 = O.O 
77 SUM3 = O.O 
78 FACTOR= 1.0 



c 

c 

c 

c 

c 

c 

c 

c 

c 

.c 

c 

c 

c 
c 

CALCUL~TE SUMS OF SERIES 11 TO S-1) FOR DIFFERENT MOMENTS OFT. 
80 DO 95 I=f,N 
CALCULATE FACTORlAL PART OF POISSON PROBABJLITY DENSITY FUNCTION 
81 T = I 
82 FACTOR= FACTOR*T 
CALCULATE THE ITH TERM OF THE PDF FOR EACH SERIES. 
87 PROB=lU**Tl*ETOU/FACTOR 
88 TERMl=T*PROB 
8~ TERM2=1T**2o0l*PROB 
90 TERM3=(T**3o0l*PROB 
ACCUMULATE SUMS FOR EACH SERIES 
91 SUMO=SUMO+PROB 
92 SUMl=SUMl+TERMl 
93 SUM2=SUM2+TERM2 
94 SUM3=SUM3+TERM3 
95 CONTINUE 
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BRANCH TO CALCULATE LATENESS COST DEPENDING ON EXPONENT OF LC FUNCTION(l,2,3) 
96 I=EXP0~~0.01 
97 GO TO (100,200,3001, I 
CALCULATJON OF LATENESS COST FOR LC FUNCTION EXPONENT= 1 

100 PARTA. • (U**Oo5l*IY(KJ-DJ 
101 PARTS= S*SUMO 
102_ PART(= SUMI 
104 COSTLC = SCALE*(-PARTA+PARTB-PARTCI 
110 GO TO 400 

CALCULATI~N OF LATENESS COST FOR LC FUNCTION EXPONENT 
2UU PARTA U*(lo0+((Y(KJ-bl**21) 
201 PARTS= IS**2l*SUMO 
202 PART(= 2oO*S*SUMlo 
203 PARTD = SUM2 
204 COSTLC = SCALE*(PARTA-PARTB+PARTC-PARTDI 
210 GO TO 400 

2 

CALC'JLATION OF LATENESS COST FOR LC FU~tTION EXPONENT = 3 
300 P.IRTA U*(l.0-(3o0~(U**0.5l*IY(K)-Dll-(IU**0.5)*( (YIKI-Dl**31 l I 
301 PARTS IS**3l*SUMO 
302 PARTC 3o0*15**2o0l*SUM1 
303 PARTD 3o0*S*SUM2 
304 PARTE SUM3 . 
305 COSTLC = SCALE*(PARTA+PARTB-PARTC+PARTD-PARTEJ 
310 GO TO 400 
400 CONTINUE 

CALCULATION OF STORAGE ~PACE COMPONENT OF TOTAL VARIABLE COST 
401 COSTSS =(W*CSPACE*YIKl*1U**Oo5ll/365oO . . 

CALCULATION OF TIED-UP CAPITAL COMPONENT O~ TOTAL VARIABLE COST· 
402 COSTTC = V*ICOFC~P/365.0l*Y(K)*IU*~0.5) 

CALCULATION OF THE TOTAL VARIABLE COST OF PROCUREMENT 
403 TOTC(Kl = COSTLC+COSTSS+COSTTC 

PUNCH K, BUFFER, COST COMPONENTS, AND TVC 
408 PUNCH 500 . 
409 PUNCH 510, K, BUFFER(Kl 
411 PUNCH 511, COSTLC 
412 PUNCH 512, COSTSS 
413 PUNCH 513, COSTTC 
414 PUNCH 514, TOTC(Kl 

IF THIS IS THE FIRST TVC EVALUATION (K= 91• BRANCH BACK TO CALC K= 8 
. 425 IF (K-91 430i63,63 

.15 TVC(KJ JUST CALCULATED LESS THAN THE PRESENT TVC MINIMUM 
430 IF ITOTC(K)-TOTC(M!NJI 440,440,431 

I ~-

IF NOT, BRANCH TO CALCULATE THE NEW BUFFER AND TVC DEPENDING ON WHETHER 
THE VAlUE OF Y JUST USED IN CALCULATING TVC(Kl 15 LESS THAN Y·FOR. TVC(M!Nl 

