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Abstract: This dissertation addressed three research questions related to observing
and modeling soil moisture spatial and temporal patterns. 1) What is the spatial
pattern like for soil moisture at the mesoscale? A mobile device was used to measure
soil moisture along a 150-km transect 18 times over 13 months. Spatial structures
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Soil texture turned out to exert a stronger influence than precipitation on mesoscale
soil moisture patterns. 2) How can we effectively upscale in situ soil moisture mea-
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CHAPTER 1

General Introduction

Soil moisture is a key variable in the hydrological cycle, strongly influencing water and

energy fluxes at the land surface. Due to technology developed in the past few decades,

soil moisture can now be measured nondestructively with various instruments at mul-

tiple spatial scales. However, there exists a problematic scale gap between large-scale

soil moisture measurements from satellite remote sensing and small-scale measure-

ments from typical in situ sensors. Soil moisture satellites provide information with

global coverage but coarse resolution (e.g. 36 × 36 km), and typical in situ monitor-

ing stations, like those of the Oklahoma Mesonet, provide measurements representing

only a few hundred cm3 of soil. And, this scale gap profoundly limits soil moisture

spatial estimation, drought monitoring, wildfire forecasts, and fundamental under-

standing of soil moisture spatial structure. There are few sources of soil moisture

information at the field or watershed scale, a critical scale for land and water man-

agement decisions. To improve our understandings of these mesoscale soil moisture

spatial patterns, we propose

(1) to directly observe soil moisture spatial patterns at the mesoscale, i.e. 1-100

km, using a mobile cosmic-ray neutron detector and to relate those patterns to land

surface characteristics and atmospheric processes;

(2) to determine an effective upscaling process for typical in situ soil moisture

sensors; and

(3) to discover and model temporal structures of soil moisture dynamics.

Each of the next three chapters is devoted to one of these research objectives.
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CHAPTER 2

Soil texture often exerts a stronger influence than precipitation on

mesoscale soil moisture patterns

Dong, J. & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than

precipitation on mesoscale soil moisture patterns. Water Resources Research, 54,

2199-2211. https://doi.org/10.1002/2017WR021692

Abstract

Soil moisture patterns are commonly thought to be dominated by land surface char-

acteristics, such as soil texture, at small scales and by atmospheric processes, such as

precipitation, at larger scales. However, a growing body of evidence challenges this

conceptual model. We investigated the structural similarity and spatial correlations

between mesoscale (∼1-100 km) soil moisture patterns and land surface and atmo-

spheric factors along a 150-km transect using 4-km multisensor precipitation data

and a cosmic-ray neutron rover, with a 400-m diameter footprint. The rover was

used to measure soil moisture along the transect 18 times over 13 months. Spatial

structures of soil moisture, soil texture (sand content), and antecedent precipitation

index (API) were characterized using autocorrelation functions and fitted with expo-

nential models. Relative importance of land surface characteristics and atmospheric

processes were compared using correlation coefficients (r) between soil moisture and

sand content or API. The correlation lengths of soil moisture, sand content, and API

ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more

strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but
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one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales

up to 20 km, and those patterns often exert a stronger influence than do precipitation

patterns on mesoscale spatial patterns of soil moisture.

2.1 Introduction

It has often been argued that soil moisture patterns are dominated by land surface

characteristics, such as soil series (Seyfried, 1998), soil texture (Li et al., 2014; Manns

et al., 2014), and topographical attributes (Brocca et al., 2007) at small scales (roughly

extents<100 m), and by atmospheric processes at larger scales (roughly extents of 0.1-

1000 km) (Vinnikov et al., 1999). However, some studies have provided evidence that

land surface characteristics may control soil moisture patterns at much larger scales

(∼102 km) (Oldak et al., 2002) and that atmospheric processes could have stronger

influence on a smaller scale (∼10 km) than on a regional scale (∼100 km) (Joshi

and Mohanty, 2010). In addition, the spatial patterns of mean relative difference

of soil moisture at the regional scale may be strongly correlated with soil hydraulic

properties (Wang and Franz, 2015). One reason for the continuing controversy about

the scales at which land surface versus atmospheric processes dominate is the fact that

most of these prior studies have relied on aircraft-based remotely sensed datasets of

limited duration, e.g. a few days, or on inferences from sparse in situ observations.

The scarcity of suitable mesoscale observations, i.e. the scale gap, has long hindered

understanding of the main drivers of spatial patterns of soil moisture at the mesoscale.

The well-known scale gap between large-scale soil moisture measurements from

satellite remote sensing and small-scale measurements from in situ sensors profoundly

limits soil moisture spatial estimation, soil moisture modeling, and fundamental un-

derstanding of soil moisture spatial structure and scaling (Robinson et al., 2008;

Western et al., 2002). To fully understand these limitations and to develop strategies

for closing the scale gap requires, among other things, a robust definition of spatial
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scale. The spatial scale of a measurement set can be defined by the scale triplet,

which consists of support, spacing, and extent (Bloschl and Sivapalan, 1995). The

support is the footprint or sensing volume of the measurement device, the spacing is

the average distance between measurement locations, and the extent is the maximum

distance between any two measurement locations.

The scale gap has made it particularly difficult to accurately perceive the mesoscale

spatial structure of soil moisture. In meteorology, mesoscale usually refers to atmo-

spheric patterns with horizontal extents from a few kilometers to several hundred

kilometers (Pielke, 2002). Here mesoscale refers to observations with a support of

∼1 km and extent of ∼100 km. The development of the cosmic-ray neutron method

has created new opportunities for observing and understanding soil moisture at the

mesoscale (Zreda et al., 2008). The count rate of fast cosmic-ray neutrons observed by

an above-ground detector near the land surface is inversely related to the soil mois-

ture in a circular footprint centered on the detector with a diameter ranging from

260-480 m (Kohli et al., 2015). The penetration depth of these neutrons in the soil

decreases as the soil moisture increases, with penetration depths ranging from 15-55

cm for volumetric water content values ranging from 0.50-0.05 cm3 cm−3 (Kohli et al.,

2015).

Stationary fast neutron detectors have been used to monitor soil moisture in

the COSMOS (COsmic-ray Soil Moisture Observing System) and CosmOz networks

(Hawdon et al., 2014; Zreda et al., 2012) and in a variety of field-scale soil moisture

studies, i.e. studies with extents of roughly 0.5-1 km (Baroni and Oswald, 2015; Franz

et al., 2012; Lv et al., 2014; Zhu et al., 2015). But, to observe mesoscale soil moisture

patterns, larger, mobile fast neutron detectors called rovers must be utilized. The

first published roving survey was conducted by (Desilets et al., 2010) with a 37-km

transect in Hawaii. Subsequent roving surveys were conducted to examine tempo-

ral stability of spatial patterns (Chrisman and Zreda, 2013), reconstruct spatial soil
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moisture fields (Chrisman and Zreda, 2013; Dong et al., 2014; Franz et al., 2015),

and compare with stationary probes (Franz et al., 2015). Recently, globally available

datasets of soil properties were developed and tested to support roving surveys (Avery

et al., 2016).

These prior studies show that cosmic-ray neutron rovers are effective tools for

observing mesoscale soil moisture patterns. Rovers allow spatially continuous mea-

surements of soil moisture along the travel path, which can prevent some uncertainties

that could arise with other measurement techniques. Typically, with in situ soil mois-

ture sensors the support is too small, the spacing is too large, or the extent is too

small to accurately perceive mesoscale patterns, while with satellite remote sensing of

soil moisture, the support is typically too large, e.g. 25-40 km (Mohanty et al., 2017).

The on-the-go rover measurements have a spacing which is less than or equal to the

support (0.25-1 km), depending on the travel speed and neutron count integration

time. The extent of rover measurements is limited only by availability of roads and

driving time.

In this study, we apply the unique cosmic-ray neutron rover technology to re-

examine a persistent question in hydrology: At what scales do atmospheric versus

land surface factors dominate the spatial pattern of soil moisture? In a previous rover

study (Dong et al., 2014), distinctive mesoscale soil moisture patterns were observed

and those patterns appeared to be related to soil texture. Therefore, soil texture

and precipitation were selected for this study as examples of important land surface

characteristics and atmospheric processes influencing soil moisture patterns. Clearly

other factors such as vegetation type, solar radiation, and topography, to name a few,

also influence spatial patterns of soil moisture, but completing an exhaustive analysis

of all such factors was not the objective of this study. Rather, our objectives were: 1)

to observe an extended time series of mesoscale spatial patterns in soil moisture, 2) to

compare the spatial structure of soil moisture with that of land surface characteristics
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(i.e. soil texture in this case) and atmospheric processes (i.e. precipitation), and 3)

to determine the relative importance of land surface characteristics and atmospheric

processes in defining the mesoscale spatial patterns of soil moisture.

2.2 Materials and Methods

2.2.1 Study area

The study area is in the Central Great Plains ecoregion in north central Oklahoma,

USA, with a small part of the study area extending to the east into the Cross Timbers

ecoregion. Data were collected from east to west spanning a 150-km long transect

along public roads passing by four long-term monitoring stations of the Oklahoma

Mesonet (McPherson et al., 2007), the Perkins, Marena, Marshall, and Lahoma sta-

tions (Fig.1). The roads are unpaved along most of the transect. The transect is

located within the Cimarron River watershed with the average annual precipitation

(2006-2015) ranging from 880 mm at the Perkins station on the eastern end to 732

mm at the Lahoma station on the western end. Land cover in this region consists

primarily of pasture and rangeland dominated by warm-season grasses and cropland

dominated by rainfed winter wheat, with small areas of primarily deciduous forest

(Fig. 1). Soil texture ranges from sand to clay with the finest-textured soils near the

middle of the transect and the coarsest-textured soils formed in alluvial sand deposits

along the north side of the Cimarron River, a pattern which is reflected in the sand

content map of the study area (Fig. 1). The most common soil orders are Mollisols,

Alfisols, and Inceptisols in this area.

2.2.2 Rover transects

The cosmic-ray neutron rover (Hydroinnova LLC, Albuquerque, NM) used in this

study consists of two pairs of 1.15-m long by 8.0-cm diameter, cylindrical metal,

3He gas-filled fast neutron detectors. Each pair of detectors is shielded by 2.6-cm
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of polyethylene and housed in a sealed enclosure. A control module contained in a

separate case integrates a data logger (QI-DL-2100, Quaesta Instruments), a GPS

receiver and a barometric pressure sensor. A neutron pulse monitor (QI NPM-2000,

Quaesta Instruments) is connected to each neutron detector and sends neutron count

totals to the data logger, where data are stored with a removable SD card. Mobile

devices can connect to the control module via Bluetooth or USB cable to monitor the

status of the rover while collecting data.

The rover was mounted in a pick-up truck and transported with an average speed

of ∼48 km h−1. This speed was slow enough to allow time to accumulate adequate

neutron counts for acceptably-low uncertainty at the desired spatial resolution and

fast enough that data collection for each pass along the transect was logistically man-

ageable in a typical working day. The neutron counts were logged continuously and

accumulated neutron counts were recorded at the end of each minute. Instantaneous

GPS coordinates and atmospheric pressure were measured and recorded at the end

of each minute as well. The stationary footprint of the rover is approximately 400-m

diameter (Kohli et al., 2015). The typical travel distance associated with each one

minute neutron count was 800 m given the speed of 48 km h−1. So for this transect,

the footprint or support of each measurement, i.e. a pixel, is about 800 m × 400 m.

Neutron counts along the transect were measured 18 times starting May 2015 and

ending June 2016. All the transects followed approximately the same routes (Fig.

2.1), but the locations of the measurements on the different dates were not exactly

the same because of occasional small detours due to road closures or road conditions.

Moreover, the spacings between measurements within a transect were not exactly the

same due to small variances in driving speed. In order to facilitate autocorrelation

analysis of the resulting volumetric water content data, we preprocessed the raw data.

To make the measurements of each transect evenly spaced and aligned, all the corners

and the start and end of the transect were set as endpoints of a series of line segments.
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Pixel centers with 800-m spacing were calculated along the segments between each

pair of adjacent endpoints. The neutron counts of any original data points that had

their footprints overlap with the newly generated pixel were averaged to estimate the

neutron counts for that pixel on that date. The subsequent autocorrelation analysis

and correlation analysis used these evenly-spaced data.
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Figure 2.1: Land cover map of the (top) study area based on National Land Cover
Database 2011 (NLCD 2011) and (bottom) sand content map based on SSURGO.
Both maps are in the UTM coordinate system. Black dots represent the typical
path of the rover transects. Locations of four calibration sites are marked in the
land cover map with black stars, which from east to west are Mesonet sites at
Perkins, Marena, Marshall, and Lahoma.

In order to facilitate plotting of all the transects in one figure, an additional stan-

8



dardization process was applied. The transect on 7 Aug. 2015 was selected as the

standard transect. In theory, any date could be selected as the standard, but for

convenience, we selected one of the dates with significant correlation lengths for an-

tecedent precipitation index (API). This will be discussed in detail in the subsequent

sections. The raw data from all the transects were then aligned to the standard

transect using the averaging procedures described above. The data from these stan-

dardized transects were only used for visualization (Fig. 2.5) and not for any of the

statistical analyses.

