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CHAPTER 1

INTRODUCTION

Fluid mechanics is the study of the behavior of fluids and deformation of the fluid under the

influence of shearing forces. One of the most widely used and studied systems of equations

in fluid mechanics is the Navier-Stokes equations. The Navier-Stokes equations play an

important role in physical applications from modeling hurricane paths to blood flow patterns

(see, e.g. [40, 23]). For incompressible fluids, the Navier-Stokes equations can be written as





∂tu+ (u · ∇)u = −∇p+ ν∆u + f,

∇ · u = 0,

(1.1)

where u denotes the velocity field, p denotes the pressure, ν represents the kinematic fluid

viscosity, and f represents the external force. In the special case when ν = 0, the Navier

Stokes equations become the Euler equations.

Here, and throughout this paper, we write for convenience

∂t :=
∂

∂t
, ∂i :=

∂

∂xi
.

The first equation of (1.1) comes from the conservation of momentum stated in Newton’s

second law. The second equation comes from the conservation of mass for incompressible

fluids. The equations describe the fluid velocity which is greatly influenced by the fluid’s
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viscosity.

Viscosity is a measure of the resistance of a fluid to deformation under shear stress.

Although most fluids have some viscosity, there are instances where viscosity is very small.

Modeling large vortices shed by jumbo jets or predicting hurricane trajectories often use

viscosity values in the range of ν ∼ 10−6 [40, p. 3]. Such applications highlight the need

to the study ideal fluids, also known as inviscid fluids, which have no viscosity. Much of

the research presented here investigates the behavior of fluid with no viscosity or where the

dissipation term is fractional in two particular fluid equations related to the Navier Stokes

equations.

There are many systems of partial differential equations that are very closely related to

the Navier-Stokes equations which have arisen from modeling physical phenomena of differ-

ent fluids. Two such systems are the Boussinesq equations and the magnetohydrodynamics

(MHD) equations. The Boussinesq equations model the velocity of a fluid where the temper-

ature or density of the fluid differs within the fluid. The MHD equations model the velocity

and the magnetic field of electrically conducting fluids, i.e. plasmas. Although these equa-

tions model different physical phenomena, the mathematical tools used to analyze the effects

of the fluid’s viscosity and dissipation on the behavior of solutions are closely related. This

work highlights the author’s analysis of these two fluid dynamical systems. In the remaining

sections of this first chapter, we highlight the physical applications and provide justifica-

tion for the analytic study of both the MHD and Boussinesq systems. We begin with an

introduction to the MHD equations and then move on to the Boussinesq equations.

Note that throughout this paper, analyses will be performed using Sobolev spaces and

some commonly used results in calculus and functional analysis. The statements of these

inequalities and definitions of these spaces can be found in the appendix.
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1.1 Introduction to the MHD equations

Magnetohydrodynamics is the study of the mutual interaction of magnetic fields and flows of

electrically conducting fluids. Many fields including geophysics, metallurgy, and astrophysics

are concerned with magnetohydrodynamics. Magnetohydrodynamics arise in many natural

and man-made instances including solar magnetic fields generating solar flares, dampening

motion of poured liquid metal in casting, and electromagnetic pumps used in nuclear reactors

(see, e.g. [23, 15, 26]).

The MHD equations are the main feature of the study of magnetohydrodynamics. The

MHD equations were initially derived by the Nobel Laureate Hannes Alfvén [2]. The standard

incompressible MHD equations can be written as





∂tu+ u · ∇u = −∇p + ν∆u + b · ∇b,

∂tb+ u · ∇b = η∆b+ b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.2)

where u represents the velocity field, p the pressure, b the magnetic field, ν ≥ 0 the fluid

viscosity, and η ≥ 0 the magnetic diffusivity (resistivity).

These are nonlinear coupled equations where the first equation of (1.2) is the Navier-

Stokes equation with the Lorentz force generated by the magnetic field and the second

equation is the induction equation for the magnetic field.

The MHD equations are of great interest in mathematics and the nonlinear coupling of

the equations poses quite a challenge. Even in 2D, these are particularly difficult equations to

analyze. Fundamental questions regarding the behavior of solutions to the MHD equations

such as stability and existence have attracted considerable interest in recent years, but many

issues have yet to be resolved. In this work, results will be presented that completely solve

or provide significant insight to a few of these questions for two-dimensional MHD flow.

One of the fundamental questions is whether physically relevant solutions can develop
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singularities in finite time or if the solutions remain smooth for all time [49]. In particular,

if given smooth initial data

u(x, 0) = u0(x), b(x, 0) = b0(x),

which satisfies ∇ · u0 = 0, ∇ · b0 = 0, will the solution remain smooth? The answer to

this question depends greatly on the fluid viscosity, ν, and the magnetic resistivity, η. We

provide a brief summary of results in this area.

1. When ν > 0 and η > 0, (1.2) is the fully dissipative case which has a large number of

physical applications. In the fully dissipative case, any initial data (u0, b0) ∈ L2(R2)

leads to the existence of a unique global solution which becomes instantaneously

smooth for all time, i.e. (u, b) ∈ C∞(R2 × (T,∞)) for any T > 0 (see e.g. [49]).

This result shows that even without the initial conditions being smooth and just L2

the dissipation and diffusion terms ν∆u and η∆b, respectively, effectively control the

energy within the system and make it instantaneously smooth even if not initially

smooth.

2. When ν > 0 and η = 0, (1.2) is said to have only dissipation and no diffusion. The

global regularity problem remains open and even the global existence of weak solutions

remains open. There have been results obtained by F. Lin, L. Xu, and P. Zhang [38]

and results obtained by X. Ren, J. Wu, Z. Xiang, and Z. Zhang [43] which show global

regularity of solutions with smooth initial data where the solution is near a non-trivial

steady state solution.

3. When ν = 0 and η > 0, (1.2) is said to have only diffusion and no dissipation. This

model is often used in instances where magnetic resistance plays an important physical

role such as magnetic turbulence and magnetic reconnection [49]. The global regularity

problem remains open, but there has been substantial progress in recent years. A
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breakthrough in the area came from the work of Q. Jiu, D. Niu, J. Wu, X. Xu, and H.

Yu [31] where global a prior bounds were found. However, without a global L∞ bound

for the vorticity, the global regularity problem still remains open.

4. When ν = η = 0, (1.2) is said to be ideal and can be written as





∂tu+ u · ∇u = −∇p + b · ∇b,

∂tb+ u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0.

The ideal MHD models the behavior of a perfectly conducting fluid under the influence

of magnetic field. Due to the lack of velocity dissipation and magnetic diffusion in the

ideal equations, the global well-posedness issue is extremely difficult and remains open.

The work presented in chapter 3 details the author’s contribution to the understanding

of the behavior of these systems. In particular, a conditional blowup result for the 1D

transformation of the 2D ideal MHD equations will be presented.

In addition to the question of global regularity, this work presents stability results for a

particular 2D MHD flow with no dissipation and only damping in the vertical component.

Attention is focused on the following 2D incompressible MHD flow





∂tu1 + (u · ∇)u1 = −∂1P + (B · ∇)B1, x ∈ R2, t > 0,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (B · ∇)B2,

∂tB + u · ∇B = η∆B +B · ∇u,

∇ · u = 0, ∇ · B = 0.

(1.3)

Here we have written the velocity equation in terms of a horizontal component u1 and a

vertical component u2. These equations are just (1.2) without the dissipation term ν∆u and

with the addition of a damping term γu2 in the vertical component.

When there is no magnetic field, B ≡ 0, the global regularity of (1.3) as well as the
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stability near the trivial solution remains open. However, when the velocity is coupled

with a magnetic field in the MHD system above, the background magnetic field smooths and

stabilizes the fluid even without the dissipation term ν∆u. In fact, if velocity and vorticity are

initially small they remain small and decay algebraically in time. Numerical simulations and

experiments have shown such behavior of magnetic fields influencing electrically conducting

fluids. In this paper, we establish these results as mathematical facts in chapter 2 and

provide the explicit decay rates.

1.2 Introduction to the Boussinesq equations

The Boussinesq equations play an important role in the study of many physical fluid phe-

nomena where there is convection or a buoyancy driven flow such as atmospheric and oceanic

fronts along with Rayleigh-Bérnard convection. The Boussinesq equations are derived from

the Navier-Stokes equations while additionally taking temperature or density into account.

Let d ≥ 2 be an integer. The standard d-dimensional incompressible Boussinesq equations

can be written as written as





∂tu+ (u · ∇)u = −∇p + ν∆u + θed,

∂tθ + (u · ∇)θ = κ∆θ,

∇ · u = 0,

(1.4)

where u denotes the velocity field, p the pressure, and θ represents the density/temperature.

Here ν > 0 denotes the kinematic viscosity, κ represents the thermal diffusivity constant,

and ed = (0, 0, . . . , 0, 1). For natural convection applications, θ represents the temperature;

whereas, in geophysical applications, θ represents density.

The first equation in (1.4) reflects the Navier-Stokes equations with an additional buoy-

ancy term in the direction of the gravitational force, θed. The second equation in (1.4) is

the heat flow in a temperature/density gradient. Finally, the last equation ∇ · u = 0 states
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that the fluid is incompressible.

An important question for systems of equations in fluid mechanics is whether or not global

in time solutions exist for sufficiently smooth initial data. In the Boussinesq equations,

the dissipation terms ν∆u and κ∆θ play a important part in controlling the long time

behavior of the system. For the inviscid Boussinesq system, where ν = κ = 0, the global

regularity remains an open problem. In recent years, the Boussinesq equations have attracted

considerable attention in the mathematical community and significant progress has been

made, but there are still open problems in addition to the global regularity for the inviscid

case. One such area where open problems arise is the case when there is fractional dissipation.

Typically, the Bousinessq equations are written using a standard Laplacian operator, but

there are instances in geophysics where a need for a fractional Laplacian, (−∆)α, arise. In

modeling atmospheric flows, changes in atmospheric properties occur as the middle atmo-

sphere travels upward. As the atmosphere thins, the effect of thermal diffusion is attenuated

resulting in a need for a fractional Laplacian in the Boussinesq model ([7],[24]).

The d-dimensional Boussinesq equations with fractional dissipation can be written as





∂tu+ u · ∇u = −ν(−∆)αu−∇p+ θed, x ∈ Rd, t > 0,

∂tθ + u · ∇θ = 0, x ∈ Rd, t > 0,

∇ · u = 0,

(u, θ)|t=0 = (u0, θ0),

(1.5)

where α > 0 is a real parameter. The fractional Laplacian (−∆)α used here is defined via

the Fourier transform,

F((−∆)αf)(ξ) = (4π2|ξ|2)αF(f)(ξ),

where F(f)(ξ) denotes the Fourier transform of f ,

F(f)(ξ) =

∫

Rd

f(x) e−2πix·ξ dx.
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Occasionally, we will also use the notation Λ = (−∆)
1
2 .

Many researchers have investigated the global existence and uniqueness of solutions to

(1.5) for d = 3 and α ≥ 5
4
with initial data (u0, θ0) ∈ Hs(R3) where s > 5

2
, (see [32, 42, 52,

53, 60]) and where s > 5
4
(see [32]). Less has been investigated for this problem in weak

settings. One result was the paper of Larios, Lunasin, and Titi [35]. They were able to show,

among many other results, that u0 ∈ H1(T2) and θ0 ∈ L2(T2) lead to a unique and global

strong solution of (1.5) where T2 denotes the 2D periodic box.

In our research [4] that will be discussed in Chapter 4, we looked to further these re-

sults by finding the weakest possible setting where uniqueness of solutions occurs for the

partially dissipated Boussinesq equations. We obtained two main results. The first result

established the global existence of weak solutions of (1.5) for any α > 0 with initial data

(u0, θ0) ∈ L2(Rd). Uniqueness of weak solutions then occurs for α ≥ 1
2
+ d

4
with initial data

u0 ∈ L2(Rd), θ0 ∈ L2(Rd) ∩ L
4d
d+2 (Rd). This established uniqueness is in, what appears to

be, the weakest functional setting possible for the partially dissipated Boussinesq equations.

The second main result established the zero thermal diffusion limit of the fully dissipative

Boussinesq equations





∂tu
(η) + u(η) · ∇u(η) = −ν(−∆)αu(η) −∇P (η) + θ(η)ed, x ∈ Rd, t > 0,

∂tθ
(η) + u(η) · ∇θ(η) = η∆θ(η), x ∈ Rd, t > 0,

∇ · u(η) = 0,

(u(η), θ(η))|t=0 = (u
(η)
0 , θ

(η)
0 )

(1.6)

and showed that the solution of (1.6) converges strongly to the corresponding solution of (1.4)

with an explicit convergence rate as η → 0. The Yudovich approach and lower regularity

quantities were used due to the weak initial setup u
(η)
0 ∈ L2(Rd), θ

(η)
0 ∈ L2(Rd) ∩ L 4d

d+2 (Rd).

This is an interesting result as there does not appear to be much research on the zero thermal

diffusion limit, particularly when the functional setting is weak. The work from [4] will be
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discussed in further detail in Chapter 4.
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CHAPTER 2

STABILIZATION OF 2D MHD FLOWS

2.1 Stabilization Effects of a Background Magnetic Field

In this chapter, we study the stabilizing and smoothing effects of a background magnetic

field on electrically conducting fluids. These effects have been observed in physical and

numerical simulations and we now establish the observations as rigorous mathematical facts.

As outlined in the introduction, we focus on following the MHD flow





∂tu1 + (u · ∇)u1 = −∂1P + (B · ∇)B1,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (B · ∇)B2,

∂tB + u · ∇B = η∆B +B · ∇u,

∇ · u = 0, ∇ · B = 0,

(2.1)

where x ∈ R2 and t > 0. Consider the following steady state solution

u(0) ≡ 0, B(0) ≡ (0, 1). (2.2)

This steady state solution solves (2.1). We are interested in the behavior if we perturb this

steady state slightly. Let (u, b) be the perturbation near this particular steady state solution
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(2.2) with b = B − B(0). Then (u, b) solves the MHD equations





∂tu1 + (u · ∇)u1 = −∂1P + (b · ∇)b1 + ∂2b1,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (b · ∇)b2 + ∂2b2,

∂tb+ (u · ∇)b = η∆b+ (b · ∇)u+ ∂2u,

∇ · u = 0, ∇ · b = 0,

(2.3)

with x ∈ R2, t > 0. In particular, we are interested in initial conditions

u(x, 0) = u0(x), b(x, 0) = b0(x),

such that (2.3) possesses a unique global solution and if the velocity and vorticity are initially

small then they remain small for all time and actually decay algebraically in time.

The stability problem for the MHD equations with only magnetic diffusion is still a

major open problem. The results presented here advance the progress toward that problem.

The difference between our results and the still open problem regarding the MHD equations

with only magnetic diffusion is that we have included the damping term γu2 in the vertical

direction in order to obtain the desired stability. These results are completely new and

advance the techniques and understanding that will be needed to solve the stability problem

without the vertical damping term γu2.

In order to analyze the stability, we consider the vorticity, ω = ∇× u, and the current

density, j = ∇× b. By taking the curl of (2.3) we obtain





∂tω + (u · ∇)ω = γR2
1ω + (b · ∇)j + ∂2j,

∂tj + (u · ∇)j = η∆j + (b · ∇)ω + ∂2ω +Q,

(2.4)

where

Q := −2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).
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Here the term R2
1 = ∂21(−∆)−1 denotes the squared Riesz transform.

Yudovich theory has been very successful in dealing with the global regularity problem

on the 2D Euler and related equations. However, Yudovich’s approach relies crucially on

the boundedness of the vorticity. The Riesz transform makes the situation more difficult

and the Yudovich approach is no longer applicable. The term R2
1 is not bounded on L∞ as

it involves singular integral operators and this Reisz transform term can even increase the

vorticity’s L∞ norm as shown by T. Elgindi [19].

Since the Yudovich theory is not applicable in this case, a different approach must be used.

Our approach takes advantage of a special wave-type structure present in all the physical

quantities. As it turns out, u, b, ω, and j all satisfy the exact same wave equation with

differing nonhomogeneous terms. This wave structure is particularly useful for obtaining

some of the bounds needed including bounds for

∫ t

0

‖∂2u‖2L2(R2) dτ, and

∫ t

0

‖∂2ω(τ)‖2H1(R2) dτ,

which are not a consequence of the damping or dissipation of the MHD flow. The main

strategic approach to obtain the desired results is to define an energy functional, show that

it satisfies an appropriate bound, and then use the bootstrapping argument to show that the

bounds hold for all time giving the desired stability result.

Before we state the main results, we first eliminate the pressure terms from (2.3) and

(2.4) and provide the explicit wave-type equations that the physical quantities satisfy. Here

we apply the Leray-Helmholtz projection operator P := I−∇∆−1∇· to the velocity equation

in (2.3) to obtain





∂tu = γR2
1u+ ∂2b+N1,

∂tb = η∆b+ ∂2u+N2,

∇ · u = 0, ∇ · b = 0,

(2.5)
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where x ∈ R2, t > 0, and where N1 and N2 are the nonlinear terms

N1 = P((b · ∇)b− (u · ∇)u),

N2 = (b · ∇)u− (u · ∇)b.

