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CHAPTER I

INTRODUCTION

The mirror descent (MD) method was first proposed by Yudin and Nemirovski [1983] for solving

convex optimization problems. MD is shown to be successful in solving high-dimensional

deterministic optimization problems arising in reconstructing medical images [Ben-Tal et al.,

2001] and stochastic optimization problems arising in network planning and power market

[Nemirovski et al., 2009; Nedić and Lee, 2014]. The complexity of MD method is moderately

dependent on the dimension of decision variables [Beck and Teboulle, 2003]. Consider the

following minimization problem,

min
β∈B

F (β), (P1)

where B ⊂ Rn is a closed convex set and F : B → R is a nonsmooth convex function. Let

gt ∈ ∇F (βt) denote the gradient of function F at point βt ∈ B. Let ω : B → R, called the

distance generating function, be a continuously differentiable and strongly convex function

on B with strong convexity parameter µω > 0. The outline of MD method is as follows:

Algorithm 1 Mirror descent method

1: initialization: pick β0 ∈ B arbitrarily and set y1 = ∇ω∗(β0).
2: General step: for any t = 1, 2, . . . do the following:

(a) βt = ∇ω∗(yt),
(b) yt+1 = ∇ω(βt)− ηtgt,

where the conjugate of ω is defined by ω?(y) = max
β∈B
{〈β, y〉 − ω(β)} and {ηt} denotes the

stepsize sequence.
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Algorithm 1 can be viewed as a generalization of the standard projected subgradient

method as well. The subgradient projection method generates iterates, starting with an

initial point β0 ∈ B, according to the following update rule:

βt+1 := argmin
β∈B

‖βt − ηtgt − β‖2 for all t ≥ 0. (1.1)

An iterative scheme such as subgradient method that uses the subdifferential/gradient

information of the objective function to generate each iterate is called a first-order method. In

the past few decades, first-order methods have proved to be very successful in addressing the

optimization problem (P1) in stochastic, distributed, and large-scale regimes. In particular,

their asymptotic convergence and non-asymptotic convergence rates can often be characterized

in such regimes. It is for these important reasons that the first-order methods have been

more favorable compared to their interior point-based counterparts.

The Bregman divergence function associated with ω is defined as Dω : Rn × Rn → R and

is given as

Dω(β1, β2) = ω(β2)− ω(β1)− 〈∇ω(β1), β2 − β1〉,

for all β1, β2 ∈ B. Beck and Teboulle [2003] showed that the MD method can be written

equivalently as the following nonlinear projected subgradient type method in which a general

distance function ω is used,

βt+1 := argmin
β∈B

{ηt〈gt, β − βt〉+Dω(βt, β)}. (1.2)

In other words, if we use the distance generating function ω(β) := 1
2
‖β‖2

2 in the update rule

of the scheme (1.2), this method will be equivalent to the scheme (1.1).

Later, the stochastic variants of the mirror descent method including stochastic gradient

mirror descent (SGMD) and stochastic subgradient mirror descent (SSMD) [Nemirovski
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et al., 2009; Nedić and Lee, 2014] were developed to solve the following canonical stochastic

optimization problem,

minimize F (β) := E[f(β, ξ)]

subject to β ∈ B,

(StochOpt)

where f : B × Ω → R is a stochastic function, and the vector ξ : Ω → Rd is a random

vector associated with a probability space represented by (Ω,F ,P). Problem (StochOpt)

is challenging because: (i) in statistical learning problems, usually the distribution of ξ

is unknown; (ii) if dimension of ξ is more than 5, the expectation cannot be efficiently

computed; (iii) when the dimensionality of solution space is huge, the first-order methods

become impractical. In the update rule of SSMD method, the true value of subgradient

gt ∈ ∂F (βt) is substituted by g̃t, the noisy subgradient of f(β, ξt) at β := βt.

1.1 Multi-agent Optimization Problems

In the past two decades, there has been much interest in development of distributed and

decentralized algorithms for multi-agent optimization problems in vector spaces [Nedić and

Ozdaglar, 2009; Lobel and Ozdaglar, 2011; Shi et al., 2015] where the goal is to optimize a

sum of convex component functions corresponding to m agents (also called users) as follows:

minimize
x∈Rn

m∑
i=1

fi(x). (1.3)

Problems of the form (1.3) have been widely found in sensor network information processing,

multi-agent control and coordination, and distributed machine learning. In these applications,

agents refer to sensors, processors, etc. The notion of distributed algorithms refers to the

algorithms that can be distributed across many agents. While in centralized algorithms,

it is assumed that there is a centralized coordinator connected with all other agents that

aggregates the information (e.g., gradients) computed from other agents and updates the
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model parameter, in decentralized algorithms, all agents can only communicate with their

neighbors and there does not exist a central agent. In this line of research, incremental

gradient/subgradient methods and their accelerated aggregated variants [Nedić and Bertsekas,

2001; Ram et al., 2009a; Gürbuzbalaban et al., 2017] have been developed where a local

gradient/subgradient is taken at each step of an iteration and is followed by communicating

with adjacent agents. More recently, Boţ and Böhm [2019] proposed an incremental mirror

descent method with a stochastic sweeping of the component functions.

Although the agents would like to cooperate, it might not be practical or possible to

communicate and exchange the information in some applications. Also, there might be a

competition among the agents and it is to their benefit to optimize their local objective.

In these cases, the distributed optimization techniques discussed above cannot be applied.

However, the competition among the agents can be characterized as a non-cooperative Nash

game. In a Nash game, N agents (users) with conflicting interests compete to minimize

their own payoff function or maximize their utility function. Suppose each player controls a

variable xi ∈ Xi where Xi ⊂ Rn denotes the set of all possible actions of player i. We let

x−i :, (x1, ..., xi−1, xi+1, ..., xN) denote the possible actions of other players and fi(xi, x−i)

denote the payoff function of player i. Therefore, the following Nash game needs to be solved:

minimize
xi∈Xi

fi(xi, x−i), for all i = 1, · · · , N, (G1)

which includes N optimization problems. A solution x∗ = (x∗1, . . . , x
∗
N) to this game called a

Nash equilibrium is a feasible action profile such that fi(x
∗
i , x
∗
−i) ≤ fi(xi, x

∗
−i), for all xi ∈ Xi,

i = 1, . . . , N . It can be proved that the optimality conditions of Nash game (G1) can be

formulated as a Cartesian stochastic VI(X,F ) where X :, {X|X = diag(x1, · · · , xN), xi ∈

Xi, for all i = 1, . . . , N} and F (X) :, diag(∇x1f1(x), · · · ,∇xNfN(x)).
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1.2 Motivation

In this section, we motivate our research and explain the main research questions. Much of

the interest in the literature of stochastic mirror descent (SMD) methods has focused on

convergence and rate analysis in terms of magnitude of the error bounds. Yet, the finite-time

performance of this class of methods can be significantly sensitive with respect to problem

parameters, algorithm settings (e.g., stepsize choice), and the uncertainty (e.g., induced by

the data). For instance, selecting a large step-size may result in divergence and choosing

a small step-size may cause a very slow convergence. Therefore, the performance of the

algorithm depends on the selection of a step-size as much as it depends on the selection of a

search direction. In the development of efficient stepsize rules for stochastic approximation

schemes, it is well-known that when the stepsize diminishes not too fast (
∑∞

t=0 ηt =∞) and

not too slow (
∑∞

t=0 η
2
t <∞), the method converges to the solution of problem (StochOpt)

almost surely [Polyak, 1987]. For example, Spall [2005] discusses a harmonic stepsize of the

form ηt = a
(t+1+b)α

where a > 0 is a tuning parameter, b ≥ 0 is the stability constant and

0.5 < α ≤ 1. It is recommended selecting a positive b that guarantees the stable behavior

of the algorithm in a sense that it is not running slow in early or later iterations. It can be

seen that problem parameters do not play a role in this choice of stepsize. Moreover, the

performance of SMD method is not robust with respect to parameters a and b in practice. In

the following example, we explain the drawback of harmonic stepsizes.

Example 1. [Support vector machines] Consider the following support vector machine

problem,

min F (β) ,
1

m

m∑
i=1

L(〈β,xi〉, yi) +
λ

2
‖β‖2

2 ,

where L(〈β,xi〉, yi) , max{0, 1 − yi〈β,xi〉} is the hinge-loss function and λ > 0 is a regu-

larization parameter. In this example, ξi = (xi, yi) is drawn from a certain, but unknown
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distribution. We apply the SMD method (scheme (1.2)) using harmonic stepsizes of the

form a
t+b

to solve the support vector machine problem which is discussed in detail later.

Figure 1.1 illustrates the performance of the SMD method with harmonic stepsizes for two

different data sets including RCV [Lewis et al., 2004] and Magic [Bock et al., 2004] data sets.

The Reuters Corpus Volume (RCV) data set is a collection of newswire stories produced by

Reuters journalists from 1996-1997. The articles are categorized into four different classes

including Corporate/Industrial, Economics, Government/Social, and Markets. In this data

sets, the samples are documents and the features represent the existence or nonexistence of a

given word with 1 or 0 values. We chose a part of a data with 199,328 samples and 138,921

features. The goal is to predict whether an article belongs to Markets class or not and as a

result, we have labels yi = ±1. The other data sets, Magic, is from UCI Machine Learning

Repository. The Magic data set includes some features to distinguish high-energy gamma

particles from hadron particles using a gamma telescope and it includes 19,020 samples and

10 features. The vertical axis of each plot represents the logarithm of the objective function

Data b1 = 1000 b2 = 2000

RCV
a1 = 900
a2 = 100000
a3 = 250000

a1 = 1800
a2 = 200000
a3 = 500000

Magic
a1 = 25
a2 = 50
a3 = 100

a1 = 50
a2 = 100
a3 = 200

Table 1.1: Choice of parameters a and b

while the horizontal axis corresponds to iteration number. Parameters a and b are tuned and

chosen according to Table 1.1. There are 6 different settings of these two parameters for each

data set. From Figure 1.1, it can be seen that the SMD method with harmonic stepsizes are

very sensitive to different choices of parameters a and b. For RCV data set, the stepsize with

larger values of a for a fixed b performs better while for the Magic one, the smaller values
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works better. Motivated by this example, our first goal, in this dissertation, is to develop

Data b = b1 = 1000 b = b2 = 2000

RCV
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Figure 1.1: Comparison of SMD method applying harmonic stepsize a
t+b

for two data sets

self-tuned SMD schemes that are characterized in terms of problem parameters as well as

algorithm settings and are robust with respect to the choice of problem parameters and

data sets. We aim to develop such schemes for smooth, nonsmooth, and high-dimensional

optimization problems.

The second research motivation arises from the need for addressing multi-user optimization

problems on semidefinite matrix spaces. This includes cooperative multi-agent problems

and non-cooperative Nash games. First, we consider the following multi-agent finite-sum

optimization problem which involves a network of multiple agents who optimize a global
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objective,

minimize
X∈B

m∑
i=1

fi(X) (1.4)

where B = {X ∈ Sn : X � 0 and tr(X) = 1}, and fi : B → R is a convex function. Note

that each agent i is associated with the local objective fi(X) and all agents cooperatively

minimize the network objective
∑m

i=1 fi(X). Assume that the allocation of all the objective

components at one node is not possible due to memory or computational power constraints.

Hence, for solving this problem, a distributed incremental algorithm is needed where the

agents (players) should communicate with their adjacent agents to spread the distributed

information over the network.

The sparse covariance inverse estimation explained in Example 2 is a specific application

of finite-sum problem which sets a certain number of coefficients in the inverse covariance to

zero to improve the stability of covariance matrix estimation [Price, 1972]. The goal is to

find a sparse representation of the sample data and to highlight independence relationships

between the sample variables.

Example 2. [Distributed sparse estimation of covariance inverse] Given a set of samples

{zji }
ni
j=1 associated with agent i, where zi ∼ N (µ,Σ), ni is the sample size of the ith agent,

µ ∈ Rd and Σ ∈ Rd×d are the mean and covariance matrix of a multivariate Gaussian

distribution, respectively. To estimate µ and Σ, consider the maximum likelihood estimators

(MLE) given by

µ̂, Σ̂ = argmax
µ,Σ

m∏
i=1

n∏
j=1

1√
(2π)nidet(Σ)

exp

(
−1

2
(zji − µ)TΣ−1(zji − µ)

)
.

8



This equation can then be cast as a distributed inverse covariance estimation problem

min
Σ−1�0

−
m∑
i=1

log
(
detΣ−1

)
+

m∑
i=1

tr
(
SiΣ

−1
)
,

where Si , 1
ni

∑ni
j=1−

1
2
(zji − µ̂i)T (zji − µ̂i) with µ̂i , 1

ni

∑ni
j=1 z

j
i . To have a sparse solution,

we consider the addition of a lasso penalty P ∗ Σ−1 to the likelihood as follows

min
Σ−1�0

−
m∑
i=1

log
(
detΣ−1

)
+

m∑
i=1

tr
(
SiΣ

−1
)

+ λ‖P ∗ Σ−1‖1, (1.5)

where P is an arbitrary matrix with nonnegative elements, λ > 0 is the regularization

parameter, and ∗ denotes element-wise multiplication. For a matrix A, we define ‖A‖1 =∑
i,j |[A]ij|. Two common choices for P would be the matrix of all ones or this matrix

with zeros on the diagonal to avoid shrinking diagonal elements of Σ [Bien and Tibshirani,

2011]. Problem (1.5) can be viewed as an instance of the Problem (1.4), where we define

fi(Σ
−1) = −log (detΣ−1) + tr(SiΣ

−1) + λ
m
‖P ∗ Σ−1‖1.

Motivated by the above example, one of our research goals in this dissertation is to develop

a matrix mirror descent incremental subgradient (M-MDIS) method to solve problem (1.4).

As mentioned previously, in this dissertation, we address multi-user optimization problems

on semidfinite matrix spaces including cooperative multi-agent problems and non-cooperative

Nash games. We already talked about cooperative optimization problem of interest and

now we would like to talk about the non-cooperative Nash game. Here, we refer to the

game (G1) introduced in the section 1.1. Assume there are N players competing to minimize

their own payoff function. Suppose each player controls a positive semidefinite matrix

variable Xi ∈ Xi where Xi denotes the set of all possible actions of player i. We let

X−i :, (X1, ..., Xi−1, Xi+1, ..., XN ) denote the possible actions of other players and fi(Xi, X−i)
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denote the payoff function of player i. Therefore, the following Nash game needs to be solved:

minimize
Xi∈Xi

fi(Xi, X−i), for all i = 1, · · · , N, (G2)

which includes N semidefinite optimization problem. A solution X∗ = (X∗1 , . . . , X
∗
N) to this

game called a Nash equilibrium is a feasible action profile such that fi(X
∗
i , X

∗
−i) ≤ fi(Xi, X

∗
−i),

for all Xi ∈ Xi = {Xi|Xi ∈ S+
ni
, tr(Xi) = 1}, i = 1, . . . , N where S+

ni
denotes the cone of all

ni × ni positive semidefinite matrices. The next example discusses one of the applications of

problem (G2) in wireless communication network.

Example 3. [Wireless communication networks] A wireless network is composed of

transmitters and receivers that generate and detect radio signals respectively. An antenna

enables a transmitter to send signals into space and a receiver to pick up signals from space.

In a multiple-input multiple-output (MIMO) wireless transmission system, multiple antennas

is applied in transmitters and receivers in order to improve its performance. In some MIMO

systems such as MIMO broadcast channels and MIMO multiple access channels, there are

multiple users which mutually interfere. In recent years, MIMO systems under uncertainty

have been studied where the state channel information is subject to noise, delays and other

imperfections [Mertikopoulos et al., 2017]. Here, the problem of interest is the throughput

maximization in multi-user MIMO networks under feedback errors. In this network, N

MIMO links (users) compete where each link i represents a pair of transmitter-receiver

with mi antennas at the transmitter and ni antennas at the receiver. Let xi ∈ Cni and

yi ∈ Cmi denote the signal transmitted from and received by the ith link, respectively. The

signal model can be described by yi = Hiixi +
∑

j 6=iHjixj + εi, where Hii ∈ Cmi×ni is the

direct-channel matrix of link i, Hji ∈ Cmi×nj is the cross-channel matrix between transmitter

j and receiver i, and εi ∈ Cmi is a zero-mean circularly symmetric complex Gaussian noise

vector with the covariance matrix Imi [Mertikopoulos and Moustakas, 2016]. Each transmitter
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i tries to improve its performance by transmitting at its maximum power level. Hence, The

action for each player is the transmit power. However, doing so would result in a conflict in

the system since the overall interference increases and affects the capability of all involved

transmitters. Here, we consider the interference generated by other users as an additive noise.

Therefore,
∑

j 6=iHjixj represents the multi-user interference (MUI) received by ith player

and generated by other users. Assuming the random vector xi follows a complex Guassian

distribution, transmitter i controls its input signal covariance matrix Xi :, E[xix
†
i ] subject

to two constraints: first the signal covariance matrix is positive semidefinite and second

each transmitter’s maximum transmit power is bounded by a positive scalar p. Under these

assumptions, each user’s transmission throughput for a given set of users’ covariance matrices

X1, . . . , XN is given by

Ri(Xi, X−i) = log det
(
Imi +

∑N

j=1
HjiXjH

†
ji

)
− log det(W−i), (1.6)

where W−i = Imi +
∑

j 6=iHjiXjH
†
ji is the MUI-plus-noise covariance matrix at receiver i

[Telatar, 1999]. Let Xi = {Xi ∈ Cni×ni : Xi � 0, tr(Xi) ≤ p}. The goal is to solve

maximize
Xi∈Xi

Ri(Xi, X−i), for all i = 1, . . . , N. (1.7)

Later, we prove that the optimality conditions of Nash game (G2) can be formulated as a

Cartesian stochastic VI(X , F ) where X :, {X|X = diag(X1, · · · , XN), Xi ∈ Xi, for all i =

1, . . . , N} and F (X) :, diag(∇X1f1(X), · · · ,∇XNfN(X)). There are several challenges in

solving CSVIs on semidefinite matrix spaces including presence of uncertainty, the semidefinite

solution space and the Cartesian product structure. Much of the interest in the theory of

variational inequality (VI) has focused on addressing VIs on vector spaces. There are a

few methods addressing VIs on matrix spaces. Some of these methods require a two-loop

framework where at each iteration, a projection problem, i.e., a semidefinite optimization
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problem needs to be solved. Others rely on assumptions that either does not hold in

applications, or it is hard to verify. Motivated by this gap, our goal is to develop a single-loop

first-order method under the assumption that the mapping is merely monotone.

1.3 Research Contributions

In this section, we discuss the key contributions of our work. In Chapter II, motivated by

big data applications, we consider stochastic mirror descent (SMD) methods for solving

stochastic optimization problems with strongly convex objective functions. Our goal is to

develop SMD schemes that achieve a rate of convergence with a minimum constant factor

with respect to the choice of the stepsize sequence. To this end, we consider three variants of

SMD methods namely (a) subgradient SMD methods addressing nonsmooth problems, (b)

gradient SMD methods addressing smooth problems, and (c) randomized block coordinate

SMD methods addressing high-dimensional problems. For each scheme, we develop self-tuned

stepsize rules that are characterized in terms of problem parameters and algorithm settings.

Using self-tuned stepsize rules, we show that the non-averaging iterate generated by the

underlying SMD method converges to the optimal solution both in an almost sure and a

mean sense. For each scheme, we derive error bounds and show that using the corresponding

self-tuned stepsizes, such an error bound is minimized. Moreover, in the case where problem

parameters are unknown, we develop a unifying self-tuned update rule that can be applied

in both smooth and nonsmooth settings. We show that for any arbitrary and small enough

initial stepsize, a suitably defined error bound is minimized. Finally, We provide constant

factor comparisons with standard SMD methods. We also investigate the robustness of

self-tuned SMD schemes with respect to the choice of data set, problem parameters, and

initial stepsize.

In Chapter III, we consider multi-user optimization problems on semidefinite matrix

spaces. We develop mirror descent methods where we choose the distance generating function
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to be defined as the quantum entropy. These methods are single-loop first-order methods in

the sense that they only require a gradient-type of update at each iteration. In the first part

of the chapter, we propose a mirror descent incremental subgradient method for minimizing

a convex function that consists of sum of component functions. This type of minimization

over semidefinite matrix spaces arises in cooperative multi-agent problems such as sparse

estimation of a covariance matrix. We show that the iterate generated by the algorithm

converges asymptotically to the optimal solution and derive a non-asymptotic convergence

rate. Motivated by non-cooperative Nash games in stochastic regimes, in the second part

of the chapter, we consider Cartesian stochastic variational inequality (CSVI) problems

where the variables are positive semidefinite matrices. We develop a stochastic mirror

descent method that require monotonicity assumption which holds in many applications. The

originality of this work lies in the convergence analysis. Employing an auxiliary sequence

of stochastic matrices and averaging techniques, we show that the iterate generated by the

algorithm converges to a weak solution of the CSVI. Then, we derive a rate of convergence

in terms of the expected value of a suitably defined gap function. We also implement the

proposed method for solving a multiple-input multiple-output multi-cell cellular wireless

network composed of seven hexagonal cells. We investigate the robustness of our scheme

with respect to problem parameters and uncertainty. Finally, in chapter IV, we conclude this

research.

1.4 Notations and Definitions

In this section, first, we introduce some basic notations which are used in this dissertation.

Then, we recall some definitions.

Throughout the first and second chapter, we use 〈β1, β2〉 to denote the inner product of

two vectors β1, β2 ∈ Rn. It is assumed that Rn is equipped with some norm ‖ · ‖ and ‖ · ‖∗

denotes its dual norm. We use Prob (Z) and E[z] to denote the probability of an event Z,
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and the expectation of a random variable z, respectively. We let βi ∈ Rni denote the ith

block coordinate of vector β ∈ Rn, and the subscript i represent the ith block of a mapping in

Rn. For any i = 1, . . . , l, we use ‖ · ‖i to denote the general norm on Rni and ‖ · ‖∗i to denote

its dual norm. The inner product of vectors u, v ∈ Rn is defined by 〈u, v〉 :,
∑l

i=1 〈ui, vi〉.

We define norm ‖ · ‖ as ‖x‖2 :,
∑d

i=1 ‖xi‖2
i for any x ∈ Rn, and denote its dual norm by‖ · ‖∗.

Throughout, pi denotes the probability associated with choosing the ith block coordinate.

We use the notation p∧ :, min
1≤i≤l

pi, p∨ :, max
1≤i≤l

pi, Lmax :, max
1≤i≤l

Lωi , and µmin :, min
1≤i≤l

µωi .

Throughout the third chapter, we let Sn denote the set of all n× n symmetric matrices

and S+
n the cone of all positive semidefinite matrices. The set of solutions to VI(X , F ) is

denoted by SOL(X ,F ). We define the set X := {X ∈ S+
n : tr(X) ≤ 1}. We let [A]uv denote

the components of matrix A and C the set of complex numbers. The spectral norm of a

matrix A being the largest singular value of A is denoted by the norm ‖A‖2. The trace norm

of a matrix A being the sum of singular values of the matrix is denoted by tr(A). Note that

spectral and trace norms are dual to each other [Fazel et al., 2001]. We let A† denote the

conjugate transpose of matrix A. A square matrix A that is equal to its conjugate transpose

is called Hermitian.

Next, we recall some definitions that will be referred to in Chapters 2 and 3.

