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Abstract 19 

Repeatable, convergent outcomes are prima facie evidence for determinism in evolutionary 20 

processes. Among fishes, well-known examples include microevolutionary habitat transitions 21 

into the water column, where freshwater populations (e.g., sticklebacks, cichlids, whitefishes) 22 

recurrently diverge towards slender-bodied pelagic forms and deep-bodied benthic forms. But 23 

the consequences of such processes at deeper macroevolutionary scales in the marine 24 

environment are less clear. We applied a phylogenomics-based integrative, comparative 25 

approach to test hypotheses about the scope and strength of convergence in a marine fish clade 26 

with a worldwide distribution (snappers and fusiliers, family Lutjanidae) featuring multiple 27 

water-column transitions over the past 45 million years. We collected genome-wide exon data 28 

for 110 (~80%) species in the group and aggregated data layers for body shape, 29 

habitat occupancy, geographic distribution, and paleontological and geological information. We 30 

also implemented novel approaches using genomic subsets to account for phylogenetic 31 

uncertainty in comparative analyses. Our results show independent incursions into the water 32 

column by ancestral benthic lineages in all major oceanic basins. These evolutionary transitions 33 



are persistently associated with convergent phenotypes, where deep-bodied benthic forms 34 

with truncate caudal fins repeatedly evolve into slender midwater species with furcate caudal 35 

fins. Lineage diversification and transition dynamics vary asymmetrically between habitats, with 36 

benthic lineages diversifying faster and colonizing midwater habitats more often than the 37 

reverse. Convergent ecological and functional phenotypes along the benthic-pelagic axis are 38 

pervasive among different lineages and across vastly different evolutionary scales, achieving 39 

predictable high-fitness solutions for similar environmental challenges, ultimately demonstrating 40 

strong determinism in fish body-shape evolution. 41 

 42 
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 44 

Significance 45 

Body shape is a strong predictor of habitat occupation in fishes, which changes rapidly at micro-46 

evolutionary scales in well-studied freshwater systems such as sticklebacks and cichlids. Deep-47 

bodied forms tend to occur in benthic habitats, while pelagic species typically have streamlined 48 

body plans. Recurrent evolution of this pattern across distantly related groups suggests that 49 

limited sets of high-fitness solutions exist due to environmental constraints. We provide rigorous 50 

tests about these observations showing that similar constraints operate at deeper evolutionary 51 

scales in a clade (Lutjanidae) of primarily benthic fish dwellers that repeatedly transitioned into 52 

midwater habitats in all major oceans throughout its 45-million-year history. Midwater species 53 

strongly converge in body shape, emphasizing evolutionary determinism in form and function 54 

along the benthic-pelagic axis. 55 
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 72 

Introduction  73 

A question of central interest in biology is whether evolutionary outcomes can be predictable and 74 

thoroughly governed by the laws of nature or contingent on a sequence of unpredictable 75 

historical events, such as rare environmental catastrophes, which may be sensitive to 76 

circumstances inherent to particular evolutionary paths (1, 2). Reconciling this conundrum may 77 

depend largely upon the scope and strength of evolutionary convergence—the process whereby 78 

natural selection tends to produce a limited set of high-fitness solutions when confronted with 79 

similar challenges imposed by the environment (i.e., the adaptive landscape). Convergence ranks 80 

among the most conspicuous features in biodiversity and the general mechanisms by which the 81 

physical constants of nature constrain morphological outcomes have been recognized for decades 82 

(3–5). Nevertheless, the deterministic nature of the processes leading to convergent evolution is 83 

still contentious (6, 7).  84 

An emblematic example of evolutionary convergence comes from aquatic environments, 85 

where distantly related pelagic lineages tend to evolve similar body plans. Based on these 86 

observations, G. McGhee hypothesized that there are limited ways to build a fast-swimming 87 

aquatic organism, which is why dolphins, swordfish, sharks, and ichthyosaurs all present 88 

streamlined fusiform bodies—a nontrivial adaptation to the locomotion constraints imposed by 89 

the viscosity of water and drag flow (8). In ray-finned fishes (Actinopterygii), the evolution of 90 

fusiform body plans also has a strong adaptive basis and is frequently associated with the 91 

invasion of the water column by primarily benthic lineages. Body elongation has been 92 

recognized as the primary axis of diversification in fishes (9–13), and evidence supporting this 93 

deterministic process comes from a broad spatio-temporal spectrum. At a narrow scale, post-94 

Pleistocene parallel invasions of freshwater lakes by marine three-spined stickleback populations 95 

mailto:ricardo.betancur@ou.edu


have repeatedly triggered the evolution of two divergent phenotypes, a deep-body form 96 

associated with more benthic habitats and a slender-body form that occurs in the water column 97 

(14, 15). Quantitative assessments at microevolutionary scales have documented similar cases of 98 

resource partitioning on sympatric populations of cichlids and European whitefishes, among 99 

others (11, 16–19). At the other end of the evolutionary spectrum, evidence from the fossil 100 

record shows a significant component of the Paleogene spiny-rayed teleost (acanthomorph) 101 

radiation that colonized areas of the morphospace previously occupied by incumbent pelagic 102 

species that became extinct during the Cretaceous-Paleogene (K–Pg) mass extinction (12, 20).  103 

Here, we assess the role of convergent evolution associated with transitions along the 104 

benthic-pelagic axis in a clade of tropical and subtropical marine fishes—the snappers and 105 

fusiliers in the family Lutjanidae—that bridges both ends of the evolutionary continuum. 106 

Previous studies have shown that lutjanids include a number of independent lineages that have 107 

undergone niche partitioning along the water column, and that this ecological divergence is 108 

seemingly associated with different configurations in feeding ecology and body elongation (21–109 

23). Based on these observations, we first test the hypothesis that independent incursions into the 110 

water column in this group are constrained to a narrow portion of the adaptive landscape. 111 

Second, given the widespread distribution of this family and the potential temporal range of 112 

habitat transitions in the clade, we hypothesize that these evolutionary transitions have occurred 113 

independently within all major oceanic basins where the family is distributed, providing strong 114 

evidence that functional constraints in open water habitats shape phenotypic evolution in fishes 115 

in particular, and aquatic vertebrates more generally. 116 

Community ecology studies have demonstrated that marine biodiversity is higher in 117 

benthic than pelagic environments (24), suggesting that the adoption of the midwater lifestyle by 118 

lutjanids may have resulted in an ‘evolutionary ratchet,’ where the acquisition of specialized 119 

traits are selectively advantageous in the short term, but in the long term can create an 120 

evolutionary trap due to lowered speciation or elevated extinction rates (25, 26). This hypothesis 121 

makes two predictions: (i) habitat transitions from benthic to midwater systems are expected to 122 

be unidirectional or asymmetric, and (ii) the microhabitat homogeneity of pelagic systems 123 

provides fewer opportunities for diversification than benthic environments, where multiple 124 

niches may cooccur. 125 



To address these questions using rigorous quantitative approaches, we estimated a set of 126 

taxonomically rich time trees for lutjanids based on genome-wide data and used an integrative 127 

comparative dataset that includes morphological and ecological data layers in combination with 128 

geographic distribution data. By conducting a suite of phylogenetic comparative analyses using 129 

independent genomic subsets, we examined the temporal and geographic scope of evolutionary 130 

convergence among midwater snapper and fusilier lineages. These analyses show that repeated 131 

habitat transitions from bottom to midwater systems are linked strongly to patterns of 132 

evolutionary convergence in body shape and also are associated with asymmetric habitat 133 

transitions and slower rates of lineage diversification. These transitions took place independently 134 

within all major oceanic basins. Taken together, our findings ultimately reinforce the 135 

deterministic nature of evolution as a consequence of the similar use of the niche space along the 136 

benthic-pelagic axis. 137 

 138 

Results 139 

Phylogenomic inference and tree uncertainty in comparative analysis. Extended results are 140 

reported in the SI Appendix. Using exon capture approaches (27, 28), we assembled two main 141 

phylogenomic data matrices: (a) an expanded supermatrix that includes all genes and taxa 142 

sequenced for this study, with the addition of GenBank sequences aimed at increasing taxonomic 143 

coverage for downstream comparative analyses (1,115 exons and 474,132 nucleotide sites for 144 

110 out of ca. 136 species; 37% missing cells); and (b) a reduced (phylogenomic-only) matrix 145 

obtained with a matrix reduction algorithm, used to assess the sensitivity of phylogenomic results 146 

to missing data (1,047 exons and 448,410 nucleotide sites for 84 species; 16% missing cells). We 147 

conducted phylogenomic analyses using maximum likelihood (ML) and coalescent-based 148 

approaches. Inferred trees were resolved with strong support and are largely congruent among 149 

tested approaches and with results from previous studies (22, 27, 29–32). All analyses invariably 150 

resolved seven major clades (Fig. 1; SI Appendix, Figs. S2-S5), confirming that the family 151 

Lutjanidae, as defined by many studies (e.g., 23, 33), is non-monophyletic with fusiliers 152 

(Caesionidae) deeply nested within the broader snapper clade (34). The relationships estimated 153 

with the expanded matrix were highly consistent with those based on the reduced matrix, 154 

providing a robust phylogenomic framework for downstream comparative analyses.  155 



In addition to expanded and reduced datasets, we also analyzed 13 (largely non-156 

overlapping) gene subsets derived from the expanded matrix, each with a sufficient number of 157 

genes to overcome sampling error (SI Appendix, Dataset S4). Resulting trees reflect uncertainty 158 

in divergence times and phylogenetic relationships, an approach that is fundamentally different 159 

from the common practice of conducting comparative analyses using ‘pseudo-replicated’ trees 160 

obtained from a Bayesian posterior distribution estimated with a single dataset, typically 161 

consisting of a handful of genes. We estimated a total of 28 trees that include all taxa using both 162 

concatenation-based maximum likelihood (RAxML) and coalescent-based (ASTRAL-II) 163 

approaches applied to the expanded matrix and its 13 subsets. Divergence-time estimates, using 164 

the 28 input topologies and seven calibration points (SI Appendix, Table S5), generally agreed 165 

with those from previous multi-locus studies for the family (27, 29–32, 35; SI Appendix, Figs. 166 

S12-S14, Table S5, Dataset S5). Divergence time estimations date the age of crown lutjanids to 167 

the middle Eocene (~46 Ma, 95% HPD: 40-49 Ma), and the stem age close to the Cretaceous–168 

Paleogene (K-Pg) boundary, Ma (~64.2 Ma, 95% HPD: 57.6-68.6 Ma).   169 

 170 

The geography of habitat transitions. To assess the geographic prevalence of evolutionary 171 

transitions in Lutjanidae, we performed ancestral habitat and ancestral area reconstructions. To 172 

infer the history of habitat transitions, we first assigned species into two major habitat categories 173 

(benthic and midwater dwellers) and accounted for uncertainty in habitat coding for 13 species 174 

using three different probability schemes (see Materials and Methods; SI Appendix). Because the 175 

implementation of different schemes had an effect on the SIMMAP reconstructions (Fig. 1; SI 176 

Appendix, Figs. S8-S11), the most likely tip states inferred with each scheme (averaged over the 177 

28 trees in each case) were used for all other downstream analyses that required a priori habitat 178 

categorization of tips (e.g., trait evolution and convergence, state-dependent diversification). 179 

Results of these alternative analyses are reported in combination in the main text and 180 

individually in the SI Appendix.  181 

To reconstruct ancestral areas, we built a presence-absence matrix of species distribution 182 

using alternative biogeographic schemes (36, 37; SI Appendix, Dataset S3). Inferences of 183 

ancestral ranges using BioGeoBEARS (38) indicate an Indo-west Pacific Ocean origin for 184 

lutjanids, with subsequent independent colonization events of the Atlantic (six times) and the 185 

eastern Pacific (nine times) via multiple routes (Fig. 1; SI Appendix, Figs. S12-S14; see 186 



Supplementary Results for an expanded account on the biogeography). By merging results of 187 

ancestral habitat and ancestral range reconstructions, we find support for benthic habitats as the 188 

most likely ancestral condition, with independent and recurrent invasions of the water column by 189 

benthic lineages at least once within each of the three major oceanic basins (Fig. 1; SI Appendix; 190 

Figs. S8-S11). While the Indo-Pacific features more transitions than other basins, our 191 

reconstructions highlight the deterministic nature and ubiquity of the transitions (Fig. 1; SI 192 

Appendix, Fig. S8).  193 

 194 

 Ecomorphological convergence. To test whether invasions of the water column are associated 195 

with a set of convergent high-fitness solutions (e.g., 39, 40), we assembled a specimen imagery 196 

database and built three alternative datasets based on digitized landmarks: (i) a full-body shape 197 

dataset; (ii) a body-only dataset; and (iii) a fins-only dataset (SI Appendix, Fig. S1, Table S7). 198 

Traitgram-informed morphospaces (Fig. 2) show that different lutjanid midwater lineages 199 

independently evolved slender bodies and furcate caudal fins, an indication of strong 200 

ecologically-driven morphological convergence. This pattern is further confirmed based on the 201 

threshold model (41), where the full-body shape dataset reveals a substantial correlation between 202 

the two habitat states and PC1 (r
2
=0.57-0.67), which captured differences in body elongation and 203 

caudal fin shape. The remaining three PC axes (PC2-4) summarize further relevant aspects in 204 

fin-shape variation and ornamentation. We detected the same pattern for the body-only (r
2
=0.42-205 

0.57) and fins-only (r
2
=0.56-0.69) datasets, where only PC1 exhibits significant correlations. We 206 

found an extensive overlap between benthic and midwater species at the lower PC axes, 207 

reflecting lower correlations between the PC2-PC4 and habitat occupancy data (r
2
=0.07-0.24; for 208 

the full-body shape dataset). These results suggest that ecomorphological convergence is less 209 

clearly associated with PC2-PC4 axes than it is to the main PC1 axis (SI Appendix, Fig. S15). 210 