2.2.3 Neutron intensity correction

Neutron count rates for each transect were normalized to a reference atmospheric

pressure of 98.0 kPa, which was the mean atmospheric pressure for the standard

transect. Correction factors were calculated using an exponential model (Desilets and

Zreda, 2003). The neutron count rates were also normalized for variability of incoming

neutron flux intensity using the date of the standard transect as the reference date

(Hawdon et al., 2014). Incoming neutron flux intensity data (http://www.nmdb.eu/)

from the Dourbes station, which is the station with the most similar geomagnetic

condition and altitude to the study area, were used in calculating the correction

factors for all survey dates.

2.2.4 Rover calibration and neutron counts conversion

Four calibration campaigns were conducted in summer of 2015, one at each of the

four Oklahoma Mesonet stations along the transect. During calibration, the rover

was parked at the west side of each Mesonet station and neutron counts were logged

for approximately 2 hours. During that time, 14 soil cores (0 – 40 cm soil layer) were

taken at three radial distances around the rover, 5 m, 50 m, and 100 m. Six cores

were taken within 5 m of the rover, and 4 cores at each of the other two distances.
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The 3.81-cm diameter soil cores were taken using a handheld tube sampler (Giddings

Machine Company, Windsor, CO) with a slide hammer on top of it. Each soil core

was divided into three samples: 0-5 cm, 5-10 cm, and 10-40 cm. Gravimetric water

content and bulk density for each sample was measured by oven-drying at 105◦C. The

field average soil moisture was determined by weighting all the samples according to

the weighting function given by (Kohli et al., 2015).

The shape-defining function (Eq.2.1) was used for calibrating the rover and con-

verting neutron counts into gravimetric water content

θg =
a0

N/N0 − a1

− a2 − wlat (2.1)

where θg (g g−1) is the soil gravimetric water content, wlat (g g−1) is the soil lattice

water content, N is the fast neutron count rate corrected as described above (counts

per minute, cpm), a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et al., 2010). All

the calibration measurements were used with Eq. 1 to estimateN0, which in theory

is a constant of the rover and represents the neutron intensity over dry soil when all

hydrogen sources within the footprint are taken into account.

Lattice water exists in the crystal lattice of minerals and is defined as the amount

of water released from the soil between 105 ◦C and 1000 ◦C (Zreda et al., 2012).

Lattice water can considerably affect fast neutron counts, and lattice water varies

substantially in space (Zreda et al., 2012). In order to estimate lattice water content

along the transect, we established a linear regression between clay content and lattice

water. A total of 17 data points were used in the regression, six of which (Bondville,

Neb Field 3, Brookings, Rosemount, Fort Peck, and Freeman Ranch) were from the

COSMOS network Central Plains locations (Avery et al., 2016), four were from the

calibration sites, and seven were from cosmic-ray neutron rover calibration campaigns

conducted near El Reno and Marena, OK in 2014. Clay content for six of the points

were measured from field samples, and the rest were from the SSURGO. All soil lattice
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water content measurements were performed by Activation Laboratories, Ontario,

Canada.

2.2.5 Land surface characteristics and atmospheric data

Soil properties, such as clay content, sand content, and bulk density, for the surface

layer along the transect were retrieved from the Soil Survey Geographic Database

(SSURGO). Spatial data files and the corresponding tabular data files were down-

loaded from the Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov/). The basic

component of the SSURGO spatial soil maps is called the map unit, which is a set

of polygons associated with a series of soil characteristics. For each map unit along

the transect, weighted averages of clay content, sand content, and bulk density were

calculated based on the percent composition of all the soil series in that map unit. To

calculate area-averaged values for the soil properties, raster maps with a resolution

of 200 m were created based on the polygon maps. Soil properties for the standard

transect were then established using the same approach described in Section 2.2. The

resulting clay content for each point on the transect was used to estimate lattice wa-

ter content for that point. Gravimetric water content for each point along transect

on each measurement date was then determined using Eq. 1 and was converted to

volumetric water content using the point-specific bulk density. The same procedures

were applied in determining clay content for the regression with lattice water content,

except the 6 sites of the COSMOS network, for which clay content were measured

from field samples. Sand content was chosen to represent the influence of land sur-

face characteristics on soil moisture because it strongly influences soil water retention

(Minasny and McBratney, 2007).

Spatial variability in precipitation was chosen to represent the influence of atmo-

spheric processes on soil moisture because precipitation typically shows stronger spa-

tial variability than atmospheric variables like air temperature or humidity (Brotzge
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and Richardson, 2003). Hourly multisensor (radar and rain gauge) precipitation esti-

mates with a spatial resolution of 4 km were retrieved from National Weather Service

(NWS) Arkansas-Red Basin River Forecast Center via the Oklahoma Mesonet. This

multisensor product is produced using the “P3” algorithm which merges data from

rain gauges with gridded radar-based rainfall estimates (Kitzmiller et al., 2013). Daily

accumulated precipitation was calculated based on the hourly precipitation extracted

from the images (NetCDF files). API was calculated based on the daily rainfall for

the analysis of rainfall effects on soil moisture spatial patterns (Saxton et al., 1967).

In this index, the influence of a prior daily precipitation total decreases exponentially

as the number of subsequent days increases. The API value for each transect pixel on

each transect date was calculated using precipitation data for the prior 90 d (Saxton

et al., 1967) following the method of (Crow and Zhan, 2007), which accounts for the

seasonality of atmospheric demand.

To observe the strength and stability of the correlations between soil moisture and

sand content/API, Pearson correlation coefficients were calculated for each transect

date. For each rover transect pixel, the nearest API pixel was identified and the

API value was assigned to that transect pixel to construct an API transect with the

“same” resolution of water content. Critical values for correlation coefficients were

calculated for each pair of variables and each date to determine statistical significance.

2.2.6 Autocorrelation function

The autocorrelation function is often used to understand patterns in time series and

spatial fields. The definition of an autocorrelation function is usually derived from

the theoretical spatial covariance function CZ(h), which is defined as

CZ(h) = E[(Z(x)− µ)(Z(x+ h)− µ)] (2.2)

where x denotes the location of a sample, h is the lag distance, Z is a second-

12



order stationary spatial process, and µ is the expectation of Z. In this study, Z

could be soil moisture, sand content, or API. The theoretical autocorrelation function

(correlogram) is defined as

ρZ(h) =
CZ(h)

CZ(0)
(2.3)

where CZ(0) is the covariance at h = 0, which is actually the variance of Z. The

empirical autocorrelation function is used in estimating ρZ from observations. This

function can be written as:

ρ̂Z (h) =

1
|N(h)|

∑
(i,j)∈N(h)(Z(xi)− Z)(Z(xj)− Z)

V ar(Z)
(2.4)

where Z is the mean of Z, (i, j) denotes the pairs of samples such that |xi − xj| =

|h|, |h| is usually a range of lag distances, and |N(h)| is the number of pairs in each

set.

In (Vinnikov et al., 1999), a linear combination of exponential functions was used

to characterize the spatial covariance in soil moisture attributable to land surface

characteristics and atmospheric processes. As is shown in Eq. 3, the autocorrelation

function is proportional to the covariance function, so an exponential model (Eq. 5)

was selected to fit the empirical autocorrelation function for key spatial variables in

this study,

ρ(h) = a exp(−h/L) (2.5)

where a is a constant, and L is often called the correlation length, which has a

similar physical meaning to the range in variogram models (Western et al., 2004).

When h is large relative to L, autocorrelation ρ(h) tends to zero (uncorrelated).

The empirical autocorrelation ρ̂Z for real data can often be negative for some lag

distances, which prevents fitting of an exponential model. We used significance bands
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to determine at what lag distance the autocorrelation is not significantly different from

zero, and only the part of the autocorrelation function that was significantly greater

than zero was fitted with the exponential model. A linear regression between ln ρ(h)

and h was used in fitting the model. A generalized Bartlett’s formula (Francq and

Zakoian, 2009), which does not assume the spatial process is linear, was chosen to

calculate 95% significance bands,

ρ̂Z(h)± 1.96

√
1 + CZ2(h)/C2

Z(0)

n
(2.6)

where CZ2 is the autocorrelation function for Z2, and 1.96 is the 0.975 quantile

of normal distribution. Prior to autocorrelation analyses, all the data (volumetric

water content, sand content, and API) were normalized to the range of [0,1] with the

feature scaling approach, Z
′
= (Z − Zmin)/(Zmax − Zmin).

2.3 Results and Discussion

2.3.1 Lattice water correction and N 0 calibration

The regression of clay content and lattice water is shown in Fig 2.2. The clay content

varied from 14.6 % to 34.2 % with minimum values located at Marena, OK (Cross

Timbers Experimental Range) and maximum values located at Freeman Ranch, TX.

The corresponding lattice water content values varied from 0.020 to 0.052 cm3 cm−3.

Clay content and lattice water content were linearly related with r2 = 0.699, which

is greater than the r2 (0.539) of a similar regression analysis for 24 samples from

Mollisols in the continental U.S. in (Avery et al., 2016). The lattice water can strongly

affect the cosmic-ray neutron intensity (Zreda et al., 2012) and would be difficult to

measure for all locations along the transect. In contrast, clay content can be estimated

from existing databases.

Using this linear relationship, lattice water content was approximated from clay
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Figure 2.2: Linear regression between clay content and lattice water content
including six samples from the COSMOS network Central Plains locations, four
from the calibration sites, and seven from prior rover calibration campaigns
conducted near El Reno and Marena, OK

content and treated as a variable along the transect (Fig. 2.3). The spatially-variable

lattice water content correction is designed specifically to minimize the effect of soil

texture on the rover-based soil moisture observations. The estimated gravimetric

lattice water content varies between 1-4% along the transect (Fig. 2.3). For a bulk

density of 1.4 g cm−3, these lattice water levels correspond to a volumetric water

content correction from 1.4-5.6%, a range of 4.2% (0.042 cm3 cm−3). If we had used

one average lattice water value for the transect, then there would have been a soil

texture influence equal to half of that range, i.e. ± 0.021 cm3 cm−3.

The calibrated shape defining function and the calibration data are plotted in Fig

2.4. The circles represent the weighted field-average soil moisture measurements at

the four calibration sites. The sampling protocol produced relatively precise estimates
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Figure 2.3: Variation of (a) clay content (left y axis), lattice water (right y axis),
and (b) bulk density for the surface layer of soil along the transect at 800 m
resolution.

of the field-average soil moisture at each site, with the standard error of the mean <

0.011 g g−1 at all four locations. The shape defining function provided an excellent fit

to the calibration data with r 2 = 0.994, which is slightly better than the calibration

r 2 = 0.966 in the study of Dong et al. (2014). The calibrated value of N0is 556 cpm,

which is reasonable given that the maximum neutron count value we have observed

with this rover is >500 cpm. The calibrated N0 represents the neutron intensity over

dry soil with vegetation water content similar to that of the calibration sites on the

calibration dates. The effects of spatial or temporal variability in vegetation were

neglected in this study, and the low RMSE of the calibration (0.006 g g−1) shows

that any differences in vegetation among the calibration sites were not large enough

to introduce substantial errors.
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Figure 2.4: Calibration curve for neutron intensity versus gravimetric water
content. Circles represent weighted averages of gravimetric water content for each
calibration site.

2.3.2 Corrected neutron counts and volumetric water contents

Corrected neutron counts and the corresponding volumetric water contents for all

the transects are shown in Fig. 2.5. Relatively high neutron counts and low water

contents were consistently observed at distances between 100-150 km along the tran-

sect (Fig. 2.5). The maximum, mean and minimum neutron counts observed across

the whole study were 521, 373, and 275 cpm. The corresponding minimum, mean,

and maximum soil water content are 0.0113 cm3 cm−3, 0.106 cm3 cm−3, and 0.437

cm3 cm−3. The uncertainty in the volumetric water content data can be assessed, in

part, by considering the uncertainty in the underlying neutron counts. The counting

uncertainty (coefficient of variation) depends on the count number (N ) by Poisson

statistics and is given by N−0.5, which results in an uncertainty of ∼5% at the ob-

17



served mean neutron count rate of 373 cpm (Zreda et al., 2012). This is similar to

the uncertainty reported by (Chrisman and Zreda, 2013) using a different rover. The

corresponding uncertainty in soil water content is approximately ± 0.03 g g−1 at the

observed mean neutron count rate.

Figure 2.5: (top) Corrected neutron count rates and (bottom) volumetric water
content along the transect for all dates. All transects were standardized to represent
the same locations as the standard transect (7 August 2015). White patches show
the locations and dates that no data were collected, primarily due to road closures.
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2.3.3 Spatial patterns

The standard transect (7 Aug. 2015) was selected as an example to show how vol-

umetric water content, sand content, and API vary along the transect (Fig. 2.6).

There were no visually obvious and consistent similarities between patterns of API

and soil water content along the transect across the measurement dates. Since the

resolution of the precipitation data is 4 km, the API transect is coarser than the other

two variables. For 7 Aug. 2015, API generally increases from the start of the transect

to the end, but the soil water content shows no such east to west trend. Rather the

highest soil water contents occurred at transect distances from 25-100 km, with lower

water contents at each end of the transect. The general trends of sand content and

volumetric water content were roughly inverse. This was most obvious at the distance

of 100-150 km, where sand content was consistently high and water content was low

across all transect dates.

The autocorrelation functions for volumetric water content, sand content, and API

with 95% significance bands are plotted for 7 Aug. 2015 in Fig. 7. The autocorrelation

values between the two significance bands are not significantly different from zero. For

this transect date, significant positive autocorrelations existed for volumetric water

content for lag distances < 15 km (Fig. 2.7a). As the lag distances increased, the

autocorrelation decreased and became negative, suggesting a relatively large scale

trend or cycle. Similarly, sand content displayed positive autocorrelation at lags <

25 km and became negatively autocorrelated at larger lag distances (Fig. 2.7b).