431 IF (YIMINJ-Y(Kll 453,453,435 
435 BOUND= B0FFE~(Kl 
436 K = k-1 
437 B=M(K+ll 

. 438 IF IK-ll 460,65,65 



c 

c 

c 
c 

IF NEW TVC(MINl, STORE NEW MIN AND bRANCH BACK TO ANOTHER EVALUATION 
440 IF (Y(MINl-YIKll 445,450,450 
445 81UND = BUFFER(MINl 
446 M;N = K 
447 K = K-1 
448 B = M<K+l> 
449 IF (K-11 460,65,65 
450 MIN= K 
451 IF (K-0) 452,452,453 
452 K=l 
453 K=K-1 
454 IF (K-ll 460,64,64 
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TEST TO SEE IF PRESENT BUFFER IS 1 DAY. IF SO, CALCULATE TVC FOR BUFFER O 
460 IF (LAST) 490,490,461 
461 J = BUFFER(K+l> + 0.1 
462 IF (J-1) 463,463,490 
463 K = 0 
464 BUFFER(K) = OoO 
465 LAST= 0 
466 GO TO 66 

PUNCH OPTIMAL BUFFER AND MINIMUM TOTAL COST IN INTERVAL 
490 PUNCH 500 
491 PUNCH 521, TOTC(MIN> 
492 PUNCH 522, BUFFER(MIN> 
495 TYPE 599 
496 PAUSE 
497 GO TO 1 

IF TOTC(MIN) IS AT BUFFER=l, THEN IT SHOULD BE COMPARED WITH TVC FOR BUFFER=O 
FORMAT STATEMENTS FOR LISTING OF PARAMETERS AND FOR OUTPUT OF EXPECTED COSTS 

500 FORMAt(lX) 
501 FORMAT(5X,50H PARAMETERS ARE AS FO~LOWS-- U= MEAN OF POISSON= ,F5 
5011.11 
503 FORMAT(35X,4HD= ,FS.3) 
504 FORMAT(35X,31HEXPEDITING COST EXPONENT !Ml= ,F8o3) 
505 FORMAT!35X,31HEXPEDITING COST SCALE FACTOR= ,FS.3) 
506·FORMAT(35X,18HSPACE REQUIRED= ,Fl2o2) 
507 FORMAT!35X,18HCOST/SPACE/YEAR= ,Fl4o4) 
508 FORMATl35X,18HVALUE OF PART ,Fl2o2) 
509 FORMAT!35X,18HCOST OF CAPITAL= ,Fl4o4) 
510 FORMAT!21HFIBONACCI SEARCH NO. ,I3,43H, BUFFER FOR THIS CALCULATIO 
5101N OF T.v.c. IS ,F8.l,5H DAYS) 
511 F1RMAT (5X,45H THE LATENESS COMPONENT OF TOTAL VAR. COST = ,F16.4) 
512 FJRMATl~X,45H THE STORAGE SPACE COMPONENT OF TOTAL COST = ,Fl6.4l 
513 FORMAT(JX,45H THE TIED-UP CAPITAL COMPONENT OF TOT COST = ,Fl6o4l 
514 FORMAT15X,42H THE TOTAL VARIABLE COST OF PROCUREMENT = ,Fl9.4) 
521 FORMAT(58HTHE OPTIMAL TOTAL EXPECTtD VARIABLE COST OF PROCUREMENT 
5211IS,Fl5.2l 
522 FORMAT(49HTHE BUFFER TIME RESULTING IN THIS MINIMUM TVC IS ,FS.1,6 
5221H DAYS.l 
599 FORMAT(31H ENTER NEW DATA AND PUSH START.) 
600 END 



APPENDIX E 

OUTLINE OF FIBONACCI SEARCH PROCEDURE 

Fibonacci search is used in the computer programs of this disser

tation to find the minimum expected variable cost of procurement. A 

brief summary of the search procedure and its use in. this application is 

included for those who may not 1:>e familiar with it. For examples of 

the logic involved in. the Fibonacci search, specific reference.is made 

.to the search for the minimum TVC(y) under the chi-square delivery date 

distribution. 

More detailed discussion of the Fibonacci search and its compari

sons.to-other techniques may be foµnd in Nemhau,ser (1966).or Wilde 

(1964). The following summary was adapted from. these sources. 

Fibonacci search can be applied to any .unimodal function of one 

variable, and it guarantees that the optimal solution may be found after 

no more than a fixed number of evaluations of the function are made. 