We used a series of complementary approaches to further assess the scope and strength of 211 

convergence. We first compared the relative fit of a set of models of trait evolution in a 212 

multivariate framework (mvMORPH [42]), the results of which show split support for the two 213 

multi-selective-regime models (BMM and OUM; see Methods), with distinct selective regimes 214 

corresponding to the two different habitat categories (Fig. 3a,b; SI Appendix, Figs. S16-S18). We 215 

then estimated the difference in trait distance between tips in the trees and the maximum distance 216 

between those taxa through their evolutionary history (convevol, C1-C4 metrics [43]), and 217 



quantified phenotypic similarity based on phylogenetic relatedness (Wheatsheaf index or w [44]).  218 

The C1‐C4 statistics were all significant for the three alternative morphometric datasets, with 219 

midwater lineages shortening about half of their phenotypic distance by subsequent convergent 220 

evolution (C1= 37-45%; SI Appendix, Table S8). Likewise, results using the Wheatsheaf index 221 

(w= 1.3–1.4; SI Appendix, Figs. S19-S20) identified significantly stronger convergence in 222 

midwater species than would be expected from a random distribution of trait values simulated 223 

under a Brownian Motion (BM) model (p<0.01). All w values were similar, and the confidence 224 

interval overlapped among the three alternative morphometric datasets suggesting that both body 225 

shape and fin morphologies have similar strength in convergent evolution. To further validate 226 

these results, we calculated w using benthic species as focal clades. In this case, w was 227 

significantly smaller than values simulated under BM in all three morphometric datasets (w= 228 

0.83–0.88; p>0.95), suggesting that morphological diversity is high among benthic dwellers, 229 

whereas strong convergent evolution is mostly restricted to midwater lutjanids. Finally, we 230 

assessed the optimal number of selective regimes under an Ornstein-Uhlenbeck process without 231 

a priori designation of habitats (ℓ1ou and SURFACE, [45, 46]). The ℓ1ou (multivariate) and 232 

SURFACE (univariate) analyses also identified multiple instances of convergence across 233 

lineages with adaptive peaks between clades with similar body plans (deep or slender bodies). 234 

For most datasets, the number of non-convergent (adaptive) peak shifts was higher than the 235 

number of convergent peaks (SI Appendix, Table S9, Dataset S6), and ℓ1ou simulations revealed 236 

a significantly greater number of convergent shifts than would be expected by chance (SI 237 

Appendix, Figs. S21-S23). SURFACE analyses identified a greater number of convergent 238 

regimes (SI Appendix, Fig. S24) than ℓ1ou for most datasets. Taken together, our results suggest 239 

the overall convergence of many lineages to multiple, shared adaptive peaks in body shape 240 

ecomorphology (SI Appendix, Fig. S25). 241 

 242 

Transition rates and diversification in benthic and midwater lineages. We gauged the 243 

preference for different habitat states and their effect on rates of habitat transitions (Fig. 3f) and 244 

lineage diversification (Fig. 3e), providing a test for the prediction that the adoption of the 245 

midwater lifestyle may result in an evolutionary ratchet. For 20 out of the 28 trees, model fitting 246 

comparisons supported a state-dependent model (Fig. 3c, d) that incorporates a hidden state (SI 247 

Appendix, Tables S2-S4) associated with benthic lineages (HiSSE benthic; SI Appendix, Fig. 248 



S27a). While the ‘HiSSE benthic’ model is not decisively favored across all trees, finding in 249 

some cases substantial support for two alternative null models, under this model net 250 

diversification rates (speciation minus extinction) are roughly two times faster in benthic 251 

lineages compared to their midwater counterparts. The results obtained with HiSSE were 252 

consistent with those using the non-parametric FiSSE and parametric BiSSE approaches (SI 253 

Appendix, Fig. S29, Tables S10-S12), identifying support for habitat-dependent diversification. 254 

In agreement with our hypotheses, benthic dwellers tend to show faster rates of net 255 

diversification than midwater species, including both faster speciation and slower extinction (SI 256 

Appendix, Tables S10-S12). The HiSSE analyses using a model that accounts for habitat 257 

dependent diversification (HiSSE benthic) identified asymmetric transition rates, favoring the 258 

expectations that benthic-to-midwater transitions (mean q=0.013) are more frequent than 259 

midwater-to-benthic transitions (mean q=0.003; Figs. 1,3f; SI Appendix, Fig. S27b). 260 

 261 

Discussion 262 

By implementing integrative comparative analyses in a robust phylogenomic framework, we find 263 

strong evolutionary determinism in benthic-to-midwater transitions along the water column in 264 

snappers and fusiliers. While deep body plans in benthic lineages enhance maneuverability in 265 

complex habitats with crevices, like coral reefs or rocky bottoms, primarily benthic lineages that 266 

independently transitioned into midwater habitats consistently evolved elongate, fusiform bodies 267 

and furcate caudal fins, convergent adaptations that reduce hydrodynamic drag and recognizably 268 

promote increased swimming performance (7, 13, 22, 39, 40, 47–49)—a strong match between 269 

form and function (50). This deterministic process is ubiquitous at both temporal and spatial 270 

scales, with transitions taking place in lutjanid lineages of different ages and within all major 271 

marine biogeographic regions. Within each of the three major oceanic realms, benthic lutjanid 272 

lineages invaded the water column at least once. Furthermore, while the oldest benthic-to-273 

midwater transition we identified was at ca. 40 Ma (Apsilinae + Etelinae clade), more recent 274 

divergences (e.g., ~5 Ma) include sister species that lie at extremes of this ecological axis (e.g., 275 

Lutjanus colorado and L. aratus). Snappers and fusiliers thus bridge the gap of this recurrent 276 

ecological divergence that is well documented at shallower ends of the evolutionary continuum 277 



in model clades such as sticklebacks, cichlids, and whitefish (11, 14–19), and more ancient 278 

animal lineages such as sharks and aquatic tetrapods (8).  279 

The independent evolution of similar phenotypic traits in response to the adoption of 280 

similar habitat regimes is a well-characterized indicator of evolutionary convergence. Recurrent 281 

transitions are thus indicative of strong evolutionary determinism as a result of similar use of the 282 

niche space along the benthic-pelagic axis. Convergent morphologies among midwater species 283 

strongly suggest that lineages with independent evolutionary histories but similar habitat 284 

preferences are drawn towards similar adaptive optima. Unlike patterns observed among 285 

midwater lutjanids, benthic lineages reveal higher phenotypic diversity and weaker convergence. 286 

These differences may be the result of greater levels of niche diversity in benthic habitats (51).  287 

Similar outcomes are observed at shallower evolutionary scales in European whitefishes (19) and 288 

cichlids in Lakes Apoyo and Xiloá in Nicaragua (18), where independent radiations each harbor 289 

a single elongated limnetic phenotype and a flock of more variable benthic lineages.  290 

While the focus of this study is on convergent evolution, it is worth emphasizing the 291 

strength of evolutionary forces driving phenotypic divergence in body plans along the benthic-292 

pelagic axis (9, 12, 13, 51, 52). Midwater lineages with slender bodies are typically a subclade of 293 

more generalized deep-bodied benthic groups, and this ecological partition in phylogenetically 294 

nested clades has often led to taxonomic misclassifications. This explains why the midwater and 295 

planktivorous fusiliers are often placed in their own family, Caesionidae (53–60). In his revision 296 

of lutjanid relationships, Johnson (23) noted that fusiliers feature unique traits among midwater 297 

lutjanids, including “an innovative restructuring of the functional complex of the upper jaw 298 

(permitting extreme protrusibility for planktivorous feeding) and an alteration of the basic body 299 

configuration (providing greater and more rapid swimming ability).” Remarkably, some adaptive 300 

landscape analyses that detected a single adaptive shift in Lutjanidae (SI Appendix, Figs, S14-301 

S17), identified the shift at the base of the fusilier clade—a direct quantification of the distinct 302 

morphology in this group. Similar instances are increasingly being documented in many other 303 

marine fishes. A prime example includes the midwater Boga in the Caribbean, formerly listed as 304 

Inermia vittata in the family Emmelichthydae, but recently shown to be a derived grunt 305 

(Haemulidae; (61). A more extreme case comprises the picarels, previously placed in 306 

Centracanthidae, a family that is polyphyletically nested within benthic porgies in the family 307 



Sparidae (62). Benthic porgy lineages have thus independently colonized the water column 308 

multiple times, leading to strong, if not perfect, instances of convergent ‘centracanthid’ body 309 

plans. These divergences can even cross species boundaries, as demonstrated by the benthic 310 

Coney (Cephalopholis fulva), which is known to practice ‘intergeneric hybridization’ with the 311 

midwater Creole-fish (formerly Paranthias colonus, now C. colonus; 63). In all these cases, it is 312 

recurrently the planktivorous and slender midwater subclade or species that is derived from the 313 

more generalized benthic clade, a result of speciation and adaptation by shifting dietary resources 314 

along the water column axis (64–66), ultimately creating taxonomic confusion.  315 

The midwater lifestyle may be an evolutionary ratchet due to overall lower levels of 316 

diversity in these habitats, both taxonomically and morphologically, compared to the more 317 

species-rich benthic communities. For instance, relatively ancient species-poor clades of marine 318 

fishes, such as billfishes, swordfishes, and marlins, suggest slow diversification in pelagic 319 

environments (12). This is, however, not necessarily the case for other pelagic fish clades (e.g., 320 

Scombriformes, Clupeiformes) or midwater lutjanid lineages. While most tests identified higher 321 

diversification rates in benthic lineages (Fig. 1; SI Appendix, Figs, S27-S29), which are roughly 322 

twice as fast compared to the midwater counterparts (Fig. 3 e, f), HiSSE analyses failed to 323 

support a model of habitat-dependent diversification in ~30% of the trees. A remarkable 324 

exception includes the fusiliers, a relatively young lutjanid subclade (~16 Ma) that comprises 23 325 

species. Fusilier species may school together with congeners and other pelagic species. For 326 

instance, the mottled fusilier (Dipterygonotus balteatus), the only lutjanid that has adopted an 327 

exclusive pelagic lifestyle as an adult, is often caught together with clupeoids (herrings and 328 

anchovies). These observations suggest that midwater lutjanid species present important 329 

functional differences and elevated levels of niche partitioning, which may explain the 330 

occurrence of species-rich pelagic clades. Ultimately, however, niche partitioning in the 331 

resource-poor and homogeneous pelagic environment may result in population density declines 332 

and increased trophic specializations, mechanisms that are known to increase extinction 333 

vulnerability over long timescales (67). State-dependent diversification analyses provide some 334 

support for these ideas, identifying remarkably faster rates of extinction in midwater than benthic 335 

lineages (SI Appendix, Tables S10-12). 336 



Snappers and fusiliers exhibit strong but imperfect morphological convergence (68) 337 

associated with habitat transitions. Whereas functional traits associated with ecological 338 

partitioning along the benthic-pelagic axis have consistently resulted in similar evolutionary 339 

outcomes, some lineages have evolved distinct non-convergent phenotypic adaptations. 340 

Exceptions include deep-bodied lineages that tend to occur higher in the water column, such as 341 

species in the genus Macolor. As pointed out by Hobson (69), “Obviously many conflicting 342 

pressures have differentially affected the morphologies of the various fishes that forage on tiny 343 

organisms in the midwaters.” Thus, although the slender body plan is pervasive among midwater 344 

dwellers, a limited set of alternative phenotypic solutions can meet the conditions necessary to 345 

thrive in pelagic habitats (i.e., many-to-one mapping; 70). Outside Lutjanidae, remarkable 346 

departures from typical streamlined body shapes found in most oceanic pelagic vertebrates 347 

include the slow-swimming ocean sunfishes, butterfishes, moonfish, opah, and tripletails, which 348 

feature deep and laterally-compressed body plans. Although we did not examine diets and 349 

feeding morphology in this study, a key factor that triggers the invasion of the water column is 350 

the trophic adaptation to planktivory. Morphological convergence has been reported in many 351 

groups that share specialized dietary shifts to planktivory (e.g., butterflyfishes, wrasses, 352 

angelfishes, damselfishes, and sea basses;47, 65, 71, 72). Ecological opportunity for the 353 

exploitation of different resources has thus repeatedly promoted morphological and behavioral 354 

adaptations associated with water-column transitions (65, 73). 355 

In conclusion, we find strong evidence of evolutionary convergence in major traits 356 

related to body elongation and fin morphology as a result of ecological transitions into pelagic 357 

habitats, ultimately reinforcing the deterministic role of evolution driven by similar ecological 358 

pressures. Our research shows incursions into the water column that are strongly linked to 359 

patterns of evolutionary convergence in body plans. We also have identified asymmetric habitat 360 

transitions and slower rates of lineage diversification associated with incursions into midwater 361 

habitats. The fact that these independent transitions took place in all major biogeographic regions 362 

further reinforces the deterministic nature of evolution. While convergent evolution associated 363 

with the adoption of the pelagic lifestyle has governed the mode of diversification in Lutjanidae, 364 

future work should consider whether this conclusion can be generalized to support other habitat 365 

transitions along the benthic-pelagic axis as a primary mechanism of diversification in fishes. 366 



Materials and Methods 367 

Taxonomic sampling and genomic data. Extended Materials and Methods are reported in the 368 

SI Appendix. Our genomic sampling includes 85 newly sequenced species of snappers and 369 

fusiliers from specimens deposited in multiple fish collections. To further expand the taxonomic 370 

scope, we retrieved sequences for 25 additional ingroup species from GenBank. Our combined 371 

dataset contains 110 species plus 14 outgroups (SI Appendix, Dataset S1). High quality DNA 372 

extractions were sent to Arbor Biosciences for target enrichment and sequencing. Our target 373 

capture probes are based on a set of 1,104 single-copy exons optimized for ray-finned fish 374 

phylogenetics (27, 28). We also included 15 legacy exons into the probe set. After performing 375 

standard procedures for sequence quality control and assembly, we aligned exons by taking into 376 

account their reading frames. 377 

 378 

Accounting for missing data in phylogenomic inference. We assembled two main data 379 

matrices: (i) an expanded matrix with all genes and taxa, including GenBank sequences, and (ii) 380 

a reduced matrix obtained with the MARE (matrix reduction) package (74). For each matrix, we 381 

determined the best-fitting partitioning schemes and nucleotide substitution models for both 382 

genes and codon positions using PartitionFinder2 (75). We also assembled 13 additional subsets 383 

by manually subsampling the expanded matrix (see details below). For all datasets, we estimated 384 