Differentiating (2.5) with respect to t we obtain





∂ttu = γR2
1∂tu+ ∂2∂tb+ ∂tN1,

∂ttb = η∆∂tb+ ∂2∂tu+ ∂tN2.

Substituting in (2.5) for ∂tb and ∂tu we obtain





∂ttu = γR2
1∂tu+ ∂2(η∆b+ ∂2u+N2) + ∂tN1,

∂ttb = η∆∂tb+ ∂2(γR2
1u+ ∂2b+N1) + ∂tN2.

Rearranging, we obtain





∂ttu = γR2
1∂tu+ η∆∂2b+ ∂22u+ ∂2N2 + ∂tN1,

∂ttb = η∆∂tb+ γR2
1∂2u+ ∂22b+ ∂2N1 + ∂tN2.

Again, using (2.5) to make a substitution for ∂2u and ∂2b yields





∂ttu = γR2
1∂tu+ η∆(∂tu− γR2

1u−N1) + ∂22u+ ∂2N2 + ∂tN1,

∂ttb = η∆∂tb+ γR2
1(∂tb− η∆b−N2) + ∂22b+ ∂2N1 + ∂tN2.

Rearranging one final time and using the fact that ∆R2
1 = −∂11 then yields the desired wave
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type equations for the velocity and magnetic field equations





∂ttu− (η∆+ γR2
1)∂tu− (ηγ∂11u+ ∂22u) = N3,

∂ttb− (η∆+ γR2
1)∂tb− (ηγ∂11b+ ∂22b) = N4,

where

N3 = (∂t − η∆)N1 + ∂2N2,

N4 = (∂t − γR2
1)N2 + ∂2N1.

Similarly, we can rewrite (2.4) and we find that the vorticity, ω, and current density, j,

satisfy the same wave equation but with different nonlinear terms





∂ttω − (η∆+ γR2
1)∂tω − (ηγ∂11ω + ∂22ω) = N5,

∂ttj − (η∆+ γR2
1)∂tj − (ηγ∂11j + ∂22j) = N6,

where

N5 = (∂t − η∆)(b · ∇j − u · ∇ω) + ∂2(b · ∇ω − u · ∇j +Q),

N6 = (∂t − γR2
1)(b · ∇ω − u · j +Q) + ∂2(b · ∇j − u · ∇ω).

The smoothing and stabilization properties exhibited by the wave equations above are far

greater than the original vorticity and current density system (2.4). These properties com-

bined with the dissipation and damping components allow us to establish the desired stability.

We now state the main results found in [5].

Theorem 2.1.1. Let (u0, b0) ∈ H3(R2) with ∇ · u0 = 0 and ∇ · b0 = 0. Then there exists

14



sufficiently small δ = δ(γ, η) > 0 such that, if

‖∇u0‖H2(R2) + ‖∇b0‖H2(R2) ≤ δ,

then (2.3) possesses a unique global solution (u, b) ∈ C([0,∞);H3(R2)) satisfying

‖(u, b)(t)‖2H1(R2) +

∫ t

0

(
‖u2(τ)‖2L2(R2) + ‖∇u(τ)‖2L2(R2) + ‖∇b(τ)‖2H1(R2)

)
dτ

≤ C
(
‖u0‖2H1(R2) + ‖b0‖2H1(R2)

)
, (2.6)

‖(∇u,∇b)(t)‖2H2(R2) +

∫ t

0

(
‖∂1u(τ)‖2L2(R2) + ‖∆u(τ)‖2H1(R2) + ‖∆b(τ)‖2H2(R2)

)
dτ

≤ Cδ2, (2.7)

for any t > 0 and some constant C > 0. Furthermore, the following time decay estimate

holds

‖∇u(t)‖H2(R2) + ‖∇b(t)‖H2(R2) ≤ C
(
‖(u0, b0)‖L2(R2) + δ

)
(1 + t)−

1
2 , (2.8)

when δ is small enough. In particular, for any 2 ≤ q <∞, as t→ ∞,

‖(u, b)(t)‖Lq(R2) → 0, (2.9)

‖(u, b)(t)‖W 1,∞(R2) → 0, and (2.10)

‖(∇u,∇b)(t)‖W 1,q(R2) → 0. (2.11)

Additionally, we obtain the sharp decay rates as stated in the following theorem.

Theorem 2.1.2. Assume (u0, b0) ∈ L1(R2)∩H3(R2) with ∇·u0 = 0 and ∇·b0 = 0 satisfying

‖(u0, b0)‖L1(R2) + ‖(u0, b0)‖H3(R2) ≤ δ,

for some δ small enough. Then for m = 0, 1, 2, the small global solution (u, b) of the system
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(2.3) obeys

‖Dmu(t)‖L2(R2) + ‖Dmb(t)‖L2(R2) ≤ Cδ(1 + t)−
1+m

2 ,

where C > 0 is a constant independent of δ and t.

The proof of Theorem 2.1.1 is very tedious and long, and is thus not included here.

Details can be found in a manuscript submitted for publication [5]. The remainder of this

chapter will be devoted to proving Theorem 2.1.2.

2.2 Preliminaries

The sharp decay rates in Theorem 2.1.2 cannot be shown using energy estimates. Instead,

an integral representation must be used in conjunction with the bootstrapping argument to

obtain the desired decay rates. We need two lemmas in order to obtain the rates.

The first lemma provides an explicit decay rate for the heat kernel associated with the

fractional Laplacian, Λα, for α ∈ R. The fractional Laplacian operator is defined using the

Fourier transform

Λ̂αf(ξ) = |ξ|αf̂(ξ).

Lemma 2.2.1. Let α ≥ 0, β > 0, and 1 ≤ q ≤ p ≤ ∞. Then there exists a constant C such

that, for any t > 0,

‖Λαe−Λβtf‖Lp(Rd) ≤ Ct−
α
β
− d

β (
1
q
− 1

p)‖f‖Lq(Rd). (2.12)

The proof of the above lemma can be found in [17].
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Lemma 2.2.2. Assume 0 < s1 ≤ s2. Then, for some constant C > 0,

∫ t

0

(1 + t− τ)−s1(1 + τ)−s2 dτ ≤





C(1 + t)−s1 , if s2 > 1,

C(1 + t)−s1 ln(1 + t), if s2 = 1,

C(1 + t)1−s1−s2, if s2 < 1.

These two lemmas will be used in the proof of the decay rates.

Now that we have stated the preliminary lemmas, we must convert (2.5) into an integral

representation. We then obtain upper bounds for the kernels of the integral representation.

Finally, we apply the bootstrapping argument to show that the decay rate holds for all time.

These steps are detailed in the following sections culminating in the proof of Theorem 2.1.2.

2.3 Integral Representation of Solutions

This section details the derivation of the integral representation of (2.5). By taking the

Fourier transform of (2.5) we obtain





∂tû = −γξ21 |ξ|−2û+ iξ2b̂+ N̂1,

∂tb̂ = −η|ξ|2b̂+ iξ2û+ N̂1.

We write this as

∂tÛ = AÛ + N̂ (2.13)

where

Û =




û

b̂


 , A =




−γξ21 |ξ|−2 iξ2

iξ2 −η|ξ|2


 , N̂ =




N̂1

N̂2


 .
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The solution of (2.13) is given by

Û(t) = eAtÛ0 +

∫ t

0

eA(t−τ)N̂(τ) dτ,

where the characteristic polynomial associated with A is given by

λ2 + (γξ21 |ξ|−2 + η|ξ|2)λ+ (γηξ21 + ξ22) = 0.

We then find the eigenvalues of the matrix A to be

λ1 =
−(γξ21 |ξ|−2 + η|ξ|2)−

√
Γ

2
,

λ2 =
−(γξ21 |ξ|2 + η|ξ|−2) +

√
Γ

2
,

where

Γ = (γξ21 |ξ|−1 + η|ξ|2)2 − 4(γηξ21 + ξ22).

The corresponding eigenvectors are given by

v1 =




λ1 + η|ξ|2

iξ2


 , v2 =




λ2 + η|ξ|2

iξ2


 .

Then the diagonalization for matrix A is given by

A = (v1, v2)




λ1 0

0 λ2


 (v1, v2)

−1.
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From this, we can now write a more explicit formula for eAt

eAt = (v1, v2)




eλ1t 0

0 eλ2t


 (v1, v2)

−1

=
1

(λ1 − λ2)iξ2




λ1 + η|ξ|2 λ2 + η|ξ|2

iξ2 iξ2







eλ1t 0

0 eλ2t







iξ2 −(λ2 + η|ξ|2)

−iξ2 λ2 + η|ξ|2




=




η|ξ|2G1(t) +G2(t) G1(t)iξ2

G1(t)iξ2 −η|ξ|2G1(t) +G3(t)


 ,

where

G1(t) =
eλ2t − eλ1t

λ2 − λ1
,

G2(t) =
λ2e

λ2t − λ1e
λ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2e

λ1t − λ1e
λ2t

λ2 − λ1
= eλ1t − λ1G1(t).

We may then write

M̂1(ξ, t) = η|ξ|2G1(t) +G2(t),

M̂2(ξ, t) = iξ2G1(t),

M̂3(ξ, t) = −η|ξ|2G1(t) +G3(t).

These kernels influence the decay rates of both u and b. We may then represent (u, b) as

û(ξ, t) = M̂1(ξ, t)û0 + M̂2(ξ, t)b̂0 +

∫ t

0

(
M̂1(ξ, t− τ)N̂1(τ) + M̂2(ξ, t− τ)N̂2(τ)

)
dτ, (2.14)

b̂(ξ, t) = M̂2(ξ, t)û0 + M̂3(ξ, t)b̂0 +

∫ t

0

(
M̂2(ξ, t− τ)N̂1(τ) + M̂3(ξ, t− τ)N̂2(τ)

)
dτ. (2.15)
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Note that in the case when λ1 = λ2, our representation for (u, b) above remains valid as both

G2(t) and G3(t) are well defined as long as we use the limiting form of G1

G1(t) = lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= teλ1t.

We now have an integral representation for (u, b) in (2.14) and (2.15). In the following section

we will find bounds for the kernels M̂i(ξ, t) for m = 1, 2, 3, and with these bounds we will

be able to apply the bootstrapping argument to the integral representation to complete the

proof of Theorem 2.1.2.

2.4 Upper Bounds for the Kernels of the Integral Representation

In this section, we find upper bounds for the kernels M̂i(ξ, t). In order to obtain the desired

results, we much subdivide the frequency space into three subdomains, S1, S21, S22, and

analyze the behavior of the kernels in each of these subdomains. We state this result as a

proposition that we will then use to complete the proof of Theorem 2.1.2.

Proposition 2.4.1. We divide R2 into two subdomains, R2 = S1 ∪ S2 with

S1 :=

{
ξ ∈ R2 :

√
Γ ≤ γξ21|ξ|−2 + η|ξ|2

2
or 3(γξ21 |ξ|−2 + η|ξ|2)2 ≤ 16(γηξ21 + ξ22)

}
,

S2 :=

{
ξ ∈ R2 :

√
Γ >

γξ21 |ξ|−2 + η|ξ|2
2

or 3(γξ21|ξ|−2 + η|ξ|2)2 > 16(γηξ21 + ξ22)

}
.

Then we have the following two results.

1. There are two constants C > 0 and c0 > 0 such that, for any ξ ∈ S1,

Reλ1 ≤ −γξ
2
1 |ξ|−2 + η|ξ|2

2
,

Re λ2 ≤ −γξ
2
1 |ξ|−2 + η|ξ|2

4
,

|G1(t)| ≤ te−
−γξ21 |ξ|−2+η|ξ|2

4
t,

20



|M̂i(ξ, t)| ≤ Ce−c0|ξ|2t, i = 1, 2, 3.

2. There is a constant C > 0 such that, for any ξ ∈ S2,

λ1 <
3(γξ21 |ξ|−2 + η|ξ|2)

4
,

λ2 ≤ − γηξ21 + ξ22
γξ21 |ξ|−2 + η|ξ|2 ,

|G1(t)| <
2

γξ21 |ξ|−2 + η|ξ|2

(
e−

3
4
(γξ21 |ξ|

−2+η|ξ|2)t + e
− C|ξ|2

γξ21 |ξ|
−2+η|ξ|2

t

)
,

|M̂i(t)| < C

(
e−

3
4
(γξ21 |ξ|

−2+η|ξ|2)t + e
−

C|ξ|2

γξ21 |ξ|
−2+η|ξ|2

t

)
, i = 1, 2, 3.

If we further write S2 = S21 ∪ S22 with

S21 := {ξ ∈ S2 : |ξ| ≤ 1} ,

S22 := {ξ ∈ S2 : |ξ| > 1} ,

then for i = 1, 2, 3, and some constants C > 0, c1 > 0, c2 > 0,

|M̂i(ξ, t)| < Ce−c1|ξ|2t, if ξ ∈ S21,

|M̂i(ξ, t)| < Ce−c1|ξ|2t + Ce−c2t, if ξ ∈ S22.

We now prove the above proposition. For convenience, let us write

B = γξ21|ξ|−2 + η|ξ|2.

Then we can write the eigenvalues λ1 and λ2 along with Γ as

λ1 =
−B −

√
Γ

2
, λ2 =

−B +
√
Γ

2
, Γ = B2 − (γηξ21 + ξ22).
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We first consider the case when ξ ∈ S1, i.e. Γ ≤ B
2
. Then we have

−3B

4
≤ Reλ1 ≤ −B

2
, Re λ2 ≤ −B

4
.

By the Mean Value Theorem

|G1(t)| =
∣∣∣∣
eλ2t − eλ1t

λ2 − λ1

∣∣∣∣ ≤ teλ2t ≤ te−
B
4
t.

Using the fact that xe−x ≤ C for x ≥ 0 then if λ1 is a real number we have

|M̂1(t)| =
∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣ ≤ Bte−
B
4
t + CBte−

B
4
t + e−

B
4
t ≤ Ce−c0|ξ|2t,

for some constant c0 dependent of γ and η. On the other hand, if λ1 is imaginary, i.e.

Γ = B2 − 4(γηξ21 + ξ22) < 0 we must consider two possible subcases

(i) |
√
Γ| ≥

√
γηξ21 + ξ22 ,

(ii) |
√
Γ| ≤

√
γηξ21 + ξ22 .

In case (i), we have by the definition of G1 that

|λ1G1(t)| =
√
γηξ21 + ξ22

|
√
Γ|

∣∣eλ1t − eλ2t
∣∣ ≤ Ce−

B
4
t.

In case (ii), we have

γηξ21 + ξ22 ≥ 4(γηξ21 + ξ22)−B2,

or equivalently,

3(γηξ21 + ξ22) ≤ B2.

Then we have

|λ1G1(t)| =
√
γηξ21 + ξ22 |G1(t)| ≤ CBte−

B
4
t ≤ Ce−

B
4
t.

22



Therefore, if λ1 is imaginary, then

|M̂1(ξ, t)| =
∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣ ≤ Bte−
B
4
t + Ce−

B
4
t ≤ Ce−c0|ξ|2t.

Hence, for ξ ∈ S1, the upper bound for the kernel M̂1(ξ, t) is

|M̂1(ξ, t)| ≤ Ce−c0|ξ|2t. (2.16)

Similarly, we obtain the same bound for M̂3(ξ, t)

|M̂3(ξ, t)| ≤ Ce−c0|ξ|2t. (2.17)

We will, in fact, obtain the same bound for M̂2(ξ, t) as well. But in order to prove this, we

must consider the two cases

(i) |
√
Γ| ≥ |ξ2|,

(ii) |
√
Γ| ≤ |ξ2|.

In the case of (i), using the fact that xe−x ≤ C for x ≥ 0, we have

|M̂2(t)| = |ξ2G1(t)| =
∣∣∣∣
ξ2√
Γ

∣∣∣∣
∣∣eλ1t − eλ2t

∣∣ ≤ Ce−c0|ξ|2t.

In the case of (ii), we have that |
√
Γ| ≤ |ξ2| which is equivalent to

−ξ22 ≤ B2 − 4(γηξ21 + ξ22) ≤ ξ22 .

Thus

B2 ≥ 4(γηξ21 + ξ22)− ξ22 ≥ ξ22.

Hence,

|M̂2(ξ, t)| = |ξ2G1(t)| ≤ B|G1(t)| ≤ Bte−
B
4
t ≤ Ce−c0|ξ|2t.
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This completes the upper bounds for M̂i(ξ, t) in the subdomain ξ ∈ S1.

Now for the other subdomain, we assume ξ ∈ S2. Then
B
2
≤

√
Γ ≤ B. We then have the

following for λ1, λ2 and G1

−B ≤ λ1 < −3

4
B,

λ2 =
Γ−B2

2(B +
√
Γ)

≤ −γηξ
2
1 + ξ2 + 2

B
≤ −C|ξ|

2

B
,

|G1(t)| ≤
1

λ2 − λ1

(
eλ1t + eλ2t

)
<

2

B

(
e−

3
4
Bt + e−

C|ξ|2

B
t

)
.

Consequently, we have the following upper bounds for M̂1(ξ, t) and M̂3(ξ, t)

|M̂1(ξ, t)| =
∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣ ≤ 2B|G1(t)|+ eλ2t < C

(
e−

3
4
Bt + e−

C|ξ|2

B
t

)
,

|M̂3(ξ, t)| =
∣∣−η|ξ|2G1(t)− λ1G1(t) + eλ1t

∣∣ < C

(
e−

3
4
Bt + e−

C|ξ|2

B
t

)
.