Definition 1 (subgradient of function F ). Consider a set B ∈ Rn and a function F : B → Rn.

g ∈ ∂F (β1) is called a subgradient of function F at point β1 ∈ B, if a vector g exists such

that

F (β1) + 〈g, β2 − β1〉 ≤ F (β2), for all β2 ∈ B.

Definition 2 (Types of convexity). Consider a convex set B ∈ Rn and a function F : B → Rn.
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(a) F is called a convex function if for any β1, β2 ∈ B and g ∈ ∂F (β2)

F (β1) ≥ F (β2) + 〈g, β1 − β2〉.

(b) F is called a strictly convex function if for any β1, β2 ∈ B and g ∈ ∂F (β2)

F (β1) > F (β2) + 〈g, β1 − β2〉.

(c) F is called a strongly convex function with parameter µF > 0 with respect to the

underlying norm ‖ · ‖ if for any β1, β2 ∈ B and g ∈ ∂F (β2)

F (β1) ≥ F (β2) + 〈g, β1 − β2〉+
µF
2
‖β1 − β2‖2. (1.8)

Definition 3 (Types of monotonicity). Consider a set X ∈ Rn×n and a mapping F : X →

Rn×n.

(a) F is called a monotone mapping if for any X, Y ∈ X , we have

tr
(
(X − Y )T (F (X)− F (Y ))

)
≥ 0.

(b) F is called a λ-strongly monotone mapping if there is λ > 0 such that for any X, Y ∈ X ,

we have tr
(
(X − Y )T (F (X)− F (Y ))

)
≥ λD(X, Y ).

(c) F is called a pseudo-monotone mapping if for any X, Y ∈ X , tr
(
(X − Y )TF (Y )

)
≥ 0,

implies that tr
(
(X − Y )TF (X)

)
≥ 0.

(d) F is called a λ-strongly pseudo-monotone mapping if for any X, Y ∈ X ,

tr
(
(X − Y )TF (Y )

)
≥ 0, implies that tr

(
(X − Y )TF (X)

)
≥ λD(X, Y ).

Definition 4 (Almost sure convergence). Let {xn} be a sequence of random variables defined

on a sample space Ω. We say that {xn} is almost surely convergent (a.s. convergent) to a
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random variable x defined on Ω if and only if the sequence of real numbers {xn} converges to

x almost surely, i.e., if and only if there exists a zero-probability event E such that

{ω ∈ Ω : xn(ω) does not converge to x(ω)} ⊆ E.

x is called the almost sure limit of the sequence and convergence is indicated by xn
a.s.−→ x.
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CHAPTER II

SELF-TUNED STOCHASTIC MIRROR DESCENT METHODS FOR

STOCHASTIC OPTIMIZATION

In this chapter, motivated by big data applications, we consider stochastic mirror descent

(SMD) methods for solving stochastic optimization problems with strongly convex objective

functions. A significant part of the literature for developing SMD techniques has concentrated

on convergence and rate analysis as far as greatness of the error bounds. However, the

finite-time execution of this class of methods is tied to the selection of stepsize sequence.

As such, our goal is to develop SMD schemes that achieve a rate of convergence with a

minimum constant factor with respect to the choice of the stepsize sequence. To this end, we

consider three variations of SMD techniques to be specific (a) subgradient SMD methods

addressing nonsmooth problems, (b) gradient SMD methods addressing smooth problems,

and (c) randomized block coordinate SMD methods addressing high-dimensional problems.

For each scheme, we develop self-tuned stepsize rules that are characterized in terms of

problem parameters and algorithm settings. Our main contributions are as follows: (i)

utilizing self-tuned stepsize rules, we show that the non-averaging iterate generated by the

underlying SMD method converges to the optimal solution both in an almost sure and a

mean sense; (ii) for each scheme, we derive error bounds and show that this error bound is

minimized using the corresponding self-tuned step sizes; (iii) to address the cases that some

problem parameters are not known, we develop a unifying self-tuned update rule that can be

utilized in both smooth and nonsmooth settings. We show that for any arbitrary and small

enough initial stepsize, a suitably defined error bound is minimized; (iv) We provide constant
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factor comparisons with standard SMD methods.

2.1 Problem Formulation and Background

In this chapter, we consider the canonical stochastic optimization problem given by

minimize F (β) := E[f(β, ξ)]

subject to β ∈ B,

(StochOpt)

where B ⊂ Rn is a nonempty, closed, and convex set and f : B × Ω→ R is a stochastic

function. The vector ξ : Ω → Rd is a random vector associated with a probability space

represented by (Ω,F ,P). A wide range of problems in machine learning and signal processing

can be formulated as problem (StochOpt). In these applications, given a set of training

samples {(xi, yi)}mi=1 of size m, where xi ∈ Rn and yi ∈ R are the ith input and output

objects, respectively, the goal lies in learning a function h : Rn ×B → R by solving an

empirical risk minimization (ERM) problem given as follows:

minimize
1

m

m∑
i=1

L(h(β,xi), yi) + λR(β)

subject to β ∈ B,

(ERM)

where L : R2 → R is a loss function, R : Rn → R is a regularizer, constant λ > 0 is

the regularization parameter. In addressing problem (StochOpt), challenges arise in the

development of efficient solution methods mainly due to the following reasons: (i) presence of

uncertainty: in many applications arising in statistical learning, the probability distribution

P is unknown. In such cases, the sample average approximation (SAA) scheme can be

applied. However, the efficiency of SAA scheme deteriorates as the sample size increases (cf.

Nemirovski et al. [2009]). Even when the probability distribution P is known, the evaluation
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of the expectation of function f becomes costly, specially when d > 5; (ii) high-dimensionality:

another difficulty in addressing problem (StochOpt) arises when the dimensionality of the

solution space, i.e., n is huge. In such applications, the computational complexity per iteration

of the first-order methods (e.g., deterministic and stochastic gradient method) increases

significantly, making such methods impractical for large values of n (e.g., 1012 or more). In

addressing uncertainty, stochastic approximation (SA) method was first developed by Robbins

and Monro [1951]. Since then, SA method and its variants have been vastly employed to

solve stochastic optimization [Neveĺson and Hasḿinskii, 1973; Ermoliev, 1983; Ruszczyński

and Syski, 1986; Kushner and Yin, 2003] and equilibrium problems [Juditsky et al., 2011;

Jiang and Xu, 2008; Wang and Bertsekas, 2015]. Averaging techniques first introduced by

Polyak and Juditsky [1992] proved successful in increasing the robustness of SA method.

In vector spaces equipped with non-Euclidean norms, prox generalizations of deterministic

gradient method [Yudin and Nemirovski, 1983; Beck and Teboulle, 2003] were introduced

and applied in smooth and nonsmooth settings. Also, in stochastic regime, Nemirovski

et al. [2009] developed the stochastic mirror descent (SMD) method for solving problem

(StochOpt) when the objective function F is nonsmooth and merely convex. In this method,

a weighted averaging sequence is computed that is characterized by the stepsize sequence

and the previously generated iterates. Under a window-based averaging scheme, the rate of

O
(

1√
t

)
is established. Nedić and Lee [2014] showed that under a different set of weights and

employing a full-window averaging scheme, the convergence rate O
(

1√
t

)
can be established

for the subgradient SMD method. Generalizations of this optimal averaging technique was

developed for SA schemes in [Yousefian et al., 2017], and more recently for stochastic mirror

prox methods in [Yousefian et al., 2018] for addressing stochastic variational inequalities with

merely monotone mappings. When the dimensionality of the solution space n is huge, the SA

and SMD schemes become inefficient as they require arithmetic operations of the order n at

each iteration. To reduce this computational burden, block coordinate descent (CD) methods
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have been developed in the recent decades. While Ortega and Rheinboldt [2000] appear

amongst the first to study such a concept, Luo and Tseng [1992, 1993]; Tseng and Yun [2009],

Bertsekas and Tsitsiklis [2000], Nesterov [2010] and others [Mareček et al., 2015; Richtárik

and Takáč, 2014; Xu and Yin, 2013] studied the convergence and complexity analysis of

the CD schemes. Recently, Dang and Lan [2015b] developed randomized block coordinate

SMD methods for solving problem (StochOpt) when the objective function is nonsmooth and

the set B is given as the Cartesian product of l component sets. They showed that using

averaging techniques, the convergence rate of O
(

l√
t

)
and O

(
l
t

)
can be established for the

case when F is merely convex, and strongly convex, respectively. While these non-asymptotic

convergence orders are known to be optimal for the SMD method, the performance of this

method can be significantly sensitive with respect to problem parameters, algorithm settings

(e.g., stepsize choice), and the uncertainty (e.g., induced by the data). Much of the interest

in the literature has focused on establishing the optimal convergence rates, and there is

little guidance on development of stepsize update rules for the SMD method in order to

minimize the constant factor of the associated error bounds. Motivated by this gap, our goal

in this chapter lies in improvement of the finite-time behavior of the SMD methods through

development of self-tuned stepsizes. Several efforts have been done in development of efficient

stepsize rules for SA schemes. Of these, Kesten et al. [1958] proposed a stepsize rule in which

the stepsize is decreased by one when the errors in successive iterations have opposite signs.

Saridis [1970] extended Kesten’s rule and suggested the stepsize should also increase when

error estimates in successive iterations have the same sign. Spall [2005] discusses a harmonic

stepsize of the form ηt = a
(t+1+A)α

where a > 0 is a tuning parameter, and A ≥ 0 is the

stability constant. George and Powell [2006] propose a class of harmonic stepsizes which

minimizes the mean squared estimation error. Other works include but are not limited to

[Benveniste et al., 1990], [Pflug, 1988], Kalman filter [Stengel, 2012] and the “search then

converge” algorithm [Darken and Moody, 1992]. Self-tuned stepsizes were first introduced in
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[Yousefian et al., 2012] where a recursive update rule is developed for the stochastic gradient

and subgradient methods. It is shown that using such update rules, the mean squared error of

the method is minimized w.r.t. the choice of the stepsize. In this work, we consider problem

(StochOpt) where the objective function F is strongly convex with parameter µF > 0. We

consider three cases where (i) function F is nondifferentiable, (ii) function F is differentiable

and has Lipschitz gradients, and (iii) the dimensionality of the problem, i.e., n, is huge. For

case (i) and (ii), the subgradient SMD and gradient SMD method are considered, respectively.

For case (iii), we consider the randomized block coordinate variant of the SMD method.

While the SMD methods developed in the literature (cf. [Nemirovski et al., 2009; Dang and

Lan, 2015b]) employ averaging, our goal lies in developing non-averaging schemes. Our main

contributions are as follows:

(1) Convergence and complexity analysis: For each variant of the aforementioned SMD

methods, we develop new recursive error bounds in terms of the prox function. These error

bounds are given by Lemmas 2, 5, and 6, 7 for cases (i), (ii) and (iii), respectively. In each case,

we then develop self-tuned stepiszes that are characterized in terms of problem parameters and

algorithm settings. We show that under such update rules, the error function of the underlying

SMD method converges to zero in an almost sure and a mean sense. Importantly, we show

that the expected value of the error is minimized under the self-tuned stepize rules within a

specified range. We also derive bounds on the probability of error of the SMD schemes in

terms of problem parameters, algorithm settings, and iteration number. The convergence and

rate results are provided by Propositions 1, 2, and 3-4 for cases (i), (ii) and (iii), respectively.

Our results in this chapter extend the previous findings on self-tuned stepsizes in [Yousefian

et al., 2012, 2016] to a broader class of algorithms i.e., SMD methods. Moreover, our approach

in addressing nonsmoothness is different than that considered in [Yousefian et al., 2012, 2016].

Here we develop subgradient variants of SMD method allowing us to prove convergence to an

exact optimal solution to problem (StochOpt), while in [Yousefian et al., 2012] and [Yousefian
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et al., 2016] a smoothing scheme is applied and convergence is established to an approximate

optimal solution.

(2) Unifying self-tuned stepsizes: When some of problem parameters are unavailable, we

develop a generalized class of stepsize rules namely unifying self-tuned stepsizes and prove

convergence in both an almost sure and a mean sense. Importantly, we show that for an

arbitrary and small enough initial stepsize, a suitably defined error bound of the SMD scheme

is minimized. (see Theorem 1). This indeed implies robustness of the proposed schemes w.r.t.

the choice of initial stepize and addresses a common challenge associated with the harmonic

choice of stepsizes.

(3) Constant factor comparison: While we prove the superiority of the constant factor of the

error bounds associated with SMD schemes under the developed self-tuned stepsizes versus

any arbitrary choice of stepsizes, we also provide two sets of comparisons: (i) with a widely

used harmonic stepsizes (e.g., in [Nemirovski et al., 2009; Spall, 2005]), and also (ii) with an

averaging SMD scheme developed in [Dang and Lan, 2015b]. In case (ii), our comparison

implies the constant factor for the class of stochastic subgradient methods can be improved

up to four times under non-averaging schemes versus using the averaging scheme in [Dang

and Lan, 2015b].

(4) Implementation results: We present the performance of the unifying self-tuned stepsizes

applied on SVM models under three different data sets. Our results indicate the robustness

of the developed schemes with respect to problem parameters, uncertainty, and the initial

stepsize.

2.2 Self-tuned SMD Methods

In this section, we first start with the case where the objective function is non-differentiable.

Later, in Section 2.2.2, we discuss the case of differentiable objective functions with Lipschitz

gradients. In Section 2.2.3, we provide unifying self-tuned update rules addressing both cases
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in absence of problem parameters.

2.2.1 Self-tuned Stochastic Subgradient Mirror Descent Methods

Consider problem (StochOpt) where we assume F is a non-differentiable convex function of β.

Throughout, for t = 0, 1, . . ., we let gt ∈ ∂F (βt) denote a subgradient of function F at point

βt ∈ B. Similarly, for any ξ ∈ Ω, we let g̃t ∈ ∂f(βt, ξ) denote a subgradient of function f(·, ξ)

at point βt. Throughout this section, we assume that F is strongly convex with parameter

µF > 0 over the set B with respect to the underlying norm ‖ · ‖.

In our analysis, we make use of the following result.

Lemma 1. Consider problem (StochOpt). Let F be strongly convex with parameter µF > 0.

Then, there exists a unique optimal solution β∗ ∈ B. Moreover, we have

F (β)− F (β∗) ≥ µF
2
‖β − β∗‖2, for all β ∈ B.

Proof. The existence and uniqueness of β∗ follows by the assumption that B is non-empty,

closed and convex, and that F is strongly convex (see Theorem 2.2.3 in [Facchinei and Pang,

2003]). By the first-order optimality conditions, for all β ∈ B, we have 〈g∗, β−β∗〉 ≥ 0 where

g∗ ∈ ∂F (β∗). Using this inequality and invoking relation (1.8) for β1 := β and β2 := β∗, we

obtain the desired inequality.

To address problem (StochOpt), the method of interest in this section is the stochastic

subgradient mirror descent method. The convergence and rate analysis of the deterministic

and stochastic variants of this method have been studied in [Nemirovski et al., 2009; Beck

and Teboulle, 2003; Nedić and Lee, 2014] under averaging schemes. Our focus in this section

pertains to a non-averaging variant of this method. To describe the method, we first provide

the settings and notations associated with the method. Let ω : Rn → R, called the distance

generating function, be a continuously differentiable and strongly convex function with
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constant µω, i.e.,

ω(β2) ≥ ω(β1) + 〈∇ω(β1), β2 − β1〉+
µω
2
‖β2 − β1‖2,

for all β1, β2 ∈ B. For example, under Euclidean norm ‖.‖2, function ω(β) := 1
2
‖β‖2

2 meets

these requirements with µω = 1. The Bregman divergence function associated with ω is

defined as Dω : Rn × Rn → R and is given as

Dω(β1, β2) = ω(β2)− ω(β1)− 〈∇ω(β1), β2 − β1〉,

for all β1, β2 ∈ B. Given an arbitrary β0 ∈ B, the stochastic subgradient mirror descent

method is given by the following update rule:

βt+1 := argmin
β∈B

{ηt〈g̃t, β − βt〉+Dω(βt, β)}, (SSMD)

for all t ≥ 0, where ηt is the stepsize, and g̃t is the noisy subgradient of f(β, ξt) at β = βt. Note

that in the deterministic variant of this scheme, the stochastic subgradient g̃t is substituted

by the true value of subgradient gt ∈ ∂F (βt). Before we proceed with the analysis, we

recall some of the properties of the Bregman divergence function. Note that Dω(β1, β2) is

differentiable with respect to the variable β2. Let ∇β2Dω(·, ·) denote the partial derivative of

Dω(β1, β2) with respect to β2. Then we have for all β1, β2 ∈ B

∇β2Dω(β1, β2) = ∇ω(β2)−∇ω(β1). (2.1)

Based on the definition, the Bregman divergence function has the following property

Dω(β1, β2)−Dω(β3, β2) = Dω(β1, β3) + 〈∇ω(β3)−∇ω(β1), β2 − β3〉, (2.2)
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for all β1, β2, β3 ∈ B and by the strong convexity of function ω, we have

Dω(β1, β2) ≥ µω
2
‖β2 − β1‖2, for all β1, β2 ∈ B. (2.3)

Throughout, we assume the distance generating function ω has Lipschitz gradients with

parameter Lω, i.e., for all β1, β2, β3 ∈ B

ω(β2) ≤ ω(β1) + 〈∇ω(β1), β2 − β1〉+
Lω
2
‖β2 − β1‖2.

From the preceding inequality, the definition of Dω implies that for all β1, β2 ∈ B

Dω(β1, β2) ≤ Lω
2
‖β2 − β1‖2. (2.4)

Next, we state some standard assumptions on the stochastic subgradients that will be used

in the convergence analysis.

Assumption 1. [First and second moment of stochastic subgradients] Let the stochastic

subgradient g̃(β) ∈ ∂f(β, ξ) be such that a.s. for all β ∈ B, we have E[g̃(β)|β] = g(β) ∈

∂F (β). Moreover, there exists a scalar C > 0 such that

E
[
‖g̃(β)‖2

∗|β
]
≤ C2, for all β ∈ B. (2.5)

Throughout, we let Ft be the history of the algorithm up to time t, i.e, Ft = {β0, ξ0, ξ1, . . . ,

ξt−1} for t ≥ 1, with F0 = {β0}. To begin the analysis, in the following, we develop a recursive

inequality in terms of the error of the (SSMD) scheme. Such a recursive inequality will be

employed in the following sections to develop a self-tuned stepsize rule.

Lemma 2. [A recursive error bound for the (SSMD) scheme] Let Assumption (1) hold. Then,
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for all t ≥ 0 we have a.s.

E[Dω(βt+1, β
∗) | Ft] ≤

(
1− 2µF

Lω
ηt

)
Dω(βt, β

∗) +
C2η2

t

2µω
, (2.6)

where β∗ is the unique optimal solution to problem (StochOpt).

Proof. Consider the update rule (SSMD). Using the first-order optimality conditions, we

have for all β ∈ B

〈ηtg̃t +∇βt+1Dω(βt, βt+1), β − βt+1〉 ≥ 0,

Using equality (2.1), from the preceding inequality we obtain

〈ηtg̃t +∇ω(βt+1)−∇ω(βt), β − βt+1〉 ≥ 0,

for all β ∈ B which is equivalent to

〈∇ω(βt+1)−∇ω(βt), β − βt+1〉 ≥ ηt〈g̃t, βt+1 − β〉, (2.7)

for all β ∈ B. Invoking relation (2.2), from the preceding relation we can write

Dω(βt, β)−Dω(βt+1, β)−Dω(βt, βt+1) ≥ ηt〈g̃t, βt+1 − β〉,

for all β ∈ B. From the strong convexity of ω(β) and relation (2.3), we have

Dω(βt, β)−Dω(βt+1, β)− µω
2
‖βt − βt+1‖2 ≥ ηt〈g̃t, βt+1 − β〉. (2.8)

Next, we find a lower bound on the term ηt〈g̃t, βt+1−β〉. By adding and subtracting 〈ηtg̃t, βt〉,
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we get

ηt〈g̃t, βt+1 − β〉 = ηt〈g̃t, βt+1 − βt〉+ ηt〈g̃t, βt − β〉

≥ −
∣∣∣〈 ηt√

µω
g̃t,
√
µω(βt+1 − βt)〉

∣∣∣+ ηt〈g̃t, βt − β〉

≥ − η2
t

2µω
‖g̃t‖2

∗ −
µω
2
‖βt+1 − βt‖2 + ηt〈g̃t, βt − β〉, (2.9)

where the last inequality follows from Fenchel’s inequality, i.e., |〈x, y〉| ≤ 1
2
‖x‖2 + 1

2
‖y‖2

∗.

Combining (2.8) and (2.9) yields

ηt〈g̃t, βt − β〉+Dω(βt+1, β) ≤ Dω(βt, β) +
η2
t

2µω
‖g̃t‖2

∗,

for all β ∈ B. By taking the conditional expectation on Ft from both sides of the preceding

relation and setting β := β∗, we have for all β ∈ B

ηt〈gt, βt − β∗〉+ E[Dω(βt+1, β
∗) | Ft] ≤ Dω(βt, β

∗) +
η2
tC

2

2µω
, (2.10)

where we used E[g̃t | Ft] = gt and E[‖g̃t‖2
∗ | Ft] ≤ C2 from Assumption 1. Using the strong

convexity of function F in (1.8), we can write

ηt〈gt, βt − β∗〉 ≥ ηt(F (βt)− F (β∗)) +
µFηt

2
‖βt − β∗‖2

≥ ηt(F (βt)− F (β∗)) +
µFηt
Lω

Dω(βt, β
∗)

where the last inequality follows by relation (2.4). From the preceding relation and inequality

(2.10), we obtain for all t ≥ 0

E[Dω(βt+1, β
∗) | Ft] + ηt(F (βt)− F (β∗)) ≤

(
1− µFηt

Lω

)
Dω(βt, β

∗) +
η2
tC

2

2µω
. (2.11)
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Using Lemma 1 and relation (2.4), we have

F (βt)− F (β∗) ≥ µF
2
‖βt − β∗‖2 ≥ µF

Lω
Dω(βt, β

∗). (2.12)

Combining relations (2.11) and (2.12) yields the desired relation.

The inequality (2.6) provides a recursive relation that can be used to derive an upper

bound for the term E[Dω(βt, β
∗)]. This term can be seen as the expected error of the (SSMD)

method that quantifies the deviation between βt and the optimal solution β∗ in the mean

sense. Note that using Lemma 2, the bound on this error term is characterized by problem

parameters such as µF and C, by algorithm settings such as µω, Lω, and also by the stepsize

ηt. To develop an update formula for ηt, our main objective is to analyze the recursive

relation (2.6). To this end, we make use of the following lemma. This lemma provides a

general recursive sequence, called self-tuned sequences, that can be used for minimizing the

recursive error bounds of the form in Lemma 2. We summarize some important properties of

the self-tuned sequences. Some of these properties can be found in [Yousefian et al., 2012,

2016].

Lemma 3. [Self-tuned sequences] Let θ and δ be positive scalars, and {ert} be a non-negative

sequence for t ≥ 0, such that the following equality holds for an arbitrary non-negative

sequence {ηt}:

ert+1 := (1− θηt)ert + δη2
t , for all t ≥ 1. (2.13)

Let er0 ≤ 2δ
θ2

and let the self-tuned sequence {η∗t } be given by η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
for any

t ≥ 1, where η∗0 = θ
2δ
er0. Then the following properties hold:

(a) For any fixed t ≥ 1, the vector (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the function ert(η0, η1, . . . ,
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ηt−1) over the set

Ut ,

{
γ ∈ Rt : 0 < γj ≤

1

θ
for j = 1, . . . , t

}
.

