
 

 

ZEBRA MUSSEL (DREISSENA POLYMORPHA) 

POPULATION DYNAMICS AT  

SOONER LAKE, OK 

 

 

   By 

   CALEB BILES 

   Bachelor of Science in Environmental Health Science  

   East Central University 

   Ada, OK 

   2017 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE  

   July, 2020  

 

 

 

 

 

 

 



ii 

 

   ZEBRA MUSSEL (DREISSENA POLYMORPHA) 

POPULATION DYNAMICS AT  

SOONER LAKE, OK 

 

Thesis Approved: 

 

Dr. Scott Stoodley 

Thesis Adviser 

   Dr. Andy Dzialowski 

 

   Dr. Karen Hickman 

 

 

 

 

 

 

 

 

 

 

  



iii 

Acknowledgements reflect the views of the author and are not endorsed by committee members 

or Oklahoma State University. 

ACKNOWLEDGEMENTS  

 

I would like to thank first and foremost my wife Sallye for supporting me through graduate 

school. I could not have done it without her. I would like to thank my committee members Dr. 

Scott Stoodley, Dr. Andy Dzialowski, and Dr. Karen Hickman for all of their help. I would also 

like to thank the Oklahoma Gas and Electric Company for funding my degree and especially 

Matt Grimes and Jeff Everett for being great contacts. Last but not least, I would like to thank 

my fellow graduate students and friends Abby McCrea, Stephen Angle, Ben Lamb, Meghan 

Martin, Abu Mansaray, and Molly Turner for helping me collect and analyze data. I could not 

have completed any field research without them.  

 

 



 

iv 

 

Name: CALEB BILES   

 

Date of Degree: JULY, 2020 

  

Title of Study: ZEBRA MUSSEL (DREISSENA POLYMORPHA) POPULATION 

DYNAMICS AT SOONER LAKE, OK 

 

Major Field: ENVIRONMENTAL SCIENCE 

 

Abstract: Zebra mussels (Dreissena polymorpha) are native to Europe and were first reported in 

North America in the late 1980s at Lake St. Clair in Michigan. They negatively impact 

ecosystems, recreation, and facilities that use surface water such as public water supply plants, 

power generation facilities, and industrial facilities throughout North America. Understanding 

the life history characteristics of zebra mussels and the environmental factors that limit their 

success is critical for managing zebra mussel infestations. Zebra mussel population dynamics are 

influenced by temperature. Oklahoma was previously considered the southernmost portion of the 

zebra mussels’ invasive range because of increased water temperatures. Zebra mussels are 

currently distributed as far South as Austin, Texas. This suggests that zebra mussels can and will 

continue to invade aquatic ecosystems that are characterized by extreme temperatures. Zebra 

mussels were first reported in Oklahoma in 1993 and in Sooner Lake in 2006. Sooner Lake is 

used to cool a coal-fired power generation facility that lies directly adjacent to the lake. Heated 

effluent that continually discharges from the facility has created an artificial thermal gradient 

with temperatures decreasing away from the discharge channel. This artificial thermal gradient 

provides a unique opportunity to study how zebra mussels react to a wide range of temperatures 

within a single reservoir. The purpose of this study was to: 1) document the extent of the thermal 

gradient at Sooner Lake, and 2) compare zebra mussel veliger densities along the temperature 

gradient to determine how temperature affects zebra mussel population dynamics and 

reproductive success. A significant thermal gradient was found at Sooner Lake where 

temperatures were approximately 10 °C warmer in the discharge channel compared to the main 

body of the lake during the summer months. Veliger densities differed along this thermal 

gradient. These differences were not consistent between sites and not always driven by 

temperature. This indicates that other environmental variables are important for zebra mussels. A 

maximum density of 120 veligers/L occurred at the intake while on the same date 114 veligers/L 

were recorded at the discharge buoy where temperatures were much higher. A rapid decrease in 

temperatures to suboptimal conditions was likely responsible for the lack of a secondary spawn 

in 2019. This study found that both high and low temperatures can have negative impacts on the 

reproductive success of zebra mussels. These results suggest that zebra mussels along the 

southern invasion front have a high tolerance to extreme water temperatures and are capable of 

persisting long term in such environments. 
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CHAPTER I 

 

INTRODUCTION 

 

It is estimated that nearly 50,000 invasive species have been introduced into the United 

States. Many of these species cause economic losses in agriculture, forestry, and other sectors of 

the United States (U.S.) economy (Pimentel et al., 2005). Invasive species also negatively impact 

native species. It is estimated that between 6% (Duenas et al., 2018) and 49% (Wilcove et al., 

1998) of native species listed under the United States Endangered Species Act are at risk because 

of competition or predation from invasive species.  

Zebra mussels (Dreissena polymorpha) are native to Europe and were first reported in 

North America in the late 1980s at Lake St. Clair, Michigan (Laney, 2010). Ballast water 

exchange from transatlantic ships traveling by way of the Great Lakes-St. Lawrence Seaway was 

most likely responsible for the introduction of zebra mussels into North America (Hebert et al., 

1989). They dispersed rapidly down major U.S. river systems eventually leading to the 

Mississippi River in 1991. They are currently found in at least 31 states (Benson et al., 2019; 

Figure 1). Zebra mussels were discovered in Oklahoma on the Arkansas River in the McClellan-

Kerr Navigation System in 1993 (Laney, 2010). They have since spread to over 20 reservoirs 

across the state including Sooner Lake located in north-central Oklahoma (Benson et al., 2019; 

Figure 2).  
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Sooner Lake was built in 1972 for the primary purpose of cooling a coal-fired power 

generation facility that is owned and operated by the Oklahoma Gas & Electric Company   

(OG&E). Zebra mussels were first reported at Sooner Lake in 2006 (Boeckman, 2011). Zebra 

mussels have biofouled submerged equipment and clogged pipes and screens within the power 

plant. This resulted in reductions in plant efficiency and economic losses (Matt Grimes, personal 

communication, Supervisor Environmental/Op. Chem, OG&E, 2019).  

Sooner Lake is unique because warm water continuously discharges from the power 

plant. Heated effluent travels down a channel that is separated from the main body of the lake by 

an earthen barrier. These circumstances suggest that a thermal gradient exists at Sooner Lake. 

Sooner Lake is characterized by a wide range of temperatures as a result of these discharges.  

Temperature is a limiting factor in the spread and distribution of zebra mussels 

(Karatayev, 1998; Sprung, 1987; Aldridge et al., 1995; McMahon & Ussery, 1995; Spidle et al., 

1995; Lei et al., 1996; Stoeckmann & Garton, 2001; Boeckman, 2011; Churchill, 2013; Churchill 

et al., 2017; Jost et al., 2015). This study is unique because it provides an opportunity to study 

how temperature influences zebra mussel population dynamics in a thermally diverse 

environment. 

The objectives of this study were to document the extent of the thermal gradient at 

Sooner Lake and to compare zebra mussel larval (veliger) densities in the water column along 

this gradient. Temperature and other water quality parameters that impact zebra mussel 

reproduction and output of veligers were measured and analyzed. Six sites at Sooner Lake were 

selected to collect water quality and veliger samples. These six sites were distributed across the 

lake and were selected to represent differences in temperature and other water quality 

parameters.  
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Preliminary sampling of water temperatures at all sites suggest that there is a significant 

thermal gradient at Sooner Lake. An earthen barrier separates the discharge channel from the 

main body of the lake further enhancing differences in temperature. It is hypothesized that there 

is a significant thermal gradient at Sooner Lake resulting from the heated effluent that discharges 

from the OG&E power plant.  

Veliger densities previously peaked during the primary spawn when temperatures were ≤ 

28 °C at Oologah Lake in Oklahoma (Boeckman, 2011). Veligers did not re-emerge at Lake 

Oologah for a secondary spawn until temperatures declined below 26 °C (Boeckman, 2011). 