For the bound of M̂2(ξ, t), notice that since
√
Γ > B

2
, we have

3

4
B2 > 4(γηξ21 + ξ22) ≥ ξ22 .

Therefore,

|M̂2(ξ, t)| = |ξ2G1(t)| < CB|G1(t)| < C

(
e−

3
4
Bt + e−

C|ξ|2

B
t

)
.

It remains to show the improved upper bounds for M̂i(ξ, t) which is accomplished by further

subdividing the subdomain S2 = S21 ∪ S22. Observe, for ξ ∈ S2,

|ξ|2
B

=
|ξ|2

γξ21 |ξ|−2 + η|ξ|2 ≥ |ξ|2
γ + η|ξ|2 ≥





C|ξ|2, if ξ ∈ S21, i.e. |ξ| ≤ 1,

C, if ξ ∈ S22, i.e. |ξ| > 1.
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Then, in the case when ξ ∈ S21 the upper bounds for M̂i(ξ, t) can be improved to

|M̂i(ξ, t)| < C

(
e−

3
4
Bt + e−

C|ξ|2

B

)
≤ Ce−c1|ξ|2t.

Similarly, in the case when ξ ∈ S22 the upper bounds for M̂i(ξ, t) can be improved to

|M̂i(ξ, t)| < C

(
e−

3
4
Bt + e−

C|ξ|2

B

)
≤ Ce−c1|ξ|2t + Ce−c2t.

This completes the proof of the proposition. The upper bounds for M̂i(ξ, t) along with the

integral representation (2.14) and (2.15) will be used to complete the proof of Theorem 2.1.2

in the following section.

2.5 Proof of Decay Rates

We now detail the proof of Theorem 2.1.2. Here we are assuming that the initial data (u0, b0)

satisfies

‖(u0, b0)‖H3 ≤ δ, ‖(u0, b0)‖L1 ≤ δ,

for sufficiently small δ > 0 and that (u, b) is the corresponding global solution established

by Theorem 2.1.1 which has the properties

‖(u, b)(t)‖2H3 +

∫ t

0

(
‖u2(τ)‖2L2 + ‖∇u(τ)‖2H2 + ‖∇b(τ)‖2H3

)
dτ ≤ Cδ2, (2.18)

and

‖∇u(t)‖H2 + ‖∇b(t)‖H2 ≤ Cδ(1 + t)−
1
2 , (2.19)

where C are constants independent of δ.

We begin the proof by differentiating the integral representation in (2.14) and (2.15) to
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obtain

∂̂mk u(ξ, t) = M̂1(ξ, t)∂̂
m
k u0 + M̂2(ξ, t)∂̂

m
k b0

+

∫ t

0

(
M̂1(ξ, t− τ)∂̂mk N1(τ) + M̂2(ξ, t− τ)∂̂mk N2(τ)

)
dτ, (2.20)

∂̂mk b(ξ, t) = M̂2(ξ, t)∂̂mk u0 + M̂3(ξ, t)∂̂mk b0

+

∫ t

0

(
M̂2(ξ, t− τ)∂̂mk N1(τ) + M̂3(ξ, t− τ)∂̂mk N2(τ)

)
dτ, (2.21)

for k = 1, 2 and m = 0, 1, 2.

We will complete the proof using the bootstrapping argument. We make the assumption

that, for t ≤ T ,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤ C0δ(1 + t)−
1
2 , (2.22)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤ C1δ(1 + t)−1, (2.23)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤ C2δ(1 + t)−
3
2 , (2.24)

where Cm (m = 0, 1, 2) will be specified later. Using the assumptions (2.22), (2.23), (2.24),

we must then show that (Dmu(t), Dmb(t)) actually admits smaller upper bounds

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤
C0

2
δ(1 + t)−

1
2 , (2.25)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤
C1

2
δ(1 + t)−1, (2.26)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤
C2

2
δ(1 + t)−

3
2 , (2.27)

for t ≤ T . By showing that (Dmu(t), Dmb(t)) admits these smaller upper bounds for t ≤ T ,

then the bootstrapping argument gives the desired result that these smaller upper bounds

hold for all t ≤ ∞. Therefore, all that remains is to prove that (2.25), (2.26), (2.27) actually

hold for t ≤ T .

We start with the estimate of ‖∂mk u‖L2(R2). Taking the L2 norm on both sides of (2.14)
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and using Plancherel’s Theorem, we have

‖∂mk u‖L2(R2) = ‖∂̂mk u(t)‖L2(R2) ≤ ‖M̂1(t)∂̂
m
k u0‖L2(R2) + ‖M̂2(t)∂̂

m
k b0‖L2(R2)

+

∫ t

0

‖M̂1(t− τ)∂̂mk N1(τ)‖L2(R2) dτ +

∫ t

0

‖M̂2(t− τ)∂̂mk N2(τ)‖L2(R2) dτ. (2.28)

Due to similarity of terms, we only provide the estimates for the first and third term. Without

loss of generality, assume t > 1. By Proposition 2.4.1 and Lemma 2.12, we can bound the

first term on the right hand side of (2.28) as follows

‖M̂1(t)∂̂
m
k u0‖L2(R2) ≤ C‖e−c̃0|ξ|2t∂̂mk u0‖L2(R2) + ‖e−c2t∂̂mk u0‖L2(R2)

= ‖|ξ|me−c̃0|xi|2tΛ̂−m∂mk u0‖L2(R2) + e−c2t‖∂̂mk u0‖L2(R2)

≤ C(1 + t)−
1+m

2 ‖u0‖L1(R2) + C(1 + t)−
1+m

2 ‖u0‖L2(R2)

≤ C(1 + t)−
1+m

2 δ, (2.29)

where c̃0 = min{c0, c1} and we have used the simple fact that e−c2t(1+ t)s ≤ C(c2, s) for any

s ≥ 0 since exponential decay negates algebraic growth. This bound holds for m = 0, 1, 2.

Now that we have bounded the first term of the right hand side of (2.28), it is easy to see

that the second term will share the same bound.

We move to the third term of (2.28). Using the fact that the projection operator P is

bounded in L2 and invoking Proposition 2.4.1, we have

∫ t

0

‖M̂1(t− τ)∂̂mk N1(τ)‖L2(R2) dτ

≤
∫ t

0

‖M̂1(t− τ)∂̂mk Q1(τ)‖L2(R2) dτ

≤ C

∫ t

0

‖e−c̃0|ξ|2(t−τ)∂̂mk Q1(τ)‖L2(R2) dτ + C

∫ t

0

e−c2(t−τ)‖∂̂mk Q1(τ)‖L2(R2) dτ, (2.30)

where Q1 = u · ∇u− b · ∇b.

From here, we must bound (2.30) separately for each case when m = 0, 1, 2. We begin
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with the case when m = 0. Here we must split the first integral of (2.30) into two parts

∫ t

0

‖e−c̃0|ξ|2(t−τ)Q̂1(τ)‖L2 dτ =

∫ t
2

0

‖e−c̃0|ξ|2(t−τ)Q̂1(τ)‖L2 dτ

+

∫ t

t
2

‖e−c̃0|ξ|2(t−τ)Q̂1(τ)‖L2 dτ. (2.31)

By the assumption (2.22), (2.18), and Lemma 2.12, we have

∫ t
2

0

‖e−c̃0|ξ|2(t−τ)Q̃1(τ)‖L2 dτ =

∫ t
2

0

‖|ξ|e−c̃0|ξ|2(t−τ) ̂Λ−1Q1(τ)(τ)‖L2 dτ

≤ C

∫ t
2

0

(t− τ)−1 (‖u(τ)⊗ u(τ)‖L1 + ‖b(τ)⊗ b(τ)‖L1) dτ

≤ C

(
t

2

)−1

sup
0≤τ≤t

(‖u(τ)‖L2 + ‖b(τ)‖L2)

∫ t
2

0

(
‖u(τ)‖L2 + ‖b(τ)‖2L

)
dτ

≤ CC0

(
t

2

)−1

δ2
∫ t

2

0

(1 + τ)−
1
2 dτ

≤ CC0δ
2(1 + t)−

1
2 ,

where we have used u · ∇u = ∇ · (u ⊗ u) and b · ∇b = ∇ · (b ⊗ b). We must estimate the

second integral of (2.31) in a slightly different manner. Using the property 2.19 we have

∫ t

t
2

‖e−c̃0|ξ|2(t−τ)Q̂1(τ)‖L2 dτ ≤ C

∫ t

t
2

(t− τ)−
1
2‖u · ∇u− b · ∇b‖L1 dτ

≤ C

∫ t

t
2

(t− τ)−
1
2 (‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ

≤ CC0δ
2

∫ t

t
2

(t− τ)−
1
2 (1 + τ)−1 dτ

≤ CC0δ
2

(
1 +

t

2

)−1 ∫ t

t
2

(t− τ)−
1
2 dτ

≤ CC0δ
2(1 + t)−

1
2 .

This completes the bound for the first term of (2.30).

We now move on to the second term of (2.30). Using the fact that e−c2t(1+ t)s ≤ C(c2, s)
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for any s > 0 and using (2.25) along with (2.19) we obtain the following bound

∫ t

0

e−c2(t−τ)‖Q̂1(τ)‖L2 dτ ≤ C

∫ t

0

(1 + t− τ)−s‖u(τ)‖
1
2

L2‖∇u(τ)‖L2‖∆u(τ)‖
1
2

L2 dτ

≤ CC
1
2
0 δ

2

∫ t

0

(1 + t− τ)−s(1 + τ)−
1
2 dτ

≤ CC
1
2
0 δ

2(1 + t)−
1
2 ,

where s > 1. This completes both bounds for (2.30). Therefore, when m = 0, the third term

of (2.28) is bounded by

∫ t

0

‖M̂1(t− τ)N̂1(τ)‖L2 dτ ≤ C
(
C0 + C

1
2
0

)
δ2(1 + t)−

1
2 .

The fourth term of (2.28) shares the same bound as that of the third term bound we just

obtained when m = 0. Thus, we have shown that there exist C3 > 0 and C4 > 0 such that

‖u(t)‖L2 ≤ C3δ(1 + t)−
1
2 + C4(1 + C0)δ

2(1 + t)−
1
2 .

If C0 and δ > 0 sufficiently small satisfy

C3 ≤
C0

8
, C4(1 + C0)δ ≤

C0

8
,

and thus

‖u(t)‖L2 ≤ C0

4
δ(1 + t)−

1
2 . (2.32)

Similarly, we obtain the same bound for ‖b(t)‖L2 from (2.21). Combining these we have

obtained the desired bound (2.25)

‖u(t)‖L2 + ‖b(t)‖L2 ≤ C0

2
δ(1 + t)−

1
2 .
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We now move on to the cases when m = 1 and m = 2. Recall that we have already

bounded the first term of (2.28) for m = 0, 1, 2, so we focus our attention on the third term

of (2.28) which we have only shown for m = 0 thus far. We split the first time integral of

(2.30) into two terms. Observe

∫ t

0

‖e−c̃0|ξ|2(t−τ)∂̂mk Q1(τ)‖L2 dτ

≤
∫ t−1

0

‖|ξ|m+1e−ĉ0|ξ|2(t−τ) ̂Λ−(m+1)∂mk Q1(τ)‖L2 dτ +

∫ t

t−1

‖∂̂mk Q1(τ)‖L2 dτ

≤ C

∫ t−1

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ + C(m)

∫ t

t−1

(1 + t− τ)−
m+1

2 ‖ ̂∂mk Q1(τ)‖L2 dτ

≤ C

∫ t

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ + C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1(τ)‖L2 dτ,

where we have use Lemma 2.2.2 and the fact that

(t− τ)−
m+1

2 ≤ C(1 + t− τ)−
m+1

2 for any τ ∈ [0, t− 1],

to bound the first term above. We also used the fact that (1 + t− τ) ≤ 2 for τ ∈ [t− 1, t] to

bound the second term above.

The second time integral of (2.30) can be bounded by

∫ t

0

e−c2(t−τ)‖∂̂mk Q1(τ)‖L2 dτ ≤ C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1(τ)‖L2 dτ,

thanks to the fact e−c2t(1 + t)s ≤ C(c2, s) for any t > 0 and any constant s > 0. Therefore,

combining these to bounds, the third term of (2.28) is bounded by

∫ t

0

‖M̂1(t− τ)∂̂mk N1(τ)‖L2 dτ ≤ C

∫ t

0

(1 + t− τ)−
m+1

2 ‖Λ−1Q1(τ)‖L2 dτ

+ C(m)

∫ t

0

(1 + t− τ)−
m+1

2 ‖∂̂mk Q1(τ)‖L2 dτ. (2.33)

In order to continue to bound this, we must consider the cases m = 1 and m = 2 separately.
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For m = 1, by Hölder’s inequality and the Sobolev inequality, we bound the first term of

(2.33) as follows

∫ t

0

(1 + t− τ)−1‖Λ−1Q1(τ)‖L2 dτ

≤ C

∫ t

0

(1 + t− τ)−1
(
‖u(τ)‖2L4 + ‖b(τ)‖2L4

)
dτ

≤ C

∫ t

0

(1 + t− τ)−1 (‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ.

Then by (2.32), assumption (2.23), and Lemma 2.2.2,

∫ t

0

(1 + t− τ)−1‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ
2

∫ t

0

(1 + t− τ)−1(1 + τ)−
3
2 dτ

≤ CC1δ
2(1 + t)−1.

Similarly, for m = 1 we bound the second term of (2.33) using (2.32), the assumption (2.23),

and the decay estimate ‖(∆u(t),∆b(t))‖H1 ≤ Cδ(1 + t)−
1
2 to obtain

∫ t

0

(1 + t− τ)−1‖∂kQ1(τ)‖L2 dτ

≤
∫ t

0

(1 + t− τ)−1
(
‖∇u(τ)‖2L4 + ‖u(τ)‖L4‖∆u(τ)‖L4

+‖∇b(τ)‖2L4 + ‖b(τ)‖L4‖∆b(τ)‖L4

)
dτ

≤ C

∫ t

0

(1 + t− τ)−1
(
‖∇u(τ)‖L2‖∆u(τ)‖L2 + ‖u(τ)‖

1
2

L2‖∇u(τ)‖
1
2

L2‖∆u(τ)‖H1

+ ‖∇b(τ)‖L2‖∆b(τ)‖L2 + ‖b(τ)‖
1
2

L2‖∇b(τ)‖
1
2

L2‖∆b(τ)‖H1

)
dτ

≤ C(C1 + C
1
2
0 C

1
2
1 δ

2

∫ t

0

(1 + t− τ)−1(1 + τ)−
5
4 dτ

≤ C(C1 + C
1
2
1 )δ

2(1 + t)−1.
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Therefore, in the case when m = 1, the third term of (2.30) can be bounded by

∫ t

0

‖M̂1(t− τ)∂̂kN1(τ)‖L2 dτ ≤ C(1 + C1)δ
2(1 + t)−1. (2.34)

Combining the estimates (2.29) and (2.34) yields

‖∇u‖L2 ≤ Ctδ(1 + t)−1 + C6(1 + C1)δ
2(1 + t)−1,

for some constants C5 > 0 and C6 > 0. Therefore, if C1 and δ > 0 sufficiently small satisfy

C5 ≤
C1

8
, C6(1 + C1)δ ≤

C1

8
,

then

‖∇u‖L2 ≤ C1

4
δ(1 + t)−1. (2.35)

Similarly, we obtain the same bound for ‖∇b(t)‖L2 from (2.21). Combining these we obtain

the desired bound (2.26)

‖∇u(t)‖L2 + ‖∇b(t)‖L2 ≤ C1

2
δ(1 + t)−

1
2 .

Finally, we bound (2.33) for the case when m = 2. Using a similar argument to that used in

the case when m = 1 we get

∫ t

0

(1 + t− τ)−
3
2‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ

2

∫ t

0

(1t − τ)−
3
2 (1 + τ)−

3
2 dτ

≤ Cδ2(1 + t)−
3
2 .
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Then by Hölder’s inequality and Sobolev’s inequality,

∫ t

0

(1 + t− τ)−
3
2‖∂2kQ1(τ)‖L2 dτ

≤ C

∫ t

0

(1 + t− τ)−
3
2

(
‖∇u(τ)‖L4‖∆u(τ)‖L4 + ‖u(τ)‖L∞‖∇3u(τ)‖L2

+ ‖∇b(τ)‖L4‖∆b(τ)‖L4 + ‖b(τ)‖L∞‖∇3b(τ)‖L2

)
dτ

≤ C

∫ t

0

(1 + t− τ)−
3
2

(
‖∇u(τ)‖

1
2

L2‖∆u(τ)‖L2‖∇3u(τ)‖
1
2

L2

+ ‖u(τ)‖
1
2

L2‖∆u(τ)‖
1
2

L2‖∇3u(τ)‖L2 + ‖∇b(τ)‖ 1
2‖∆b(τ)‖L2‖∇3b(τ)‖

1
2

L2

+ ‖b(τ)‖
1
2

L2‖∆b(τ)‖
1
2

L2‖∇3b(τ)‖L2

)
dτ.

