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Abstract:  

 
             Advancements in surface electromyography (sEMG) have led to many discrepancies in 

techniques used for signal decomposition. Specifically, the capabilities of well-

established recording systems, and the methods involved in identifying motor unit (MU) 

action potentials and respective firing behaviors. PURPOSE: To examine the differences 

in MU identification and validation procedures, and firing behaviors between a four-

channel (4-ch) sensor and a sixty-four channel (64-ch) high-density sEMG array. 

METHODS: Following 2 maximal voluntary contractions (MVC), ten (23 ± 3 yrs.; 

178.64 ± 5.82 cm; 177.8 ± 17.37 kg) lower body resistance trained males performed 10 

sec submaximal isometric ramp contractions of the knee extension exercise at 10%, 20%, 

and 50% MVC. During testing sEMG was recorded from the vastus lateralis using both 

4-ch and 64-ch sensors. Signals were separately decomposed into their constituent MU 

action potential trains and were further validated for subsequent analysis of firing 

behaviors. The slope and y-intercept were calculated across the relationships between 

recruitment threshold versus mean firing rate (RT/MFR). A 2-way mixed factorial 

ANOVA (sensor [4-ch vs 64-ch] × contraction intensity [10% vs 20% vs 50%]) was used 

to examine mean differences in MU yield during all contraction. For validated MUs, the 

RT/MFR relationships were compared between sensors at each intensity and a paired 

samples t test was used to compare differences in RTs. RESULTS: There was a 

significant interaction between sensor and intensity, as well as a main effect for intensity, 

with follow up analysis revealing a significant difference between MUs validated at 10% 

and 50% MVC (p < 0.05). There was a significant difference in slopes at 10% and 50% 

MVC, and y-intercepts at 20% MVC for RT/MFR relationships (p < 0.10) and the RT of 

validated MUs were significantly different (p <0.5) between sensors at each intensity. 

CONCLUSION: MUs validated using the 4-ch sensor yielded a greater numbers during 

higher contraction intensities versus the 64-ch sensor. The inability of the 64-ch sensor to 

yield a greater amount of MUs at 50% MVC may have been due to the subjectivity of the 

manual editing procedures. However, both validation procedures eliminated a high 

amount of decomposed MUs.   
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CHAPTER I 
 

 

Introduction 

 

Originally established using intramuscular electrodes, LeFever and De Luca 

(1982)1 developed techniques to separate acquired electromyographic signals into 

individual motor unit action potentials (MUAPs) and identifying their respective 

discharge patterns. This method came to be known as decomposition electromyography. 

Decomposition of the electromyographic signal is performed by identifying and 

overlapping MUAPs into individual trains based on their initial and continuous 

discharges (i.e., shapes, firing instances). Over the past several decades these techniques 

have been expanded upon using non-invasive techniques from surface electromyography 

(sEMG) sensors2-12. However, varying approaches in decomposition techniques from 

sEMG recordings have become more controversial due to the ensuing challenges 

associated with the identification of MUAP firings13,14. Recently, several concerns 

regarding data acquisition and subsequent signal processing techniques of motor unit 

(MU) decomposition have been debated and described13. 
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Recently, several concerns regarding data acquisition and subsequent signal 

processing techniques of motor unit (MU) decomposition have been debated and described13. 

Over the years, Dr. Roger Enoka and colleagues have stressed the importance of concurrent 

two-source recording techniques that can allow for a more accurate analyses for tracking 

action potentials within the same contraction5,15. These are common practices for researchers 

that utilize a high density surface electromyography (HDsEMG) electrode16-18. These 

electrodes have a large channel (32-64) grid arrangement and are capable of collected sEMG 

signals from a sizable portion of the muscle of interest. Conversely, for MU decomposition, 

the use of a five-pin/four-channel sensor (64-ch; Delsys, Inc., Natick, MA,USA) has been 

highly criticized for its validation procedures15,19. Specifically, the automated decomposition 

techniques of the 4-ch sensor that claim to validate a higher yield of MUs, as well as its 

ability to distinguish low-thresholds MUs during contraction at various intensities2,20. 

Therefore, the 4-ch sensor has the capabilities to differentiate overlapping MUAP firings of 

lower and higher-thresholds and categorize them into their constituent action potential trains 

for further analysis of MU firing behaviors.  

Accordingly, over the past decade these advancements have provoked many topics 

for debate. Many of these are in regards to the accuracy of the commonly utilized algorithms 

of the 4-ch sensor. Unlike the processing techniques of the HDsEMG grid array (i.e., 64-ch), 

the decompositions techniques of the 4-ch sensor are provided by the manufacturer which 

employ proprietary acquisition and processing techniques for the identification of MUs and 

subsequent tracking of their respective firing behaviors. Specifically, these provided 

procedures are achieved using automated programing and does not allow visual inspection or 

re-identification of the MUAPs within the software itself. The contemporary techniques 
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concerning MU decomposition using the 4-ch sensor were first described by De Luca et al. 

(2006)12 and further improved upon by Nawab et al. (2010)20 and De Luca and Hostage 

(2010)2 through the application of the newly developed algorithms. The results of these 

studies emphasized the algorithms ability to accurately (92.5 - 97%) decompose, as well as 

discriminate, the firings of ≤ 40 MUs into their constituent motor unit action potential trains 

(MUAPT). Decomposing signals acquired from contractions performed at intensities/levels 

up to maximal force production, De Luca and Hostage (2010)2 confidently reported the 

promising advantages of using the Precision Decomposition III (PD III) algorithm to 

accurately detect and track the a high number of MUs. Although promising, the inability of 

researcher to see these algorithms and procedures perform in real time has created much 

skepticism that has led to further validation requirements.   

Preliminary reports using earlier version of the PD III algorithms were proposed 

using a two-source method to acquire and reconstruct sEMG signals1,12,21, for initial 

validation. A two-source method is performed via concurrent recordings involving 

intramuscular electromyography (iEMG) which uses indwelling techniques such as fine wire 

or needle electrodes that are inserted into the muscle itself. Although these allow for a more 

accurate representation of MU discharges, there are several limitations associated with these 

applications (i.e., small pick-up area, low-contraction forces, uncomfortable invasive 

procedures) 6,20. In essence, the technological advancement of 4-ch sensors for the use of 

noninvasive sEMG was created to overcome practices of two-source methods. These recent 

developments have provided the PD III algorithms the ability to accurately decompose 

sEMG signals through the assistance of the artificial intelligence-based Integrated Processing 

and Understanding of Signals concept2,20. The PD III algorithm begins by extracting all 
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identified MUAPs from the sEMG signal and assigning them into their constituent templates 

(i.e., trains). Within these templates, superpositioned (i.e. duplicates of a singular MU and/or 

overlapping MUs) and unidentified MUAPs are classified in signal regions which are 

required to satisfy specific criteria for ultimate inclusion (i.e. constructive and destructive 

interference effects, inter-pulse interval < 0.35s). Thereafter, the algorithm continues to 

identify additional MUAPs and either updates an existing template or creates a new one 

based on the initial firing of the MUAP. This process known as Decompose-Synthesize-

Decompose-Compare (DeLuca and Contessa 2012), is deemed completed once each MUAP 

has been categorized into its respective template and removed in order to determine any 

potential superimposed firings. However, this task can be daunting due to factors related to 

the high number of firings in each MUAP, filtering, and the high variability (i.e. shapes) 

and/or overlapping between firings3,15.  

As such, various conflicting opinions regarding these concerns have consequentially 

required researchers using these sensors to adhere to more rigorous analyses and evaluation 

techniques22-27. The results of these studies illustrated the many inconveniences that can arise 

during concurrent acquisition of intramuscular signals and their methodological limitations. 