Boeckman (2011) reported differences in veliger densities in Sooner Lake and attributed it to the 

influence of the heated discharge. It is hypothesized that veliger densities will be significantly 

different along the artificial thermal gradient and that population densities will decline at all sites 

when temperatures reach or exceed 28 °C. It is further hypothesized that veligers will not re-

emerge for a secondary spawn until temperatures decline to ≤ 26 °C.  

Adult zebra mussel die offs have previously been documented at Sooner Lake when 

temperatures exceed 30 °C. Veliger densities remained low at sample sites closer to the heated 

discharge resulting in seasonal extirpation and reintroduction of adults in a previous study 

(Boeckman, 2011). This suggests that reproductive output will be greater at sites where mussels 

are not negatively influenced by temperatures known to cause physiological stress (Aldridge et 

al, 1995). It is hypothesized that greater veliger densities will be observed at sample sites where 

water temperatures are not strongly influenced by the heated discharge. 
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

Spread and Distribution in North America 

Zebra mussels were found throughout the Great Lakes by 1990. They were later found in 

the Illinois and Hudson Rivers. They spread to the Mississippi River in 1991(Benson et al., 

2019). The rapid spread of zebra mussels throughout the Great Lakes and the major river systems 

in North America (Figure 1) has been attributed in part to their larval life stage as veligers 

(Benson et al., 2019).  

The larval (veliger) life stage is a free-floating planktonic stage that facilitates zebra 

mussel dispersal by flowing water. Adult zebra mussels also attach to boats and other overland 

vectors facilitating dispersal to new water bodies (Mackie, 1991). Colonization of isolated 

reservoirs by overland transport creates source populations that reproduce. Veligers from these 

reproducing adults drift downstream to other waterbodies (Horvath et al., 1996). Downstream 

transport is especially important in states where there are numerous impoundments and high 

connectivity between rivers and reservoirs. The dispersal of veligers through connected systems 

moves at a faster rate than overland transport (Johnson & Carlton, 1996).  
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Figure 1. Zebra mussel distribution in the United States as of 2019 (Nonindigenous Aquatic 

Species Database, USGS, 2019). 

 

Zebra mussels were discovered in Oklahoma in 1993 on the Arkansas River in the 

McClellan-Kerr Navigation System. The first confirmed reservoir in Oklahoma to be invaded by 

zebra mussels was Oologah Lake in 2003. Zebra mussels continued to spread down the Arkansas 

River to more reservoirs and connecting waterbodies (Laney, 2010) including Sooner Lake in 

2006 (Boeckman, 2011). They are currently established in over 20 reservoirs in Oklahoma 

(Benson et al., 2019; Figure 2). 

 

 



6 

 

 

Figure 2. Zebra mussel distribution in the State of Oklahoma as of 2019 (Nonindigenous 

Aquatic Species Database, USGS, 2019). 

 

Sooner Lake was previously considered a reservoir along the southern portion of the 

zebra mussel's invasive range in 2011 (Boeckman, 2011). The southern limit of the zebra 

mussel’s range in North America is continually expanding (Benson et al., 2019). Churchill et al. 

(2017) state that increased invasiveness is possible if zebra mussels portray latitudinal changes in 

thermal tolerance and become capable of producing thermally tolerant, rapidly growing 

individuals without excessive mortality. Latitudinal changes in zebra mussel occurrences have 

been documented since zebra mussels began invading streams and reservoirs in North Texas in 
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2009. The southernmost reservoir with an established zebra mussel population is Ladybird Lake 

in Austin, Texas, as of 2018. (Benson et al., 2019). 

Life Cycle and Biology 

Zebra mussels (Dreissena polymorpha) are a small species of shellfish that have a distinct 

striped pattern on the outer shell (Mackie, 1991). Zebra mussels become reproductively mature 

when they reach a shell length of approximately 7-9 mm. They generally have two reproductive 

spawning events each year based on environmental cues such as food supply and temperature 

(Jantz & Neumann, 1998). The first occurs in the spring between May and June. The second 

occurs in the Autumn between September and November (Mackie, 1991).  

Spawning is largely driven by water temperature and occurs when temperatures reach 

approximately 12 °C in the spring (Borcherding, 1991; McMahon, 1996; Jantz & Neumann, 

1998). Spawning may occur earlier or later depending on geography and environmental 

conditions including temperature (Borcherding, 1991). Early onset of spawning was initiated at 

Lake Texoma when temperatures were between 16-18 °C. This occurred 44 days earlier than 

three cooler lakes in the Great Lakes Region (Churchill, 2013). 

Zebra mussels are dioecious. Fertilization occurs outside the body in the water column. 

Eggs develop within the female and are expelled followed by fertilization by the male (Franzen, 

1983; Sprung, 1987). Zebra mussels have high fecundity. Females can expel up to 1.5 million 

eggs per year (Borcherding, 1991; Neumann et al., 1993). Free-floating veligers emerge within 

three to five days after fertilization (Benson et al., 2019). They remain in the free-floating 

planktonic stage for approximately 4 weeks (Mackie, 1991).  

Optimal temperatures for veliger development range from 12 to 24 °C (Sprung, 1987). 

Veligers undergo morphological changes as they develop into pediveligers and then into the 
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plantigrade (post-veliger) and juvenile stage. Juveniles become adults upon further development 

of the outer shell and onset of sexual maturity. These morphological changes include the 

development of a siphon, foot, and organ system (Ackerman et al., 1994). Adults grow 1.5 to 2.0 

cm in their first year and can develop a shell length of 3.0 cm (Mackie, 1991). The lifespan for 

adult zebra mussels is between 3 and 9 years (Benson et al., 2019). 

Ecological and Environmental Implications 

Zebra mussels negatively impact aquatic ecosystems by altering native species 

composition, species interactions, and ecosystem properties (Karatayev et al., 2002; Karatayev et 

al., 2015). These alterations in ecosystem functionality include declines in production and 

biomass of pelagic autotrophs, heterotrophs, herbivorous zooplankton, and planktivores. These 

declines are due to the shift in nutrients and primary production from the pelagic zone to the 

benthos (Mackie, 1991).  

Zebra mussels are filter feeders that can filter approximately 1-liter of water per day. 

Filtering is facilitated by an inhalant and exhalant siphon for food uptake and excretion (Benson 

et al., 2019). Water is almost always circulating through zebra mussel siphons and gills which 

remove particulates from the water column (Karatayev et al., 2002; Mackie, 1991). Zebra 

mussels can reduce the abundance of phytoplankton in the water column by as much as 90 % 

(MacIsaac, 1996). Filtered particles that are not consumed are bound in mucous and excreted as 

pseudofeces (Karatayev et al., 2002; Mackie, 1991). 

 Removal of particulates by zebra mussel’s increases water clarity and can alter the 

function of native aquatic ecosystems. Increased water clarity increases light penetration and 

results in a larger euphotic zone. Attached macrophytes can populate a greater amount of area in 

this altered environment (Karatayev et al., 2002; Mackie, 1991). Zebra mussels reduced 
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phytoplankton abundance and increased water clarity at Lake Oneida, New York, promoting 

increased growth of submerged macrophytes (Zhu et al., 2006). There was also a shift from 

shade-tolerant species to species that tolerate wider ranges of light levels.  

Increased macrophyte diversity and occurrence can benefit species of zooplankton, 

invertebrates, and fish by providing spawning or nursery habitats (Zhu et al., 2006). MacIsaac et 

al. (1995) contrastingly found that zebra mussels can reduce zooplankton abundance by as much 

as 71%. This suggests that any benefit to zooplankton communities associated with increased 

macrophyte diversity may not offset the simultaneous competition between zooplankton and 

zebra mussels.  

Reductions in zooplankton abundance by zebra mussels can be detrimental to some fish 

species, especially those that are pelagic feeders. Raikow (2004) found that zebra mussels 

indirectly reduced the growth of larval bluegill. These reductions occurred because zebra mussels 

directly consumed microzooplankton or depleted the phytoplankton community to such an extent 

that microzooplankton starved. Reductions in the microzooplankton community resulted in the 

depletion of a food source for larval Bluegill (Raikow, 2004). 