More precisely, for any t ≥ 1, and any (η0, η1, . . . , ηt−1) ∈ Ut, we have

ert(η0, η1, . . . , ηt−1)− ert(η∗0, η∗1, . . . , η∗t−1) ≥ δ(ηt−1 − η∗t−1)2.

(b) For all t ≥ 1, we have η∗t <
2
θ

(
1
t

)
. Moreover, under the choice of ηt := η∗t , the term ert

is bounded by O(1/t), i.e.,

ert(η
∗
0, η
∗
1, . . . , η

∗
t−1) ≤ 4δ

θ2

(
1

t

)
, for all t ≥ 1. (2.14)

(c) We have
∑∞

t=0 η
∗
t =∞ and

∑∞
t=0 η

∗2
t <∞.

Proof. (a) To show part (a), we first use induction on t to show that ert satisfies

ert(η
∗
0, η
∗
1, . . . , η

∗
t−1) =

2δ

θ
η∗t , for all t ≥ 0. (2.15)

Note that it holds for t = 0 from the definition η∗0 = θ
2δ
er0. Next, let us assume (2.15) holds

for t. From this and relation (2.13), we have

ert+1(η∗0, η
∗
1, . . . , η

∗
t ) = (1− θη∗t )ert(η∗0, η∗1, . . . , η∗t−1) + δη∗t

2 = (1− θη∗t )
2δ

θ
η∗t + δη∗t

2

=
2δ

θ
η∗t

(
1− θη∗t +

θη∗t
2

)
=

2δ

θ
η∗t

(
1− θη∗t

2

)
=

2δ

θ
η∗t+1,

where in the last equation, we used the definition of η∗t+1. This implies that relation (2.15)

holds for t + 1 and therefore, for any t ≥ 0. We now use induction on t to prove that

(η∗0, η
∗
1, . . . , η

∗
t−1) minimizes ert for all t ≥ 1. By the definition of er1 and the relation
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er1(η∗0) = 2δ
θ
η∗1 shown previously, we have

er1(η0)− er1(η∗0) = (1− θη0)er0 + δη2
0 −

2δ

θ
η∗1.

Therefore, using relation η∗1 = η∗0
(
1− θ

2
η∗0
)

and η∗0 = θ
2δ
er0, we can write

er1(η0)− er1(η∗0) = (1− θη0)
2δ

θ
η∗0 + δη2

0 −
2δ

θ
η∗0

(
1− θ

2
η∗0

)
= δ(η0 − η∗0)2.

This implies that part (a) holds for t = 1. In the rest of the proof, for the sake of simplicity,

we use ert+1 for an arbitrary vector (η0, η1, . . . , ηt) ∈ Ut+1 and er∗t+1 for ert+1 evaluated at

(η∗0, η
∗
1, . . . , η

∗
t ). Now suppose part (a) holds for some t ≥ 1 implying that ert ≥ er∗t holds for

any (η0, η1, . . . , ηt−1) ∈ Ut. Using (2.13) and (2.15), we have

ert+1 − er∗t+1 = (1− θηt)ert + δη2
t −

2δ

θ
η∗t+1.

Using ert ≥ er∗t , relation (2.15), the definition of η∗t+1 and that ηt ≤ 1
θ
, we get

ert+1 − er∗t+1 ≥ (1− θηt)
2δ

θ
η∗t + δη2

t −
2δ

θ
η∗t

(
1− θ

2
η∗t

)
= δ(ηt − η∗t )2.

Therefore, part (a) holds for t + 1. We conclude that the result of part (a) is true for any

t ≥ 1.

(b) Using the recursive relation η∗t+1 = η∗t
(
1− θ

2
η∗t
)
, we have

1

ηt+1

=
1

ηt
(
1− θ

2
ηt
) =

1

ηt
+

θ
2

1− θ
2
ηt
, for all t ≥ 0.
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Summing up from t = 0 to k and canceling the common terms from both sides, we obtain

1

ηk+1

=
1

η0

+
θ

2

k∑
t=0

1

1− θ
2
ηt
>
θ

2

k∑
t=0

1

1− θ
2
ηt
. (2.16)

Note that from the definition of η∗0 and er0, we have 0 < η∗0 ≤ 1
θ
. From relation η∗t =

η∗t−1

(
1− θ

2
η∗t−1

)
we have 0 < η∗t ≤ 1

θ
for all t ≥ 0. Consequently, the term 1− θ

2
η∗t is a number

between zero and one. Therefore,
(
1− θ

2
η∗t
)−1

> 1 which implies that
∑k

t=0

(
1− θ

2
η∗t
)−1

>

k + 1. Therefore, using relation (2.16), for all k ≥ 1 we have η∗k <
2

θk
. Combining

inequality (2.15) and the preceding inequality, we obtain the desired result.

(c) First, we show
∑∞

t=0 η
∗
t =∞. From η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
for all t ≥ 0, we obtain

η∗t+1 = η∗0

t∏
i=0

(
1− θ

2
η∗i

)
. (2.17)

Note that since η∗0 ∈
(
0, 1

θ

]
, from η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
it follows that {η∗t } is positive non-

increasing sequence. Therefore, the limit limt→∞ η
∗
t exists and it is less than 2

θ
. Thus, by

taking the limits from both sides in η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
, we obtain limt→∞ η

∗
t = 0. Then,

by taking limits in (2.17), we further obtain

lim
t→∞

t∏
i=0

(
1− θ

2
η∗i

)
= 0.

To arrive at a contradiction, suppose that
∑∞

i=0 η
∗
i < ∞. Then, there is an ε ∈ (0, 1) such

that for j sufficiently large, we have θ
2

∑t
i=j η

∗
i ≤ ε, for all t ≥ j. Since

∏t
i=j

(
1− θ

2
η∗i
)
≥

1− θ
2

∑t
i=j η

∗
i for all j < t, by letting t→∞, we obtain for all j sufficiently large,

∞∏
i=j

(
1− θ

2
η∗i

)
≥ 1− θ

2

∞∑
i=j

η∗i ≥ 1− ε > 0.

This contradicts the statement limt→∞
∏t

i=0

(
1− θ

2
η∗i
)

= 0. Hence, we conclude that

31



∑∞
t=0 η

∗
t =∞. Next, we show that

∑∞
t=0 η

∗
t

2 <∞. From η∗t = η∗t−1

(
1− θ

2
η∗t−1

)
we have

η∗i = η∗i−1 −
θ

2
η∗i−1

2, for all i ≥ 1.

Summing the preceding relation from i = 0 to t and canceling the common terms, we obtain

η∗t = η∗0 −
θ

2

t−1∑
i=0

η∗2i , for all t ≥ 1.

By taking limits and recalling that limt→∞ η
∗
t = 0, we obtain the desired result.

Before we proceed with presenting the main result in this section, we revisit the following

lemma (see Polyak [1987], page 50) that will be used in the analysis of the (SSMD) method.

Lemma 4. Let {vt} be a sequence of non-negative random variables where E[v0] <∞, let

{αt} and {λt} be deterministic scalar sequences such that:

E[vt+1|v0, . . . , vt] ≤ (1− αt)vt + λt, a.s. for all t ≥ 0,

0 ≤ αt ≤ 1, λt ≥ 0,
∞∑
t=0

αt =∞,
∞∑
t=0

λt <∞, lim
t→∞

λt
αt

= 0.

Then, vt −→ 0 a.s., limt→∞ E[vt] = 0, and for any ε > 0 and for all t > 0

Prob(vj ≤ ε for all j ≥ t) ≥ 1− 1

ε

(
E[vt] +

∞∑
i=t

λi

)
.

In the following, we present the self-tuned stepsizes for the (SSMD) method and discuss

their properties.

Preposition 1. [Self-tuned stepsizes for (SSMD) method] Let {βt} be generated by the (SSMD)

method. Let the function F be strongly convex with modulus µF and the set B be convex,

closed, and bounded such that ‖β‖ ≤M for all β ∈ B and some M > 0. Let Assumption 1
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hold for some C large enough such that C2Lω ≥ 8M2µωµ
2
F . Let the stepsize ηt be given by

η∗0 :=
4µωµFM

2

C2
, η∗t := η∗t−1

(
1− µF

Lω
η∗t−1

)
, for all t ≥ 1.

Then, the following hold:

(a) The sequence {βt} generated by the (SSMD) method converges a.s. to the unique

optimal solution β∗ of problem (StochOpt).

(b) For any t ≥ 1, the vector (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the upper bound of the error

E[Dω(βt, β
∗)] given in Lemma 2 for all (η0, η1, . . . , ηt−1) ∈

(
0, Lω

2µF

]t
.

(c) The (SSMD) method attains the convergence rate O(1/t), i.e,

E
[
‖βt − β∗‖2

]
≤
(
CLω
µωµF

)2
1

t
, for all t ≥ 1.

(d) Let ε and ρ be arbitrary positive scalars and T ,
(

3C2L2
ω

2µωµ2F

)
1
ερ

we have for all t ≥ T

Prob (Dω(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. (a) Note that the uniqueness of β∗ is implied by Lemma 1. To show a.s. convergence,

we apply Lemma 4. From the result of Lemma 2, we have for all t ≥ 0

E[Dω(βt+1, β
∗) | Ft] ≤

(
1− 2µF

Lω
η∗t

)
Dω(βt, β

∗) +
C2η∗2t
2µω

. (2.18)

Let us define the following terms:

vt , Dω(βt, β
∗), αt ,

2µF
Lω

η∗t , λt ,
C2η∗2t
2µω

. (2.19)
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Note that since {η∗t } is non-increasing and that α0 =
(

2µF
Lω

)
η∗0 =

8M2µωµ2F
C2Lω

, and the assumption

C2Lω ≥ 8M2µωµ
2
F , we can conclude that 0 ≤ αt ≤ 1 for all t ≥ 0. Moreover, from Lemma

3(c), we have that
∑∞

t=0 αt = ∞ and
∑∞

t=0 λt < ∞. Also, note that the definition of

αt and λt and that the self-tuned stepsize η∗t has a limit of zero (see proof of Lemma 3,

part (c)) imply that limt→∞
λt
αt

= 0. Therefore, all conditions of Lemma 4 are satisfied

indicating that Dω(βt, β
∗)→ 0 a.s.. Now, using the strong convexity of ω in (2.3), we have

µω
2
‖βt − β∗‖2 ≤ Dω(βt, β

∗). Therefore, we conclude that βt converges to β∗ a.s..

(b) For any t ≥ 1, let us define the function ert(η0, . . . , ηt−1) given by the recursion (2.13)

where θ , 2µF
Lω

, and δ , C2

2µω
. Also, let er0 , 2M2Lω. First note that for all t ≥ 0, we

have E[Dω(βt, β
∗)] ≤ ert(η0, . . . , ηt−1) for any arbitrary (η0, η1, . . . , ηt−1) ∈

(
0, Lω

2µF

]t
used in

the (SSMD) method. To show this, taking expectations from both of the relation in Lemma

2, and from the definition of θ and δ we obtain

E[Dω(βt+1, β
∗)] ≤ (1− θηt)E[Dω(βt, β

∗)] + δη2
t ,

for all t ≥ 0. It is enough to show that Dω(β0, β
∗) ≤ er0. Note that from relation (2.4), and

the triangle inequality we have

Dω(β0, β
∗) ≤ Lω

2
‖β0 − β∗‖2 ≤ Lω

2

(
‖β0‖2 + ‖β∗‖2 + 2‖β0‖‖β∗‖

)
≤ 2LωM

2.

This implies thatDω(β0, β
∗) ≤ er0. Using induction and the relation in lemma 2, E[Dω(βt, β

∗)] ≤

ert(η0, . . . , ηt−1) holds for all t implying that ert is a well-defined upper bound. To complete

the proof of this part, it suffices to show that the conditions of Lemma 3 hold. First we need

to show that er0 ≤ 2δ
θ2

. From the values of er0, θ, δ, we have

er0θ
2

2δ
=

8LωM
2µ2

Fµω
C2L2

ω

≤ 1,

34



where the last relation follows by the assumption C2Lω ≥ 8M2µωµ
2
F . Therefore, er0 ≤

2δ
θ2

implying that the conditions of Lemma 3 hold. Hence, from part (a) in Lemma 3,

we conclude that (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the upper bound ert(η0, η1, . . . , ηt−1) for all

(η0, η1, . . . , ηt−1) ∈
(

0, Lω
2µF

]t
.

(c) Following the proof of part (b), from Lemma 3(b), we obtain for all t ≥ 1

E[Dω(βt, β
∗)] ≤ ert(η0, η1, . . . , ηt−1) ≤ 4δ

θ2

1

t
=

(
C2L2

ω

2µωµ2
F

)
1

t
. (2.20)

Invoking the relation (2.3), we obtain the desired inequality.

(d) To show this result, we use the probabilistic bound given in Lemma 4. To this end, first

we estimate the term
∑∞

i=t λi where λi is given by (2.19). Using Lemma 3(b), we can write

∞∑
i=t

λi =
∞∑
i=t

C2

2µω
η∗i

2 ≤
∞∑
i=t

C2

2µω

(
Lω
µF i

)2

=

(
C2L2

ω

2µωµ2
F

)(
1

t2
+

∞∑
i=t+1

1

i2

)

≤
(
C2L2

ω

2µωµ2
F

)(
1

t
+

∫ ∞
t

1

x2
dx

)
=

(
C2L2

ω

µωµ2
F

)
1

t
.

From the preceding inequality, relation (2.20), and Lemma 4, we obtain the desired relation.

Comparison 1. Proposition 1 states that the self-tuned stepsizes not only guarantee the

convergence of the (SSMD) method, but also the constant factor provided in part (c) is the

minimum constant factor for any arbitrary stepsize rule within a given range. Let us for

example compare this constant factor with that of the stochastic subgradient method under

harmonic stepsize rules in [Nemirovski et al., 2009]. In that chapter (see relations (2.9) and

(2.10)), under the harmonic update rule for stepsizes given by ηt = γ/t for some constant

γ > 1/(2µF ), it is shown that

E
[
‖βt − β∗‖2

2

]
≤ max

{
γ2C2

2µFγ − 1
, ‖β0 − β∗‖2

2

}
1

t
. (2.21)
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Here we show that for any arbitrary γ > 1
2µF

, the term γ2C2

2µF γ−1
is larger than the constant factor

of the self-tuned stepsizes that is
(
CLω
µωµF

)2

. Note that in the case of stochastic subgradient

method, we set ω(β) :=
‖β‖22

2
. This implies that µω = Lω = 1 in the Euclidean norm space.

We can write,

Harmonic constant factor

Self-tuned constant factor
=

γ2C2µ2
F

(2µFγ − 1)C2
=

γ2µ2
F

2µFγ − 1
.

Note that γ2µ2
F − 2µFγ + 1 = (γµF − 1)2 > 0 for all γ > 1

2µF
. Therefore, the preceding

relation implies that the harmonic constant factor in [Nemirovski et al., 2009] is larger than

the self-tuned constant factor for any arbitrary γ > 1
2µF

.

2.2.2 Self-tuned Stochastic Gradient Mirror Descent Methods

In this section, we consider the case where the objective function in problem (StochOpt)

is differentiable and has Lipschitz gradients. Our goal here is to utilize this property and

develop a self-tuned scheme that is characterized with the problem parameters and algorithm

settings. To solve problem (StochOpt), we consider the stochastic gradient mirror descent

method as follows

βt+1 := argmin
β∈B

{ηt〈∇f(βt, ξt), β − βt〉+Dω(βt, β)}, (SGMD)

for all t ≥ 0, where ∇f(βt, ξt) denotes the gradient of the stochastic function f(·, ξt) at βt.

Throughout this section, we let F (x) have Lipschitz gradients with parameter LF > 0. We

also define the stochastic errors zt as the difference between the sample gradient ∇f(βt, ξt)

and ∇F (βt), i.e.,

zt , ∇f(βt, ξt)−∇F (βt). (2.22)

We make the following assumption on the first and second moment of the stochastic errors.
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Assumption 2 (First and second moment of stochastic gradients). The errors zt are such

that a.s. we have E[zt | Ft] = 0 for all t ≥ 0. Moreover, there exists some ν > 0 such that

E
[
‖zt‖2

∗|Ft
]
≤ ν2, for all t ≥ 0. (2.23)

It is worth mentioning that the preceding assumption does not require boundedness of the

gradients and can be seen weaker than the Assumption 1. Indeed, as it will be shown later in

this section, utilizing the Lipschitzian property the convergence properties of the (SGMD)

method can be established under this weaker assumption. Next, we have the following lemma

that provides a recursive bound on the error of the algorithm. This result will play a key role

in deriving the self-tuned stepsize rules in the sequel.

Lemma 5. [A recursive error bound for the (SGMD) scheme] Let Assumption 2 hold and

let βt be generated by the (SGMD) method. We have a.s. for all t ≥ 0

E[Dω(βt+1, β
∗) | Ft] ≤

(
1− 2ηtµF

Lω
+

2η2
tL

2
F

µ2
ω

)
Dω(βt, β

∗) +
ν2η2

t

µω
, (2.24)

where β∗ is the unique optimal solution to problem (StochOpt).

Proof. By the first order optimality conditions for problem (StochOpt), we have

〈∇F (β∗), βt+1 − β∗〉 ≥ 0, for all t ≥ 0.

Consider relation (2.7) and let β := β∗. Adding the resulting relation with ηt〈∇F (β∗), βt+1−

β∗〉 ≥ 0, we obtain

〈∇ω(βt+1)−∇ω(βt), β
∗ − βt+1〉 ≥ ηt〈∇f(βt, ξt)−∇F (β∗), βt+1 − β∗〉. (2.25)
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From relation (2.2), we get

〈∇ω(βt+1)−∇ω(βt), β
∗ − βt+1〉 = Dω(βt, β

∗)−Dω(βt+1, β
∗)−Dω(βt, βt+1).

Therefore, from relation (2.25) and relation (2.3) we have,

Dω(βt, β
∗)−Dω(βt+1, β

∗)− µω
2
‖βt − βt+1‖2 ≥ ηt〈∇f(βt, ξt)−∇F (β∗), βt+1 − β∗〉. (2.26)

Next, we find a lower bound for the term on the right-hand side. By adding and subtracting

ηt〈∇f(βt, ξt)−∇F (β∗), βt〉, we get

ηt〈∇f(βt, ξt)−∇F (β∗), βt+1 − β∗〉 = ηt〈∇f(βt, ξt)−∇F (β∗), βt+1 − βt〉

+ ηt〈∇f(βt, ξt)−∇F (β∗), βt − β∗〉

≥ − η2
t

2µω
‖∇f(βt, ξt)−∇F (β∗)‖2

∗ −
µω
2
‖βt+1 − βt‖2

+ ηt〈∇f(βt, ξt)−∇F (β∗), βt − β∗〉, (2.27)

where the last inequality follows from Fenchel’s inequality, i.e., |〈x, y〉| ≤ 1
2
‖x‖2 + 1

2
‖y‖2

∗.

Combining (2.26) and (2.27) yields

Dω(βt+1, β
∗) ≤ Dω(βt, β

∗)− ηt〈∇f(βt, ξt)−∇F (β∗), βt − β∗〉

+
η2
t

2µω
‖∇f(βt, ξt)−∇F (β∗)‖2

∗.

Using relation (2.22), and invoking the triangle inequality and relation (a+ b)2 ≤ 2a2 + 2b2
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for any a, b ∈ R, we obtain

Dω(βt+1, β
∗) ≤ Dω(βt, β

∗)− ηt〈∇F (βt)−∇F (β∗) + zt, βt − β∗〉

+
η2
t

µω
‖∇F (βt)−∇F (β∗)‖2

∗ +
η2
t

µω
‖zt‖2

∗.

By taking the expectations on Ft from both sides of the preceding relation, and using

Assumption 2, we have

E[Dω(βt+1, β
∗) | Ft] ≤ Dω(βt, β

∗)− ηt〈∇F (βt)−∇F (β∗), βt − β∗〉

+
η2
t

µω
‖∇F (βt)−∇F (β∗)‖2

∗ +
ν2η2

t

µω
.

Under Lipschitzian property of ∇F with parameter LF , and strong convexity of F with

parameter µF , we get

E[Dω(βt+1, β
∗) | Ft] ≤ Dω(βt, β

∗)− ηtµF‖βt − β∗‖2 +
η2
tL

2
F

µω
‖βt − β∗‖2 +

ν2η2
t

µω
.

Recalling relations (2.3) and (2.4), we obtain the desired inequality.

Inequality (2.24) provides a closed-form function for an upper bound of the error of the

(SGMD) scheme. Comparing this relation with the result of Lemma 2, we observe that the

inequalities differ from two aspects: (i) the contraction term multiplied by the term Dω(βt, β
∗)

in the nonsmooth case is smaller than that in the smooth case; (ii) the upper bound in

the smooth case is independent of the bound on the gradient, i.e., constant C. Instead the

relation is characterized by the bound on the stochastic errors, that is denoted by ν. Next,

we present Self-tuned stepsizes for the (SGMD) method and show their properties.

Preposition 2. [Self-tuned stepsizes for (SGMD) scheme] Let {βt} be generated by the (SGMD)

method. Let the function F be strongly convex with modulus µF and the set B be convex,
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closed, and bounded such that ‖β‖ ≤M for all β ∈ B and some M > 0. Let Assumption 2

hold for some ν > 0, and the stepsize ηt be given by

η∗0 :=
2µFµ

2
ωM

2

ν2µω + 4LωL2
FM

2
, η∗t := η∗t−1

(
1− µF

Lω
η∗t−1

)
, for all t ≥ 1.

Then, the following hold:

(a) The sequence {βt} generated by the (SGMD) method converges a.s. to the unique

optimal solution β∗ of problem (StochOpt).

(b) For any t ≥ 1, the vector (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the upper bound of the error

E[Dω(βt, β
∗)] given in Lemma 5 for all (η0, η1, . . . , ηt−1) ∈

(
0, Lω

2µF

]t
.

(c) The (SGMD) method attains the convergence rate O(1/t), i.e, for all t ≥ 1

E
[
‖βt − β∗‖2

]
≤ 2

(
Lω
µωµF

)2(
ν2 +

4LωL
2
FM

2

µω

)
1

t
.

(d) Let ε and ρ be arbitrary positive scalars and T , 2
(
ν2 +

4LωL2
FM

2

µω

)(
3L2
ω

2µωµ2F

)
1
ερ

we have

for all t ≥ T

Prob (Dω(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. Consider the inequality given in Lemma 5. Taking expectations from both sides and

rearranging the terms, we can write

E[Dω(βt+1, β
∗)] ≤

(
1− 2ηtµF

Lω

)
E[Dω(βt, β

∗)] +
2η2

tL
2
F

µ2
ω

E[Dω(βt, β
∗)] +

ν2η2
t

µω
.

From relation (2.4), the triangle inequality, and the definition of constant M , we have

Dω(βt, β
∗) ≤ Lω

2
‖βt − β∗‖2 ≤ Lω

2

(
‖βt‖2 + ‖β∗‖2 + 2‖βt‖‖β∗‖

)
≤ 2LωM

2.

40



From the preceding inequalities, we obtain the following relation

E[Dω(βt+1, β
∗)] ≤

(
1− 2ηtµF

Lω

)
E[Dω(βt, β

∗)] +

(
8LωL

2
FM

2

µω
+ 2ν2

)
η2
t

2µω
.

