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Abstract: Rapidly growing societal needs in urban areas are increasing the demand for tall 

buildings with complex structural systems. Many of these urban areas are located in zones 

characterized by high seismic activity. Quantifying the seismic resilience of these buildings 

require comprehensive fragility and risk assessment that integrates iterative nonlinear 

dynamic analyses to properly account for uncertainties.  Under these circumstances, 

traditional finite element (FE) analysis may become impractical due to the high 

computational cost associated with fragility analysis. Soft-computing methods can be 

applied in the domain of nonlinear dynamic analysis to reduce the computational cost of 

seismic fragility analysis. Taking advantage of the computational efficiency of artificial 

neural networks, this study presents a framework that employs nonlinear autoregressive 

neural networks with exogenous input (NARX) in fragility analysis of multi-story 

buildings. The presented framework uses structural health monitoring data to calibrate a 

nonlinear FE structural model. The FE model is employed to generate the training dataset 

for NARX neural networks with acceleration and displacement time histories as input and 

output for the neural network, respectively. The trained NARX networks are then used to 

perform incremental dynamic analysis (IDA) for a suite of ground motions. Fragility 

analysis is next conducted based on the results of IDA obtained from the trained NARX 

network. The aforementioned framework is illustrated on a twelve-story reinforced 

concrete building located at Oklahoma State University, Stillwater campus. Results show 

that NARX networks have the potential to significantly improve the computational 

efficiency of fragility and reliability analysis of structures in seismically active regions.  
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CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

The need to improve the resilience and sustainability of building infrastructure in active seismic 

zones has been increasing in recent years [1]. This demand requires structural engineers to design 

innovative and sometimes very complex structural systems to enhance the performance of new 

buildings under earthquake hazards. The dynamic response of these structures becomes highly 

intricate because of the significant contribution of higher modes [2]. These complexities add to the 

challenges of accurately predicting the behavior of these structures and the associated seismic 

demands [3]. In such situations, the most desired analysis procedure is the nonlinear dynamic 

analysis. Very often, especially during preliminary design phase, structural engineers are interested 

in quantifying a specific performance measure of the structure under different loading scenarios 

[2]. These performance measures include, for example, the maximum base shear or the maximum 

drift ratios under various earthquakes corresponding to different hazard levels [2]. In these 

situations, the iterative execution of full nonlinear dynamic analyses becomes necessary.  

Over the past few years, several locations within the central Unites States experienced 

significant increase in earthquake activity due to induced seismicity [4].  Most of the structures in 

these areas are not designed to withstand this higher seismicity given the low natural earthquake 

hazard levels in these regions; accordingly, it is necessary to quantify the seismic risk of these 

vulnerable structures under updated seismic hazard scenarios. Performance-based earthquake  
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engineering (PBEE) [5] offers robust means for evaluating the seismic risk of structures with 

complex systems and irregular geometries. When used in conjunction with structural health 

monitoring (SHM), PBEE can provide a realistic prediction of the dynamic behavior of the 

investigated structure. A proper PBEE framework requires assessing the response at various hazard 

levels [6] and helps in quantifying the fragility of the structure. Fragility analysis [7], as an 

instrumental component of the risk assessment, can be conducted using incremental dynamic 

analysis (IDA) [7, 8] that analyzes the structure under a suite of ground motions with different 

intensity measures [9]. Hence, the process of developing the fragility curves for a given structure 

involves conducting numerous nonlinear analyses in order to properly incorporate underlying 

uncertainties [7]. 

Various finite element (FE) analysis software packages that are currently available can be 

used for conducting nonlinear dynamic analyses. In general, these packages can predict the seismic 

demand forces for complex structures with reasonable accuracy [10]. However, detailed nonlinear 

time history analysis (NLTHA) can be computationally very demanding and the computational cost 

has been reported to increase significantly for complex structural systems [11]. For instance, [3] 

analyzed a 55-story building using PERFORM 3D and reported a computational time of 30 hours. 

Accordingly, risk assessment that integrates traditional NLTHA may be deemed unfeasible. In 

these situations, it is necessary to develop more efficient and robust tools that can predict the 

nonlinear dynamic response of structures. 