Zebra mussels negatively affect native unionids and crayfish. Zebra mussels settle and 

grow directly on these native species. Approximately 300 individual zebra mussels were 

observed on native unionid mussels in Lake St. Claire. Zebra mussel settlement on native 

unionid shells can be so great that unionids cannot open their valves, or they cannot fully close 

their shells (Mackie, 1991).  

Zebra mussels also compete with native mussels for food resources. Zebra mussels 

greatly reduced the availability of unicellular Microcystis in the Hudson River. Microcystis is a 
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preferential food source for native mussels. A lack of an adequate food source will likely result in 

declines in native mussel populations (Baker and Levinton, 2003). 

Economic and Social Implications 

Zebra mussels negatively impacted the economy since invading North America. There 

have been economic repercussions associated with power generation facilities, industrial 

facilities, and water treatment facilities (Benson et al., 2019). Economic costs at these facilities 

are associated with plant re-design, fixing or replacing damaged infrastructure, reduced 

efficiency due to clogged pipe networks, hiring workers to manually scrape mussels off 

infrastructure, and purchasing molluscicides (Rosaen et al., 2016). It was estimated that Ontario 

power plants spend approximately $1.2 million/plant/year for monitoring and control purposes 

(Colautti et al., 2006). The average annual economic cost was estimated at approximately $30 

million at power plants, water companies, golf courses, and other industries using surface water 

in the Great Lakes Region, (Park & Hushak, 1999). A paper company on Lake Michigan spent 

approximately $1.4 million in 1997 when the company had to remove 400 cubic yards of zebra 

mussels from its intake (USGS, 1997). Pimental et al. (2005) estimated the total economic loss 

associated with zebra mussels is approximately $1 billion annually. Reported economic costs 

associated with zebra mussel infestations are variable. Zebra mussels will continue to incur 

costly damages to facilities that use surface water.  

Zebra mussels negatively impacted navigational and recreational boating in North 

America (Ludyanskiy et al., 1993). Zebra mussels attach onto the bottom of boats and increase 

drag. Smaller zebra mussels can get into engine cooling systems of boats and cause overheating 

and damage. Zebra mussels can colonize a surface to such an extent that buoys have sunk under 

their weight. Fishing gear in the water is at risk of biofouling from zebra mussel infestations 
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(Benson et al., 2019). Zebra mussels cost people their time and are an inconvenience. States have 

required boaters to quarantine their watercraft for up to 30 days if they have come from a state 

with zebra mussels (Ouellet, 2018).  

Zebra mussel infestations have additional impacts. Tourism can be negatively affected by 

zebra mussels. Large numbers of shells from dead zebra mussels have washed up on beaches at 

Lake Erie limiting recreational activities and causing foul odors (Ludyanskiy et al., 1993). Dead 

mussels on beaches are a health hazard because swimmers and animals can cut their feet on 

shells (Minnesota Department of Natural Resources, 2015). Zebra mussels negatively affect the 

taste and odor of drinking water. This problem was observed in Chicago on the shores of Lake 

Michigan (Vogel et al., 1997). Taste and odor problems were also attributed to zebra mussels at 

Lake Hemlock in New York. Lake Hemlock is the drinking water source for Rochester, New 

York (Kriewall & Zapa, 2006). 

Temperature and Zebra Mussel Distribution 

Temperature is a major driver and limiting factor in the spread and distribution of zebra 

mussels. There is evidence that the thermal tolerance of zebra mussels is variable. North 

American zebra mussels have a 2 to 3 °C higher upper thermal tolerance compared to Northern 

European zebra mussel populations (McMahon & Ussery, 1995). Differences in thermal 

tolerance between these two populations are likely due to the origin of the North American zebra 

mussel. The origin is thought to be the Black, Arial, and Caspian Seas which are in the 

southernmost portion of the zebra mussels' range in Europe. This likely resulted in a more 

thermally tolerant population in the United States compared to populations in the northern 

reaches of the zebra mussel's European range (McMahon & Ussery, 1995).  
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The upper thermal limit for adult zebra mussels is approximately 30 °C (Jost et al., 2015) 

and 28 °C for veligers (Boeckman, 2011). The negative impacts that upper temperatures inflict 

upon zebra mussel populations varies considerably in the literature despite the thermal limit 

approximation of 30 °C. Spidle et al. (1995) found that zebra mussels can withstand 

temperatures of 30 °C for up to 14 days without mortality. Increasing the acclimation 

temperature in mesocosm studies enhanced mussel survival when exposed to increased 

temperatures. Zebra and quagga mussels that were acclimated to 15 or 20°C were more likely to 

survive acute thermal stress than those specimens that were only acclimated to 5°C (Spidle et al., 

1995).  

Zebra mussels collected from the Niagara River were exceptionally tolerant of higher 

temperatures. Those that were acclimated at 32°C survived for 35 days without extensive 

mortality (Aldridge et al.,1995). McMahon and Ussery (1995) also found that zebra mussels can 

successfully acclimate to warmer temperatures. Zebra mussels were held at temperatures greater 

than 30°C for extended periods without excessive mortality.  

A major zebra mussel die-off was reported at Gull Lake, Michigan, where temperatures 

were well below 30°C (White et al., 2015). This die-off was associated with accumulated degree 

hours > 25°C. The die-off at Gull Lake suggested that chronic exposure to sub-lethal 

temperatures can negatively influence zebra mussel populations. Acute lethal thresholds tend to 

be higher than chronic lethal thresholds indicating that previous reports may not accurately 

represent in-situ conditions (White et al., 2015).  

Churchill et al. (2017) conducted an in-situ study of zebra mussel mortality at Lake 

Texoma and reported a strong temperature mortality relationship. Churchill et al. (2017) state 

that increased invasiveness is possible if zebra mussels portray latitudinal changes in thermal 
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tolerance, and become capable of producing thermally tolerant, rapidly growing individuals 

without excessive mortality. Zebra mussels were confined to North Texas at the time of the study 

by Churchill et al. (2017). The 2019 Nonindigenous Aquatic Species Database (Benson et al., 

2019) indicates the further spread of zebra mussels into southern portions of Texas.  

Sooner Lake Case Study 

Sooner Lake is a reservoir in north-central Oklahoma that was built in 1972 for the 

primary purpose of cooling a coal-fired power generation facility that is owned and operated by 

the Oklahoma Gas & Electric Company (OG&E). The lake is an impoundment of Greasy Creek, 

which is a tributary of the Arkansas River. It is classified by the Oklahoma Water Resource 

Board (2015) as a mesotrophic reservoir based on nutrient and chlorophyll a concentrations 

collected from October of 2014 to July of 2015. The lake covers an area of approximately 5,400 

acres and has a holding capacity of 149,000 acre-feet. It has 51.8 miles of shoreline and is at 

normal pool elevation at 927 feet. The maximum recorded depth at Sooner Lake is 73.5 feet 

(OWRB, 2015).  

OG&E controls reservoir discharge from the dam back into the Arkansas River. The 

amount discharged varies seasonally depending on reservoir conditions. The power plant 

discharges approximately 789.12 million gallons per day of cooling water (Matt Grimes, 

personal communication, Supervisor Environmental/Op. Chem, OG&E, 2019). This results in 

warmer water temperatures along the discharge channel (Boeckman, 2011).  

Costly damages associated with zebra mussels have been observed at Sooner Lake. 

OG&E spends approximately $100,000 annually at Sooner Lake on the treatment of their 5 

intake bays with the mulluscicide Zequanox®. OG&E has reported post-application mortality 

rates as high as 99% in the intake bays. Zebra mussel colonization on a circulating water pump 
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and a diesel fire pump cost OG&E $310,000. OG&E does not expect regular failures of 

equipment with continued treatment of the intake bays (Matt Grimes, personal communication, 

Supervisor Environmental/Op. Chem, OG&E, 2019).  

Zebra mussels also cause problems at OG&E by clogging screens on closed cooling 

water (CCW) heat exchangers. Screens on CCW heat exchangers are cleaned 8-10 times per 

summer season. This costs cost up to $70,000 to $80,000 annually. Uncleaned screens could lead 

to reduced efficiency amounting to millions of dollars of lost power generation at the plant (Matt 

Grimes, personal communication, Supervisor Environmental/Op. Chem, OG&E, 2019). 