Let us define C̄ such that C̄2 , 8LωL2
FM

2

µω
+ 2ν2. Note that the preceding inequality is similar

to the relation (2.18) where C is replaced by the term C̄. Therefore, the desired results here

follow by only substituting C by C̄ in Proposition 1. It is only remained to show that: (i)

η∗0 = (4µFµωM
2)/C̄2, and (ii) the conditions of Proposition 1 also hold for C̄. The relation (i)

holds directly from definition of η∗0 given by Proposition 2 and the definition of C̄. To show

(ii), we need to verify that C̄2Lω ≥ 8M2µωµ
2
F . Since ν2 > 0, from definition of C̄ we have

C̄2Lω
8M2µωµ2

F

=

(
8LωL

2
FM

2

µω
+ 2ν2

)
Lω

8M2µωµ2
F

≥
(

8LωL
2
FM

2

µω

)
Lω

8M2µωµ2
F

=

(
LωLF
µωµF

)2

≥ 1,

where the last relation follows since µF ≤ LF and µω ≤ Lω. Therefore, the conditions of

Proposition 1 hold for C̄ and the desired results follow.

2.2.3 Unifying Self-tuned Stepsizes

Recall that Proposition 1 provides self-tuned stepsize rules for the case where problem

(StochOpt) is nonsmooth, while Proposition 2 provides stepsize rules when the problem

is smooth. These update rules are characterized in terms of problem parameters such

as M,C, ν, µF ,LF and algorithm settings such as µω,Lω. A challenge associated with

implementing these schemes pertains to the applications where some of the problem parameters

are not known in advance, or are challenging to estimate. In such cases, an important question

is how we may employ such self-tuned stepsize rules? To address this question, in this section,

our goal is to develop a unifying class of self-tuned stepsize rules that can be employed for

solving problem (StochOpt) in both smooth and nonsmooth cases when some of the problem
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parameters are unavailable. Let us compare the stepsize rules in Proposition 1 and 2. We

observe that although the initial stepsize η∗0 is different, both schemes share the same tuning

rule given by η∗t+1 := η∗t

(
1− µF

Lω
η∗t

)
. We also observe that the only problem parameter

that is needed to be known for the tuning update rule is µF . This parameter is known in

advance in many applications such as SVM. It is worth emphasizing that Lω is not a problem

parameter. It is the Lipschitzian parameter associated with the prox mapping and depends

on the choice of the distance generating function ω(β). This function is user-specified. For

example, for stochastic subgradient/gradient methods we set ω(β) := 1
2
‖β‖2

2, and therefore

Lω = 1. In practice, when problem parameters such as M,C, ν, or LF are unavailable or

difficult to estimate, the initial stepsize η∗0 cannot be evaluated. In such cases one may choose

η∗0 arbitrarily and still use the update rule η∗t+1 := η∗t

(
1− µF

Lω
η∗t

)
. We show that even under

this relaxation, some of the main properties of the self-tuned stepsizes are preserved. This is

presented by the following result.

Theorem 1. [Unifying self-tuned stepsize rules] Consider problem (StochOpt). Let the

function F be strongly convex with modulus µF and the set B be convex, closed, and

bounded. Suppose either of the following cases holds:

case (1): F is non-differentiable and Assumption 1 holds for some unknown C > 0.

case (2): F is continuously differentiable over B for all ξ, but ∇F is not Lipschitz over B

and Assumption 1 holds.

case (3): F is differentiable over B, it has Lipschitz gradients with an unknown parameter

LF , and Assumption 2 holds.

In case (1), let {βt} be generated by algorithm (SSMD). In cases (2) and (3) let {βt} be

generated by algorithm (SGMD). In all these cases, let the stepsize ηt be given by

ηt := ηt−1

(
1− µF

Lω
ηt−1

)
, for all t ≥ 1,

42



where 0 < η0 ≤ Lω
2µF

is an arbitrary constant. Then: (i) {βt} converges to β∗ a.s., and (ii)

there exists a threshold η̄ ≤ Lω
2µF

such that for any η0 ≤ η̄, an upper bound of the error

E[Dω(βt, β
∗)] is minimized for all (η0, η1, . . . , ηt−1) ∈

(
0, Lω

2µF

]t
.

Proof. First, we show (i) and (ii) hold in case (1). Let Cmin denote the minimum of all

constants C > 0 that satisfy Assumption 1 (note that such a constant always exits). Let

C̄ , max

{
Cmin,

√
8M2µωµ2F

Lω

}
and define η̄ , 4µFµωM

2

C̄2 . Note that η̄ ≤ Lω
2µF

from definition

of C̄. Let 0 < η0 ≤ η̄ be an arbitrary scalar and define C0 , C̄
√

η̄
η0

. Note that since

C0 ≥ C̄ ≥ Cmin, C0 satisfies Assumption 1. Also, C2
0Lω ≥ 8M2µωµ

2
F . Therefore, for

η0 = 4µFµωM
2

C0
2 , we found a C0 such that all conditions of Proposition 1 are met. Then we can

apply Proposition 1 which implies that (i) and (ii) hold. Next, consider case (2). Note that

since f is continuously differentiable, the set ∂f(β, ξ) is a singleton, i.e., {∇f(β, ξ)}. From

compactness of B and continuity of ∇f(·, ξ), we conclude that Assumption 1 holds for some

C > 0. Next, in a similar fashion to the proof of case (1), we can conclude that (i) and (ii)

hold in case (2). The proof for case (3) can be done by invoking Proposition 2 similar to the

proof for case (1).

Remark 1. The unifying stepsize rule minimizes the mean squared error even when problem

parameters are unknown. This suggests that self-tuned stepsizes are robust with respect to

the choice of the initial stepsize. This indeed suggests that self-tuned stepsizes are robust

with respect to the choice of the initial stepsize. We will demonstrate this property of the

self-tuned stepsizes in our numerical experiments in Section 2.4. This can be seen as an

important advantage in contrast with the classical harmonic stepsizes of the form a
(t+b)c

that

have been seen very sensitive to the choice of three parameters a, b and c (cf. Spall [2005]).

43



2.3 Self-tuned Randomized Block Coordinate SMD Methods

In many big data applications such as text classification, the dimensionality of the solution

space, i.e., n, is huge. Consequently, each iteration of the mirror descent methods becomes

computationally inefficient. To address this challenge, our goal is to develop randomized

block coordinate variants of the self-tuned stochastic mirror descent method. We consider

problem (StochOpt), where the set B ∈ Rn has the block structure given by B ,
∏l

i=1 Bi,

where Bi ∈ Rni and n ,
∑l

i=1 ni. We start with the case where the objective function is

non-differentiable. Later, in Section 2.3.2, we discuss the case of differentiable objective

functions with Lipschitz gradients. Let the distance generating function ωi : Rni → R be a

continuously differentiable function. The Bregman divergence Dωi : Rni×Rni → R associated

with ωi is given for β1, β2 ∈ Bi as

Dωi(β1, β2) = ωi(β2)− ωi(β1)− 〈∇ωi(β1), β2 − β1〉.

Let ∇β2Dωi(·, ·) denote the partial derivative of Dωi(β1, β2) with respect to β2. Then,

∇β2Dωi(β1, β2) = ∇ωi(β2)−∇ωi(β1), for all β1, β2 ∈ Bi. (2.28)

The Bregman divergence has the following property for all β1, β2, β3 ∈ Bi

Dωi(β1, β2)−Dωi(β3, β2) = Dωi(β1, β3) + 〈∇ωi(β3)−∇ωi(β1), β2 − β3〉. (2.29)

We assume the distance generating function ωi has Lipschitz gradients with parameter Lωi

and is strongly convex with parameter µωi , i.e., for all β1, β2, β3 ∈ Bi

µωi
2
‖β2 − β1‖2 ≤ Dωi(β1, β2) ≤ Lωi

2
‖β2 − β1‖2. (2.30)
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Remark 2. Lipschitzian property of ωi is a standard assumption in the literature of SMD

methods; the convergence rate analysis provided in [Nedić and Lee, 2014; Dang and Lan,

2015b] relies on this property. Also note that for the stochastic gradient descent (SGD)

method, we have µω = Lω = 1.

The prox mapping Pi : Bi × Rni → Bi is defined by

Pi(β1, β2) = argmin
z∈Bi

{〈β2, z〉+Di(β1, z)}, (2.31)

for all β1 ∈ Bi and β2 ∈ Rni . In the analysis, we use the following error function L : B×B →

R defined as

L(β, z) ,
∑l

i=1
pi
−1Di(β

i, zi), for all β, z ∈ B. (2.32)

2.3.1 Self-tuned Randomized Block Subgradient SMD Method

Consider problem (StochOpt) where F is a non-differentiable convex function of β. Let

gt ∈ ∂F (βt) denote a subgradient of function F at point βt ∈ B. Similarly, for any ξ ∈ Ω,

we let g̃t ∈ ∂f(βt, ξ) denote a subgradient of function f(·, ξ) at point βt. Throughout, we

assume that F is strongly convex with parameter µF > 0 over the set B with respect to the

underlying norm ‖ · ‖.

Next we present the outline of the randomized block coordinate SMD method. Let Pb be

a discrete probability distribution with probabilities pi > 0 for i = 1, . . . , l, where
∑l

i=1 pi = 1.

Given an initial vector β0 ∈ B, at iteration t ≥ 1, random variable it is generated from the

probability distribution Pb independently from random variable ξ. Then, only the itth block

45



of βt, i.e. βitt , is updated as follows:

βit+1 =

 Pit
(
βitt , ηtg̃it(βt)

)
if i = it,

βit if i 6= it,
(RB-SSMD)

where g̃it(βt) is the itth block of the subgradient of f(βt, ξt) and ηt is the stepsize. Throughout,

let Ft = {i0, ξ0, . . . , it−1, ξt−1}. Next, we state the main assumptions.

Assumption 3. Let the stochastic subgradient g̃(β) ∈ ∂f(β, ξ) be such that a.s. for all

β ∈ B, we have E[g̃(β)|β] = g(β) ∈ ∂F (β). Moreover, for all i = 1, . . . , l and β ∈ B, there

exists a scalar Ci > 0 such that E
[
‖g̃i(β)‖2

∗i |β
]
≤ C2

i .

Next, we develop a recursive inequality in terms of the error of the (RB-SSMD) scheme.

Such a recursive inequality will be employed to develop a self-tuned stepsize rule.

Lemma 6. Let Assumption 3 hold and βt be generated by the (RB-SSMD) scheme. Then

for all t ≥ 0,

E[L(βt+1, β
∗)|Ft] ≤

(
1− ηt2µFp∧L−1

max

)
L(βt, β

∗) + η2
t

∑l

i=1
C2
i (2µωi)

−1. (2.33)

Proof. At iteration t, we have βitt+1 = Pit
(
βitt , ηtg̃it(βt)

)
. Consider the definition of Pit given

by (2.31). Writing the optimality condition, we have

〈ηtg̃it +∇Dit(β
it
t , β

it
t+1), βit − βitt+1〉 ≥ 0, for all β ∈ B.

Using relations (2.28) and (2.29), and from the preceding relation,

Dit(β
it
t , β

it)−Dit(β
it
t+1, β

it)−Dit(β
it
t , β

it
t+1) ≥ ηt〈g̃it , βitt+1 − βit〉, for all β ∈B.
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From the strong convexity of ωit and relation (2.30), we have

Dit(β
it
t , β

it)−Dit(β
it
t+1, β

it)− 0.5µωit‖β
it
t − βitt+1‖2

it ≥ ηt〈g̃it , βitt+1 − βit〉. (2.34)

By adding and subtracting ηt〈g̃it , βitt 〉 in the right-hand side, and using Fenchel’s inequality,

we have

ηt〈g̃it , βitt+1 − βitt 〉+ ηt〈g̃it , βitt − βit〉 ≥ −0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it − 0.5µωit‖β
it
t+1 − βitt ‖2

it

+ ηt〈g̃it , βitt − βit〉. (2.35)

Combining (2.34) and (2.35) yields for all β ∈ B

Dit(β
it
t+1, β

it) ≤ Dit(β
it
t , β

it) + ηt〈g̃it , βit − βitt 〉+ 0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it .

From the preceding relation, relation (2.32), and that βit+1 = βit for all i 6= it, we have

L(βt+1, β) ≤
∑

i 6=it
p−1
i Di(β

i
t , β

i) + p−1
it

(
Dit(β

it
t , β

it) + ηt〈g̃it , βit − βitt 〉+ 0.5η2
tµ
−1
ωit
‖g̃it‖2

∗it

)
= L(βt, β) + p−1

it

(
ηt〈g̃it , βit − βitt 〉+ 0.5η2

tµ
−1
ωit
‖g̃it‖2

∗it

)
.

Taking conditional expectations from both sides of the preceding relation on Ft ∪ {it}, we get

E[L(βt+1, β) | Ft ∪ {it}] ≤ L(βt, β) + 0.5η2
tµ
−1
ωit
p−1
it
E
[
‖g̃it‖2

∗it | Ft ∪ {it}
]

+
ηt
pit
〈E[g̃it | Ft ∪ {it}] , βit − βitt 〉

≤ L(βt, β) + p−1
it
ηt
〈
git , β

it − βitt
〉

+ p−1
it
η2
t

C2
it

2µωit
,

where we used Assumption 3. Taking expectations from previous inequality with respect to
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it and setting β := β∗,

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗) +
l∑

i=1

pi
pi

(
ηt
〈
gi, β

∗i − βit
〉

+ η2
t

C2
i

2µωi

)

= L(βt, β
∗) + ηt 〈gt, β∗ − βt〉+ η2

t

l∑
i=1

C2
i

2µωi
,

where we use the definition of 〈·, ·〉 given in the notation. From strong convexity of function

F , we have 〈gt− g∗, βt− β∗〉 ≥ µF‖βt− β∗‖2. By optimality of β∗, we have 〈g∗, βt− β∗〉 ≥ 0.

From the two preceding relations and the definition of norm,

〈gt, βt − β∗〉 ≥ µF

l∑
i=1

‖βit − β∗i‖2
i ≥ 2µF

l∑
i=1

Di(β
i
t , β
∗i)

Lωi

≥ 2µFp∧L
−1
max

l∑
i=1

p−1
i Di(β

i
t , β
∗i) = 2µFp∧L

−1
maxL(βt, β

∗),

where in the second inequality we used relation (2.30), and in the last relation we used

the definition of function L. From the preceding two relations, we obtain the desired

inequality.

Next, we present self-tuned stepsizes and their properties for the (RB-SSMD) method.

Preposition 3. Let {βt} be generated by the (RB-SSMD) method. Let the sets Bi be

convex and closed such that ‖βi‖ ≤ Mi for all βi ∈ Bi and some Mi > 0, for all i. Let

Assumption 3 hold for some Ci large enough such that C2
i Lωi ≥ 8M2

i µωiµ
2
F for all i. Let the

stepsize ηt be given by

η∗0 :=
4µFp∧

∑l
i=1 p

−1
i LωiM

2
i

Lmax
∑l

i=1 µ
−1
ωi
C2
i

,

η∗t := η∗t−1

(
1− p∧µFL−1

maxη
∗
t−1

)
, for all t ≥ 1.

Then, the following hold:
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(a) The sequence {βt} converges a.s. to the unique optimal solution β∗ of problem

(StochOpt).

(b) For any t ≥ 1, the vector (η∗0, . . . , η
∗
t−1) minimizes the upper bound of the error

E[L(βt, β
∗)] given in Lemma 6 for all (η0, . . . , ηt−1) ∈

(
0, Lmax

2p∧µF

]t
.

(c) The (RB-SSMD) method attains the convergence rate O(1/t), i.e, for all t ≥ 1

E[‖βt − β∗‖2] ≤ p∨
µmin

∑l
i=1

C2
i

µωi

(
Lmax
p∧µF

)2
1
t
.

(d) Let ε and ρ be arbitrary positive scalars and T , 1.5
(

Lmax
p∧µF

)2∑l
j=1

C2
j

µωj

1
ερ

we have for

all t ≥ T

Prob (L(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. (a) To show a.s. convergence, we apply Lemma 4. Consider the inequality (2.33)

given by Lemma 6. Let us define

vt , L(βt, β
∗), αt ,

2µFp∧
Lmax

η∗t , λt ,
l∑

i=1

C2
i

2µωi
η∗t

2. (2.36)

From definition of η∗0 and C2
i Lωi ≥ 8M2

i µωiµ
2
F , we have

α0 =
8µ2

Fp
2
∧
∑l

i=1

LωiM
2
i

pi

L2
max

∑l
i=1

C2
i

µωi

≤
p2
∧
∑l

i=1

L2
ωi
C2
i

piµωi

L2
max

∑l
i=1

C2
i

µωi

≤ p∧ < 1. (2.37)

Therefore, since {η∗t } is non-increasing, we have 0 ≤ αt ≤ 1 for all t ≥ 0. Moreover, from

Lemma 3(c), we have that
∑∞

t=0 αt = ∞ and
∑∞

t=0 λt < ∞. Also, the definition of αt and

λt and that the self-tuned stepsize η∗t has a limit of zero imply that λt
αt
→ 0. Therefore, all

conditions of Lemma 4 are met and so L(βt, β
∗)→ 0 a.s.. The definition of L and that pi > 0

for all i imply that Di(β
i
t , β
∗i)→ 0 for all i. Using the strong convexity of ωi (cf. (2.30)), we

have
µωi
2
‖βit − β∗i‖2 ≤ Di(β

i
t , β
∗i) for all i. We conclude that βt → β∗ a.s..
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(b) For any t ≥ 1, let us define the function et(η0, . . . , ηt−1) given by the recursion (2.13)

where θ , 2p∧µF
Lmax

, and δ ,
∑l

i=1
C2
i

2µωi
. Also, let e0 , 2

∑l
i=1 p

−1
i LωiM

2
i . Next, we show that

L(β0, β
∗) ≤ e0. Using the Lipschitizan property of ∇ωi, and the triangle inequality, we have

L(β0, β
∗) =

l∑
i=1

Di(β
i
0, β

∗i)

pi
≤

l∑
i=1

Lωi
2pi
‖βi0 − β∗i‖2

i ≤
l∑

i=1

Lωi
2pi

(
2‖βi0‖2

i + 2‖β∗i‖2
i

)
≤

l∑
i=1

2LωiM
2
i

pi
= e0.

From L(β0, β
∗) ≤ e0, relations (2.13), (2.33) and using induction, it can be seen that

E[L(βt, β
∗)] ≤ et(η0, . . . , ηt−1) for all t ≥ 0 and any arbitrary (η0, . . . , ηt−1) ∈

(
0, Lmax

2p∧µF

]t
.

Therefore, et is a well-defined upper bound for the algorithm. To complete the proof, it

suffices to show that the conditions of Lemma 3 hold. First we show that e0 ≤ 2δ
θ2

. From the

values of e0, η∗0, θ, and δ, we have η∗0 = θ
2δ
e0. From the definition of α0 in (2.36) and (2.37),

we have α0 = θη∗0 < 1. By two preceding relations we obtain e0 ≤ 2δ
θ2

. Hence, conditions of

Lemma 3 hold. From Lemma 3(a), we conclude the desired result.

(c) Following the proof of part (b), from Lemma 3(b) and definitions of δ and θ in part (b),

we obtain for all t ≥ 1

E[L(βt, β
∗)] ≤ et ≤

(
Lmax
p∧µF

)2 l∑
i=1

C2
i

2µωi

1

t
. (2.38)

Note that from strong convexity of ωi we have

L(βt, β
∗) =

∑l

i=1
p−1
i Di(β

i
t , β
∗i) ≥

∑l

i=1
p−1
i 0.5µωi‖βit − β∗i‖2

i ≥ µmin(2p∨)
−1‖βt − β∗‖2.

Combining the two preceding relations completes the proof.

(d) We use the probabilistic bound given in Lemma 4. First we estimate the term
∞∑
i=t

λi
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where λi is given by (2.36). Note that Lemma 3(b) implies η∗i ≤ 2
θi

. Therefore, we can write

∞∑
i=t

λi =
∞∑
i=t

l∑
j=1

C2
j

2µωj
η∗i

2 ≤
l∑

j=1

C2
j

2µωj

∞∑
i=t

(
Lmax
p∧µF i

)2

≤
(
Lmax
p∧µF

)2 l∑
j=1

C2
j

2µωj

(
1

t
+

∫ ∞
t

1

x2
dx

)

=
(
Lmax(p∧µF )−1

)2
l∑

j=1

C2
j µωj

−1 (1/t) . (2.39)

By (2.39), (2.38), and Lemma 4, we obtain the desired relation.

Under a uniform distribution, i.e., pi = 1
l

for i = 1, . . . , l, Proposition 3 indicates that

E[‖βt − β∗‖2]→ 0 with the order of O
(
l
t

)
.This is similar to the error bound derived in [Dang

and Lan, 2015b] for stochastic block mirror descent (SBMD) method (cf. Corollary 2.5 in

[Dang and Lan, 2015b]). Next, we compare the constant factor of the error bound derived in

[Dang and Lan, 2015b] with that of (RB-SSMD) method.

Comparison 2. Let Assumption 3 hold for some unknown Ci > 0 for all i. Let βt be

generated by algorithm (RB-SSMD) where Lωi = Lω and µωi = µω for all 1 ≤ i ≤ l and

β̄t be generated by SBMD method in [Dang and Lan, 2015b]. Then, By Lemma 1, we

have E
[
‖β̄t − β∗‖2

]
≤ 2

µFµω
E
[
F (β̄t)− F (β∗)

]
and by Corollary 2.5 in [Dang and Lan, 2015b],

we have E
[
F (β̄t)− F (β∗)

]
≤ 2lLω

µF

∑l
i=1C

2
i

(
1
t+1

)
. Combining the preceding inequalities, we

obtain for all t ≥ 1

E
[
‖β̄t − β∗‖2

]
≤ 4lLω
µ2
Fµω

l∑
i=1

C2
i

(
1

t+ 1

)
. (2.40)

On the other hand, by Proposition 3, we have for all t ≥ 1

E
[
‖βt − β∗‖2

]
≤ lL2

ω

µ2
ωµ

2
F

l∑
i=1

C2
i

(
1

t+ 1

)
. (2.41)

Comparing (2.40) and (2.41), we note that the constant factor of the error bound of
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(RB-SSMD) method is smaller when Lω
µω

< 4. In particular, for SGD method where

Lω = µω = 1, it can be four times better than the constant factor of SBMD in [Dang

and Lan, 2015b].

2.3.2 Self-tuned Randomized Block Gradient SMD Method

In this section, we assume the objective function in problem (StochOpt) is differentiable

and has Lipschitz gradients. Our goal is to utilize this property and develop a self-tuned

scheme that is characterized with the problem parameters and algorithm settings. To solve

problem (StochOpt), we consider the randomized block gradient SMD method as follows

βit+1 =

 Pit
(
βitt , ηtgit(βt)

)
if i = it,

βit if i 6= it,
(RB-GSMD)

for all t ≥ 0, where git(βt) is the itth block of the gradient of the stochastic function f(·, ξt)

at βt. Throughout this section, we let F have Lipschitz gradients with parameter LF > 0.

We also define the stochastic errors zit as follows

zit , gi(βt)−∇Fi(βt), for all t ≥ 0, and for all i = 1, . . . , l. (2.42)

Next, we state the main assumptions on stochastic gradients.

Assumption 4. The errors zit are such that a.s. we have E[zit | Ft] = 0 for all t ≥ 0.

Moreover, there exists some νi > 0 for all i such that E[‖zit‖2
∗i|Ft] ≤ ν2

i , for all t ≥ 0.

Next, we have the lemma that provides a recursive bound on the error of the algorithm.