Using (2.32), (2.36), the assumption (2.24), and the decay rate ‖(∇3u,∇3b)‖L2 ≤ Cδ(1+t)−
1
2 ,

we then have

∫ t

0

(1 + t− τ)−
3
2‖∂2kQ1(τ)‖L2 dτ ≤ C

(
C

1
2
1 C2 + C

1
2
0 C

1
2
2

)
δ2
∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−

3
2 dτ

≤ C
(
C2 + C

1
2
2

)
δ2(1 + t)−

3
2 .

Hence ∫ t

0

‖M̂1(t− τ)∂̂2kN1(τ)‖L2 dτ ≤ C(1 + C2)δ
2(1 + t)−

3
2 .

Therefore,

‖∆u‖L2 ≤ C7δ(1 + t)−
3
2 + C8(1 + C2)δ

2(1 + t)−
3
2 ,

for constants C7 > 0 and C8 > 0. Therefore, if C2 and δ > 0 sufficiently small satisfy

C7 ≤
C2

8
, C8(1 + C2)δ ≤

C2

8
,

then

‖∆u‖L2 ≤ C2

4
δ(1 + t)−1. (2.36)
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Similarly, we obtain the same bound for ‖∆b(t)‖L2 from (2.21). Combining these we obtain

the desired bound (2.27)

‖∆u(t)‖L2 + ‖∆b(t)‖L2 ≤ C2

2
δ(1 + t)−

1
2 .

Then the bootstrapping argument implies that the decay rates (2.25), (2.26), (2.27) hold for

all t ≤ T with T = ∞. This completes the proof of Theorem 2.1.2 and our discussion for

the MHD stability problem.
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CHAPTER 3

GROWING AND SINGULAR SOLUTIONS OF THE 2D MHD EQUATIONS

Recall the incompressible ideal MHD equations





∂tu+ u · ∇u = −∇p + b · ∇b,

∂tb+ u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0.

(3.1)

The ideal MHD equations are particularly interesting and difficult equations to analyze as

they lack both dissipation, ν∆u, and diffusion, η∆b, terms that can typically help control

the behavior of the plasma flow. The absence of the dissipative type terms presents the

possibility for growing solutions and singular solutions. It remains an outstanding open

questions whether the solution to the ideal MHD equations preserves the smoothness of

initial data globally in time. Based on the behavior of other hydrodynamical systems and

the fact that growing solutions to the 2D ideal MHD equations exist, we believe it is possible

to construct initial conditions that result in a finite time blowup. Although there exist

a few results that show growing solutions or solutions with a finite time blow-up to the

incompressible 3D ideal MHD equations, all known results have solutions with infinite energy

which is not physically meaningful.

As with many equations that describe physical phenomena, results are often restricted
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to solutions with a physical meaning. In particular, with the MHD equations, scientists are

interested in finite energy solutions. We are particularly interested in finite energy solutions,

but infinite energy solutions are still worth studying given the difficulty of the ideal MHD

equations. In this section, we provide singular solutions and double exponential growth

solutions with infinite energy. These solutions provide insight to the behavior of the ideal

MHD equations and lend support to the search of a singular solution with finite energy.

We begin with a singular solution to the 2D ideal MHD equation.

Lemma 3.0.1. Let C be a constant vector field. Then, for x ∈ R2 and t ≥ 0





u =
C

1− t
,

p = − C · x
(1− t)2

,

b = 0,

(3.2)

is a singular solution to the 2D ideal MHD equation (3.1).

To see this, observe the equations above satisfy ∇ · u = ∇ · b = 0 and trivially satisfy the

magnetic equation

∂tb+ u · ∇b = b · ∇u.

Additionally,

∂tu =
C

(1− t)2
,

∇p = − C

(1− t)2
.

Then (u, p, b) also satisfies the velocity equation

∂tu+ u · ∇u = −∇p+ b · ∇b.

36



This shows that (u, p, b) is a solution to (3.1). Clearly u → ∞ as t → 1−. Thus, (3.2)

is singular solution to (3.1). This solution, however, has infinite energy because u(x, t) is

constant in the spacial component

‖u(t)‖L2(R2) =

∥∥∥∥
C

1− t

∥∥∥∥
L2(R2)

= ∞.

In addition to singular solutions, double exponentially growing solutions of the 2D ideal

MHD equations (3.5) with infinite energy also exist.

Lemma 3.0.2. Assume ψ0 = ψ0(x1). Then





u = (−etx1, etx2),

p = −1
2
x21(e

2t − et)− 1
2
x22(e

2t + et),

ψ = ψ0(e
et−1x1),

solves the MHD equation (3.5). In particular

b = (0, ee
t−1∂1ψ0(e

et−1x1)),

grows exponentially.

First note that

b · ∇b = (b1∂1 + b2∂2)(0, e
et−1∂1ψ0(e

et−1x1)) = (0, 0).

To see that (u, p, ψ) satisfies the u equation of (3.5) observe

∂tu = ∂t(−etx1, etx2),

= (−etx1, etx2)

37



u · ∇u = (−etx1∂1 + etx2∂2)(−etx1, etx2)

= (e2tx1, e
2tx2),

∇p = (∂1p, ∂2p)

= (etx1(−et + 1), etx2(−et − 1)),

b · ∇b = (0, 0).

Therefore

∂tu+ u · ∇u+∇p− b · ∇b = (−etx1, etx2) + (e2tx1, e
2tx2)

+ (etx1(−et + 1), etx2(−et − 1))

= (0, 0).

In order to verify (u, p, ψ) satisfy the ψ equation

∂tψ + u · ∇ψ = 0,

notice that

∂tψ = ∂1ψ0(e
et−1)etee

t−1x1,

u · ∇ψ = −etx1∂1ψ0(e
et−1x1)e

et−1.

Thus

∂tψ + u · ∇ψ = ∂1ψ0(e
et−1)etee

t−1x1 − etx1∂1ψ0(e
et−1x1)e

et−1 = 0,

and

ψ(x1, x2, 0) = ψ0(e
e0−1x1) = ψ0(x1).
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This completes the proof.

The double exponentially growing solution above as not been presented in any publication

known to the author at this time. Even though both solutions presented above have infinite

energy on the whole space, they may be physically relevant locally. In fact the second

example represents the strain flow with fluids compressed in one direction and stretched

in the other. In addition, their construction may help provide insight into finding growing

solutions with finite energy.

3.1 Transformation of the 2D Ideal MHD Equations to a 1D System

We now turn our attention to the search for finite energy solutions to the incompressible 2D

ideal MHD equations which blow up in finite time. Given the difficulty in analyzing these

equations, we make use of the fact that solutions to the ideal system are scale invariant.

This scale invariance allows the reduction from a two-dimensional spacial domain to a one-

dimensional spacial domain and the possibility for more fruitful analysis.

In the case of (3.1), scale invariance of solutions means that whenever (u(x, t), b(x, t)) is

a solution to (3.1) then for any λ > 0 then





uλ(x, t) =
1
λ
u(λx, t),

bλ(x, t) =
1
λ
b(λx, t),

pλ(x, t) =
1
λ2p(λx, t),

also solves (3.1).

Our analysis will focus on the vorticity, ω = ∇× u, and the current density, j = ∇× b,

equations that are found by applying ∇× to (3.1) to obtain





∂tω + u · ∇ω = b · ∇j,

∂tj + u · ∇j = b · ∇ω +Q(u, b),

(3.3)
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where

Q(u, b) = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).

The vorticity and current density are also scale invariant in the ideal MHD case. If (ω, j)

are solutions to (3.3), then for all λ > 0





ωλ(x, t) = ω(λx, t),

jλ(x, t) = j(λx, t),

(3.4)

also solves (3.3).

We will also consider the vorticity and stream function formulation of the 2D ideal MHD

equations





∂tω + u · ∇ω = b · ∇j,

∂tψ + u · ∇ψ = 0,

(3.5)

where ψ is the stream function given by b = ∇⊥ψ = (−∂2ψ, ∂1ψ).

Using a polar coordinate transformation, we are able to transform both the 2D vorticity

and current density formulation (3.3) along with the 2D vorticity and stream function for-

mulation (3.5) into one-dimensional systems due to the scale invariant property of solutions.

Let φ and ψ be the stream functions associated with u and b, respectively, with u = ∇⊥φ

and b = ∇⊥ψ. We consider a special class of scale invariant solutions





ω(x, t) = g(θ, t),

j(x, t) = h(θ, t),

φ(x, t) = r2G(θ, t),

ψ(x, t) = r2H(θ, t),

(3.6)
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where (r, θ) is the associated polar coordinates for x = (x1, x2)

x1 = r cos θ,

x2 = r sin θ.

Using these scale invariant solutions and a polar coordinate transformation, (3.3) transforms

into the one-dimensional system





∂tg + 2G∂θg = 2H∂θh,

∂th + 2G∂θh = 2H∂θg − 2∂θG∂θθH + 2∂θH∂θθG,

(3.7)

and (3.5) transforms into the one-dimensional system





∂tg + 2G∂θg = 2H∂θh,

∂tH + 2G∂θH = 2H∂θG,

(3.8)

where G and H are defined by

∂θθG+ 4G = g, (3.9)

∂θθH + 4H = h. (3.10)

The explicit construction of (3.7) and (3.8) is tedious and the full details can be found in

Appendix A.3.

The goal of transforming the 2D ideal MHD equations into a 1D system is to discover a

finite-energy solution which blows up in finite time. Once this is complete, the finite time

blowup for the 1D system would allow for the construction of a finite time blowup in the 2D

system thus solving a long outstanding open problem.

This goal, however, has not yet been fully achieved. The results presented here provide a
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conditional result for a finite time blowup. While this falls short of the goal of fully solving

this open problem, the conditional result provides great insight into behavior of the system.

There are two main considerations for constructing the blow up which is to either have

the 1D transformation of vorticity, g, blow up or to have the 1D transformation of the current

density stream function, H , blow up.

At first glance it appears that having the blowup occur in H is viable as its equation

has the structure of vortex stretching. However, the more fruitful progress has been made

searching for a blowup to occur in the 1D transformation of the vorticity, g.

Before we state the conditional blowup result, we discuss the known properties of the 1D

systems (3.7) and (3.8).

3.2 Properties of the 1D Systems

Here we state the known results for the 1D Systems (3.7) and (3.8). We begin with the

explicit formulation for G and H .

Lemma 3.2.1. Let −π ≤ a < b ≤ π, where b− a 6= π
2
. Assume g ∈ C([a, b]). Then





∂θθG+ 4G = g, θ ∈ [a, b],

G(a) = G(b) = 0,

(3.11)

has a unique solution G ∈ C2([a, b]).

Furthermore,

G(θ) = − 1

A
cos(2θ + π

2
− 2b)

∫ θ

a

g(ρ) sin(2ρ− 2a) dρ

− 1

A
sin(2θ − 2a)

∫ b

θ

g(ρ) cos(2ρ+ π
2
− 2b) dρ. (3.12)
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and

∂θG(θ) =
2

A
sin(2θ + π

2
− 2b)

∫ θ

a

g(ρ) sin(2ρ− 2a) dρ

− 2

A
cos(2θ − 2a)

∫ b

θ

g(ρ) cos(2ρ+ π
2
− 2b) dρ. (3.13)

where A = 2 sin(2b − 2a). Similarly, if h ∈ C([a, b]) then H has the same explicit equation

as G with g replaced by h.

This lemma is proven using the Sturm-Liouville method. To do this, a fundamental

solution must be constructed. Solving the homogeneous problems





G′′ + 4G = 0,

G(a) = 0,

and





G′′ + 4G = 0,

G(b) = 0,

yields

G1(θ) = sin(2θ − 2a),

G2(θ) = cos(2θ + π
2
− 2b).

We now construct the fundamental solution constant, A,

A = (G1G
′
2 −G′

1G2) = −2 sin(2b− 2a).
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Therefore, the fundamental solution to the homogeneous part of(3.11) is

Γ(θ, ρ) = − 1

2 sin(2b− 2a)





sin(2ρ− 2a) cos(2θ + π
2
− 2b), if a ≤ ρ ≤ θ ≤ b,

sin(2θ − 2a) cos(2ρ+ π
2
− 2b), if a ≤ θ ≤ ρ ≤ b.

In particular, the solution to the inhomogeneous part of (3.11) is

∫ b

a

Γ(θ, ρ)g(ρ) dρ =

∫ θ

a

Γ(θ, ρ)g(ρ) dρ+

∫ b

θ

Γ(θ, ρ)g(ρ) dρ

= − 1

A
cos(2θ + π

2
− 2b)

∫ θ

a

g(ρ) sin(2ρ− 2a) dρ

− 1

A
sin(2θ − 2a)

∫ b

θ

g(ρ) cos(2ρ+ π
2
− 2b) dρ.

Thus, the general solution to (3.11) without boundary conditions is given by

G(θ) = c1 sin(2θ − 2a) + c2 cos(2θ +
π
2
− 2b)

− 1

A
cos(2θ + π

2
− 2b)

∫ θ

a

g(ρ) sin(2ρ− 2a) dρ

− 1

A
sin(2θ − 2a)

∫ b

θ

g(ρ) cos(2ρ+ π
2
− 2b) dρ.

Using the given boundary conditions G(a) = G(b) = 0, we find that c1 = c2 = 0. Therefore,

G(θ) = − 1

A
cos(2θ + π

2
− 2b)

∫ θ

a

g(ρ) sin(2ρ− 2a) dρ

− 1

A
sin(2θ − 2a)

∫ b

θ

g(ρ) cos(2ρ+ π
2
− 2b) dρ.

Differentiating this result with respect to θ yields the desired equation for ∂θG(θ). This

completes the proof.

These explicit equations for G and H will be used to investigate the behavior of solutions.

Additionally, it can be shown that H maintains its initial sign for all time.
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Lemma 3.2.2. Suppose g,H are solutions to (3.8). Let X(a, t) be the particle trajectory

defined by





dX(a, t)

dt
= 2G(X(a, t), t),

X(a, 0) = a.

Then

H(X(a, t), t) = H(a, 0)e
∫ t
0 2∂θG(X(a,τ),τ) dτ .

To see this, let X(a, t) be the particle trajectory defined in the lemma. Since H is a solution

to (3.8) then it satisfies the equation

∂tH + 2G∂θH = 2H∂θG.

Then

∂tH(X(a, t), t) + 2G(X(a, t), t)∂θH(X(a, t), t) = 2H(X(a, t), t)∂θG(X(a, t), t).

Thus

d

dt
H(X(a, t), t) = 2H(X(a, t), t)∂θG(X(a, t), t).

Hence

H(X(a, t), t) = H(a, 0)e
∫ t

0
2∂θG(X(a,τ),τ) dτ .

Using these properties, we can now show the local well-posedness of the 1D system (3.7).

Proposition 3.2.3 (Local Well-Posedness of the 1D System). Let Ω = [a, b] for some −π ≤
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a < b ≤ π with b−a 6= π
2
. Let g0, h0 ∈ H1(Ω). Then there exist T > 0 and a unique solution

(g, h) to (3.7) with boundary conditions

G(a) = G(b) = H(a) = H(b) = 0,

satisfying

(g, h) ∈ C([0, T );H1(Ω)).

Furthermore, if, for T ∗ > T

∫ T ∗

0

‖g(·, t)‖∞ dt <∞ and

∫ T ∗

0

‖∂θg(·, t)‖∞ dt <∞,

then (g, h) can be extended to [0, T ∗).

The proof for local existence relies on the local a priori bounds on ‖g‖H1 and ‖h‖H1 . We

start with the L2 estimate. Dotting the (3.7) with g and h, respectively, we obtain

1

2

d

dt

(
‖g‖2L2 + ‖h‖2L2

)
= I1 + I2 + I3,

where

I1 = −2

∫

Ω

Gg∂θg dθ − 2

∫

Ω

Gh∂θh dθ,

I2 = 2

∫

Ω

Hg∂θh dθ + 2

∫

Ω

Hh∂θg dθ + 2

∫

Ω

h∂θH∂θθGdθ,

I3 = −2

∫

Ω

h∂θG∂θθH dθ.

We estimate the terms I1, I2, I3. Recall that G = 0 and H = 0 on ∂Ω. Then, using

integration by parts, we obtain

I1 = −2

∫

Ω

(Gg∂θg +Gh∂θh) dθ
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= −
∫

Ω

G∂θ(g
2 + h2) dθ

=

∫

Ω

∂θG(g
2 + h2) dθ.

By (3.13), ‖∂θG‖L∞(Ω) ≤ C‖g‖L2(Ω). Then

|I1| ≤ ‖∂θG‖L∞(Ω)

(
‖g‖2L2(Ω) + ‖h‖2L2(Ω)

)

≤ C‖g‖L2(Ω)

(
‖g‖2L2(Ω) + ‖h‖2L2(Ω)

)
.

To estimate I2 we make use of the fact that g and G satisfy the relationship

∂θθG+ 4G = g.

Using the relationship above and integration by parts, we estimate I2 as follows

I2 = 2

∫

Ω

(Hg∂θh+Hh∂θg) dθ + 2

∫

Ω

h∂θH∂θθGdθ

= 2

∫

Ω

H∂θ(gh) dθ + 2

∫

Ω

h∂θH(g − 4G) dθ

= 2

∫

Ω

H∂θ(gh) dθ + 2

∫

Ω

∂θH(gh) dθ − 8

∫

Ω

∂θHGhdθ

= −2

∫

Ω

∂θH(gh) dθ + 2

∫

Ω

∂θH(gh) dθ− 8

∫

Ω

∂θHGhdθ

= −8

∫

Ω

∂θHGhdθ.