A monitoring program was initiated in Sooner Lake in 2007. Sampling was conducted 

from 2007 to 2010 to assess zebra mussel density, reproduction, and growth between sites in the 

discharge channel and sites in the main body of the lake which represent typical Oklahoma 

ambient water temperatures (Boeckman, 2011). This previous monitoring program provided an 

opportunity to evaluate the population dynamics of zebra mussels under different environmental 

conditions, especially increased water temperatures.  

Sooner Lake is unique because it has a relatively large thermal gradient due to the warm 

water that continuously discharges from the OG&E power plant. The eastern portion of the lake 

represents typical ambient Oklahoma reservoir temperatures. The western portion has elevated 

temperatures due to heated effluent.  

Peak veliger densities were recorded at 150/L in 2007, 580/L in 2008, 350/L in 2009, and 

600/L in 2010. Adults located in the discharge channel never exceeded 10,000 m2 which resulted 

in veliger densities of < 100/L. Adult to veliger density ratios were not consistent throughout the 

study period. Adult densities were recorded at 150,000 m2 in 2007, 50,000 m2 in 2008, 60,000 

m2 in 2009, and 30,000 m2 in 2010. (Boeckman, 2011).  
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The timing of the first yearly spawns at Sooner Lake between 2007 and 2010 were 

similar to other Oklahoma reservoirs except at sites within the discharge channel (Figure 3). 

Veligers were observed in May and peak densities occurred in June in the main body of the lake. 

Spawning occurred earlier in the discharge channel where water temperatures were consistently 

warmer. Veligers were first observed at these sites in April followed by peak densities in May. 

Veliger densities in the thermally altered discharge zone never exceeded 100/L. This was likely 

because adult mussels were extirpated by July of each year when water temperatures exceeded 

30°C for extended periods (Boeckman, 2011).  

Winter temperatures at the discharge buoy ranged from 3°C to 10°C. These temperatures 

supported the growth of young, newly settled veligers throughout the winter months. The swing 

from temperatures well above 30°C in the summer months to temperatures between 3-10 °C 

resulted in a cycle of extirpation and reintroduction. This is consistent with Churchill et al. 

(2017) results. They suggested that after a population crash, young of the year zebra mussels 

contribute more to the reproductive population size, allowing for the persistence of the species. 

This cycle consistently resulted in low adult densities in the discharge zone between 2007 and 

2010 (Boeckman, 2011).  

Isolated die-offs of adult mussels at Sooner Lake were observed in July and August 

between 2007 and 2010. These die-offs were associated with temperatures greater than 30°C and 

were restricted to mussels greater than 15 mm in length. Smaller mussels tolerated the higher 

temperatures. Boeckman (2011) suggested that adult zebra mussels allocated energy towards 

reproduction, and the remaining amount of energy for somatic growth was insufficient to 

withstand temperatures above 30°C. This is supported by Aldridge et al. (1995) who stated that 

energy assimilation rates could not match energetic expenditure for zebra mussels at 
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temperatures above 28°C. Temperatures above 28°C cause increased basal energy expenditure to 

such an extent that the filter-feeding mechanism cannot compensate (Aldridge et al., 1995). Lei 

et al. (1996) also found that upper temperatures caused extreme disruption of normal 

physiological function in zebra mussels.  

Zebra mussels do not appear to cease reproduction in order to conserve energy for 

metabolic maintenance. This makes reproductively mature adults even more susceptible to 

physical stress (Stoeckmann & Garton, 2001). This reproductive and metabolic energy balance 

characteristic has also been observed with low food (i.e. chlorophyll a) concentrations. The 

minimum chlorophyll a concentration for long term survival is 5 µg/L (Jantz & Neumann, 1998). 

Low chlorophyll a concentrations result in suboptimal conditions for zebra mussel metabolic 

requirements. These conditions do not necessarily prevent mussels from directing available 

energy towards reproduction (Palais, et al., 2011).  Low chlorophyll a concentrations were also 

reported to have contributed to high mortality rates at Lake Texoma (Churchill et al., 2017). 

Boeckman (2011) studied zebra mussel population dynamics at Oologah Lake in 

Oklahoma. He reported a population crash that resulted in a population decrease from 480/L in 

2006 to less than 1/L between 2007 and 2010. Drought conditions and record flood events 

between 2006 and 2009 were thought to have caused the population crash. Veligers were likely 

flushed out of the reservoir during flood events or settled in the riparian area. Those veligers 

settling above the normal pool elevation in riparian areas would have been extirpated when water 

levels returned to normal (Boeckman, 2011). Churchill et al. (2017) also found that flooding in 

reservoirs creates a temporarily available substrate in littoral areas. Flooding events during the 

spawning season cause mussels to settle above the normal pool elevation. They are desiccated 

when floodwaters recede (Churchill et al., 2017).  
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Sooner Lake water levels are managed by OG&E to maintain optimal conditions at the 

power plant (Matt Grimes, personal communication, Supervisor Environmental/Op. Chem, 

OG&E, 2019). Zebra mussels at Sooner Lake are not exposed to fluctuations in water levels like 

other reservoirs in the state and may experience more stable population dynamics over time. 

Minimal fluctuations in lake levels at Sooner Lake suggests that other environmental factors are 

of more importance in limiting zebra mussel populations. 
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CHAPTER III 

 

METHODS 

 

Study Area 

Zebra mussel veliger population dynamics and water quality were studied at Sooner Lake 

from August 2018 to November 2018 and from May 2019 to October 2019. Six sample sites 

(Figure 3) were selected to be consistent with the sites sampled by Boeckman (2011). These sites 

included the discharge bridge, the discharge buoy, the boat dock at the end of the discharge 

channel, the dam, the intake buoy, and the intake (Figure 3). The sites located at the discharge 

bridge, discharge buoy line, and boat dock represent an artificial thermal gradient resulting from 

warm water discharging from the power plant. The dam, intake buoy, and intake represent 

sample locations that are not significantly affected by the heated discharge. These sites were 

sampled approximately every two to three weeks beginning in August 2018 and ending in 

November of 2018. Sites were sampled approximately every two to three weeks beginning in 

May 2019 and ending in late October 2019. Samples were not taken from December through 

April because veliger densities are generally absent or low during this time (McMahon, 1996; 

Boeckman, 2011)
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Figure 3. Sample sites at Sooner Lake (discharge bridge, discharge buoys, boat dock, dam, 

intake buoys, and intake). The discharge channel (gray) represents the heated part of the 

reservoir. The thermal effluent is released at the Discharge Bridge site. 

 

Water Quality 

Water quality data were collected using a YSI multi-parameter probe. Temperature [°C], 

dissolved oxygen [mg/L], and turbidity [FNU] were collected at the six sample sites on each 

sample date. Data at each site were collected at 0.5 and 1 m below the surface. Depth profiles 

were also taken to capture stratification. Data retrieved from the YSI probe were uploaded onto a 

PC using the YSI KorrDSS desktop software. Datasheets were saved as Microsoft Excel 

workbook files after they were uploaded. Water clarity was also measured at each site using a 
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standard black and white Secchi Disk [m]. Secchi Disk depths were recorded in a field notebook 

and organized into Excel spreadsheets.  

Water samples were collected for total phosphorus and chlorophyll a 1 m below the 

surface at all sites using a Van Dorn water sampler. Samples were stored in 1 L amber sample 

bottles and put on ice for transport back to the laboratory. They were then either frozen for total 

phosphorus measurements or stored at 4 °C for chlorophyll a measurements for less than 24 

hours and processed.  

Algal biomass was measured two ways. Relative fluorescence was measured within 24-

hours of collection with a Turner Designs Trilogy Fluorometer. Chlorophyll a was measured by 

vacuum filtering sample water through Whatman 47mm glass microfiber filters (GF/F) within 24 

hours of collection. Filters were then quarter folded and individually wrapped in aluminum foil 

and frozen at -20°C until analysis.  