Lemma 7. Let Assumption 4 hold and βt be generated by the (RB-GSMD) method. We
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have a.s. for all t ≥ 0

E[L(βt+1, β
∗)|Ft] ≤ (1− ηt2µFp∧L−1

max + η2
t 2LF

2p∨µ
−2
min)L(βt, β

∗) + η2
t

∑l

i=1
ν2
i µ
−1
ωi
. (2.43)

Proof. Consider the update rule (RB-GSMD). Writing the first-order optimality condition,

we have for all β ∈ B

〈ηtgit +∇Dit(β
it
t , β

it
t+1), βit − βitt+1〉 ≥ 0, (2.44)

Using equation (2.28), from (2.44) we obtain for all β ∈ B

〈∇ωit(βitt+1)−∇ωit(βitt ), βit − βitt+1〉 ≥ ηt〈git , βitt+1 − βit〉. (2.45)

Let β := β∗ in relation (2.45). Adding and subtracting the term ηt〈∇Fit(β∗), βitt+1 − β∗it〉, we

get

〈∇ωit(βitt+1)−∇ωit(βitt ), β∗it − βitt+1〉 ≥ ηt〈git −∇Fit(β∗), βitt+1 − β∗it〉

+ ηt〈∇Fit(β∗), βitt+1 − β∗it〉. (2.46)

From relation (2.29), we get

〈∇ωit(βitt+1)−∇ωit(βitt ), β∗it − βitt+1〉 = Dit(β
it
t , β

∗it)−Dit(β
it
t+1, β

∗it)−Dit(β
it
t , β

it
t+1).

Therefore, from the preceding relation, (2.46), and relation (2.30),

Dit(β
it
t , β

∗it)−Dit(β
it
t+1, β

∗it)−
µωit

2
‖βitt − βitt+1‖2

it − ηt〈∇Fit(β
∗), βitt+1 − β∗it〉 ≥

ηt〈git −∇Fit(β∗), βitt+1 − β∗it〉 (2.47)
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Next, we find a lower bound for the right-hand side term. By adding and subtracting

ηt〈git −∇Fit(β∗), βitt 〉, we get

ηt〈git −∇Fit(β∗), βitt+1 − βitt 〉+ ηt〈git −∇Fit(β∗), βitt − β∗it〉 ≥
−η2

t

2µωit
‖git −∇Fit(β∗)‖2

∗it

−
µωit

2
‖βitt+1 − βitt ‖2

it + ηt〈git −∇Fit(β∗), βitt − β∗it〉, (2.48)

where the last inequality follows from Fenchel’s inequality, i.e., |〈x, y〉| ≤ 1
2
‖x‖2 + 1

2
‖y‖2

∗.

Combining (2.47) and (2.48) yields

Dit(β
it
t+1, β

∗it) ≤ Dit(β
it
t , β

∗it)− ηt(〈git −∇Fit(β∗), βitt − β∗it〉+ 〈∇Fit(β∗), βitt+1 − β∗it〉)

+
η2
t ‖git −∇Fit(β∗)‖2

∗it
2µωit

.

Using relation (2.42), and invoking the triangle inequality and relation (a+ b)2 ≤ 2a2 + 2b2

for any a, b ∈ R, we obtain

Dit(β
it
t+1, β

∗it) ≤ Dit(β
it
t , β

∗it)− ηt〈∇Fit(β∗), βitt+1 − β∗it〉

− ηt〈∇Fit(βt)−∇Fit(β∗)+zitt , βitt − β∗it〉+ η2
tµ
−1
ωit
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it

+ η2
tµ
−1
ωit
‖zitt ‖2

∗it .

From the preceding relation, the definition of the function L, and that βit+1 = βit for all i 6= it,

we have

L(βt+1, β
∗) =

∑
i 6=it

p−1
i Di(β

i
t+1, β

∗i) + p−1
it
Dit(β

it
t+1, β

∗it)

≤ L(βt, β
∗) + p−1

it

(
− ηt〈∇Fit(βt)−∇Fit(β∗) + zitt , β

it
t − β∗it〉

− ηt〈∇Fit(β∗), βitt+1 − β∗it〉+ η2
tµ
−1
ωit
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + η2
tµ
−1
ωit
‖zitt ‖2

∗it

)
.
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Taking conditional expectations from both sides of the preceding relation on Ft ∪ {it}, we get

E[L(βt+1, β
∗) | Ft ∪ {it}] ≤ L(βt, β

∗) + p−1
it
ηt(−〈∇Fit(β∗), βitt+1 − β∗it〉

+
〈
E
[
zitt | Ft ∪ {it}

]
, β∗it − βitt

〉
)

+ p−1
it
ηt〈∇Fit(βt)−∇Fit(β∗), β∗it − βitt 〉

+ p−1
it
η2
tµ
−1
ωit

(
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + E
[
‖zitt ‖2

∗it | Ft ∪ {it}
])
.

Assumption 4 implies that E
[
zitt | Ft

]
= 0. Using that and the bound provided in Assumption

4, we obtain

E[L(βt+1, β
∗) | Ft ∪ {it}] ≤ L(βt, β

∗)− p−1
it
ηt(〈∇Fit(β∗), βitt+1 − β∗it〉

+ 〈∇Fit(βt)−∇Fit(β∗), β∗it − βitt 〉)

+ p−1
it
η2
tµ
−1
ωit

(
‖∇Fit(βt)−∇Fit(β∗)‖2

∗it + ν2
it

)
.

Next, taking expectations with respect to it, we obtain

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗) + ηt (〈∇F (βt)−∇F (β∗), β∗ − βt〉 − 〈∇F (β∗), βt+1 − β∗〉)

+ η2
tµ
−1
min‖∇F (βt)−∇F (β∗)‖2

∗ + η2
t

∑l

i=1
ν2
i µ
−1
ωi
,

where we use the definition of 〈·, ·〉 given in the notation. Using the optimality condition for

problem (StochOpt) and under the Lipschitzian property of ∇F and strong convexity of F ,

E[L(βt+1, β
∗) | Ft] ≤ L(βt, β

∗)− ηtµF‖βt − β∗‖2 + η2
tL

2
Fµmin

−1‖βt − β∗‖2 (2.49)

+ η2
t

∑l

i=1
ν2
i µωi

−1.
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From the definition of norm ‖ · ‖, we can write

‖βt − β∗‖2 =
∑l

i=1
‖βit − β∗i‖2

i ≥ 2
∑l

i=1
Di(β

i
t , β
∗i)L−1

ωi
≥ 2p∧L

−1
max

∑l

i=1
p−1
i Di(β

i
t , β
∗i)

= 2p∧L
−1
maxL(βt, β

∗),

where in the first inequality we used relation (2.30), and in the last relation we used the

definition of function L. Similarly,

‖βt − β∗‖2 ≤ 2
l∑

i=1

Di(β
i
t , β
∗i)

µωi
≤ 2p∨
µmin

L(βt, β
∗),

From the last three relations, we obtain the desired inequality.

Next, we present self-tuned stepsizes for the (RB-GSMD) method and show their proper-

ties.

Preposition 4. Let {βt} be generated by the (RB-GSMD) method. Let the set Bi be

convex and closed such that ‖βi‖ ≤Mi for all βi ∈ Bi and some Mi > 0. Let Assumption 4

hold for some νi > 0, and the stepsize ηt be given by

η∗0 :=
4µFp∧

∑l
i=1 p

−1
i LωiM

2
i

Lmax

(
8LF

2p∨
µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

) ,

η∗t := η∗t−1

(
1− p∧µFL−1

maxη
∗
t−1

)
, for all t ≥ 1.

Then, the following hold:

(a) The sequence {βt} generated by the (RB-GSMD) method converges a.s. to the unique

optimal solution β∗ of problem (StochOpt).
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(b) For any t ≥ 1, the vector (η∗0, η
∗
1, . . . , η

∗
t−1) minimizes the upper bound of the error

E[Dω(βt, β
∗)] given in Lemma 5 for all (η0, η1, . . . , ηt−1) ∈

(
0, Lmax

2µF p∧

]t
.

(c) The (RB-GSMD) method attains the convergence rate O(1/t), i.e, for all t ≥ 1

E
[
‖βt − β∗‖2

]
≤ 2

(
Lmax
p∧µF

)2
(

4
LF

2p∨
µmin2

l∑
i=1

p−1
i LωiM

2
i +

l∑
i=1

ν2
i

µωi

)
1

t
.

(d) Let ε and ρ be arbitrary positive scalars and T , 1.5
ερ

(
Lmax
p∧µF

)2(
8LF

2p∨
µmin2

∑l
j=1 p

−1
j LωjM

2
j

+
∑l

j=1

2ν2j
µωj

)
we have for all t ≥ T

Prob (L(βj, β
∗) ≤ ε for all j ≥ t) ≥ 1− ρ.

Proof. Consider relation (2.43). Taking expectations from both sides and rearranging the

terms, we can write

E[L(βt+1, β
∗)] ≤

(
1− ηt2µFp∧L−1

max

)
E[L(βt, β

∗)] + 2η2
tLF

2p∨µ
−2
minE[L(βt, β

∗)]

+ η2
t

∑l

i=1
ν2
i µ
−1
ωi
.

From relation (2.30), and the triangle inequality, we have

L(βt, β
∗) ≤

l∑
i=1

p−1
i

Lωi
2
‖βit − β∗i‖2

i ≤ 2
l∑

i=1

p−1
i LωiM

2
i .

From the preceding inequalities, we obtain

E[L(βt+1, β
∗)] ≤

(
1− ηt2µFp∧L−1

max

)
E[L(βt, β

∗)] +

(
8LF

2p∨
µmin2

l∑
i=1

p−1
i LωiM

2
i +

l∑
i=1

2ν2
i

µωi

)
1

2
η2
t .

Let us define C2 ,
∑l

i=1 µωi
−1C2

i and C̄2 such that C̄2 , 8LF
2p∨

µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

.
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Note that the preceding inequality is similar to the relation (2.33), where C2 is replaced

by the term C̄2. Therefore, the desired results here follow by only substituting C2 by C̄2

in Proposition 3. It only remains to show that: (i) η∗0 =
4µF p∧

∑l
i=1 p

−1
i LωiM

2
i

LmaxC̄2 , and (ii) the

conditions of Proposition 3 also hold for α0. The relation (i) holds directly from definition

of η∗0 given by Proposition 2 and the definition of C̄. To show (ii), we need to verify that

α0 < 1. From definition of α0 given by (2.36), we have

α0 = 2µFp∧L
−1
maxη

∗
0 = 2µFp∧L

−1
max ×

4µFp∧
∑l

i=1 p
−1
i LωiM

2
i

Lmax

(
8LF

2p∨
µmin2

∑l
i=1 p

−1
i LωiM

2
i +

∑l
i=1

2ν2i
µωi

)
=
µ2
Fp

2
∧

L2
max

×
∑l

i=1 p
−1
i LωiM

2
i(

LF
2p∨

µmin2

∑l
i=1 p

−1
i LωiM

2
i

) =
µ2
F

L2
F

p2
∧
p∨

µ2
min

L2
max

< 1,

where the last relation follows since µF ≤ LF and µωi ≤ Lωi . Therefore, the conditions of

Proposition 3 hold for α0 and the desired results follow.

2.4 Experimental Results

In this section, we analyze the performance of the self-tuned SMD schemes for solving the

following soft-margin linear support vector machine problem:

min F (β) ,
1

m

m∑
i=1

L(〈β,xi〉, yi) +
λ

2
‖β‖2

2 , (2.50)

where L(〈β,xi〉, yi) , max{0, 1− yi〈β,xi〉} is the hinge-loss function. SVM is known as an

effective classification framework and has been applied in real-world applications such as text

categorization, image classification, etc. [Cristianini and Shawe-Taylor, 2000]. We use three

binary classification data sets namely RCV1, Magic and Skin. The Reuters Corpus Volume I

(RCV1) data set [Lewis et al., 2004] is a collection of news-wire stories produced by Reuters

journalists from 1996-1997. The articles are categorized into four different classes including
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Corporate/Industrial, Economics, Government/Social, and Markets. Here, the samples are

documents and the features represent the existence or nonexistence of a given token in an

article. We use a subset of the original data set with 199,328 samples and 138,921 features.

The goal is to predict whether an article belongs to Markets class or not. The other data

sets, Magic and Skin, are from UCI Machine Learning Repository. Magic data set provides

some features to distinguish high-energy gamma particles from hadron particles using a

gamma telescope and it includes 19,020 samples and 10 features. Skin segmentation data

set classifies each pixel of scan photographs as skin or non-skin texture and is used in face

and human detection applications. The goal is identifying the skin-like regions. It consists of

3 features, and 245,057 samples out of which 50,859 are the skin samples and 194,198 are

non-skin samples. Note that (2.50) is a nonsmooth problem and F (β) is a strongly convex

function with parameter µF = λ. In this section, we compare the unifying self-tuned stepsize

rule given by Theorem 1 with harmonic stepsizes of the form ηt = a
(t+b)

where a and b are

scalars [Spall, 2005]. Our goal is to compare the sensitivity of the harmonic stepsize rule with

different choices of parameters a and b, with that of the unifying self-tuned stepsize rule with

different initial stepsizes. We set ω = 1
2
‖β‖2

2 where µω = Lω = 1. For any fixed value of λ,

we use three different choices of η0 for each data set, all within the interval
(

0, Lω
2µF

]
as we

assumed in Theorem 1. These values are denoted by η0[1], η0[2], and η0[3]. Initial stepsizes

for the RCV1 data set are selected according to Table 2.1.

Table 2.1: Initial stepsize values for RCV1 data set

λ η0[1] η0[2] = Lω
10µF

η0[3] = Lω
4µF

0.001 0.9 100 250
0.01 0.9 10 25
0.1 0.9 1 2.5
1 0.01 0.1 0.25

For each experiment, the algorithm is run for T = 10, 000 iterations. Spall [2005] [Ch.

4, pg. 113] considers using b that is about 5 to 10 percent of the total number of iterations.
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Accordingly, we choose b = 0.1× T and also b = 0.2× T which is observed to be a better

selection in some of the preliminary experiments. We select a = η0b in order to start from

the same initial stepsize as the self-tuned stepsize. In addition, we compare our proposed

scheme with the harmonic stepsize η0/t.

λ η0[1] η0[2] η0[3]
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Figure 2.1: RCV1 data set

Figures 2.1-2.3 demonstrate the performance of these stepsize schemes in terms of logarithm

of the averaged objective function F . In these plots, the blue and red curves correspond to

the harmonic stepsize with parameter b = 1000 and b = 2000 respectively, and the green

curves denote the stepsize η0/t. The black curves represents the self-tuned stepsize rule.

We observe in Figures 2.1-2.3 that the self-tuned stepsize scheme outperforms the harmonic

stepsize in most of the experiments. Importantly, the self-tune stepsize is significantly more
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robust with respect to (i) the choice of λ; (ii) the data set; and (iii) the initial value of the

stepsize. It can be seen that the harmonic stepsize’s performance varies for different data sets.

While in some cases by increasing the tuning parameters a and b its performance improves,

in other instances its performance deteriorates.
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Figure 2.2: Magic data set

2.5 Concluding Remarks

We consider stochastic mirror descent (SMD) methods for solving canonical stochastic

optimization problems with strongly convex objective functions. Much of the past research

on SMD methods has focused on convergence and rate analysis in terms of order of the error
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Figure 2.3: Skin data set

bounds. However, the stepsize choice plays a key role in the performance of the this class of

algorithms. We consider nonsmooth, smooth, and high-dimensional stochastic optimization

problems. We develop self-tuned stepsize rules for stochastic subgradient, gradient, and

randomized block coordinate mirror descent methods accordingly. For each scheme, we prove

almost sure convergence to the optimal solution of the problem and show that under the

self-tuned stepsize rules, the error bound of the SMD scheme is minimized. In the case that

some problem parameters are unknown, we develop a unifying self-tuned update rule for

which an error bound of the scheme is minimized for any arbitrary and small enough initial

stepsize. Moreover, we compare constant factor of our schemes with that of standard SMD

methods and show that it can be improved up to four times under non-averaging schemes
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versus using the averaging scheme in [Dang and Lan, 2015b]. By applying our stepsize scheme

to solve the linear SVM problem for three different data sets, we show that our scheme is

superior over the well-known harmonic stepsizes and more robust w.r.t. the initial stepsize,

choice of data set and problem parameters.
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CHAPTER III

MIRROR DESCENT METHODS FOR MULTI-AGENT SEMIDEFINITE

OPTIMIZATION PROBLEMS

This chapter addresses multi-agent problems over semidefinite matrix spaces which include

cooperative multi-agent problems and non-cooperative Nash games. The goal is developing

efficient first-order methods for addressing multi-user optimization problems on semidefinite

matrix spaces. We develop mirror descent methods where we choose the distance generating

function to be defined as the quantum entropy. These methods are single-loop first-order

methods in the sense that they only require a gradient-type of update at each iteration. In

the first part of the chapter, we propose a mirror descent incremental subgradient method

for minimizing a convex function that consists of sum of component functions. This type

of minimization over semidefinite matrix spaces arises in cooperative multi-agent problems

such as sparse estimation of a covariance matrix. We show that the iterate generated by

the algorithm converges asymptotically to the optimal solution and derive a non-asymptotic

convergence rate. Motivated by non-cooperative Nash games in stochastic regimes, in the

second part of the chapter, we consider Cartesian stochastic variational inequality (CSVI)

problems where the variables are positive semidefinite matrices. In the literature of variational

inequality (VI), much attention has been given to addressing VIs on vector spaces. There

are a few methods addressing VIs on matrix spaces. Some of these methods have a two-loop

framework and require solving a semidefinite optimization problem at each iteration. Others

depend on assumptions that either does not hold in applications, or it is hard to verify.

Motivated by this gap, we develop a stochastic mirror descent method that require different
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assumptions, i.e., monotonicity which holds in many applications. The originality of this

work lies in the convergence analysis. Employing an auxiliary sequence of stochastic matrices

and averaging techniques, we show that the iterate generated by the algorithm converges to

a weak solution of the CSVI. Then, we derive a rate of convergence in terms of the expected

value of a suitably defined gap function.

3.1 Problem Formulation and Background

First, we consider cooperative multi-agent problems. Decentralized optimization problems

have a wide range of applications arising in data mining and machine learning [Nedić et al.,

2017], wireless sensor networks [Durham et al., 2012], control [Ram et al., 2009b] and other

areas in science and engineering [Xiao and Boyd, 2006] where decentralized processing of

information is crucial for security purposes or for real-time decision making. In this chapter,

we consider the following multi-agent finite-sum optimization problem which involves a

network of multiple agents who cooperatively optimize a global objective,

minimize
X∈B

m∑
i=1

fi(X) (3.1)

where B = {X ∈ Sn : X � 0 and tr(X) = 1}, and fi : B → R is a convex function. In

decentralized optimization, the agents (players) need to communicate with their adjacent

agents to spread the distributed information to every location in the network.

In the past two decades, there has been much interest in development of models and

distributed algorithms for multi-agent optimization problems [Nedić and Ozdaglar, 2009;

Lobel and Ozdaglar, 2011; Shi et al., 2015]. In particular, incremental gradient/subgradient

methods and their accelerated aggregated variants [Nedić and Bertsekas, 2001; Ram et al.,

2009a; Gürbuzbalaban et al., 2017] have been studied where a local gradient/subgradient is

taken at each step of an iteration and is followed by communicating with adjacent agents.
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Although each step is inexpensive, these methods usually require a large number of iterations

to converge. Each iteration in decentralized optimization requires visiting all agents one

by one which may cause a significant delay before a transfer of data begins. In this line

of research, distributed proximal gradient methods [Bertsekas, 2011, 2015], and alternating

direction method of multipliers (ADMM) [Chang et al., 2015; Makhdoumi and Ozdaglar,

2017] were developed and studied extensively as well. These methods have also been extended

to applications where the network has a time-varying topology and/or there is a need to

asynchronous implementations [Nedić, 2011; Nedić and Olshevsky, 2015]. More recently, Boţ

and Böhm [2019] proposed an incremental mirror descent method with a stochastic sweeping

of the component functions. While incremental gradient/subgradient methods and their

accelerated aggregated variants are extensively studied in vector spaces, their performance

and convergence analysis in matrix spaces have not been studied yet.

The sparse covariance inverse estimation is a specific application of finite-sum problem

which sets a certain number of coefficients in the inverse covariance to zero to improve

the stability of covariance matrix estimation. Lu [2010] developed two first-order methods

including the adaptive spectral projected gradient and the adaptive Nesterov’s smooth

methods to solve the large scale covariance estimation problem. Hsieh et al. [2013] proposed

a block coordinate descent (BCD) method with a superlinear convergence rate. In conic

programming which is closely related to finite-sum problem, many first-order methods are

combined with duality or penalty strategies [Lan et al., 2011; Necoara et al., 2019] to tackle

complicated constraints. The aforementioned methods are projection based and do not scale

with the problem size. A summary of these methods is given in Table 3.1.

Second, we consider non-cooperative multi-agent systems. VI problems which are very

closely tied to the game theory were first introduced in the 1960s. They have a wide range

of applications arising in engineering, finance, physics and economics (cf. [Facchinei and

Pang, 2003]). Theory of VI can be used for formulating various equilibrium problems and
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analyzing them from the viewpoint of existence and uniqueness of solutions and stability.

Particularly, in mathematical programming, VIs address problems such as optimization

problems, complementarity problems and systems of nonlinear equations, to name a few

[Scutari et al., 2010]. Given a set X and a mapping F : X → Rn×n, a VI problem denoted by

VI(X , F ) seeks a matrix X∗ ∈ X such that tr
(
(X −X∗)TF (X∗)

)
≥ 0, for all X ∈ X . In

this chapter, we consider Cartesian stochastic variational inequality problems where the set

X is a Cartesian product of some component sets Xi, i.e.,

X = {X|X ∈ Sn : X = diag(X1, . . . , XN), Xi ∈ Xi},

where Xi = {Xi|Xi ∈ S+
ni
, tr(Xi) = 1} for all i = 1, . . . , N. (3.2)

Hence, we seek a matrix X∗ = diag(X∗1 , . . . , X
∗
N ) which solves the following inequality for all

i = 1, . . . , N :

tr
(
(Xi −X∗i )TFi(X

∗)
)
≥ 0, for all Xi ∈ Xi. (3.3)

In particular, we study VI(X , F ) where Fi(X) = E[Φi(X, ξi(w))], i.e., the mapping Fi is the

expected value of a stochastic mapping Φi : X ×Rdi → Sn where the vector ξi : Ω→ Rdi is a

random vector associated with a probability space represented by (Ω,F ,P). Here, Ω denotes

the sample space, F denotes a σ-algebra on Ω, and P is the associated probability measure.

Therefore, X∗ ∈ X solves VI(X , F ) if

tr
(
(Xi −X∗i )TE[Φi(X

∗, ξ(w))]
)
≥ 0, for all Xi ∈ Xi. (3.4)

Throughout, we assume that E[Φ(X∗, ξi(w))] is well-defined (i.e., the expectation is finite).

There are several challenges in solving CSVIs on semidefinite matrix spaces including presence

of uncertainty, the semidefinite solution space and the Cartesian product structure. In what
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follows, we review some of the methods which address these challenges.