Since the number of samples of API was less than that of the other variables (spatial

resolution: 4 km versus 800 m), the significance bands were wider than those for the

other variables and fewer significant autocorrelations were observed (Fig. 2.7c). On

this transect date, significant positive autocorrelation existed for API at lags < 30

km, but, unlike for volumetric water content and sand content, significant negative

autocorrelations were not observed for API on this date.
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Figure 2.6: Variation of (a) volumetric water content and (b) sand content for the
surface layer of soil along the transect on 7 August 2015 at 800 m resolution.
Variation of the antecedent precipitation index, API, along the transect at 4 km
resolution (c).

In order to estimate the correlation lengths, exponential models were applied for

each transect date to fit the part of each autocorrelation function that was significantly

greater than zero (Fig. 2.8). For sand content and API, the r 2 values of the fitted

models were > 0.9 for all dates. The range of r 2for volumetric water content was

0.693-0.973. This example from the transect on 7 Aug. 2015 shows the general

relationship of correlation lengths between soil water content, sand content, and API.

The correlation lengths are reflected as the reciprocal of the slopes in Fig. 2.8. For

the dates when API exhibited positive autocorrelations, it usually had the largest

correlation length. Soil moisture typically had the smallest correlation length, which

was often close to the correlation length for sand content (Fig. S3).

The y-intercept of the autocorrelation function may be interpreted as indicating

20



Figure 2.7: Spatial autocorrelation functions for (a) volumetric water content and
(b) sand content of the surface layer of soil and for API (c) along the transect on 7
August 2015. Data points between the two significance bands (red lines) are not
significantly different from zero.

the proportion of the variance associated with the random errors in the measurements

(Vinnikov et al., 1999). For example, Fig. 2.8 shows an intercept of about -0.3 in

log space for the soil moisture data. The proportion of the variance associated with

random errors in the measurement is then approximately 1-e−0.3 = 0.26. The soil

moisture variance for that particular transect date was ∼0.002 (cm3 cm−3)2. Thus,

the random error in the soil moisture measurements was approximately
√

0.26 · 0.002 =

0.02 cm3 cm−3. The majority of this random error is likely due to the uncertainty in

the neutron counts as described in Section 3.2.

A summary of the estimated correlation lengths is given in Table 2.1. The esti-

mation is based on the dates with the fitted exponential models having r2 ≥ 0.95,

since when poorer model fit occurs the error of the estimated correlation length is
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Figure 2.8: Natural-log of the autocorrelation functions for volumetric water
content and sand content of the soil surface layer and for API on 7 August 2015.
Only correlations significantly greater than zero are included. The solid lines are the
best fit exponential functions.

amplified after transforming back from log-space. Volumetric water content displayed

significant positive autocorrelation for all transect dates. Because the transect routes

were not exactly the same each time, the correlation lengths for sand content for each

date were different. The minimum and median correlation lengths for volumetric wa-

ter content are essentially equal to those for sand content, indicating similarity in the

spatial structures of land surface characteristics and soil moisture patterns at spatial

scales up to 20 km.
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Table 2.1: Percentage of transect dates for which significant autocorrelations were
observed based on the 95% significance bands; percentage of transect dates with
acceptable fit for the exponential model (r2 > 0.95); and minimum, median, and
maximum correlation length for volumetric water content, sand content, and
antecedent precipitation index (API)

Dates with
significant

autocorrelation

Dates with
acceptable fit
(r2 > 0.95)

Minimum Median Maximum

% % km
Volumetric

water content
100 50 12 17 32

Sand content 100 89 13 18 20
API 89 72 14 25 45

The maximum correlation length for volumetric water content was 32 km, which is

greater than that of sand content (20 km) and smaller than that of API (45 km). This

result is consistent with the hypothesis that the spatial autocorrelation of volumetric

water content is also influenced by atmospheric processes. The median correlation

length for API was 25 km and the maximum was 45 km, indicating that the spatial

scale of variability in atmospheric processes was typically larger than that for soil

water content or sand content. However, the minimum correlation length for API,

14 km, was similar to the minimum correlation lengths for water content and sand

content, proving that atmospheric processes reflected in the API data do not always

vary at larger spatial scales than land surface characteristics or soil moisture, but

rather, in some cases, the scales of these spatial processes are intermingled. We also

analyzed the data with water content and sand content resampled at the spatial scale

of API, and none of the main findings were affected (data not shown). Coarsening the

soil moisture and sand content data to 4-km had no obvious effects on the correlation

lengths, but it did decrease the precision with which the correlation lengths could be

estimated.

Prior studies have promoted the conceptual model that the spatial patterns of soil

moisture are controlled primarily by land surface characteristics, such as soil texture,
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at relatively small spatial scales and by atmospheric processes, such as precipitation,

at relatively large spatial scales (Kim and Barros, 2002; Ryu and Famiglietti, 2006;

Vinnikov et al., 1999). For example, (Vinnikov et al., 1999) proposed an ideal spatial

covariance function C (h) = σ2
s exp (−h/Ls) + σ2

a exp (−h/La), suggesting that the

spatial variabilities of soil moisture should consist of a land-surface-related compo-

nent (correlation lengths of 10-20 m) and an atmospheric-forcing-related component

(correlation lengths approximately 400-500 km). The results in Table 2.1 suggest that

this conceptual model needs to be revised to reflect the existence of spatial patterns

in land surface characteristics, particularly soil texture, at the mesoscale.

The soil moisture correlation lengths found here overlap substantially with the 10-

30 km range of the variograms reported for 0-5 cm soil moisture in the Southern Great

Plains 1997 Hydrology Experiment (Ryu and Famiglietti, 2006). That experiment

resulted in 16 days of soil moisture data generated by aircraft remote sensing using

the Electronically Scanned Thinned Array Radiometer (ESTAR) at 800-m resolution

over a 30-d period in the summer. The SGP97 experiment covered west central

Oklahoma and included some of our study area. The spatial correlations in the 10-30

km length scale observed in SGP97 were attributed to spatial patterns of soil texture,

just as in our study. Longer scale soil moisture correlations represented by variogram

ranges from 60-100 km were also observed during SGP97 and were attributed to large-

scale rainfall events. In our study, the correlation length of API varied from 14-45

km and was not a dominant influence on the correlation length of soil moisture.

2.3.4 Relative importance of land surface characteristics and atmospheric

processes

Correlation coefficients between sand content and soil water content, and between API

and soil water content illustrate the relative importance of land surface characteris-

tics and atmospheric processes in controlling the mesoscale patterns of soil moisture

24



(Fig. 2.9). For better visual comparisons, the absolute values of the correlation coef-

ficients were plotted. For all the survey dates, sand content was negatively correlated

with soil water content, with correlation coefficients ranging from -0.536 to -0.704.

The correlation coefficients between API and volumetric water content show more

irregular patterns with positive correlations on most dates, but unexpected negative

correlations on five dates. All the correlation coefficients were statistically significant

(α = 0.05). Soil volumetric water content was more strongly correlated with sand

content than with API for all but one survey date.
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Figure 2.9: Absolute values of correlation coefficients between soil water content
and sand content (black), and between soil water content and API (grey) for all
survey dates. All the correlation coefficients of sand content were negative. Most of
the correlation coefficients between soil water content and API were positive, but
some were negative, and these were marked with crosses.

The scale mismatch between API and the other variables does affect the correlation

coefficients to some degree. The water content-sand content correlations were slightly
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stronger at 4-km resolution than at 800-m resolution (data not shown). Also, the

statistical significance of the correlation coefficients is affected because the degrees of

freedom for sand content and soil water content are ∼180 (number of samples - 1),

but ∼40 for API. If we specify 40 degrees of freedom, the three correlation coefficients

of API with the smallest absolute values would become insignificant. Clearly, there

could be value in gridded precipitation data with higher spatial resolution than 4 km,

but the scale mismatch between API and the other variables does not alter the main

findings of this study.

In previous field scale studies with extents <600 m, significant negative correla-

tions have been observed between soil water content and sand content with correlation

coefficients ranging from -0.586 to -0.795 (Hu and Si, 2013) and from -0.62 to -0.66

(Gomez-Plaza et al., 2001). Likewise, analysis of ESTAR data from the SGP’97 ex-

periment, which encompassed our study area, revealed scale-dependent correlations

between sand content and soil water content with correlation coefficients ranging from

-0.08 to -0.68 (Kim and Barros, 2002). The strength of these correlations generally

increased as the spatial support of the data was increased from 0.7 km2 to 408 km2.

Our results strengthen the growing body of evidence that soil texture strongly influ-

ences spatial patterns of soil moisture not only at the field scale and below, but also

at the mesoscale. Furthermore, our results indicate that this influence persists and is

relatively stable throughout the year.

API has been widely used to represent soil water content in satellite remote sens-

ing studies (Jackson and LeVine, 1996) based on time series comparisons between

API and soil water content measured at a point (Teng et al., 1993). The irregular

and sometimes illogical correlations between soil water content and API found in

this study indicate that the spatial influence of precipitation on soil water content

patterns is less stable and more complex compared to that of soil texture. Under-

appreciated uncertainties may arise when applying the time-domain based API in
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the spatial domain. Our findings are consistent with the results of recent analyses

of in situ soil moisture data from Nebraska, Utah, Michigan, Oklahoma, and the

southeastern US, all of which have shown that soil texture more strongly influences

regional soil moisture patterns than does precipitation (Wang et al., 2017a,b). The

correlations observed here are further evidence that soil texture exerts a stronger and

more consistent influence on mesoscale soil moisture patterns than does precipitation.

2.3.5 Limitations of the study

Several limitations of this study are worth noting. First, it is important to realize

that all the correlation lengths estimated here, and in any study with real data,

are influenced by the support, spacing, and extent of the observations. All other

things being equal, the apparent correlation lengths tend to increase as the spacing,

support, or extent increase, with the effect of extent being most important (Western

and Bloschl, 1999). Relatively unbiased estimates of correlation length should be

obtained if the spacing is less than two times the true correlation length, the support

is less than 20% of the true correlation length, and the extent is larger than five times

the “true” correlation length (Western and Bloschl, 1999). Unfortunately, we have no

independent way of knowing the true correlation length, so these guidelines cannot

easily be applied.

The correlation lengths for sand content and API reported in this study and the

correlation coefficients relating those variable to soil water content are also dependent

upon the accuracy of the underlying sand content and precipitation data. We could

find no published study on the accuracy of the precipitation data from the P3 algo-

rithm, but one study reported a +5% bias of an earlier P1 algorithm in Oklahoma

based on hourly data (Young et al., 2000) and another study reported a -5 to -10%

bias for radar-based, long-term mean areal precipitation in Oklahoma (Johnson et al.,

1999). There has also been limited published research to evaluate the accuracy of the
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SSURGO soil texture data. Drohan et al. (2003) reported that field measurements

of soil texture were within the ranges of the SSURGO estimates for 25 out of 30

forested plots in Pennsylvania, but provided no information on the width of those

ranges. Thus, the available evidence suggests that the sand content and precipitation

data employed in this study are relatively reliable.

Another potential limitation of this study is the possibility of uncorrected influ-

ences of extraneous factors on the neutron counts recorded by the rover. For example,

qualitative inspection of prior rover data in Nebraska suggested a bias due to the in-

fluence of dry gravel roads (Franz et al., 2015), and thus the transect data in this

survey could also have a similar dry bias. Likewise, spatial or temporal variations in

vegetation water content along the transect could introduce small calibration errors

in the rover-based soil water content estimates (Avery et al., 2016). The cosmic-ray

neutron rover method is still relatively new and clearly has scope to be further re-

fined with use, but at present there is no evidence to suggest that measurement errors

arising from the above factors could change the main conclusions of the study.

2.4 Conclusion

Understanding of soil moisture spatial variability at the mesoscale, i.e. ∼1-100 km,

has long been hindered by the scale gap between in situ soil moisture sensors and

satellite soil moisture products. In this study, the scale gap was overcome by using a

cosmic-ray neutron rover to observe mesoscale spatial patterns of soil moisture along a

150-km transect over a period of 13 months. These data allowed us to re-examine the

scales at which atmospheric versus land surface factors dominate the spatial pattern

of soil moisture. The land surface characteristics, as reflected in soil texture, exhibited

correlation lengths ranging from 13 to 20 km and significant negative autocorrelation

at lags > 40 km, patterns which were also reflected in the soil moisture observations.

Atmospheric processes, as represented by API, showed spatial structure that was less
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stable over time, with correlation lengths ranging from 14 to 45 km, and sometimes

showed no significant spatial autocorrelation at the mesoscale. Furthermore, soil

texture (i.e. sand content) was more strongly correlated with soil moisture than was

API for 17 out of 18 dates in this study.

The mesoscale spatial patterns that the rover captured in this study were generally

consistent, in terms of the spatial autocorrelation structure, with patterns previously

observed using airborne remote sensing in the US Great Plains. Further research

is needed to evaluate the scales at which atmospheric versus land surface factors

dominate the spatial pattern of soil moisture in other regions. This will likely depend

on the scales and degrees of spatial variability in the key atmospheric and land surface

factors, such as precipitation and sand content. For example, API may exhibit smaller

correlation lengths in mountainous regions where orographic precipitation dominates

(Daly et al., 1994) than in the Great Plains, and thus, the correlations between

API and soil moisture may differ. Likewise, sand content may exhibit less spatial

variability in regions such as the US Midwest (e.g. Illinois, Indiana, Ohio) (Miller

and White, 1998), and as a result, different relationships between soil moisture and

sand content may exist. Although such regional differences are plausible, the strong

influence of soil texture on soil moisture patterns discovered here is consistent with

the results of a growing number of regional and national scale analyses [e.g. (Kim

and Barros, 2002; Wang et al., 2017a,b)].