By (3.12) and (3.13), ‖G‖L2(Ω) ≤ C‖g‖L2(Ω) and ‖∂θH‖L∞(Ω) ≤ C‖h‖L2(Ω). Then

|I2| ≤ 8‖∂θH‖L∞(Ω)‖G‖L2(Ω)‖h‖L2(Ω)

≤ C‖g‖L2(Ω)‖h‖2L2(Ω).

Now we estimate I3 to complete the L2 estimates. Again, by (3.12) and (3.13), ‖∂θG‖L∞(Ω) ≤
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C‖g‖L2 and ‖∂θθH‖L2(Ω)‖ ≤ C‖h‖L2(Ω). So term I3 can be estimated by

|I3| =
∣∣∣∣2
∫

Ω

h∂θG∂θθH dθ

∣∣∣∣

≤ 2‖∂θG‖L∞(Ω)‖h‖L2(Ω)‖∂θθH‖L2(Ω)

≤ C‖g‖L2(Ω)‖h‖2L2(Ω).

Therefore, g and h satisfy

1

2

d

dt

(
‖g‖2L2(Ω) + ‖h‖2L2(Ω)

)
≤ C‖g‖L2(Ω)

(
‖g‖2L2(Ω) + ‖h‖2L2(Ω)

)
.

We now move on to the H1 estimate. Differentiating (3.7) with respect to θ, dotting with

∂θg and ∂θh, respectively, and integrating in space we obtain

1

2

d

dt

(
‖∂θg‖2L2(Ω) + ‖∂θh‖2L2(Ω)

)
= K1 +K2 +K3,

where

K1 = −2

∫

Ω

G∂θθg∂θg dθ − 2

∫

Ω

G∂θθh∂θh dθ − 2

∫

Ω

∂θg∂θG∂θg dθ − 2

∫

Ω

∂θh∂θG∂θh dθ,

K2 = 2

∫

Ω

H∂θθh∂θg dθ + 2

∫

Ω

H∂θθg∂θh dθ + 2

∫

Ω

∂θh∂θH∂θg dθ + 2

∫

Ω

∂θg∂θH∂θh dθ,

K3 = 2

∫

Ω

∂θH∂θθθG∂θh dθ − 2

∫

Ω

∂θG∂θθθH∂θh dθ.

We begin with K1. Using the fact that G = 0 on ∂Ω we find that K1 = 0. To see this,

observe

K1 = −2

∫

Ω

G∂θθg∂θg dθ − 2

∫

Ω

G∂θθh∂θh dθ − 2

∫

Ω

∂θg∂θG∂θg dθ − 2

∫

Ω

∂θh∂θG∂θh dθ,

= −
∫

Ω

∂θ
(
G((∂θg)

2 + (∂θh)
2)
)
dθ
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= − G((∂θg)
2 + (∂θh)

2)
∣∣
∂Ω

= 0.

Similarly, since H = 0 on ∂Ω we find that K2 = 0 as shown below

K2 = 2

∫

Ω

H∂θθh∂θg dθ + 2

∫

Ω

H∂θθg∂θh dθ + 2

∫

Ω

∂θh∂θH∂θg dθ + 2

∫

Ω

∂θg∂θH∂θh dθ

= 2

∫

Ω

∂θ (H∂θg∂θh) dθ

= 2 H∂θg∂θh|∂Ω

= 0.

To bound K3 we will make use of the relations

∂θθG + 4G = g,

∂θθH + 4H = h.

Then we have

K3 = 2

∫

Ω

∂θH∂θθθG∂θh dθ − 2

∫

Ω

∂θG∂θθθH∂θh dθ

= 2

∫

Ω

∂θH(∂θg − 4∂θG)∂θh dθ − 2

∫

Ω

∂θG(∂θh− 4∂θH)∂θh dθ

= 2

∫

Ω

∂θH∂θg∂θh dθ − 8

∫

Ω

∂θH∂θG∂θh dθ − 2

∫

Ω

∂θG∂θh∂θh dθ + 8

∫

Ω

∂θG∂θH∂θh dθ

= 2

∫

Ω

∂θH∂θg∂θh dθ − 2

∫

Ω

∂θG∂θh∂θh dθ.

By (3.13), ‖∂θG‖L∞(Ω) ≤ C‖g‖L2(Ω) and ‖∂θH‖L∞(Ω) ≤ C‖h‖L2(Ω). From this, we have the

following bound for K3

|K3| ≤ 2‖∂θH‖L∞(Ω)‖∂θg‖L2(Ω)‖∂θh‖L2(Ω) + 2‖∂θG‖L∞(Ω)‖∂θh‖2L2(Ω)
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≤ C‖h‖L2(Ω)‖∂θg‖L2(Ω)‖∂θh‖L2(Ω) + C‖g‖L2(Ω)‖∂θh‖2L2(Ω).

Therefore, Y (t) = ‖g‖2H1(Ω) + ‖h‖2H1(Ω) satisfies

1

2

d

dt
Y (t) ≤ C‖g‖L2(Ω)

(
‖g‖2L2(Ω) + ‖h‖2L2(Ω)

)

+ C‖h‖L2(Ω)‖∂θg‖L2(Ω)‖∂θh‖L2(Ω) + C‖g‖L2(Ω)‖∂θh‖2L2(Ω)

≤ C‖g‖H1(Ω)Y (t)

≤ C
√
Y (t)Y (t).

This inequality implies that there exists a T > 0 such that Y (t) ≤ C for t < T . This com-

pletes the local existence portion. It remains to be shown that local solutions are unique.

We will show that if (g1, h1) ∈ H1(Ω) and (g2, h2) ∈ H1(Ω) are two solutions to (3.7)

then they must be identical. Let Gi, Hi be the solutions to

∂θθGi + 4Gi = gi,

∂θθHi + 4Hi = hi,

Gi(a) = Gi(b) = 0,

Hi(a) = Hi(b) = 0,

for i = 1, 2. Taking the difference of the equation for ∂tg1 and ∂tg2 from (3.7) yields

∂t(g1 − g2) = −2G1∂θ(g1 − g2)− 2(G1 −G2)∂θg2

+ 2H1∂θ(h1 − h2) + 2(H1 −H2)∂θh2.
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Dotting with (g1 − g2) and integrating in space results in

1

2

d

dt
‖g1 − g2‖2L2 = −

∫

Ω

2G1(g1 − g2)∂θ(g1 − g2) dθ −
∫

Ω

2(G1 −G2)∂θg2(g1 − g2) dθ

+

∫

Ω

2H1∂θ(h1 − h2)(g1 − g2) dθ +

∫

Ω

2(H1 −H2)∂θh2(g1 − g2) dθ

=

∫

Ω

∂θG1(g1 − g2)
2 dθ −

∫

Ω

2(G1 −G2)∂θg2(g1 − g2) dθ

+

∫

Ω

2H1∂θ(h1 − h2) dθ +

∫

Ω

2(H1 −H2)∂θh2(g1 − g2) dθ.

Similarly, for the difference of h1 and h2 we obtain

∂t(h1 − h2) = −2G1∂θ(h1 − h2)− 2(G1 −G2)∂θh2

+ 2H1∂θ(g1 − g2) + 2(H1 −H2)∂θg2

+ 2∂θH1∂θθ(G1 −G2) + 2∂θ(H1 −H2)∂θθG2

− 2∂θG1∂θθ(H1 −H2)− 2∂θ(G1 −G2)∂θθH2.

Dotting with (h1 − h2), integrating in space, and using integration by parts yields

1

2

d

dt
‖h1 − h2‖2L2 =

∫

Ω

∂θG1(h1 − h2)
2 dθ −

∫

Ω

2(G1 −G2)∂θh2(h1 − h2) dθ

+

∫

Ω

2H1∂θ(g1 − g2)(h1 − h2) dθ +

∫

Ω

2(H1 −H2)∂θg2(h1 − h2) dθ

+

∫

Ω

2∂θH1∂θθ(G1 −G2)(h1 − h2) dθ +

∫

Ω

2∂θ(H1 −H2)∂θθG2(h1 − h2) dθ

−
∫

Ω

2∂θG1∂θθ(H1 −H2)(h1 − h2) dθ −
∫

Ω

2∂θ(G1 −G2)∂θθH2(h1 − h2) dθ.

Adding, we obtain

1

2

d

dt

(
‖g1 − g2‖2L2 + ‖h1 − h2‖2L2

)
=

∫

Ω

∂θG1((g1 − g2)
2 + (h1 − h2)

2) dθ

−
∫

Ω

2(G1 −G2)∂θg2(g1 − g2) dθ
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+

∫

Ω

2H1∂θ(h1 − h2)(g1 − g2) dθ

+

∫

Ω

2(H1 −H2)∂θh2(g1 − g2) dθ

−
∫

Ω

2(G1 −G2)∂θh2(h1 − h2) dθ

+

∫

Ω

2H1∂θ(g1 − g2)(h1 − h2) dθ

+

∫

Ω

2(H1 −H2)∂θg2(h1 − h2) dθ

+

∫

Ω

2∂θH1∂θθ(G1 −G2)(h1 − h2) dθ

+

∫

Ω

2∂θ(H1 −H2)∂θθG2(h1 − h2) dθ

−
∫

Ω

2∂θG1∂θθ(H1 −H2)(h1 − h2) dθ

−
∫

Ω

2∂θ(G1 −G2)∂θθH2(h1 − h2) dθ.

Then we have the following bound

1

2

d

dt

(
‖g1 − g2‖2L2 + ‖h1 − h2‖2L2

)
≤ ‖∂θG1‖L∞

(
‖g1 − g2‖2L2 + ‖h1 − h2‖2

)

+ 2‖G1 −G2‖L∞‖∂θg2‖L2‖g1 − g2‖L2

+ 2‖H1‖L∞‖∂θh1 − ∂θh2‖L2‖g1 − g2‖L2

+ 2‖H1 −H2‖L∞‖∂θh2‖L2‖g1 − g2‖L2

+ 2‖G1 −G2‖L∞‖∂θh2‖L2‖h1 − h2‖L2

+ 2‖H1‖L∞‖∂θg1 − ∂θg2‖L2‖h1 − h2‖L2

+ 2‖H1 −H2‖L∞‖∂θg2‖L2‖h1 − h2‖L2

+ 2‖∂θH1‖L∞‖∂θθG1 − ∂θθG2‖L2‖h1 − h2‖L2

+ 2‖∂θH1 − ∂θH2‖L∞‖∂θθG2‖L2‖h1 − h2‖L2

+ 2‖∂θG1‖L∞‖∂θθH1 − ∂θθH2‖L2‖h1 − h2‖L2

+ 2‖∂θG1 − ∂θG2‖L∞‖∂θθH2‖L2‖h1 − h2‖L2 .
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Using the explicit equations for G and H in Lemma 3.11 we have the following bounds for

i = 1, 2

‖∂θGi‖L∞ ≤ ‖gi‖L2 ,

‖∂θθGi‖L2 ≤ ‖gi‖L2 ,

‖∂θHi‖L∞ ≤ ‖hi‖L2 ,

‖∂θθHi‖L2 ≤ ‖hi‖L2 .

Therefore, using the bounds above, we have

1

2

d

dt

(
‖g1 − g2‖2L2 + ‖h1 − h2‖2L2

)
≤ C (‖g1‖H1 , ‖g2‖H1 , ‖h1‖H1 , ‖h2‖H1)

·
(
‖g1 − g2‖2L2 + ‖h1 − h2‖2L2

)
.

This completes the proof for local existence and uniqueness of solutions to the 1D formulation

(3.7).

3.3 Conditional Blow Up Result

This section states and proves the conditional blowup result for the 1D system (3.8). The

final construction resembles a basic differential equation with a known finite time blowup.

Consider the differential equation





d
dt
F = BF 2,

F (0) = F0,

with B,F0 > 0. This is a simple separable equation with solution

F (t) =
F0

1− BF0t
.
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Observe that

F (t) → ∞ as t→ 1

BF0
.

The conditional result models this simple example as we will show

d

dt

∫ π
4

0

g(θ, t) dθ = B

(∫ π
4

0

g(θ, t) dθ

)2

,

for some B > 0. We state the conditional result as a proposition followed by its proof. We

then discuss attempts to remove the conditional aspect of the result.

Proposition 3.3.1. Let Ω = [0, π
4
]. Let g0, h0 ∈ H1(Ω) with g0(θ) ≥ 0 not identically zero.

If g ≥ 0 and ∂θg ≥ 0, not identically zero, then the unique smooth solution (g, h) to (3.7)

blows up in finite time.

We now prove Proposition 3.3.1. We begin by integrating the first equation of (3.8)

∂tg + 2G∂θg = 2H∂θh

from θ = 0 to θ = π
4
. Integrating by parts, and using the boundary conditions

G(0, t) = H(0, t) = G(π
4
, t) = H(π

4
, t) = 0

we obtain

∫ π
4

0

∂tg(θ, t) dθ = −
∫ π

4

0

2G(θ, t)∂θg(θ, t) dθ +

∫ π
4

0

2H(θ, t)∂θh(θ, t) dθ

=

∫ π
4

0

−2G∂θg dθ +

∫ π
4

0

2H∂θh dθ

=

∫ π
4

0

−2G(∂θθθG+ 4∂θG) dθ +

∫ π
4

0

2H(∂θθθH + 4∂θH) dθ

= −2G∂θθG|
π
4
0 +

∫ π
4

0

2∂θG∂θθGdθ − 4G2
∣∣π4
0
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+ 2H∂θθH|
π
4
0 −

∫ π
4

0

2∂θH∂θθH dθ + 4H2
∣∣π4
0

= (∂θG)
2(π

4
, t)− (∂θG)

2(0, t)− (∂θH)2(π
4
, t) + (∂θH)2(0, t).

Thus

d

dt

∫ π
4

0

g(θ, t) dθ = (∂θG)
2(π

4
, t)− (∂θG)

2(0, t)− (∂θH)2(π
4
, t) + (∂θH)2(0, t). (3.14)

Recall the one-dimensional system we are working with states

∂tH + 2G∂θH = 2H∂θG.

Differentiating with respect to θ we have, after simplifying,

∂t(∂θH) + 2G∂θθH = 2H∂θθG. (3.15)

Evaluating the above equation at θ = 0 and θ = π
4
we obtain

∂t(∂θH)(0, t) = −2G(0, t)∂θθH(0, t) + 2H(0, t)∂θθG(0, t) = 0, (3.16)

∂t(∂θH)(π
4
, t) = −2G(π

4
, t)∂θθH(π

4
, t) + 2H(π

4
, t)∂θθG(

π
4
, t) = 0. (3.17)

Therefore, (3.14) reduces to

d

dt

∫ π
4

0

g(θ, t) dθ = (∂θG)
2(π

4
, t)− (∂θG)

2(0, t). (3.18)

Recall that, from (3.13)

∂θG = sin(2θ)

∫ θ

0

g(ρ, t) sin(2ρ) dρ− cos(2θ)

∫ π
4

θ

g(ρ, t) cos(2ρ) dρ.
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Therefore

∂θG(0, t) = −
∫ π

4

0

g(θ, t) cos(2θ) dθ,

∂θG(
π
4
, t) =

∫ π
4

0

g(θ, t) sin(2θ) dθ.

From this, we may write (3.18) as

d

dt

∫ π
4

0

g(θ, t) dθ =

(∫ π
4

0

g(θ, t) sin(2θ) dθ

)2

−
(∫ π

4

0

g(θ, t) cos(2θ) dθ

)2

=

(∫ π
4

0

g(θ, t) sin(2θ) dθ +

∫ π
4

0

g(θ, t) cos(2θ) dθ

)

·
(∫ π

4

0

g(θ, t) sin(2θ) dθ −
∫ π

4

0

g(θ, t) cos(2θ)) dθ

)

=

(∫ π
4

0

g(θ, t)(sin(2θ) + cos(2θ) dθ

)

·
(∫ π

4

0

g(θ, t)(sin(2θ)− cos(2θ)) dθ

)
.

If g(θ, t) ≥ 0, ∂θg(θ, t) ≥ 0 not identically zero for θ ∈ [0, π
4
] then by the Mean Value

Theorem, there exist ξ1, ξ2 ∈ [0, π
4
] such that

∫ π
4

0

g(θ, t)(sin(2θ) + cos(2θ)) dθ = (sin(2ξ1) + cos(2ξ1))

∫ π
4

0

g(θ, t) dθ, and

∫ π
4

0

g(θ, t)(sin(2θ)− cos(2θ)) dθ = (sin(2ξ2)− cos(2ξ2))

∫ π
4

0

g(θ, t) dθ.

Thus

d

dt

∫ π
4

0

g(θ, t) dθ = B

(∫ π
4

0

g(θ, t) dθ

)2

, (3.19)

56



where

B = (sin(2ξ1) + cos(2ξ1))(sin(2ξ2)− cos(2ξ2)).

In order to use the Mean Value Theorem above, g(θ, t) ≥ 0 for θ ∈ [0, π
4
]. Also, the additional

condition ∂θg(θ, t) ≥ 0 not identically zero for θ ∈ [0, π
4
] ensures that

(sin(2ξ2)− cos(2ξ2))

∫ π
4

0

g(θ, t) dθ > 0.