Specifically, per recommendation for further validation5,13,15, the concurrent use of the 

dEMG sensor with indwelling techniques have reported the limitations may be due to the 

small pickup area and/or amount of MUs recorded12,26. Potentially, these limitation could be 

due to the differences in validation and processing techniques28. As well as, limitations 

involved with intramuscular electrodes which hinder the ability to perform contractions at 

higher intensities, and restrict information regarding MUs of higher thresholds14. 
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Since early investigations classifying the “onion-skin phenomenon”, researchers 

commonly report on MU firing times (i.e., discharge rates) and shapes of individual MUAP 

under conditions that are dependent on the muscle and contraction type. As reported by 

Fuglevand et al. (2015)29 … “the relation between naturally occurring synaptic input and 

firing rate responses in motor neurons can be indirectly assessed.” Thus, muscle force 

production can serve as an indicator of the synaptic excitation (i.e., neural drive) during 

voluntary contractions29 and as a noninvasive technique to support characteristics of muscle 

fiber types30,31. These are commonly reported in literature using either the 4-ch or 64-ch 

sensors, which follow the aforementioned processing recommendations for the 4-ch sensor, 

and use isometric constant force trajectories to record and analyze MU firing patterns2,20.  

Generally, as an evaluation of neural modulation across force, the relationship 

between the mean firing rates (MFR) of a MUAP and its relative recruitment threshold (RT) 

are described using linear regression2. As previously mentioned, earlier recruited low-

threshold MU have a greater firing rate at higher intensities than those recruited later. Thus, 

an inverse relationship can be plotted using MFR and their respective RT (i.e., slopes and 

intercepts) of decomposed action potential. However, in opposition to the relationships 

associated with peak firing rates, Enoka (2019)13 describes the differences between studies 

that utilize signal processing of the 64-ch sensor versus those using the 4-ch sensor. To 

corroborate the focus of Dr. Enoka’s review, the comparisons discussed focus on 

decomposition studies that have been able to replicate findings of those recorded with 

intramuscular electrodes. For example, similar to reports using intramuscular recordings, 

Enoka discusses a recent investigation by Del Vecchio et al. (2017)32, which uses a 

HDsEMG electrode recordings to report contrasting results in mean firing rates between low- 
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and high-threshold MUs. Specifically, the behaviors of mean firing rates between low-and 

high-thresholds MU were not as distinctive as those reported using the dEMG sensor during 

a high intensity contraction.  

Although similar in reporting MU firing behaviors, investigations using the 64-ch 

sensor follow unique decomposition techniques which also use algorithms and manual 

editing techniques during two-source methods9,10. The details of the signal processing 

reported by Del Vecchio et al. (2017)32, utilizing the 64-ch sensor, are thoroughly reported by 

Negro et al., (2016)33 and Martinez-Valdez et al. (2016)17. Briefly, MUs are identified using 

a method of convolutive blind source separation (BSS). This method distinguishes between 

different MUs by using the absence of firing times (< 50 pulses per second) relative to the 

sampling rate (2 kHz) to identify respective action potentials. A silhouette measurement 

comparing the amplitudes of the deconvolved MU spikes, relative to the background noise, is 

then used to assess decomposition accuracy. The mutual time between consecutive action 

potentials is used to calculate instantaneous firing rate. Specifically, the initial firing rate, 

calculated as the ratio of the change in firing rate from the minimum rate to that at the force 

constant, divided by the force constant. These are then low-pass filtered with a first order 

Butterworth filter and a cut-off frequency set at 0.5 Hz13. In essence, BSS begins by 

estimating individual spike trains of a single MU and repetitively updating that MUs 

separation filter and applying it to the original signal. The filter, in turn, is continuously 

updated by improving the amount of sparseness for the MU trains of the predefined time 

intervals (Del Vechio 2020)38.  

In a recent debate, a letter to the editor entitled: “In Regards to Motor Unit 

Decomposition, Are We Caring about the Right Information?”, Dr. Jason DeFreitas (2019)14 
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notes the disparities of interpreting IFR’s, due to their short windows (i.e. < 2 sec) for 

averaging firing rates. Dr. DeFreitas goes on to explain how IFR’s are commonly reported in 

studies in which the initial firings are calculated from contractions using quick increases, or 

oscillations of force. This is uncommon in most decomposition studies, specifically those that 

utilize steady state muscle contractions in order to assess deviations of inter-spike interval 

(ISI) distributions that can signify potential identification errors26. Additionally, Dr. 

DeFreitas expresses his concerns regarding the unlikelihood of detecting a vast number of 

low-threshold MU during low intensity force production, using decomposition approaches 

reported by Enoka (2019)13 (i.e. two-source method). These can limit researchers’ ability to 

assess muscle contractions at high-levels of force production and therefore limit the ability to 

recruit high-threshold MUs. If the technologies exist and are at our disposal, why not 

formulate new approaches to examine MU behaviors. 

Additional concerns that may hinder recordings of MU decomposition are greatly 

considered throughout analysis and validation procedures. Several include doublet discharges 

or superimpositions that can hinder the ability to discriminate between firings of MUs. 

Doublets are pairs of short ISI (< 10 ms) that can occur during at the initial onset or 

sporadically throughout the contractions34. These doublet discharges can effect signal 

processing and automated MU decomposition techniques (i.e. PD III, BSS) by either missing 

initial firings or not including these into respective MUAP trains. Accordingly, several 

investigation have reported statistical methods to further evaluate signal accuracy and 

processing techniques of decomposed MU’s, via analysis of ISI distribution and spike-

triggered averaging22-27. Although rigorous, these can be performed routinely and provide 
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information regarding the decomposition accuracies and the nature of the error during 

different experimental conditions. 

  

1.2. Purpose of the Study 

 Despite the many limitations involved with sEMG, the controversy regarding the 

analyses of MU firing behaviors and the techniques of well-established recording procedures 

warrant concurrent examinations. Therefore, the purpose of this study is to simultaneously 

record muscle activation, using the 4-ch and 64-ch sensors, to compare decomposed signal 

recordings and respective MU firing behaviors.  

1.3. Research Question 

 Information obtained from this investigation has the potential to provide insight into 

MU firing behaviors simultaneously recorded from two of the most commonly used 

decomposition techniques. Therein, the following research questions have been established to 

potentially address concerns within literature that need to be answered:  

 Are there differences in the number of MUs yielded from each of the two sensors 

during contractions of the leg extensor muscles?  

 If so, are these associated with the location of the sensor placement 

 signal processing of decomposed MUs? 

 MU identification from low and high intensity contractions? 

 Are the firing patterns of recorded MUs different between the two sensors: 
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 mean firing rates (MFR)  

 recruitment threshold (RT)  

 relationships between these as expressed via linear regression coefficients 

 Are their differences in MU firing behaviors during the various intensities of 

isometric ramp contractions? 

 will the two decomposition techniques be able to differentiate the low and 

high threshold MU to yield similar regression slopes and intercepts (i.e., 

MFR vs RT) 

1.4. Hypotheses 

  Following respective validation of MUs collected from both sensors, the number of 

MUs yielded from each sensor should not be significantly different.  

 All MU firings during isometric ramp contractions will have similar firing properties 

(i.e., MFR vs RT relationships) following respective recordings and analysis 

procedures. 

1.5. Significance of the Study 

 This study has the potential to report similarities or differences in the firing behaviors 

of MUs recorded using two highly utilized decomposition techniques. Including a variety of 

submaximal contractions commonly performed in laboratory testings’ and will offer a robust 

evaluation and potentially address concerns of recording high-threshold MU.   
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1.6. Delimitations  

 The following are the delimitations for this study: 

1. Approximately 10-15 males are needed to complete this investigation. 

2. Participants must be between 18 to 35 years of age. 

3. All participants must be healthy, recreationally active, and free from any 

neuromuscular disease.  

4. Participants will be required to visit the laboratory on 2 separate occasion 

and be able to perform knee extensions of various force levels and 

contraction types. 

5. Participants will be asked to refrain from physical activity or exercises 

involving the lower-extremities during the duration of this study.  

1.7. Limitations  

1. Participants being recruited for this study will come from either classroom visits, 

a posted flyer, or from the laboratory website. Thus, participants will likely be 

students from the School of Kinesiology, Applied Health, and Recreation.  