The mesoscale spatial patterns of soil moisture were apparently largely controlled

by soil texture along this transect, and the patterns in soil texture exhibited a larger

spatial scale than has been indicated in some previous studies, a scale that substan-

tially overlapped with that of mesoscale atmospheric processes. The original dataset

(18 rover transect files) and the corresponding soil moisture transect files are included

in a public project (https://osf.io/59j6c/) under the Open Science Framework (OSF).

In addition, that project includes a 200-m resolution sand content map for the study
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area and scripts for preprocessing rover transect files. Detailed data file descriptions

and algorithm descriptions are included in the OSF project page. Further analyses of

these data are expected to yield additional insights into mesoscale soil moisture pat-

terns and their controls and to provide a unique validation data set for soil moisture

estimates from land surface and hydrologic models.
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Supplemental materials

This file includes additional figures showing the empirical spatial autocorrelation func-

tions for volumetric water content and antecedent precipitation index (API) for each

transect date, as well as the best fit exponential models for the autocorrelation of

volumetric water content, sand content, and API for each date. All the detailed

information about the data and the processing steps were described in the paper.
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Figure S1: Spatial autocorrelation functions for volumetric water content for all
dates. Data points between the two significance bands (red lines) are not
significantly different from zero.
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Figure S2: Spatial autocorrelation functions for antecedent precipitation index
(API) for all dates. Data points between the two significance bands (red lines) are
not significantly different from zero.
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Figure S3: Natural-log of the autocorrelation functions for volumetric water
content and sand content of the soil surface layer and for API on all dates. Only
correlations significantly greater than zero are included. The solid lines are the best
fit exponential functions.
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CHAPTER 3

Upscaling of in situ soil moisture measurements based on phase space

analysis

3.1 Abstract

In studies of soil moisture, upscaling and point-scale measurements is crucial for un-

derstanding spatial structures of soil moisture, yet the existing upscaling methods

have various limitations. This research aims to develop a new upscaling method for

point-scale soil moisture measurements based on phase space analysis. Soil moisture

data at the two different spatial scales were obtained from in situ monitoring stations

and co-located cosmic-ray neutron sensors. The soil moisture phase space was re-

constructed from the observed data, and the relationship between the field-scale soil

moisture and the phase space representation of the point-scale soil moisture was rep-

resented by a local polynomial map, which was applied to upscale soil moisture from

the point-scale to field-scale. The performance of this new method was evaluated and

compared to traditional scaling methods - linear regression and CDF matching. Up-

scaling soil moisture using the local polynomial map proved to be possible, but this

new method failed to improve the prediction accuracy compared to linear regression

and CDF matching.

3.2 Introduction

Soil moisture strongly influences mass and energy exchange at the land surface. At the

mesoscale, this is specifically reflected in affecting atmospheric circulation (Ookouchi

et al., 1984) and storm initiation (Taylor et al., 2011). In the past few decades,
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observation of soil moisture and other meteorological variables at the mesocale (∼1-

100 km) has often relied on in situ monitoring networks (McPherson et al., 2007).

However, the relatively low spatial density of sites within existing in situ networks has

greatly hindered our ability to monitor mesoscale spatial patterns of soil moisture.

For example, the Oklahoma Mesonet, which is one of the most dense mesoscale in

situ networks, has an average distance of 32 km between sites (Elliott et al., 1994).

This is much larger than the footprint (∼ 10 cm in length) of a typical in situ soil

moisture sensor. This large discrepancy between the spacing and support of in situ

observations, coupled with the relatively large small-scale variability in soil moisture,

make it difficult to find spatial correlations and make spatial predictions, i.e. maps,

based on the data from existing in situ networks (Ochsner et al., 2019). One necessary

step toward solving this problem is to upscale the point measurements of the in situ

networks to represent the spatial mean of the field in which they are located, thereby

reducing the influence of small-scale spatial variability.

Current soil moisture upscaling methods can generally be classified into two cate-

gories. The first category assumes a linear relationship exists between the point-scale

measurements of soil moisture within a particular field or watershed and the field-scale

soil moisture for that field or watershed, i.e.

θ(f) =
n∑
i=1

ai · θ(p)i + b. (3.1)

where θ(p)i represents point-scale measurements for each of i locations within a field

having a spatial mean, θ(f), ai and b are constants, and
∑

i ai = 1. Because one often

cannot measure the areal soil moisture, the arithmetic or weighted average of θ(p)i is

often used to estimate the areal soil moisture θ(f). This means that Eq. (3.1) reduces

to θ(f) =
∑

i aiθ(p)i, and
∑

i ai = 1. With intensive sampling, a linear relationship

between two scales can be established successfully in some cases (De Rosnay et al.,

2009).
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One of the most widely used linear upscaling methods is the time stability analysis,

which can be considered as a special case of this category. Representative sites are

selected to replace the field-scale measurement, which means that Eq. (3.1) reduces

to θ(f) = θ(p)rep (Vachaud et al., 1985). This selection process implicitly assumes

stationarity or even ergodicity existing in both spatial and temporal soil moisture

processes (Appx. A).

Another major category of upscaling methods assumes the probability distribu-

tions of time series of a point-scale measurement and of the field-scale measurement

are similar. The basic idea for scaling is thus to “stretch” the point-scale probabil-

ity distribution so that the transformed distribution has a similar shape as that of

the field-scale. One example of this approach is the cumulative distribution function

(CDF) matching method (Eq. 3.2).

cdf(θ(f)) = cdf(θ(p)) (3.2)

CDF matching has been widely used in both upscaling and downscaling. In soil

moisture studies, CDF matching has been used for reducing systematic differences

between two data sets errors (Drusch et al., 2005; Reichle and Koster, 2004).

These upscaling methods consider soil moisture in a one-dimensional phase-space,

which means that any two numerically identical values of soil moisture in a time

series are indistinguishable. However, the phase-space of soil moisture may have

higher dimensions because the dynamics of soil moisture are theoretically nonlinear

(Rodriguez-Iturbe et al., 1991). For nonlinear time series, scalar measurements, such

as the value of soil moisture at a given time, are projections of some unobserved

variables onto the real axis (Kantz and Schreiber, 2004). We hypothesize that up-

scaling relationships based on approximations of the higher-dimensional variables will

be more accurate than directly mapping between the original one-dimensional time

series. This hypothesis follows the logic that more sophisticated structures revealed
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in higher-dimensional phase space may lead to more sophisticated and accurate up-

scaling relations.

In this study, the areal soil moisture data were measured using cosmic-ray neu-

tron probes (CRNPs). CRNPs are unique upscaling tools with an ideal footprint size

suitable to provide field-scale measurements. CRNPs are also non-destructive instru-

ments that can be easily installed nearby existing point-scale soil moisture stations.

The weaknesses of CRNPs are that their footprint and measurement depth are func-

tions of soil moisture and they don’t measure homogeneously within the footprint.

These facts can make it difficult to interpret the data and may create inaccuracies in

the upscaling process (Kohli et al., 2015). Furthermore, hourly CRNP soil moisture

time series are usually noisy so temporal smoothing or aggregating is often needed.

We propose to develop and evaluate a phase space approach to soil moisture

upscaling with the aid of CRNPs using concepts from the field of nonlinear dynamics.

Previously, the approaches of nonlinear dynamics have been applied to prediction of

ocean water levels (Frison et al., 1999a,b) and hydrologic systems (Doscher, 1997), but

not yet soil moisture. CRNPs have been used for observing meso-scale soil moisture

patterns (Franz et al., 2016; Hawdon et al., 2014; Zhu et al., 2014) but not yet

for upscaling in situ soil moisture measurements. The objectives of this study are

to (1) develop an upscaling method for in situ soil moisture measurements using a

phase space approach; and (2) compare its performance to two common upscaling

approaches: linear regression and CDF matching.

3.3 Materials and Methods

3.3.1 Phase space reconstruction

We assume that the soil moisture spatial field is a continuous stochastic field. Mea-

suring soil moisture in space with a finite support volume means to “coarse-grain”

the continuous field into different discrete levels, i.e. different resolutions. The sup-
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port/footprint of the measurement device defines the resolution, which we call scale

in this research. For example, a soil moisture sensor installed in an in situ network

usually has a footprint of several tens or hundreds of square centimeters. This soil

moisture sensor coarse-grains the continuous soil moisture field into a discrete field

with a resolution equal to its footprint. Since its footprint is usually small compared

to the size of the study area that we are interested in, the scale of its measurements

can be called “point-scale”. In this research, we focus on two scales - point-scale

(resolution: 101− 102 cm2) and field-scale (resolution: 104− 106 m2), and try to find

the relationship between these two scales.

A phase-space is the set of all possible states of a dynamical system. In this

study, the system refers to the water contained in a certain soil matrix. A state in

the system’s phase space can be defined by the vector θ = (θ1, θ2, ..., θn), θ ∈ Rn,

where n is the number of dimensions of the state space and θ can be any variable of

the system, e.g. soil moisture. As the dynamical system evolves in time, the vector θ

leaves a trajectory representing a state’s dynamic. If trajectories with any number of

initial conditions converge to the same sub-region in the phase space then an attractor

exists in the dynamic (Doscher, 1997). One of the main themes of nonlinear dynamics

approaches is to determine phase-space structures, like attractors, from observations.

One strategy is to reconstruct the phase-space directly from time series observations

using Takens embedding theorem (Takens, 1981). The basic idea is to construct an

d-dimensional vector θ for each time, t, using a series of equally spaced samples in

the past. This can be written as

θ(t) = [θ(t), θ(t− τ), θ(t− 2τ), ..., θ(t− (d− 1)τ)] (3.3)

where τ is the delay time or lag (Bradley and Kantz, 2015).

The optimal time lag τ is usually determined by finding the first minimum of

the average mutual information (Appx. B) of the time series. Mutual information,

45



I, characterizes the mutual dependence of two random variables. In this research,

we applied the method introduced by Fraser and Swinney (1986) of using mutual

information to determine the time lag τ . The mutual information of a time series is

defined as a function of τ

I(τ) =
∑

θ(t),θ(t−τ)

P [θ(t), θ(t− τ)] · log2

[
P [θ(t), θ(t− τ)]

P [θ(t)]P [θ(t− τ)]

]
(3.4)

where P [θ( · )] is the probability of θ , and P [θ(t), θ(t−τ)] is the joint probability of θ

with time lag τ . I(τ) was calculated with a Matlab function in MATS-Toolkit which

was developed by the EEG Analysis group, AUTh.

To estimate the embedding dimension, d, an algorithm called false nearest neigh-

bor (FNN) is often used (Kennel et al., 1992). FNN assumes that two points far away

in the actual state-space can appear close together when an embedding dimension

lower than the true system dimension is used. Those two points are then called false

neighbors. The aim of FNN is to find the smallest d so that if two points are neigh-

bors in the d-embedding, they are also neighbors in (d + 1)-embedding. Specifically,

the percentage of false nearest neighbors were calculated for each possible embedding

dimension d. Two criteria were devised by Kennel et al. (1992) to examine if nearest

neighbors are false. The first one is defined as

√
R2
d+1(t)−R2

d(t)

R2
d(t)

> Rtol (3.5)

where R2
d(t) is the square of the Euclidian distance between a point θ(t) and its

nearest neighbor in the d-embedding dimensional space. When there is a big difference

between R2
d+1(t) and R2

d(t), i.e. the criterion is larger than Rtol, the point θ(t) and

its nearest neighbor are determined to be false nearest neighbors. In this research,

Rtol was set to 10, which was numerically tested by Kennel et al. (1992) .

In practice, when the number of data points is limited, real neighbors could be
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distant. Thus, Eq. 3.5 may not be adequate for distinguishing between real and false

neighbors when the data points are sparse. A second criterion was defined to avoid

this kind of misjudgement:

Rd+1(t)

RA

> Atol (3.6)

where RA is the size of the attractor in the d-embedding dimensional space, which is

approximated by the value of the standard deviation of the data set. The threshold

Atol is set to be 2 with the following reason. If the two neighbors are distant (Rd+1(t) ≈

RA), increasing the embedding dimension from d to d+1 could approximately double

the distance Rd+1(t)(Kennel et al., 1992). If either of these two criteria are met, the

nearest neighbor is determined to be false. All data points and their nearest neighbors

were tested , and the percentage of pairs of neighbors that meet both criteria were

thus calculated to determine the appropriate embedding dimension.

3.3.2 The upscaling for soil moisture

In this study, we define scaling as a mapping of states from one scale to another. It

can be expressed as a transformation φ

φ : Rdp → Rdf , θ(f) = φ(θ(p)) (3.7)

where θ( · ) is the state at one scale, p represents point-scale with dimension m, and f

represents field-scale with dimension n, which may or may not equal m. The following

three upscaling methods simplified this transformation to varying degrees.

If the driving system and the response system pass the MFNN test, a function φ

relating the two systems is implied to exist. This also suggests predicting the response

system is possible.

In this study, we used local polynomial maps to predict the field-scale soil mois-

ture θ(f) using the point-scale soil moisture θ(p) phase space embedded vector with
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dimension m (Eq. 3.8) using the algorithm as in Abarbanel et al. (1994).

