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Abstract: Gray Vireos are one of the most understudied songbirds in North America and 

are considered a species of conservation concern for multiple state and federal agencies. I 

sought to address some of the gaps in our understanding of the species’ habitat 

requirements and ecology, using a novel approach of spatially quantifying an index of 

habitat quality, and by evaluating their nesting strategy as an evolutionary mechanism to 

control microclimate. 

 

i) I studied Gray Vireo nest-site selection at three spatial scales: the nesting tree, the 

vegetation surrounding nests, and within territories. Gray Vireos selected nesting 

trees that were taller and wider than other adjacent junipers. Selection of 

vegetation characteristics surrounding nests showed a similar pattern, where nests 

were in areas where junipers were taller, wider, and had greater foliage density 

than was randomly available. Broad-scale analyses suggested that Gray Vireos 

selected nest sites in areas with higher proportions of junipers at low elevations (< 

1954 m), and lower proportions of junipers in higher elevations (> 1954 m). 

ii) Daily nest survival probabilities were estimated as a function of nest placement 

and fine-scale vegetation characteristics. Nest survival was high, with daily and 

overall nest survival probability of 0.98 and 0.44, respectively. Our top models 

included positive effects of nest-tree foliage density and nest distance from the 

edge of the nesting tree. 

iii) I sought to quantify the proportion of selected habitat that has a high probability 

of contributing to population growth. Gray Vireos tended to nest in locations 

where they had the highest probability of nest survival. Approximately 85% of the 

area selected by Gray Vireos for nesting habitat had a high probability of 

contributing to population growth through nest survival. 

iv) The microclimate of Gray Vireo nests was monitored to evaluate the thermal 

benefits of nesting on the periphery of a nesting substrate through orientation. 

Nests were on average 3 ℃ cooler than the opposite orientation of the nesting tree 

at the hottest times of the day (1700–1830). Nests also received significantly less 

light exposure throughout the day than the opposite orientation of the nesting tree. 
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CHAPTER I 
 

 

A MULTISCALE ANALYSIS OF GRAY VIREO (VIREO VICINIOR) NEST-SITE 

SELECTION IN CENTRAL NEW MEXICO 

INTRODUCTION 

An understanding of the habitat preferences for species of conservation concern is one of 

the most fundamental goals of ecological research (Southwood 1977). For migratory birds, nest-

site selection patterns are arguably the most important life-history consideration for habitat 

management, as nest sites can influence reproductive success and population growth for 

migratory breeding birds (Schmidt 2004, Kus and Whitfield 2005). Nest-site selection studies can 

be used to create and enhance management prescriptions for breeding birds (Manly et al. 2002).  

Nest-site selection is continuously influenced by evolutionary forces, such as predation 

(Martin 1993), brood parasitism (Forsman and Martin 2009), and microclimate (DuRant et al. 

2013). These selection pressures can interact, resulting in perceived trade-offs to maximize 

reproductive output and offspring survival (Rauter et al. 2002, Tieleman et al. 2008). These trade-

offs in nest placement has been demonstrated in Water Pipits (Anthus spinoletta) (Rauter et al. 

2002) and Hoopoe Larks (Alaemon alaudipes) (Tieleman et al. 2008), where predation risk is 

higher in locations with optimal microclimate, resulting in nest locations that minimize the 

negative effects of both conditions. These interactions can be difficult to quantify in nest-site 

selection studies but they are important to consider when managing nesting habitat for species of 

conservation concern.  
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The nesting ecology of many species within the Vireonidae family is not well understood. 

Specifically, several species with breeding ranges in the Southwestern United States are of 

conservation concern, yet we lack detailed data on their nesting requirements (Bent 1965). 

Information about vireo nest-site selection is generally vague site characteristics and varies greatly by 

species and region. For example, the federally endangered Black-capped Vireo (Vireo atricapilla), 

favors higher proportions of woody cover at multiple spatial scales and greater proportions of edge 

habitat (Bailey and Thompson 2007). Similarly, Bell’s Vireo (Vireo belli) in Nevada, Arizona, and 

New Mexico tend to nest in areas with higher vegetation density and more canopy cover than what is 

randomly available (Parody and Parker 2002). For Plumbeous Vireos (Vireo plumbeus), we lack 

multi-scale assessments of nest sites. However, nests in pinyon pine (Pinus edulis)/ponderosa pine 

(Pinus ponderosa) woodlands are generally located in pinyon pines, junipers, alder-leaf mountain 

mahoganies (Cercocarpus montanus), or other shrubs (Goguen and Curson 2012). 

Similarly to other southwestern vireos, Gray Vireos (Vireo vicinior) are understudied in many 

aspects of their life-history (Barlow et al. 1999, Schlossberg 2006). Gray Vireos are migratory with a 

breeding range that includes New Mexico, Colorado, Arizona, Utah, and small populations in 

California, Nevada, and Texas (Barlow et al. 1999). Throughout the majority of their range, Gray 

Vireos are likely breeding habitat specialists that rely on high densities of juniper (Juniperus spp.) in 

pinyon-juniper woodlands (Barlow et al. 1999, Schlossberg 2006). In Colorado, Gray Vireos tended 

to occupy areas with higher densities of junipers than pinyon pines, and with higher densities of 

sagebrush (Artemisia tridentata) (Schlossberg 2006). Unpublished observations of Gray Vireo 

behavior (Barlow et al. 1999) suggest that shrub cover is an important substrate for foraging of 

insects, while junipers seem to be the primary nesting substrate for Gray Vireos in this region. The 

importance of juniper density has also been demonstrated in Utah, where populations were 

completely extirpated following juniper thinning (Crow and van Riper 2010). However, small 

populations in California can be found in arid chapparal without junipers (Hargrove and Unitt 2017). 
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Nests in this part of their range were located in chamise (Adenostoma fasciculatum), desert ceanothus 

(Ceanothus greggii), and mountain mahogany (Cercocarpus betuloides) (Hargrove and Unitt 2017). 