One approach to reduce this computational burden is to use surrogate models (i.e., 

metamodels) [12]. Soft computing methods, based on heuristic approaches, have been proposed to 

develop metamodels for various engineering problems. Artificial neural networks (ANNs), genetic 

algorithms, fuzzy logic, and decision tree analysis are among the popular methods in soft 

computing [3]. Owing to their computational efficiency and ability to predict accurate relationship 

between data points [13], ANNs have been widely used in solving structural engineering problems 
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[6] such as design optimization [14, 15], structural reliability analysis [16, 17], and damage 

detection and localization [18]. ANNs have also been used in the field of structural dynamics. For 

example, they have been implemented in [19] to predict displacement caused by dynamic loading 

on bridges. Additionally, [20] adopted multi-layer perceptron (MLP) architecture [21] to predict 

the dynamic response of various systems. 

In the context of seismic response prediction of buildings, where nonlinear response at a 

certain time instant depends upon the previous state of the system (i.e., time series problems), 

regular neural networks such as MLP architectures suffer inefficiencies due to their simple 

architecture [10] and require numerous iterations for their training [22]. Therefore, research is still 

needed to develop approaches that can accurately predict the dynamic response of nonlinear 

structures using ANNs. Recently, [10] have implemented deep long short-term memory (LSTM) 

networks to predict the nonlinear seismic response of structures. However, training LSTM 

networks for datasets containing long range dependencies becomes difficult since LSTM networks 

may suffer from gradient vanishing problem [23]. This is a particular issue with the networks that 

utilize the gradient descent learning algorithms and have “hidden states” in their architecture [24] 

as is the case with LSTM networks. In [25], deep convolution neural networks have been applied 

for system identification and estimation of nonlinear structural dynamic response. However, as 

demonstrated in [25], deep convolution neural networks require a relatively large training dataset. 

The need for large training datasets negates the benefits sought after by using metamodels. 

To address these limitations, nonlinear autoregressive neural networks with exogenous 

input (NARX) are used in this paper to predict the response of complex nonlinear dynamic systems. 

Recently, NARX neural networks have been used in various engineering problems involving 

modeling of nonlinear systems. Inundation levels during typhoons have been predicted in [26] 

using both open loop and closed loop NARX neural networks while [27] predicted energy 

consumption in buildings using NARX networks. These NARX networks not only use gradient 
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descent learning algorithms that are more efficient than other recurrent networks such as LSTM 

networks [24] but they also rely on tapped feedback delays which make them suitable for modeling 

systems with long range data dependencies [24]. This paper proposes a framework for seismic 

fragility analysis of buildings using NARX neural network. The presented approach integrates 

neural networks and nonlinear FE analysis to quantify the structural response during seismic 

excitations. SHM information collected during seismic events is used to calibrate key input 

parameters of the FE model. NARX neural networks are then trained using the results of nonlinear 

FE analyses of the structure. The trained NARX networks are used to obtain the critical peak ground 

accelerations and maximum interstory drift by means of incremental dynamic analysis. These 

quantities are next used to develop the seismic fragility curves of the investigated building. The 

framework is illustrated on an existing twelve-story reinforced concrete building in Stillwater, 

Oklahoma. 



5 
 

CHAPTER II 
 

 

METHODOLOGY 

Seismic Fragility Analysis 

Fragility quantification is a crucial component in seismic risk assessment based on PBEE [7]. In 

addition to its role in risk assessment, fragility analysis is generally needed for retrofit design and 

post-disaster decision making and planning [28]. Seismic fragility can be defined as conditional 

probability of exceedance of a limit state function given a certain seismic intensity measure [3]. 

Mathematically, seismic fragility Fr can be expressed as [3] 

𝐹𝑟 = 𝑃(𝐿𝑆 > 𝑙 | 𝐼𝑀 = 𝑚)     (1) 

where LS represents the limit state function, l being the limit of the function, IM represents the 

intensity measure, and m denotes a particular value of intensity measure. 

Several approaches have been proposed for establishing the fragility curves of structural 

systems depending upon the processes used to capture the structural response. These approaches 

can be classified into three broad categories: (a) analytical approaches, which are based on 

investigating data obtained from structural analyses [29]; (b) empirical models, in which the 

statistical analysis of post-earthquake data is used to establish the exceedance measures [30]; and 

(c) heuristic approach based on the expert opinions [31].  