Thus, if g(θ, t) ≥ 0 and ∂θg(θ, t) ≥ 0 not identically zero for θ ∈ [0, π
4
] then B > 0. Therefore

(3.19) shows a finite time blowup as desired.

In this result, we have assumed that g(θ, t) ≥ 0 and ∂θg(θ, t) ≥ 0 not identically zero for

θ ∈ [0, π
4
]. The ultimate goal is to find suitable initial conditions such that g(θ, t) ≥ 0 and

∂θg(θ, t) ≥ 0 not identically zero for θ ∈ [0, π
4
]. This goal has not yet been accomplished. The

following section provides a brief discussion on attempts to prove these assumed conditions.

3.4 Conditional Result Discussions

In this section we briefly discuss the nonnegativity conditions for g(θ, t) and ∂θg(θ, t). Since

g satisfies (3.7)

∂tg + 2G∂θg = 2H∂θh,

and H maintains the sign of H0 for all time, then it suffices to show that ∂θh ≥ 0 for all

time. This then shows g ≥ 0.

Due to the similar and coupled structure of both the g and h equations for (3.7) we

can combine the equations for analysis. In particular, we wish to analyze ∂θh and ∂θg

simultaneously. Taking the derivative of (3.7) with respect to θ yields

∂t(∂θg) + 2∂θG∂θg + 2G∂θθg = 2∂θH∂θh+ 2H∂θθh, (3.20)

∂t(∂θh) + 2∂θG∂θh+ 2G∂θθh = 2∂θH∂θg + 2H∂θθg + 2∂θG∂θθθH + 2∂θH∂θθθG. (3.21)
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Adding and subtracting the equations above yields

∂t(∂θg + ∂θh) + 2(∂θG− ∂θH)∂θ(g + h) + 2(G−H)∂θθ(g + h) =M, (3.22)

∂t(∂θh− ∂θg) + 2(∂θG+ ∂θH)∂θ(h− g) + 2(G+H)∂θθ(h− g) =M, (3.23)

where M = 2∂θH∂θθθG − 2∂θG∂θθθH. At this point, it appears as though no progress has

been made because in order to determine the behavior of ∂θg and ∂θh we must know of the

behavior of the third derivatives of H and G. However, we may use the stream function

relationship (3.9) between g and G and similarly with h and H to rewrite M in terms of

only first derivatives with respect to θ. By taking the derivative of (3.9) with respect to θ

we obtain

∂θθθG + 4∂θG = ∂θg,

∂θθθH + 4∂θH = ∂θh.

Using the equations above, we can rewrite M as

M = 2∂θH∂θθθG− 2∂θG∂θθθH = 2∂θH(∂θg − 4∂θG)− 2∂θG(∂θh− ∂θH)

= 2∂θH∂θg − 8∂θH∂θG− 2∂θG∂θh+ 8∂θG∂θH

= 2∂θH∂θg − 2∂θG∂θh.

We may then rewrite (3.22) as

∂t(∂θg + ∂θh) + 3(∂θG− ∂θH)(∂θg + ∂θh) + 2(G−H)∂θ(∂θg + ∂θh)

= (∂θH + ∂θG)(∂θg − ∂θh), (3.24)

∂t(∂θh− ∂θg) + 3(∂θG+ ∂θH)(∂θh− ∂θg) + 2(G+H)∂θ(∂θh− ∂θg)

= (∂θH − ∂θG)(∂θg + ∂θh). (3.25)
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These are written such a way so the only terms that affect the sign of the equation are the

terms on the right hand side. Therefore, if

∂θH + ∂θG ≤ 0 and ∂θH − ∂θG ≥ 0,

then the desired result ∂θh ≥ 0 is obtained.

Although, in some sense, it does not appear that much progress has been made because

through this manipulation the required condition went from needing to show g ≥ 0 to needing

to show

∂θH + ∂θG ≤ 0 and ∂θH − ∂θG ≥ 0.

This, however, is an improvement in the fact that ∂θG and ∂θH have explicit constructions

(3.13) that can be analyzed.

At the time of this writing, the above conditions have yet to be shown, but the author

continues pursuit of this problem.

This completes our discussion for the magnetohydrodynamics equations and attention

will now be turned to the Boussinesq equations in the following chapter.
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CHAPTER 4

FRACTIONALLY DISSIPATIVE BOUSSINESQ EQUATIONS WITHOUT

THERMAL DIFFUSION

4.1 Global Existence and Uniqueness of Weak Solutions

Recall the d-dimensional Boussinesq equations with fractional dissipation and no thermal

diffusion 



∂tu+ u · ∇u = −ν(−∆)αu−∇p+ θed, x ∈ Rd, t > 0,

∂tθ + u · ∇θ = 0, x ∈ Rd, t > 0,

∇ · u = 0,

(u, θ)|t=0 = (u0, θ0).

(4.1)

There has been much investigation regarding the global existence and uniqueness of

solutions to (4.1) for d = 3 and α ≥ 5
4
with initial data (u0, θ0) ∈ Hs(R3) where s > 5

2
, (see

[32, 42, 52, 53, 60]) and where s > 5
4
(see [32]). There has been significantly less investigation

in the weak setting, and in particular, little was known in search of the weakest possible

functional setting where solutions were unique. The results of [4] proved uniqueness in what

appears to be the weakest functional setting known, with initial data u0 ∈ L2(Rd), θ0 ∈

L2(Rd) ∩ L 4d
d+2 (Rd), for the partially dissipated Boussinesq equations.

In this chapter, we present results from the author’s joint work in [4] establishing global

existence of weak solutions to the d-dimensional Boussinesq equations, for d ≥ 2 with frac-
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tional dissipation and no thermal diffusion along with a uniqueness. In particular, the

author’s result regarding the existence of weak solutions will be detailed while the remainder

of results will be summarized.

We begin by defining the meaning of weak solutions to (4.1) with any α > 0.

Definition 4.1.1. Consider (4.1) with α > 0 and (u0, θ0) ∈ L2(Rd) and ∇ · u0 = 0. Let

T > 0 be arbitrarily fixed. The pair (u, θ) satisfying

u ∈ Cw([0, T ];L
2) ∩ L2(0, T ; H̊α), θ ∈ Cw([0, T ];L

2) ∩ L∞(0, T ;L2)

with ∇ · u = 0 is a weak solution of (4.1) on [0, T ] if the following two conditions hold.

1. For any φ ∈ C∞
0 (Rd × [0, T )) with ∇ · φ = 0,

−
∫ T

0

∫

Rd

u · ∂tφ dx dt−
∫

Rd

u0(x) · φ(x, 0) dx−
∫ T

0

∫

Rd

u · ∇φu dx dt (4.2)

+

∫ T

0

∫

Rd

(−∆)α/2u · (−∆)α/2φ dx dt =

∫ T

0

∫

Rd

θed · φ dx dt. (4.3)

2. For any ψ ∈ C∞
0 (Rd × [0, T ))

−
∫ T

0

∫

Rd

∂tψθ dx dt−
∫

Rd

θ0(x)ψ(x, 0) dx =

∫ T

0

∫

Rd

u · ∇ψθ dx dt. (4.4)

The author’s contribution to the work in [4] is the following proposition stating the

existence of global weak solutions which will be proven in detail in the following section.

Proposition 4.1.2. Consider (4.1) with α > 0 and (u0, θ0) ∈ L2(Rd) and ∇ · u0 = 0. Let

T > 0 be arbitrarily fixed. Then (4.1) has a global weak solution (u, θ) as given in Definition

4.1.1 satisfying

‖θ(t)‖L2 ≤ ‖θ0‖L2 ,
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‖u(t)‖2L2 + 2ν

∫ t

0

‖∇u(τ)‖2L2 dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2 .

This existence result was then combinated with a smoothing result to obtain the desired

existence and uniqueness result of weak solutions for the d-dimenional fractionally dissipative

Boussineq equations as stated in [4].

Theorem 4.1.3. Consider the d-dimensional equations in (4.1).

1. Let α > 0 and (u0, θ0) ∈ L2(Rd) with ∇ · u0 = 0. Let T > 0 be arbitrarily fixed. Then

(4.1) has a global weak solution (u, θ) on [0, T ] satisfying

u ∈ Cw([0, T ];L
2) ∩ L2(0, T ;Hα), θ ∈ Cw([0, T ];L

2) ∩ L∞(0, T ;L2).

2. Let α ≥ 1
2
+ d

4
. Assume u0 ∈ L2(Rd) and θ0 ∈ L2(Rd)∩L 4d

d+2 (Rd) with ∇·u0 = 0. Then

(4.1) has a unique and global weak solution (u, θ) satisfying

u ∈ C([0, T ];L2) ∩ L2(0, T ;Hα),

u ∈ L̃1(0, T ; H̊1+ d
2 ),

θ ∈ Cw([0, T ];L
2) ∩ L∞(0, T ;L2 ∩ L 4d

d+2 ),

In particular, u satisfies

sup
q≥2

1√
q

∫ T

0

‖∇u(t)‖Lq dt <∞.

The space-time space L̃1(0, T ; H̊1+ d
2 ) is defined in the appendix.

The proof of Theorem 4.1.3 relies on global in time bounds on the weak solution. In

order to show existence of weak solutions, a sequence of approximate systems is constructed

and shown to have global smooth solutions (u(n), θ(n)). Global uniform bounds are then

established on this sequence to obtain a strongly convergent subsequence of u(n) and finally
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the limit of the convergent subsequences is shown to be the weak solution. The strong

convergence of u(n) will allow us to overcome the difficulty of having no strong convergence

in θ(n). This is detailed in the following section. Uniqueness of solutions for α ≥ 1
2
+ d

4
must

also be shown. We outline the strategy to establish the desired uniqueness here. For full

detail of the uniqueness result, see [4].

In order to establish uniqueness, we consider the the difference (ũ, θ̃) with

ũ := u(1) − u(2), θ̃ := θ(1) − θ(2).

Let P (1) and P (2) be the corresponding pressure terms and P̃ := P (1) − P (2). In order

to obtain necessary bounds, we introduce the lower regularity quantities h(1) and h(2) as

solutions to the respective Poisson equations

−∆h(1) = θ(1), −∆h(2) = θ(2),

and set

h̃ = h(1) − h(2).

It follows from (4.1) that (ũ, θ̃) satisfies





∂tũ+ u(1) · ∇ũ+ ũ · ∇u(2) + ν(−∆)αũ+∇P̃ = θ̃ed,

∂tθ̃ + u(1) · ∇θ̃ + ũ · ∇θ(2) = 0,

∇ · ũ = 0,

ũ0 = 0, θ̃ = 0.

(4.5)

To obtain uniqueness, it must be shown that

‖u(2)(t)− u(1)(t)‖2L2 + ‖θ(2)(t)− θ(1)(t)‖2L2 = ‖ũ(t)‖2L2 + ‖∆h̃(t)‖2L2 = 0.
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Dotting the first equation of (4.5) by ũ and dotting the second equation by h̃, integrating

by parts, and adding the results, we have

1

2

d

dt

(
‖ũ‖2L2 + ‖∇h̃‖2L2

)
+ ν‖Λαũ‖2L2 = −

∫

Rd

ũ · ∇u(2) · ũ dx+
∫

Rd

θ̃ · (ed · ũ) dx

+

∫

Rd

u(1) · ∇θ̃h̃ dx+
∫

Rd

ũ · ∇θ(2)h̃ dx

:= K1 +K2 +K3 +K4.

We then bound each Ki using integration by parts, Hölder’s inequality, Sobolev inequality

and interpolation inequalities. We find that, for δ > 0,

Gδ(t) := ‖ũ(t)‖2L2 + ‖∇h̃(t)‖2L2 + δ

obeys the inequality

d

dt
Gδ(t) ≤

(
1 + ‖Λu(2)‖2L2

)
Gδ(t) + C

(
1 +

‖∇(1)‖Lp

p

)
pM

1
pGδ(t)

1− 1
p , for d = 2,

d

dt
Gδ(t) ≤

(
1 + ‖Λ 1

2
+ d

4u(2)‖2L2

)
Gδ(t) + C

‖∇u(1)‖Lp

p
pM

d
2pGδ(t)

1− d
2p , for d ≥ 3,

where M = ‖θ0‖2L2.

We are able to reduce the bounds above to

Gδ(t) ≤ Gδ(0) + C

∫ t

0

γ(s)φ(Gδ(s)) ds, (4.6)

where

γ(t) = C + C‖Λ 1
2
+ d

4u(2)‖2L2 + C
‖∇u(1)‖Lp

p
, (4.7)

φ(r) = r + r(lnM − ln r). (4.8)
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This step highlights a difficulty of this problem. Since a weak functional setting is used

for solutions, u is not Lipschitz resulting in the corresponding vorticity not necessarily being

bounded. So it appears as though γ(t) cannot be bounded. This is overcome with the

following smoothing property

‖u‖
L̃1

(
0,T ;B̊

1+ d
2

2,2

) ≤ C
(
T, ‖u0‖L2, ‖θ0‖

L2∩L
4d
d+2

)

along with a special case of this property. This smoothing property is derived using the

Littlewood-Paley decomposition and Besov space techniques. We state this smoothing esti-

mate result as Proposition 4.1.4.

Proposition 4.1.4. Let d ≥ 2. Consider 4.1 with α ≥ 1
2
+ d

4
. Assume (u0, θ0) satisfies

∇ · u0 = 0, with

u0 ∈ L2(Rd),

θ0 ∈ L2(Rd) ∩ L 4d
d+2 (Rd).

Let (u, θ) be the corresponding global weak solution of 4.1. Then for any 0 < t ≤ T ,

‖u‖
L̃1

(
0,t;B

1+ d
2

2,2

) ≤ C (t, ‖u0‖L2 , ‖θ0‖L2) .

As a special consequence,

sup
q≥2

∫ t

0

‖∇u(τ)‖Lq

√
q

dτ ≤ C (t, ‖u0‖L2 , ‖θ0‖L2) .

Proposition 4.1.4 allows us to bound the terms of γ(t) in (4.7). Using Proposition 4.1.4

to bound the terms of γ(t) we are able to bound (4.6) as

Gδ(t) ≤ (eM)1−e−
∫ t
0 γ(s) ds

Gδ(0)
e−

∫ t
0 γ(s) ds

.
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Since G0(0) = 0, then letting δ → 0, yields the desired result

‖u(2)(t)− u(1)(t)‖2L2 + ‖θ(2) − θ(1)‖2L2 = 0.

This completes the sketch of the proof of uniqueness for α ≥ 1
2
+ d

4
. We now prove, in

detail, the existence of weak solutions for α > 0.

4.2 Proof of Existence for Global Weak Solutions

The proof of Proposition 4.1.2 is divided into three main steps. To begin, global existence of

smooth solutions must be established for a sequence of approximate systems using Picard’s

theorem. The second step extracts a strongly convergent subsequence using Aubin-Lions

method once uniform bounds have been established for the sequence of approximate systems.

Finally, the limit of this strongly convergent subsequence must then be shown to be the actual

weak solution thus completing the proof.

Step 1: Establishing global existence of smooth solutions to an approximate system.

Let n ∈ N. Consider the following approximate system





∂tu
(n) + PJn(u

(n) · ∇u(n)) + ν(−∆)αu(n) = PJn(θ
(n)ed),

∂tθ
(n) + Jn(u

(n) · ∇θ(n)) = 0,

∇ · u(n) = 0,

u(n)(x, 0) = Jnu0, θ
(n)(x, 0) = Jnθ0.

(4.9)

We seek a solution (u(n), θ(n)) ∈ L2
n satisfying (4.9) Note that the functions in L2

n(R
d) are

smooth with

L2
n ⊆

∞⋂

m=0

H̊m.
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In particular, if f ∈ L2
n,

‖f‖2
H̊m =

∑

|β|=m

‖Dβf‖2L2 =
∑

|β|=m

‖D̂βf‖2L2 =
∑

|β|=m

‖(2πiξ)βf̂‖2L2 ≤ (2πn)2β‖f‖2L2.

Picard’s Theorem will be used to show that (4.9) has a unique global solution in L2
n. We

begin by applying Lemma A.2.4 to show (4.9) has a local-in-time solution. First write (4.9)

as

dy

dt
= F (y),

with

Y = (u(n), θ(n))T ,

F (Y ) = (F1(Y ), F2(Y ))
T

= (−PJn(u
(n) · ∇u(n))− ν(−∆)αu(n) + PJn(θ

(n)ed),−Jn(u(n) · ∇θ(n)))T .

It must be shown that F : L2
n −→ L2

n is locally Lipschitz. Set E = L2
n and O = E. Let

Y ∈ L2
n.

‖F1(Y )‖L2 ≤ ‖u(n) · ∇u(n)‖L2 + ‖ν(−∆)αu(n)‖L2 + ‖θ(n)‖L2

≤ ‖u(n)‖L4‖∇u(n)‖L4 + ν‖u(n)‖H̊2α + ‖θ(n)‖L2

≤ ‖u(n)‖
H̊

d
4
‖u(n)‖

H̊1+ d
4
+ ν‖u(n)‖H̊2α + ‖θ(n)‖L2

≤ (2πn)2(1+
d
4
)‖u(n)‖2L2 + ν(2πn)2α‖u(n)‖L2 + ‖θ(n)‖L2.