Nest success in this region was low, with an average probability of nest survival of 0.08 (Hargrove 

and Unitt 2017).  Additional work on the nesting ecology of Gray Vireos has been limited to federal 

and state reports. In New Mexico, Gray Vireos have been studied extensively on military lands over 

the last 10 years. These reports suggest that Gray Vireos in central New Mexico nest almost 

exclusively in junipers and nested in taller trees than what was randomly availably (K. Johnson et al., 

unpublished report; L. E. Wickersham and J. L. Wickersham, unpublished report). Additionally, 

selection for nest sites at fine scales (0.04 ha) was predominately driven by the presence of more trees 

than what was randomly available (K. Johnson et al., unpublished report).  

Gray Vireos are considered a species of conservation concern by the U.S. Fish and Wildlife 

Service, New Mexico Partners in Flight, and a threatened species by the New Mexico Department of 

Game and Fish (NMDGF). The conservation concerns largely stem from a limited breeding range 

(Barlow et al. 1999), low population densities (Schlossberg 2006), and susceptibility to habitat loss 

(Pierce, L. S. J., unpublished report). Pinyon-juniper woodlands are anticipated to decline due to 

climate change-induced drought in the future (Clifford et al. 2011). Consequently, various 

populations have been considered vulnerable under future climate change projections (Gardali et al. 

2012).  

Given the conservation concerns and our minimal understanding of their life-history, our goal 

was to identify Gray Vireo habitat requirements for breeding populations in central New Mexico. 

Specifically, our objective was to analyze Gray Vireo nest-site selection at multiple spatial scales to 

describe second and third-order selection (Johnson 1980). Schlossberg (2006) suggested that breeding 

populations select sites with high juniper densities at multiple scales and areas where sagebrush is 

prevalent. Additionally, unpublished data in this region suggests that Gray Vireos may select areas 

with more trees and larger junipers than what is randomly available (K. Johnson et al., unpublished 
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report). Therefore, I hypothesized that nesting trees would be larger (height and width) than randomly 

available trees and that habitat selection would be driven by greater densities of junipers and shrubs, 

and areas with larger junipers. Foliage density has not been tested in other Gray Vireo studies. 

However, given the importance of vegetation density for Bell’s Vireo (Parody and Parker 2002) and 

Black-capped Vireo ((Bailey and Thompson 2007), I predicted foliage density would be positively 

associated with nesting trees and nesting habitat. Given the lack of previous work at broader spatial 

scales, I performed exploratory data analyses for landscape-level selection.   

METHODS 

Study site 

Data were collected on Kirtland Air Force Base (KAFB), south of Albuquerque, NM (Figure 

1). Kirtland Air Force Base encompasses approximately 21,000 ha situated immediately adjacent to 

the Manzanita Mountains. Elevation on KAFB ranges from 1,600 to almost 2,400 m (Department of 

Defense, unpublished report). Previous vegetation surveys on base found four primary landcover 

types based on dominant vegetation: grasslands, pinyon-juniper woodlands, ponderosa pine 

woodlands, and wetlands/arroyos (Department of Defense, unpublished report). All surveys were 

conducted in either pinyon-juniper woodlands or transitional regions between grasslands and pinyon-

juniper woodlands, as previous research suggested these areas to have the highest probability of Gray 

Vireo occurrence (Schlossberg 2006, Wickersham, L. E. and J. L. Wickersham, unpublished report). 

Dominant plant species within these areas include blue grama (Bouteloua gracilis), side-oats grama 

(B. curtipendula), four-winged saltbush (Atriplex canescens), sand sagebrush (Artemisia filifolia), 

broom snakeweed (Gutierrezia sarothrae), rubber rabbitbrush (Ericameria nauseosa), threadleaf 

groundsel (Senecio flaccidus), apache plume (Fallugia paradoxa), alderleaf mountain mahogany 

(Cercocarpus montanus), scrub oak (Quercus spp.), one-seed juniper (Juniperus monosperma), and 
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pinyon pine (Department of Defense, unpublished report). Potential Gray Vireo nesting substrates on 

KAFB include one-seed juniper, mountain mahogany, and scrub oak.  

Nest searching and monitoring 

I conducted surveys for Gray Vireos at 50 random locations from May 1 to June 15 in 2016 

and in 2017 (Figure 1). Each random location was surveyed twice each year. Random points were 

located between 1823-2148 m.a.s.l. in pinyon-juniper woodlands or juniper savannahs, and separated 

by at least 500 m. Elevation restrictions were due to the availability of junipers, and the categorization 

of pinyon-juniper woodlands and juniper savannahs was based on previous vegetation surveys 

performed by KAFB contractors (K. Johnson et al., unpublished report). At each point, I conducted 

10-min call-back surveys, using a modified method used by Albrecht-Mallinger and Bulluck (2016), 

where a 1-min recording of a Gray Vireo song was played on an external speaker during the 5th-min. 

If a Gray Vireo was observed at the point I recorded its distance and bearing to approximate the 

actual location of the individual. Additional breeding territories were found opportunistically in 

pinyon-juniper woodlands. Once a breeding territory had been identified, Iconducted nest searching 

by observing nesting behaviors (e.g., carrying nesting material, males singing from nests, etc.). Nests 

were monitored once per week until completion to determine fate. 