Stochastic Approximation (SA) schemes [Robbins and Monro, 1951] and their prox gen-

eralization [Nemirovski et al., 2009; Majlesinasab et al., 2019] shown to be very successful

in solving optimization and variational inequality problems Jiang and Xu [2008] with un-

certainties. While the convergence analysis of this class of solution methods relies on the

monotonicity of the gradient mapping, the extragradient methods [Korpelevich, 1977; Dang

and Lan, 2015a; Juditsky et al., 2011] depend on weaker assumptions, i.e., pseudo-monotone

mappings to address VIs. Applying SA schemes to solve semidefinite optimization problems

result in a two-loop framework and require projection onto a semidefinite cone at each

iteration which increases the computational complexity.

Solving optimization problems with positive semidefinite variables is more challenging

than solving problems in vector spaces because of the structure of problem constraints.

Matrix exponential learning (MEL) which has strong ties to mirror descent methods is an

optimization algorithm applied to positive semidefinite nonlinear problems. The distance

generating function applied in MEL is the quantum entropy. Mertikopoulos et al. [2012]

proposed an MEL based approach to solve the power allocation problem in MIMO multiple

access channels. The convergence of MEL and its robustness w.r.t. uncertainties are

investigated by Mertikopoulos and Moustakas [2016]. Although in the aforementioned studies,

the problem can be formulated as an optimization problem, some practical cases such as

multi-user MIMO maximization problem discussed in Section 1.2 cannot be treated as an

optimization problem. Hence, Mertikopoulos et al. [2017] proposed an MEL based algorithm

to solve N -player games under uncertain feedback and proved that it converges to a stable

Nash equilibrium assuming that the mapping is strongly stable. However, in most applications

including the game (1.7) this assumption is not met.

While the literature has focused on addressing finite-sum problem on vector spaces, there

are applications defined over the set of semidefinite matrices (cf. Section 1.2). Also, in the
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Table 3.1: Comparison of first-order schemes

Reference Problem Assumptions Space Scheme Rate
Jiang and Xu [2008] SVI SM,S Vector SA −
Juditsky et al. [2011] SVI MM,S/NS Vector Extragradient SMP O (1/t)

Mertikopoulos et al. [2012] SOpt C,S Matrix Exponential Learning e−αt(α > 0)
Koshal et al. [2013] SVI MM,S Vector Regularized Iterative SA −

Yousefian et al. [2017] SVI MM,NS Vector Regularized Smooth SA O
(
1/
√
t
)

Mertikopoulos et al. [2017] SVI SPM,S Matrix Exponential Learning O (1/λt)
Yousefian et al. [2018] CSVI PM,S Vector Averaging B-SMP O (1/t)

Our work CSVI MM, NS Matrix A-M-SMD O
(
1/
√
t
)

Lan et al. [2011] Opt C,S/NS Matrix Primal-dual Nesterov’s methods O (1/t)
Hsieh et al. [2013] Opt NS,C Matrix BCD superlinear
Bertsekas [2015] finite-sum C,S Vector Incremental Aggregated Proximal Linear

Gürbuzbalaban et al. [2017] finite-sum C,S Vector Incremental Aggregated Gradient Linear

Boţ and Böhm [2019] finite-sum C,NS Vector Incremental SMD O
(
1/
√
t
)

Our work finite-sum MM, NS Matrix M-MDIS O
(
1/
√
t
)

SM: strongly monotone mapping, MM: merely monotone mapping, PM: psedue-monotone mapping, C: convex,
SPM: strongly psedue-monotone mapping, S: smooth function NS: nonsmooth function,
Opt: optimzation problem, λ: strong stability parameter

VI regime, the focus has been more on addressing SVIs on vector spaces. In particular,

CSVIs on matrix spaces which have applications in wireless networks and image retrieval

(cf. Section 1.2) have not been studied yet. In this chapter, we consider finite-sum problem

and CSVIs on matrix spaces where the mapping is merely monotone. We develop a matrix

mirror descent incremental subgradient (M-MDIS) method to solve finite-sum problem (3.1)

where we choose the distance generating function to be defined as the quantum entropy

following Tsuda et al. [2005]. M-MDIS is a first-order method in the sense that only requires

a gradient-type of update at each iteration. This is a single-loop algorithm meaning that it

provides a closed-form solution for the projected point and hence it does not need to solve

a projection problem at each iteration. We prove that M-MDIS method converges to the

optimal solution of (3.1) asymptotically and derive a non-asymptotic convergence rate of

O(1/
√
t). Moreover, we develop an averaging matrix stochastic mirror descent (A-M-SMD)

method to solve CSVI (3.4). A-M-SMD is also a first-order single-loop algorithm. To improve

its robustness w.r.t. uncertainties, we apply the averaging technique in which X t is defined as

a weighted average X t := ΓtXt−1+ηtXt
Γt

where Γt := Γt−1 + ηt and ηt is the stepsize at iteration

t. In this work, we have improved the MEL method of Mertikopoulos et al. [2017] based on

the need to mitigate the assumption that mapping is strongly stable since it either does not
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hold in applications, or it is hard to verify. The originality of our work lies in the convergence

analysis under monotonicity assumption. We establish convergence to a weak solution of the

CSVI by introducing an auxiliary sequence. Then, we derive a convergence rate of O(1/
√
t) in

terms of the expected value of a suitably defined gap function. In Table 3.1, the distinctions

between the existing methods and our work is summarized. We also applied the A-M-SMD

method on the throughput maximization problem in wireless multi-user MIMO networks.

Our results show that A-M-SMD scheme has a robust performance w.r.t. uncertainty and

problem parameters and outperforms both non-averaging M-SMD and MEL methods.

3.2 Preliminaries

Suppose ω : dom(ω)→ R is a strictly convex and differentiable function, where dom(ω) ⊆

Rn×n, and let X, Y ∈ dom(ω). Then, Bregman divergence between X and Y is defined as

D(X, Y ) := ω(X) − ω(Y ) − tr
(
(X − Y )∇ω(Y )T

)
. In what follows, our choice of ω is the

quantum entropy [Vedral, 2002],

ω(X) =

 tr(X logX −X) if X ∈ B,

+∞ otherwise.
(3.5)

The Bregman divergence corresponding to the quantum entropy is called von Neumann

divergence and is given by [Tsuda et al., 2005]

D(X, Y ) = tr(X logX −X log Y ) . (3.6)

In our analysis, we use the following property of ω.

Lemma 8. [Yu, 2013] The quantum entropy ω : X → R is strongly convex with modulus 1

under the trace norm.
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Since B ⊂ X , the quantum entropy ω : B → R is also strongly convex with modulus 1

under the trace norm. Next, we derive the conjugate of the quantum entropy and its gradient.

Lemma 9 (Conjugate of von Neumann entropy). Let Y ∈ Sn and ω(X) be defined as (3.5).

Then, we have

ω∗(Y ) = log(tr(exp(Y + In))) (3.7a) ∇ω∗(Y ) =
exp(Y + In)

tr(exp(Y + In))
. (3.7b)

Proof. Note that ω is a lower semi-continuous convex function on the linear space of all

symmetric matrices. The conjugate of function ω is defined as

ω∗(Y ) = sup{tr(DY )− ω(D) : D ∈ B} = sup{tr(DY )− tr(D logD −D) : D ∈ B}

= − inf{− tr(D(Y + In)) + tr(D logD) : D ∈ B︸ ︷︷ ︸
Term 1

}. (3.8)

The minimizer of the above problem is D =
exp(Y + In)

tr(exp(Y + In))
which is called the Gibbs state

(see Hiai and Petz [2014], Example 3.29). By plugging it into Term 1, we have (3.7a). The

relation (3.7b) follows by standard matrix analysis and the fact that ∇Y tr(exp(Y )) = exp(Y )

[Athans and Schweppe, 1965]. We observe that ∇ω∗(Y ) is a positive semidefinite matrix with

trace equal to one, implying that ∇ω∗(Y ) ∈ B.

Next, we show that the optimality conditions of a matrix constrained optimization problem

can be formulated as a VI.

Lemma 10. Let B ⊆ Rn×n be a nonempty closed convex set, and let f : Rn×n → R be a
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differentiable convex function. Consider the optimization problem

minimize
X̃∈B

f(X̃). (3.9)

A matrix X̃∗ is optimal to problem (3.9) iff X̃∗ ∈ B and tr
(

(Z − X̃∗)T∇f(X̃∗)
)
≥ 0, for all

Z ∈ B.

Proof. (⇒) Assume X̃∗ is optimal to problem (3.9). Assume by contradiction, there exists

some Ẑ ∈ B such that tr
(

(Ẑ − X̃∗)T∇X̃f(X̃∗)
)
< 0. Since f is continuously differentiable,

by the first-order Taylor expansion, for all sufficiently small 0 < α < 1, we have

f(X̃∗ + α(Ẑ − X̃∗)) = f(X∗) + tr
(

(Ẑ − X̃∗)T∇X̃f(X̃∗)
)

+ o(α) < f(X∗),

following the hypothesis tr
(

(Ẑ − X̃∗)T∇X̃f(X̃∗)
)
< 0. Since B is convex and X∗, Ẑ ∈ B,

we have X̃∗ + α(Ẑ − X̃∗) ∈ B with smaller objective function value than the optimal matrix

X̃∗. This is a contradiction. Therefore, we must have tr
(

(Z − X̃∗)T∇X̃f(X̃∗)
)
≥ 0 for all

Z ∈ B.

(⇐) Now suppose that X̃∗ ∈ B and tr
(

(Z − X̃∗)T∇X̃f(X̃∗)
)
≥ 0 for all Z ∈ B. Since f is

convex and by Lemma 12, we have

f(X̃∗) + tr
(

(Z − X̃∗)T∇X̃f(X̃∗)
)
≤ f(Z), for all Z ∈ B,

which implies for all Z ∈ B,

f(Z)− f(X̃∗) ≥ tr
(

(Z − X̃∗)T∇X̃f(X̃∗)
)
≥ 0,

where the last inequality follows by the hypothesis. Since X̃∗ ∈ B, it follows that X̃∗ is

optimal.
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The next Lemma shows a set of sufficient conditions under which a Nash equilibrium can

be obtained by solving a VI.

Lemma 11. [Nash equilibrium] Let Xi ∈ Sni be a nonempty closed convex set and fi(Xi, X−i)

be a differentiable convex function in Xi for all i = 1, · · · , N , where Xi ∈ Xi and X−i ∈∏
j 6=iXj. Then, X∗ , diag(X∗1 , · · · , X∗N) is a Nash equilibrium (NE) to game (G2) if and

only if X∗ solves VI(X , F ), where

F (X) :, diag(∇X1f1(X), · · · ,∇XNfN(X)), (3.10)

X :, {X|X = diag(X1, · · · , XN), Xi ∈ Xi, for all i}. (3.11)

Proof. First, suppose X∗ is an NE to game (G2). We want to prove that X∗ solves VI(X , F ),

i.e,

tr
(
(Z −X∗)TF (X∗)

)
≥ 0, for all Z ∈ X . By optimality conditions of optimization

problem min
Xi∈Xi

fi(Xi, X−i) and from Lemma 10, we know X∗ is an NE if and only if

tr
(
(Zi −X∗i )T∇Xifi(X

∗)
)
≥ 0 for all Zi ∈ Xi and all i = 1, . . . , N . Then, we obtain

for all i = 1, · · · , N

tr
(
(Zi −X∗i )T∇Xifi(X

∗)
)

=
∑
u

∑
v

[Zi −X∗i ]uv[∇Xifi(X
∗)]uv ≥ 0. (3.12)

Invoking the definition of mapping F given by (3.10) and from (3.12), we have

tr
(
(Z −X∗)TF (X∗)

)
=
∑

i,u,v[Zi−X∗i ]uv[∇Xifi(X
∗)]uv ≥ 0. From the definition of VI(X , F )

and relation (3.3), we conclude that X∗ ∈ SOL(X ,F ). Conversely, suppose X∗ ∈ SOL(X ,F ).

Then, tr
(
(Z −X∗)TF (X∗)

)
≥ 0, for allZ ∈ X . Consider a fixed i ∈ {1, . . . , N} and a matrix

Z̄ ∈ X given by (3.11) such that the only difference between X∗ and Z̄ is in i-th block, i.e.

Z̄ = diag
(
[X∗1 ] , . . . ,

[
X∗i−1

]
, [Zi] ,

[
X∗i+1

]
, . . . , [X∗N ]

)
,
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where Zi is an arbitrary matrix in Xi. Then, we have

Z̄ −X∗ = diag (0n1×n1 , . . . , [Zi −X∗i ] , . . . ,0nN×nN ) . (3.13)

Therefore, substituting Z̄ −X∗ by term (3.13), we obtain

tr
(
(Z̄ −X∗)TF (X∗)

)
=
∑
u

∑
v

[(Zi −X∗i )]uv[∇Xifi(X
∗)]uv = tr

(
(Zi −X∗i )T∇Xifi(X

∗)
)
≥ 0.

Since i was chosen arbitrarily, tr
(
(Zi −X∗i )T∇Xifi(X

∗)
)
≥ 0 for any i = 1, ..., N . Hence, by

applying Lemma 10 we conclude that X∗ is a Nash equilibrium to game (G2).

We make use of the following lemma in our analysis. Note that Rn×n is a vector space

with dimension n2 [Axler, 1997].

Lemma 12. Let [X]uv denotes the elements of matrix X. If we rewrite matrices X, Z

and ∇Xf(X) as vectors x = ([X]11, . . . , [X]nn)T , z = ([z]11, . . . , [z]nn)T , and ∇f(x) =

([∇Xf(X)]11, . . . , [∇Xf(X)]nn)T respectively, it is trivial that

(z − x)T∇f(x) =
∑
u

∑
v

[(Z −X)]uv[∇Xf(X)]uv = tr
(
(Z −X)T∇Xf(X)

)
,

where the last inequality follows by relation tr
(
ATB

)
=
∑

u

∑
v[A]uv[B]uv.

3.3 Cooperative Multi-agent Problems

Consider the multi-agent optimization problem (3.1) on semidefinite matrix spaces. In this

section, we present the mirror descent incremental subgradient method for solving (3.1).

Algorithm 2 presents the outline of the M-MDIS method. The method maintains two matrices

for each agent i: primal Ui and dual Yi. The connection between the two matrices is via a

function Ui = ∇ω∗(Yi) which projects Yi onto the set B defined by (3.2). At each iteration t
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and for any agent i, first, the subgradient of fi is calculated at Ui−1,t, denoted by ∇̃fi(Ui−1,t).

Next, we update the dual matrix by moving along the subgradient. Here ηt is a non-increasing

step-size sequence. Then, Yi,t will be projected onto the set B using the closed-form solution

(3.15). It should be noted that the update rule (3.15) is obtained by applying Lemma 9.

Finally, the primal and dual matrices of agent m, i.e. Um,t and Ym,t are the input to the next

iteration.

Algorithm 2 Matrix Mirror Descent Incremental Subgradient (M-MDIS)

1: initialization: pick feasible X0 and Ym,−1 arbitrarily.
2: General step: for any t = 0, 1, 2, · · · do the following:

(a) U0,t = Xt and Y0,t = Ym,t−1

(b) For i=1,...,m do the following:

Yi,t = Yi−1,t − ηt∇̃fi(Ui−1,t) (3.14)

Ui,t =
exp(Yi,t + In)

tr(exp(Yi,t + In))
(3.15)

(c) Xt+1 = Um,t.

Next, we state the main assumption and discuss its rationality.

Assumption 5. (Bounded subgradient) There exists a constant Lfi for which ‖∇̃fi(X)‖2 ≤

Lfi for all ∇̃fi(X) ∈ ∂fi(X), and X ∈ B.

Corollary 1 (Boundedness of subgradients). For a proper convex function fi and a nonempty

and compact set B ⊆ int(dom(f)), the union ∪
X∈B

∂fi(X) is nonempty and bounded (Beck

[2017], Theorem 3.16). Therefore, we conclude that Assumption 5 holds.

Note that since fi is a convex function and B is a compact set, the above assumption

holds. We use the following relations in convergence analysis,

Yi,t , ∇̃ω(Ui,t) ∈ ∂ω(Ui,t)⇔ Ui,t ∈ ∂ω?(Yi,t). (3.16)
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It should be noted that the above relation holds because ω is a closed and convex function.

Since (A−B)2 ∈ Sn+, we have 0 ≤ tr((A−B)2) = tr(A2)− 2tr(AB) + tr(B2). Therefore,

2tr
(
ATB

)
≤ tr

(
A2
)

+ tr
(
B2
)
≤ (tr(A))2 + n‖B2‖2 = (tr(A))2 + n‖B‖2

2, (3.17)

where the last inequality follows by positive semidefinteness of matrix A and the relation

tr(B) ≤ n‖B‖2. Next, we prove the convergence of M-MDIS algorithm.

Theorem 2 (asymptotic convergence). Consider Problem (3.1). Let Assumption 5 hold. Let

{Xt} be generated by the M-MDIS method with positive stepsize {ηt}. If limT→∞

∑T−1
t=0 η2t∑T−1
t=0 ηt

= 0,

then fmin
T converges to f ∗ as T →∞, where fmin

T = min
t=0,··· ,T

f(Xt).

Proof. Let Y ∈ ∩mi=1domfi be fixed. For every i = 1, · · · ,m and every t ≥ 0 we have

D(Y, Ui,t) = ω(Y )− ω(Ui,t)− tr
(
∇̃Tω(Ui,t)(Y − Ui,t)

)
= ω(Y )− ω(Ui,t)− tr

(
(Yi,t)

T (Y − Ui,t)
)

= ω(Y )− ω(Ui,t)− tr
(

(Yi−1,t − ηt∇̃fi(Ui−1,t))
T (Y − Ui,t)

)
= ω(Y )− ω(Ui,t)− tr

(
(Yi−1,t)

T (Y − Ui,t)
)

+ ηttr
(
∇̃Tfi(Ui−1,t)(Y − Ui,t)

)
= ω(Y )− ω(Ui,t)− tr

(
∇̃Tω(Ui−1,t)(Y − Ui,t)

)
+ ηttr

(
∇̃Tfi(Ui−1,t)(Y − Ui,t)

)
,

where we used relation (3.16) in the second and last equality and we applied the update rule

of the Algorithm 2 in the third equality.

By adding and subtracting the term ω(Ui−1,t) + ∇̃Tω(Ui−1,t)Ui−1,t, we get

D(Y, Ui,t) = ω(Y )− ω(Ui−1,t)− tr
(
∇̃Tω(Ui−1,t)(Y − Ui−1,t)

)
+ ω(Ui−1,t)− ω(Ui,t)

− tr
(
∇̃Tω(Ui−1,t)(Ui−1,t − Ui,t)

)
+ tr

(
ηt∇̃Tfi(Ui−1,t)(Y − Ui,t)

)
= D(Y, Ui−1,t)−D(Ui,t, Ui−1,t) + ηttr

(
∇̃Tfi(Ui−1,t)(Y − Ui,t)

)
.
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By adding and subtracting the term ηttr
(
∇̃Tfi(Ui−1,t)Ui−1,t

)
, we have

D(Y, Ui,t) = D(Y, Ui−1,t)−D(Ui,t, Ui−1,t) + ηttr
(
∇̃Tfi(Ui−1,t)(Y − Ui−1,t)

)
− ηttr

(
∇̃Tfi(Ui−1,t)(Ui,t − Ui−1,t)

)
≤ D(Y, Ui−1,t)−D(Ui,t, Ui−1,t)

+ ηt (fi(Y )− fi(Ui−1,t)) + ηttr
(
∇̃Tfi(Ui−1,t)(Ui−1,t − Ui,t)

)
, (3.18)

where we used the definition of subgradient in the last relation. Using relation (3.17),

ηttr
(
∇̃Tfi(Ui−1,t)(Ui−1,t − Ui,t)

)
≤ nη2

t ‖∇̃Tfi(Ui−1,t)‖2
2 +

1

4
(tr(Ui−1,t − Ui,t))2. (3.19)

Plugging (3.19) into (3.18), we get

D(Y, Ui,t) ≤ D(Y, Ui−1,t)−D(Ui,t, Ui−1,t) + ηt(fi(Y )− fi(Ui−1,t))

+ nη2
t ‖∇̃Tfi(Ui−1,t)‖2

2 +
1

4
(tr(Ui−1,t − Ui,t))2.

Using that ω is 1-strongly convex, Lemma 8 and definition of Bregman divergence, we get

D(Y, Ui,t) ≤ D(Y, Ui−1,t)−D(Ui,t, Ui−1,t) + ηt (fi(Y )− fi(Ui−1,t)) + nη2
t ‖∇̃Tfi(Ui−1,t)‖2

2

+
1

2
D(Ui,t, Ui−1,t) = D(Y, Ui−1,t) + ηt (fi(Y )− fi(Ui−1,t)) + nη2

t ‖∇̃Tfi(Ui−1,t)‖2
2

− 1

2
D(Ui,t, Ui−1,t).

By Assumption 5, we have for any i = 1, · · · ,m and t ≥ 0

D(Y, Ui,t) ≤ D(Y, Ui−1,t) + ηt (fi(Y )− fi(Ui−1,t)) + nη2
tLfi

2 − 1

2
D(Ui,t, Ui−1,t).
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Summing the above inequality for i = 1, · · · ,m, we get

D(Y, Um,t) ≤ D(Y, U0,t) + ηt

m∑
i=1

(fi(Y )− fi(Ui−1,t)) + nη2
t

m∑
i=1

Lfi
2 −

m∑
i=1

1

2
D(Ui,t, Ui−1,t).

Note that U0,t = Xt. By adding and subtracting the term ηtf(Xt), we have

D(Y, Um,t) ≤ D(Y,Xt) + ηt

m∑
i=1

(fi(Y )− fi(Xt)) + ηt

m∑
i=1

(fi(Xt)− fi(Ui−1,t))

+ nη2
t

m∑
i=1

Lfi
2 −

m∑
i=1

1

2
D(Ui,t, Ui−1,t). (3.20)

By Assumption 5, we have fi is continuous over B with parameter Lfi > 0, i.e., |fi(A) −

fi(B)| ≤ Lfi‖A−B‖2. Therefore, we have

m∑
i=1

(fi(Xt)− fi(Ui−1,t)) =
m∑
i=2

i−1∑
j=1

(fi(Uj−1,t)− fi(Uj,t)) ≤
m∑
i=2

i−1∑
j=1

Lfi‖Uj−1,t − Uj,t‖2

≤

(
m∑
l=1

Lfl

)
m∑
i=1

‖Ui−1,t − Ui,t‖2 =

(
m∑
l=1

Lfl

)
m∑
i=1

‖∇ω∗(Yi−1,t)−∇ω∗(Yi,t)‖2

≤

(
m∑
l=1

Lfl

)
m∑
i=1

‖Yi−1,t − Yi,t‖2,

where the last inequality follows by Lipschitz continuity of ∇ω∗. Applying the update rule of

the Algorithm 2, we have

m∑
i=1

(fi(Xt)− fi(Ui−1,t)) ≤

(
m∑
l=1

Lfl

)
m∑
i=

‖ηt∇̃fi(Ui−1,t)‖2 ≤ ηt

(
m∑
l=1

Lfl

)(
m∑
i=1

Lfi

)
,

(3.21)
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where the last inequality follows by Assumption 5. Plugging (3.21) into (3.20), for any t ≥ 0

D(Y, Um,t) ≤ D(Y,Xt) + ηt

m∑
i=1

(fi(Y )− fi(Xt)) + η2
t

(
m∑
i=1

Lfi

)2

+ nη2
t

m∑
i=1

Lfi
2 −

m∑
i=1

1

2
D(Ui,t, Ui−1,t).

Since
∑m

i=1 Lfi
2 ≤ (

∑m
i=1 Lfi)

2
, also Um,t = Xt+1, and Ym,t = Y0,t+1, we get for any t ≥ 0 that

D(Y,Xt+1) ≤ D(Y,Xt) + ηt

m∑
i=1

(fi(Y )− fi(Xt)) + η2
t (n+ 1)

(
m∑
i=1

Lfi

)2

,

where we used the fact that D(Ui,t, Ui−1,t) ≥ 0. Let Y := X∗, summing up the inequality

from t = 0 to T − 1, where T ≥ 1 and rearranging, we get

D(X∗, XT ) +
T−1∑
t=0

ηt

(
m∑
i=1

fi(Xt)−
m∑
i=1

fi(X
∗)

)
≤ D(X∗, X0) +

T−1∑
t=0

η2
t (n+ 1)

(
m∑
i=1

Lfi

)2

.