2. Many of the affirmation limitations with the technology and equipment used to 

assess motor unit firing behaviors can potentially restrict analyses.  

a. Debated inaccuracies of the algorithms and decomposition methods using 

the 4-ch sensor. 
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b. Caution when pooling firing of higher-threshold motor units into their 

constituent action potential trains with the 64-ch sensor.  

3. Absence of concurrent recordings from indwelling iEMG. 

a. Currently recommended as the “Gold Standard” for recording EMG signal  

1.8. Assumptions 

1. Participants answer health questionnaire honestly and accurately  

2. Each maximal contraction is elicited under respective criteria. 

3. Both sensor locations accurately detect sEMG signals and represent motor unit 

firing behaviors of the whole muscle  

4. The independently established validity of both sensors and processes techniques is 

accurately depicting the relationships between MU firing behaviors.  

5. The sensor location are accurately depicting activation of the whole muscle.   

1.9. Threats to Validity 

Listed below are the potential threats to validity and the actions that will be taken to account for 

them: 

1. Potential of induced fatigue   

a. Due to the amount of contractions within a single visit, optimal rest time 

between contractions and between recording procedures will be given in order 

to limit the risk of fatigue.  

2. Order Effect  
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a. Force tracings for each submaximal contraction will require a small amount of 

skill acquisition. Due to potential learning effects, all contractions under both 

conditions will be performed during a familiarization visit. All contractions 

will be in a randomized order and thoroughly instruction for performance 

outcomes.  

3. Intra-subject variability – 

a.  Due to potential inconsistently in subject performance and electrode 

placement all conditions will be performed within the same visit for 

subsequent analysis.
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CHAPTER II 
 

 

Review of Literature 

 

 The review of literature is organized into subsections, each in chronological order 

summarizing studies that are most relevant to its respective section.  

2.1 Motor Unit Firing Properties   

Liddell and Sherrington, 1925 

 The purpose of this investigation was to examine the occurrences of inhibitory 

relaxation following stimulation of the ipsilateral afferent nerve. Although this is not 

directly related to the present study, it was the first to use the term motor unit. The 

authors are accredited with being the first to recognize all of the fibers innervated by a 

motor neuron behave as a single entity. 

Adrian and Bronk, 1929 

 The purpose of this investigation was to examine motor neuron firing properties 

and was the first study to detect action potentials from a single motor unit (Duchateu and 

Enoka, 2011). Of major significance, the authors report the changes in discharge 

frequency in fibers and the number of active fibers directly influence force gradation.  
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These highly contributable findings recognize the two primary influences for increased 

force production: increase firing rates for active motor units and recruit more motor units 

with increases in force. 

2.2 Techniques for Motor Unit Decomposition  

Mambrito and De Luca,198421 

 The purpose of this study was to provide a basic demonstration of the 

decomposition system and the techniques involved for signal detection and recording of 

EMG signals for successive decomposition. Additionally, this study provides references 

for detailed presentation of the algorithms involved, as well as statistical techniques for 

analyses of decomposed MUAPTs. Using a quadripolar needle electrode, Mambrito and 

De Luca describe 4 main sections for EMG signal processing and decomposition 

techniques to accurately extract as many MUAPs from the acquired signal.  

1. The first, describes a methodological approach for signal acquisition and quality 

verification using a quadripolar electrode. This electrode was designed to 

enhance the discrimination between different MUAPs acquired from 3 channels 

of EMG signals.  Additionally, due to the inconveniences placed on the 

experimenter, an automated experiment control system was devised to assess 

EMG signal quality appropriate for decomposition.  

2. The second, a recommended sampling and processing for EMG signals (bandpass 

filter of 1 kHZ and 10 kHz) for the present conditions. 
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3. The third, the introduction of a computer assisted interactive algorithm to extract 

MUAPs and match them into their respective MUAPTs. This is done by the 

algorithms ability to continuously update template matching and firing statistics 

to identify MUAPS in the EMG signal. This also allows the templates to be 

updated so that the algorithm can function even when the shapes of the MUAPs 

begin to vary.  

4. The forth, discusses ways a researcher can analyze and display the results in time 

domains of the MUAPTs.  

a. By displaying the wave forms (shapes) of MUAPs 

b. Impulse trains representing MUAP firings    

c. Interpulse interval (i.e., ISI) plots, representing time intervals between 

motor unit firings vs. the time of the muscle contraction 

d. Firing rate plots estimated from the mean firing rates of detected MUs vs. 

the time of the muscle contraction  

Additionally, this study provided tester reliability for the discussed procedures; accuracy 

of the evaluation techniques when recorded from a synthetic EMG signal; and accuracy 

measures from real EMG signals recorded independently and simultaneously from two 

different electrodes. Specifically, the comparison of the result from signals that were able 

to detect and categorize the similar MUAPTs. 
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Farina et al, 20086 

 The purpose of this study was to investigate the number of identifiable MUAP 

within simulated and experimental sEMG recordings. Using simulated MUs from a 

cylindrical anatomical system (electrode grid 11 x 11 with pre-distinguished collection 

channels for comparison), Farina and colleagues compared the number of MUs that could 

be identified from respective location using intramuscular recordings under low intensity 

contractions (2.5, 5, 7.5, 10, and 12.5% MVC force) from the abductor digiti minimi. The 

results of this indicated that relatively few MU are distinguishable when only few 

channels of sEMG recordings are used to discriminate the same MUs in both techniques. 

Thus, the researchers suggest the use of a larger multichannel grid arrangement (i.e. 

HDsEMG array) in order to discriminate a high proportion of MUs rather than a detection 

arrangement of only a few channels for recording (i.e. dEMG sensor). 

 

Holobar et al., 20099 

 The purpose of this study was to systematically examine a recently developed 

approach for the approximation of complete MU discharge pattern that was developed by 

the researchers, called Convolution Kernel Compensation (CKC). Using an HDsEMG 

array, Holobar and colleagues examined the capabilities of the CKC to decompose sEMG 

recordings of low-intensity force varying contractions. Specifically, they wanted to test 

the potential capabilities of the CKC method to; 

1. Identify a relatively large number of MU sampled from a population of various 

concurrently active MUs 
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2. Track early-recruited (low-threshold) MUs when higher-threshold MUs are later 

recruited 

3. Identify MUs from different muscles with diverse anatomies 

4. Identify MUAP trains that match those collected by intramuscular EMG 

recordings 

This study was the first to provide a comprehensive performance analysis for 

methodology using sEMG decomposition and validation of individual MUs using the 

HDsEMG array. The authors do however conclude that although the CKC technique does 

provide support, the decomposition of sEMG should continue to be concurrently recorded 

with iEMG recordings in order to increase the number of identified MUs.  

 

Holobar et al., 201010 

 The purpose of this study was to compare decomposition results from both the 

HDsEMG array and concurrently recorded iEMG from 3 separate muscles during low-

intensity (between 5% and 20% depending on the muscle). As a follow up study to the 

previous (Holobar et al 2009), this study also used the previously mention CKC 

technique to decompose sEMG recordings, as well as the use of EMGLAB for concurrent 

iEMG decomposition. The authors do stress the extensive manual editing required using 

EMGLAB for intramuscular recordings, and the difficulties associated with MUAP 

superimpositions for the inclusion/exclusion criteria for identifying MU discharges from 

iEMG. The average discharge rate (firing rate) and the coefficient of variation (CoV) for 
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the ISI were computed for each identified motor unit for both decompositions methods. 

Concurrently identified MUs from the two decomposition methods were compared using 

the rate of agreement (RoA). The results of this study indicate a relatively high 

percentage (84%-89%, muscle and force level specific) of MU discharge times that were 

identified by both decomposition methods for each muscle across force levels. Although 

the state the index of agreement between these methods was linearly correlated with a 

self-consistency measure of MU discharge patterns (based on CoV of ISI) (R2 = 0.38 – 

0.68, for the 3 muscles examined), the authors do state; 

“Dispite the relatively small number of common motor units per contraction, because of the large 

number of contractions, the total number of motor units identified by both decomposition 

techniques was in the order of hundreds and allowed for a systematic validation of the 

decomposition results on a large data set…. The results on discharge statistics and on the high 

rate of decomposition agreement, and the observation that the errors in surface EMG were 

probably overestimated in the current validation because of the potential errors in intramuscular 

EMG decomposition, indicate that the analysis of motor unit behavior in the conditions analyzed 

can be performed with equivalent accuracy using intramuscular or surface EMG.” 