ML trees in RAxML v8.2.4 (76) using the partition output obtained with PartitionFinder2. 385 

Species trees were then inferred with ASTRAL-II v4.7.12 (77) using individual RAxML-based 386 

gene trees as input.  387 

 388 

Accounting for topological and temporal uncertainty. We built a number of largely 389 

independent subsets (subsampled from the expanded matrix), each with a sufficient number of 390 

genes to overcome sampling error by capturing our knowledge of the phylogeny of the group in 391 

the best possible manner. We assembled thirteen largely independent subsets (seven with 89 loci 392 

and six with 90 loci), all of which overlap in only four genes thereby maintaining the same set of 393 

species. As input topologies for phylogenetic dating in MCMCTree (see below), we inferred a 394 

total of 28 phylogenetic trees using both RAxML and ASTRAL-II. Two trees were estimated 395 

using the complete expanded matrix, including a ‘master tree’ based on the RAxML topology; 396 

the remaining 26 trees were obtained with the 13 subsets subsampled from this matrix. While 397 



most downstream comparative analyses used the 28 trees, some were computationally 398 

demanding and therefore were based on the ‘master tree’ only (indicated whenever applicable). 399 

 400 

Phylogenetic dating. We conducted divergence time estimations using the MCMCTree package 401 

as implemented in the program PAML v4.9a (78), which can handle genome-scale datasets in a 402 

Bayesian framework (79). Because MCMCTree running time depends more on the number of 403 

partitions defined rather than the number of genes included (79), all 28 subsets used only two 404 

partitions (1st+2nd and 3rd codon positions). We applied seven calibration points, two based on 405 

fossils with uniform distributions and five based on a geological event with flat-tailed Cauchy 406 

distributions (SI Appendix, Table S1).  407 

 408 

Reconstruction of ancestral habitats and ancestral ranges. The habitat occupancy dataset (SI 409 

Appendix, Dataset S2) was compiled by aggregating information from a wide range of sources, 410 

including FishBase, the primary literature, and by consulting experts. The reconstructions 411 

performed used a broad sampling of 97 haemulid outgroups (13). To account for 13 lutjanid 412 

species with uncertain habitat occupancy, we implemented ancestral character reconstructions 413 

that take into account tip-state ambiguity based on stochastic character mapping (SIMMAP 414 

[80]), as implemented in the R package phytools (81). We coded these ambiguous tips using 415 

three alternative probability schemes: 0.1 benthic/0.9 midwater, 0.50 benthic/0.50 midwater, 0.9 416 

benthic/0.1 midwater (SI Appendix).  417 

We also classified species according to their geographical ranges. We built a 418 

presence/absence matrix of species considering six recognized marine biogeographic regions 419 

(36, 37; SI Appendix, Dataset S3): West-Indian Ocean (WIO), Central Indo-Pacific (CIP), 420 

Central Pacific (CP), Tropical Eastern Pacific (TEP), Western Atlantic (WA), and Eastern 421 

Atlantic (EA). Ancestral area reconstructions were performed using the R package 422 

BioGeoBEARS (38). Using the ‘master tree’ as the input phylogeny, 12 different biogeographic 423 

models were tested. We analyzed each model using three time-slices according to different 424 

geological events (see SI Appendix for details on models and matrices used for BioGeoBEARS). 425 

For simplicity, we summarized ancestral ranges into three major ocean realms by merging EA 426 

and WA into the Atlantic, WIO, CIP, and CP into the Indo-Pacific, and leaving the TEP as 427 

originally coded (Fig. 1). 428 



 429 

Geometric morphometrics on body shape. The laterally compressed body plan of snappers and 430 

fusiliers makes this group well suited for the summarization of morphological diversity using 431 

two-dimensional geometric morphometric approaches. We assembled a specimen imagery 432 

dataset from museum collections or curated images retrieved from online repositories. To 433 

account for intraspecific variation, our dataset includes 1-4 individuals from each of the 110 434 

species (total 413 individuals; mean 3.72 individuals per species; SI Appendix, Dataset S1). We 435 

generated three alternative datasets (following 82) based on digitized landmarks: (i) A full-body 436 

and fin shape dataset; (ii) a body-only dataset; and (iii) a fins-only dataset (see SI Materials and 437 

Methods, Fig. S1). For each dataset, we performed Procrustes superimposition, calculated 438 

species-average coordinates, and conducted both standard (PCA) and phylogenetically-corrected 439 

(pPCA) principal component analyses (83, 84). Finally, we determined the number of 440 

meaningful PC axes using the broken-stick model (85, 86), which minimizes loss of signal while 441 

avoiding noise from less relevant axes.  442 

 443 

Convergence analyses. To assess the scale and nature of convergence among taxa exhibiting 444 

similar habitat regimes, we ran a set of recently proposed multivariate phylogenetic comparative 445 

methods for each of the three alternative morphological datasets (full body shape, body only, and 446 

fins only). We first tested the relative fit of a range of evolutionary models using the package 447 

mvMORPH (42). These include a single-rate Brownian Motion (BM) model, a single-regime 448 

Orstein-Uhlenbeck (OU) model, and multi-selective regime BM (BMM) and OU (OUM) 449 

models. We also tested for correlation between habitat occupation and the four most relevant PC 450 

axes using the threshold model, which assesses the association between a discrete trait and a 451 

continuous character that co‐vary according to an underlying, unobserved trait called liability 452 

(87). We explicitly tested for convergent evolution using the C1-C4 distance-based metrics 453 

implemented in convevol (ran using the ‘master tree’), as well as the Wheatsheaf index 454 

implemented in the R package Windex (44). Finally, we used other data-driven approaches, as 455 

implemented in the R package ℓ1ou v1.42 (45) and SURFACE v0.4 (46), to estimate the optimal 456 

number of selective regimes under an Ornstein-Uhlenbeck process applied to the least absolute 457 

shrinkage and selection operator (LASSO).  458 

 459 



State-dependent diversification. We evaluated the influence of habitat type (benthic vs. 460 

midwater dwellers) on lineage diversification dynamics using state‐dependent speciation and 461 

extinction (SSE) approaches (88). We applied HiSSE (Hidden State Speciation and Extinction), 462 

an SSE approach that tests the relative fit of a set of alternative branching models while 463 

accounting for hidden states. For comparison, and to estimate habitat-dependent evolutionary 464 

rates in a Bayesian framework, we also used BiSSE as implemented in the R package diversitree 465 

(89). Finally, we used the nonparametric FiSSE approach, which has shown to be robust to 466 

phylogenetic pseudo-replication and model misspecification (90). See SI Appendix for details.  467 
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Legends for figures 481 

Figure 1. Phylogeny, habitat transitions, and biogeography of snappers and fusiliers. The tree shown is derived from 482 

a concatenation-based maximum-likelihood analysis of 1,115 exons, with node ages estimated from a time-483 

calibrated analysis using seven calibration points in MCMCTree. Habitat reconstructions for benthic and midwater 484 

lineages, shown as colored branches in the tree, account for phylogenetic uncertainty (28 trees) and habitat coding 485 

ambiguity (13 tips with uncertain or multi-state habitats; see Dataset S2). Color gradients along branches denote 486 

habitat transitions; purple branches indicate lineages with ambiguous habitats based on reconstructions using 487 

alternative coding schemes (see also Figs. S8–S11). Colored circles indicate colonization events (inferred with 488 

BioGeoBEARS; see also Figs. S8, S12–S14) of the Atlantic (yellow circles) and the tropical eastern Pacific (purple 489 

circles), from Indo-Pacific lineages (center of origin; green circle). Arrows in maps depict reconstructed 490 

colonization routes by different lineages in three time slices: 50–12 Ma (mean 31 Ma), before the closure of Tethys 491 

Seaway; 12–2.8 Ma (mean 7.4 Ma), after closure of Tethys Seaway and before the closure of the Isthmus of 492 



Panama; and 2.8 Ma to present (mean 1.4 Ma), after the closure of the Isthmus of Panama. Thickness of arrows is 493 

proportional to the number of lineages that colonized via each route; for some lineages, colonization routes are 494 

uncertain, and thus all alternative routes are depicted. Arrows in the central panel show the transitions rates between 495 

benthic and pelagic habitats, as estimated with HiSSE (see also Tables S10-S12). 496 

 497 

Figure 2. Traitgram-informed morphospaces for lutjanids illustrating ecomorphological partitioning and 498 

convergence across benthic and midwater lineages, as estimated using the full-body dataset. Contour lines represent 499 

the two-dimensional density distributions of the species presenting each of the two habitat states. Traitgrams 500 

overlain along PC axes depict the phylogeny in Fig. 1, including ancestral habitat reconstructions estimated with 501 

SIMMAP (a, PC1 vs. PC2; b, PC3 vs. PC4). Color gradients along branches denote habitat transitions; purple 502 

branches and data points indicate lineages with ambiguous habitats based on alternative coding schemes. Branches 503 

shifting from red to blue along PC1 extremes highlight convergent evolution in midwater lineages. Parenthetical 504 

values indicate the total variance explained by each PC axis. 505 

Figure 3. Model-fitting comparisons and lineage diversification parameters estimated by accounting for 506 

phylogenetic uncertainty (28 trees) and habitat coding ambiguity (13 tips with uncertain or multi-state habitats). (a, 507 

b), comparisons of alternative models of morphological evolution using the full body dataset: (a) distribution of the 508 

AIC values for the three alternative models of continuous trait evolution (BM, OU, BMM, and OUM), and (b) 509 

AICw of each alternative model and tree. (c, d) Comparisons for alternative models of lineage diversification: (c) 510 

distribution of AIC values for seven alternative SSE models (Tables S2-S4); (d) AIC weights (AICw) for each SSE 511 

model based on each of the 28 trees. (e,f) Estimated lineage diversification parameters: (e) net-diversification values 512 

for the three habitat states, and (f) transition rates (Q) between benthic and midwater states. 513 
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Supplementary Materials and Methods 

DNA extractions, exon capture and sequencing  

DNA was extracted in a 96-well plate format on a GenePrep and following manufacturer’s 

instructions at the Laboratory of Analytical Biology at the Smithsonian Institution National 

Museum of Natural History in Washington, DC. The quality of DNA extractions was 

checked by visually inspecting whether high molecular weight DNA stained with GelRed 

(Biotium) was visible on a 1% agarose gel. Arbor Biosciences performed library preparation 

using the dual round (‘touchdown’) capture protocol of Li et al. (1), using eight samples 

multiplexed per capture. Target capture probes were designed based on alignments of 1,105 

single-copy exons for all ray-finned fishes (2, 3), though one marker was excluded due to 

alignment complexity arising from high levels of sequence divergence. One sequence for 

each of four lineages that span the diversity of eupercarian fishes was used for probe design. 

These lineages included Perciformes, Gerreiformes, Tetraodontiformes, and Lutjaniformes 

(taxonomy following 2). Probes of 120 bp were designed to be staggered across the reference 

sequences every 20 bp and were filtered for potential self-hybridization and repeats using the 

RepeatMasker.org database, with probes having more than 25% repeats eliminated (4). 

Several exons that were not included in Hughes et al. (2), but that have been in wide use in 

fish phylogenetics were also added to the probe set: TBR1, MYH6, KIAA1239, PLAGL2, 

PTCHD1, RIPK4, SH3PX3, SIDKEY, SREB2, ZIC1, SVEP1, GPR61, SLC10A3, UBE3A, 

and UBE3A-like (3, 5–7). Probes were synthesized with a MYBaits1 custom probe kit at 

Arbor Biosciences (Ann Arbor, Michigan), which is available upon request. Four 

mitochondrial (mtDNA) markers (COI, CYTB, 12S and 16S) were also captured with probes, 

but were highly diluted compared to the nuclear probes in order to improve library 

normalization of mtDNA and nuclear sequences (3). Samples were sequenced at the 

University of Chicago Genomics facility on one lane of a HiSeq 4000 with paired-end 100 bp 

reads. 

 

Data assembly and alignment  

Fastq files were trimmed for adapter contamination and low-quality base calls with 

Trimmomatic v0.36 (8). Reads were mapped against reference sequences used in probe 

design with BWA-MEM (9) and potential PCR duplicates were removed with Samtools v1.9 

(10). Mapped reads were extracted for each locus, and an initial contig for each exon was 

assembled with Velvet v1.2.10 (11). The longest contig assembled by Velvet for each locus 



was then used as a reference for aTRAM 2.0 (12) to obtain longer contigs. aTRAM was run 

for a maximum of five iterations, using Velvet as the underlying assembler. Redundant 

contigs were removed with CD-Hit-EST with a threshold of 99% similarity (13). The 

coding2genome algorithm in Exonerate (14) was used to find reading frames by aligning it to 

a percomorph reference sequence that was previously verified by visual inspection (2) to the 

assembled contig. If more than one contig had a reading frame for each locus, the longest 

contig was retained. Exons were aligned using TranslatorX (15), with Mafft v7.421 (16) as 

the underlying aligner. Sequences in each alignment that had more than 0.5 average pairwise 

distance from all other sequences were flagged with a custom python script 

(AlignmentChecker.py; https://github.com/lilychughes/FishLifeExonCapture), to check for 

possible misaligned or outlier sequences. Flagged sequences were checked visually and 

edited or removed on a case-by-case basis. Sequences that spanned less than 50% of the 

alignment were also removed for each exon (3). 