If the variable is discrete as in the case of the Poisson delivery dis

tribution, the number of points searched depends only on the totalnlJI!].

ber of feasible points. Wq,en the variable·is continuous as in the case 

of the chi-square delivery. date distribution, the number of points that 

must 1:>e searched depends only on the size of the interval and. the degree 

of accuracy req'l,lired. For tl1,e search of Appendix B, the de~ree of 

accuracy specified was such_that the optimal ywas found to within ,01 

standard deviation, The minimum TVC was thus found to within a few . 
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cents. This method can be considered as an optimal search procedure 

since it minimizes the maximum number of points that must pe searched 
I 

for an arbitrary unimodal function of one variableJ . TVC(.y) was shown 

to be a strictly conve~ (U-shaped) or a constantly increasing curve in 

the region of feasible y, and thus TVC is ?lways unimodal with respect 

to finding a minimum. It is called Fibonacci search ,because the number 

of points examined and the strategy. for placing the points are closely 

related to the Fibonacci sequence 

Fn+2 

where·F1 = 1 and F2 = 1. The Fibonacci search can best be described by 

-reference to Table XVII adapted from. page 98 of N:emhauser (1966). 

For any given number of evaluations to be performed, column two in 

Table XVII gives . the number of points that will be searched. In Appen-

dix B,. 14 evaluations are used to search 986 points on the TVC(y) curye. 

These points are assumed to be values of y that are .01 apart from 

y = .01 toy= 9.86. Columns d1 and d2 give the first two points where 

.TVC(y) is to be evaluated which are points number 377 and 610. In trans-

· lating. the points d1 and d2 .into values of y to be used in TVC(y) evalu,;. 

ations they were multiplied by 0110).. ThuEi the first two evaluations of 
\ 

'1· ••• 

TVC(y) were made at y = 6.10 and y =; 3.77. 

After the first two evaluations are performed, the values of TVC(y) 

that have been calculated are compared. If TVC(6 .10). > TVC(3. 77) this 

indicates that the minimum TVC(y) must occur at some value of y. < 6.10,. 

since TVC(y) is unimodal in the interval (.01, 9.86) with respect to 

finding a min-imum. Thus, all pqints y ;.?: 6.10 are eliminated as possfbly 

resulting in the minimum TVC(y). If TVC(6.10) had been less than 



Number of 
Evaluations 

n = 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

TABLE XVII 

EVALUATION POINTS IN FIBONACCI SEARCH 

No. of Points 
Searched 

total points= 1 
2 
4 
7 

12 
20 
33 
54 
88 

143 
232 
376 
609 
986 

1586 
2583 

Evaluations at 
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dl d2 

1 2 
2 3 
3 5 
5 8 
8 13 

13 21 
21 34 
34 55 
55 89 
89 144 

,144 233 
233 377 
377 610 
610 987 
987 1597 
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TVC(3.77), all points y < 3.77 would have been eliminated. 

Once the Fibonacci searchhas begun, the procedure at each stage 

is basically very simple. Somewhere in the remaining.interval for y will 

be a value of y for which.TVC(y) has been previously evaluated. To cop.-

tinue the search, the next value of y should be located symmetrically 

with respect to the one already in the interval. In the case where 

TVC(6.10).> TVC(3.77), the evaluation of TVC(y) already within the re-

maining .interval is that for y = 3.77. The pointy =.3.77 Ls 6~10-3.77 = 

2.33 from the upper bound of the interval. Thus, the next evaluation of 

TVC(y) should be 2.33 from the lower bound of the interval which·is at 

y = 2.33. 

At each stage the two points within the remaining interval where 

evaluations are needed for the next comparison are given as d1 and d 2 

.in Table XVII. For example if the search has progressed to tile point 

where·only·5 evaluations remain, the two evaluations of TVC(y) needed 

for the next comparison are tq.e fifth and eighth points from the·lower 

bound. One of these will have been evaluated preyiously. After the 

second is evaluated, the .two are compared; and all points l=)etween the 

point yielding the higher TVC(y) evaluation and its nearest bound are 

elitl).inated. The search then proceeds to the next stage until the final 

three points are evaluated and the point yielding the I!linimum TVC(y) is, 

found. 

Examples of the Fibonacci search procedure are included in Figure 

16 on page 78 and Figure 29 on page 99. The reader can gain a better 

understanding.of the logic involved in choosing the next value of y to 

use in evaluat.ion of TVC(y) by plotting the values of TVC(y) vs. y as 

they are evaluated. At each stage the reader should.perform the 
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comparison of the TVC(y) making.note of the points eliminated by t!:i.e 

comparison and make reference to Table XVII to find the point within 

the remaining interval where the next TVC(y) evaluation should be made. 