Chlorophyll a was extracted using an acidification method (APHA, 2005). Filters were 

placed in 10 mL of 90% acetone for 2-24 hours in the dark at 4°C before measurement using the 

Turner Designs Trilogy Fluorometer. The trophic status of Sooner Lake was calculated using 

chlorophyll a concentrations (Carlson, 1977). Total phosphorus was measured colormetrically 

following potassium persulfate (K2S2O8) digestion using a Thermo Scientific Genesys 20 

spectrophotometer at 885 nm.  

Zebra Mussel Veliger Collection and Enumeration 

Veligers were collected at the six sample sites using a 63 µm plankton tow net. Triplicate 

vertical tows were collected at each site. The depth of vertical tows varied with the sample site 

and lake elevation. Tows at the discharge buoys, dam, and intake buoys were taken from the 

surface down to 1 meter above the bottom of the lake. The bottom ranged from approximately 16 
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m at the dam to approximately 5 m at the discharge and intake buoy sites. Tows at the discharge 

bridge, boat dock, and intake were only 1 m because of the shallow depths of these sites. The 

contents of each tow were rinsed into individual 250 ml plastic bottles and preserved in 95% 

ethanol. 

Veligers were enumerated using an Olympus SZX-ILLD100 dissecting microscope with a 

cross-polarization filter. The cross-polarization filter is useful for identifying veligers. It is 

especially useful when they are rare or when a sample is cluttered by other organisms, detritus, 

or debris. Veligers appear white with small black x’s when using this type of filter (Johnson, 

1995).  

Two methods were used to quantify veligers depending on the density within a given 

sample. The whole sample was counted if there were less than 100 veligers per 20 to 25 ml of 

sample water. A sub-sample of 15-30 ml was used to quantify veliger densities if there were 

greater than 100 veligers per 20 to 25 ml of sample water. Veligers were counted in a gridded 

petri dish. Densities were determined for each sample by dividing the number of veligers 

counted in a sample by the volume of the plankton net tow. 

Adult Zebra Mussel Collection and Enumeration 

Sample panels were deployed at the intake buoy site in June 2019 for the collection of 

adult zebra mussels. Three samplers were attached to a length of PVC pipe and suspended 

approximately 1 m below the surface. Samplers were composed of 4 stacked masonite tiles that 

varied in size and were 6”, 8”, 10”, and 12” squares.  

The first collection of sample panels was completed on September 9th, 2019 to assess the 

density of settled adult zebra mussels. These mussels represented the annual primary spawn that 

typically begins in April (Boeckman, 2011). One sampler from each site was removed from the 
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water and placed into a labeled trash bag for transport back to the laboratory for enumeration. 

One of the two remaining samplers was thoroughly cleansed of attached zebra mussels. This 

allowed us to capture the secondary fall cohort counts accurately without the influence of the 

spring cohort. This collection was completed on October 31st, 2019. 

Enumeration of adult zebra mussel densities was conducted by disassembling the 

samplers. Three tiles were then selected from each sampler and each tile was treated as a grid 

composed of 4 cm2 squares. Three squares were randomly selected per tile for counting adult 

mussels, totaling 9 subsamples. Mussels were removed from subsample squares and preserved 

with 95% ethanol in glass mason jars until counted at a later date.  

Statistical Analysis 

A repeated measures statistical approach was used to determine if there were significant 

differences in temperature and veliger densities between and within the six sample sites 

throughout the sampling period. The null hypothesis was first applied which assumes no 

significant differences. The null hypothesis was tested by comparing sites using Two-Way 

Repeated Measures Analysis of Variance (RM-ANOVA) using Sigma Stat.  

Correlations were used to assess relationships between general water quality 

characteristics and zebra mussel veliger abundance. The correlations were conducted using the 

Pearson Correlation Coefficient in GraphPad Prism 8.  

Box and whisker plots were used to visually represent the distribution of veliger densities 

within sample sites. These plots showed the minimum, median, mean, and maximum values, the 

1st and 3rd quartiles, and the interquartile range. 
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CHAPTER IV 

 

RESULTS 

 

Documentation of the Thermal Gradient 

Results from this study indicated a significant thermal gradient at Sooner Lake (Table 1 

& Figure 4). Temperatures were consistently and significantly warmer in the discharge channel 

compared to sites in the main body of the lake (P = <0.001). Temperatures were also significantly 

different among sites within the discharge channel (P = <0.001). No significant differences were 

observed among sites in the main body of the lake (P >0.050).  

Table 1. These data represent differences in temperature among the six sample sites at Sooner 

Lake during the 2018 and 2019 sampling seasons. These data are a result of a Repeated Measures 

Analysis of Variance.  

 
Comparisons for factor: Site      

Comparison Diff of 

Means 

p q P P<0.050 

Discharge Bridge vs. Intake Buoy 6.12 6 75.173 <0.001 Yes 

Discharge Bridge vs. Dam 6.049 6 74.307 <0.001 Yes 

Discharge Bridge vs. Intake 5.748 6 70.606 <0.001 Yes 

Discharge Bridge vs. Boat Dock 5.453 6 66.984 <0.001 Yes 

Discharge Bridge vs. Discharge Buoy 2.432 6 29.87 <0.001 Yes 

Discharge Buoy vs. Intake Buoy 3.688 6 45.304 <0.001 Yes 

Discharge Buoy vs. Dam 3.618 6 44.437 <0.001 Yes 

Discharge Buoy vs. Intake 3.316 6 40.736 <0.001 Yes 

Discharge Buoy vs. Boat Dock 3.021 6 37.114 <0.001 Yes 

Boat Dock vs. Intake Buoy 0.667 6 8.189 0.009 Yes 

Boat Dock vs. Dam 0.596 6 7.323 0.015 Yes 

Boat Dock vs. Intake 0.295 6 3.622 0.239 No 

Intake vs. Intake Buoy 0.372 6 4.567 0.113 No 

Intake vs. Dam 0.301 6 3.701 0.225 Do Not Test 

Dam vs. Intake Buoy 0.0705 6 0.866 0.986 Do Not Test 
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Figure 4. Temperature measurements at Sooner Lake taken from 1 m below the surface. 

Temperatures were recorded over the course of the 2018 and 2019 sampling periods.  

 

 

Temperature and Zebra Mussel Veliger Densities in 2018 

There were significant differences in veliger densities among the six sample sites for 

most sample dates in 2018 and 2019 (P = <0.001) (Table 2 & Figure 5). The interaction between 

site and date was also significant for veliger densities (P = <0.001) and temperature (P = <0.001). 

These interactions were complex and suggest that differences between sites were not consistent 

across sample dates. No significant differences in temperatures or veligers were observed 

between sample sites on some dates. Water temperatures that were significantly warmer did not 

always correspond to lower veliger densities. Water temperatures that reflected optimal 

conditions for zebra mussels did not always correspond to high veliger densities. 
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Table 2. These data represent differences in veliger densities among the six sample sites at 

Sooner Lake during the 2018 and 2019 sampling seasons. These data are a result of a Repeated 

Measures Analysis of Variance.  

 

Comparisons for factor: site      

Comparison Diff of 

Means 

p q P P<0.050 

Intake vs. Dam 20.191 6 15.003 <0.001 Yes 

Intake vs. Intake Buoy 17.186 6 12.77 <0.001 Yes 

Intake vs. Boat Dock 16.324 6 12.129 <0.001 Yes 

Intake vs. Discharge Bridge 11.809 6 8.775 <0.001 Yes 

Intake vs. Discharge Buoy 6.119 6 4.547 0.064 No 

Discharge Buoy vs. Dam 14.071 6 10.456 <0.001 Yes 

Discharge Buoy vs. Intake Buoy 11.067 6 8.223 0.001 Yes 

Discharge Buoy vs. Boat Dock 10.204 6 7.582 0.002 Yes 

Discharge Buoy vs. Discharge Bridge 5.69 6 4.228 0.092 No 

Discharge Bridge vs. Dam 8.382 6 6.228 0.009 Yes 

Discharge Bridge vs. Intake Buoy 5.377 6 3.995 0.12 No 

Discharge Bridge vs. Boat Dock 4.515 6 3.355 0.24 Do Not Test 

Boat Dock vs. Dam 3.867 6 2.873 0.38 No 

Boat Dock vs. Intake Buoy 0.863 6 0.641 0.997 Do Not Test 

Intake Buoy vs. Dam 3.004 6 2.232 0.626 Do Not Test 
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Figure 5. Zebra mussel veliger population densities [Mean ± Standard Error] at Sooner Lake 

observed over the course of the 2018 and 2019 sampling periods. 