Tree and habitat-level selection 

Upon completion of a nest (i.e. depredated, abandoned, or fledged young), I conducted fine-

scale habitat surveys within a 25-m radius (196 ha) around each nesting tree. A 25-m radius was 

selected due to anecdotal behavioral observations, suggesting the relevance of this scale to territorial 

cues (i.e., alarm calling) (Bates 1992). For each nest, I recorded height from the ground, distance 

from the edge of the nesting tree, and the bearing that the nest was facing relative to the center of the 

nesting tree (Smith et al. 2005). In addition, Irecorded height and width of each tree, shrub, or cactus 

that was at least 1 m in height within the plot. Vegetation width was estimated as the width of foliage 
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cover at its widest point. For each juniper within the plot, Ialso recorded the approximate foliage 

density at four cardinal directions around the juniper. Foliage density was estimated using a modified 

Braun-Blanquet method (Wikum and Shanholtzer 1978), where I estimated percentage of limbs and 

trunks that were obscured by foliage and assigned a categorical value: 1 (0–25%), 2 (26–50%), 3 (51–

75%), or 4 (76–100%). I then averaged foliage density at each cardinal direction around the juniper to 

get one estimate of foliage density for each juniper in the plot. To determine tree-level selection 

within the 25-m radius scale, I randomly selected six junipers within each nesting plot and averaged 

their height, width, and foliage density (Anderson and LaMontagne 2016). Mean vegetation 

characteristics from random trees were paired with nesting trees for analyses. Averaging a group of 

randomly selected trees as opposed to a single paired tree, allows for a comparison that is more 

reflective of the available habitat (Anderson and LaMontagne 2016).  

Data from the 25-m radius scale were also used to estimate selection of the surrounding 

habitat by comparing nest-site plots with random plots. I located 66 random points in areas designated 

as pinyon-juniper woodlands or juniper savannah by KAFB personnel (the 50 used for Gray Vireo 

surveys plus an additional 16). Although the 50 points used in surveys helped to identify territories, 

none of the points had nests located within a 25-m radius buffer. All random points had junipers (x̅ = 

12 ± 10 SD), suggesting they were potentially usable as nesting habitat. Sixty-six random points were 

the maximum number of points that could be created within the designated habitat types while being 

at least 500 m apart. Vegetation characteristics at random plots were compared to nesting plots to 

estimate second-order selection. 

Broad-scale landscape assessment 

I obtained 1x1 m resolution 2016 aerial imagery from KAFB. I used ArcGIS (v. 10.2.2) to 

perform an Iso Cluster Unsupervised Classification, where similar pixels are grouped into 20 

categories of cover type. The resulting raster was then resampled into a 2x2 m resolution to decrease 
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classification error, and reclassified into the seven most common cover types distinguishable by aerial 

imagery: bare ground, grass, shrub, shrub/cholla mix, juniper, pinyon pine, and ponderosa pine. 

Based on our surveys, ponderosa pines rarely occurred at elevations less than 2,300 m where Gray 

Vireos were present and thus were not included in statistical analyses. I estimated classification 

accuracy of the cover type raster at 50 random points by determining the proportions of points 

accurately identified by the cover type classification raster. Random points were generated in ArcGIS 

and were restricted to pinyon-juniper woodlands and juniper savannahs as outlined by KAFB (K. 

Johnson et al., unpublished report). Thirty-nine out of 50 points were accurately classified (78%), 

which I deemed to be suitable for subsequent analyses (Myeong et al. 2001). 

For each nest location and random point, I created two buffers: 50- and 100-m radius (790 ha 

and 3,140 ha, respectively). Eight out of the 66 random points used for fine-scale habitat comparisons 

had 100-m radius buffers that overlapped with nest-site buffers and were subsequently excluded from 

landscape-level analyses, resulting in 58 random points used in landscape analyses. The two spatial 

scales were chosen to represent selection of nesting locations within territories, where mean territory 

size has been shown to be 4.5 ha on KAFB (L. E. Wickersham and J. L. Wickersham, unpublished 

report). However, multi-scale analyses of Gray Vireo nest-site selection have not been done 

previously, so these specific scales were chosen somewhat arbitrarily in hopes of identifying the 

primary scale at which selection occurs. For each spatial scale, I recorded proportions of all cover 

type within each buffer by counting the total number of pixels for each cover type and dividing by the 

total number of pixels. Elevation was recorded at each point using a digital elevation model (DEM) 

obtained from the Earth Data Analysis Center at the University of New Mexico. 

Statistical analyses 

I developed generalized linear mixed-effect models (GLMM) for Gray Vireo nest-site 

selection as a function of tree characteristics (Table 1), surrounding habitat characteristics (Table 2), 
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and landscape composition at two spatial scales (Table 3). GLMMs were developed using the “lme4” 

package in RStudio (2019, v. 1.2.1) (Bates et al. 2015, R Core Team 2016) and evaluated using 

Akaike Information Criterion corrected for small sample size (AICc) (Burnham and Anderson 2002) 

using the “bbmle” package in RStudio (Bolker and R Development Core Team 2017). All models 

incorporated a random effect of “year” and had a binomial error distribution with a logit-link 

function. Independent variables with pairwise correlation coefficients (|r|) > 0.7 were not included 

within the same model (Dormann et al. 2012).  

I evaluated three groups of candidate models separately: tree-level selection, habitat-level 

selection, and landscape composition at multiple scales. Models for tree-level selection incorporated 

combinations of juniper height, juniper width, and juniper foliage density, for a total of eight 

candidate models. Habitat-level models were based on a priori hypotheses related to juniper and 

shrub characteristics, as those have been shown to be the most important cover types for Gray Vireos 

(Schlossberg 2006). I did not test shrub height, as there was insufficient variance for analysis (�̃�=1.3 

m, σ=1.0 m). This resulted in 11 candidate models for selection of the habitat surrounding nests. 