By definition of fmin
T−1, we have

T−1∑
t=0

ηt
(
fmin
T−1 − f ∗

)
≤

T−1∑
t=0

ηt

(
m∑
i=1

fi(Xt)−
m∑
i=1

fi(X
∗)

)

Since D(X∗, XT ) ≥ 0, we get

fmin
T−1 − f ∗ ≤

D(X∗, X0) + (n+ 1) (
∑m

i=1 Lfi)
2∑T−1

t=0 η
2
t∑T−1

t=0 ηt
. (3.22)

By assumption, limT→∞

∑T−1
t=0 η2t∑T−1
t=0 ηt

= 0 which implies
∑T−1

t=0 ηt → +∞. Therefore, fmin
T−1−f ∗ → 0,

i.e., fmin
T−1 converges to f ∗ as T →∞.

Next, we present the convergence rate of the M-MDIS scheme.

Corollary 2. (Rate of convergence) Consider problem (3.1). Suppose Assumption 5 holds
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and let the sequence {Xt} be generated by Algorithm 2. Given a fixed T ≥ 1, let ηt be a

sequence given by

ηt =
1∑m

i=1 Lfi

√
D(X∗, X0)

n+ 1

1√
T
. (3.23)

Then, we have

fmin
T−1 − f ∗ ≤ 2

(
m∑
i=1

Lfi

)√
D(X∗, X0)(n+ 1)

T
= O(

1√
T

). (3.24)

Proof. Assume that the number of iterations T is fixed and the stepsize is constant, i.e, ηt = η

for all t ≥ 0, then it follows by (3.22) that

fmin
T−1 − f ∗ ≤

D(X∗, X0) + (n+ 1) (
∑m

i=1 Lfi)
2∑T−1

t=0 η
2∑T−1

t=0 η
. (3.25)

Then, by minimizing the right-hand side of the above inequality over η > 0, we obtain the

constant stepsize (3.23) for all t ≥ 0. By plugging (3.23) into (3.25), we obtain the rate of

the convergence of (3.24) for T ≥ 1.

3.4 Stochastic Non-cooperative Nash Games

In this section, we present the A-M-SMD scheme for solving (3.4). Algorithm 3 presents

the outline of the A-M-SMD method. At each iteration t and for any user i, first, using an

oracle, a realization of the stochastic mapping F is generated at Xt, denoted by Φi(Xt, ξt).

Next, a matrix Yi,t is updated using (3.27). Here ηt is a non-increasing step-size sequence.

Then, Yi,t will be projected onto the set Xi defined by (3.2) using the closed-form solution

(3.28). It should be noted that the update rule (3.28) is obtained by applying Lemma 9.

Then the averaged sequence X i,t+1 is generated using relations (3.29). Next, we state the
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main assumptions. Let us define the stochastic error at iteration t as

Zi,t :, Φi(Xt, ξt)− Fi(Xt) for all t ≥ 0, and for all i = 1, . . . , N. (3.26)

Let Ft denote the history of the algorithm up to time t, i.e., Ft = {X0, ξ0, . . . , ξt−1} for t ≥ 1

and F0 = {X0}.

Assumption 6. Let the following hold:

(a) The mapping F (X) = E[Φ(Xt, ξt)] is monotone and continuous over the set X .

(b) The stochastic mapping Φi(Xt, ξt) has a finite mean squared error, i.e, there exist scalars

Ci > 0 such that E[‖Φi(Xt, ξt)‖2
2|Ft] ≤ C2

i for all i = 1, . . . , N .

(c) The stochastic noise Zi,t has a zero mean, i.e., E[Zi,t|Ft] = 0 for all t ≥ 0 and for all

i = 1, . . . , N .

Algorithm 3 Averaging Matrix Stochastic Mirror Descent (A-M-SMD)

initialization: Set Yi,0 := Ini/ni, a stepsize η0 > 0, Γ0 = η0, let Xi,0 ∈ Xi be a random
initial matrix, and X i,0 = Xi,0.
for t = 0, 1, ..., T − 1 do

for i = 1, ..., N do
Generate ξt as realizations of the random variable ξ and evaluate the mapping

Φi(Xt, ξt). Let

Yi,t+1 := Yi,t − ηtΦi(Xt, ξt), (3.27)

Xi,t+1 :=
exp(Yi,t+1 + Ini)

tr(exp(Yi,t+1 + Ini))
. (3.28)

Update Γt and X i,t using the following recursions:

Γt+1 := Γt + ηt+1, X i,t+1 :=
ΓtX i,t + ηt+1Xi,t+1

Γt+1

. (3.29)

return XT .
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3.4.1 Convergence and Rate Analysis

In this section, our interest lies in analyzing the convergence and deriving a rate statement

for the sequence generated by the A-M-SMD method. Note that a solution of VI(X , F ) is

also referred to a strong solution. The convergence analysis is carried out by a gap function

G defined subsequently. The definition of G is closely tied with a weak solution which is a

counterpart of a strong solution. Next, we define a weak solution.

Definition 5. (Weak solution) The matrix X∗w ∈ X is called a weak solution to VI(X , F ) if

it satisfies tr
(
(X −X∗w)TF (X)

)
≥ 0, for all X ∈ X .

We let X ?
w and X ∗ denote the set of weak solutions and strong solutions to VI(X , F ),

respectively.

Remark 3. Under Assumption 6(a), when the mapping F is monotone, any strong solution

of problem (3.4) is a weak solution, i.e., X ∗ ⊆ X ?
w. From continuity of F in Assumption

6(a), the converse is also true meaning that a weak solution is a strong solution. Moreover,

for a monotone mapping F on a convex compact set e.g., X , a weak solution always exists

[Juditsky et al., 2011].

Unlike optimization problems where the objective function provides a metric for distin-

guishing solutions, there is no immediate analog in VI problems. However, different variants

of gap function have been used in the analysis of variational inequalities (cf. Chapter 10 in

[Facchinei and Pang, 2003]). Here we use the following gap function associated with a VI

problem to derive a convergence rate.

Definition 6. (G function) Define the following function G : X → R as

G(X) = sup
Z∈X

tr
(
(X − Z)TF (Z)

)
, for all X ∈ X .

The next lemma provides some properties of the G function.
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Lemma 13. The function G(X) given by Definition 6 is a well-defined gap function, i.e, (i)

G(X) ≥ 0 for all X ∈ X ; (ii) X∗w is a weak solution to problem (3.4) iff G(X∗w) = 0.

Proof. (i) For an arbitrary X ∈ X , we have

G(X) = sup
Z∈X

tr
(
(X − Z)TF (Z)

)
≥ tr

(
(X − A)TF (A)

)
,

for all A ∈ X . For A = X, the above inequality suggests that G(X) ≥ tr
(
(X −X)TF (X)

)
=

0 implying that the function G(X) is nonnegative for all X ∈ X .

(ii) Assume X∗w is a weak solution. By Definition 5, tr
(
(X∗w −X)TF (X)

)
≤ 0, for all X ∈ X

which implies G(X∗w) = sup
X∈X

tr
(
(X∗w −X)TF (X)

)
≤ 0. On the other hand, from Lemma

13(i), we get G(X∗w) ≥ 0. We conclude that G(X∗w) = 0 for any weak solution X∗w. Conversely,

assume that there exists an X such that G(X) = 0. Therefore, sup
Z∈X

tr
(
(X − Z)TF (Z)

)
= 0

which implies tr
(
(Z −X)TF (Z)

)
≥ 0 for all Z ∈ X . Therefore, X is a weak solution.

Lemma 14. Assume the sequence ηt is non-increasing and the sequence X i,t is given by the

recursive rule (3.29) where Γ0 = η0 and X i,0 = Xi,0. Then,

X i,t :=
t∑

k=0

(
ηk∑t
k′=0 ηk′

)
Xi,k for any t ≥ 0. (3.30)

Proof. We use induction to prove (3.30). It is trivial that it holds for t = 0, since X i,0 = Xi,0.

Assume (3.30) holds for t. From (3.29), Γt =
∑t

k′=0 ηk′ which results in X i,t =
∑t
k=0 ηkXi,k

Γt
.

From (3.29), we have

X i,t+1 :=
ΓtX i,t + ηt+1Xi,t+1

Γt+1

=

∑t
k=0 ηkXi,k + ηt+1Xi,t+1

Γt+1

=

∑t+1
k=0 ηkXi,k∑t+1
k′=0 η

′
k

.
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Throughout, we use the notion of Fenchel coupling (Mertikopoulos and Sandholm [2016]):

Hi(Qi, Yi) , ωi(Qi) + ω∗i (Yi)− tr
(
Qi

TYi
)
, (3.31)

which provides a proximity measure between Qi and ∇ω∗i (Yi) and is equal to the associated

Bregman divergence between Q and ∇ω∗i (Yi).

Lemma 15. [Mertikopoulos et al., 2017] Let Xi be given by (3.2). For all matrices Xi ∈ Xi

and for all Yi, Zi ∈ Sni , the following holds

Hi(Xi, Yi + Zi) ≤ Hi(Xi, Yi) + tr
(
Zi

T (∇ω∗i (Yi)−Xi)
)

+ ‖Zi‖2
2. (3.32)

Proof. Using the Fenchel coupling definition,

H(X, Y + Z) = ω(X) + ω∗(Y + Z)− tr
(
XT (Y + Z)

)
. (3.33)

By strong convexity of ω w.r.t. trace norm (Lemma 8) and using duality between strong

convexity and strong smoothness [Kakade et al., 2009], ω∗ is 1-strongly smooth w.r.t. the

spectral norm, i.e., ω∗(Y +Z) ≤ ω∗(Y ) + tr
(
ZT∇ω∗(Y )

)
+ ‖Z‖2

2. By plugging this inequality

into (3.33) we have

H(X, Y + Z) ≤ ω(X) + ω∗(Y ) + tr
(
ZT∇ω∗(Y )

)
+ ‖Z‖2

2 − tr
(
XTY

)
− tr

(
XTZ

)
= H(X, Y ) + tr

(
ZT (∇ω∗(Y )−X)

)
+ ‖Z‖2

2,

where in the last relation, we used (3.31).

Next, we develop an error bound for the G function given by Definition 6.

Lemma 16. Consider problem (3.4). Let Xi ∈ Xi and the sequence {X t} be generated by
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A-M-SMD algorithm. Suppose Assumption 6 holds. Then, for any T ≥ 1,

E[G(XT )] ≤ 2∑T−1
t=0 ηt

(
N∑
i=1

log(ni + 1) +
∑T−1

t=0
η2
t

N∑
i=1

C2
i

)
. (3.34)

Proof. From the definition of Zi,t in relation (3.26), the recursion in the A-M-SMD algorithm

can be stated as

Yi,t+1 = Yi,t − ηt(Fi(Xt) + Zi,t). (3.35)

Consider (3.32). From Algorithm 3 and (3.7b), we have Xi,t = ∇ω∗i (Yi,t). Let Yi := Yi,t and

Zi := −ηt(Fi(Xt) + Zi,t). From (3.35), we obtain

Hi(Xi, Yi,t+1) ≤ Hi(Xi, Yi,t)− ηttr
(
(Xi,t −Xi)

T (Fi(Xt) + Zi,t)
)

+ η2
t ‖Fi(Xt) + Zi,t‖2

2.

By adding and subtracting ηttr
(
(Xi,t −Xi)

TFi(X)
)
, we get

Hi(Xi, Yi,t+1) ≤ Hi(Xi, Yi,t)− ηttr
(
(Xi,t −Xi)

TZi,t
)
− ηttr

(
(Xi,t −Xi)

T (Fi(Xt)− Fi(X)
)

− ηttr
(
(Xi,t −Xi)

TFi(X)
)

+ η2
t ‖Fi(Xt) + Zi,t‖2

2. (3.36)

Let us define an auxiliary sequence Ui,t such that Ui,t+1 :, Ui,t + ηtZi,t, where Ui,0 = Ini

and define Vi,t :, ∇ω∗i (Ui,t). From (3.36), invoking the definition of Zi,t and by adding and

subtracting Vi,t, we obtain

ηttr
(
(Xi,t −Xi)

TFi(X)
)
≤ H(Xi, Yi,t)−Hi(Xi, Yi,t+1)− ηttr

(
(Xi,t −Xi)

T (Fi(Xt)− Fi(X)
)

+ ηttr
(
(Vi,t −Xi,t)

TZi,t
)

+ ηttr
(
(Xi − Vi,t)TZi,t

)
+ η2

t ‖Φi,t‖2
2, (3.37)

where for simplicity of notation we use Φi,t to denote Φi(Xt, ξt). Then, we estimate the term
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ηttr
(
(Xi − Vi,t)TZi,t

)
. By Lemma 15 and setting Yi := Ui,t and Zi := ηtZi,t, we get

ηttr
(
(Xi − Vi,t)TZi,t

)
≤ Hi(Xi, Ui,t)−Hi(Xi, Ui,t+1) + η2

t ‖Zi,t‖2
2.

By plugging the above inequality into (3.37), we get

ηttr
(
(Xi,t −Xi)

TFi(X)
)
≤ Hi(Xi, Yi,t)−Hi(Xi, Yi,t+1) +Hi(Xi, Ui,t)−Hi(Xi, Ui,t+1)

+ η2
t ‖Zi,t‖2

2 + ηttr
(
(Vi,t −Xi,t)

TZi,t
)

+ η2
t ‖Φi,t‖2

2 − ηttr
(
(Xi,t −Xi)

T (Fi(Xt)− Fi(X)
)
.

Let us define Vt := diag (V1,t, . . . , VN,t). By summing the above inequality form i = 1 to N ,

we get

ηttr
(
(Xt −X)TF (X)

)
≤
∑N

i=1
Hi(Xi, Yi,t)−

∑N

i=1
Hi(Xi, Yi,t+1) +

∑N

i=1
Hi(Xi, Ui,t)

−
∑N

i=1
Hi(Xi, Ui,t+1) + η2

t

∑N

i=1
‖Zi,t‖2

2 + ηttr
(
(Vt −Xt)

TZt
)

+ η2
t

∑N

i=1
‖Φi,t‖2

2,

where we used the monotonicity of mapping F , i.e. tr((Xt −X)(F (Xt)− F (X))) ≥ 0 . By

summing the above inequality form t = 0 to T − 1, we have

T−1∑
t=0

ηttr
(
(Xt −X)TF (X)

)
≤

N∑
i=1

Hi(Xi, Yi,0)−
N∑
i=1

Hi(Xi, Yi,T ) +
N∑
i=1

Hi(Xi, Ui,0)

−
N∑
i=1

Hi(Xi, Ui,T ) +
T−1∑
t=0

η2
t

N∑
i=1

‖Zi,t‖2
2 +

T−1∑
t=0

ηttr
(
(Vt −Xt)

TZt
)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Φi,t‖2
2

≤
N∑
i=1

Hi(Xi, Yi,0) +
N∑
i=1

Hi(Xi, Ui,0) +
T−1∑
t=0

η2
t

N∑
i=1

‖Zi,t‖2
2+

T−1∑
t=0

ηttr
(
(Vt −Xt)

TZt
)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Φi,t‖2
2, (3.38)

where the last inequality holds by Hi(Xi, Yi) ≥ 0 implied by Fenchel’s inequality. Recall

that for Xi ∈ Xi, tr(Xi) = 1 and − log(ni) ≤ tr(Xi logXi) ≤ 0 [Carlen, 2010]. By choosing
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Yi,0 = Ui,0 = Ini/ni and from (3.5), (3.7a) and (3.31), we have

Hi(Xi, Yi,0) = Hi(Xi, Ui,0) = tr(Xi logXi −Xi) + log tr

(
exp(Ini +

Ini
ni

)

)
− tr

(
Xi

ni

)
≤ 0− 1 + log(ni + 1)− 1

ni
≤ log(ni + 1).

Plugging the above inequality into (3.38) yields

T−1∑
t=0

ηttr
(
(Xt −X)TF (X)

)
= tr

(
T−1∑
t=0

ηt(Xt −X)TF (X)

)
≤ 2

N∑
i=1

log(ni + 1) (3.39)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Zi,t‖2
2 +

T−1∑
t=0

ηttr
(
(Vt −Xt)

TZt
)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Φi,t‖2
2.

Let us define γt :, ηt∑T−1
k=0 ηk

, then, we have XT :,
∑T−1

t=0 γtXt by Lemma 14. We divide both

sides of (3.39) by
∑T−1

t=0 ηt. Then for all X ∈ X ,

tr

(T−1∑
t=0

γtXt −X

)T

F (X)

 = tr
((
XT −X

)T
F (X)

)
≤ 1∑T−1

t=0 ηt

(
2

N∑
i=1

log(ni + 1)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Zi,t‖2
2 +

T−1∑
t=0

ηttr
(
(Vt −Xt)

TZt
)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Φi,t‖2
2

)
.

Note that the set X is a convex set. Since γt > 0 and
∑T−1

t=0 γt = 1, XT ∈ X . Now, we take

the supremum over the set X with respect to X and use the definition of the G function given

by Definition 6. Note that the right-hand side of the preceding inequality is independent of

X.

G(XT ) ≤ 1∑T−1
t=0 ηt

(
2

N∑
i=1

log(ni + 1) +
T−1∑
t=0

η2
t

N∑
i=1

‖Zi,t‖2
2 +

T−1∑
t=0

ηttr
(
(Vt −Xt)

TZt
)

+
T−1∑
t=0

η2
t

N∑
i=1

‖Φi,t‖2
2

)
.
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By taking expectations on both sides, we get

E[G(XT )] ≤ 1∑T−1
t=0 ηt

(
2

N∑
i=1

log(ni + 1) +
T−1∑
t=0

η2
t

N∑
i=1

E[‖Zi,t|Ft‖2
2]+

T−1∑
t=0

ηtE[tr
(
(Vt −Xt)

TZt|Ft
)
] +

T−1∑
t=0

η2
t

N∑
i=1

E[‖Φi,t|Ft‖2
2]

)
.

By definition, both Xt and Vt are Ft-measurable. Therefore, Vt −Xt is Ft-measurable. In

addition, Zt is Ft+1-measurable. Thus, by Assumption 6(c), we have E[tr
(
(Vt −Xt)

TZt
)
|Ft] =

0. Applying Assumption 6(b), we have

E[G(XT )] ≤ 2∑T−1
t=0 ηt

(
N∑
i=1

log(ni + 1) +
∑T−1

t=0
η2
t

N∑
i=1

C2
i

)
.

Next, we present the convergence rate of the A-M-SMD scheme.

Theorem 3. Consider problem (3.4) and let the sequence {X t} be generated by A-M-SMD

algorithm. Suppose Assumption 6 holds. Given a fixed T > 0, let ηt be a sequence given by

ηt =
1∑N
i=1Ci

√∑N
i=1 log(ni + 1)

T
, for all t ≥ 0. (3.40)

Then, we have,

E[G(XT )] ≤ 3
N∑
i=1

Ci

√∑N
i=1 log(ni + 1)

T
= O

(
1√
T

)
. (3.41)

Proof. Consider relation (3.34). Assume that the number of iterations T is fixed and ηt = η
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for all t ≥ 0, then, we get

E[G(XT )] ≤
2
(∑N

i=1 log(ni + 1) + Tη2
∑N

i=1C
2
i

)
Tη

.

Then, by minimizing the right-hand side of the above inequality over η > 0, we obtain the

constant stepsize (3.40). By plugging (3.40) into (3.34), we obtain (3.41).

3.5 Numerical Experiments

In this section, we examine the behavior of A-M-SMD method on throughput maximization

problem in a multi-user MIMO wireless network as described in Section 1.2. First, we need

to show that the Nash equilibrium of game (1.7) is a solution of VI(X , F ). In order to apply

Lemma 11, we need to prove that the throughput function Ri(Xi,X−i) is a concave function.

In the next Lemma, we show the sufficient conditions on two functions that guarantee the

concavity of their composition. We use the following definitions in the proof.

Definition 7. (Matrix convex function) Let Cn be the complex vector space.

(a) An arbitrary matrix A ∈ Hm is nonnegative if 〈Ay,y〉 ≥ 0 for all y ∈ Cn.

(b) For A,B ∈ Hm we write A ≥ B if A−B is nonnegative.

(c) A function f : Hm → Hn is convex if f(λA + (1− λ)B) ≤ λf(A) + (1− λ)f(B), for all

0 ≤ λ ≤ 1.

(d) A function f : Hm → Hn is called matrix monotone increasing if A ≥ B implies

f(A) ≥ f(B). [Watkins, 1974]

(e) A function f : Hm → R is called matrix monotone increasing if A ≥ B implies f(A) ≥

f(B). [Kwong, 1989]

Lemma 17. Suppose h : Hn → R and g : Hm → Hn. Then, f(X) = h(g(X)) is concave if h

is concave and matrix monotone increasing and g is concave.
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Proof. Assume that X,Z ∈ Hm, and 0 ≤ λ ≤ 1. By convexity of Hm, we have λX+(1−λ)Z ∈

Hm, and from concavity of g, we have

g(λX + (1− λ)Z) ≥ λg(X) + (1− λ)g(Z). (3.42)

Since h is matrix monotone increasing and by definition 7(e), we get

h (g(λX + (1− λ)Z)) ≥ h (λg(X) + (1− λ)g(Z)) ≥ λh(g(X)) + (1− λ)h(g(Z)), (3.43)

where the last inequality follows from concavity of h. Therefore,

h (g(λX + (1− λ)Z)) ≥ λh(g(X)) + (1− λ)h(g(Z)), (3.44)

and we conclude that f is a concave function.

Now, we apply Lemma 17 to show each player’s objective function Ri(Xi,X−i) is concave.

Lemma 18. The user’s transmission throughput function Ri(Xi,X−i) is concave in Xi.

Proof. Let us define W(Xi) = Imi +
∑

j 6=i HjiXjH
†
ji + HiiXiH

†
ii. The function W(Xi) is

a linear function in terms of Xi. Note that every linear transformation T of the form

T : A →
∑

i αiH
†
iiA

THii preserves Hermitian matrices [de Pillis, 1967], where αi is a real

scalar, and each Hii is a certain matrix depending on T . Therefore, W(Xi) is Hermitian.

Therefore, by definition 7(c), W(Xi) is both convex and concave in Xi.

We also know that log det(X−1) is monotone decreasing [Vandenberghe et al., 1998], mean-

ing that if A ≥ B, then log det(A−1) ≤ log det(B−1). Then, we have log det(Imi) =

log det(AA−1) = log det(A) + log det(A−1), which results in log(1) = 0 = log det(A) +

log det(A−1). Therefore, log det(A) ≥ log det(B) which means log det(X) is monotone in-

creasing.
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We also know that g(X) = log det(X) is a concave function ([Boyd and Vandenberghe,

2004], page 74). From convexity of W(Xi) and Lemma 17 , we conclude that Ri(Xi,X−i) =

log det
(
Imi +

∑
j HjiXjH

†
ji

)
− log det(W−i) is a concave function in Xi.