φ : Rdp → R, θ(f) = φ(θ(p)) (3.8)

A local neighborhood is formed by finding NB nearest neighbors of a point θ(p) in the

d-embedding dimensional space. If the polynomial map is linear, the neighborhood

size is estimated as NB = 2(d + 1). For a quadratic map, NB = (d + 1)(d + 2)

(Abarbanel et al., 1994). A local polynomial map was constructed between the field-

scale measurement θ(f) and the NB nearest neighbors of the corresponding point-scale

measurement θ(p) in the m-dimension phase space. A least-squares fit was applied to

construct the local maps φ, i.e. Eq. 3.9 was minimized to estimate parameters for

each local quadratic map φj.

NB∑
k=1

|θ(k)
(f)(j)− φj(θ

(k)
(p)(j))|

2 (3.9)

where θ
(k)
(p)(j) indicates the kth nearest neighbor of θ(p) at time j from the training data

set and θ
(k)
(f)(j) represents the value of θ(f) measured simultaneously with θ

(k)
(p)(j). This

local polynomial map prediction method is independent of the MFNN test, which

means if the two systems fail to pass the MFNN test, this prediction can still be

performed.

To achieve the best modeling performance and compensate for the effect of in-

sufficiently populated phase space, we enlarged the neighborhood size NB to approx-

imately 20% of the data set, which is 102 times larger than the recommended NB

Abarbanel et al. (1994). However, the neighborhood size can theoretically be as large

as the whole dateset, which is also called global model (Abarbanel, 2012).

For sake of comparison with the phase space method, linear regression and cdf

matching upscaling relationships were also established between the field-scale and
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point-scale measurements. The transformation φ can be expressed as

φ : R→ R, θ(f) = aθ(p) + b (3.10)

where the parameters a and b were estimated using least squares fit. The field-scale

soil moisture values were then predicted and compared with the measured values.

For the CDF matching method, the soil moisture time series for both scales were first

ranked and paired. The differences δ were calculated between each pair of the two

ranked data sets. A 4th order polynomial function was fit to the ranked point-scale

soil moisture θ(p) and the corresponding differences δ(θ(p))(Drusch et al., 2005).

φ : R→ R, θ(f) = θ(p) + δ(θ(p)) (3.11)

3.3.3 Data and statistical evaluation

The point-scale soil moisture data were obtained from the Oklahoma Mesonet, which

is a network of long-term automated environmental monitoring stations (McPherson

et al., 2007). With more than one hundred stations located around the state, the

Mesonet was designed to monitor processes at the meso-scale. The Oklahoma Mesonet

can provide long-term time series of soil moisture with a maximum time resolution of

30 min at three depths (5 cm, 25 cm, and 60 cm). Soil moisture data are measured by

heat dissipation sensors (CS-229, Campbell Scientific, Logan, UT), which determine

soil matric potential by sending heat pulses and detecting the resulting temperature

change before and after a pulse introduced (Zhang et al., 2019). Soil moisture is then

determined from the matric potentials using site- and depth- specific water retention

curves (Scott et al., 2013). These data were used as point-scale soil moisture to

reconstruct θ(p).

The field-scale soil moisture data were monitored by cosmic-ray neutron probes

(abbr. CRNPs, Hydroinnova LLC, Albuquerque, NM). CRNPs measure ambient fast
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neutron counts in the environment, which are inversely correlated to the amount of

water in the soil (Desilets et al., 2010). CRNPs can be calibrated to measure soil

moisture using the following equation:

θg =
a0

N/N0 − a1

− a2 − wlatt (3.12)

where θg (g g−1) is the soil gravimetric water content, N is the fast neutron count

rate (counts per minute, cpm), N0 represents the constant neutron count rate when

all hydrogen sources within the footprint are excluded, wlatt is the lattice water,

a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et al., 2010; Zreda et al., 2012).

Due to the high speed and long travel paths of fast neutrons, the footprint of CRNPs

is about 400-m diameter (Kohli et al., 2015). With this large footprint and 60-min

time resolution, CRNPs can provide appropriate data to reconstruct θ(f).

In order to compare soil moisture at these two different scales, CRNPs were in-

stalled at three Mesonet stations - Stillwater (36.12093, -97.09527), Marena (36.06434,

-97.21271), and Lake Carl Blackwell (36.14730, -97.28585). These three stations are

located in grassland in north central Oklahoma. Soil textures of the surface soil at

the stations are loam for Marena and Lake Carl Blackwell, and silty clay loam for

Stillwater. The average annual precipitation values of the three stations are similar

ranging from 831 mm (Lake Carl Blackwell) to 884 mm (Marena). The time periods

of CRNP data collection are 05/2017 - 09/2018 (Marena), 03/2017 - 10/2018 (Still-

water), and 06/2017 - 06/2018 (Lake Carl Blackwell) respectively (Fig. 3.1). The

lengths of time series are listed in Table 3.3.

A calibration campaign for the CRNPs was conducted at the three Oklahoma

Mesonet sites in the the summer of 2017. Based on the calibration, N0 values for

each site were determined. By using Eq. 3.12 with site-specific N0, neutron counts

N were converted to gravimetric water content θg. The three times series of θg were

converted to volumetric water content θv for each site with bulk density assumed to
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be 1.40 (g cm−3).

In order to obtain CRNP time series with relatively low noise, hourly CRNP data

were smoothed by a Savitzky-Golay filter with a Matlab built-in function “smooth-

data.m”. To match the measurement depths of the CRNPs, depth-weighted averages

of soil moisture for the Mesonent stations were calculated using the method intro-

duced by Kohli et al. (2015). Linear gap filling was conducted for missing data for

both scales.

For each pair of time series for the three sites, the first 70% of the data were used

as the training sets, and the remaining 30% were used for validation. To evaluate and

compare the performances for the three methods, bias and root mean square error

RMSE were calculated for each model and each site respectively.

3.4 Results and discussion

3.4.1 Nonlinear properties of soil moisture time series

As shown in Fig. 3.1, soil moisture time series at the point-scale and field-scale reflect

roughly similar dynamics but differ in many details. The point-scale soil moisture time

series is generally smoother, and some “plateaus” often occur at high soil moisture

levels. That is a result of the different sensing devices employed. The heat dissipation

sensors’ output ranges from -852 kPa to -8.5 kPa (Illston et al., 2008), although

the lower limit has recently been decreased by a recalibration that was not used in

this study (Zhang et al., 2019). Wet conditions or inaccurate calibrations can cause

measurements to exceed the upper limit of the sensors. Thus soil moisture dynamics

at high soil moisture levels (near saturation) may not be discernible in the point-scale.

The field-scale soil moisture time series are generally noisier than the point-scale ones.

To reduce the noise, data are often aggregated by applying moving windows, which

ranged from 6 h - 24 h in some previous studies (Evans et al., 2016; Heidbüchel et al.,

2015). The difference of the soil moisture values between the two scales at Stillwater

51



is relatively large, which implies some sensor bias could exist. This could be due

to inaccuracy in the calibration parameter N0 (Table 3.1), since the field-scale soil

moisture values all depend on N0.

The ideal delay time, τ was chosen to best unfold the geometric structures of the

soil moisture process in the phase space. Fig. 3.2 shows the mutual information of

the point- and field-scale time series with different time lags. All data sets follow the

same pattern of steadily decreasing mutual information for the first 200-400 time lags

afterwards reaching a low baseline level with no distinct first minima, like some prior

studies (Frison et al., 1999a). One possible reason could be that the scale for the

temporal patterns of hourly soil moisture time series is large, which requires longer

time series to capture more cycles. This is probably more obvious for the field-scale,

for which the mutual information slightly increases around 650 hrs and 1900 hrs for

all three sites leaving a wide window (200-500 hrs) for τ selection. Another possible

reason for the lack of distinct first minima could be the noise existing in the time

series. This is reflected in the point-scale mutual information, which fluctuates at a

low level and lacks similar patterns for the three sites. To avoid underestimating τ

by this kind noise effect, i.e. accidentally selecting a local minimum that is created

mainly by noise before the mutual information stabilizes, an empirical noise-tolerance

level of 10−4 was used for seeking the first minima. Using this threshold, τ ranges

from 5.8 to 16 days for the point-scale and 6.8 to 9.5 days for the field-scale Table

3.1. The mutual information at the selected values of τ reaches a level < 0.2 for all

data sets.

The appropriate embedding dimension for each time series was determined based

on the FNN criteria in Eqs. 3.5 and 3.6. The percentages of false nearest neighbors as

embedding dimension increases are shown in Fig. 3.3. Similar patterns are shown for

all sites and scales. When d = 3, the percentage of false nearest neighbors dropped

to nearly zero, which implies the behavior of the system can be sufficiently captured

52



by embedding in a 3-dimensional space. The value of 3 for the embedding dimension

has also been used for soil water potential data (Doscher, 1997) and soil surface

temperature (Koçak et al., 2004).

For each time series, Fig. 3.4 shows the phase portraits, which are the recon-

structed 3-dimensional phase spaces represented in a two dimensions. Similar patterns

can be found across sites for both scales. The point-scale and field-scale soil moisture

have distinct patterns, in which some structure can be perceived. The trajectories of

the soil moisture are more clustered at the field-scale than at the point-scale which

can be attributed to the distinct drying processes at the two scales Fig. 3.1. The

differences in the phase portraits between the two scales may imply that soil moisture

at different scales has different trajectory structures and dynamical behaviors. The

differences of the trajectory structure among locations are not as apparent as the

differences between scales. It clearly shows similar shape of boundaries and distinct

internal structures across locations. Similar differences in the phase portraits among

different locations can be found in (di2).

3.4.2 Upscaling results

The upscaling results for the three different methods are shown in Fig. 3.5 to 3.7.

Basic statistics of the linear regression functions are summarized in Table 3.3. To

illustrate and compare the performance of the three methods, results for both the

calibration and validation portions of the data were plotted with a 1:1 line. The

calibration results (left column in each figure) show the ability of each method to fit

the calibration data set. The validation results are shown in the right column of each

figure, indicating the performance of each method in prediction mode.

For the linear regression and CDF matching, points are not uniformly distributed

around the 1:1 line (Fig. 3.5 and Fig. 3.6). The maximum of the predicted θ

always corresponds to a wide range of the observed θ. This is because the point-
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scale soil moisture remains close to saturated for longer time than the field-scale soil

moisture Fig. 3.1. The point-scale observations apparently omit some details of the

beginning of drying processes. The RMSE values for the validation data sets are

slightly smaller than those for the calibration stage for all three sites, which indicates

that the linear regression and CDF matching methods are well calibrated and do not

suffer appreciably from over-fitting at these sites.

The RMSEs for the CDF matching method are comparable to previous studies

which range from 0.03 cm3 cm−3 to 0.044 cm3 cm−3 (Scipal et al., 2008; Mittelbach

et al., 2012). For linear regression method, RMSEs for all three sites are larger

than the reported 0.022 cm3 cm−3 reported by De Rosnay et al. (2009). They are

comparable to the RMSEs for one-point (0.060 cm3 cm−3) and 12-point (0.027 cm3

cm−3) upscaling study done by Crow et al. (2005). This may also be attributed to

the inaccuracy near saturation of the point-scale sensors, and the linear regression

method was affected more than the CDF matching method.

The RMSE values for the phase-space method were lower than those for the linear

and CDF matching methods during the calibration stage (Fig. 3.7). This is consis-

tent with the hypothesis of this study that the structures reflected in phase space

reconstruction can provide more detailed and better mapping between the two scales.

However, unlike the results for linear regression and CDF matching, the RMSEs for

the local polynomial maps method are larger at the validation stage than at the cali-

bration stage, which indicates that this method may suffer from over-fitting or other

problems during the calibration stage (Fig. 3.7). Compared to the linear regres-

sion and CDF matching results, the validation RMSEs for the local polynomial map

method are larger (Fig. 3.5 to Fig. 3.7). This is probably because the phase-space

representation was not adequately constructed, even though the local polynomial

maps had better fits with R2 > 0.7 for two of the three sites. The phase space

neighborhood may not be adequately populated with observations, in which case the
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prediction power of this method would be weakened. The R2 for CDF matching

and local polynomial map for Stillwater are both negative (Table. 3.3). This occurs

when the method is not linear and the fitting with the model is worse than simply

estimating with the mean of the dataset. One possible reason could be the period of

10/2018-03/2019 when water content is persistently in a high level, which is suspected

to be abnormal, since the detailed wetting and processes were barely reflected in the

time series.

The validation results of the last 30% of each time series are shown in Fig. 3.8.

The linear regression and CDF matching validation generally follow the observed

data and display smoother temporal patterns than the predictions of local polynomial

maps. The temporal patterns for the linear upscaling are similar to the point-scale

observations in Fig. 3.1 due to the nature of the method. For the linear method, each

prediction only depends on the upscaling equations (Table. 3.2) and the corresponding

point-scale soil moisture observation. In contrast, the CDF matching method is able

to more accurately predict the peaks in field-scale soil moisture associated with rainfall

events than is the linear upscaling method. The advantage for the CDF matching

method likely arises due to its allowance for a nonlinear relationship between the

point- and field-scale time series. As a result, the CDF matching method exhibits a

slightly smaller bias and RMSE than the linear upscaling method for the validation

data sets Table 3.3.