 

A secondary spawn event occurred in the fall of the first year (2018) of monitoring 

(Figure 5). Veliger densities peaked at all sites in October. A maximum of 116 veligers/L was 

observed at the intake. The lowest veliger densities recorded in 2018 were in August and 

November. The primary spawn event was not monitored in 2018 until August.  

Veliger densities remained low and no significant differences were observed between 

sample sites in August (P > 0.05). Temperatures at all sites peaked in August and all sites were 

significantly different from each other (P < 0.05) except between the intake buoy and the dam.  

Temperatures at the discharge bridge and discharge buoy exceeded 30°C by late August (36.6 

and 31.3°C). These two sites were the only sites characterized by an increase in temperature 

between August 3rd and August 25th. Both sites were significantly warmer than the other four 

sites (P < 0.001).  
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Veliger densities increased at all sites between late August and mid-October indicating 

the occurrence of a secondary spawn and favorable conditions for reproduction. These increases 

in veliger densities occurred when temperatures decreased to < 28°C in the discharge channel, 

and < 26°C at the other sites. Peak densities at all sites occurred in October when temperatures 

ranged from 21.61°C at the dam to 27.11°C at the discharge bridge (P < 0.001). 

Densities declined to ≤ 15 veligers/L at all sites in November. Temperatures at the 

discharge bridge and discharge buoy were 18.1 and 21.1°C. Both of these sites were significantly 

warmer than the other four sites (P <0.001). A decline in veliger densities was observed in the 

discharge channel despite optimal temperatures. There were no significant differences in veliger 

densities between sites in the discharge channel and sites in the main body of the lake (P > 0.05). 

Zebra mussel veliger densities displayed within-site variability during the 2018 and 2019 

sampling seasons (Figure 6). Veliger populations were not evenly distributed within sample sites 

except at the dam. Populations at all sites were positively skewed. This indicates that population 

densities were consistently below the mean and more variable at higher population densities. 

This also indicates that densities approaching maximum values were short lived.   
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Figure 6. Veliger densities at Sooner Lake showing the minimum and maximum (whiskers), the 

median (middle line), the mean (+), the 1st and 3rd quartiles (bottom and top of boxes) and the 

interquartile range (difference between the 1st and 3rd quartiles) for the fall of 2018 (left), and 

summer and fall of 2019 (right). 

 

Temperature and Zebra Mussel Veliger Densities in 2019 

Veligers were observed in early May 2019 at all sites (Figure 5). All sites did not exceed 

23 veligers/L. Temperatures were significantly different between all sites in early May (P < 

0.05), except between the dam and intake buoy line. Temperature ranged from 18.78°C at the 

dam to 24.94°C at the discharge bridge in May. Temperatures at sites in the discharge channel 

were significantly greater than in the main body of the lake (P < 0.05) throughout the sampling 

season. Temperatures at the dam, intake buoy, and intake were generally similar throughout the 

study period in 2019 except in August when temperatures were high, and in October when 

temperatures rapidly declined (P > 0.05). 
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  Peak veliger densities were recorded in mid to late June at all sites. A maximum of 120 

veligers/L was recorded at the intake. Temperatures ranged from 23.61°C at the dam to 28.61°C 

at the discharge bridge in June. Veliger densities declined at all sites between June and July. 

These declines were only significant in the discharge channel and at the intake site (P<0.05). 

Veliger densities at the dam and the intake buoy sites did not differ significantly between June 

and July.  

Declines in density corresponded to sustained temperatures of  ≥ 26°C between June and 

August. Temperatures exceeded above 30°C at the discharge buoy and discharge bridge. 

Temperatures at the dam site were less variable and generally never exceeded 27°C. Densities 

never fell below 9 veligers/L during the summer months at the discharge bridge, even though 

temperatures of 38°C were reported. Temperatures at the discharge bridge remained above 28°C 

from June to September. Veligers were observed throughout this time at low densities. The 

lowest veliger densities occurred at the discharge buoy and boat dock, and corresponded with 

temperatures of 34 and 29°C respectively.  

Densities during the secondary spawn in 2019 were lower than that of the previous year’s 

secondary spawn event. Densities peaked at 19/L at the discharge buoy in September. 

Temperatures decreased to suboptimal temperatures at a much earlier date compared to the 

previous year. A cold front hit Oklahoma the last week of October 2019 and minimum air 

temperatures were recorded at -1.6°C (Oklahoma Mesonet, 2020). Water temperatures in mid-

October 2018 ranged from approximately 20°C at the intake to 27°C at the discharge bridge. 

Temperatures ranged from approximately 9 to 12°C at all sites in late October in 2019.  

A two-way repeated measures ANOVA confirms that temperatures and veliger densities 

were significantly different at all sites in October of 2018 compared to October 2019 (P = 
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<0.001, & P = <0.001). Temperatures in October 2019 rapidly declined at all sites and were 

significantly different than the previous year (Figure 4). Temperatures dropped ± 15.1°C at all 

sites between September 23rd and October 31st 2019 (P<0.001). Temperatures dropped ± 3.8°C 

at all sites between September 13rd and October 11th 2018 (P<0.001).  

Adult Zebra Mussel Densities 

 

Adult samples were collected twice from the intake buoy site. Adult populations were 

approximately 650,000 ± 354,855 adults/m2 in September 2019. This represented settlement from 

the primary spawn. Adult populations resulting from the secondary spawn were much lower. 

This collection took place in late October, and adult densities were approximately 112,000 ± 

127,747 adults/m2. Results from these collections indicated an uneven distribution of adult zebra 

mussels on sample panels. 

Water Quality at Sooner Lake 

Chlorophyll a and Relative Fluorescence  

 Average chlorophyll a concentrations in the current study were 6.35 µg/L (range of < 1.0 

µg/L to 15 µg/L; Figure 7). This corresponded to a Trophic State Index (TSI) value of 48.73 that 

classified Sooner Lake as mesotrophic. Chlorophyll a concentrations peaked during late summer 

and early fall of both years of the study, but remained low during the early to mid-summer in 

2019.  

Samples were also analyzed by determining relative fluorescence which is used as an 

indicator of algal biomass. There was a significant positive relationship between chlorophyll a 

concentrations and relative fluorescence (r = 0.6831, P = <0.0001). A significant inverse 

relationship was found between chlorophyll a and Secchi Disk depth (r = -0.4910, P = <0.0001). 

This indicates water clarity decreased with increasing chlorophyll a concentrations. No 
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significant correlations were found between chlorophyll a and total phosphorus, veliger 

densities, temperature, turbidity, or dissolved oxygen (Table 3 & 4). 

Table 3. Relationships between chlorophyll a and veligers and water quality characteristics in 

Sooner Lake based on Pearson Correlation Coefficients. Significant relationships are bolded. 

 

Chlorophyll a Density 
(V/L) 

Temp. 
(°C) 

DO 
(mg/L) 

Turbidity 
(FNU) 

Relative 
Fluorescence 

(RFU) 

Secchi 
Disk (M) 

r -0.1174 -0.0654 -0.0132 0.1206 0.6831 -0.4910 

R squared 0.0138 0.0043 0.0002 0.0145 0.4666 0.2410 

P value 0.3061 0.5693 0.9088 0.2963 <0.0001 <0.0001 

Significant (alpha = 

0.05) 

No No No No Yes Yes 

 

 

Figure 7. Chlorophyll a concentrations at Sooner Lake taken from 1 m below the surface. 