 

Thus validating the use of the HDsEMG array and decomposition methods during static, 

low-force contractions and bringing forth further concerns with concurrent use of 

intramuscular recordings.    

 

Newab, Chang, and De Luca, 201020 

 The purpose of this study was to report the recent technological advancement for 

the estimates the firing patterns of active MUs, as previously reported by De Luca et al. 

(2006).  Then newly enhanced system uses artificial intelligence based algorithms (i.e., 

PDII) to decompose sEMG signals acquired from the four channels of the 5-pin surface 

electrode. sEMG signals were recorded from five muscles during isometric contractions 
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at force levels up to 100% MVC. The accuracy of the decomposition was measured using 

a decompose-reconstruct method, and further validated for accuracy using concurrent 

indwelling EMG. The results of this investigation highlight the ability of the enhanced 

algorithms to yield a high number of motor units, occasionally up to 40, among various 

muscles and force levels. Additionally, the firings of the MUAP trains were shown to 

average 92.5% accuracy and at time reach up to 97%. The claims made regarding the 

reliability of the reported technological advancements for high-yielding decomposition 

sEMG has since begun an ongoing discrepancy between many researchers.  

 

De Luca and Hostage, 20102 

The purpose of this study was to characterize the relationship between motor unit 

recruitment thresholds and mean firing rates during isometric contractions. The behaviors 

of these relationships were formulated from sEMG signals from the VL, FDI, and TA 

during muscle contractions at 20, 50, 80, & 100% MVC. These were recorded and 

decomposed from previously mentioned techniques (Newab, Chang, & De Luca, 2010), 

into constituent MUAP trains. The linear relationships represented as the coefficient of 

determination (R2) between mean firing rate and recruitment threshold was shown to be 

much higher for individual subjects as compared to the entire group. Furthermore, the 

pooling of MUs from the multiple subjects reduced the R2 value. Thus, R2 should first be 

determined on an individual basis per contraction, then averaged along with other R2 

values from the same contraction. The results of this study report the “operating point” 

for the motoneuron pool that was shown to be consistent throughout the hierarchical 
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inverse relationship between the recruitment thresholds and mean firing rates of the 

calculated MUs. Additionally, the modulation of excitation from the firing rates of 

recruited MU’s across the increases of force levels. Therefore supporting the “onion 

skin” phenomenon and “common drive” of the motoneuron pool. 

 

Farina and Enoka, 201115 

In this Letter to the Editor, the authors address the concerns with the reported 

analyses and employed techniques from the investigation by De Luca and Hostage (2010) 

and Newab, Chang, and De Luca (2010). The authors described, in their professional 

opinion, the difficulties associated with discriminating between overlapping action 

potentials in MU firings, especially those at higher force levels when recorded with 

intramuscular techniques. They further postulated what they viewed as inaccuracies 

existent in the PD III algorithm. Specifically, the authors’ state;  

“the ability to solve the global optimization of overlapping action potential using 

polynomial complexity algorithms is unlikely because it is a non-deterministic 

polynomial-type hard problem.”  

 

Moreover, the authors continue to rationalize the disparities between validation methods 

and procedures (i.e. reconstruct-and-test procedure), exemplifying that missed 

discharges from first or second order decompositions may, indeed, elicit inaccurate 

MUAP trains, in addition to insinuating that limitations in the signal processing and 

comparative analysis to classical two-source test (i.e. concurrent iEMG). Therefore, the 
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authors request a more rigorous evaluation before claiming that the PD III algorithm can 

accomplish what was reported. 

 

De Luca and Nawab, 20113 

 In this reply to Farina and Enoka (2011), Drs. DeLuca and Newab thoroughly 

offered their in-depth defense of the decomposition algorithms ability to differentiate 

overlapping action potentials through the combined use of their PD III along with the 

IPUS concept. Additionally, the defense of the mathematical and methodological 

approach of the reconstruct-and-test, which was developed to overcome the short 

comings of a more commonly used “generic test” from mathematically synthesized 

signals and two-source methods. 

 

Farina, Merletti, & Enoka, 20145 

 In this update from their original literature review (Farina, Merletti, & Enoka, 

2004), the authors discuss several important features of the potential benefits from 

extracting information about neural activation in the muscle. Of primary importance, 

these discuss the many challenges associated with retrieving the embedded neural code 

from sEMG signals that can be difficult to accomplish. Thereafter, several topics of 

debate are highlighted regarding limitations and the aforementioned concerns for the 

decomposition techniques from the 4-ch sensor.     
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“The action potentials of the active motor units can only be distinguished with adequate 

spatial information, which requires many recording channels of the EMG signal. An 

increase in the number of channels in which each motor unit action potential is 

represented will increase the number of motor units that can be uniquely detected at the 

skin surface, rendering the decomposition challenge theoretically possible.” 

 

The review goes on to reason additional validation procedures performed by Hu et al., 

(2013) (discussed later), that use STA techniques to further interpret their rationale for 

not just the decomposition algorithms but the tests establishing the validity (i.e., 

reconstruct-and-test procedure). Finally, they conclude by suggesting the two-source 

approach, discussed earlier, which allows for an unbiased approach expressing the rate of 

agreement from separate approached of intramuscular vs. surface decomposition.  

 

DeLuca, Nawab, and Kline, 201528 

 In this Letter to the Editor, the authors request clarification from conflicting 

arguments made against their decompose-synthesize-decompose-compare strategies 

(DSDC) (formally reconstruct-and-test procedure), as well as their suggested two-source 

method techniques. It seems that in these exchanges the conflicting arguments are 

misinterpreted by various statements. Specifically, the procedures involved with the 

decomposition validation via the reconstruction of synthetic signals that assess the 

accuracy of the decomposition algorithms. 
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Farina, Merletti, & Enoka, 201519 

 In this reply to De Luca, Nawab, and Kline (2015), the authors clarify the issues 

regarding the proposed DSDC and address the misinterpretations of what is actually 

being debated. Therefore, generalized the argument that;  

“sEMG decomposition is a source separation problem and a property of many source 

separation  methods is that the residual noise decreases systematically with an increase in 

the number of estimated sources.”  

 

They conclude by remaining steadfast to their opinion of concurrent intramuscular and 

sEMG signal decomposition currently being the best practice for validation. 

 

Enoka, 201913 

 The purpose of this review was to compare results of investigations that have 

achieved decomposition of sEMG signals that agree with what is known from recordings 

obtained with intramuscular electrode. Specifically, surface decompositions that have 

been able to characterize discharge times of single motor units with rate coding 

characteristics that match those from iEMG. Those comparison of characteristic that are 

relevant to those of the present include; peak discharge rate, saturation of discharge rate 

during submaximal contractions, rate coding during fast contractions, and the association 

between oscillation in force and discharge rate. Although this review brings forward 

many of the replicated findings for agreeance between intramuscular and surface 

decomposition, it also identifies important focus for waveform editing from algorithms 
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that can improve the understanding of motor unit physiology and its potential 

applications.  