3.5 Conclusion

We demonstrated that upscaling of soil moisture using the method of phase space

analysis is possible, but the proposed method was unable to improve the prediction

accuracy compared to linear regression and CDF matching. The phase space method

usually requires a large number of observations in order to reconstruct a well popu-

lated phase space representation that reflects the dynamical behavior of the system.
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In this study, with the 1-hour temporal resolution, a soil moisture time series of 1-2

years long is likely not enough. In this and many similar circumstances, the applica-

bility of using the local polynomial map is probably limited.

For upscaling of in situ soil moisture, CRNPs and the cosmic-ray neutron sensing

techniques are well-suited because of their unique footprint size. Although the noise

level is usually high in CRNP time series, noise can be effectively reduced through

smoothing methods, which could make data qualified for upscaling analysis. The

unsynchronized behavior of the two systems implies that some errors in soil moisture

upscaling are unavoidable due to not only randomness but also some deterministic

reasons. This gives some insights into the next step toward upscaling the thousands

of existing in situ soil moisture stations. For site-specific empirical scalings, linear

regression and CDF matching methods can easily be applied. However, if a widely

applicable or even universal upscaling relationship were to be developed, the phase

space structures and nonlinear behaviors may need to be considered.
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Table 3.1: Summary of the dynamical characteristics of the
time series. τ is the time lag with resolution of 6 hours, d is the
number of embedding dimensions, and λ1 is the maximal
Lyapunov exponent.

Station
Point-scale Field-scale

τ (day) d λ1 τ (day) d λ1

Marena 16 3 0.029 9.5 3 0.088
Stillwater 12 3 0.040 13 3 0.133

Lake Carl Blackwell 5.8 3 0.050 6.8 3 0.087
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Table 3.2: Regression equations for the upscaling methods of linear regression and
CDF matching

Station Linear regression CDF matching
Marena y = 0.691x+ 0.029 y = −494x4 + 405x3 − 119x2 + 15.5x− 0.745

Stillwater y = 0.485x+ 0.017 y = −254x4 + 261x3 − 95.8x2 + 15.3x− 0.814
Lake Carl Blackwell y = 0.578x+ 0.053 y = −66.6x4 + 47.0x3 − 13.6x2 + 2.35x− 0.145

63



Table 3.3: Basic statistics for the three upscaling methods.

Station
data

length
Linear regression

CDF
matching

Local
polynomial map

hrs days Bias R2 Bias R2 Bias R2

Marena 12497 521 0.011 0.408 0.018 0.329 0.030 0.747
Stillwater 18595 775 0.011 0.484 0.026 -9.96 0.019 -10.3
Lake Carl
Blackwell

9128 380 0.00086 0.445 0.0029 0.639 0.018 0.737
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Figure 3.1: Time series for the three cosmic-ray neutron probes (CRNPs) at
Stillwater, Lake Carl Blackwell, and Marena. Blue lines represent Mesonet 5-cm soil
moisture, and red lines represent soil moisture measured by CRNPs.
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Figure 3.4: Two-dimensional phase portraits of soil moisture time series at
point-scales (left column) and field-scale (right column) . Three sites are Marena
(a), Stillwater (b), and Lake Carl Blackwell (c).
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Figure 3.5: Calibration and validation results for the linear regression method.
The left column is the calibration data set, and the right column is the validation
data set.
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Figure 3.6: Calibration and validation results for the CDF matching method. The
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Figure 3.7: Calibration and validation results for the local polynomial map
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validation data set.
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Supplemental materials

Maximal Lyapunov exponent

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive

dependence on initial conditions (Strogatz, 2001). A chaotic system is sensitive to

its initial conditions, which means with small initial separation, the trajectories of

the two points may diverge exponentially fast over some time (Kantz and Schreiber,

2004). The rate of this separation is defined as Lyapunov exponent λ (Eckmann and

Ruelle, 1985). This definition can be expressed as follows

|δx(∆t)| ≈ |δx(0)|eλ∆t (3.13)

In Eq. 3.13 , |δx(0)| is the initial distance between two points in the phase space of

variable x, and |δx(∆t)| is the distance between the two points after time ∆t. For

every dimension of x, there can be defined a Lyapunov exponent, among which the

largest one is named the maximal Lyapunov exponent λ1. If λ1 is positive, the system

is chaotic. If λ1 is zero or negative, the system is stable (limit cycle or fixed point).

Thus, λ1 quantifies the sensitivity to the initial conditions of a dynamical system,

and characterizes the predictability of a chaotic system .

In order to determine if each soil moisture dynamical system is chaotic, we calcu-

lated the maximal Lyapunov exponents for each site and each scale using the algo-

rithm introduced by Rosenstein et al. (1993).

The positive maximal Lyapunov exponents indicate that soil moisture as a dy-

namical system is chaotic, but the strengths are different (Table 3.1). The range of

λ1 for the point-scale soil moisture is 0.029-0.050, which is comparable to 0.011-0.066

that reported in the study of di2. All field-scale soil moisture have higher λ1 than

point-scale, which means that the field-scale soil moisture is more chaotic, i.e. more

difficult to predict. This may also imply, in the perspective of nonlinear dynamics, the
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difficulty in predicting soil moisture between the two scales, which is tested discussed

in the following sections.

Generalized synchronization of chaotic systems

The synchronization of dynamical systems considers the relationship between the

phase spaces of two coupled systems - a response system r(t) and its driving system

d(t). Synchronization of the two systems simply means they are equal, i.e. no matter

how different the initial conditions are, eventually r(t) = d(t) as time progresses

(Pecora and Carroll, 2015). A broader generalized synchronization is indicated by

r(t) = ψ(d(t)) (3.14)

where ψ is a transformation function(Rulkov et al., 1995). If ψ exists, the relationship

of the two systems is called generalized synchronization.

A method called mutual false nearest neighbors (MFNN) were developed by Rulkov

et al. (1995) to determine if two systems exhibit generalized synchronization. The

basic idea is similar to the FNN method - two close neighbors in phase space of the

driving system correspond to a pair of points in the phase space of the response sys-

tem, which should also be close. Based on this idea, an MFNN parameter P (n, dr, dd)

was designed for testing synchronization of d(t) and r(t). This parameter is close to

1 when the system trajectories are synchronized, and much larger than 1 when the

trajectories are not synchronized.

To keep it brief and clear, we use notations in Rulkov et al. (1995). The driving

system d(t) and response system r(t) in this research are the point-scale soil moisture

θ(p) and the field-scale soil moisture θ(f). The measurements of driving and response

system are embedded with dimension dd and dr. respectively and the corresponding

vectors are represented as d( · ) and r( · ). The driving system is also embedded in
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the space of dimension dr, which creates vectors d
′
( · ).

P (n, dr, dd) =
|d′

(n)− d′
(n

′
NND)|2

|d′
(n)− d′

(nNND)|2
|r(n)− r(nNND)|2

|r(n)− r(nNNR)|2
(3.15)

where r(nNNR) is the nearest neighbor of r(n) in the response embedding space, nNND

is the time index of the nearest neighbor of point d(n) in the embedded driving system

with dimension dd, and n
′
NND is the time index of the nearest neighbor of point d

′
(n)

in the embedded driving system with dimension dr. The MFNN parameter is suitable

for time series with fixed length and has stable behavior across different embedding

dimensions. As demonstrated by Rulkov et al. (1995), in practice, the average value

of P̄ (dr, dd) can be used to distinguish systems’ synchronized and unsynchronized

behaviors.

Generalized synchronization test results

The values for the mean synchronization parameter P̄ for all three sites generally

exhibit a decreasing trend as the embedding dimension of the driving system (point-

scale soil moisture) increases (Fig. S). As the embedding dimension increases, the

value of P̄ is expected to decrease to 1 if the two systems are synchronized (Rulkov

et al., 1995). However, for these soil moisture time series P̄ maintains values > 10 and

does not tend to decrease to 1 at higher embedding dimensions. This suggests that

the point- and field-scale data sets of soil moisture are not synchronized at these three

sites. Although the point-scale and field-scale soil moisture are not synchronized in

the generalized sense, local polynomial map predictions based on Eq. 3.8 can still

be performed. The value of P̄ (dd) suggests to embed point-scale soil moisture in the

dimension greater than 3 for better synchronization results. However, since P̄ (dd)

doesn’t decrease much as dd increases, it would shorten the length of a data set and

increase computation burden at higher embedding dimensions.
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CHAPTER 4

Application of computational mechanics to the analysis of soil moisture

data

4.1 Abstract

Soil moisture as a natural process computes - it stores and transmits information

from its past to its future, and generates both randomness and structures at the

same time. The aim of this research is to find structures hidden in the soil mois-

ture process and to examine its structural complexity by applying the approach of

computational mechanics. ε-machines were constructed for the zeroth, first, and sec-

ond order derivatives of symbolized soil moisture time series to examine structures in

multiple aspects. Based on the reconstructed ε-machines, soil moisture is complex,

hidden, and unpredictable to some degree. Statistical complexities tend to increase

with the orders of derivatives for soil moisture processes, which may be a result of

noise in the data. Data resolution and the symbolization strategy may have strong

effects on both finding patterns and constructing ε-machines. Further studies on

highly diverse second order derivatives are needed, which will contribute to seeking

the factors that controls the topology of ε-machines for soil moisture.

4.2 Introduction

In research related to mass and energy exchange at land surface, soil moisture has

been recognized as an important variable, as various atmospheric and hydrologi-

cal processes, such as infiltration, evapotranspiration, and drainage, leave their own

signatures in soil moisture time series. With various interactions between these pro-
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cesses, the resulting dynamics of soil moisture may exhibit complex chaotic behav-

iors, which complicate the processes of interpreting data, discovering patterns, and

making predictions (Rodriguez-Iturbe et al., 1991). These interacting hydrologic pro-

cesses and the resulting structures and patterns in soil moisture dynamics can be

interpreted as the hydrologic system’s “intrinsic computation”, which is the way the

system stores, structures, and transforms information temporally and spatially (Feld-

man et al., 2008).

The concept of intrinsic computation implies a potential of discovering new pat-

terns in the hydrologic processes thus simplifying descriptions of them. To fulfill this,

it is necessary to effectively identify and quantify the structures and complexity in

soil moisture dynamics. In this study, we employ approaches from the field of compu-

tational mechanics, which are designed for studying how dynamical systems store and

process information (Shalizi and Crutchfield, 2001; Crutchfield, 2012, 2017). Com-

putational mechanics approaches are established upon theories of information and

computation and are able to discover patterns and to quantify structural complexity

of a process (Crutchfield, 2012). In this case, the goal is to reflect causal structures

of soil moisture dynamics by explicitly representing states and transitions with their

probabilities in the form of an ε-machine, which is a type of Hidden Markov Model

(Crutchfield, 1994). Previously, computational mechanics have been successfully ap-

plied to geomagnetism (Clarke et al., 2003), wind speed (Palmer et al., 2000), and

stock market data (Park et al., 2007), but not yet for soil moisture.

Soil moisture is a state variable of the hydrologic system (Koster et al., 2009;

Houser et al., 1998) and here we consider the first and second derivatives of soil

moisture with respect to time, along with soil moisture itself (zeroth order derivative).

The first derivative (∆θ
∆t

) of soil moisture represents the rate of change in soil water

content and is a key term in water balance models (Laio et al., 2001). The first

derivative of soil moisture for a particular soil layer is directly proportional to the
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net water flux into or out of that layer. In this research, we also explored the 2nd

derivative of soil moisture (∆2θ
∆t2

), which is an indicator of the rate of change in the

net water flux. The objectives of this research are (1) to construct ε-machines for

soil moisture time series to reveal possible emergent causal structures in soil moisture

dynamics, and (2) to compare causal structures of zeroth, first and second order of

derivatives of soil moisture time series.

4.3 Materials and Methods

4.3.1 ε-machine

The goal of the subsequent analysis is to build a model that can both predict the fu-

ture state of the system and describe the mechanisms of the underlying system which

produces the observable process (Ellison et al., 2009). Computational mechanics pro-

vide a way of inferring models of a hidden processes with some observable behaviors,

and ε-machines are one type of model employed in computational mechanics.

In order to fulfill the goal of effective prediction, we first look for ways of effectively

representing the system. In this research, a process refers to a sequence of random

variables Xi, so a process can be defined as a one-dimensional bi-infinite chain
←→
X

←→
X ≡ . . . X−2X−1X0X1X2 . . . (4.1)

where the subscript i ∈ Z, positive integers represent the future, and negative integers

represent the past. Realizations of Xi are written in lower case letters xi. All xi are

drawn from a countable set A, which is also called an alphabet. The process can be

viewed as a communication channel, which transmits information from the past
←−
X

to the future
−→
X by storing information in the present.

First we partition the space of all pasts (or histories)
←−
X into subsets which are

mutually exclusive and jointly comprehensive to the whole set. A subset of history
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space is called an effective state Ri. An effective state R (a particular partition of

history) is also a random variable. Its distribution can be written as

Pr(R = Ri) =
∑
←−x ∈Ri

Pr(←−x ) (4.2)

Any function defined on the whole set of histories partitions it, and the function

maps specific histories into effective states. Here we introduce an equivalence relation

(∼) (Appendix C) which partitions the histories into certain types of effective states,

named causal states. This equivalence relation does not differentiate histories which

lead to the same predictions of the future. Here, a prediction refers to a distribution

Pr(
−→
X |←−x ) of possible futures

−→
X given a particular past ←−x .