That is F1(Y ) ∈ L2(Rd). Similarly, F2(Y ) ∈ L2(Rd). We also have,

supp F̂1(Y ), supp F̂2(Y ) ⊆ B(0, n).
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Therefore, F (Y ) ∈ L2
n(R

d). In order to show F (Y ) is locally Lipschitiz, let Y = (u(n), θ(n))T ∈

L2
n and Z = (v(n), ρ(n))T ∈ L2

n. Then

‖F2(Y )− F2(Z)‖L2

= ‖ − Jn(u
(n) · ∇θ(n)) + Jn(v

(n) · ∇ρ(n))‖L2

= ‖ − Jn((u
(n) − v(n)) · ∇θ(n))− Jn(v

(n) · ∇(θ(n) − ρ(n)))‖L2

≤ ‖(u(n) − v(n)) · ∇θ(n)‖L2 + ‖v(n) · ∇(θ(n) − ρ(n))‖L2

≤ ‖u(n) − v(n)‖L2‖∇θ(n)‖L∞ + ‖v(n)‖L∞‖∇(θ(n) − ρ(n))‖L2

≤ ‖u(n) − v(n)‖L2‖θ(n)‖
H̊1+ d

2+ǫ + ‖v(n)‖
H̊

d
2+ǫ‖θ(n) − ρ(n)‖H̊1

≤ (2πn)1+
d
2
+ǫ‖θ(n)‖L2‖u(n) − v(n)‖L2 + (2πn)1+

d
2
+ǫ‖v(n)‖L2‖θ(n) − ρ(n)‖L2

≤ L‖Y − Z‖L2 ,

where ǫ > 0 is a small parameter and L = (2πn)1+
d
2
+ǫ(‖Y ‖L2 + r) for ‖Z − Y ‖ ≤ r.

Therefore F2(Y ) is locally Lipschitz. Similarly, F1(Y ) is locally Lipschitz and hence F (Y ) is

locally Lipchitz. Then by Picard’s Existence and Uniqueness Theorem A.2.4, the sequence

of approximate systems (4.9) have unique local-in-time solutions in L2
n.

Next we use Picard’s Extension Theorem (Lemma A.2.5) to show the solutions to the

sequence of approximate systems are not just local, but actually global in time. Using the

energy method, it can be shown that for any t ≤ T , ‖(u(n), θ(n))‖L2 < +∞. This can be seen

by dotting (4.9) with (u(n), θ(n)) which yields

1

2

d

dt
(‖u(n)‖2L2 + ‖θ(n)‖2L2) + ν‖Λαu(n)‖2L2 =M1 +M2 +M3,

where 〈f, g〉 =
∫
Rd f(x)g(x) dx and

M1 = −
∫

Rd

PJn(u
(n) · ∇u(n)) · u(n) dx,

M2 =

∫

Rd

PJn(θ
(n)ed) · u(n) dx,
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M3 = −
∫

Rd

Jn(u
(n) · ∇θ(n)) · θ(n) dx.

Observe

M1 = −
∫

PJn(u
(n) · ∇u(n)) · u(n)dx

= −
∫
Jn(u

(n) · ∇u(n)) · Pu(n)dx

= −
∫
Jn(u

(n) · ∇u(n)) · u(n)dx

= −
∫
(u(n) · ∇u(n)) · u(n)dx = 0.

Similarly, M3 = 0. Also, since the projection P is bounded in L2 we have

|M2| ≤ ‖u(n)‖L2‖θ(n)‖L2 .

Hence,

d

dt

(
‖u(n)‖2L2 + ‖θ(n)‖2L2

)
+ 2ν‖Λαu(n)‖2L2 ≤ ‖u(n)‖L2‖θ(n)‖L2.

Similarly,

1

2

d

dt
‖θ(n)‖L2 = 0,

which can also be written as

‖θ(n)(t)‖L2 = ‖Jnθ0‖L2 .

Therefore,

‖u(n)(t)‖L2 ≤ ‖Jnu0‖L2 + t‖Jnθ0‖L2 ≤ ‖u0‖L2 + t‖θ0‖L2 ,

and

‖u(n)(t)‖2L2 + 2ν

∫ t

0

‖Λαu(n)‖2L2dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2.

Hence, (u(n), θ(n)) ∈ L2
n for all time t ≤ T . By Picard’s Extension Theorem A.2.5, (u(n), θ(n))

is global in time. Therefore, the sequence of approximate systems (4.9) have global in time
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solutions.

Step 2. Extraction of a strongly convergent subsequence.

The goal of Step 2 is to extract a subsequence of u(n) from the solutions to the sequence of ap-

proximate solutions in which the extracted subsequence converges strongly in L2(0, T ;L2(Rd)).

Aubin-Lions lemma will be used. In order to use the Aubin-Lions method we must show

that

∂tu
(n) ∈ L2(0, T ;H−s), (4.10)

where s = max{α, 1+ d
2
−α}. Let φ ∈ Hs. Taking the L2-inner product of φ and the velocity

equation in (4.9) produces

∫

Rd

φ · ∂tu(n) dx = Q1 +Q2 +Q3,

with

Q1 = −
∫
φ · PJn(u(n) · ∇u(n)) dx,

Q2 = −ν
∫
φ · (−∆)αu(n) dx,

Q3 =

∫
φ · PJn(θ(n)ed) dx.

Using integration by parts and applying Hölder’s and Sobolev’s inequalities yields

|Q1| ≤ ‖u(n)‖2
L

2d
d−α

‖∇PJnφ‖L d
α

≤ C ‖u(n)‖
1
2

L2‖Λαu(n)‖
1
2

L2 ‖PJnφ‖
H1+d

2−α

≤ C ‖u(n)‖
1
2

L2‖Λαu(n)‖
1
2

L2 ‖φ‖
H1+ d

2−α .

70



Again, by integration by parts and Hölder’s inequality, we have

|Q2| ≤ ν‖Λαφ‖L2‖Λαu(n)‖L2 ≤ ν‖φ‖Hs‖Λαu(n)‖L2.

Thus

|Q3| ≤ ‖φ‖Hs ‖θ(n)‖L2.

Hence,

∣∣∣∣
∫
φ · ∂tu(n) dx

∣∣∣∣ ≤ C‖φ‖Hs

(
‖Λαu(n)‖L2(1 + ‖u(n)‖L2) + ‖θ(n)‖L2

)
.

Therefore,

‖∂tu(n)‖H−s ≤ C

(
‖Λαu(n)‖L2(1 + ‖u(n)‖L2) + ‖θ(n)‖L2

)
.

Squaring both sides of the above equation and integrating in time yields

∫ T

0

‖∂tu(n)‖2H−s dt

≤ C

∫ T

0

(
1 + ‖u(n)‖L2

)2 ‖Λαu(n)‖2L2 dt+ C

∫ T

0

‖θ(n)‖2L2 dt

+ C

∫ T

0

(
1 + ‖u(n)‖L2

)
‖Λαu(n)‖L2‖θ(n)‖2L2 dt

≤ C sup
0≤t≤T

(1 + ‖u(n)‖2L2)

∫ T

0

‖Λαu(n)‖2L2 dt+ CT sup
0≤t≤T

‖θ(n)‖L2

+ C

(
T sup

0≤t≤T
‖θ(n)‖L2

)
·
(

sup
0≤t≤T

(1 + ‖u(n)‖L2)

)∫ T

0

‖Λαu(n)‖2L2 dt

< +∞.

Therefore we have shown (4.10). We have that

u(n) ∈ L2(0, T ;Hα(Rd)), ∂tu
(n) ∈ L2(0, T ;H−s(Rd)),
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Additionally, we have that Hα(Rd) →֒ L2(Rd) is locally compact and L2(Rd) →֒ H−(1+d/2−α)

is continuous. Thus, we can apply the Aubin-Lions Lemma to extract a convergent subse-

quence from u(n) in L2(0, T ;L2(Rd)).

Step 3. Showing the limit of the subsequence is the weak solution.

Now that we have extracted a convergent subsequence from u(n) in L2(0, T ;L2(Rd), it must

be shown that the limit of this convergent subsequence is, in fact, the weak solution. Let u

be the limit of u(n) and θ be the weak limit of θ(n). Then

θ ∈ L∞(0, T ;L2(Rd)), u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;Hα(Rd)).

We then wish to show that (u, θ) is the weak solution.

Note that from (4.9) we have that, for any φ ∈ C∞
0 (Rd × [0, T )) with ∇ · φ = 0, and for

any ψ ∈ C∞
0 (Rd × [0, T )),

−
∫ T

0

∫

Rd

u(n) · ∂tφ dx dt−
∫

Rd

u
(n)
0 · φ(x, 0) dx−

∫ T

0

∫

Rd

u(n) · ∇(Jnφ)u
(n) dx dt

+

∫ T

0

∫

Rd

Λαu(n) · Λαφ dx dt =

∫ T

0

∫

Rd

θ(n)ed · Jnφ dx dt,

−
∫ T

0

∫

Rd

∂tψθ
(n) dx dt+

∫

Rd

θ
(n)
0 ψ(x, 0) dx =

∫ T

0

∫

Rd

u(n) · ∇(Jnψ)θ
(n) dx dt.

We must verify that as n→ ∞, the terms above converge to the corresponding terms in the

definition of the weak solution given in Definition 4.1.1. In particular, we need the strong

convergence u(n) → u in L2(0, T ;L2). It suffices to consider the convergence of the nonlinear

terms. Let

A := −
∫ T

0

∫

Rd

u · ∇(Jnφ)u dx dt,

A(n) := −
∫ T

0

∫

Rd

u(n) · ∇(Jnφ)u
(n) dx dt,
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and consider the difference

A(n) −A =−
∫ T

0

∫

Rd

(u(n) − u) · ∇(Jnφ)u
(n) dx dt

+

∫ T

0

∫

Rd

u · ∇(Jnφ− φ)u(n) dx dt

+

∫ T

0

∫

Rd

u · ∇φ · (u(n) − u) dx dt

=R1 +R2 +R3.

Using Hölder’s inequality, we have

|R1| ≤ ‖u(n) − u‖L2(Rd×[0,T ])‖∇Jnφ‖L∞(Rd×[0,T ])‖u(n)‖L2(Rd×[0,T ])

≤ C‖u(n) − u‖L2(Rd×[0,T ])‖φ‖H2+ d
2
‖u0‖L2(Rd×[0,T ]) → 0 as n→ ∞.

Similarly,

|R2| ≤ ‖u‖L2(Rd×[0,T ])‖∇(Jnφ− φ)‖L∞(Rd×[0,T ])‖u(n)‖L2(Rd×[0,T ])

≤ C‖u0‖L2‖Jnφ− φ‖
H2+ d

2
‖u0‖L2 → 0 as n→ ∞

and, as n→ ∞,

|R3| ≤ ‖u‖L2(Rd×[0,T ])‖∇φ‖L∞(Rd×[0,T ])‖u(n) − u‖L2(Rd×[0,T ]) → 0.

Therefore |A(n) − A| → 0 as n → ∞. This shows that the first nonlinear term of the weak

formulation of the approximate systems converges to the first nonlinear term of the weak

solution formulation of (4.1).

The convergence of the other nonlinear term is slightly difference. We do not have strong
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convergence in θ(n). Define

B := −
∫ T

0

∫

Rd

u · ∇(Jnψ)θ dx dt,

B(n) := −
∫ T

0

∫

Rd

u(n) · ∇(Jnψ)θ
(n) dx dt

and consider the difference

B(n) −B =−
∫ T

0

∫

Rd

(u(n) − u) · ∇(Jnψ)θ
(n) dx dt

+

∫ T

0

∫

Rd

u · ∇(Jnψ − ψ)θ(n) dx dt

+

∫ T

0

∫

Rd

u · ∇ψ · (θ(n) − θ) dx dt

=W1 +W2 +W3.

Using Hölder’s inequality, we have

|W1| ≤ ‖u(n) − u‖L2(Rd×[0,T ])‖∇Jnψ‖L∞(Rd×[0,T ])‖θ(n)‖L2(Rd×[0,T ])

≤ C‖u(n) − u‖L2(Rd×[0,T ])‖ψ‖H2+d
2
‖θ0‖L2(Rd×[0,T ]) → 0 as n→ ∞.

Similarly,

|W2| ≤ ‖u‖L2(Rd×[0,T ])‖∇(Jnψ − ψ)‖L∞(Rd×[0,T ])‖θ(n)‖L2(Rd×[0,T ])

≤ C‖u0‖L2‖Jnψ − ψ‖
H2+ d

2
‖θ0‖L2 → 0 as n→ ∞.

Here we must estimate W3 differently from R3 since we do not have strong convergence in

θ(n). We can treat u · ∇ψ as a test function since L2 functions can be approximated by

smooth functions with compact support. Since θ(n) converges weakly to θ, we then have

W3 → 0 as n→ ∞.
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This shows that |B(n) −B| → 0 as n→ ∞. Therefore, the limit (u, θ) of the extracted sub-

sequence of solutions to the approximate systems is indeed a weak solution. This completes

the proof of Proposition 4.1.2.
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APPENDICES

A.1 Sobolev Spaces

This appendix provides background information for readers unfamiliar with some or all of

the definitions or notations for Sobolev Spaces and Besov Spaces.

Definition A.1.1. We call the n-tuple α = (α1, . . . , αn) a multi-index if each αi is a non-

negative integer. We denote the monomial xα1
1 x

α2
2 · · ·xαn

n by xα. We say |α| is the degree of

α where

|α| =
n∑

i=1

αi.

Finally, the differential operator, Dα, of order |α| is just

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 · · ·∂xαn

n

.

The notation β ≤ α is used often which just means that if α, β are multi-indices then

β ≤ α means βj ≤ αj for all 1 ≤ j ≤ n.

Definition A.1.2. Suppose u,Dαu ∈ L1(Ω). If

∫

Ω

u(x)Dαφ(x) dx = (−1)|α|
∫

Ω

Dαu(x)φ(x) dx,

for all test functions φ ∈ C∞
0 then we say Dαu is the weak partial derivative of u of order α.

Definition A.1.3. We say X is embedded in Y , written X →֒ Y , if
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• X ⊂ Y

• There exists an M > 0 such that ‖x‖Y ≤M‖x‖X .

Definition A.1.4 (Sobolev Space). Let Ω ⊂ Rn be an arbitrary domain. For 1 ≤ p ≤ ∞

and every m ∈ N with m ≥ 1 then the Sobolev space Wm,p is defined as

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all 0 ≤ |α| ≤ m}

which is equipped with the norm

‖u‖Wm,p =





∑

0≤|α|≤m

‖Dαu‖pp





1
p

.

In particular, when p = 2 then Wm,p(Ω) is written as Hm(Ω). More generally, for any

s ≥ 0,

‖f‖Hs =

(∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ

) 1
2

<∞.

Hs is called the inhomogeneous Sobolev space. We also consider the homogeneous Sobolev

space H̊s.

Definition A.1.5. Let s ≥ 0 and Ω ⊂ Rn. Then the homogeneous Sobolev space H̊s is

defined as

H̊s(Ω) =

{
f ∈ S ′ : f̂ ∈ L1

loc(Ω) and ‖f‖H̊s =

(∫

Ω

|ξ|2s|f̂(ξ)|2 dξ
)1

2

<∞
}
,

where S ′ is the set of tempered distributions.

We may also define Hs in terms of localization operators which will allow us to define

the space-time space L̃1(0, T ; H̊1+
d
2 ) found in 4.1.3. In order to define H̊1+

d
2 this way, we

must define a partition of unity and the Littlewood-Paley decomposition.
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Let S denote the Schwartz space and S ′ its dual which is the space of tempered distri-

butions. Let S0 denote the subspace of S defined by

S0 =

{
φ ∈ S :

∫

Rd

xβφ(x) dx = 0, |β| = 0, 1, 2, . . .

}

and S ′
0 denotes the dual of S0.

Definition A.1.6 (Partition of unity). There exist two functions ψ and φ where ψ, φ ∈

C∞
0 (Rd) with

ψ(ξ) +

∞∑

j=0

φ(2−jξ) = 1

for ξ ∈ Rd and

supp ψ ⊂ B(0, 4
3
),

supp ψ ⊂ B(3
4
, 8
3
),

with ψ ≡ 1 on B(0, 3
4
). Here B(x, r) denotes the ball of radius r centered at x.

Multiplying the partition of unity by a Fourier transform yields

f̂(ξ)ψ(ξ) +

∞∑

j=0

φ(2−jξ)f̂(ξ) = f̂(ξ), ξ ∈ Rd.

Define

∆̂−1f(ξ) = ψ(ξ)f̂(ξ),

∆̂jf(ξ) = φ(2−jξ)f̂(ξ).

So

∆−1f +

∞∑

j=0

∆jf = f.
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Thus the inhomogeneous Littlewood-Paley decomposition can be written as

f =

∞∑

j=−1

∆jf, f ∈ S ′.

Definition A.1.7. For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Besov space Bs
p,q(R

d)

consists of f ∈ S ′ satisfying

‖f‖Bs
p,q

≡ ‖2sj‖∆jf‖Lp(Rd)‖lq <∞.

For the homogeneous Besov space, we use the homogeneous Littlewood-Paley decompo-

sition.
∞∑

j=−∞

φ(2−jξ) = 1 for ξ 6= 0.