 

DeFreitas, 201914 

In this recent letter to the editor Dr. Jason DeFreitas (2019) provides a rational to 

concerns in Farinas’ review asking the question; “are we focusing on the right 

information?”.  He begins by debating the issues regarding superimpositions when 

discriminating low- and high-threshold MUs, and continues to describe the innovations 

associated with the abilities to extrapolate a large population from the MU pool with the 

use of new technological advancement. Although in agreeance with some of the concerns 

from Farinas’ review, DeFreitas argues the importance of the ability to yield and assess 

high-threshold MUs. Later he notes the disparities and inconsistent findings regarding the 

interpreting of instantaneous firing rates, due to their short windows (i.e. < 2 sec) for 

averaging firing rates and goes on to explain how IFR’s are commonly reported in studies 

in which the initial firings are calculated from contractions using quick increases, or 

oscillations of force. This is uncommon in most decomposition studies, specifically those 

that utilize steady state muscle contractions in order to assess deviations of ISI 

distributions that can signify potential identification errors (Hu et al., 2014). Additionally, 

Dr. DeFreitas (2019) expresses his concerns regarding the unlikelihood of detecting a 

vast number of low-threshold MU during low intensity force production, using 

decomposition approaches reported by Enoka (2019) (i.e., intramuscular). These can limit 

researchers’ ability to assess muscle contractions at high-levels of force production and 



25 
 

therefore limit the ability to recruit high-threshold MUs. If the technologies exist and are 

at our disposal, why not formulate new approaches to examine MU behaviors.   

 

2.3 Additional Validation Procedures for Motor Unit Firing Behaviors  

Hu, Rymer, Suresh, 201323 

 The purpose of this investigation was to thoroughly test the reliability of 

estimated MU parameters using spike triggered averaging (STA) of the sEMG signal. 

The authors investigated factors that could potentially induce amplitude bias when 

estimating MUAPs and shape variations using a reconstructed or simulated EMG signal 

derived from a 30% isometric contraction recorded from the FDI, using the 4-ch sensor. 

From the simulated sEMG recording, MUAPS were estimated from STA and five 

variables were examined; 

1. Amplitude variations within the MUAP train 

2. Varying duration of a MUAP train  

3. Action potential super-position due to high firing rates  

4. Synchronized firing effects 

5. Spurious even classification during firing event discrimination  

The issues for each these are thoroughly discussed. Briefly, the variation in MUAP 

duration led to an underestimation of the real MUAP amplitude. The synchronized firings 

led to and over-estimation of the amplitude. For small MUs, spurious firing resulted in 
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the over-estimation in amplitude, while an under-estimation in amplitude was shown in 

large MUs. Amplitude estimation was minimally influenced by the variability in 

amplitude and high firing rates. There were large variations in MUAP shapes with higher 

firing rates and variations in MUAP duration. Finally, there was also a correlation 

between estimation errors and shape variations. Overall, this study was able to identify 

sources of STA biases that can arise from physiological properties of the MU pool and 

signal recording and processing procedures. Overall, STA can be used as a valid 

assessment if appropriate actions are used to remove unreliable estimates.   

 

Hu, Rymer, Suresh, 201322 

 The objective of this study was examine MU pool organizational properties by 

employing two separate sets of tests to examine and assess the validity of the 

decomposition results collected from the 4-ch sensor. The sEMG signals were recorded 

from the FDI using commonly practiced recording techniques recommend for the 4-ch 

sensor. For both subsequent examinations, participants performed 3 MVCs followed by 

submaximal isometric contraction utilizing trapezoidal force trajectories at 20%, 30%, 

40%, and 50% MVC. The first test, STA, was used to reconstructs the shapes of the 

action potentials by using the MU firing times as triggers for the recorded raw sEMG 

signals. 
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Hu et al., 201426 

The objective of this study was to examine the firing statistics of the identified MUs in 

order to evaluate the accuracy of a decomposition algorithm from the 4-ch sensor. 

Decomposed MUs from both intramuscular and surface recordings EMG recordings were 

used for cross-validated of estimated ISI statistics. This investigation found that ISI 

distribution can provide information regarding the spurious errors and missed firing 

errors in the decomposition. Specifically, secondary peaks at the short or long ISIs, 

represents errors as shown in the deviation from the Gaussian distribution. Additionally, 

the authors report the inverse relationship between the decomposition accuracy and the 

variability (coefficient of variation) of the ISIs. Similar to the authors previous reports, 

ISI statics be used to ass spike timing accuracies of the identified MUs from the 4-ch 

sensor.    

 

McManus et al., 201725 

 Although the purpose of this investigation is not directly related to that of the 

present, the methodological procedures used extensively describe discrepancies within 4-

ch validation techniques. To briefly describe the additionally validations used by 

McManus et al (2016); following the recording and analysis (Newab et al., 2010, DeLuca 

and Hostage, 2010) detected MUs and their respective firing times from their four MUAP 

waveforms (via four bipolar channels) were used to STA each respective, corresponding 

sEMG signal. Thus, four representative STA MUAP estimates are derived for each 

detected MU. The duration of each MUAP is estimated as the time between the zero 
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crossing before the initial positive peak of the action potential and the zero crossing after 

the last positive peak. Using a moving average window, variations of STA MUAP trains 

were quantified over the duration of activation and shifted along the sEMG signal. 

Thereafter, the templates created from the STA analyses were then compared to detected 

MUs of from the original decomposed signal. Specifically, described in more detail by 

Hu et al (2013), two tests for reliability were administered in order to meet qualifications 

for acceptance. The first was performed by calculating the coefficient of variation for the 

peak-to peak amplitudes of MUAP templates in each window. Whereas, the second was 

performed by computing the maximal linear correlation coefficients between 

decomposed MU and the STA MUAP templates. The specifications for inclusion and 

further analysis were then determined depending on the length of the contraction, moving 

average window, and MU yield/validation per subject.  
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CHAPTER III 
 

 

Methodology 

 

3.1 Participants 

 Participants for this investigation consisted of 10 resistance-trained males (mean ± 

SD; height, 178.64 ± 5.82 cm; weight, 177.8 ± 17.37 lbs.; age, 23 ± 3 years). Inclusion 

criteria requires participants to have a minimum of 6 months lower-body resistance 

training experience. Individuals having experienced any current or recent musculoskeletal 

injury to the lower extremities or any neuromuscular disorders will not be allowed to 

participate in this study.  All participants were required to complete a physical activity 

readiness questionnaire (PAR-Q), health history questionnaire, and a university 

Institutional Review Board approved informed consent form before testing procedures 

could take place. 

3.2 Research Design 

 This study required 2 separate visits to the neuromuscular laboratory, separated by 

at least 48 hours. Following required documentation and inclusion criteria, the initial visit  
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included familiarization of all testing procedures. Following a brief warm up, of 3 five-

second knee extensions at perceived 25, 50, and 75% MVC, each subject then performed 

2 MVCs.  

Ultrasonography was used to identify location and muscle pennation angle, as 

well as measure subcutaneous tissue to confirm inclusion criteria. Each visit will consist 

of two maximal voluntary contraction (MVC) of the knee extension exercise, followed by 

14 submaximal contractions.  Visits 2 will serve as data collection for neuromuscular 

assessment of the VL muscle. Listed below is a summary for each visit, submaximal 

contractions (1.2 – 1.6) will be performed in a randomized order, as well as sensor 

recording conditions:   

3.2.1 Testing Procedures  

 After obtaining the highest maximal force from the two randomized MVCs, all 

submaximal contractions and sensor recording conditions will be randomized with two 

minutes of rest between each contraction. Subjects will perform each of the listed 

contraction twice, separated by a 20 minute wash-out period.  

1.1. Two MVCs  

 Instructed to illicit rapid increase in the rate of torque development  

 Instructed to illicit maximal force production 

1.2. Sinusoidal contraction following a linear force trajectory increase up to 

20% MVC with a 0.5 Hz waveform ± 5% then a linear decrease back to 

baseline 
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1.3. Sinusoidal contraction (same as prior) with a 1.5 Hz waveform ± 5%  

1.4. Isometric trapezoidal contraction at 10% MVC  

1.5. Isometric trapezoidal contraction at 20% MVC 

1.6. Isometric trapezoidal contraction at 50% MVC  

 
Figure 1 visual representation of the study protocol. 
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3.3 Instrumentation and Procedures 

3.3.1 Ultrasonography 

 Muscle pennation angle of the VL will be assessed utilizing a brightness mode 

(B-mode) ultrasound imaging device (General Electric LOGIQ S8, Wauwatosa, WI, 

USA) and a multi-frequency linear-array probe (Model ML6-15-D 4-15 MHz, 50-mm 

field of view). Upon the initial familiarization visit, while lying supine, participants were 

asked to relax and lightly bend at their right knee (10-15˚) to obtain panoramic scans and 

help identify proper electrode placement and orientation. Panoramic scans of the VL will 

be taken at 50% the distance between the greater trochanter and the lateral aspect of the 

patella.  To enhance images, a water-soluble transmission gel was applied to the probe 

and the skin.  Three scans will be taken from the VL; ultrasound images were later 

analyzed using image analysis software (ImageJ, version 1.5i, NIH, Bethesda, MD, 

USA), with the average values utilized for statistical analyses.  