For further study pages.· 94 through 99- of· Nemhauser (1966) and pages · 24 

through 32of Wilde (1964) offer excellent prei;entations of the 

Fibonacci search. 



APPENDIX F 

DISCUSSlQN OF EXPECTED LATENESS COST FOR m = 0 

If the urgency parameter of· lateness cost "m" is allowed to equal 

zero, an interesting situation develops. If m = 0 and d = 0 the 

lateness cost term in the model reduces to the method' often described 

in texts on inventory theory for dealing with the probability of late· 

delivery. This method might be termed the "out-of-stock cost" methodo 

One example where this method is used is the model presented on pages 

146~150 of Starr and Miller (1962) for a dynamic inventory situation.· 

On page 149 the Gost of lateness is defined as the out-of-stock cost 

times the probability that delivery is late. In this appendix the 

lateness cost function of this dissertation will be analyzed for the 

case of m = O. This will illustrate how the "out-of-stock cost" 

method can be considered as a special case of the model developed in 

this dissertation for dealing with one-stage procurement situations. 

The lateness co~t function is defined in equation (2.10) as 

follows 
m 

C(t) = K(t + dcr) for 

0 for t < - dcr 

where 

K= a scaling constant 

t = the delivery date (a random variable) 

dq = the number of days prior to the requirement date that 
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expediting begins 

m = the rate at which lateness costs increase with time 

(m = 1, 2, or 3 in this dissertation). 

If mis allowed to equal zero, then equation (2.10) reduces to 

C(t) = K(t + dcr)o 

=K 

= 0 

for 

for 

t ~ = dcr 

t < dCJ 
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If m = O, C(t) is equal to zero until time t = = dcr is reached and is 

equal to a constant sum K for all points after the time t = = dcr. In 

other words no late.ness cost is incurred if delivery is made prior to 

a time dCJ days befor~ requirement date, and a fixed amount of lateness 

cost is incurred for delivery at any time after t = dcr. 

If dis set equal to zero, then no lateness cost is incurred if 

delivery is made prior to the requirement date; and if delivery is made 

after the requirement date, the cost K is incurred. This situation 

is identical to the method of dealing with lateness costs that has 

previously been used. Generally when developing procurement models 

allowing for late delivery it is assumed that no lateness charges 

are incurred if delivery is made prior to the requirement date. 

However, it may actually be the case that substantial expediting costs 

were incurred in the effort to obtain delivery by the re.quirement dateo 

Also in previous developments it is generally assumed that an "out-of= 

stock cost" is incurred if delivery is made at any time after the 

requirement date. This assumption is also unrealistic in many cases. 

For example, delivery only one day past the requirement date would in 

most cases be much less costly than the additional delay caused by 



193 

delivery three weeks late. 

The expected value of lateness cost in this model for the case of 

m = 0 is also consistent with the 11 out .. of-stock cost" method of dealing 

with lateness cost. The expected lateness cost used in this dis= 

sertation is given in equation (2.13) as 

co 

E(LC) S K(t + dcr)m • f(t) dt 

=dO' 

where f('t) is the p.d.f. of tl;ie delivery date distribution. For m = 0 

and d = 0 this reduces to 

co 

E(LC) = s 
0 

m 
K(t + dO') • f(t) dt 

co 

K s f(t) dt • 

0 

Because the requirement date is defined at t = O, the above expression 

for expected lateness cost is a constant times the probability that 

delivery is after the requirement date. This is the way that lateness 

costs are defined on page 149 of Starr and Miller (1962). 

Thusi the method of defining an 11 out-,of-stock cost11 for items 

delivered late may be considered a special case of the model developed 

in this dissertation for one stage procurement situationso The models 

developed herein allow much greater flexibility in dealing with the 

costs of lateness. Models are developed for integer values of 

m = 1, 2, and 3. In addition a model is developed under the assumption 

of a Poisson p.d.f. for delivery date that allows for any positive 

value of m to be used. If the use of m = 1, 2, or 3 is too restrictive 



for a particular situation, the Poisson p.d.f. with exponential 

lateness cost may be used as described on pages 97-104 of this 

dissertation. 
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