However, because little work has previously been conducted at broad spatial scales, I used a multi-

step, exploratory approach to develop a candidate set of models for landscape composition. First, I 

determined the appropriate scale for each landscape variable (except for elevation, which was a point 

estimate) by testing the performance of each scale for each landscape variable; this was done by 

forming two univariate models for each variable at each scale and comparing their relative AICc 

values (Lockyer et al. 2015). In this way, I determined the scale that best determined nests from 

random points for each landscape variable. Those subsequent scales were then used in a global model 

of all possible additive combinations of landscape-level variables. The global model was then 

dredged using the “MuMIn” package in RStudio (Barton 2019), to test all possible additive 

combinations of the variables (Doherty et al. 2010). All additive combinations with ΔAICc less than 2 

were included as 10 landscape-level models for final analysis (Burnham and Anderson 2002). I also 
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included four additional models with interactions post-hoc to account for varying selection of 

landscape features across elevation gradients and to determine if selection of junipers and shrubs 

interacted, where one cover type may supplement the other. This resulted in a final set of 15 candidate 

models (14 plus one null model) for landscape-level selection (Table 2).  

RESULTS 

In 2016 and 2017, I found 99 Gray Vireo nests. All nests were located in one-seed junipers 

with an average height of 3.6 ± 1.1 m and an average width of 5.6 ± 2.2 m. Nests were on average 2.4 

± 0.7 m off the ground, 0.72 ± 0.57 m from the periphery of the nesting tree, and were most 

frequently found on the north side of nesting trees (n = 33, 33%), but were distributed across all 

cardinal directions (south: 29%, east: 20%, west: 18%). Elevation of Gray Vireo nests ranged from 

1792–2047 m, with an average of 1894 ± 53.4 m. 

The top models for tree and habitat-level selection included positive effects of juniper height 

and width (Table 1, Table 2). Gray Vireos frequently nested in the largest juniper within a 25-m 

radius plot (Table 1). All nests were located in junipers greater than 2.0 m tall and 1.7 m wide. The 

junipers surrounding nests were also taller, wider, and had greater foliage density than junipers at 

random plots (Table 2, Figure 2). Average juniper height and width within a 25-m radius around nest 

sites was 3.0 ± 1.2 m and 4.1 ± 2.4 m, respectively, compared to 2.4 ± 1.0 m and 3.2 ± 1.5 m at 

random plots. Foliage density scores for junipers in nesting plots were 2.5 ± 0.9, compared to an 

average foliage density score of 1.8 ± 0.9 at random plots. An average foliage density score of 2.5 

translates into approximately 50% of the woody stems of junipers being obstructed by foliage, while a 

score of 1.8 is approximately 25% obstruction.  

Our top model for broad-scale landscape composition at nest sites included juniper density at 

the 50-m scale, elevation, and their interaction (Table 3). The predicted probability of a nest occurring 

increased with increasing juniper density at a 50 m radius when the elevation was under 1950 m. 
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Above 1950 m elevation, the predicted probability of a Gray Vireo nest occurring begins to decline as 

juniper density increases (Figure 3). Overall juniper density at the 50-m radius scale ranged from 

approximately 15–30% of the total cover. The second most frequent vegetation variable in the top 

models was the proportion of pinyon pine, which was negatively associated with nest-site selection at 

the 100-m radius scale.  

DISCUSSION 

For many passerines, nest-site selection has been shown to be a hierarchical process, where 

species will select broad-scale landscape features for breeding territories, followed by fine-scale 

habitat features within territories for nesting sites (Martin and Roper 1988, Bergin 1992). I found that 

Gray Vireo nest-site selection followed such a hierarchical process, where breeding territories were 

characterized by optimum proportions of juniper cover at lower elevation, and potential nesting 

habitat was driven by characteristics of junipers at finer scales.  

Juniper height and width seem to be important characteristics of potential nesting substrates 

for Gray Vireos. At the habitat level, Gray Vireos selected areas with larger junipers that had greater 

foliage density than what was randomly available (Figure 2). Within this area, the nesting tree was 

often the largest juniper available. Larger trees may also be selected due to greater within-tree 

availability of nest sites, as there is greater surface area for potential nest locations, or an indirect 

preference for older growth pinyon-juniper woodlands. Selection for junipers of larger size may also 

contribute to predator avoidance via a presumed increase in concealment (Wilson and Cooper 1998) 

and a better vantage point for predator surveillance. In California populations, California Scrub Jays 

(Aphelocoma californica) were the most frequent nest predator of Gray Vireos. At our study site, 

Woodhouse’s Scrub Jays (Aphelocoma woodhouseii) are abundant and although I lacked direct 

observations of predation events, are considered probable nest predators (Barlow et al. 1999). 

Consequently, nest placement may aim to minimize predation from such aerial predators. Nest sites 
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were located in areas where the average juniper foliage density was greater than random sites. 

Selection for junipers with greater foliage density at the nesting tree and the adjacent trees is likely 

related to increased concealment (Martin and Roper 1988); however, nest concealment was not 

directly measured in our study. Greater foliage density may also provide a beneficial microclimate at 

nests (Carroll et al. 2015). In general, fine-scale selection of vegetation was characterized by physical 

characteristics of potential nesting trees, as opposed to density of nesting substrates or foraging cover. 

I had predicted that at fine scales, juniper and shrub count would be higher at nest sites than what was 

randomly available based on Schlossberg (2006). However, I found no difference in juniper or shrub 

densities at nest sites compared to random plots at the habitat level.  