 

Phylogenomic analyses of exon markers  

We combined genomic data from 85 newly sequenced species with sequences for 25 

additional species acquired from GenBank. Including 14 haemulid outgroups, and before 

eliminating duplicate species tips, we concatenated individual exon alignments into a 

supermatrix consisting of 1,115 genes and 132 taxa (474,132 bp). To find the set of genes and 

taxa with minimal proportions of missing data for phylogenomic reconstructions (reduced 

matrix), we applied MARE (matrix reduction) v0.1.2-rc (17), an algorithm for reducing 

genome-scale datasets to a subset of taxa and genes with minimal proportions of missing 

data. The MARE approach resulted in the retention of 1,047 orthogroups and 103 taxa 

(448,410 bp) including haemulid outgroups. For both expanded and reduced datasets, 

duplicate species tips were eliminated (leaving only one terminal taxon per species), and a 

final expanded matrix of 1,115 genes and 110 lutjanid species was used for downstream 

analyses.  

From the expanded matrix, 13 random subsets were assembled by dividing them into 

seven subsets of 89 loci and six subsets of 90 loci, all of which overlap in only four genes 

(ATP6, COI, CYTB and RAG1). The best-fitting partitioning scheme was determined for 

complete datasets and subsets using PartitionFinder2. In each case, maximum-likelihood 

(ML) trees were estimated in RAxML v8.2.4 (18, 19) using the best-fit partition selected via 

the Bayesian Information Criterion (BIC) and the GTRGAMMA model. For each dataset or 

subset, we conducted 30 independent ML searches and assessed support using non-



parametric bootstrapping. The number of bootstrap replicates was determined automatically 

via the autoMRE function in RAxML, with bootstrap bipartitions subsequently drawn onto 

the best ML tree. We also estimated individual gene trees in RAxML using by-codon 

partitions based on sequence alignments from all individual loci. Finally, gene trees were 

used as input for coalescent-based analyses in ASTRAL-II v4.7.12 (20). 

 

Phylogenetic dating  

The complete matrices and subsets were run in MCMCTree using the approximate likelihood 

method under the HKY85 model (21). Prior parameters for the MCMCTree runs were as 

follow: independent rate relaxed-clock model, BDparas: 1, 1, 0.80; kappa_gamma: 6, 2; 

alpha_gamma: 1, 1; rgene_gamma: 2, 200, 1; sigma2_gamma: 2, 5, 1. Two independent runs 

of the complete matrices (1,115 genes) were run for 14 million generations; subsets were run 

for 4 million generations. To check for convergence, we visually examined traces and 

effective sampling size values (ESS >200) for each parameter, after a 10% burn-in using 

Tracer v1.6 (22). 

 

Fossil calibrations  

Based on recommendations by Parham et al. (23), we used the youngest age interpretation of 

the fossils. All MCMCTree calibrations used uniform distributions.  

(1) Root (Lutjaniformes). MRCA: Lutjanus lutjanus, Pomadasys empherus. Hard lower 

bound: †Ottaviania mariae (24), †Ottaviania leptacanthus (25), †Veranichthys ventralis (25), 

†Goujetia crassispina (25), †Lessinia horrenda (26), and †Lessinia sp. (27, 28). Diagnosis 

and phylogenetic placement: the placement of these six fossils (total group Lutjanidae) has 

not yet been supported by a comparative morphological phylogenetic study, and some of 

these may lack synapomorphies of extant lutjanids as identified by Johnson (29). Therefore, 

the calibration is placed as stem Lutjanidae (one node below). Stratigraphic horizon and 

locality: early Eocene, upper Ypresian, Monte Bolca, Italy (26). Absolute age estimate: 48.5 

Ma (30). Soft upper bound: 66 Ma (see below). Prior setting MCMCTree: B(0.485,0.66,1e-

300,0.05). Comments: this calibration is a combination of a primary calibration, given by 

minimum age of the six fossils, and a secondary calibration, where the maximum age 

corresponds to previous estimates of the timing of diversification in the Fish Tree of Life 

using multiple fossil calibrations (e.g., 2, 5, 31–35). While this is typically treated as a stem 

calibration (with MRCA Lutjanus lutjanus, Pristipomoides typus), here it is instead applied as 



crown calibration one node below due to limitations in the MCMCTree implementation (see 

Table S1 for details). 

(2) Crown Lutjanidae. MRCA: Etelis oculatus, Lutjanus lutjanus. Hard lower bound: 

†Hypsocephalus atlanticus (36). Diagnosis and phylogenetic placement: this fossil was first 

described in Hoplopagrini (along the Hoplopagrus stem); however, the only characters 

suggesting a close relationship with this fossil and the extant Hoplopagrus are the conical 

canines on dentaries and premaxillarae. These are characters related to trophic behavior, 

which are often subject to strong selection and convergence. Furthermore, it seems that this 

fossil did not have a particularly large nasal capsule, as observed in Hoplopagrus (37). The 

fossil description clearly matches characters, however, observed in other crown lutjanids, 

such as the overall morphology in ethmoid regions and the generalized snapper dentition. 

Also, the ethmoid region, maxillae, and premaxillae in †Hypsocephalus and other extant 

lutjanids show the ability to expand the oral cavity both ventrally and laterally. We therefore 

apply a more conservative placement for this fossil in crown Lutjanidae. We note that 

Frédérich and Santini (33) used the fossil to calibrate a more nested clade within crown 

lutjanids (i.e., the “lutjanines” + “caesionines” clade); however, no morphological evidence 

was provided to support this decision. Stratigraphic horizon and locality: late Eocene, 

Operculinoides-Asterocyclina Zone in the Crystal River formation in north Florida area (38). 

Absolute age estimate: 33.9 Ma (36). Soft upper bound: 48.5 Ma. Prior setting MCMCTree: 

B(0.339,0.485,1e-300,0.05). Comment: Soft upper bounds are estimated using the hard lower 

bound of the root calibration.  

 

Geologic calibrations based on trans-isthmian geminate taxa  

Several geminate species pairs in Lutjanidae, including terminal clades occurring on both 

sides of the Isthmus of Panama (39), were used to apply geologic calibrations in our tree. The 

timing of the final closure of the Isthmus of Panama, which separated the Eastern Pacific and 

the Caribbean Sea basins, is an unresolved debate. Although age constrains of 2.8-3.5 Ma 

have been traditionally used to calibrate phylogenies with this formation (e.g., 40), recent 

studies have challenged the timing of the final closure of the Isthmus of Panama (40). More 

specifically, Montes et al. (41) proposed the Middle Miocene as the final closure of the 

Central American Seaway, which would place it at 13-15 Ma. O’Dea et al. (42), however, 

continue to maintain support for a younger estimate of 2.8 Ma during Pleistocene. Given 

these ongoing controversies, we set a lower hard bound of 2.8 Ma (with density Cauchy 

distributions), which reflects an undisputed minimum geologic age for this event, without the 



implementation of upper bounds as priors in the calibrations. Prior setting MCMCTree: 

L(0.028,0.1,1,1e-300).  

(3) Geminate Lutjanus peru-L. campechanus. MRCA: Lutjanus peru, Lutjanus 

campechanus. 

(4) Geminate Lutjanus inermis-Ocyurus chrysurus. MRCA: Lutjanus inermis, Ocyurus 

chrysurus. 

(5) Geminate Lutjanus argentiventris-L. alexandrei. MRCA: Lutjanus argentiventris, 

Lutjanus alexandrei. 

(6) Geminate Lutjanus synagris-L. guttatus. MRCA: Lutjanus synagris, Lutjanus guttatus. 

(7) Geminate Lutjanus cyanopterus-L. novemfasciatus. MRCA: Lutjanus cyanopterus, 

Lutjanus novemfasciatus. 

 
Table S1. Priors used for divergence time estimations in MCMCTree. 

 

 

Habitat reconstructions 

We estimated ancestral habitats using stochastic character mapping (SIMMAP; 43) under 

joint reconstructions, as implemented in the R package phytools (44). Because state 

reconstructions can be influenced by the selection of outgroups, we replaced our sampling of 

14 haemulid outgroups with a much broader sampling of 97 species for that family. For this 

analysis, we did not include any outgroups outside Lutjaniformes (Lutjanidae + Haemulidae) 

as different large-scale phylogenetic studies of fishes have produced incongruent results (2, 

32, 35), failing to resolve the interrelationships of lutjaniforms among other families in 

Eupercaria. The haemulid time tree and associated midwater/benthic coding for all species 

are based on Tavera et al. (45). We bound the haemulid tree to each of the 28 Lutjanidae-only 

MRCA Age (Ma) Distribution Calibration type Parameters 

Lutjanus lutjanus, 
Pomadasys empherus 

48.5-66 Uniform Soft upper and hard 
lower bounds 

B(0.485,0.66,1e-300,0.05) 

Lutjanus lutjanus, 
Lutjanus sebae 

33.9-48.5 Uniform Soft upper and hard 
lower bounds 

B(0.339,0.485,1e-300,0.05) 

Lutjanus peru, 
Lutjanus campechanus/purpureus 

2.8 (min.) Cauchy Hard lower bound L(0.028,0.1,1,1e-300) 

Lutjanus inermis, 
Ocyurus chrysurus 

2.8 (min.) Cauchy Hard lower bound L(0.028,0.1,1,1e-300) 

Lutjanus argentiventris, 
Lutjanus alexandrei 

2.8 (min.) Cauchy Hard lower bound L(0.028,0.1,1,1e-300) 

Lutjanus synagris, 
Lutjanus guttatus 

2.8 (min.) Cauchy Hard lower bound L(0.028,0.1,1,1e-300) 

Lutjanus cyanopterus, 
Lutjanus novemfasciatus 

2.8 (min.) Cauchy Hard lower bound L(0.028,0.1,1,1e-300) 



trees (after pruning the 14 haemulid outgroups from our sampling), keeping the ultrametricity 

of the trees based on our estimated ages for both crown and total groups.  

We identified 13 lutjanid species with uncertain habitat occupancy that either lack 

sufficient information or that are truly multi-state taxa (Dataset S2). These include, for 

example, deep-sea apsilines and etelines. To account for these uncertainties, we conducted 

SIMMAP reconstructions that allow the implementation of tip-state probabilities using 

phytools. We coded these ambiguous tips using three alternative probability schemes: 0.1 

benthic/0.9 midwater, 0.50 benthic/0.50 midwater, 0.9 benthic/0.1 midwater. Because the use 

of different probability schemes had an important effect on the SIMMAP reconstructions 

(Figs. S8-S11; see Supplementary Results), the most likely tip states inferred with these 

alternative schemes (averaged over the 28 trees in each case) were used for all other 

downstream analyses that required a priori habitat categorization of tips (e.g., trait evolution 

and convergence, state dependent diversification). Given the variety of trees and coding 

schemes, we used the more general ‘all rates different’ or ARD model for the 84 SIMMAP 

reconstructions conducted (3 coding schemes for each of the 28 trees). Finally, for each 

coding scheme, we estimated the number of transitions between benthic and midwater 

habitats for lutjanids after pruning the haemulid outgroups from all SIMMAP trees.  

 

Ancestral range reconstructions 

We classified species according to their geographical ranges. We built a 

presence/absence matrix of species considering six recognized marine biogeographic regions 

(46, 47; Dataset S3): West-Indian Ocean (WIO), Central Indo-Pacific (CIP), Central Pacific 

(CP), Tropical Eastern Pacific (TEP), Western Atlantic (WA), and Eastern Atlantic (EA). For 

simplicity, we also summarized ancestral ranges into three major ocean realms by merging 

EA and WA into the Atlantic, WIO, CIP, and CP into the Indo-Pacific, and leaving the TEP 

as originally coded (Fig. 1). Note that all lutjanid species in our dataset are currently 

distributed in a single major basin, except for Aphareus furca which occurs in both the Indo-

Pacific and TEP. We used the R package BioGeoBEARS (48), which compares competing 

models of range evolution in a phylogenetic framework. We implemented a maximum 

likelihood framework to build 12 different biogeographical models, including DEC 

(Dispersal-extinction-cladogenesis; 49), DIVA (dispersal-vicariance analyses; 50), and 

BayArea (Bayesian Inference of Historical Biogeography for Discrete Areas; 51), each of 

them combined with and without the founder‐speciation event (j) and the dispersal matrix 

power exponential (w) parameters. The j parameter allows the founding of a new area by a 



daughter lineage while the splitting-sister linage stays at the ancestral area (52). The w 

parameter is used to infer the optimal dispersal multiplier matrix, which acts as an exponent 

on that matrix using maximum likelihood (53). We set this parameter to be free in order to 

allow the model to adjust the matrices according to the data. We analyzed each model using 

three time-slices (65-12 Ma, 12-2.8 Ma, and 2.8-0 Ma), to account for connectivity changes 

between regions over geological time. The Tethys Sea region was added to first time slice 

only (65-12 Ma) to reflect the existence of this ancient basin. Both the dispersal-multiplier 

and areas-allowed matrices account for the dynamics of biogeographical barriers over time. 

The connectivity between areas was determined by three dispersal probability categories: 1.0 

for well-connected areas, 0.05 for relatively separated areas, and 0.0001 for separated or 

disconnected areas. From 65 to 12 Ma, we allowed high dispersal probability (1.0) between 

WIO and EA through the Tethys Seaway. The final closure of the Tethys Seaway occurred 12 

Ma (54). Thus, from 12 Ma onwards, we only allowed low dispersal probability value (0.05) 

between WIO and EA to reflect this closure but also to allow dispersal through the South 

African coast (55). To account for the final closure of the Panama Isthmus, which may have 

occurred as early as 2.8 Ma as stated above (42), we assigned a very low dispersal probability 

(0.0001) between WA and TEP. Finally, for all time-slices, we set a low dispersal probability 

(0.05) between CP and TEP to reflect dispersal limitations associated with the crossing of the 

Eastern Pacific Barrier (56, 57). We assessed the AIC scores of the twelve different 

biogeographical models and the best-fitting model was selected. We also summarized the six 

biogeographic areas initially defined into three major ocean realms by merging EA and WA 

into the Atlantic, WIO, CIP, and CP into the Indo-Pacific, and leaving the TEP as originally 

coded (Fig. 1). All BioGeoBEARS analyses (with three and six areas) used the ‘master tree’ 

inferred with RAxML as input. 