3.3.2 Isometric Strength Testing 

 Participants were seated and secured in an upright position with their hip and knee 

joint angles fixed at 110° and 120°, respectively. Isometric force (N) was recorded using 

an S-beam load cell (Model SSM-AJ-500; Interface, Scottsdale, AZ, USA) attached to a 

cuff around the ankle. Following a warm-up of 3, 5 sec. self-determined submaximal 

isometric muscle actions at approximately 25%, 50%, and 75% MVC, the participants 

performed two separate, 3 sec. MVCs. The first MVC, instructed prior to performance, to 

“kick as hard as possible” in order to elicit maximal torque production. The second MVC, 

instructed prior to performance, to “kick as hard and as fast as possible” in order to elicit 
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a rapid increase in force production. The highest force value from the two trails was 

designated as the MVC for that respective visit and isometric ramp contractions 

thereafter. The order in of each MVCs was randomized for both visits.    

3.3.3 Submaximal Contractions 

 Submaximal knee extensions during was performed in a randomized order. Figure 

1 depicts the sequence of contractions. Following MVCs and a 2 minute rest period, 12 

separate trapezoidal tracings were performed using target force trajectories using a 10%/s 

linear increase to target force, a 10 second isometric hold, and a -10%/s linearly 

decreasing segment back to baseline. Each of these randomized contractions were 

performed at 10%, 20%, and 50% MVC. Visual feedback was provided by real-time 

force feedback, allowing participants to accurately produce force that follow each of the 3 

different templates. For the trapezoidal contractions, duration and intensity of the ramp-

up and constant force hold portions are set with special consideration for MU recruitment 

and synchronization. Additionally, 2-minutes of rest was given between each contraction.  

 

3.3.4 Electromyography and Signal Processing 

Two separate sEMG sensors were placed on the VL of the right leg during testing. 

Prior to electrode placements, the skin was shaved, lightly abraded, and cleaned with 

alcohol. Locations for each sensor will placed, according to respective recommendations.  

The first sensors placed on the VL was placed two-thirds the distance between the 

center of the muscle belly towards the distal tendon (Zaheer et al., 2012). a five-pin, 4-ch 
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surface electrode array (Delsys, Inc., Natick, MA, USA). A reference electrode 

(Dermatrode; American Imex, Irvine, CA, USA) was placed over the spinous process of 

the C7 vertebrae and both were secured using hypoallergenic tape. Signals from the four 

channels of the dEMG array sensor were differentially amplified, filtered between 20 -

450 Hz, and samples at 20 kHz using a sixteen channel acquisition system (Bagnoli 

system, Delsys Inc., Natick, MA, USA) and recorded for off-line analysis. 

The second sensor for HDsEMG signals recorded from the VL with a semi-

disposal adhesive grid of 64-ch electrode (13 rows x five columns); gold-coated; diameter 

1 mm; inter-electrode distance 8mm; OT Bioelecttronica, Turin, Italy). Using a reference 

line marked between the lateral side of the patella and the anterior superior iliac spine, an 

additional line on the distal portion of the muscle belly oriented 20° with respect to the 

reference line will be used for sensor placement. Following skin preparation, the 

electrode cavities were filled with conductive paste (SPES Medica, Salerno, Italy) and 

positioned between the proximal and distal tendons with columns oriented along the 

muscle fibers. Two reference electrode were dampened with water and positioned on the 

right wrist. HDsEMG signals were recorded in monopolar mode and digitally converted 

using a 16 bit multichannel amplifier (EMG – Quattrocento, 400 cannel EMG amplifier; 

OT Bioelecttronica; 3 dB, bandwidth 10-500 Hz). Signals were amplified (150x), 

sampled at 10240 Hz and bandpass filtered (10-500 Hz) before being stored for offline 

analysis.  

Signal recordings with the force transducer were amplified (200x) and sampled at 

2048 Hz with the external analogue-to-digital converter linked to both recording systems. 
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Feedback of the force signal will be provided from Delsys software and displayed on a 

monitor position directly in front of the participant.  

3.3.5 EMG Decomposition: 4-ch Sensor 

From the 4-ch sensor, four channels of raw sEMG signals recorded during each 

submaximal contraction. These were then stored on a personal computer and later 

decomposed offline using the PDIII algorithm described by De Luca et al. (2006) and 

improved upon by Newab et al. (2010). All MU’s that do not demonstrate at least 90% 

accuracy, as assessed by the Decompose-Synthesize-Decompose-Compare (DeLuca and 

Contessa 2012) test were eliminated. Further analysis for the remaining MU’s (those with 

>90% accuracy) was performed using custom-written software (LabVIEW 2017, 

National Instruments, Austin, TX, USA), which calculates the mean firing rate (MFR), 

relative recruitment threshold (RT%), interspike intervals (ISI) between each firing (time 

in ms), and the coefficient of variance (CoV; standard deviation normalized by the mean) 

of ISI distribution for each MU. The ISI distributions was displayed in histograms and 

manually inspected by the primary investigator for further validation. Accordingly, 

accepted MUs must: follow a relatively normal distribution of the ISI histogram, a 

positive RT% (i.e., no firings before the onset of force), a CoV < 30%, a range of ISI < 

100 ms, and no separate clusters before or after the main distribution, which may indicate 

additional or missed firings during the decomposition. Additionally, MUs will be 

immediately discarded if a bimodal ISI distributions was present or if there was an 

insufficient spread/distribution of detected MUs (e.g. range of RT% found in a 

contraction must span at least10% MVC). Figure 2 provides representative examples of 

ISI histograms along with the resulting decision regarding keeping or discarding those 
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MUs.  Motor units that meet the above criteria (i.e. those that will be kept) will have the 

instantaneous firing rates smoothed with a 1-s Hanning window, and the following 

variables will be calculated: MFR (in pulses per second) of individual MUAPs were 

calculated as the mean during the plateau of the smoothed curve; RT%, calculated as the 

relative force level (% MVC) at the onset of firing. 

Figure 2 example of acceptance criteria for each MU collected using the 4-ch sensor and 

evaluated offline using custom build software to validate ISI CoV. 

 

3.3.6 EMG Decomposition: 64-ch Sensor 

Similarly, the sEMG signals collected from submaximal contractions were stored 

and decomposed offline using blind source separation (BSS) and manual inspection 

methods described by Holobar & Zazula (2007a,2007b)36,37 which is commonly used to 

decompose and identify MU firing times across a broad range of forces32.  These were 

manually edited to allow for the identification and removal from lower quality spikes that 
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are not suitable for that respective train. Inclusion criteria for MU: display a signal-to-

noise ratios ≥ 30 dB, and have no firing instances (relative to contraction types and 

intensities) separated by more than 2 s. Identification, addition, and removal of firing 

instances were carefully investigated, and followed standard operating procedures as 

discussed by Holobar & ZaZula (2007a,2007b)36,37 and Del Vecchio et al 202038. Those 

MUs that met inclusion criteria were further evaluated for MU firing behaviors (i.e., 

MFR, RT%).  

 

Figure 3. Example of the visual inspection and manual editing techniques used for MUs 

acquired by the 64-ch sensor and decomposed by BSS.  