I predicted that broad-scale landscape composition at nest sites would have higher 

proportions of juniper and shrub cover than at random locations. I found that at elevations less than 

1954 m, the probability of nest-sites increased with higher proportions of juniper cover at the 50-m 

radius scale. The importance of junipers is self-evident, as junipers were the exclusive nesting 

substrate at our study site and juniper bark is the primary material used in nest construction (Barlow 

et al. 1999). Consequently, there is likely a minimum threshold of juniper necessary for the 

occupancy of breeding territories in pinyon-juniper woodlands. Further evidence to the importance of 

junipers is that the second most frequent variable in our top models was pinyon pine at the 100-m 

scale, which was negatively associated with nest-site selection. Schlossberg (2006) found a similar 

result, where Gray Vireo density positively correlated with increasing proportions of junipers and 

decreasing proportions of pinyon pines. 

At higher elevations, junipers were selected at lower proportions than what was randomly 

available. One possible explanation for this relationship is that the average and variance of juniper 

proportion was greater at higher elevation, with junipers at some points exceeding approximately 

80% of available cover. Gray Vireos did not generally nest in areas with juniper proportions greater 

than 30%, suggesting an optimum proportion of juniper cover for Gray Vireos at the 50-m radius 
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scale. Indeed, Gray Vireos consistently nested in areas with juniper proportions ranging from 

approximately 15–30%, despite available juniper proportions of approximately 5–80%. It is unclear 

what the ecological mechanism is that limits the upper bounds of juniper proportions as nesting 

habitat. One possible explanation is that high densities of juniper may restrict surveillance of 

predators while incubating nests. Gray Vireos nest on the periphery of their substrate (Barlow et al. 

1999), often with no vegetation adjacent to the nesting tree.  

Additionally, one of the primary constraints of Gray Vireo nest-site occurrence at our study 

site was elevation. I graphically determined a threshold of approximately 1960 m in elevation in 

which nests are unlikely to occur, despite junipers being prevalent up to approximately 2200 m in 

elevation. I surveyed 14 random points at elevations greater than 1960 m but only found four nests 

within this region, with a maximum nest-site elevation of 2047 m. Conversely, at elevations less than 

1960 m I surveyed 52 random points and found the remaining 95 nests. Upper elevation restrictions 

may be due to greater weather extremes, such as high winds or colder temperatures, or decreased 

arthropod abundances. Shepherd (et al. 2002) found decreased arthropod diversity in higher 

elevations of the pinyon-juniper woodlands adjacent to our study site. Our finding of an upper 

elevation limit of Gray Vireo occupancy is similar to that of Schlossberg (2006), who found that Gray 

Vireo density dropped significantly at an elevation greater than 1900 m. However, optimal elevations 

for Gray Vireos are likely to vary by geographic region. 

Surprisingly, the top three models did not incorporate shrub cover. Shrub cover at the 100-m 

scale was incorporated in a landscape-level model that was significantly better than the null model 

(14.1 ΔAICc); however, the second best performing variable was pinyon pine at the 100-m radius 

scale. Schlossberg (2006) noted that Gray Vireo population density in Colorado increased with shrub 

density in pinyon-juniper woodlands, and this relationship was primarily influenced by sagebrush 

occurrence. It is presumed that shrub cover is primarily used as a foraging substrate for invertebrates. 

In the pinyon-juniper woodlands of KAFB, sagebrush was not common (Department of Defense, 
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unpublished report). Insect community composition in sagebrush found in Colorado may differ 

considerably from the common shrub species on KAFB (e.g., four-winged saltbush, apache plume). 

Consequently, a difference in forage availability may contribute to our different findings. More 

behavioral observations are needed to determine the primary foraging substrate at our study site and 

how foraging behavior may vary throughout the species’ range. The importance of shrub cover as a 

foraging substrate may vary geographically.  

MANAGEMENT IMPLICATIONS 

The most important cover type at all spatial scales for nest-site selection was juniper. Gray 

Vireos selected higher densities of junipers at lower elevations and strongly selected specific juniper 

characteristics at fine-spatial scales. Vireos selected junipers that were larger, wider, and had greater 

foliage density than what was available, suggesting a preference for old-growth juniper woodland; the 

benefits of which may include greater forage availability, nesting resources, or nest concealment. In 

dense juniper woodlands, some thinning may be appropriate given that Gray Vireo nests rarely nested 

in areas with proportions of juniper cover exceeding 30%. Although Crow and van Riper (2010) 

found that Gray Vireos were extirpated post mechanical thinning, in their study system they removed 

an average of 92% of live trees. Care should be taken to ensure that live junipers represent 15–30% of 

the available cover for optimal nesting habitat. However, further experimental manipulation of 

juniper density through thinning would be helpful in verifying optimal nesting habitat for Gray Vireos 

across elevation gradients. 

To improve nesting density, management practices should protect large patches of old-growth 

juniper to increase the prevalence of junipers that are taller, wider, and have greater foliage density 

than new-growth junipers. In this region, optimizing habitat characteristics and cover proportions 

should be focused in pinyon-juniper woodlands at elevations less than 1950 m. 
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Table 1. Generalized linear mixed-effect models of Gray Vireo (Vireo vicinior) nest-site selection at 

the tree scale. Nesting trees were compared with a subset of six possible nesting trees within a 25-m 

radius. Models were formed from 99 nests found in 2016 and 2017 on Kirtland Air Force Base in 

Albuquerque, NM. Relative model performance was evaluated using Akaike Information Criteria 

corrected for small sample sizes (AICc).  

Model K ΔAICc ωi Deviance 

Height + Width† 4 0 0.595 196.7 

Height + Width + Foliage Density 5 1.77 0.245 196.3 

Width 3 4.37 0.067 203.1 

Height 3 4.98 0.049 203.7 

Width + Foliage Density 4 6.4 0.024 203.1 

Height + Foliage Density 4 6.8 0.02 203.5 

Null Model 2 42.79 0 243.6 

Foliage Density 3 44.82 0 243.6 
†AICc value of 204.7 

 

Table 2. Generalized linear mixed-effect models of Gray Vireo (Vireo vicinior) nest-site selection at a 

25-m radius spatial scale. Models were formed from 99 nests and 66 random points found in 2016 

and 2017 on Kirtland Air Force Base in Albuquerque, NM. Relative model performance was 

evaluated using Akaike Information Criteria corrected for small sample sizes (AICc). 