Geometric morphometrics on body shape  

The laterally compressed body plan of snappers and fusiliers makes this group well suited for 

the summarization of morphological diversity using two-dimensional geometric 

morphometric approaches. While some degree of ‘fusiformity’ cannot be captured with 2D 

images, the ease of implementing 2D geometric morphometric approaches based on available 

photographs is cost effective given the scope of this study. Other approaches for generating 

of 3D images require CT-scan or multi-camera settings (e.g., http://copis.tubri.org), which are 

costly and far less accessible. We generated three alternative datasets (following 58) based on 

digitized landmarks that were chosen to capture the disparity of body plans in Lutjanidae 

while ensuring homology by avoiding distortions arising from specimen preservation: (i) A 



full-body shape dataset that comprises a set of 18 functionally homologous landmarks (Fig. 

S1), as well as a set of semi-landmarks that are allowed to slide along curves that outline the 

dorsal, anal, and caudal fins according to a minimized bending energy algorithm; (ii) a body-

only dataset which is limited to the set of 18 homologous landmarks; and (iii) a fins-only 

dataset that includes the set of sliding semi-landmarks designed to capture fin shape variation. 

Note that while the kinematics and force production of the pectoral fins vary substantially in 

active vs. more passive fish swimmers (e.g., 59) we did not examine pectoral fins in this 

study due to technical limitations in capturing their shape from photos in a two-dimensional 

plane. To account for intraspecific variation, we analyzed a maximum of four individuals per 

species. After performing Procrustes superimposition for each dataset, we calculated species-

average coordinates, and performed principal component analyses (PCA) using the R 

package geomorph (60). To account for possible distortions of the PCA arising from 

phylogenetic non-independence, we subjected the morphological data to a phylogenetically 

corrected principal component analysis (pPCA) (61). Finally, we determined the number of 

meaningful PC axes using the broken-stick model (62, 63), which minimizes loss of signal 

while avoiding noise from less relevant axes.  

 

Figure S1. Geometric morphometrics digitization scheme including 18 landmarks (red 
circles) selected to summarize body-shape variation in Lutjanidae: (1) anterior insertion of 
dorsal fin, (2) posterior insertion of dorsal fin, (3) dorsal insertion of caudal fin, (4) posterior 
end of lateral line, (5) ventral insertion of caudal fin, (6) end of upper lobe of caudal fin, (7) 
midpoint of caudal fin, (8) end of bottom lobe of caudal fin, (9) posterior insertion of anal fin, 
(10) anterior insertion of anal fin, (11) anterior insertion of pelvic fin, (12) upper insertion of 



pectoral fin, (13) caudal end of opercule, (14) dorsal end of opercule, (15) anterior margin of 
eye, (16) posterior margin of eye, (17) rostral tip of premaxilla, (18) caudal end of maxilla. 
Turquoise points outline the dorsal, anal and caudal fins indicate sliding semi-landmark 
curves (fins only dataset). Fixed landmarks that are shared between fins-only and body-only 
datasets: 1–5, 9, 10. 
 
Convergence analyses  

We tested the relative fit of four alternative evolutionary models using mvMORPH, a method 

that compares a range of evolutionary models under maximum likelihood (64). We then fitted 

four alternative models of continuous-trait evolution: (i) a single-rate Brownian Motion (BM) 

model, (ii) a single-regime Orstein-Uhlenbeck (OU) model, (iii) a multiple-selective-regime 

BM (BMM) model with distinct adaptive optima for specific modes of habitat occupation (as 

determined based on the ancestral habitat reconstructions), and (iv) a multiple-selective-

regime OU (OUM) model. Although mvMORPH is not strictly designed to test for 

convergent evolution, we expect to find support to the OUM model for midwater dweller 

lineages evolving towards the same adaptive peak (65). 

We also tested for an association between habitat occupancy and the four most 

relevant PC axes using the threshold model, which assesses the correlation between a discrete 

trait and a continuous character that co‐vary according to an underlying (unobserved) trait 

called liability (66). We used a Bayesian MCMC function (threshBayes) as implemented in 

the R package phytools (44). We ran analyses for 100 million generations, discarding the first 

25% as burn‐in. We then used the posterior distribution to determine whether correlation 

coefficients differed significantly from zero.  

We explicitly tested for convergent evolution using convevol, an approach that uses 

distance-based metrics (C1-C4) to quantify the amount of phenotypic distance between two 

lineages that becomes reduced by subsequent evolution (67). While C1 measures the 

magnitude of phenotypic distance in multidimensional space closed by evolution (ranging 

from 0 to 1; where 1 indicates complete convergence), it can be scaled to permit comparisons 

within and between different taxa and datasets (C2-C4). To test the significance of our 

measures of C1–C4, we compared the observed measures against null expectations generated 

by 1000 BM simulations. Due to computational limitations we limited the convevol analyses 

to the ‘master tree.’ 

To further evaluate the strength of morphological convergence for taxa assigned to the 

same habitat category, we also used the Wheatsheaf index as implemented in the R package 

Windex (68). This index, before investigating similarity, generates phenotypic distances from 

any number of traits across species, penalizing by phylogenetic distance. Finally, we used the 



multivariate data-driven approach implemented in the R package ℓ1ou (69) to estimate the 

optimal number of selective regimes under an Ornstein-Uhlenbeck process applied to the 

least absolute shrinkage and selection operator (LASSO). We applied two methods to select 

the number of model shifts in ℓ1ou: the widely used Akaike information criterion (AICc), 

and the more conservative Bayesian information criterion (pBIC) (65). To complement the 

ℓ1ou analyses, we also used the SURFACE method (70) for data-driven identification of 

clades featuring convergent evolution. 

 

State-dependent diversification  

We implemented hidden state speciation and extinction analyses using the R package HiSSE. 

We first tested the relative fit of a set of alternative branching models to our comparative 

dataset that includes null models (i.e., no state dependence), and a combination of state-

dependent diversification models that incorporate unobserved hidden state within the focal 

habitat states (Table S2-S4). For comparison, and to estimate habitat-dependent evolutionary 

rates in a Bayesian framework, we also used the BiSSE (binary state speciation and 

extinction) approach implemented in the R package diversitree (71). Finally, because model‐

based tests of SSE methods are sensitive to model inadequacy (e.g., when the set of tested 

models depart substantially from the true evolutionary history of the group, 72), we also 

applied the nonparametric FiSSE approach, which has shown to be robust to phylogenetic 

pseudoreplication and model misspecification (73). FiSSE compares the distributions of 

branch lengths for lineages with and without the focal habitat state and has been proposed as 

a complement to model-based SSE methods.  

 

Other analyses  

Methodological details for other analyses conducted are reported in the main text. 

 

 

 

 

 

 

 

 



Supplementary Results 

 

Phylogenomic inference, divergence times and habitat reconstructions. The reduced 

matrix assembled using the MARE approach (17) comprises 1,047 exons and a total 448,410 

DNA sites for 84 species (16% missing cells). The complete concatenated dataset contains 

1,115 exons with an expanded data matrix consisting of 474,132 DNA sites for 110 species 

(37% missing cells).  

In agreement with results from previous studies (2, 5, 31–35), the family Lutjanidae 

(to the exclusion of Caesionidae) was deemed non-monophyletic based on both concatenated 

and coalescent-based analyses (Fig. S2-S5). Relationships among major clades of snappers 

and fusiliers were resolved with strong support on the basis of analyses conducted using the 

reduced and the expanded matrices, largely revealing strong concordance to previous studies 

(33, 74), with some notable exceptions explained below. All analyses invariably resolved 

seven major lutjanid clades (Fig. S2-S5): the first-branching clade is composed of two 

reciprocally monophyletic subfamilies: (i) Apsilinae (Apsilus, Lipocheilus, and Paracaesio) 

and (ii) Etelinae (Aprion, Aphareus, Etelis, Pristipomoides, and Randallichthys). (iii) The 

next clade includes a monophyletic subfamily Paradicichthyinae with two monotypic genera, 

Symphorus and Symphorichthys, previously classified as sparoids (29, 75–77). Recognition of 

these three subfamilies follows Johnson and Carpenter (29, 75, 76, 78). Next, Clade A (iv) 

and Clade B (v), as defined by Frédérich & Santini’s (33), are sister groups, differing from 

the placement in their study where Clade B is clustered within Clade C. Clade A includes 

Lutjanus adetii and L. sebae sister to Pinjalo lewisi, P. pinjalo, and several additional species 

of Lutjanus (L. sanguineus, L. malabaricus, L. dodecacanthoides, and L. timoriensis); Clade 

B is composed of Lutjanus bohar, Lutjanus gibbus, Macolor macularis and niger, and the 

fusiliers (formerly Caesionidae (29, 79); genera Pterocaesio, Caesio, Gymnocaesio, and 

Dipterygonotus). We identified a substantially different placement for Lutjanus bohar in 

Frédérich & Santini’s tree (Clade C), estimated with GenBank sequences from two different 

specimens from Australia and Asia, and our trees (Clade B), based on a single specimen from 

Australia that was target-captured for the complete gene set. Analyses of individual gene 

trees suggest that Frédérich & Santini’s phylogenetic placement for Lutjanus bohar was 

compromised due to miss-identification of the Asian specimen. (vi) The next lineage includes 

Hoplopagrus guentherii (sometimes placed in a separate subfamily, Hoplopagrinae [80]), 

which constitutes the sister species of Clade C (vii), a large subclade that includes several 



lineages that span most of the diversity of Lutjanus as well as two monotypic genera, 

Ocyurus and Rhomboplites, which are nested within Lutjanus. These three genera together 

with Hoplopagrus, Macolor, and Pinjalo form the subfamily Lutjaninae (79). It should be 

noted that both Lutjaninae and Lutjanus are taxonomic waste baskets that are grossly 

polyphyletic in all trees, including species in 4 of the 7 delineated clades. Many of the 

Lutjanus subclades resolved, however, tend to be clustered within major biogeographic 

basins (see below). Other genera that were not resolved as monophyletic include Paracaesio, 

Pristipomoides, and Pterocaesio. Taken together, these and other previous results (33, 74) 

call for a revised taxonomy of genera and subfamilies in Lutjanidae. 

The relationships estimated with the expanded matrix, in which 110 species are 

placed on the basis of just 1115 genes, were highly consistent with those in the reduced 

matrix, which features minimal proportions of missing cells (16%) providing a robust 

phylogenomic framework. Additionally, the placement of the GenBank species for which we 

lacked genomic data, where included, were resolved in the expected placement according to 

previous studies (33, 74).  

In addition to the major expanded and reduced datasets, we analyzed independent 

subsets derived from the expanded matrix to incorporate uncertainty in divergence times and 

relationships for downstream comparative analyses. Preliminary tests including a higher 

number of subsets, each with fewer genes (25 subsets), resulted in high levels of topological 

discrepancy, in particular for trees estimated with ASTRAL-II. Subsequently, we reduced the 

number of subsets to 13 (seven with 89 genes, and six with 90 genes; Dataset S4), all of 

which produced trees with lower levels of topological discordance compared to those 

obtained using fewer genes. Some relationships among major lutjanid clades were not 

obtained in a large proportion of subset trees, despite being resolved in trees estimated with 

full gene sets (expanded and reduced matrices). For example, the monophyly of Clade A + 

Clade B, which was resolved in all analyses based on expanded and reduced matrices, was 

only obtained in 12 of the 26 subset trees. To further assess topological disparity, we 

estimated tree space plots for the 28 trees using a multidimensional scaling (MDS) 

visualization implemented in phytools. The MDS plots place the RAxML and ASTRAL-II 

trees in opposite areas of the tree space. The ASTRAL-II trees also show greater topological 

disparity compared to the RAxML trees (including the ‘master tree’ reference; Fig. S6). We 

hypothesize that non-overlapping tree spaces for RAxML and ASTRAL-II trees is the result 

of gene tree error affecting species tree inferences—a possibility that remains to be tested 

using simulations. Regardless of the of the source of incongruence between RAxML and 



ASTRAL-II trees, however, we emphasize that most comparative methods performed here 

account for topological uncertainty. 

Dates inferred from the 13 subsets with age estimates for MCMCTree analyses are 

provided in Dataset S5 and Fig. S7. Divergence-time estimates are reasonably in good 

agreement compared to the age of the lutjanid stem, as estimated by multi-locus analyses (2, 

5, 32–34; see Table S5 for a comparison). Studies that did not include internal calibrations for 

lutjanids placed the origin of the crown group in the early Eocene (32, 33, 35). In contrast, we 

date the age of crown lutjanids to the middle Eocene (~46 Ma, 95% HPD: 40-49 Ma). The 

stem age of the lutjanids dated close to the Cretaceous–Paleogene (K-Pg) boundary, around ~ 

64 Ma. The Apsilinae + Etelinae clade dates from the Middle Eocene (~40 Ma, 95% HPD 34-

44 Ma). Estimates of subfamily-level clade ages were as follows: the subfamilies Apsilinae, 

Etelinae, and Paradicichthyinae, are Miocene in age, ~21 Ma (95% HPD ~15.34-27.25 Ma), 

~23.92 Ma (95% HPD ~19.2-28.83 Ma), and ~11 Ma (95% HPD ~7.6-15 Ma), respectively. 

Clade A and Clade B divergences took place in the Oligocene with a clade age of ~28 Ma 

(95% HPD ~24-32 Ma). Caesionines split from other members of the Clade B around 20 Ma 

(95% HPD ~16.83-23.86 Ma). The species-rich Clade C diverged from Hoplopagrus 

guentherii around ~27Ma (95% HPD ~26-31 Ma).  