Concentrations were recorded over the course of the 2018 and 2019 sampling periods.  
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Total Phosphorus 

 The average TP concentration at Sooner Lake was 25.08 µg/L, with values ranging from 

10.0 to 72.0 µg/L (Figure 8). Peak concentrations of 72.0 µg/L occurred at the boat dock in May 

2019. Maximum concentrations at the other sample sites occurred in July. Sites in the discharge 

channel generally had higher concentrations of TP than those sites located in the main body of 

the lake.  

There was a significant positive relationship between TP and turbidity (r = 0.6407, P = 

<0.0001). A significant inverse relationship between TP and Secchi Disk depth (r = -0.4525, P = 

0.0012) was observed. No significant relationships were observed between TP and chlorophyll a, 

relative fluorescence, veliger densities, temperature, or dissolved oxygen (Table 4). 

Table 4. Relationships between total phosphorus and veligers and water quality characteristics in 

Sooner Lake based on Pearson Correlation Coefficients. Significant relationships are bolded. 

 
Total 

Phosphorus  

Density 

(V/L) 

Temp. 

(°C) 

DO 

(mg/L) 

Chl-a 

(µg/L) 

Turb. 

(FNU) 

Rel. 

Fluoresc. 

(RFU) 

Secchi (M) 

r -0.2258 0.2170 -0.2677 0.0654 0.6407 -0.0231 -0.4525 

R squared 0.0510 0.0471 0.0717 0.0043 0.4105 0.0005 0.2047 

P value 0.1228 0.1384 0.0658 0.6586 <0.0001 0.8763 0.0012 

Significant 

(alpha = 0.05) 

No No No No Yes No Yes 
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Figure 8. Total phosphorus concentrations at Sooner Lake taken from 1 m below the surface. 

Concentrations were recorded over the course of the 2019 sampling period. 

 

Dissolved Oxygen 

Dissolved oxygen concentrations at the surface (1 m) of Sooner Lake never fell below 6.0 

mg/L in this study (Figure 9). Depth profiles taken at the dam (1-17 m) indicated the lake 

underwent stratification. Depth profiles taken at the five other sites indicated no stratification. 

Water depths at these sites did not exceed 6 m and were well mixed throughout the sampling 

periods. 

Stratification events at the dam occurred in late summer in 2018 and 2019. The location 

of the thermocline was noted at depths between 10 and 12 m. DO concentrations were recorded 

at < 1.0 mg/L at the bottom of the lake during stratification at the dam. Lake turnover occurred 

both years in September.  
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Figure 9. Dissolved oxygen concentrations at Sooner Lake taken from 1 m below the surface. 

Concentrations were recorded over the course of the 2018 and 2019 sampling periods. 

 

Water Clarity 

Water clarity was consistently higher at the dam site compared to the other sites. The dam 

location had a maximum Secchi Disk value of 3.5 m. Water clarity was lowest at the boat dock 

with a minimum Secchi Disk value of 0.2 m. Results indicated a significant inverse relationship 

between water clarity and turbidity (r = -0.5961, P = <0.0001), an inverse relationship with 

chlorophyll a (r = -0.4910, P = <0.0001), and an inverse relationship with TP (r = -0.4525, P = 

0.0012). No significant correlations were found between water clarity and veliger densities, 

temperature, or dissolved oxygen (Table 5). 
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Table 5. Relationships between Secchi Disk depth and veligers and water quality characteristics 

in Sooner Lake based on Pearson Correlation Coefficients. Significant relationships are bolded. 

 

Secchi Disk depth Density 
(V/L) 

Temp. 
(°C) 

DO 
(mg/L) 

Chl-a 
(µg/L) 

Turbidity 
(FNU) 

Relative 
Fluorescence 

(RFU) 

r 0.0448 -0.0829 0.1144 -0.4910 -0.5961 -0.2344 

R squared 0.0020 0.0069 0.0131 0.2410 0.3554 0.0550 

P value 0.6973 0.4707 0.3187 <0.0001 <0.0001 0.0475 

Significant (alpha = 
0.05) 

No No No Yes Yes Yes 
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CHAPTER V 

 

DISCUSSION 

 

Zebra Mussel Population Dynamics 

Zebra mussel populations generally follow one of three trajectories upon invasion. These 

include a four to five-year stable population cycle, a chaotic or irregular population cycle, or a 

boom and bust population cycle (Churchill, 2013). Zebra mussel populations that undertake a 

boom and bust population dynamic are either extirpated or stabilize at lower densities (Churchill, 

2013).  

Zebra mussels have maintained a presence in Sooner Lake. This suggests that they will 

not be completely extirpated from the lake despite extreme water temperatures. Zebra mussels 

appear to have stabilized at much lower densities in Sooner Lake despite a temporally limited 

dataset. Boeckman (2011) recorded peak veliger densities at 600 veligers/L in 2010. Veliger 

densities peaked at 120 veligers/L in 2019. 

Zebra mussel populations exhibited crashes in other reservoirs that were associated with 

extreme drought or flood events. Veligers that settle in the littoral zone die during drought 

conditions when waters recede. Veligers that settle above the normal pool elevation during flood 
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conditions also die when waters recede (Boeckman, 2011; Churchill et al., 2017). Lake levels at 

Sooner Lake are manipulated and controlled to maintain water levels for OG&E power plant 

operations (Matt Grimes, personal communication, Supervisor Environmental/Op. Chem, 

OG&E, 2019). Zebra mussels at Sooner Lake are not exposed to fluctuations in water levels like 

other reservoirs in the state and populations should be more stable over time. Additional 

sampling is needed to continue documenting long term trends in veliger dynamics in the 

reservoir. 

Veligers in the current study reached maximum densities when temperatures were 

between 19.0 and 28.0 °C. Churchill (2013) and Boeckman (2011) also reported peak densities 

occurring within this range of temperatures, although veligers began to decline when 

temperatures exceeded 26.0 °C in those studies. Densities approaching the maximum were few 

and short lived in the current study. This is consistent with Boeckman (2011) who observed that 

peak veliger densities lasted one to two weeks at Sooner Lake.  

Veliger densities sharply declined and remained low when temperatures exceeded 

28.0 °C. Veliger densities did not increase from the secondary spawn in 2018 until temperatures 

fell below 28.0 °C. Veligers have been reported to re-emerge for secondary spawns when 

temperatures drop to ≤ 26 °C (Sprung, 1987; Boeckman, 2011). Results from this study suggest 

that the secondary spawn can occur at higher temperatures. Temperature at all sites reflected this 

thermal threshold of 26 °C, except for the discharge buoy. Veligers increased from 8 to 50 

veligers/L at the discharge buoy from August to September when temperatures were ≥27 °C. 

Results indicated that veligers can persist in the water column through extreme 

temperatures. Low veliger densities were observed at the discharge bridge when temperatures 

exceeded 36 °C. Peak densities at the discharge bridge (57 veligers/L) occurred when water 
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temperatures were 27 °C in September 2018. Peak densities at the discharge buoy (114 

veligers/L) occurred when water temperatures were approximately 28 °C in June 2019. These 

peaks in veliger densities were short lived, but suggest that adult zebra mussels were plentiful 

enough to produce high veliger densities in the warm discharge channel. Boeckman (2011) did 

not observe veliger densities greater than 100 veligers/L in the discharge channel. He attributed 

low veliger densities to seasonal extirpation and reintroduction which maintained low adult 

populations. 

Adult mussels allocate energy towards reproduction rather than metabolism when they 

experience physiological stress (Stoeckmann & Garton, 2001; Boeckman, 2011). Physiological 

stress occurs when temperatures exceed 28 °C (Aldridge et al., 1995). The presence of veligers in 

the water column suggests that adult zebra mussels at Sooner Lake continued reproducing during 

the summer months despite temperatures that exceeded 30 °C. This could be why there was not a 

significant secondary spawn in 2019. Adult zebra mussel populations likely became thermally 

stressed by the end of summer and either died or were not in a condition to continue reproduction 

in the fall.  