Model K ΔAICc ωi Deviance 

Juniper Height + Juniper Width + Foliage Density† 5 0 0.928 154.4 

Juniper Height + Foliage Density 4 11.5 0.003 168 

Juniper Height * Juniper Width 5 16.8 0.016 175.5 

Juniper Height 3 19.6 <0.001 174 

Juniper Height + Juniper Count 4 28.1 <0.001 186.8 

Foliage Density 3 32.9 <0.001 191.6 

Shrub Count 3 40.8 <0.001 199.5 

Null 2 41.6 <0.001 202.4 

Shrub Count * Juniper Count 5 42.1 <0.001 196.5 

Shrub Width 3 43.6 <0.001 202.3 

Juniper Count 3 43.7 <0.001 202.3 
†AICc value of 164.4     
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Table 3. Generalized linear mixed-effect models of Gray Vireo (Vireo vicinior) nest-site selection at 

50- and 100-m radius spatial scales. The spatial scale of each parameter is included in the parameter 

name. Models were formed from 99 nests and 58 random points found in 2016 and 2017 on Kirtland 

Air Force Base in Albuquerque, NM. Relative model performance was evaluated using Akaike 

Information Criteria corrected for small sample sizes (AICc). 

Model K ΔAICc ωi Deviance 

Juniper50*Elevation† 5 0 0.9920 174.8 

Juniper50+PinyonPine100+Elevation 5 13.4 0.0012 188.2 

Juniper50+PinyonPine100 4 13.4 0.0012 190.3 

Juniper50+PinyonPine100+Shrub100 5 13.9 <0.001 188.6 

Juniper50+PinyonPine100+Shrub100+ Elevation 6 14.1 <0.001 186.7 

Juniper50+PinyonPine100+Shrub100+ChollaMix100  

+Elevation 
7 14.1 <0.001 184.6 

Juniper50+PinyonPine100+Shrub100+ChollaMix100 6 15.0 <0.001 187.6 

Juniper50+PinyonPine100+ChollaMix100+Elevation 6 15.2 <0.001 187.8 

Juniper50+PinyonPine100+Grass50 5 15.2 <0.001 190.0 

Shrub50+PinyonPine100+Juniper50+Bareground50 6 15.3 <0.001 187.9 

Juniper50+PinyonPine100+ Grass50+Elevation 6 15.3 <0.001 188.0 

PinyonPine100*Elevation 5 15.8 <0.001 190.6 

Null Model 2 28.0 <0.001 209.1 

Juniper50*Shrub100 5 29.2 <0.001 204.0 

Shrub100*Elevation 5 33.0 <0.001 207.8 
†AICc value of 184.8 
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Figure 1. (A) The location of Bernalillo County in New Mexico is shaded in black. (B) Within 

Bernalillo County, the area constituting Kirtland Air Force Base is shaded in black. The red rectangle 

represents the approximately region of our study location seen in C. (C) Our study location on 

Kirtland Air Force Base, where red dots represent Gray Vireo survey points. Four cover 

classifications (Barren, Evergreen Forest, Shrubland, and Grassland) were available within our study 

location. 

 

 

 

Figure 2. Predicted probability of Gray Vireo (Vireo vicinior) nest occurrence as a function of (A) 

average juniper height, (B) average juniper width, and (C) average juniper foliage density within a 

25-m radius sampling plot. Foliage density was measured at four sides of each juniper within a plot, 

where each side was assigned a foliage density category: 1 (0–25%), 2 (26–50%), 3 (51–75%), 4 (76–

100%). Gray Vireos selected nesting areas with taller, wider, and more densely foliated junipers than 

what was randomly available. The shaded gray region represents a 95% confidence interval. 
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Figure 3. The average percentage of juniper cover at the 50-m scale for nesting plots (gray) and 

random plots (white). Percent juniper cover at random points and nesting points varies across three 

elevations: 1 SD below the mean (1837 m), the mean (1895 m), and 1 SD above the mean (1954 m). 

Outliers are represented as black circles.
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CHAPTER II 
 

 

HOW VARIATION IN QUALITY OF PINYON-JUNIPER WOODLANDS EFFECTS GRAY 

VIREO (VIREO VICINIOR) NEST SURVIVAL IN CENTRAL NEW MEXICO 

INTRODUCTION 

Pinyon (Pinus spp.) and juniper (Juniperus spp.) woodlands are the most abundant forest 

type in the American southwest (Shaw et al. 2005) and are the third largest cover type in the 

continental United States (West 1984). Despite this, pinyon-juniper woodlands are among the 

most poorly studied North American forest types and many questions related to management 

strategies still exist (Gottfried et al. 1995). Recently, these woodlands have experienced large-

scale die-off due to drought (Shaw et al. 2005, Clifford et al. 2011). Additionally, the distribution 

and connectivity of these woodlands under various climate change scenarios remains uncertain 

(Copeland et al. 2018), given that climate projections for the southwestern United States suggest 

an increase in the frequency of drought and overall levels of aridity (Seager et al. 2007). These 

forest communities represent critical habitat for a variety of species of conservation concern 

(Francis et al. 2011), which makes the development of conservation and management strategies a 

priority for the future. 

Gray Vireos are an example of a species of conservation concern at state and federal 

levels (U.S. Fish and Wildlife Service 2008, NM Department of Game and Fish 2018) that is an 

obligate of pinyon-juniper woodlands throughout the majority of the species’ range (Barlow et al. 