The formal definition of this causal equivalence relation is defined as follows. Two

histories are equivalent if and only if they have the same conditional distribution of

futures:

←−x ′ ∼ ←−x ′′ ⇐⇒ Pr(
−→
X |
←−
X =←−x ′

) = Pr(
−→
X |
←−
X =←−x ′′

) (4.3)

where ←−x ′
and ←−x ′′

are particular pasts, Pr(
−→
X |
←−
X = ←−x ′

) and Pr(
−→
X |
←−
X = ←−x ′′

) are

their conditional distributions of the future.

A function mapping a particular past←−x ′
into its equivalence class S is defined as

ε-function,

ε :
←−
X → S, ε(←−x ) = S = {←−x ′

:←−x ′ ∼ ←−x }. (4.4)

When a new observation x0 is made, a history ←−x = ...x−3x−2x−1 becomes a new

history ←−x ′
= ...x−2x−1x0. This new history belongs to a particular equivalence

class, which is also the current causal state S of the process. By applying the ε-

function to this new history, the process transits from a state S = ε(←−x ) to another

state S ′
= ε(←−x ′

) with a transition probability Pr(X = x, S
′ |S). Consequently, the

dynamic of the process can be defined as state-to-state transitions. All the state-

to-state transitions of an ε-machine can be expressed as transition matrices whose
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elements are defined as the transition probabilities T
(x)

SS′ = Pr(X = x,S|S ′
), where (x)

represents a symbol in the alphabet A. The transition probabilities can be estimated

through the process of ε-machine reconstruction, which is introduced in Section 4.3.5.

Thus, the ε-machine of a process is defined as a set of causal states and transition

matrices, i.e. M = {S, {T (x), x ∈ A}} = {S, T }.

4.3.2 Properties of ε-machine

We selected ε-machines to model soil moisture dynamics because ε-machines have

multiple important and beneficial properties. These properties are briefly described

below. The proofs can be found in Shalizi and Crutchfield (2001).

The past and the future are independent given causal states. This can be written

as Pr(
←−
X ;
−→
X |S) = Pr(

←−
X |S)Pr(

−→
X |S).

ε-machines are first-order Markov chains, i.e. Pr(St|...St−2St−1) = Pr(St|St−1).

This can be derived from the previous property.

ε-machines are unifilar (deterministic). For any state Si ∈ S and any x ∈ A of

an ε-machine, there is at most one successor state Sj. This implies that an observed

sequence ...x−3x−2x−1... has a 1-1 mapping relationship with a causal states sequence.

ε-machines are optimal predictors. Here, optimal means that information entropy

of a sequence conditioning on causal states S is no larger than the information entropy

conditioning on any rival effective states R, i.e. H[
−→
S L|R] > H[

−→
S L|S]. Therefore,

knowing the ε-machine and the current causal state is as good as knowing the entire

past Pr(
−→
X |S) = Pr(

−→
X |
←−
X ).

Causal states are minimal, which means that an ε-machine has less statistical

complexity than any rival effective states with the same predictive power.

The ε-machine is unique for a certain process.

All the above properties imply that ε-machine is optimal in simplifying and mod-

eling a process in the sense of information theory. By applying this approach to
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soil moisture processes, some hidden patterns in their dynamics could be revealed

effectively.

4.3.3 Information-theoretic measures

Computational mechanics were developed with the aid of the concepts, notions, and

conclusions from information theory. In previous sections, the state and the dynam-

ics of a process have been defined as random variables and communication channels.

The properties of the process can thus be explored by defining and estimating some

information-theoretic measures, which can also be called structural complexity mea-

sures.

In the framework of information theory, the uncertainty of a process is represented

by entropy H(X) (Appendix B), so the uncertainty of the future of a process can be

written as H(
−→
X ). For a sequence of finite length, a quantity block entropy H(XL),

or simply H(L), is defined to represent the uncertainty of L consecutive symbols,

H(L) ≡ −
∑
xL∈AL

Pr(xL) log2 Pr(xL) (4.5)

where L is positive and xL represents all possible blocks of symbols with length L.

Then the entropy rate is defined as the production of information of the process

hµ ≡ lim
L→∞

1

L
H(L) (4.6)

The entropy rate hµ quantifies the irreducible randomness in a process (Crutchfield

and Feldman, 2003).

Because of the unifilarity of ε-machines, the entropy rate can be directly calculated
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from the ε-machine (Ellison et al., 2009)

hµ = H(X|S) = −
∑
{S}

Pr(S)

(x)∑
{x}

T
(x)

SS′ log2 T
(x)

SS′ . (4.7)

The excess entropy is defined as the mutual information between the past and future,

E = I[
←−
X ;
−→
X ]

= H(
−→
X )−H(

−→
X |
←−
X )

(4.8)

By definition, it can be interpreted as the reduction of uncertainty of the future

by knowing the past. Since theoretically an ε-machine is optimally predictive, which

means knowing the current state is as good as knowing the entire past
←−
X , the excess

entropy E = I[S;
−→
X ]. Excess entropy can be interpreted as the effective information

capacity under the assumption of treating the process as a communication channel

(Crutchfield et al., 2009).

Another formulation for excess entropy E is

E = lim
L→∞

[H(L)− Lhµ] (4.9)

which is equivalent to Eq. 4.8 (Crutchfield and Feldman, 2003). This formulation

highlights another interpretation of E as a measure of memory, which eventually ”ex-

plains” the apparent randomness in the process by considering longer blocks (Crutch-

field and Feldman, 2003, 1997). The statistical complexity is defined as the entropy

of the states and can also be directly calculated from the ε-machine

Cµ ≡ H(S) =
∑
{S}

Pr(S) log2 Pr(S). (4.10)

The statistical complexity Cµ characterizes the minimal amount of information that

is required to transmit the excess entropy from the past to the future (Ellison et al.,
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2009).

4.3.4 Estimation of information-theoretic measures

For an ε-machine, the transition matrix T is the summation of all transition matrices

for all symbols, T =
∑

x T
(x). π is the time-asymptotic probability of all states, which

is the normalized principal eigenvector.

π = πT (4.11)

where π is a row vector (Pr(S = S1),Pr(S = S2),Pr(S = S3), ...) and its elements

are normalized in probability, i.e.
∑

σ πσ = 1 where σ denotes the state index. Thus,

by knowing the transition matrix T , the state probabilities π can be estimated, and

hµ and Cµ can be calculated using Eq.4.7 and Eq.4.10.

Since E cannot be estimated through an explicit expression (Eq. 4.8 or Eq. 4.9),

the concept retrodiction needs to be introduced to estimate E . Retrodiction of a

process is the opposite of prediction, which means using the future to predict the

past. The formalism of the retrodiction is the same with prediction but scanning

the measurements in reverse time direction. To differentiate the retrodiction from

the prediction, we need to add + and − as superscripts to denote the direction of

scanning a sequence. For example, C+
µ and C−µ represent the statistical complexity of

the prediction and retrodiction of a process respectively, which are called predictive

and retrodictive statistical complexities. By constructing ε-machines for both direc-

tions, E can be estimated. It has been proven that the excess entropy is the mutual

information between the predictive and retrodictive causal states (Eq. 4.8), which

also implies that it is the same for both directions (Ellison et al., 2009).

E = I[S+;S−] (4.12)
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By the definitions of C+
µ (C−µ ) 4.10 and conditional entropy (Appendix B), E can

be derived as,

E = C+
µ −H[S+|S−] = C−µ −H[S−|S+] (4.13)

In Eq. 4.13 , C+
µ (C−µ ) can be easily estimated using Eq. 4.10 after constructing

ε-machines for each direction. Then the problem of estimating E is converted to

estimating the conditional entropy H[S+|S−] (H[S−|S+]). A method called mixed-

state presentation relates the forward and reverse causal states which can yield an

explicit form of the conditional entropy and E. A detailed description of this method

can be found in Ellison et al. (2009).

Eq. 4.13 can also be interpreted as a decomposition of the statistical complexity

C+
µ (C−µ ) for each direction. The amount of information that is directly presented in

the observed sequence is excess entropy E, and the conditional entropy H[S+|S−]

(H[S−|S+]) is called crypticity χ+(χ−) since it is hidden.

In the process of calculating χ+(χ−) and E, another quantity which is defined as

causal irreversibility Ξ can be easily estimated.

Ξ ≡ C+
µ − C−µ (4.14)

Ξ is the difference of statitiscal complexity between the forward and reversed causal

states. It is a measure of the asymmetry of a process. Only when Ξ = 0, the process

is reversible.

4.3.5 Data symbolization and machine construction

Soil moisture monitoring networks, like the Oklahoma Mesonet, provide a great re-

source for studying soil moisture dynamics across a variety of soil conditions. The

Oklahoma Mesonet consists of ∼120 stations across the state, covering a wide range

of soil properties and weather conditions. Daily average surface soil moisture data
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(5-cm depth) for all available sites were converted from the calibrated delta-T data

which were retrieved from the Oklahoma Mesonet. The calibrated delta-T data are

measured by heat dissipation sensors (CS-229, Campbell Scientific, Logan, UT) and

the detailed conversion method can be found in studies conducted by Scott et al.

(2013). A simple linear interpolation was applied to fill missing data of short periods,

i.e. the length of the period shorter than 3 days. Fifty-four sites with consecutive

time series longer than 1500 days were selected, and the longest uninterrupted time

series for each selected site was further analyzed.

In order to infer ε-machines for each selected site, the soil moisture time series

must be symbolized. In this research, the symbolization of the time series includes

three phases. The first phase is to discetize the soil moisture time series into binary

sequences based on soil moisture values (0th derivative), i.e. values greater than the

median were assigned 1s, and values less than the median were assigned 0s. The

second phase is to calculate the first forward difference ∆θ
∆t

of the time series which

represents the first-order derivative of soil moisture dynamics. Since the natural

meaning of first derivative is instantaneous rate of change, 0s and 1s were assigned

to negative and positive first differences respectively to represent drying and wetting

events. The third phase is to calculate the second-order forward difference ∆2θ
∆t2

of the

time series which represents the second-order derivative of the soil moisture dynamics.

Similar to the second phase of symbolization, 0s and 1s were assigned to negative and

positive ∆2θ
∆t2

respectively to represent the changing rate of drying and wetting events.

To construct ε-machines for the symbolized soil moisture sequences (forward pro-

cess), an algorithm called Causal State Splitting Reconstruction (CSSR) was used

(Shalizi and Shalizi, 2004). A history length of 4 days was selected a the window

size in scanning the soil moisture sequences. This selection is based on the error lev-

els for different history lengths versus time series lengths, which were tested for the

even process (Shalizi and Shalizi, 2004). The resulting ε-machines were classified into
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several types based on their state-transition structures. ε-machines for the reversed

processes were derived from the ε-machines for the forward processes following the

approach of Ellison et al. (2009). This derivation was only completed for three types

of ε-machines of the 0th and 1st derivatives of soil moisture.

The space of possible hµ, Cµ, and E for these three types of ε-machines were ex-

plored by enumerating possible transition probabilities of each type of ε-machine. For

each type of ε-machine, 105 sets of transition probabilities were randomly generated.

The information processing invariants hµ, Cµ, and E were thus calculated using the

same method described above.

4.4 Results and discussion

4.4.1 Basic properties of the soil moisture dynamics

An example of the time series of 0th order (θ), 1st order (∆θ
∆t

), and 2nd order (∆2θ
∆t2

)

derivatives of daily soil moisture are displayed in Fig. 4.1. The 1st order derivatives

basically show the slopes of the original (0th order derivative) soil moisture sequence

with positive values representing soil moisture increases and negative values repre-

senting decreases. The corresponding symbolized sequences of the three time series

are plotted as dots and empty space in Fig. 4.1.

The positive spikes of the 1st order derivatives generally have larger absolute

values than the negative spikes, which indicates that a wetting process is usually

quicker than a drying process. The positive and negative spikes of the 2nd order

derivatives are generally balanced around zero, which indicates that most wetting

events are one day or less. The soil moisture conditions before and after a wetting

event are relatively stable (∆θ
∆t

is close to zero), which leads to a large positive ∆2θ
∆t2

followed by a large negative ∆2θ
∆t2

.
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4.4.2 The structures of ε-machines

Three types of ε-machine topologies were found for both the 0th and 1st order differ-

ence of soil moisture processes. These ε-machines are displayed in Fig. 4.2. Some key

similarities between the ε-machine topologies are evident. Each has one state with 0

self-loop and one state with 1 self-loop. For the convenience of comparisons between

ε-machines, these two states were thus assigned with transition probability p and

1−q. The State 2 and 3 of the Type 2 ε-machine can be considered as the result of

splitting of State 2 of Type 1. Similarly, State 2 and 4 of the Type 3 ε-machine can be

considered as the result of splitting State 2 of Type 2. These similarities in ε-machine

topologies can also be reflected in Fig. 4.5 where the three types of ε-machines largely

overlap with different possible transition probabilities.

All the soil moisture processes represented by the three types of ε-machine topolo-

gies are reversible. All the three types of derived ε-machines for the reversed processes

are the same as those for the forward processes. Therefore, the statistical complexity

C+
µ and C−µ are obviously identical. Based on Eq. 4.14, the irreversibilities for the

processes are zero, which means the processes are all reversible.

The three orders of derivatives of soil moisture have distinct behaviors in statistical

complexity and randomness production. As the order increases, the entropy rate hµ

generally tends to increase, and the statistical complexity Cµ becomes increasingly

variable for the 1st and 2nd order differences (Fig. 4.3). The entropy rate hµ ranges

from 0 to 1 (Eq. 4.7), which means the system ranges from perfectly ordered and

predictable to totally random and unpredictable. In Fig. 4.3, the increasing hµ

with the order of derivatives indicates the unpredictability increases with the order

of derivatives.