To properly quantify the structural fragility, a model capable of representing the realistic 

nonlinear inelastic behavior of the system is required [3]. This can be achieved for newly designed  
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structures; however, for existing structures, developing an accurate numerical model may not be a 

straightforward task. For these structures, modeling difficulties may arise from the absence of 

detailed construction drawings, variations between the design and as-built characteristics, and 

unknown material properties. In addition, depending on the age of the structure, time-dependent 

deterioration (e.g., corrosion and concrete cracking) may have caused a shift in the structural 

properties that adds to the challenges in obtaining an accurate structural model. In this context, 

SHM plays a vital role in quantifying the realistic dynamic performance of the investigated 

structure [32]. During a seismic event, SHM can record the input excitation affecting the structure 

and the resulting response output. The structural performance parameters of interest are typically 

the accelerations and rotation, measured respectively by strong motion accelerometers and 

gyroscopes. By integrating SHM with system identification methods, the optimum values of key 

model parameters can be achieved resulting in a better representation of structural behavior [32]. 

Furthermore, SHM systems assist in detecting changes in the structural properties [33] and the 

occurrence of structural damage [34] along the service life of a structure. 

Conducting nonlinear dynamic analysis can be achieved either by fast nonlinear analysis 

(FNA) or direct integration. FNA, also known as modal time history analysis, is based on modal 

analysis with a nonlinear force vector. Owing to its computational efficiency, it is widely used in 

the design community, but it has limited capabilities to incorporate the nonlinear attributes [35]. 

On other hand, the direct integration method is a step-by-step method which allows the inclusion 

of different nonlinear components within the analysis model [35]. This paper implements the direct 

integration method to allow modeling the nonlinear behavior using fibers and plastic hinges which 

cannot be properly considered using the FNA. Mathematically, the direct integration method 

involves solving the equation of motion  

𝑲 𝑢(𝑡) + 𝑪 𝑢′(𝑡) + 𝑴 𝑢′′(𝑡) = 𝐹(𝑡)                                (2) 
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in which K represents the stiffness matrix of the system, C represents damping matrix of the system, 

M is the mass matrix, F(t) is the force vector, and u(t), u’(t), and u’’(t) are the displacement, velocity 

and acceleration vectors of the system, respectively. In general, FE solvers use numerical 

approaches to solve this system of equations such as Newmark’s method [36] or Hilber-Hughes-

Taylor method [37].  

Incremental Dynamic Analysis (IDA), sometimes referred to as dynamic pushover 

analysis, is a parametric analysis technique that can be used to develop analytical fragility curves 

[8]. In the IDA, a suite of ground motion time histories, either real or simulated, are selected, scaled 

progressively, and applied to the nonlinear model of the structure until a specific limit state or 

failure criterion is achieved [9]. The incremental dynamic analysis results in the IDA curves which 

provide the relationship between the ground motion, as the intensity measure, and the engineering 

demand parameter of the structural response (e.g., maximum interstory drift). IDA not only 

provides a useful engineering insight on the behavior of a structure, but it provides deeper 

understanding of the structural response under different intensities of ground motion [9].  

Analytical fragility curves can be established from the outcome of the dynamic analysis 

under multiple excitations using the Log-Normal (LN) cumulative distribution function (CDF). LN 

distribution model has been shown to provide accurate representation of seismic fragility [29, 38]. 

Due to the multiplicative reproducibility characteristic of the LN distribution, it has emerged as a 

powerful tool in the development of reliability and risk metrics [38]. Mathematically, a fragility 

function, based on LN CDF, is expressed as [39] 

𝑃(𝐿𝑆|𝐼𝑀)  =  𝛷 (
ln(𝐼𝑀/𝜇)

𝜎
)                     (3) 

where Φ represents the cumulative standard normal distribution, IM is the intensity measure, LS is 

the limit state, μ is median and σ is logarithmic standard deviation of the sample. However, as 

indicated earlier, conducting several full-scale dynamic analyses may not be computationally 
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feasible, especially when nonlinear behavior is incorporated in the model. Alternatively, the 

approach presented in this paper uses soft-computing tools to reduce this computational burden. 

Herein, a trained NARX neural network will be used to conduct the IDA for developing fragility 

curves of the investigated structure. A trained neural network can be used to conduct IDA for 

developing fragility curves. 

NARX Neural Network 

NARX is a nonlinear, dynamic model that relates two time series, an input/independent time series 

to an output/dependent time series [40]. It estimates the current value of a time series data with 

respect to past values of the same series and the current and past values of an 

exogenous/independent series. Mathematically, it can be represented as [24] 

𝑢(𝑡) = 𝐺(𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑘), 𝑣(𝑡), 𝑣(𝑡 − 1), 𝑣(𝑡 − 2),… , 𝑣(𝑡 − 𝑘))             (4) 

where u is dependent/output time series, v is independent/input or exogenous time series, k 

represents the number of feedback and/or input delays and G is nonlinear mapping function [41]. 