2020). Gray Vireos rely on junipers as a nesting substrate (Harris et al. 2020) and are more 
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frequently found in areas with high densities of juniper (Schlossberg 2006). Consequently, Gray 

Vireo demography is likely dependent on the availability and quality of pinyon-juniper 

woodlands. Although data from the breeding bird survey suggests that overall population size has 

remained stable (Pardieck et al. 2018), the species may be susceptible to declines due to a limited 

breeding range (Barlow et al. 1999), low population densities (Schlossberg 2006), and 

susceptibility to habitat loss (Pierce 2007). Additionally, population stability varies considerably 

by state. For example, populations in California have declined by about 75–95% (Hargove and 

Unitt 2014), while populations in New Mexico have increased (Sauer et al. 2017, Pardieck et al. 

2018). It has been suggested that the population declines in California may be due to Brown-

headed brood parasitism (Remsen 1978), however there is little evidence to support this assertion.  

Nest success for species in the Vireonidae family is highly dependent on Brown-headed 

Cowbird parasitism rates, typically resulting in relatively low reproductive output compared to 

other passerines (Barber and Martin 1997, Woodworth 1997, Smith et al. 2005, Hargrove and 

Unitt 2017). Brown-headed Cowbird parasitism has been shown to occur at 43–93% of Black-

capped Vireos nests (Graber 1961, Grzybowski 1991), 43–75% of Warbling Vireo nests (Gardali 

and Ballard 2000), and 49% of White-eyed Vireo nests (Hopp et al. 1995). One possible 

explanation for high parasitism rates across the Vireonidae family is that most species of vireos 

will nest on the periphery of the nest substrate, often on a terminal fork (Bent 1950). This may 

increase their visibility and consequently their susceptibility to brood parasitism and predation 

from avian predators (Liebezeit and George 2002).  

Only one study exists on Gray Vireo nest survival probabilities (Hargrove and Unitt 

2017). Conducted in arid chaparral of San Diego County, California, vireos nested exclusively in 

shrubs such as chamise (Adenostoma fasciculatum), desert ceanothus (Ceanothus greggii), and 

mountain mahogany (Cercocarpus betuloides). Nest success was poor, with a model-averaged 

probability of nest survival of only 8%, and nest failure most commonly caused by predation 
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(83% of failures). Nest survival probabilities were best explained by a negative effect of 

surrounding shrub height and a positive effect of nest height. The most common nest predator 

was California Scrub Jays (Aphelocoma californica), which accounted for 67% of predation 

events. Parasitism by Brown-headed Cowbirds accounted for only 13% of failures. Contrary to 

this study in California, unpublished reports on Gray Vireos in pinyon-juniper woodlands has 

found apparent nest success range from 40–60% (Frei and Finley 2008, Wickersham and 

Wickersham 2015). Throughout the majority of their range, Gray Vireos breed in pinyon-juniper 

woodlands and are dependent on high juniper densities (Schlossberg 2006, Crow and van Riper 

2010). However, more data are needed to confirm estimates of reproductive success in these more 

stable populations (Sauer et al. 2017, Pardieck et al. 2018) and to identify potential drivers of 

Gray Vireo nest failures in pinyon-juniper woodlands. 

I estimated Gray Vireo reproductive success in a location with high densities of breeding 

territories and stable local populations. Specifically, our objectives were to estimate nest survival 

probabilities (probability that a nest fledge ≥1 young) and identify factors that influence survival 

at the scales of the nest and surrounding vegetation. Based on results from Hargrove and Unitt 

(2017), I hypothesized that nest survival would be driven by nest height and the height of the 

surrounding vegetation. I also expected nest survival to be negatively related to tree density, as 

woodland habitat may be more suitable for nest predators, such as Woodhouse’s Scrub Jay 

(Aphelocoma woodhouseii) (Curry et al. 2017).  

METHODS 

Study Site 

All nests were found on Kirtland Air Force Base (KAFB), located south of Albuquerque, 

NM. Elevation on KAFB ranges from 1,600 to almost 2,400 m and encompasses four primary 

landcover types: grasslands, pinyon-juniper woodlands, ponderosa pine (Pinus ponderosa) 
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woodlands, and wetlands/arroyos (Department of Defense 2012). Kirtland Air Force Base is 

approximately 21,000 ha predominantly consisting of large swaths of one-seed juniper (Juniperus 

monosperma) forests and savannah, intermixed with four-winged saltbush (Atriplex canescens), 

sand sagebrush (Artemisia filifolia), and rubber rabbitbrush (Ericameria nauseosa) (Department 

of Defense 2012). 

Nest Searching and Monitoring 

To identify the locations of breeding territories, I conducted two rounds of call-back 

surveys for Gray Vireos at 50 random locations from May 1 to June 15 in 2016, 2017, and 2018. 

Random points were situated in pinyon-juniper woodlands or juniper savannahs, as categorized 

by KAFB personnel (Department of Defense 2012), with elevations ranging from 1823–2148 m. 

At each point, I conducted 10-min call-back surveys, where a 1-min recording of a Gray Vireo 

song was played on an external speaker during the 5th-min (Albrecht-Mallinger and Bulluck 

2016). I also located additional territories opportunistically when traveling between points. Once 

a breeding territory had been identified, I searched for nests by following individuals exhibiting 

nesting behaviors (e.g., carrying nesting material, males singing from nests, etc.). Nests were 

monitored once per week until completion to determine survival. I categorized the status of the 

nest at each visit as active, fledged, depredated, parasitized, or abandoned. When possible, I 

determined the status of nests using binoculars from 5–10 m away to minimize the impact of 

monitoring on nest outcome. 