The lack of a secondary spawn in the fall of 2019 was attributed to a rapid decrease in 

temperatures at all sites. Temperatures declined to suboptimal conditions of ≤ 12 °C at a much 

earlier date in the fall of 2019 compared to the fall of 2018. Veliger densities never exceeded 20 

veligers/L in October 2019. The magnitude of temperature changes from ~30 °C to less than 

12 °C in a span of five weeks likely had a negative impact on zebra mussels. Data obtained from 

the Oklahoma Mesonet (2020) indicate that temperatures changed more rapidly than our limited 

data set implies. A cold front hit Oklahoma the last week of October and minimum air 

temperatures were recorded at ≤ -1.6 °C. A rapid change of temperature in either direction and 
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the lack of a sufficient acclimation period could negatively influence the survival of zebra 

mussels (Spidle et al., 1995).  

The maximum change in temperature during a season may be an important factor 

influencing zebra mussel reproduction in warm reservoirs at the southern extent of its range. 

Zebra mussel populations have been controlled by rapidly increasing water temperature to kill 

adult zebra mussels. Condenser discharge was heated to 35 °C within 10 hours and recirculated 

to submerged equipment colonized by zebra mussels at an Illinois power plant. One hundred 

percent zebra mussel mortality was observed after 10 hours (Marcus & Wahlert, 1994).  

Water Quality 

Phytoplankton are an important food source for zebra mussels. Low chlorophyll a 

concentrations can result in suboptimal conditions for zebra mussel metabolic requirements 

(Palais, et al., 2011) and increased mortality (Churchill, 2017). The minimum chlorophyll a 

concentration for long term survival of zebra mussels has been reported at 5 µg/L (Jantz & 

Neumann, 1998).  

Low chlorophyll a concentrations observed in Sooner Lake most likely had a negative 

impact on zebra mussel’s reproductive success. Zebra mussels are capable of creating low 

chlorophyll a concentrations as they graze algal particulates from the water column. This could 

result in the exhaustion of their food source. These trophic interactions may have accounted for 

the low levels of chlorophyll a observed in 2019. Chlorophyll a concentrations of ≤ 5 µg /L were 

recorded during early to mid-summer. Peak veliger densities occurred at this time suggesting that 

adult densities were high and utilizing phytoplankton as a food source.  

Veliger densities declined during late summer and fall. Chlorophyll a concentrations 

increased to between 8.0 and 13.00 µg /L during this time period. It is not known whether 
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veligers declined because of the exhaustion of their primary food source or because of other 

environmental factors. Additional research is needed to further understand the relationship 

between zebra mussels and chlorophyll a in the reservoir. 

 Depth profiles taken at the dam indicated thermal stratification in late summer and early 

fall. Stratification at the dam site was characterized by temperatures and dissolved oxygen 

concentrations sharply declining beneath the thermocline. Veliger tows at the dam site extended 

all the way to the bottom of the lake including beneath the thermocline. Veliger densities were 

consistently lower at the dam compared to the other sample sites. Low veliger densities may 

have resulted from a dilution effect of sampling from the oxygen depleted hypolimnion.  

Churchill (2013) found that mussels could not survive below depths of 15.2 m at Lake 

Texoma due to the location of the thermocline and hypoxic conditions. Mussels that settled at the 

bottom died when lake stratification and hypoxia occurred (Churchill, 2013). Veliger samples 

should be collected from above the thermocline in future studies at Sooner Lake to avoid a 

sample dilution affect.  

This study did not find any relationship between veliger populations and water clarity. 

Adult zebra mussels can drastically alter water clarity in reservoirs which can negatively impact 

aquatic ecosystems (Zhu et al., 2006; Karatayev et al., 2002; Mackie, 1991). Veliger populations 

at Sooner lake were variable and may not accurately reflect the capacity of adult zebra mussels to 

increase water clarity. Water clarity and turbidity were likely influenced by record flood events in 

2019. This makes it difficult to understand the relationships between zebra mussel population 

dynamics and water clarity and turbidity. Further research is needed at Sooner Lake to determine 

the impacts zebra mussels have on water clarity with a focus on adult populations and filtration 

rates.
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CHAPTER VI 

 

CONCLUSIONS 

 

This study was initiated to gain a deeper understanding of zebra mussel population 

dynamics at Sooner Lake. Sooner Lake provided a unique opportunity to study how zebra 

mussels react to different thermal regimes within a single reservoir. A similar study was 

conducted at Sooner Lake between 2007 and 2010 which provided an opportunity to compare 

current populations with historical ones.  

The first hypothesis was that there would be a significant thermal gradient at Sooner Lake 

resulting from the heated effluent that discharges from the OG&E power generation facility. This 

first hypothesis was confirmed as Sooner Lake exhibited a significant thermal gradient. Sites 

located in the discharge channel were consistently and significantly warmer than sites located in 

the main body of the lake. Sites located within the discharge channel were also significantly 

different from each other. These differences were not as great as compared to sites in the main 

body of the lake.  

The second hypothesis was that veliger densities would be significantly different along 

the artificial thermal gradient and that population densities would decline at all sites when 

temperatures reached or exceeded 28°C. It was further hypothesized that veligers would not re-

emerge for a secondary spawn until temperatures declined to ≤ 26°C. Veliger densities were 

significantly different along the thermal gradient. These differences were not consistent between 
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sites. Interactions between sites and dates were complex. Sample sites that were significantly 

warmer did not always correspond to low veliger densities. Sample sites that were under a more 

natural temperature regime did not always exhibit higher or more stable veliger densities. These 

data suggest that temperature alone cannot be used to estimate veliger densities.  

Zebra mussels endured temperatures that exceeded 28°C at Sooner Lake for extended 

periods of time during the summer months. No massive die-off was observed. Veligers were 

observed at low densities even when temperatures exceeded 36 °C at the discharge bridge. 

Densities greater than 100 veligers/L were observed when temperatures exceeded 28 °C. This is 

counter to our hypothesis. The re- emergence of veligers for a secondary spawn in the fall 2018 

generally occurred after temperatures fell below 26°C. The discharge buoy site was an exception 

to this observation. Veligers re-emerged for a secondary spawn when temperatures were 

approximately 27 °C.  

The current study focused primarily on how absolute temperatures impact zebra mussel 

populations. Data from this study indicate that the magnitude of temperature change may have a 

greater impact on veliger populations than absolute temperature values. A secondary spawn in 

2019 likely did not occur due to a rapid decrease in temperatures to sub-optimal conditions at all 

sites. This suggests that a rapid change in either direction could have negative impacts on veliger 

and adult populations.  

The lack of a secondary spawn in 2019 was also attributed to adult zebra mussels likely 

being physically exhausted after the primary spawn. Zebra mussels likely sacrificed metabolic 

maintenance in order to continue reproduction throughout the hot summer months. This pattern 

was not observed in 2018. Adult zebra mussels appeared to have sufficient amounts of energy 

reserved for a secondary spawn in 2018 as shown by high veliger densities. This indicates that 
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the lack of a secondary spawn in 2019 was primarily the result of rapid decreases in temperatures 

to sup-optimal conditions. 

The third hypothesis was that greater veliger densities would be observed at sample sites 

where water temperatures were not strongly influenced by the heated discharge. This hypothesis 

was not consistently supported. Maximum densities were observed at the intake for both years 

observed. The dam site had some of the lowest densities despite being under an optimal 

temperature regime for the majority of the study period. The discharge buoy had high densities 

despite upper temperatures known to cause physiological stress.  

Temperature is not the only factor that has the potential to limit zebra mussel populations. 

Zebra mussels are more reproductively active at certain times of the year and during optimal 

environmental conditions. Optimal temperatures for veliger development did not always 

correspond with peak densities, indicating the importance of other environmental variables. Low 

food supply (Jantz & Neumann, 1998), depletion of oxygen within druses (Boeckman, 2011), 

and thermal stratification (Churchill, 2013) could also result in lower veliger densities. Further 

research is needed over a larger temporal scale to more accurately assess these interactions. 

Zebra mussel populations followed a somewhat chaotic trajectory throughout the study period. 

This suggests that multiple years of data are needed in order to better understand the population 

dynamics of zebra mussels. 
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