When this nonlinear function G is approximated using neural networks, the resulting system is 

known as NARX neural network [40]. A neural network is an algorithm intended to identify 

numerical patterns in data. A neural network consists of at least three layers; input, hidden and 

output layers. The input layer introduces input data to the neural network which is then fed to the 

hidden layer(s). The output layer is the last layer of a neural network which yields the output of the 

network [42]. 

Apart from these layers, there are two essential parameters of a neural network; activations 

functions and model parameters. An activation function accepts an input value and yields an output 

value by transforming the activation level of a neuron [43]. The model parameters are the weights 

and bias values associated with the connections between the neurons of a network. Mathematically, 

a neural network can be represented by a linear combination as [43] 
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𝑦 = 𝑓(𝑤 ∗ 𝑥 + 𝑏)                   (5) 

where x represents the input parameters, y represents the output quantities, f denotes the activation 

function and w and b represents the weights and bias values, respectively. These weights and bias 

values are adjusted during the training phase of the neural network which results in the estimation 

of the mapping function. Hence training a neural network is establishing the optimum values of 

these weights and bias values. A network training function is used to update these model parameters 

by evaluating a cost function such that the difference between the predicted values by the network 

and the target values is minimum [44]. Mean squared error (MSE) is one of the commonly used 

cost functions [45] 

𝑀𝑆𝐸 = 
1

𝑛
∑(𝑢𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝑢𝑎𝑐𝑡𝑢𝑎𝑙)

2

𝑛

𝑖=1

                  (6) 

where unetwork is the value predicted by neural network, uactual is the target value, and n is the number 

of points in a given input. Figure 1 shows configuration of a typical neural network. 

 

Figure 1. Typical configuration of a neural network 
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NARX is a type of neural networks that can be implemented in both feedforward and recurrent 

network configurations. A feedforward network consists of a series of layers where input layer and 

output layer sandwich the hidden layer(s) [46]. There are no closed loops in this network 

configuration, hence no feedback, and the data flows in one direction. However, in a recurrent 

neural network, there are closed loops which provide feedback in the form of output data to the 

input of neural network again [26]. NARX neural networks have been shown to be very efficient 

than ordinary neural networks; hence these networks are known to be equivalent to Turing 

machines [41]. A NARX neural network can be used in both architectures; open loop (or series-

parallel) and closed loop (or parallel) [41] as shown in Figure 2. In open loop, both time series are 

given as input to the model, while in closed loop architecture, the NARX predicts the value of 

dependent series in a recurrent manner [26]. 

 

 

Figure 2. Configuration of NARX neural network: a) open loop, b) closed loop 

In this paper, NARX networks are used within an integrated framework for quantifying the seismic 

fragility of multistory buildings. The layout of the framework is shown in Figure 3. The framework 

starts with constructing the finite element model of the investigated structure. In this phase, a 

nonlinear structural model is required to properly represent the realistic behavior of the structure 

during seismic events. SHM data is integrated to calibrate the structural model; however, the 

framework can also be applied if no SHM data is available. A suite of ground motion records is 
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selected based on magnitude and source to site distance. The calibrated FE model is then used to 

conduct nonlinear dynamic analyses to generate the training and testing datasets for NARX neural 

networks. The dataset is next used to train and validate the NARX neural networks. Once trained, 

the NARX networks are then used to conduct the IDA considering PGA as the intensity measure 

and maximum IDR as the engineering demand parameter. Seismic fragility curves are then 

developed based on the generated IDA curves.  

 

Figure 3. Layout of the proposed framework for conducting fragility analysis using NARX neural 

networks 
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CHAPTER III 
 

 

ILLUSTRATIVE EXAMPLE 

The presented framework for fragility analysis using NARX neural networks is illustrated on a 

twelve-story reinforced concrete building located on the campus of Oklahoma State University, 

Stillwater. The selected building, Kerr hall, is a residential building constructed in the 1970. The 

building is 187.5 ft long and 55.34 ft wide with a total height of 122.3 ft. The height of first story 

is 12.3 ft while rest of the stories are 10 ft high. The lateral load resisting system consists of moment 

frames and shear walls while the gravity load system consists of reinforced concrete slabs and 

gravity columns. The building has two staircases and two shear wall cores that house the elevators. 