SIMMAP analyses based on different coding schemes for uncertain tips had an 

important impact on the ancestral habitat reconstructions (Fig. S8). Differences obtained were 

most striking in the Apsilinae and Etelinae clades, which together had 10 (out of 13) species 

with uncertain or ambiguous habitat affiliations. Our results for those clades are rather similar 

between the “0.1benthic/0.9 midwater” and “0.5 benthic/0.5 midwater” probability schemes, 

where tips depict a tendency towards midwater habitat occupancy. However, analyses based 

on the “0.9 benthic/0.1 midwater” probability scheme suggests ancestral benthic habitats at 

many nodes in the Apsilinae and Etelinae clades (Fig. S8). 

For each of the three alternative probability schemes, we looked into the 28 

Lutjanidae-only trees to more thoroughly analyze habitat occupancy patterns or discrepancies 

between trees inferred using RAxML and ASTRAL-II based on either subsets or full datasets. 

For the “0.5 benthic/0.5 midwater” scheme (Fig. S9), tip probabilities varied considerably 

between benthic and midwater habitat occupancy. Yet, the results were largely consistent 

between subsets and expanded trees, with a general tendency towards midwater habitat 

occupancy. For the “0.1 benthic/0.9 midwater” scheme (Fig. S10), we found a strong 

consistency regarding midwater habitat occupancy probabilities in all trees. As with the 



master tree (Fig. S8), reconstructions based on the “0.9 benthic / 0.1 midwater” scheme (Fig. 

S11) identified many ancestral benthic nodes in apsilines and etelines. 

 
Figure S2. Phylogenetic tree inferred with RAxML for the expanded dataset (‘master tree’) 
and time-calibrated using MCMCTree. Colors indicate subfamilies and other major clades. 
Nodal values indicate bootstrap support. 



 

Figure S3. Phylogenetic tree inferred with ASTRAL-II for the expanded dataset and time-
calibrated using MCMCTree. Colors indicate subfamilies and other major clades. Nodal 
values indicate bootstrap support. 
 

 



 

Figure S4. Phylogenetic tree inferred with RAxML for the reduced dataset. Colors indicate 
subfamilies and other major clades. Nodal values indicate bootstrap support. The purpose of 
this inference was to assess sensitivity of phylogenetic results to missing data (16%). Thus, 
this tree is was not time calibrated.  
 

 



 

Figure S5. Phylogenetic tree inferred with ASTRAL-II for the reduced dataset. Colors 
indicate subfamilies and other major clades. Nodal values indicate bootstrap support. The 
purpose of this inference was to assess sensitivity of phylogenetic results to missing data 
(16%). Thus, this tree is was not time calibrated.  
 

 

 

 

 



Table S2. HiSSE alternative models of lineage diversification and model fitting results for 
the Master tree using the 0.5 benthic/0.5 midwater probability scheme. ε = extinction 
fraction; τ = net turnover; lnLik = log likelihood; AIC = Akaike Information Criterion. 
 

Parameters 

Model States Hidden states 
Free parameters 
associated to (τ)  

Free parameters 
associated to (ε)  

AIC 

BiSSE null 0A, 1A NA 1,1,0,0 1,1,0,0 846.50 

BiSSE equal Q 0A, 1A NA 1,1,0,0 1,1,0,0 844.91 

BiSSE 0A, 1A NA 1,2,0,0 1,2,0,0 848.85 

HiSSE null 0A, 1A 0B, 1B 1,1,2,2 1,1,2,2 846.90 

HiSSE full 0A, 1A 0B, 1B 1,2,3,4 1,2,3,4 850.03 

HiSSE benthic 0A, 1A 0B 1,2,3,0 1,2,3,0 845.07 

HiSSE midwater 0A, 1A 1B 1,2,0,3 1,2,0,3 873.76 

 
Table S3. HiSSE alternative models of lineage diversification and model fitting results for 
the Master tree using the 0.1 benthic/0.9 midwater probability scheme. ε = extinction 
fraction; τ = net turnover; lnLik = log likelihood; AIC = Akaike Information Criterion. 
 

Parameters 

Model States Hidden states 
Free parameters 
associated to (τ)  

Free parameters 
associated to (ε)  

AIC 

BiSSE null 0A, 1A NA 1,1,0,0 1,1,0,0 849.19 

BiSSE equal Q 0A, 1A NA 1,1,0,0 1,1,0,0 849.43 

BiSSE 0A, 1A NA 1,2,0,0 1,2,0,0 850.81 

HiSSE null 0A, 1A 0B, 1B 1,1,2,2 1,1,2,2 851.47 

HiSSE full 0A, 1A 0B, 1B 1,2,3,4 1,2,3,4 850.97 

HiSSE benthic 0A, 1A 0B 1,2,3,0 1,2,3,0 846.72 

HiSSE midwater 0A, 1A 1B 1,2,0,3 1,2,0,3 874.48 

 
 
Table S4. HiSSE alternative models of lineage diversification and model fitting results for 
the Master tree using the 0.9 benthic/0.1 midwater probability scheme. ε = extinction 
fraction; τ = net turnover; lnLik = log likelihood; AIC = Akaike Information Criterion. 
 

Parameters 

Model States Hidden states 
Free parameters 
associated to (τ)  

Free parameters 
associated to (ε)  

AIC 

BiSSE null 0A, 1A NA 1,1,0,0 1,1,0,0 873.53 

BiSSE equal Q 0A, 1A NA 1,1,0,0 1,1,0,0 873.79 

BiSSE 0A, 1A NA 1,2,0,0 1,2,0,0 876.64 

HiSSE null 0A, 1A 0B, 1B 1,1,2,2 1,1,2,2 874.38 

HiSSE full 0A, 1A 0B, 1B 1,2,3,4 1,2,3,4 882.74 

HiSSE benthic 0A, 1A 0B 1,2,3,0 1,2,3,0 878.66 

HiSSE midwater 0A, 1A 1B 1,2,0,3 1,2,0,3 932.35 



Table S5. Comparison for stem and crown ages for Lutjanidae based on multiple studies. 

Study Mean crown   age 95% HPD Mean stem (root) 95% HPD 

This study 46 Ma (40-49 Ma) 64 Ma 

Alfaro et al. 2018 (34)  - - 66 Ma (60-72 Ma) 

Hughes et al. 2018 (2) - - 79 Ma (67-87 Ma) 

Rabosky et al. 2018 (35) 52.87 Ma - 66.324 Ma 

Betancur-R. et al. 2017 (32) 50 Ma - 62 Ma - 

Frédérich & Santini, 2017 (33) 54 Ma (45-66 Ma) 

Betancur-R. et al. 2013 (5) - - 64.62 Ma (35.7-86.7 Ma) 

Near et al. 2011 (31) - - 52 Ma (47-57 Ma) 

 

 
Figure S6. Tree spaces for the twenty-eight trees estimated in this study. MT: ‘master tree’, 
AT: alternative ASTRAL-II tree based on the full dataset. The blue dot represents the average 
(centroid) tree in tree space. 
 
 

 

 

 

 

 

 

 

 

 
Figure S7. Divergence date uncertainty for major lutjanid clades based on the 28 trees dated 
with MCMCTree. ‘Master tree’: RAxML_EXP. 
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Figure S8. SIMMAP reconstructions based on the ‘master tree’ (RAxML) and expanded haemulid outgroups (from Tavera et al., 47) 
following three alternative probability schemes for coding species with ambiguous habitat affiliations: 0.1 benthic/0.9 midwater, 0.50 
benthic/0.50 midwater, 0.9 benthic/0.1midwater. This figure shows how different coding schemes affect habitat reconstructions (see 
also Figs. S9-S11 for similar results based on the 28 trees). Major lutjanid clades are highlighted. Biogeographic colonization events 
of the Atlantic and the tropical eastern Pacific inferred with BioGeoBEARS (see Figs. S12-S14) are indicated with arrows. Stars 
indicate the most likely ancestral area where SIMMAP analyses identify a habitat transition.  



 
Figure S9.  SIMMAP reconstructions for the 28 Lutjanidae-only trees following 0.5 benthic/0.5 midwater probability scheme. The 
reconstructions included all haemulid outgroups (see Fig. S8), but these were pruned out here to facilitate visualization. 



 

 

Figure S10.  SIMMAP reconstructions for the 28 Lutjanidae-only trees following 0.1 benthic/0.9 midwater probability scheme. The 
reconstructions included all haemulid outgroups (see Fig. S8), but these were pruned out here to facilitate visualization.



 
 

 
Figure S11.  SIMMAP reconstructions for the 28 Lutjanidae-only trees following 0.9 benthic/0.1 midwater probability scheme. The 
reconstructions included all haemulid outgroups (see Fig. S8), but these were pruned out here to facilitate visualization.



Biogeographic analyses. The best‐supported biogeographic model for lutjanids based on six 

areas was the BayAREA + j + w (AICw= 0.61; Table S6, Fig. S12), whereas for three areas the 

DEC + j + w model had a better fit (AICw= 0.43; Fig. S13). However, because support for 

BayAREA + j + w with three areas was also substantial (AICw= 0.2), we thus report all results 

(six and three areas) based on the BayAREA + j + w model (Fig. S14). Our ancestral area 

reconstruction analyses suggest that the family Lutjanidae originated in the Indo-Pacific Ocean 

(WIO + IO + CP) with subsequent independent colonization events of the New World (WA and 

TEP) via multiple routes. The main diversification of lutjanid lineages occurred within the Indo-

Pacific. Lutjanines, apsilines, caesionines, and hoplopagrines originated from a widespread 

ancestor (WIO+CIP+CP) at 29.3 Ma (95% HPD ~25.3-33.4), 21.3 Ma (95% HPD ~15.3-27.2), 

15.9 Ma (95% HPD ~13.2-19.3 HPD), and 3.5 Ma (95% HPD ~2.15-4.9), respectively. In 

contrast, the subfamilies Etelinae and Paradicichthyinae originated from a WIO + CIP ancestor at 

31.4 Ma (95% HPD ~26.5-36.2) and 11.1 Ma (95% HPD ~7.6-15), respectively. Most of the 

genera also appear to have an Indo-Pacific (WIO, CIP or CP) origin, except for Ocyurus and 

Rhomboplites, which originated in the WA. Caesionines and paradicichthyines are the only 

subfamily-level clades of snappers that did not disperse outside their center of origin in the Indo-

Pacific. 

Irrespective of the number of areas used (three or six), our biogeographic reconstructions 

suggest that lutjanids colonized the TEP nine different times and the Atlantic six times (Fig. 1). 

Note, however, that all these reconstructions are based on the ‘master tree’ only, and thus 

different topologies might potentially result in different number of colonization events. At least 

four lineages colonized the TEP by dispersing eastwards across the Eastern Pacific Barrier 

(including one event in Aphareus furca that is phylogeographic in scope), while five lineages 

colonized it from the WA through the Central American Seaway before the closure of the 

Isthmus of Panama. Four of these are currently present in the TEP and/or the Indo-Pacific but do 

not occur in the WA. Others (e.g., genera in the subfamilies Etelinae, Apsilinae and Lutjaninae) 

are present in the WA but not in the TEP. Lineages that colonized the Atlantic used different 

routes. Lutjanines colonized the WA through the EA at least twice. The first event occurred 

westwards from the Indo-Pacific before the closure of the Tethys Seaway (12 Ma), suggesting 

that the colonization event happened through tropical waters across the Tethys Seaway, rather 

than through a subtropical path via Cape of Good Hope in South Africa. The second event took 



place after the closure of the Tethys Seaway, likely requiring lineages to colonize the Atlantic via 

South Africa or crossing the Eastern Pacific Barrier and the Central American Seaway. 

Regarding the remaining lineages that colonized the WA, at least one of them also crossed the 

Tethys Seaway while the other two took two alternative routes, via either the southern African 

coast or through the Eastern Pacific Barrier. The route that the MRCA of Pristipomoides 

aquilonaris and P. macrophthalmus took to colonize the WA is ambiguous as it could have 

occurred through any of the three routes mentioned. Finally, five geminate species pairs in 

lutjanines had a WA origin with subsequent colonization of one species of each pair into the TEP 

before the final closure of the Isthmus of Panama (see comments under divergence-time 

calibrations). 

By merging results of ancestral habitat (SIMMAP) and ancestral range (BioGeoBEARS), 

we find that the invasion of the water column took place independently at least once within each 

of the three major oceanic basins (Figs. 1, S8). While some areas feature more transitions than 

others (e.g., Indo-Pacific vs. Eastern Pacific; Fig. 1, S8), the ubiquitous nature of habitat 

transitions in lutjanids is a remarkable result of this study that highlights the deterministic 

character of these changes. 

 

Table S6. Summary statistics of the 12 biogeographic models implemented in BioGeoBEARS 
for the six- and three-areas schemes. LnL = LogLikelihood; AICc = corrected Akaike 
Information Criterion. 
 