The differences in statistical complexity between soil moisture processes are mainly

topological. Soil moisture processes show distinct patterns of statistical complexity

Cµ with different orders of derivatives (Fig. 4.3), which is directly related to different
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types of ε-machine topologies (Table 4.2). For a certain topology (type), ε-machines

tend to have similar statistical complexities and various entropy rate hµ. This implies

that the main factors influencing the values of Cµ and hµ are probably the topology

and the transition probabilities respectively. However, we still don’t know the factors

that influence the ε-machines’ topology for soil moisture processes. As the order of

derivatives increase, soil moisture tend to have more types of ε-machines (Table 4.2).

This behavior can be partly attributed to the increasing noise level in soil moisture

derivatives, since it is known that increasing the order of differences calculated based

on the time series can amplify the noise existing in the original time series.

Both 0th and 1st order derivatives of soil moisture show relatively low entropy

rates (mostly < 0.5) with high self-loop probability p (Table 4.1 ). The space of

possible entropy rates vs. transition probabilities was explored and plotted in Fig.

4.4. Real data points are limited to a small area where transition probability p is

large and the entropy rate hµ is relatively small. For the zeroth order derivative of

soil moisture (θ), the high probability of the self-loop p represents the tendency of the

soil staying in dry conditions. Similarly, for the first order derivative of soil moisture

(∆θ
∆t

), it represents the tendency of the system to prolong a drying event. This kind of

behavior in both sequences contributes to their low randomness (high predictability).

4.4.3 The structures of the process

The structures of soil moisture processes can be reflected in the transition probabilities

and the consequent state probabilities, which are partly determined by the symbol-

ization strategy. The state probabilities for Type 1 ε-machine are π = { q
1−p+q ,

1−p
1−p+q},

which was derived from its transition probabilities using Eq. 4.11. For the 0th order

derivatives, the state probabilities are always equal to 0.5 for both states, which in-

dicates q = 1− p. For the 1st and 2nd order derivatives, this equality does not exist.

This can be partly attributed to the symbolization strategy for the 0th order deriva-
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tives, which generates equal amount of zeros and ones. This symbolization also leads

to the statistical complexity of Type 1 ε-machine always equal to 1. The symbolized

soil moisture time series thus become a random telegraph process, which is a stochas-

tic process with two possible outcomes and only the previous symbol matters to the

next word (Clarke et al., 2003). When p = q, the two states are going to collapse

into one, and the statistical complexity will be 0. For the 0th order derivatives of

soil moisture, p is usually much larger than q (Table 4.1), which makes the statistical

complexities always far from 0. This gives the insight into the nature soil moisture

process that soil moisture process is structured and complex.

For the Type 1 ε-machine, the formula for crypticity χ+ turn out to be the same

as that for entropy rate h+
µ . Eq. 4.13 can thus be written as

E = C+
µ − h+

µ . (4.15)

This equation explains the relationship between excess entropy E and entropy rate

h+
µ , which is also reflected in Fig. 4.5. Most of the 0th order and some of the 1st and

2nd order data perfectly follow the line with slope of −1. These points correspond to

Type 1 ε-machines. The interesting part is that the data points of the other two types

of ε-machines also follow closely around the line, which is distributed in a relatively

small area compared to the entire space of possible values. The small dots showing

the randomly sampled space of possible excess entropy E vs. entropy rate hµ exhibits

some spatial patterns. The excess entropy E vanishes as the entropy rate hµ reaches

a maximum (hµ = 1) and many dots are distributed at this corner.

The first two orders of derivatives of soil moisture processes are cryptic (χ 6= 0).

The crypticity χ for all 54 sites of soil moisture processes (θ and ∆θ
∆t

) are positive,

which indicates that there is always some information hidden in the soil moisture

process. This hidden information constitutes the structures of the process but is

never transmitted or remembered by the process.
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Intuitively, the irreversibility of soil moisture time series should be reflected in

the second order derivatives, since the convexity of drying and wetting events are

distinct. However, irreversibility was still not commonly found in the second order

derivatives (Table. 4.2). Type 1-3 ε-machines are always reversible, which indicates

that more than half of the stations are reversible for the second order derivatives of

soil moisture. One possible reason could be the temporal resolution (1 day) is too

coarse that the change in convexity cannot be captured.

4.5 Conclusion

This research examined the temporal patterns existing in soil moisture time series

with a time scale (history length) of 4 days. The selection of this history length is

limited by the total length of the time series. Therefore, the resulting ε-machines

and their structural complexities only reflect the structure of recent history in bi-

nary soil moisture processes. In this context, soil moisture can be described by 2- to

5-state ε-machines. The reconstructed ε-machines for soil moisture provide insights

into the structural complexity, crypticity and randomness of soil moisture dynam-

ics. Generally speaking, as a dynamical system, soil moisture is complex (Cµ > 0),

hidden (χ > 0), and unpredictable (hµ > 0) to some degree. The common struc-

ture of a self-loop with a high transition probability contributes to the relatively low

level of randomness of soil moisture processes. Increasing orders of derivatives for

soil moisture processes shows interesting patterns on structural complexity and pre-

dictability - with increasing randomness of the process, the variability in statistical

complexity tends to increase. Irreversibilities were barely reflected in soil moisture

processes based on daily time resolution and symbolization strategy. Further studies

on highly diverse second order derivatives are needed, which will contribute to seeking

the factors that controls the topology of ε-machines for soil moisture.
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Table 4.1: Ranges of transition probabilities for the three types of ε-machine
topologies for 0th and 1st order soil moisture processes.

p q r s
Type 1 0.90-0.97 0.032-0.21 - -
Type 2 0.95-0.96 0.027-0.038 0.33-0.38 -
Type 3 0.87-0.94 0.015-0.12 0.25-0.63 0.033-0.34
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Table 4.2: Number of stations for each type of ε-machine. The number of states
are indicated in the first row. State-transition diagrams for Type 1-3 (bold) are
plotted in Fig. 4.2

2 states 3 states 4 states 5 states 6 states
Type 1 2 4 3 5 6 7 8 9 10 11

0th order 51 2 0 1 0 0 0 0 0 0 0
1st order 19 0 0 35 0 0 0 0 0 0 0
2nd order 23 6 5 5 1 7 1 1 2 2 1
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Figure 4.1: (Color) Time series and the corresponding symbolized sequences. The
black line is the original soil moisture time series, the blue line is first order
difference and the red line is the second order difference. The three corresponding
symbolized sequences are displayed under the time series. The dots represent 1s and
empty space represent 0s.
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Figure 4.2: Three types of ε-machine representations for the soil moisture
processes at 54 monitoring locations for the 0th order and 1st order differences.
Circles represent states and arrows represent transitions. States are named by
numbers (1-4). Transition probabilities are marked by letters (p, q, r, and s).
Similar transitions across machines are marked with the same letters.
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Figure 4.3: (Color) Statistical complexity vs entropy rate for all three orders of
difference and all 54 sites. The sites with the same type of ε-machines are plotted
with the same markers.
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Figure 4.4: Entropy rate vs transition probability p. Pink dots are the results of
simulations using the three types of generic ε-machines. Red dots represent the 0th
order difference of soil moisture, and blue dots represent the 1st order.
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Figure 4.5: Entropy rate vs excess entropy for three types of ε-machines and for
first two orders of differences for soil moisture. Small dots are simulated results
using generic ε-machines. Triangles and squares represent 0th and 1st order
difference of soil moisture measurements respectively.
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CHAPTER 5

General Conclusion

This research investigated soil moisture temporal and spatial patterns from both

observational and modeling perspectives. In Chapter 2, spatial patterns of soil mois-

ture at the mesoscale were directly observed and analyzed. Chapter 3 examined the

spatial scaling relationships of soil moisture with information extracted from its tem-

poral patterns. In Chapter 4, computational mechanics models were constructed for

multiple soil moisture sites distributed in a mesoscale environmental network.

Generally speaking, soil moisture studies still rely heavily on high-quality observa-

tions. Continued development of various kinds of improved measurements at different

spatial and temporal scales is crucial in advancing knowledge on soil moisture. With

the current limited amount of soil moisture data, methods like nonlinear phase space

analysis may still be challenging to apply. New methods for pattern discoveries may

be helpful in giving insights into the behaviors and even in understanding mechanisms

of soil moisture dynamics.

Specifically, the key findings of this work are summarized as follows:

(1) Mesoscal soil moisture was more strongly correlated with sand content (r =

−0.536 to −0.704) than with antecedent precipitation index (API) for most survey

dates. Land surface characteristics exhibit coherent spatial patterns at scales up to 20

km, and those patterns often exert a stronger influence than do precipitation patterns

on mesoscale spatial patterns of soil moisture.

(2) At the mesoscale, the correlation lengths of soil moisture, sand content, and

API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively.
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(3) Upscaling of soil moisture using the method of phase space analysis is possible,

but the local polynomial map method was unable to improve the prediction accuracy

compared to linear regression and CDF matching.

(3) The unsynchronized behavior of the point-scale and field-scale soil moisture

dynamics implies that some errors cannot be eliminated for upscaling due to not only

randomness but also some deterministic reasons.

(4) Soil moisture can be described by 2- to 5-state ε-machines. As a dynamical

system, soil moisture is complex (Cµ > 0), hidden (χ > 0), and unpredictable (hµ > 0)

to some degree.

(5) Increasing orders of derivatives for soil moisture processes shows interesting

patterns on structural complexity and predictability - with increasing randomness of

the process, the variability in statistical complexity tends to increase.
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NOMENCLATURE

←−
S . . . . . . . set of all pasts
E . . . . . . . . excess entropy
A . . . . . . . alphabet
S . . . . . . . . set of all states
T . . . . . . . set of all transitions←−
S . . . . . . . past of a process
←−s . . . . . . . a particular past, a realization of the random variable−→
S . . . . . . . future of a process
ρ . . . . . . . . autocorrelation
θg . . . . . . . gravimetric water content
θ(f) . . . . . . field-scale soil moisture
θ(p) . . . . . . point-scale soil moisture
Cµ . . . . . . . statistical complexity
H . . . . . . . entropy

H(
−→
S L) . . block entropy

hµ . . . . . . . entropy rate
N . . . . . . . neutron counts
N0 . . . . . . neutron intensity over dry soil when all hydrogen sources within the foot-

print are taken into account
R . . . . . . . effective states
S . . . . . . . . a state
T . . . . . . . . a transition
wlat . . . . . . lattice water content
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APPENDIX A

Stationary processes

A stochastic process is a series of random variables Xt, where t represents the time
when the observation Xt is made. A stochastic process is strict-sense stationary if
the joint distributions of the process for all k and τ are equal (Cressie, 1993),

fX(xt1 , xt2 , ..., xtk) = fX(xt1+τ , xt2+τ , ..., xtk+τ ). (A.1)

A wide-sense stationary process is defined as a stochastic process if its mean (Eq.
A.2) and covariance (Eq. A.3) are time-invariant,

E[X(t)] = µ (A.2)

E[X(t)X(t+ τ)] = C(τ) (A.3)

where the function C( · ) is called a covariogram.
A process is ergodic if its time average A[x(t)] is equal to its statistical mean,

E[X(t)] = A[x(t)] = µ (A.4)

where A[x(t)] is defined as

A[x(t)] = lim
T→∞

1

2T

∫ T

−T
x(t)dt (A.5)
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APPENDIX B

Information theory

The followings are basic quantities and formulas of information theory (Cover and
Thomas, 2006). The entropy of a discrete random variable is defined as

H(X) = −
∑
x∈A

p(X = x) log p(X = x) (B.1)

where x are realizations of X. When the logarithm has its base of 2, the unit of
entropy is bit.
The joint entropy H(X, Y ) of two random variables X and Y is defined as

H(X, Y ) = −
∑
x∈A

∑
y∈B

p(X = x, Y = y) log p(X = x, Y = y) (B.2)

The conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈A

p(X = x)H(Y |X = x) (B.3)

= −
∑
x∈A

p(X = x)
∑
y∈B

p(Y = y|X = x) log p(Y = y|X = x) (B.4)

The mutual information is defined as

I(Y ;X) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(B.5)

It can be derived that mutual information is the reduction of uncertainty in X given
Y,

I(Y ;X) = H(X)−H(X|Y ) (B.6)

For a stochastic process Xi, which is a sequence of random variables, the entropy rate
is defined by

H(X ) = lim
L→∞

1

L
H(X1, X2, . . . , Xn) (B.7)

when limit exists.
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APPENDIX C

Equivalence relation

The definition and properties of equivalence relation are listed below (Martin, 2010).
A relation ∼ on a set A is an equivalence relation if it is

1. Reflexive: x ∼ x,∀x ∈ A
2. Symmetric: x ∼ y ⇒ y ∼ x
3. Transitive: x ∼ yandy ∼ z ⇒ x ∼ z

The definition of equivalence relation induces the definition of equivalence class,
written as [x]. For an equivalence relation R on a set A, the subset [x] contains all
the elements equivalent to x, i.e.

[x] = {y ∈ A : y ∼ x} (C.1)

The two definitions induce a theorem of partition: If ∼ is an equivalence relation
on a set A, the equivalence classes with respect to ∼ for a partition of A, and two
elements of A are equivalent if and only if they are elements of the same equivalence
class.

A partition on a set A refers to
1. [xi] 6= ∅
2. ∪i[xi] = A
3. [xi] ∩ [xj] 6= ∅, i 6= j
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