The following Corollary shows that sufficient equilibrium conditions are satisfied, therefore

a Nash equilibrium of game (1.7) is a solution of variational inequality problem (3.4).

Corollary 3. The Nash equilibrium of (1.7) is a solution of VI(X ,F) where X ,
∏

iXi and

F (X) , −diag
(
H†11W

−1H11, · · · ,H†NNW−1HNN

)
.

Proof. Please note that ∇Xi
Ri(Xi,X−i) = ∇Xi

log det
(
Imi +

∑
j HjiXjH

†
ji

)
since the sec-

ond term, log det(W−i), is independent of Xi. Let us define W =
(
Imi +

∑
j HjiXjH

†
ji

)
.

Then, we have ∇Xi
Ri(Xi,X−i) = H†iiW

−1Hii (Mertikopoulos and Moustakas [2016]). By

Lemma 18, each player’s objective function Ri(Xi,X−i) is concave in Xi. We also know that

Xi is a convex set. Therefore, using Lemma 11, we have sufficient conditions to state the

game (1.7) as a variational inequality problem VI(X , F ).

Next two Lemmas show that the mapping F (X) is monotone. Therefore, the sequence

generated by A-M-SMD converges to the weak solution of variational inequality (3.4).

Lemma 19. Suppose f : Hm → R is a differentiable function and X ⊆ Hm. If f is a convex

function, then ∇f is monotone, i.e., tr
((
∇T

Xf(X)−∇T
Zf(Z)

)
(X− Z)

)
≥ 0, for all X,Z ∈ B.

Proof. By convexity of f and by Lemma 12, we have for arbitrary X,Z ∈ X

f(Z) + tr
(
(X− Z)T∇Zf(Z)

)
≤ f(X).

By choosing the points in reverse, we also have

f(X) + tr
(
(Z−X)T∇Xf(X)

)
≤ f(Z).
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Summing the above inequalities, we get

f(Z) + f(X) + tr
(
(X− Z)T∇Zf(Z)

)
+ tr

(
(Z−X)T∇Xf(X)

)
≤ f(X) + f(Z),

and using the fact that tr(A + B) = tr(A) + tr(B), we get the desired result.

Lemma 20. Consider the function Ri given by (1.6) and its gradient ∇T
Xi

(Ri(Xi,X−i)) =

(H†iiW
−1Hii)

T . The mapping F (X) , −diag (∇X1R1(X1,X−1), . . . ,∇XN
RN(XN ,X−N)) =

−diag
(
H†11W

−1H11, · · · ,H†NNW−1HNN

)
is monotone.

Proof. The function Ri(Xi,X−i) is concave in Xi by Lemma 18 and as a result −Ri(Xi,X−i)

is a convex function. Therefore, ∇T
Xi

(−Ri(Xi,X−i)) = −(H†iiW
−1Hii)

T is monotone in Xi

by Lemma 19. In other words,

− tr
((
∇T

Xi
Ri(Xi,X−i)−∇T

Zi
Ri(Zi,Z−i)

)
(Xi − Zi)

)
=

− tr

((
H†iiW

−1(Xi)Hii −H†iiW
−1(Zi)Hii

)T
(Xi − Zi)

)
≥ 0, for all Xi,Zi ∈ Xi.

Then, we have

tr((F(X)− F(Z))(X− Z)) =

tr(−diag(∇X1R1(X1,X−1)−∇Z1R1(Z1,Z−1), . . . ,∇XN
RN(XN ,X−N)−∇ZNRN(ZN ,Z−N))

× diag(X1 − Z1, . . . ,XN − ZN)) =

tr(−diag

(
H†11W

−1(X1)H11 −H†11W
−1(Z1)H11, . . . ,H

†
NNW−1(XN)HNN −H†NNW−1(ZN)

HNN

)
× diag (X1 − Z1, . . . ,XN − ZN)) =

−
N∑
i=1

mi∑
u=1

mi∑
v=1

[(H†iiW
−1(Xi)Hii −H†iiW

−1(Zi)Hii)
T ]uv[(Xi − Zi)]uv ≥ 0.
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Figure 3.1: Multicell cellular system

Corollary 4. The sequence Xt generated by A-M-SMD algorithm converges to the weak

solution of VI(X , F ).

3.5.1 Problem Parameters and Termination Criteria

We consider a MIMO multi-cell cellular network composed of seven hexagonal cells (each

with a radius of 1 km) as Figure 3.1. We assume there is one MIMO link (user) in each cell

which corresponds to the transmission from a transmitter (T) to a receiver (R). Following

Scutari et al. [2009] we generate the channel matrices with a Rayleigh distribution, in other

words, each element is generated as circularly symmetric Gaussian random variable with

variance equal to the inverse of the square distance between the transmitters and receivers.

In this regard, we normalize the distance between transmitters and receivers at first. The

network can be considered as a 7-users game where each link (user) is a MIMO channel.

Distance between different receivers and transmitters are shown in Table 3.2. It should be

noted that the channel matrix between any pair of transmitter i and receiver j is a matrix

with dimension of mj × ni. In the experiments, we assume mj = m for all j ∈ {1, . . . , 7}

ni = n for all i ∈ {1, . . . , 7}. As mentioned before, pmax is the maximum average transmitted

power in units of energy per transmission. In the experiments, the transmitters have a
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maximum power of 1 decibels of the measured power referenced to one milliwatt (dBm). We

Table 3.2: Distance matrix (in terms of kilometer)
````````````Receiver

Transmitter
R1 R2 R3 R4 R5 R6 R7

T1 0.8944 1.0143 1.0568 1.1020 1.0143 1.0568 1.1020
T2 1.0143 0.8944 1.0568 2.1079 2.6940 2.6677 1.9964
T3 1.1020 1.9011 0.8944 1.0143 2.1079 2.7265 2.7203
T4 1.9964 2.6159 1.9493 0.8944 1.1020 2.1056 2.7620
T5 2.5635 2.6940 2.6677 1.9964 0.8944 1.0568 2.1079
T6 2.5270 2.1079 2.7265 2.7203 1.9011 0.8944 1.0143
T7 1.9011 1.1020 2.1056 2.7620 2.6159 1.9493 0.8944

investigate the robustness of A-M-SMD algorithm under imperfect feedback. To simulate

imperfections, the elements of Zi,t are generated as zero-mean circularly symmetric complex

Gaussian random variables with variance equal to σ. In experiments, we apply the following

gap function Gap(X) which is equal to zero for a strong solution.

Definition 8 (A gap function). Define the following function Gap : P+ → R

Gap(X) = sup
Z∈P+

tr
(
(X− Z)TF (X)

)
, for all X ∈P+. (3.45)

In the following lemma, we provide some properties of the Gap function.

Lemma 21 (Properties of the Gap function). The function Gap(X) given by Definition 8 is

a well-defined gap function, in other words, (i) Gap(X) is nonnegative for all X ∈P+; and

(ii) X∗ is a strong solution to problem (3.4) iff Gap(X∗) = 0.

Proof. (i) For an arbitrary X ∈P+, we have

Gap(X) = sup
Z∈P+

tr
(
(X− Z)TF (X)

)
≥ tr

(
(X−A)TF (X)

)
, for all A ∈P+.

For A = X, the above inequality suggests that Gap(X) ≥ tr
(
(X−X)TF (X)

)
= 0 implying

that the function Gap(X) is nonnegative for all X ∈P+.
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(ii) Assume X∗ is a strong solution. By definition of VI(X , F ) and relation (3.4), we have

tr
(
(X∗ −X)TF (X∗)

)
≤ 0, for all X ∈ X

which implies

Gap(X∗) = sup
X∈P+

tr
(
(X∗ −X)TF (X∗)

)
≤ 0, for all X ∈ X .

On the other hand, from Lemma 21(i), we get Gap(X∗) ≥ 0. We conclude that for any strong

solution X∗, we have Gap(X∗) = 0. Conversely, assume that there exist an X such that

Gap(X) = 0. Therefore, sup
Z∈P+

tr
(
(X− Z)TF (X)

)
= 0 which implies tr

(
(X− Z)TF (X)

)
≤ 0

for all Z ∈P+. Equivalently, we get tr
(
(Z−X)TF (X)

)
≥ 0 for all Z ∈P+ implying X is a

strong solution.

The algorithms are run for a fixed number of iterations T . We plot the gap function for

different number of transmitter antennas (n) and receiver antennas (m). We also plot the gap

function for different values of σ including 0.5, 1, 5. We use MATLAB to run the algorithms

and CVX software to solve the optimization problem (3.45). Computational experiments are

performed using the same PC running on an Intel Core i5-520M 2.4 GHz processor with 4

GB RAM.

3.5.2 Averaging and Non-averaging Matrix Stochastic Mirror Descent Methods

First, we look into the first 100 iterations in one sample path to see the impact of averaging

on the initial performance of matrix stochastic mirror descent (M-SMD) algorithm. Figure 3.2

compares the performance of averaging stochastic mirror descent (A-M-SMD) algorithm with

M-SMD in the first 100 iterations. The pair of (n,m) denotes the number of transmitter and

receiver antennas. The vertical axis displays the logarithm of gap function (3.45) while the
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horizontal axis displays the iteration number. In these plots, the blue (dash-dot) and black

(solid) curves correspond to the M-SMD and A-M-SMD algorithms, respectively. We observe

in Figure 3.2 that A-M-SMD algorithm outperforms the M-SMD in most of the experiments.

Importantly, A-M-SMD is significantly more robust with respect to (i) the imperfections and

uncertainty (σ); and (ii) problem size (the number of transmitter and receiver antennas).

Then, we run both A-M-SMD algorithm and M-SMD for T = 4000 iterations and plotted their

performance in Figure 3.3. In this figure, the vertical axis displays the logarithm of expected

gap function (3.45) while the horizontal axis displays the iteration number. The expectation

is taken over Zt, we repeat the algorithm for 10 sample paths and obtain the average of

the gap function. For comparison purposes, we also plot the performance of M-SMD and

A-M-SMD algorithms starting from a different initial point with better gap function value.

This point is obtained by running the algorithm for 400 iteration and saving the best solution

X to (3.45) and its corresponding Y. In these plots, the blue (dash-dot) and magenta (solid

diamond) curves correspond to the M-SMD with the initial solution X0 = X1
0 = In/n and

X0 = X2
0 = X400 respectively, and the black (solid) and red (dash-dot triangle) curves display

the A-M-SMD algorithm with the initial solution X0 = X1
0 = In/n and X0 = X2

0 = X400

respectively. As can be seen in Figure 3.3, A-M-SMD algorithm outperforms the M-SMD

in all experiments. Particularly, A-M-SMD is significantly more robust with respect to (i)

the imperfections (σ); and (ii) problem size. It is also observed that A-M-SMD algorithm

converges to the strong solution with rate of convergence of O(1/T ) while M-SMD does not

converge for larger values of σ. Moreover, from Figure 3.3, it is evident that the A-M-SMD

has better performance compared to M-SMD irrespective to the initial solution.

Stability of M-SMD and A-M-SMD: To compare the stability of two methods, we

also plot the expected objective function value Ri against the iteration number in Figure 3.4.

Here, we choose n = m = 4 and σ = 10. The algorithm is repeated for 10 sample paths and

the average of objective function is obtained. Each plot represents the performance of both

96



(n,m) σ = 0.5 σ = 1 σ = 5

(2,4)

0 20 40 60 80 100
-3

-2.5

-2

-1.5

-1

-0.5
M-SMD
A-M-SMD

0 20 40 60 80 100
-2.5

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100
-2

-1

0

1

2

3

4

(4,2)

0 20 40 60 80 100
-2.5

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100
-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100
0

0.5

1

1.5

2

(4,4)

0 20 40 60 80 100
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
-1

0

1

2

3

4

Figure 3.2: Comparison of M-SMD and A-M-SMD w.r.t. problem size (n,m) and uncertainty
(σ) for 100 iterations

algorithms for one specific player i ∈ {1, . . . , 7}. As an example, the first plot compares the

stability of A-M-SMD (black solid curve) and M-SMD (blue dash-dot curve) for the first user.

It can be seen that for all players, the A-M-SMD algorithm converges to a strong solution

very fast while the M-SMD does not converge and oscillates significantly.

3.5.3 Matrix Exponential Learning

Mertikopoulos et al. [2017] proved the convergence of matrix exponential learning (MEL)

algorithm under strong stability of mapping F assumption while, in practice, this assumption

might not hold for the games and VIs. We proved the convergence of A-M-SMD without

assuming strong stability. For comparison purposes, we need to regularize the mapping F
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Figure 3.3: Comparison of M-SMD and A-M-SMD w.r.t. initial point (X0), problem size
(n,m), and uncertainty (σ) for 4000 iterations

by adding the gradient of a strongly convex function to it. Doing so, we obtain a strongly

stable mapping (Facchinei and Pang [2003], Chapter 2). Let ‖A‖F denote the Frobenius

norm of a matrix A which is defined as the square root of the sum of the absolute squares

of its elements, i.e, ‖A‖F =
√

tr(ATA) =
√∑

u

∑
v |[A]uv|2 [Golub and Van Loan, 2012]. In

the following Lemma, we show that the function 1
2
‖A‖2

F is strongly convex.

Lemma 22. The function h(A) = 1
2
‖A‖2

F is strongly convex with parameter 1, i.e.,

1

2
‖B‖2

F ≥
1

2
‖A‖2

F + tr
(
∇T

Ah(A)(B−A)
)

+
1

2
‖A−B‖2

F . (3.46)

Proof. For an arbitrary matrix A, we have ∇Atr
(
ATA

)
= A [Athans and Schweppe, 1965].
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Figure 3.4: Comparison of stability of M-SMD and A-M-SMD in terms of users’ objective
function Ri for i = 2, 4, 6

That being said and using the definition of Frobenius norm, we have

1

2
‖A‖2

F + tr
(
∇T

Ah(A)(B−A)
)

+
1

2
‖A−B‖2

F =

1

2
‖A‖2

F + tr
(
AT (B−A)

)
+

1

2
tr
(
(A−B)T (A−B)

)
=

1

2
‖A‖2

F + tr
(
AT (B−A)

)
+

1

2
tr
(
ATA−BTA−ATB + BTB

)
=

1

2
‖A‖2

F + tr
(
ATB−ATA

)
+

1

2
tr
(
ATA−BTA−ATB + BTB

)
=

1

2
‖A‖2

F +
1

2
tr
(
ATB

)
− 1

2
tr
(
ATA

)
− 1

2
tr
(
BTA

)
+

1

2
tr
(
BTB

)
=

1

2
‖A‖2

F +
1

2
tr
(
ATB

)
− 1

2
‖A‖2

F −
1

2
tr
(
ATB

)
+

1

2
‖B‖2

F =
1

2
‖B‖2

F .

Therefore, the inequality (3.46) holds in equality and we conclude that h(A) is strongly

convex with parameter 1.

Note that ∇λ
2
‖X‖2

F = λX. Therefore, to regularize the mapping F , we need to add the

term λX to it and consequently, the mapping F ′ = F + λX is different from the original F .

It should be noted for small values of λ, the algorithm converges very slowly. On the other

hand, the solution which is obtained by using large values of λ is far from the solution to the

original problem. Hence, we need to find a reasonable value of λ. For this reason, we tried

three different values including 0.1, 0.5, 1. The only difference between MEL and M-SMD

algorithm is adding the term λX to the mapping F .
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Figure 3.5: Comparison of M-SMD, A-M-SMD and MEL w.r.t. problem size (n,m), uncer-
tainty (σ), and regularization parameter (λ) for 4000 iterations

For each experiment, the algorithm is run for T = 4000 iterations. We apply the well-

known harmonic stepsize ηt = 1√
t

for A-M-SMD and M-SMD, and harmonic stepsize ηt = 1
t

for MEL. Figure 3.5 demonstrate the performance of A-M-SMD, M-SMD and MEL algorithms

in terms of logarithm of expected value of gap function (3.45). The expectation is taken

over Zt, we repeat the algorithm for 10 sample paths and obtain the average of gap function.

In these plots, the blue (dash-dot) and black (solid) curves correspond to the M-SMD and

A-M-SMD algorithms, respectively, the magenta (solid diamond), red (circle dashed) and

brown (dashed) curves display MEL algorithm with λ = 0.1, 0.5 and 1. As can be seen

in Figure 3.5, A-M-SMD algorithm outperforms the M-SMD and MEL algorithms in all

experiments. It is evident that MEL algorithm converge slowly but faster than M-SMD.
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Comparing three versions of MEL algorithm which apply large, moderate or small value of

regularization parameter λ, it can be seen that MEL is not robust w.r.t this parameter since

each one of MEL algorithms has a better performance than the other two in some cases.

3.6 Concluding Remarks

We consider multi-agent optimization problems on semidefinite matrix spaces. We develop

mirror descent methods where we choose the distance generating function to be defined as the

quantum entropy. These first-order single-loop methods include a mirror descent incremental

subgradient method for minimizing a convex function that consists of sum of component

functions and an averaging matrix stochastic mirror descent method for solving Cartesian

stochastic variational inequality problems under monotonicity assumption of the mapping.

We show that the iterate generated by M-MDIS algorithm converges asymptotically to the

optimal solution and derive a non-asymptotic convergence rate. We also prove that A-M-SMD

method converges to a weak solution of the CSVI with rate of O(1/
√
T ). Our numerical

experiments performed on a wireless communication network display that the A-M-SMD

method is significantly robust w.r.t. the problem size and uncertainty.
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CHAPTER IV

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This dissertation is motivated by applications in machine learning, statistical analysis, and

signal processing where the problem can be formulated as a stochastic optimization, finite-

sum, or an equilibrium problem and challenges such as uncertainty, high-dimensionality, and

matrix structure of the decision variables may arise. We develop, analyze, and implement

efficient computational methods to address the aforementioned challenges. In particular, we

consider the stochastic mirror descent (SMD) methods that are among the popular avenues

in solving stochastic optimization and variational inequality problems.

Much of the past research on SMD methods has focused on convergence and rate analysis

in terms of order of the error bounds. However, the finite-time performance of these schemes

is tied closely to the choice of the stepsize sequence. Motivated by this gap, in Chapter II,

we consider nonsmooth, smooth, and high-dimensional stochastic optimization problems. We

develop self-tuned stepsize rules for stochastic subgradient, gradient, and randomized block

coordinate mirror descent methods accordingly which incorporate problem parameters, and

are tuned as the algorithm goes on. For each scheme, we prove almost sure convergence to the

optimal solution of the problem and show that under the self-tuned stepsize rules, the error

bound of the stochastic mirror descent scheme is minimized. Moreover, in the case where

problem parameters are unknown, we develop a unifying self-tuned update rule that can be

applied in both smooth and nonsmooth regimes. We apply our unifying self-tuned stochastic

mirror descent method on three classification datasets. The numerical experiments display

that our scheme is significantly robust with respect to the uncertainty of data, problem
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parameters, and the initial stepsize.

In Chapter III, we focus on multi-user optimization problems over semidefinite matrix

spaces. The first part of this chapter is motivated by statistical analysis applications such as

distributed sparse estimation of covariance inverse matrix. This problem can be formulated

as a finite-sum problem where the users (i.e., processors) can cooperatively optimize the

likelihood estimation. We develop a mirror descent incremental subgradient (M-MDIS)

method for solving the problem. We show that the iterate generated by M-MDIS algorithm

converges asymptotically to the optimal solution and derive a non-asymptotic convergence

rate. The second part of this chapter is motivated by wireless communication networks where

there are transmitters and receivers that generate and detect the signals, respectively. An

antenna enables a transmitter to send signals into the space, and enables a receiver to pick

up signals from the space. In a multiple-input multiple-output (MIMO) wireless transmission

system, multiple antennas are applied in transmitters and receivers in order to improve

the performance. Each transmitter tries to maximize its information rate and competes

with other transmitters. The transmit power of these transmitters are quantified by their

covariance matrices which controls their variances as well. Therefore, the competition among

the transmitters in the network can be characterized as a non-cooperative Nash game with

positive semidefinite matrix variables. We develop a stochastic matrix mirror descent method

equipped with convergence rate to compute the equilibrium of this type of games. The

numerical experiments performed on a MIMO multi-cell cellular wireless network show that

the proposed method is significantly robust with respect to the problem size and uncertainty.

In learning from data which has an important role in the areas of statistics, data mining,

and engineering, the goal is to predict an output based on a number of features. In many

real-world problems, the number of available features significantly exceeds the number of

samples, but only a small number of features contribute to the response values. In order

to cope with high dimensionality of data, one remedy which is proposed in the literature is
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making solutions sparse [Friedman et al., 2001]. The basic idea is to keep significant features

with the strongest impact on the response values in the prediction model and remove the

insignificant features. By doing so, we can make the data simpler and more concise, and

consequently make the study and processing of the low dimensional samples more efficient.

Sparsity helps to understand practical problems better by providing interpretable models. In

other words, it reveals a clear relationship between the response variable and the features

[Zhou et al., 2011]. That being said, one direction for future research can be developing

self-tuned stochastic mirror descent made sparse algorithms.

Moreover, the convergence analysis of the SMD methods discussed in Chapter II requires

the objective function to be strongly convex. However, this assumption is fairly restrictive

and does not hold for applications such as minimizing the logistic regression loss function.

Motivated by this gap, another direction for future research can be considering optimization

problems with merely convex objectives and developing a regularized stochastic mirror descent

made sparse algorithm, where the stepsize and the regularization parameter are updated

iteratively.

Solving nonconvex optimization problems such as the problem of training deep neural

networks has become increasingly important as the state-of-the-art in machine learning

[Cui et al., 2020]. The global optimization of nonconvex objectives is an NP-hard problem

in general [Jain and Kar, 2017]. As a result, a highly desirable goal in applications with

nonconvex objectives is to find a local minimum of the objective function. The recent works

of Agarwal et al. [2017] and Jin et al. [2019] propose two variants of gradient method for

solving high-dimensional nonconvex optimization problems. The run-time of these methods

depend quasi-linearly and linearly on the problem dimension. However, the convergence of

these methods is only guaranteed to a saddle point. Developing computational algorithms

which can solve smooth/nonsmooth nonconvex high-dimensional optimization problems and

guarantee convergence to a local or global optimum can be another direction for future
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research.

Despite the recent advancements in first-order methods addressing problems over vector

spaces such as SVRG [Johnson and Zhang, 2013] and SAGA [Defazio et al., 2014], there seem

to be some shortcomings in the theory of the first-order methods for finite sum problems

on semidefinite matrix spaces. One direction for future research can be developing a fast

incremental mirror descent method with a linear convergence rate for strongly convex functions

and rate of O(1/t) for convex functions. This method also can be applied for solving the

sparse inverse covariance estimation problem where we need to estimate the inverse of the

covariance matrix of a multivariate Gaussian distribution from a small set of samples.

Another direction for future research is developing a randomized block coordinate variant

of averaging matrix stochastic mirror descent method discussed in Chapter III. This method

can be applied to solve the multi-user maximization throughput problem for the case that

there are a large number of the MIMO links in the wireless communication network.
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Nedić, A. and Lee, S. (2014). On stochastic subgradient mirror-descent algorithm with

weighted averaging. SIAM Journal on Optimization, 24(1):84–107.

Nedić, A. and Olshevsky, A. (2015). Distributed optimization over time-varying directed

graphs. IEEE Transactions on Automatic Control, 60(3):601–615.
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