  Six-areas scheme Three-areas scheme 

Models LnL AICc AICc weight LnL AICc AICc weight 

DEC -275.3 554.8 4.10E-12 -104.7 213.6 1.50E-16 

DEC+J -273.4 553.1 9.40E-12 -71.01 148.2 0.023 

DEC+W -281.2 568.6 4.00E-15 -100.1 206.4 5.30E-15 

DEC+J+W -272.5 553.3 8.50E-12 -67.02 142.4 0.43 

DIVALIKE -276.6 557.3 1.20E-12 -99.45 203 3.00E-14 

DIVALIKE+J -275.9 558.1 7.80E-13 -72.04 150.3 0.0083 

DIVALIKE+W -284.9 575.9 1.00E-16 -95.02 196.3 8.70E-13 

DIVALIKE+J+W -275.3 559 4.90E-13 -67.27 142.9 0.33 

BAYAREALIKE -309.6 623.3 5.50E-27 -155.8 315.7 1.00E-38 

BAYAREALIKE+J -249 504.2 0.39 -72.46 151.1 0.0054 

BAYAREALIKE+W -308.5 623.2 5.70E-27 -150.4 307.1 7.60E-37 

BAYAREALIKE+J+W -247.5 503.3 0.61 -67.77 143.9 0.2 

 



Geometric morphometric analyses. The number of meaningful PC axes varied among the three 

morphometric datasets (Fig. S15; Table S7). Both the full-body shape and the fins-only datasets 

are optimally represented by the first four PC axes (responsible for 78% and 85% of the total 

variance respectively); the body-only dataset was best represented by the first two PC axes, 

which accounted for more than 72% of the total variance. For the full-body dataset, the main 

trends in shape variation described by the first four PC axes are presented as morphospace scatter 

plots (Fig. 2). For the full body-shape dataset, PC1 (>50% of total variance) summarizes 

morphological differences in body elongation and caudal fin shape, features that have been 

repeatedly found to comprise two of the major components of fish evolution along the benthic-

pelagic axis. Indeed, PC1 remarkably discriminates between benthic and midwater dwellers. The 

PC1 traitgram shows that different lutjanid midwater lineages independently evolved slender-

bodies and furcate caudal fins, suggesting strong ecologically driven evolutionary convergences. 

This pattern is further confirmed based on the threshold model (81), where the full-body shape 

dataset reveals substantial correlation between the two habitat states and PC1 (r2=0.57-0.67; 

based on different habitat coding schemes), which captured differences in body elongation and 

caudal fin shape. The remaining three PC axes (PC2-4) summarize further relevant aspects in 

fin-shape variation and ornamentation. We detected the same pattern for the body-only (r2=0.42-

0.57) and fins-only (r2=0.56-0.69) datasets, where only PC1 exhibits significant correlations. We 

also found an extensive overlap between benthic and midwater species at the lower PC axes, 

reflecting lower correlations between the PC2-PC4 and habitat occupancy data (r2=0.07-0.24; for 

the full-body shape dataset). These results suggest that ecomorphological convergence is less 

clearly associated with PC2-PC4 axes than it is to the main PC1 axis. 



 

Figure S12. Ancestral area reconstructions (BioGeoBEARS) for Lutjanidae using the best-
supported biogeographical model for six areas (BAYAREALIKE+j+w) applied to the ‘master 
tree.’ Boxes represent the geographic distribution of extant species. Dotted lines represent the 
time constraints that correspond to two major biogeographic events, the Tethys Seaway closure 
(12 Ma) and the undisputed minimum age for the closure of the Isthmus of Panama (2.8 Ma; see 
comments under divergence-time calibrations). Nine purple and six yellow arrows indicate 
colonization events to the TEP and the Atlantic, respectively. 



 

Figure S13. Ancestral area reconstructions (BioGeoBEARS) for Lutjanidae using the best-
supported biogeographical model for three areas (DEC +j+w) applied to the ‘master tree.’ Boxes 
represent the geographic distribution of extant species. Dotted lines represent time constraints 
that correspond to two major biogeographic events, the Tethys Seaway closure (12 Ma) and the 
undisputed minimum age for the closure of the Isthmus of Panama (2.8 Ma; see comments under 
divergence-time calibrations).  



 

Figure S14. Ancestral area reconstructions (BioGeoBEARS) for Lutjanidae based on the three-
areas scheme applied to the ‘master tree’ but using the best-fit model for six areas 
(BAYAREALIKE+j+w; see Fig. S8). Boxes represent the geographic distribution of extant 
species. Dotted lines represent time constraints that correspond to two major biogeographic 
events, the Tethys Seaway closure (12 Ma) and the undisputed minimum age for the closure of 
the Isthmus of Panama (2.8 Ma; see comments under divergence-time calibrations). Nine purple 
and six yellow arrows indicate colonization events to the TEP and the Atlantic, respectively. 
 

 

Figure S15. Plots of the broken-stick method showing PC axis variation (x axis) for full body-
shape, fins-only, and body-only datasets. Plots represent (red dashed lines) the broken stick 
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distributions and (grey bars) the relative proportions of the variation that are summarized by all 
the PCs for each alternative dataset. The first value where the estimated broken stick value is 
larger than the observed variation summarized by that PC determines the optimal number of PCs 
axes.  
 

Table S7. Proportion of variance and standard deviation for all major PC axes (up to 95%) and 
datasets analyzed. 
 

Dataset  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
PC1

1 
PC1

2 
PC1

3 

Full body 
shape 

Standard 
deviation  

0.06
7 

0.03
4 0.03 

0.02
2 

0.01
8 

0.01
5 

0.01
5 

0.01
3 

0.01
2 0.011 

0.00
9 

0.00
9 

0.00
8 

Proportion of 
Variance 

0.50
7 

0.12
7 

0.09
8 

0.05
6 

0.03
6 

0.02
6 

0.02
5 

0.01
8 

0.01
6 0.014 

0.09
8 

0.00
9 

0.00
7 

Cumulative 
Proportion 

0.50
7 

0.63
4 

0.73
2 

0.78
8 

0.82
5 

0.85
1 

0.87
6 

0.89
4 0.91 0.924 

0.93
4 

0.94
2 0.95 

Body only 

Standard 
deviation  

0.03
1 

0.01
5 

0.01
1 0.01 

0.00
7 

0.00
6 

0.00
5 

0.00
5 

0.00
4 0.004 - - - 

Proportion of 
Variance 

0.00
9 

0.00
7 

0.00
6 

0.00
5 

0.00
4 

0.00
4 

0.00
3 

0.00
3 

0.00
2 0.009 - - - 

Cumulative 
Proportion 

0.58
3 0.72 

0.79
5 

0.85
1 

0.88
1 

0.90
6 

0.92
2 

0.93
6 

0.94
6 0.956 - - - 

Fins only 

Standard 
deviation  

0.06
3 

0.03
1 

0.02
8 

0.02
1 

0.01
8 

0.01
5 

0.01
4 

0.01
2 

0.01
1 0.009 

0.00
9 

0.00
8 - 

Proportion of 
Variance 

0.51
1 

0.12
7 

0.09
8 

0.05
8 0.04 

0.02
9 

0.02
6 0.02 

0.01
5 0.012 0.01 

0.00
9 - 

Cumulative 
Proportion 

0.51
1 

0.63
9 

0.73
7 

0.79
5 

0.83
5 

0.86
4 0.89 0.91 

0.92
5 0.937 

0.94
7 

0.95
6 - 

 

Convergence analyses. Snappers and fusiliers display considerable morphological diversity in 

body shape concerning body depth and fin shape (Fig. 2). We conducted several proposed 

methods to assess the scale and nature of convergence for each of the three separate datasets 

(full-body, using PC1-PC4 axes, body only, using PC1-PC2 axes, and fins only, using PC1-PC4 

axes). 

Trait evolution in benthic and midwater lineages. Results for the multivariate model fitting using 

the full-body shape dataset show split support for the two multi-selective-regime models (OUM 

and BMM) model. In both models, the distinct selective regimes correspond to different habitat 

categories in Lutjanidae. The remaining two alternative morphometric datasets (body-only, fins-

only) show decisive support the OUM model, supporting the idea that independent lineages with 

similar habitat occupancy along the benthic-pelagic axis are strongly constrained towards the 

same adaptive landscape optimum). 

Strength of convergence. We used the convevol distance-based measures (C1-C4) to assess the 

strength of convergence associated with incursions into the water column (Table S8). The C1‐C4 

metrics are all statistically significant for the three alternative morphometric datasets. The C1 



index measures how similar lineages have evolved to be more similar to one another when 

compared to their respective ancestors. Our results indicate that midwater lineages have, on 

average, closed slightly less than half of their phenotypic distance by subsequent convergent 

evolution (C1= 37-45%). We also used C5, a frequency-based index that measures the number of 

lineages evolving into the focal region in the morphospace. Our results show that 3-5 lineages 

independently evolved into the area of morphospace delimited by midwater species; however, all 

C5 tests were non-significant (p 0.38; Table S8).  

We also used the Wheatsheaf index (w), a method that compares the degree of 

phenotypic similarity between the species in the a priori defined convergent clades and the 

disparity of these species from the non-convergent species. Wheatsheaf results (w= 1.3–1.4; 

Figs. S19-S20) suggest that convergence in midwater species is significantly stronger (p <0.01; 

with a narrow confidence interval or CI) than would be expected from a random distribution of 

trait values simulated under a Brownian Motion model (BM) across the tree. All w values are 

similar, and CI overlaps among the three alternative morphometric datasets, which suggest that 

both body shape and fins morphology present a similar strength in convergent evolution. To 

further validate these results, we calculated w using benthic species as focal clades. In this case, 

w was significantly smaller than values simulated under BM in all three morphometric datasets 

(w= 0.83–0.88; p >0.95). These results support the idea that morphological diversity is high 

among benthic species, and strong convergent evolution is largely restricted to midwater 

lutjanids.  

 



Figure S16. Model-fitting comparisons for alternative models of morphological evolution based 
on a set of 28 phylogenetic trees 0.5 benthic/0.5 midwater probability scheme. Distribution of the 
Akaike Information Criterion (AIC) and Akaike weight (AICw) values for the three alternative 
models of continuous trait evolution (BM, OU, BMM, AND OUM) applied to the (a,b) body-
only, (c,d) full body-shape, and (e,f) fins-only datasets.  
 
 

 
Figure S17. Model-fitting comparisons for alternative models of morphological evolution based 
on a set of 28 phylogenetic trees 0.1 benthic/0.9 midwater probability scheme. Distribution of the 
Akaike Information Criterion (AIC) and Akaike weight (AICw) values for the three alternative 
models of continuous trait evolution (BM, OU, BMM, AND OUM) applied to the (a,b) body-
only, (c,d) full body-shape, and (e,f) fins-only datasets.  
 

 
Figure S18. Model-fitting comparisons for alternative models of morphological evolution based 
on a set of 28 phylogenetic trees 0.9 benthic/0.1 midwater probability scheme. Distribution of the 



Akaike Information Criterion (AIC) and Akaike weight (AICw) values for the three alternative 
models of continuous trait evolution (BM, OU, BMM, AND OUM) applied to the (a,b) body-
only, (c,d) full body-shape, and (e,f) fins-only datasets.  
 

Table S8.  C1-C5 convergence measures and p-values for convevol analyses ran using the full 
body-shape, body-only, and fins-only datasets.  Asterisks represents statistically significant 
values. * = p< 0.001. 
 

Habitat coding Morphometric 
dataset 

C1 C2 C3 C4 C5 

0.5/0.5 FB 0.40 (p<0.01) 0.06 (p<0.01) 0.17 (p<0.01) 0.01 (p=0.01) 6 (p=0.48) 

FO 0.39 (p<0.01) 0.06 (p<0.01) 0.17 (p<0.01) 0.01 (p=0.01) 4 (p=0.67) 

BO 0.43 (p<0.01) 0.03 (p<0.01) 0.21 (p<0.01) 0.01 (p=0.01) 7 (p=0.38) 

0.9/0.1 FB 0.38 (p<0.01) 0.06 (p<0.01) 0.16 (p<0.01) 0.01 (p=0.05) 3 (p=0.84) 

FO 0.37 (p<0.01) 0.06 (p<0.01) 0.16 (p<0.01) 0.01 (p=0.03) 3 (p=0.81) 

BO 0.43 (p<0.01) 0.03 (p<0.01) 0.20 (p<0.01) 0.01 (p=0.03) 7 (p=0.40) 

0.1/0.9 FB 0.41 (p<0.01) 0.07 (p<0.01) 0.18 (p<0.01) 0.01 (p<0.01) 6 (p=0.48) 

FO 0.41 (p<0.01) 0.06 (p<0.01) 0.18 (p<0.01) 0.01 (p=0.03) 4 (p=0.68) 

BO 0.45 (p<0.01) 0.03 (p<0.01) 0.22 (p<0.01) 0.01 (p=0.05) 7 (p=0.42) 

 



 
Figure S19. Histograms representing the distribution of bootstrapped Wheatsheaf index values 
for all morphometric datasets based on PCA and the three different habitat coding schemes. 
Black thick lines represent the calculated Wheatsheaf index. Dashed lines show 95% confidence 
interval. 



 

Figure S20. Histograms representing the distribution of bootstrapped Wheatsheaf index values 
for all morphometric datasets based on pPCA and the three different habitat coding schemes. 
Black thick lines represent the calculated Wheatsheaf index. Dashed lines show 95% confidence 
interval. 
  

ℓ1ou and SURFACE analyses. Finally, we assessed the extent of convergence evolution without 

a priori habitat designations using ℓ1ou and SURFACE. Similar to the simulations used by 

Khabbazian (69), we conducted two different tests using the ‘master tree’ and the alternative 

ASTRAL-II tree based on the full dataset. For ℓ1ou, we first assessed shifts on the first PC and 

pPC axis. We then explored the performance of ℓ1ou and SURFACE when applied to multiple 



PC axes (first four axes for full body shape and fins-only datasets and first two axes for body-

only dataset; Fig. S15). For our first test, ℓ1ou (based on both AICc and pBIC) detected on 

average more shifts when we use PCA instead of pPCA (FBS: AICc 14.75–14.5, pBIC 5.2-5; 

BO: AICc 10.5-11.5, pBIC 2-2.5; FO: AICc 14.75-12.5, pBIC: 4.25-4.75 respectively; Table 

S9). To properly account for phylogenetic co-variation we report all downstream analyses based 

on pPCA (61, 82). When analyzing the first PC axis only on our three morphometric datasets 

(body only, fins only and body plus fins combined) using ℓ1ou + AICc, fewer shifts were 

detected relative to similar analyses based on multiple PC axes (see below), showing the gain in 

detection power when combining multiple axes in our second test (Table S9). The more 

conservative ℓ1ou + pBIC test detected a single adaptive shift at the base of the fusilier clade, 

falling in line with traditional taxonomic delimitations of snappers and fusiliers as separate 

families (76, 83–88). The single adaptive shift largely reflects elongation of fusilier’s body plan, 

mouth reduction, and forking of caudal fin—key adaptations for life in the water column. See 

also Johnson (29): “The family Caesionidae is clearly a classical example of a group with 

identifiable affinities, which has invaded a very different adaptive zone than that occupied by its 

closest relatives and has undergone a moderate radiation. This was made possible by an 

innovative restructuring of the functional complex of the upper jaw (permitting extreme 

protrusibility for planktivorous feeding) and an alteration of the basic body configuration 

(providing greater and more rapid swimming ability.”  