Figure 4 shows the plan view of the investigated building. Given the increase in the seismic activity 

in the region, the building was instrumented to assess its acceleration response, rotations and 

displacements during seismic events. A GPS antenna, shown in Figure 5, was installed on the roof 

level of the building to measure the real-time displacements during an earthquake. The difference 

between the GPS positions before and after an earthquake can provide the residual deformations. 

Two triaxial strong motion accelerometers, one at ground level and one at roof, were mounted to 

record the ground acceleration and building response during an earthquake. Similarly, two triaxial 

gyroscopes were installed to capture the rotational behavior of the building during seismic events. 

Figure 6 shows the installed accelerometer and gyroscope: 
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Figure 4. Plan of the building 

 

 

 

Figure 5. GPS antenna mounted on the building 
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Figure 6. Accelerometer and gyroscope installed in the building 

On April 07, 2018, an earthquake of magnitude 4.6 struck northern Oklahoma. The epicenter was 

located at approximately 29 miles from the investigated building at a depth of 6.25 miles. At the 

time of the earthquake, only the triaxial accelerometers were fully functional. Accordingly, only 

the acceleration time histories recorded during this earthquake will be used herein to calibrate the 

finite element model of the building.  

Finite Element Modeling 

A three-dimensional finite element model of the building, as shown in Figure 7, is created in CSi 

SAP2000 environment [35] based on the as-built structural drawings provided by university 

administration.  

 

Accelerometer Gyroscope 
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Figure 7. Finite element model of the building in CSi SAP2000 

Nonlinearity in the model is introduced at both the material and geometric levels. Reinforced 

concrete is modeled using Mander’s concrete model [47] as an isotropic material with cylinder 

compressive strength of 5,000 psi for columns and shear walls, and 4,000 psi for all other members. 

Figure 8 shows the stress-strain curve for 5,000 psi concrete used in this analysis. A parametric 

stress-strain model which takes into account the strain hardening behavior [35] is used for the steel 

reinforcement. The stress-strain profile for the adopted parametric model is given as  

 

𝜎 =

{
 
 

 
 
𝐸𝜀                                                                               𝑓𝑜𝑟 𝜀 <  𝜀𝑦
𝜎𝑦                                                                     𝑓𝑜𝑟 𝜀𝑦 <  𝜀 <  𝜀𝑠ℎ

𝜎𝑦 + (𝜎𝑢 − 𝜎𝑦) √
𝜀 − 𝜀𝑠ℎ
𝜀𝑢 − 𝜀𝑠ℎ

                                𝑓𝑜𝑟 𝜀 >  𝜀𝑠ℎ

               (7) 
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in which σ is the rebar stress, E is the modulus of elasticity, ε is the rebar strain, σy represents the 

yield stress, σu is the ultimate stress, εsh is the strain at the onset of strain hardening, and εu is the 

ultimate strain. Figure 9 shows the stress-strain profile for the steel reinforcement with yield 

strength of 50,000 psi used in this model.  

 

Figure 8. Stress-strain curve of 5,000 psi concrete using Mander’s model 

 

 

Figure 9. Parametric stress-strain relationship for steel reinforcement with yield stress of 50 ksi 
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Fiber modeling is adopted to include the inelastic sectional behavior of columns. This technique 

allows the inclusion of plasticity distribution along the member and across its cross-section [48, 

49]. In the fiber modelling approach, the cross-section of the column is divided into small axial 

fibers. Depending upon the material, whether steel or concrete, each fiber is assigned its own 

nonlinear stress-strain curve. This process allows capturing the axial force and moment interaction 

in the elements, as well as the effects of cracking and yielding across and along the member [50]. 

Integrating the resultant behavior on the cross-section level along the length using the 

aforementioned material constitutive laws provides the required force-deformation relationships. 

This approach is not only suitable for nonlinear inelastic response under dynamic loadings but also 

provides reliable and efficient solution [6]. Figure 10 shows a schematic representation of fiber 

modeling approach: 

 

Figure 10. Typical cross-section in fiber modeling approach 

Plastic hinges are assigned to the ends of the beams to model the nonlinear frame behavior as 

lumped plasticity. Plastic hinge modeling has been shown to properly represent the building 

behavior near collapse loading conditions and also allow capturing the concrete crushing and rebar 

buckling behavior in the model [5]. Simulating the nonlinear behavior of plastic hinges was 

achieved by defining a backbone curve as opposed to fiber modeling where each fiber is assigned 

a full nonlinear stress-strain curve. The backbone curve parameters (i.e. plastic rotation angle and 

residual strength ratio) are selected herein based on FEMA 356 [51]. A plastic hinge backbone 

Concrete fiber Steel fiber
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curve is shown in Figure 11 where ‘a’, ‘b’, and ‘c’ are parameters that depend on the material 

properties, cross-sectional dimensions, and reinforcement ratio [51].    