 

3.4 Statistical Analysis 

Due to the differences in processing and validation techniques used from the two 

systems and recording devices, a 2-way mixed factorial analysis of variance 
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(ANOVA)(sensor [4-ch vs 64-ch] × contraction intensity [10% vs 20% vs 50%]) was 

used to examine mean differences in MU yield during all contraction performed during 

the study protocol. In the case of a significant interaction or main effect, follow-up 

analyses included 1-way repeated measures ANOVA to examine differences in MU yield 

between the two systems and Bonferroni corrected independent samples t test to examine 

differences between contraction intensities.   

 

Figure 4 flow chart for MU validation and yield for inclusion in statistical analyses.  

 

Separately, for validated MUs, linear regression coefficients were calculated 

using Excel (Microsoft Inc., Seattle, WA, USA) to determine slopes and y-intercepts of 

the RT versus MFR relationships during submaximal contractions (RT/MFR10%, 

RT/MFR20%, and RT/MFR50%). For each contraction intensity, a minimum of 8 MUs 

were needed to be include in the regression analysis. RT bin widths of 5% (e.g., 0-5, 5-
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10%, etc.) were used to condense the data. The average for each bin was used to test the 

differences between slope coefficients and y-intercepts from the 4- and 64-ch sensors 

during RT/MFR10%, RT/MFR20%, and RT/MFR50% (as described by Pedhazur 1997b). 

Due to only one subject meeting the inclusion criteria, regression analysis for 

RT/MFR10% was performed on the firing properties of the subjects’ single contraction at 

10%. Paired samples t tests were used to compare RT between sensors at each intensity. 

All statistical analysis were performed using SPSS Statistics 24 (International Business 

Machines Corp., Armonk, NY, USA) and a priori alpha level of 0.05 and 0.10 was used 

to determine significance in ANOVA and linear regression slope and y-intercept 

comparisons, respectively.  
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CHAPTER IV 
 

 

RESULTS 

 

4.1 Number of Decomposed MUs 

 Following validation procedures from both recording systems, 925 out of 1480 

and 698 out of 2553 MUs were kept from the recordings using the 4-ch and 64-ch 

sensors, respectively (Table 1). These were then used for further analysis in MU yield 

and subsequent firing behaviors.  Figure 4 displays a flow chart that describes the 

procedures used for MU validation.  

 

 

 

Intensity Decomposed - PD III ISI Validated % Kept Decomposed - BSS Manually Edited % Kept

10%MVC 333 90 27 682 259 38

20%MVC 508 331 65 779 250 32

50%MVC 639 504 79 1092 189 17

Total 1480 925 63 2553 698 27

Table 1.  Number of MUs seperately decomposed and validated at each contraction intensity 

4-ch 64-ch
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The results of the 2-way mixed factorial ANOVA revealed a significant 

interaction between sensor and intensity for MU yield (p < 0.05), as well as a main effect 

for intensity (p < 0.05). Follow up 1-way ANOVA for the 4-ch sensor indicated that the 

MU yield at 50%MVC > 20%MVC and 10%MVC (12.6 ± 0.74 vs 8.28 ± 0.86 and 2.25 ± 0.61, 

respectively). Conversely, for the 64-ch sensor, 50%MVC < 20%MVC and 10%MVC (4.73 ± 

0.89 vs 6.25 ± 1.20 and 6.48 ± 0.95, respectively). Bonferonni corrected independent 

samples t tests showed significant differences in MU yield between the two sensors at 

10%MVC and 50%MVC (p <0.05), but not during 20%MVC (p = 0.18).  
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Figure 5 validated MUs from the 4-ch and 64-ch sensors during 10%MVC, 20%MVC, and 

50%MVC. Values presented as mean ± SE. * Significant difference between sensors 
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4.2 Recruitment Threshold and Mean Firing Rate 

 

Individual slope and y-intercept values are displayed in Table 2. A total of 7 

contractions (10%MVC = 1, 20%MVC = 2, 50%MVC = 4) passed validation and MU yield 

inclusion criteria for linear regression analysis. Displayed in Figure 6a, for S008 10%MVC, 

there was a significant difference (p = 0.015) between the slopes of RT/MFR10% recorded 

from the 4-ch and 64-ch sensors. However, for the grouped (i.e., bin) slopes during 

20%MVC, there were no significant difference in slope coefficients, but there were 

differences in y-intercepts (p = 0.002) of RT/MFR20% (Figure 6b). For RT/MFR50%, 

Figure 6c shows a significant difference between the slopes (p = 0.008) of firing 

relationships collected between the two sensors. Additionally, individual RT/MFR slopes 

± 95% confidence intervals are displayed under RT/MFR20% and RT/MFR50%.  

#MU slope y -intercepts #MU slope y -intercepts

10%MVC S008 16 -0.778 17.014 21 -0.365 11.538

S008 25 -0.529 18.155 28 -0.362 14.054

S009 15 -0.305 13.952 12 -0.237 13.044

Grouped 40 -0.262 15.058 40 -0.314 13.646

S002 16 -0.488 25.611 15 -0.145 14.225

S006 18 -0.453 27.886 7 -0.173 14.072

S008 17 -0.501 22.559 21 -0.285 20.708

S009 14 -0.440 24.426 8 -0.104 15.425

Grouped 65 -0.337 22.030 51 -0.196 16.855

20%MVC

50%MVC

Table 2.  Individual and grouped linear regression coefficents from recruitment threshold versus mean firing rates at each contraction 

intensity for 4-ch and 64-ch sensors.

4-ch 64-ch 
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Figure 6a comparison of linear regression lines and upper and lower confidence intervals 

(CI) for RT/MFR10% for S00810% validated contraction. Data is presented from the 

calculated RT and MFR of the validated MUs, due to this being the only contraction that 

met inclusion criteria. Legend in 6a is consistent throughout 6b and 6c. Regression 

coefficients (slope and y-intercepts) for each all validated contractions are displayed in 

Table 2. * indicates significant difference between slopes (p < 0.10). 

* 
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Figure 6b grouped (top) and individual (bottom) mean slope ± 95% CIs for comparisons 

of linear regression lines for the RT vs MFR relationships at 20%MVC. * indicates 

significant difference between slopes (p < 0.10). 
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Figure 6c grouped (top) and individual (bottom) mean slope ± 95% CIs for comparisons 

of linear regression lines for the RT vs MFR relationships at 20%MVC. * indicates 

significant difference between grouped mean slopes (p < 0.10). 

 

During each intensity, the RT of validated MUs included in regression analysis, 

was significantly different (p < 0.001) between records from the 4-ch and 64-ch sensors. 

* 
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Figure 7 shows grouped (20%MVC & 50%MVC) and individual (10%MVC) instantaneous 

RTs comparisons at 10, 20, and 50%MVC. 

 

 

Figure 7 comparison of individual (S008 10%MVC) and grouped (20%MVC and 50%MVC) 

RT for validated MUs at each intensity level from the 4-ch and 64-ch sensors.  
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CHAPTER V 
 

 

DISCUSSION 

 

5.1 Implications and Significance 

The purpose of this study was to concurrently record muscle activation from two 

different sEMG decomposition devices, and separately investigate respective signals for 

validated MU yield and firing behaviors for comparison. Accommodating for various 

constraints involved with sEMG decomposition, the researchers were able to offer 

interpretation of discrepancies regarding the analyses and editing techniques between the 

two recording devices. Several of these are influenced by a number of variables subject to 

inaccuracies and are greatly considered in the findings of this study.  