Then

f̂(ξ) =

∞∑

j=−∞

φ(2−jξ)f̂(ξ) for f̂(0) = 0.

Define
̂̊
∆jf = φ(2−jξ)f̂(ξ). Then

f̂(ξ) =

∞∑

j=−∞

̂̊
∆jf.

So the homogeneous Littlewood-Paley decomposition can be written as

f =
∞∑

j=−∞

∆̊jf, f ∈ S ′
0.

Definition A.1.8. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space B̊s
p,q(R

d)

consists of f ∈ S ′
0 satisfying

‖f‖B̊s
p,q

≡ ‖2sj‖∆̊jf‖Lp(Rd)‖lq <∞.
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In particular, Bs
2,2 = Hs and B̊2

2,2 = H̊s.

This allows us to now define the space-time space L̃1(0, T ; H̊1+ d
2 ) used in Theorem 4.1.3.

L̃1(0, T ; H̊1+ d
2 ) is defined through the norm

‖f‖
L̃1(0,T ;H̊1+ d

2 )
≡ ‖2j(1+ d

2
)‖∆̊jf‖L1(0,T ;Lp)‖lq .

A.2 Basic Calculus and Functional Analysis Results

Lemma A.2.1 (Hölder’s inequality). Suppose f, g : Rn → R are Lebesgue measurable.

For 1 ≤ p ≤ q ≤ ∞ and 1
p
+ 1

q
= 1,

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Lemma A.2.2 (Minkowski’s Inequality for Integrals). Suppose f : R × R → R is

Lebesgue measurable. For 1 ≤ p ≤ ∞,

(∫ ∣∣∣∣
∫
f(x, y) dy

∣∣∣∣ dx
) 1

p

≤
∫ (∫

|f(x, y)|p dx
) 1

p

dy.

Lemma A.2.3 (Gagliardo-Nirenberg-Sobolev interpolation inequality). Assume Ω =

Rd with 1 ≤ p, q, r ≤ ∞ and l < m where l, m ∈ N. Then

‖Dlf‖Lp ≤ C‖f‖aLq‖Dmf‖1−a
Lr ,

where

1

p
− l

d
= a · 1

q
+ (1− a)

(
1

r
− m

d

)
,

for a ∈ [0, 1] and l ≤ m(1− a). In the case when q = ∞ and l = 0, then f → 0 as |x| → ∞

or f ∈ Lb(Rd) for some b ≥ 1. In the case where d
r
is an integer, then a 6= 0.

Lemma A.2.4 (Picard Existence and Uniqueness Theorem). Let E be a Banach
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space. Let O ⊆ E be an open subset. Let F : O −→ E be a locally Lipschitz map. More

precisely, for any y ∈ O, there is a neighborhood of y (denoted by U(y)) and L = L(y, U)

such that

‖F (y)− F (z)‖E ≤ L‖y − z‖E , ∀z ∈ U(y).

Then, for any y0 ∈ O, the ODE





dy
dt

= F (y),

y|t=0 = y0 ∈ O.

(11)

has a unique local solution, namely, there is T > 0 and a unique solution y = y(t) satisfying

y ∈ C1(0, T ;O).

Lemma A.2.5 (Picard Extension Theorem). Assume the conditions in Lemma A.2.4

hold and Let y = y(t) be the local solution. Then either y(t) is global in time, namely,

T = ∞, or for a finite T0 > 0, limt→T0 y(t) /∈ O.

Lemma A.2.6 (Hodge decomposition in Rd). For every v ∈ L2(Rd) ∩ C∞(Rd), there

exist a unique w and p satisfying

v = w +∇p, ∇ · w = 0,

and w ∈ L2(Rd) ∩ C∞(Rd), ∇p ∈ L2(Rd) ∩ C∞(Rd), and ‖v‖2L2 = ‖w‖2L2 + ‖∇p‖2L2.

There is a special consequence of Lemma A.2.6, which in order to state, we much introduce

the following notation. f̂(ξ) represents the Fourier transform of f ,

f̂(ξ) =

∫

Rd

e−2πix·ξf(x)dx.

For a positive integer n, we denote by B(0, n) the ball centered at the origin with radius n,
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and define

Ĵnf(ξ) = χB(0,n)(ξ) f̂(ξ)

In addition, we write

L2
n = {f ∈ L2(Rd) : supp f̂ ⊂ B(0, n)},

L2
n,σ = {f ∈ L2

n(R
d) : ∇ · f = 0}.

Now we can state the special consequence of Lemma A.2.6.

Corollary A.2.7. There exists a linear bounded operator P : L2
n → L2

n,σ satisfying:

• For any f ∈ L2
n, ‖Pf‖L2 ≤ ‖f‖L2.

• For any f ∈ L2
n,σ, Pf = f . Especially, for any f ∈ L2

n, P
2f = Pf .

In addition, we will also need the following Aubin-Lions compactness Lemma.

Lemma A.2.8 (Aubin-Lions). Let X1 →֒ X2 →֒ X3 be three Banach spaces with the first

embedding being compact and the second being continuous. Let T > 0. For 1 ≤ p, q ≤ +∞,

let

W = {u ∈ Lp(0, T ;X1), ∂tu ∈ Lq(0, T ;X3)}.

Then,

(i). If p < +∞, then the embedding of W into Lp(0, T ;X2) is compact;

(ii). If p = +∞ and q > 1, then the embedding of W into C(0, T ;X2) is compact.

Lemma A.2.8 states that any bounded sequence in W has a convergent subsequence in

Lp(0, T ;X2).
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A.3 Derivation of 1D Transformations of the 2D Ideal MHD

Recall (3.1)





∂tu+ u · ∇u = −∇p + b · ∇b,

∂tb+ u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0.

(12)

Applying ∇× to the equations above gives the equations for vorticity ω = ∇×u and current

density j = ∇× b 



∂tω + u · ∇ω = b · ∇j,

∂tj + u · ∇j = b · ∇w +Q(u, b),

(13)

where

Q(u, b) = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2). (14)

Here we consider a special class of scale-invariant solutions. We consider





ω(x, t) = g(θ, t),

j(x, t) = h(θ, t),

φ(x, t) = r2G(θ, t),

ψ(x, t) = r2H(θ, t),

(15)

where (r, θ) is the associated polar coordinates of x

x1 = r cos θ,

x2 = r sin θ,
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or

r2 = x21 + x22,

tan θ =
x2
x1
,

and φ and ψ are the stream functions associated with u and b, respectively, with u = ∇⊥φ

and b = ∇⊥ψ.

We now justify the use of the ansatz (15). Consider that if (u, b) solves (3.1) then





uλ(x, t) =
1
λ
u(t, λx),

bλ(x, t) =
1
λ
b(t, λx),

pλ(x, t) =
1
λ2p(t, λx),

will also solve (3.1).

Similarly, if (ω, j) solves (3.3) then





ωλ(x, t) = ω(λx, t),

jλ(x, t) = j(λx, t),

will also solve (3.3).

We make the ansatz that the vorticity and the current density are radially homogeneous

with degree zero, i.e. using polar coordinates,





ω(r, θ) = g(θ),

j(r, θ) = h(θ).
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Writing the stream functions φ and ψ associated with ω and j, respectively, we have that

∆φ = ω, ∆ψ = j.

So if

φλ =
1

λ2
φ(λx, t), and ψλ =

1

λ2
ψ(λx, t),

then

∆φλ = ωλ, and ∆ψλ = jλ.

Now we take λ = 1
r
. Then

λx =
1

r
x = (cos θ, sin θ).

Thus 



ωλ(x, t) = ω(cos θ, sin θ, t) = g(θ, t),

jλ(x, t) = j(cos θ, sin θ, t) = h(θ, t),

φλ(x, t) = r2φ(cos θ, sin θ, t) = r2G(θ, t),

ψλ(x, t) = r2ψ(cos θ, sin θ, t) = r2H(θ, t).

This justifies our use of the ansatz of the special class of scale invariant solutions (15).

Next, we derive the equations for g, h,G and H . Recall

u = ∇⊥φ = (−∂2φ, ∂1φ),

b = ∇⊥ψ = (−∂2ψ, ∂1ψ),

From this we have that

∂1θ = −sin θ

r
, ∂1r = cos θ,

∂2θ =
cos θ

r
, ∂2r = sin θ.
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Using the ansatz and differentiating φ with respect to x, we have

∂2φ = ∂2(r
2G(θ, t))

= 2r∂2rG(θ, t) + r2∂θG∂2θ

= 2r sin θG(θ, t) + r2∂θG ·
(
cos θ

r

)

= 2r sin θG(θ, t) + r cos θ∂θG(θ, t),

and,

∂1φ = ∂1(r
2G(θ, t))

= 2r∂1rG(θ, t) + r2∂θG∂1θ

= 2r cos θG(θ, t) + r2∂θG ·
(− sin θ

r

)

= 2r cos θG(θ, t)− r sin θ∂θG(θ, t).

Similarly, we obtain

∂2ψ = 2r sin θH(θ, t) + r cos θ∂θH(θ, t),

∂1ψ = 2r cos θH(θ, t)− r sin θ∂θH(θ, t).

From this, we may write

u = (−2r sin θG(θ, t)− r cos θ∂θG(θ, t), 2r cos θG(θ, t)− r sin θ∂θG(θ, t)) , (16)

b = (−2r sin θH(θ, t)− r cos θ∂θH(θ, t), 2r cos θH(θ, t)− r sin θ∂θH(θ, t)) . (17)

Differentiating the vorticity, ω, in space we have

∂1ω = ∂1(g(θ, t)) = ∂θg∂1θ = ∂θg ·
(− sin θ

r

)
,
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and

∂2ω = ∂2(g(θ, t)) = ∂θg∂2θ = ∂θg ·
(
cos θ

r

)
.

Similarly, differentiating the current density, j, in space we have

∂1j = ∂1(h(θ, t)) = ∂θh∂1θ = ∂θh ·
(− sin θ

r

)
,

and

∂2j = ∂2(h(θ, t)) = ∂θh∂2θ = ∂θh ·
(
cos θ

r

)
.

Then the vorticity equation of (3.3) becomes

∂tg + (−2r sin θG(θ, t)− r cos θ∂θG(θ, t))∂θg ·
(− sin θ

r

)

+ (2r cos θG(θ, t)− r sin θ∂θG(θ, t)) ∂θg ·
(
cos θ

r

)

= (−2r sin θH(θ, t)− r cos θ∂θH(θ, t))∂θh ·
(− sin θ

r

)

+ (2r cos θH(θ, t)− r sin θ∂θH(θ, t))∂θh ·
(
cos θ

r

)

After simplifying, we obtain

∂tg + 2G∂θg = 2H∂θh. (18)

In order to rewrite the current density equation of (3.3), we must rewrite Q(u, b) using our

ansatz. We begin by finding the partial derivatives of b found in Q(u, b) which are

∂1b1 =∂1(−2r sin θH(θ, t)− r cos θ∂θH(θ, t))

=− 2∂1r sin θH − 2r cos θ∂1θH − 2r sin θ∂θH∂1θ

− ∂1r cos θ∂θH + r sin θ∂1θ∂θH − r cos θ∂θθH∂1θ
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=− 2 cos θ sin θH − 2r cos θ

(
−sin θ

r

)
H − 2r sin θ∂θH

(
−sin θ

r

)

− cos θ cos θ∂θH + r sin θ

(
−sin θ

r

)
∂θH − r cos θ∂θθH

(
−sin θ

r

)

=sin2 θ∂θH − cos2 θ∂θH + sin θ cos θ∂θθH,

and

∂1b2 =∂1(2r cos θH(θ, t)− r sin θ∂θH(θ, t))

=2∂1r cos θH − 2r sin θ∂1θH + 2r cos θ∂θH∂1θ

− ∂1r sin θ∂θH − r cos θ∂1θ∂θH − r sin θ∂θθH∂1θ

=2 cos2 θH − 2r sin θ

(
−sin θ

r

)
H + 2r cos θ∂θH

(
−sin θ

r

)

− sin θ cos θ∂θH − r cos θ

(
−sin θ

r

)
∂θH − r sin θ∂θθH

(
−sin θ

r

)

=2H − 2 sin θ cos θ∂θH + sin2 θ∂θθH,

and

∂2b1 =∂2(−2r sin θH(θ, t)− r cos θ∂θH(θ, t))

=− 2∂2r sin θH − 2r cos θ∂2θH − 2r sin θ∂θH∂2θ

− ∂2r cos θ∂θH + r sin θ∂2θ∂θH − r cos θ∂θθH∂2θ

=− 2 sin2 θH − 2r cos θ

(
cos θ

r

)
H − 2r sin θ∂θH

(
cos θ

r

)

− sin θ cos θ∂θH + r sin θ

(
cos θ

r

)
∂θH − r cos θ∂θθH

(
cos θ

r

)

=− 2H − 2 sin θ cos θ∂θH − cos2 θ∂θθH.
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Similarly, we find the partial derivatives of u found in Q(u, b) which are,

∂1u1 =∂1(−2r sin θG(θ, t)− r cos θ∂θG(θ, t))

=− 2∂1r sin θG− 2r cos θ∂1θG− 2r sin θ∂θG∂1θ

− ∂1r cos θ∂θG+ r sin θ∂1θ∂θG− r cos θ∂θθG∂1θ

=− 2 cos θ sin θG− 2r cos θ

(
−sin θ

r

)
G− 2r sin θ∂θG

(
−sin θ

r

)

− cos2 θ∂θG+ r sin θ

(
−sin θ

r

)
∂θG− r cos θ∂θθG

(
−sin θ

r

)

=sin2 θ∂θG− cos2 θ∂θG+ sin θ cos θ∂θθG,

and

∂1u2 =∂1(2r cos θG(θ, t)− r sin θ∂θG(θ, t))

=2∂1r cos θG− 2r sin θ∂1θG+ 2r cos θ∂θG∂1θ

− ∂1r sin θ∂θG− r cos θ∂1θ∂θG− r sin θ∂θθG∂1θ

=2 cos2 θG− 2r sin θ

(
−sin θ

r

)
G+ 2r cos θ∂θG

(
−sin θ

r

)

− sin θ cos θ∂θG− r cos θ

(
−sin θ

r

)
∂θG− r sin θ∂θθG

(
−sin θ

r

)

=2G− 2 sin θ cos θ∂θG+ sin2 θ∂θθG,

and

∂2u1 =∂2(−2r sin θG(θ, t)− r cos θ∂θG(θ, t))

=− 2∂2r sin θG− 2r cos θ∂2θG− 2r sin θ∂θG∂2θ

− ∂2r cos θ∂θG+ r sin θ∂2θ∂θG− r cos θ∂θθG∂2θ

=− 2 sin2 θG− 2r cos θ

(
cos θ

r

)
G− 2r sin θ∂θG

(
cos θ

r

)

− sin θ cos θ∂θG+ r sin θ

(
cos θ

r

)
∂θG− r cos θ∂θθG

(
cos θ

r

)
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=− 2G− 2 sin θ cos θ∂θG− cos2 θ∂θθG.

Using these, we find that

Q(u, b) = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2)

= −2∂θG∂θθH + 2∂θH∂θθG.

So the current density equation of (3.3) becomes

∂th+ (−2r sin θG(θ, t)− r cos θ∂θG(θ, t))∂θh ·
(− sin θ

r

)

+ (2r cos θG(θ, t)− r sin θ∂θG(θ, t)) ∂θh ·
(
cos θ

r

)

= (−2r sin θH(θ, t)− r cos θ∂θH(θ, t))∂θg ·
(− sin θ

r

)

+ (2r cos θH(θ, t)− r sin θ∂θH(θ, t))∂θg ·
(
cos θ

r

)

− 2∂θG∂θθH + 2∂θH∂θθG.

This reduces to

∂th+ 2G∂θh = 2H∂θg +−2∂θG∂θθH + 2∂θH∂θθG.

Then, writing out the equation ∆ψ = ω using our ansatz we have

∆(r2G(θ, t)) = g(θ, t).

From this we have

∆(r2G) = (∂2r (r
2) +

1

r
∂r(r

2) +
1

r2
(0))G+ (∂2r (0) +

1

4
∂r(0) +

1

r2
∂θθG)r

2

= 4G+ ∂θθG.
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Similarly, writing out the equation ∆φ = j using our ansatz we have

∆(r2H) = 4H + ∂θθH.

In summary, (g, h,G,H) satisfies





∂tg + 2G∂θg = 2H∂θh,

∂th + 2G∂θh = 2H∂θg +−2∂θG∂θθH + 2∂θH∂θθG,

∂θθG+ 4G = g,

∂θθH + 4H = h,

g(θ, 0) = g0(θ), h(θ, 0) = h0(θ).

(19)

We can also consider the vorticity and stream function formulation of the 2D ideal MHD





∂tω + u · ∇ω = b · ∇j,

∂tψ + u · ∇ψ = 0,

(20)

where ψ is the stream function given by b = ∇⊥ψ. Then the 1D system corresponding to

this system would be 



∂tg + 2G∂θg = 2H∂θh,

∂tH + 2G∂θH = 2H∂θG,

∂θθG+ 4G = g,

∂θθH + 4H = h,

g(θ, 0) = g0(θ), H(θ, 0) = H0(θ).

(21)
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