 

Figure 11. Backbone curve for plastic hinge using FEMA 356 [51] 

The hysteretic behavior is incorporated in this example using Takeda’s stiffness degrading model 

[52]. This model was shown to represent the realistic behavior of reinforced concrete systems under 

dynamic loading [52]. It takes into account the change in stiffness associated with flexural cracking 

and yielding of reinforcement in addition to incorporating the strain-hardening effects [53]. In this 

model, the unloading curve follows the elastic portion of the backbone curve and the reloading 

curve follows a secant line. If the applied load exceeds the yield load, the unloading curve follows 

an exponential function [52]. However, this exponential unloading behavior is considered linear 

due to software limitation. Maximum deformation point for previous cycle becomes the target point 

for the secant line in next cycle. As a result, the hysteresis loop continues to reflect the reduction 

in energy dissipation with increased deformation levels. Since hysteretic damping is already 
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considered within the hysteresis behavior, Rayleigh damping of 4% is used to account for viscous 

damping as opposed to traditionally adopted 5% [50]. Second-order nonlinear behavior is also 

incorporated explicitly in the model. 

Being a residential hall, the building consists of a large number of infill walls that have a 

significant influence on the stiffness of the structure. The stiffness contribution of infill walls is 

included in the model using equivalent diagonal compression-only struts following FEMA 356 

recommendations [51]. The strut thickness is chosen equal to the thickness of the walls while the 

width of the strut a is calculated as [51] 

𝑎 = 0.175 (𝜆1ℎ𝑐𝑜𝑙)
−0.4𝑟𝑖𝑛𝑓                (8) 

in which 

𝜆1 = [
𝐸𝑚𝑒𝑡𝑖𝑛𝑓 𝑠𝑖𝑛 2𝜃

4𝐸𝑓𝑒𝐼𝑐𝑜𝑙ℎ𝑖𝑛𝑓
]

1

4
                          (9) 

where tinf is the thickness of infill wall and strut, Linf is the length of infill wall, rinf represents the 

diagonal length of infill wall, Icol is the second moment of area of column, Eme is the expected elastic 

modulus of infill wall, Efe is expected elastic modulus of frame, hinf is the height of infill wall, hcol 

is the height of column, and θ represents the angle whose tangent is the infill height-to-length ratio. 
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Figure 12. Equivalent diagonal compression strut model using FEMA 356 

The behavior of all floor slabs is assumed elastic and they are modeled as thin shell elements where 

transverse shear deformations are neglected. Rigid diaphragms are assigned to each story level to 

model the in-plane stiffness. 

FE Model Calibration 

To improve the ability of the FE model to represent the analyzed structure, SHM information is 

used to calibrate the structural model. The ground acceleration recorded during the April 07, 2018 

earthquake is applied to the finite element model and the corresponding recorded roof acceleration 

is compared to the time history resulting from the FE model under the same excitation.  

Bending stiffness values of columns along both axes are chosen as calibration parameters. 

Optimum values of these parameters are determined such that the difference between the modal 

frequencies obtained from SHM data analysis and the finite element model is minimized. For this 

optimization, the objective function is defined as  

𝑔(𝑋) =∑𝑊𝑖 .  (
𝑓𝑎,𝑖(𝑋) − 𝑓𝑚,𝑖(𝑋)

𝑓𝑚,𝑖(𝑋)
)

2

                    (10)

𝑛

𝑖=1
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where 𝑔(𝑋) is the objective function, 𝑓𝑎,𝑖(𝑋) is the computed natural frequency of mode i using 

finite element analysis, 𝑓𝑚,𝑖(𝑋) is the measured natural frequency of mode i using SHM data 

analysis, 𝑊𝑖 is the weighting factor of mode i, n is the number of considered vibration modes, and 

X is the vector of calibration parameters. This optimization problem is solved using sequential 

quadratic programming algorithm to establish the optimum values of the column stiffness. The first 

three natural modes of the building, which cover almost 90% of the modal mass participation, are 

considered for model calibration.  

Figures 13 and 14 show the roof-to-base power spectral density (PSD) ratio for the SHM recorded 

response and calibrated FE model in both directions. As shown, the FE model is capable of 

representing the structural behavior. The power spectral ratio of FE model and actual structure are 

close in both low and high frequency ranges.  