5.2 MU Yield 

Following collection of the sEMG, automated decomposition using the DSDC 

and BSS are markedly dependent on the quality of the acquired signal17,33. Thus, sEMG 

signals were visually inspected during contractions, and in the present study, subjects 

performed four separate contractions at each intensity to increase the probability of 

acquiring reliable signals. However, even with appropriate precaution, the amplitude 
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and quality of the sEMG is subjective to muscle characteristics and the recording 

capabilities of the sensors used (i.e., “pick-up area). For example, prior to validation, the 

number of identified MUs from the 4-ch and 64-ch sensors were greater at each intensity 

and overall total (Table 1). The sEMG amplitude from each of these sensors would have 

likely influence the amount of MU action potentials identified since MU activity is 

uniquely represented by the surface action potential where it is recorded17. Given that the 

64-ch array is a larger sensor, the number of electrodes would influence the amount of 

pick up area from contracting muscle, thus yielding a greater amount of MUs. In an 

investigation by Farina et al. (2008), the authors investigate the difference in identified 

MUs yielded from multichannel sEMG recordings similar to those of the present. In this 

study, the authors conclude that the relatively few MUs can be distinguished from the 

sEMG signal when fewer channels are utilized. This may have initially been applicable 

considering the greater amount of MUs identified from BSS, however, following manual 

editing only 27% of the decomposed MUs were kept compared to the 63% following ISI 

validation from DSDC.    

Validation procedures from both devises extensively eliminated MUs at each 

intensity level. As shown in Figure 5, there were significant differences in MU yield 

between the 4-ch and 64-ch sensors at 10%MVC and 50%MVC, and were likely due to ISI 

validation and manual inspection procedures, respectively (Table 1). Following ISI 

inspection at 10%MVC, only 27% of the MUs were able to pass validation requirements. 

Of those eliminated, many were identified at a RT prior to the onset of force (i.e., IFR) or 

did not meet the ISI CoV (CoV < 30) inclusion criteria that removes the potential errors 

produced by DSDC10,39. Although a relatively similar amount of MUs decomposed by 
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BSS at 10%MVC were also eliminated, the manual editing techniques proved customized 

procedures that allows the investigator to postulate elements that are beneficial to 

acquiring precise information from the sEMG signal38. For example, the number of 

decomposition “runs”, or number of iterations to build upon each MU spike train, can be 

selected based on the estimated number of MU to be identified in the contraction36,37. The 

length of time in which the sEMG signal, and its initial offset, can be segmented into 

durations that facilitate the decomposition. Specifically, portions prior to the onset of the 

contraction may be contaminated with noise artifact from various sources and can be 

eliminated. These however are not possible methods that are available with 

decomposition techniques of the 4-ch sensor.  

 Conversely, for 50%MVC, the number of validated MUs following respective 

decomposition were significantly greater for the 4-ch sensor compared to the 64-ch array. 

When first proposed, the ability of the 4-ch sensor to distinguish MUs of low- and high-

thresholds during high intensity contractions was emphasized as a technological 

advancement in the capabilities of the PD III algorithm12. Although these capabilities are 

viewed as somewhat of a “black box”, the number of MUs that passed validation 

procedures yielded a significantly greater amount versus 64-ch sensor. The 64-ch sensor 

has shown to accurately identify high threshold MUs during contractions at higher 

intensity levels in muscle of the lower limb12. However, to our knowledge these have not 

been performed on the vastus lateralis using simultaneous sEMG decomposition 

techniques. The number of validated MUs from 64-ch sensor at this intensity level may 

have affected further investigation of firing behaviors. Discussed hereafter, the extraction 
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and limitation of MUs during 50%MVC were not comprised in a manner that would allow 

for a qualitative spread in RT.  

Following BSS decomposition, manual editing and inspection of the identified 

MUs are then performed on each of the trains and respective delta pulses. As depicted in 

Figure 5 of Del Vechio et al 202038, the investigator inspects each of the MUs in a series 

of three panels and can edit delta pulses (denoting the discharge times/firing times) 

allowing identifiable inter-discharge intervals to exhibit consistent behavior, or choose to 

eliminate the MU all together36,37. The regularity of the discharges (pps) during the 

contraction time (s) are clearly visible in an accurately identified MUs, and are typically 

unaffected by base-line noise (Figure 3). As mention previously, the base-line noise and 

movement artifact may be a limitation of the automated techniques of the DSDC 

decomposition, successively eliminating MUs of lower-thresholds that are labeled as pre-

activated.  

In the case that a train needs appropriate editing, MU discharges can be added or 

deleted from the MU spike train. However, applying these methods may be subjective to 

the user. In a recent tutorial, Del Vecchio and colleagues (2020) discuss the primary 

components of analyzing MU discharge characteristics recorded from 64-ch sensor. Of 

significance, the authors explain the subjectivity of the manual editing techniques, which 

provide a re-calculation of the MU spike train in order to optimize the accuracy in which 

the filtering of adding or removing pulses. These may have affected the outcome of the 

number of validated MU following decomposition.   
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5.3 Firing Behaviors- RT/MFR 

The low amount of validated MUs were a direct limitation of subsequent analysis 

of linear regression coefficients from RT vs MFR. The 7 out of 120 contractions that did 

meet criteria from both validations were compared at each intensity. Caution must be 

taken when interpreting these results, nevertheless, these recording were from the same 

contraction and may offer some insight into the comparisons of validation techniques and 

regression coefficient comparisons.  

 Only one subject met the inclusion criteria for comparisons of slope and y-

intercept in RT/MFR10% (Figure 6a), showing a significant difference between the slopes 

of the two sensors. These differences (along with those illustrated in Figures 7b and 7c 

for RT/ MFR20% and RT/MFR50%) are to be expected due to the differences in RT for the 

validated MUs (Figure 7). As previously mentioned, the extensive validation of both 

systems may have eliminated MUs that would have offered a more diverse spread of RTs 

throughout the contractions. For many of the contractions that did not meet validation 

inclusion criteria, low-threshold MU recruited earlier on by the 4-ch sensor at 10%MVC 

were eliminated during ISI inspection due to early detection of initial discharges prior to 

force onset (potential baseline noise and movement artifact). However, in S008 10%MVC, 

these MU showed a lower RT with higher MFRs as depicted by the greater slopes and 

decline in the inverse relationship between RT/MFR. Although not as identifiable (Figure 

6b), similar differences in RT of MUs during 20%MVC likely contributed to the 

differences in y-intercepts for RT/MFR20%. Of concern, the differences in RT between 

validated MUs at 50%MVC are well represented in the differences between the slopes of 

RT/MFR50% (Figure 6c). Many of the aforementioned recording, decomposition, and 
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manually editing techniques required by the 64-ch sensor can hinder the ability of 

analyzing a robust and meaningful population-based analyses of firing behaviors. The 

number of MUs identified at a higher RT% displayed a lower, less steep slope because of 

the lower MFRs associated with higher threshold MUs2.    

5.4 Conclusion 

The purpose of this investigation was to determine potential differences in MU 

yield and subsequent firing behaviors between two commonly used sEMG 

decompositions recording devices. To the best of the authors’ knowledge, this is the first 

investigation to examine sEMG recordings simultaneously recorded from the vastus 

lateralis muscle using the 4-ch and 64-ch sensors. The findings from the MU yield from 

separate decomposition and validation procedures support previous findings regarding 

the capabilities and limitations involved with sEMG. Unfortunately, these did hinder 

further application into subsequent firing behaviors that can be used to investigate useful 

information regarding MU properties. Yet, the reported differences in MU yield and 

RT/MFR slopes and y-intercepts affirm the 4-pin sensors ability to distinguish high-

threshold MUs at greater intensity levels, and collectively follow the inverse relationships 

on a consistent basis20. Furthermore, this investigation is not limited to the direct 

conclusion of utilizing one technique or validation approach. However, the current 

findings can provide insight into advantages and disadvantages of decomposition and 

validation procedures of both. Although more MUs were validated from the 4-ch sensor, 

the low amount of MUs validated from the 64-ch sensor at higher contraction intensities 

did limit further investigation into the additional firing behaviors. These concerns follow 

the many discrepancies reported with investigator using the 64-ch sensor and the 
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apprehension of successful decomposition of sEMG at higher intensities. Although not 

reported, concurrent two-source methods were used to further identify and validate MU 

firing properties (i.e., fine wire EMG). Additionally, inclusion of inter and intra-rater 

reliability may help to eliminate the subjectivity of MU validation and manual editing 

techniques. Therefore, further investigation and validation procedures would greatly 

benefit these preliminary findings.
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