Results for the multivariate ℓ1ou and SURFACE analyses for the twenty-eight trees 

produced largely congruent results (Fig. S25; Dataset S6, supplementary spreadsheet), which are 

summarized in Table S9; interpretations reported here are thus based on the ‘master tree’ 

(RAxML) and the alternative ASTRAL-II tree. The ℓ1ou model using AICc for shift detection 

on the full-body shape dataset identified, to their four pPC traits, 16 distinct adaptive shifts from 

mean trait values, which converged in eleven regimes, composed of four shifts to convergent 

peaks and five unique non-convergent peak shifts. Several species converged to some extent to 

benthic and midwater states (e.g., subfamilies Apsilinae, Etelinae, C. cuning, O. chrysurus, and 

L. inermis). Distantly related benthic species (e.g., Lutjanus novemfasciatus and L. 

argentimaculatus, L. madras, and Symphorichthys spilurus; Fig. S21) also show body-shape 

convergence. Considering body shape only, ℓ1ou identified 13 distinct adaptive shifts to their 

two pPC traits, from mean trait values, which converged into seven different regimes, collapsed 



down to four convergent peaks with similar morphologies (deep or slender body shapes). 

Subfamilies Apsilinae, Etelinae, R. aurobens, and Pinjalo are midwater dwellers that converge 

on slender body shapes. By contrast, L. cyanopterus, L. dentatus, L. madras, L. carnolabrum, 

and L. biguttatus tend to converge on deep-bodied phenotypes (Fig. S22). Finally, for the fins-

only analysis, ℓ1ou identified 13 distinct adaptive shifts from mean trait values (AICc= -

2172.456), which collapsed to ten distinct regimes that mostly correspond to subfamily-level 

clades, except for the first-branching clade (subfamilies Apsilinae and Etelinae) which did not 

reveal a shift (Fig. S23). As expected, the ℓ1ou results using pBIC for shift detection were more 

conservative for the three datasets on average. For instance, on the full-body dataset, nine 

adaptive shifts converged to eight regimes, while on the body only dataset, five distinct adaptive 

shifts collapsed to four different regimes, and in both cases, we only found a single convergent 

regime; for the fins-only dataset, the results yielded nine distinct adaptive shifts, which collapsed 

down to nine different regimes. Results using SURFACE were similar for the three datasets (Fig. 

S24). On the full-body dataset, we identified on average eighteen distinct adaptive peaks (k=18), 

with twelve distinct regimes (k’=12), composed of four convergent events and eight unique non-

convergent peak shifts, whereas on the body-only and fins-only datasets we detected sixteen 

different adaptive variations (k=16). On the body-only dataset, eight total adaptive peaks were 

identified as being reached multiple times by independent lineages (k’=8). On the fins-only 

dataset we identified eleven (k’=11) distinct regimes, composed of four convergent events and 

seven unique non-convergent peak shifts. Neither ℓ1ou nor SURFACE (Fig. S25) analyses show 

a complete convergence of phenotypic regimes (e.g., not all midwater species collapsed down to 

one regime). 

To determine the extent to which identified convergences in the adaptive landscape could 

have occurred by chance under non-convergent processes, character histories were simulated 

using a null distribution of 99 random phenotypic datasets under simple BM and OU models of 

evolution (following 65). Convergence summary statistics were determined from each of the 99 

simulations for each model, and the significance of the observed results were estimated as the 

frequency of combined simulated and observed values being greater than or equal to that of the 

best-supported model under our data.  

Simulation comparisons for our three datasets under both a single-peak OU model and a 

BM model revealed that there was a strong evidence of significantly greater numbers of 



convergent shifts than would be expected by chance (Figure S26). For the full body shape 

simulations, the variables with the highest frequencies were shifts (10 OU/10 BM), number of 

regimes (4 OU/6 BM), and number of convergent regimes (3 OU/3 BM), in contrast to the 

empirical data which included 15 shifts, 6 regimes and 5 convergent regimes. For the body only 

simulations, the variables with the highest frequencies were shifts (11 OU/10 BM), number of 

regimes (5 OU/6 BM), and number of convergent regimes (3 OU/3 BM), in contrast to the 

empirical data which yielded 10 shifts, 5 regimes and 4 convergent regimes. For the fins only 

simulations the variables with the highest frequencies were shifts (11 OU/10 BM), number of 

regimes (5 OU/6 BM), and number of convergent regimes (3 OU/2-3 BM), in contrast to the 

empirical data, which included 17 shifts, 7 regimes and 6 convergent regimes. These results 

suggest convergence of many lineages to multiple, shared adaptive peaks in body shape 

ecomorphology, characterizing the trait changes in Lutjanidae. 

 

Table S9. ℓ1ou adaptive and convergent regimes estimated using the ‘master tree’ (RAxML) and 
an alternative tree (ASTRAL-II) under AICc or pBIC models. FBS: Full body-shape; BO: Body 
only; FO: Fins only. 

  AICc ℓ1ou pBIC ℓ1ou 

Dataset shifts regimes conv. regimes shifts regimes conv. regimes 

Master_tree_FBS_pPC1 14 4 3 1 1 0 

Master_tree_FBS_PC1 15 6 5 1 1 0 

Alternative_tree_FBS_pPC1 14 4 3 1 1 0 

Alternative_tree_FBS_PC1 7 4 2 1 1 0 

Master_tree_FBS_pPC1-pPC4 16 9 4 9 8 1 

Master_tree_FBS_PC1-PC4 19 13 6 10 9 1 

Alternative_tree_FBS_pPC1-pPC4 14 9 3 9 8 1 

Alternative_tree_FBS_PC1-PC4 18 11 4 9 8 1 

Master_tree_BO_pPC1 13 8 2 1 1 0 

Master_tree_BO_PC1 10 5 4 1 1 0 

Alternative_tree_BO_pPC1 9 5 1 1 1 0 

Alternative_tree_BO_PC1 10 5 4 1 1 0 

Master_tree_BO_pPC1-pPC2 13 7 4 5 4 1 

Master_tree_BO_PC1-PC2 12 6 3 5 4 1 

Alternative_tree_BO_pPC1-pPC2 11 5 3 3 2 1 

Alternative_tree_BO_PC1-PC2 10 5 4 1 1 0 

Master_tree_FO_pPC1 14 6 4 1 1 0 

Master_tree_FO_PC1 17 7 6 1 1 0 

Alternative_tree_FO_pPC1 9 4 2 1 1 0 



Alternative_tree_FO_PC1 9 4 3 1 1 0 

Master_tree_FO_pPC1-pPC4 13 10 3 9 9 0 

Master_tree_FO_PC1-PC4 19 11 4 8 8 0 

Alternative_tree_FO_pPC1-pPC4 14 9 4 8 8 0 

Alternative_tree_FO_PC1-PC4 14 9 4 7 7 0 

 

 

Figure S21. Adaptive and convergent shifts in Lutjanidae for the full-body shape dataset (first 
four PC axes) with ℓ1ou using the AICc and pBIC. Stars indicate phenotypic shifts from mean 
trait values, and edges of the same color are inferred to have converged to the same selection 
optimum (trait optima values for each axis indicated). Colored polygons indicate convergent 
peaks.  



 

Figure S22. Adaptive and convergent regimes in Lutjanidae for the body-only dataset (first two 
PC axes), with ℓ1ou using both AICc and pBIC. Stars indicate phenotypic shifts from mean trait 
values, and edges of the same color are inferred to have converged to the same selection 
optimum (trait optima values for each axis indicated). Colored polygons indicate convergent 
peaks. 
 



 

Figure S23. Adaptive and convergent regimes in Lutjanidae for the fins-only dataset (first four 
PC axes), with ℓ1ou using both AICc and pBIC. Stars indicate phenotypic shifts from mean trait 
values, and edges of the same color are inferred to have converged to the same selection 
optimum (trait optima values for each axis indicated). Colored polygons indicate convergent 
peaks. 



 

Figure S24. Adaptive and convergent shifts in Lutjanidae for the (a) full-body shape (b) body-
only, and (c) fins-only datasets with SURFACE and AICc. Numbers indicate phenotypic shifts 
from mean trait values, and edges of the same color are inferred to have converged to the same 
selection optimum value.  
 

 



 

 

Figure S25. ℓ1ou and SURFACE results for each alternative morphometric dataset: a) full body 
shape, b) body only, and c) fins only. Each panel shows the number of shifts and regimes for 
AICc and pBIC models from ℓ1ou analyses, and the number of regimes for SURFACE analyses. 
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Figure S26. Number of shifts, regimes, and convergent regimes identified with the empirical 
dataset against 99 simulated BM and OU model distributions for single PC axes. FBS: Full body- 
shape; BO: Body only; FO: Fins only. a. Number of shifts; b. number of regimes; c. number of 
convergent regimes. 



 
State-dependent diversification. We assessed whether the preference for different habitat states 

would affect rates of lineage diversification. For 20 out of the 28 trees, model fitting 

comparisons supported a state-dependent diversification model that incorporates a hidden state 

associated with benthic lineages (HiSSE benthic; Fig. S27a). While this model was not 

decisively favored by our data and the support was shared with two alternative null models (Fig. 

S28b), under the ‘HiSSE benthic’ model net diversification rates (speciation minus extinction) 

were roughly 2x faster in benthic lineages compared to their midwater counterparts. Finally, the 

results obtained with HiSSE were consistent with those obtained using non-parametric FiSSE 

and Bayesian-based BiSSE estimations of diversification rates (Fig. S29, Tables S16-S18), 

identifying support for habitat-dependent diversification. In agreement with our hypotheses, 

benthic dwellers tend to show faster rates of net diversification than midwater species, including 

both faster speciation and slower extinction (Tables S16-S18).  

 

Figure S27. Distribution of diversification rates estimated under the ‘HiSSE benthic’ model for 
the 28 trees based on three alternative habitat coding schemes. (a) Net-diversification (speciation 
minus extinction), (b) speciation, and (c) extinction parameters obtained for midwater (blue) 
benthic (red) habitats, including a hidden state (pink) associated with benthic lineages. 



 

 

Figure S28. Distribution of transition rates between the different habitat states estimated under 
the ‘HiSSE benthic’ model for the 28 trees using the three alternative habitat coding schemes.  
 

 

Figure S29. Marginal distribution of diversification rates obtained using MCMC-based BiSSE 
analyses applied to the ‘master tree’, based on the three alternative habitat coding schemes. 



Estimated (a) speciation, (b) extinction, and (c) net-diversification (speciation − extinction) 
parameters for benthic (yellow) and midwater (red) lineages. 
 
Table S10. Diversification rates estimated for the different habitat states under the three 
alternative methods using the ‘master tree’ and the 0.5/0.5 habitat coding scheme. 𝜆 =speciation 
rates; 𝜇 = extinction rates.   
 Benthic (𝜆) Benthic (𝜇) Midwater (𝜆) Midwater (𝜇) Hidden benthic (𝜆) Hidden benthic (𝜇) 

HiSSE benthic 0.120 2.06E-09 0.075 0.068 0.011 7.71E-09 

FiSSE 0.133 NA 0.085 NA NA NA 

BiSSE MCMC (Mean) 0.114 0.015 0.075 0.013 NA NA 

 
Table S11. Diversification rates estimated for the different habitat states under the three 
alternative methods using the ‘master tree’ and the 0.1/0.9 habitat coding scheme. 𝜆 =speciation 
rates; 𝜇 = extinction rates.   
 Benthic (𝜆) Benthic (𝜇) Midwater (𝜆) Midwater (𝜇) Hidden benthic (𝜆) Hidden benthic (𝜇) 

HiSSE benthic 0.123 2.06E-09 0.060 0.068 0.013 0.016 

FiSSE 0.133 NA 0.085 NA NA NA 

BiSSE MCMC (Mean) 0.108 0.025 0.074 0.015 NA NA 

 

Table S12. Diversification rates estimated for the different habitat states under the three 
alternative methods using the ‘master tree’ and the 0.9/0.1 habitat coding scheme. 𝜆 =speciation 
rates; 𝜇 = extinction rates.   
 Benthic (𝜆) Benthic (𝜇) Midwater (𝜆) Midwater (𝜇) Hidden benthic (𝜆) Hidden benthic (𝜇) 

HiSSE benthic 0.099 2.06E-09 0.055 0.068 0.011 0.14 

FiSSE 0.126 NA 0.088 NA NA NA 

BiSSE MCMC (Mean) 0.101 0.018 0.074 0.024 NA NA 

 

Appendix I: Files available on Figshare digital repository 10.6084/m9.figshare.13000100 
 
Legends for Datasets: 
Dataset S1 (separate file). Samples used in the current study, including associated specimen, 
tissue number, and image source. 
Dataset S2 (separate file). Habitat coding for species in Lutjanidae, including references used. 
A total of 18 species are interpreted as either having multi-state or uncertain habitats (B/M). 
Dataset S3 (separate file). Matrix showing presence (1) or absence (0) of species based on six 
widely recognized marine biogeographic regions (Spalding et al., 2007; Kulbicki et al. 2013). 
Dataset S4 (separate file). Information of the 13 subsets used in this study. Genes and sequence 
length are specified. 
Dataset S5 (separate file). Age estimates for MCMCTrees. 
Dataset S6 (separate file). ℓ1ou and SURFACE results. 
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