 

Figure 13. Comparison of PSD ratio (N-S direction) 
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Figure 14. Comparison of PSD ratio (E-W direction) 

 

Figure 15 shows the probability plot of the frequencies at which peaks occur in the roof-to-base 

PSD ratio plots obtained from SHM data and the FE model. As shown, the FE model reports the 

peak values to occur at almost the same frequencies at which the SHM data shows peaks especially 

in lower frequencies that have higher contribution to the system response.  
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Figure 15. Probability plot comparing occurrence of peaks in PSD ratio for SHM and FE model, 

(a) N-S direction; (b) E-W direction  
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Figure 16 shows the acceleration response recorded using SHM and FE model for the April 07, 

2018 earthquake. As it can be seen from this figure, the FE model is capable of predicting the 

dynamic response of the building under seismic excitations.  

 

Figure 16. (a) Acceleration response comparison of FE model with SHM; (b) From 13 seconds to 

16 seconds 
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Earthquake Selection 

Ground motion records of real earthquakes are downloaded from Next Generation Attenuation 

(NGA-West2) database created by the Pacific Earthquake Engineering Research (PEER) center 

[54]. The selected earthquake records have magnitude range of 4.0 – 7.5 and Joyner-Boore distance 

RJB [54] of less than 100 km. The selected acceleration time histories are then used in finite element 

analysis to generate the training dataset for NARX neural networks. 

Neural Network Training and Testing 

The NARX neural network is implemented using the neural network toolbox in MATLAB [46]. In 

this paper, tan-sigmoid transfer function in hidden layer and linear transfer function in the output 

layer is used. Acceleration time histories are chosen as input and FE analysis results (i.e., 

displacement time histories) are chosen as target values. Bayesian Regularization [56] is adopted 

as the training function to determine the optimum combination of bias values and weights that 

minimizes the neural network prediction errors.  

A total of 10 ground motion records are used to train the model. NLTHA is conducted for 

each selected earthquake using step-by-step direct integration in CSi SAP2000 [35]. The selected 

ground motions and their corresponding displacement time histories are then used to train the 

NARX neural networks. For training the network, open loop NARX neural network is used as both 

input and output data are available during the training phase. The configuration of a neural network 

is one of the most important aspect in determining its performance. As no significant literature is 

available for NARX network configuration in nonlinear seismic response prediction applications, 

a trial network configuration with one hidden layer of 5 neurons and input and feedback delay of 

10 is selected. With this configuration, it is observed that the network is unable to accurately predict 

the dynamic response. After various systematic trials, a network configuration of 1 hidden layer 

with 10 neurons is selected. Moreover, the number of input and feedback delays are selected as 
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multiples of fundamental time period of the building. Delay of 80 values (which is approximately 

half of the fundamental time period, T=0.77 sec, where 0.005 sec is the time step) for both input 

and feedback layers is used. With this configuration, accurate network performance is observed. 

A separate network is trained to predict the response time history of each story. Training 

data are scaled to range between -1, +1 in order to improve the training efficiency of the model 

[10]. The weights and bias values are adjusted iteratively during the training using back-

propagation algorithm such that the error between the predicted network values and target values 

reach a minimum. Mean squared error (MSE), as shown in Equation (6), is taken as the training 

performance indicator [23]. Figure 17 shows the variation of MSE with respect to the number of 

neurons. It can be seen from the figure that adding more number of neurons after 10 does not 

decrease the MSE appreciably; hence, 10 neurons are used for training purposes.  

 

Figure 17. Variation of Mean Squared Error (MSE) with number of neurons 

Once the networks are trained, they are converted into closed loop configuration to assess their 

performance accuracy using another set of earthquakes that are not used in training phase. Figures 

18 and 19 show the predicted response of the trained neural network, under an earthquake, for first 
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and twelfth stories, respectively. As shown, the NARX neural network is capable of predicting the 

displacement time history with appreciable accuracy. Figure 20 compares the probability plot of 

displacement amplitudes using FE analysis with NARX predictions. As shown, reasonable 

prediction accuracy can be observed.  

 

Figure 18. Comparison of displacement response prediction of NARX network with FE analysis 

(First story) 

 

Figure 19. Comparison of displacement response prediction of NARX network with FE analysis 

(Twelfth story) 
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Figure 20. Probability plot of displacement values obtained from FE analysis vs. predicted by 

NARX 

Incremental Dynamic Analysis 

The trained networks in closed loop configuration are used to conduct the incremental dynamic 

analysis (IDA). Peak Ground Acceleration (PGA) is taken as intensity measure (IM) and the 

interstory drift ratio (IDR) is chosen as engineering demand parameter (EDP). Fifteen ground 

motions are selected and scaled to cover various levels of peak ground acceleration (PGA), starting 

from 0.05g with 0.05g increments until failure. Failure is assumed when the maximum IDR reaches 

or exceeds 3%, which is more than the 2.5% collapse prevention limit [8]. Figure 21 shows the 

profile of maximum IDR with respect to story level and the median maximum IDR with respect to 

story level. It can be seen from this figure that for a given intensity of a ground motion, 6th and 7th 

story experience relatively higher drifts than others.  
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Figure 21. Maximum interstory drift ratio with respect to story level at collapse PGAs 

Figure 22 shows the results of IDA for 15 earthquakes conducted using the trained NARX neural 

networks in terms of PGA versus maximum IDR along with median maximum IDR. As shown, the 

maximum IDR increases linearly till PGA of almost 0.6g, depicting linear behavior of the building. 

After 0.6g, softening occurs, signaling the onset of nonlinear behavior.   

 

Figure 22. IDA analysis results conducted using NARX networks 
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NARX networks conducted the IDA analysis, shown in Figure 22, in approximately five minutes. 

On the other hand, conducting nonlinear dynamic analysis for one earthquake using SAP2000 

required approximately four hours. This translates to more than 45 days to complete such analysis 

using traditional nonlinear FE analysis. The analysis has been conducted on a desktop computer 

with Intel(R) Core (TM) i7-7700 CPU at 3.60 GHz and 16 GB of RAM.  

Seismic Fragility Analysis 

After conducting the IDA, the fragility curves are developed using Equation (3). Figure 23 shows 

the fragility curve based on lognormal cumulative distribution. It can be seen from the figure that 

the probability of failure (i.e. probability of exceedance of 3% drift ratio limit state) is 50% for 

PGA value of 0.85g and almost 100% at 1.3g.  

 

Figure 23. Seismic fragility curve 
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CHAPTER IV 
 

 

CONCLUSIONS AND FUTURE WORK  

Conclusions 

This paper presented a framework for conducting seismic fragility analysis of multi-story buildings 

using nonlinear autoregressive exogenous (NARX) input neural network. The study integrates 

structural health monitoring data with finite element (FE) analysis to calibrate a structural model. 

A relatively small number of analysis results conducted on the calibrated FE model are used to train 

and test the NARX networks. The trained networks are then used to conduct incremental dynamic 

analysis (IDA). The results of IDA are then used to construct the seismic fragility curves of the 

building. The presented framework was illustrated on a twelve-story reinforced concrete building. 

The following conclusion can be drawn: 

• NARX neural networks are capable of predicting the nonlinear dynamic response of 

structural systems subjected to seismic excitations. However, care should be taken in 

generating the network training dataset to encompass the range of earthquakes required for 

the seismic fragility analysis. 

• The defined feedback delay in the NARX network has a significant effect on the prediction 

accuracy. It was found that a delay of approximately 50% of the fundamental time period 

of the structure, both in input and feedback layers, yields optimum training of the NARX 

network. Lower feedback delay resulted in loss of accuracy results while larger delay 

required significantly longer training time without considerable gains in prediction 
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accuracy. 

• IDA is an important tool in assessing the seismic behavior of structures. It provides the 

relationship between the seismic intensity and the corresponding structural response 

parameter. The IDA curves can be efficiently generated using the proposed framework for 

a given response parameter. Multiple response parameters can be included in the analysis; 

however, training time will be affected by the number of required response parameters.     

• SHM plays an important role in performance assessment of existing structures. It provides 

system input and output signals that can be used to quantify the structural performance and 

calibrate the structural model.  

• The proposed framework can efficiently construct the seismic fragility curves of multistory 

buildings. Integrating the FE analysis to generate the network training and testing data then 

using the neural network to construct the fragility curves led to a significant reduction in 

the computational time of the analysis.  

 

Suggestions for Future Research 

Having shown promising results in dynamic response prediction of buildings, the following 

potential research areas are suggested:  

• Future studies are needed to further optimize the NARX network in the seismic response 

prediction of structures by identifying more advanced and robust training algorithms.  

• The use of NARX neural network can be extended to include other types of structures 

such as bridges.
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