Nest Placement and Vegetation Surveys 

I was interested in how daily nest survival probability was affected by nest placement, 

characteristics of the nesting tree, and characteristics of the surrounding habitat. In this way, I 

collected data at three scales: the nest, the nesting tree, and a 25-m radius around the nesting tree. 

For nest placement, I measured height from the ground, distance from the periphery of the nest 
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tree, and orientation of the nest from the central trunk (Smith et al. 2005). For the nesting tree and 

all trees within a 25-m radius around the nest, I measured height (m ± 1 cm), width of foliage (m 

± 1 cm) measured at its widest point, and an estimation of foliage density for junipers. Foliage 

density was only considered for junipers because Gray Vireos only nested in junipers at our study 

site. Foliage density has been used as a proxy for nest concealment in other studies (Banks and 

Martin 2001, Borgmann and Conway 2015). To estimate foliage density for many trees 

expediently, I used a modified Braun-Blanquet method (Wikum and Shanholtzer 1978), where I 

estimated percentage of limbs and trunks that were obscured by foliage at four cardinal directions 

around each tree. At each direction I assigned a categorical value: 1 (0–25%), 2 (26–50%), 3 (51–

75%), or 4 (76–100%). Categorical values were then averaged at each cardinal direction to get 

one estimate of foliage density for each tree in the plot. For measurements at the 25-m radius 

scale, I averaged tree height, width, and foliage density for trees within the plot. I also considered 

total juniper count within this scale. 

Statistical Analyses 

I estimated the probability that a nest would survive one day (daily nest survival) and 

overall nest survival using Mayfield’s methods (Mayfield 1975). I used logistic exposure models 

(LEMs) to estimate Gray Vireo nest survival as a function of nest placement and characteristics 

of surrounding vegetation (Shaffer 2004). LEMs are equivalent to generalized linear mixed-effect 

models, except they incorporate exposure time in the exponent of a logit-link function (Shaffer 

2004). The dependent variable for all LEMs was a binary variable of “Nest Survival” for each 

nest check and all models used a random effect of “Year”. All analyses were conducted using the 

“lme4” package in Program R (v. 1.1.4) and evaluated using Akaike Information Criterion 

corrected for small sample size (AICc) (Burnham and Anderson 2002). Independent variables 

with pairwise correlation coefficients (|r|) > 0.7 were not included within the same model 

(Dormann et al. 2012). I developed a global model with all additive combinations of variables. 
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Tree heights were highly correlated with tree widths so only tree heights were incorporated in the 

global model, for a total of seven independent variables. I then dredged the global model using 

the “MuMIn” package (v. 1.43.6), which produces an AICc value for every possible additive 

combination of variables (Doherty et al. 2012). Additive combinations with a ΔAICc ≤ 2.0 

(Burnham and Anderson 2002) were included in the final model selection subset. In addition, I 

also included three models that contained interactions of interest and a null model for a total set 

of 13 models. Models were considered competitive if they had an AICc ≤ 2.0 compared to the 

null model. 

RESULTS 

Gray Vireos were first observed on KAFB as early as April 19th in 2017. Population 

densities at our study site were high, with an average of 60% of random points occupied by ≥ 1 

Gray Vireo and an average of 57 breeding territories found each year. The earliest nest was found 

on May 9th in 2017, with an average start date of May 12th. Many of the nests found in early to 

mid-May could be considered “bachelor nests”, where males without mates built nests to present 

to perspective females. These nests were not included in analyses. All nests were located in one-

seed juniper despite additional nesting substrates available in the area (pinyon pine, mountain 

mahogany). Nests were on average 2.4 ± 0.7 m off the ground and 0.72 ± 0.57 m from the 

periphery of the nesting substrate. While most studies have found Gray Vireos preferably nest on 

the south-facing side of the nesting substrate (Barlow et al. 1999, Hargrove et al. 2017), I did not 

see a strong pattern in nest-site aspect (north: 33%, south: 29%, east: 20%, west: 18%).  

I monitored 101 Gray Vireo nests from 2016–2018. Fifty-six nests successfully fledged ≥ 

1 young (Table 1). Daily nest survival for all nests was 0.98 and overall nest survival probability 

was 0.44. The most common cause of nest failure was predation, which accounted for 56% of 

nest failures (n=25). Brood parasitism by Brown-headed Cowbirds accounted for 24% of failures 
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(n=11) and the remainder of nests were abandoned (n=9) (Table 1). All parasitised nests were 

subsequently abandoned.  

Dredging a global model for every additive combination of variables produced 9 additive 

and univariate competitive models (ΔAICc ≤ 2.0) that were included in the final set of candidate 

models (Table 2). Three models were considered competitive relative to the null, all of which 

include foliage density of the nest tree (Table 2). Two models had a ΔAICc of zero: a negative 

interaction of foliage density and the distance from the edge of the nesting tree, and an additive 

combination of the same variables (Table 2). Daily nest survival probabilities increased with 

foliage density for all models (Figure 1), and increased with distance from the edge of the nesting 

tree when foliage density was low (Figure 2). Because foliage density was found in all of the top 

models, all other parameters tested, with the exception of “Distance to Edge”, would be 

considered uninformative parameters (Arnold 2010). 

DISCUSSION 

Nest survival probabilities of Gray Vireos at our study site were higher than what has 

previously been observed. Hargrove and Unitt (2017) found that daily nest survival and overall 

nest survival in arid chaparral habitat of California was 0.91 and 0.08, respectively. Conversely, I 

found daily nest survival was 0.98 and overall nest survival was 0.44 at our study site. Gray Vireo 

populations throughout California occur in low densities, with small, isolated patches of suitable 

habitat (Hargrove and Unitt 2014). The relatively low reproductive success in these regions is 

likely a contributing factor to low population densities (Hargrove and Unitt 2017). Populations at 

our study site occurred in large swaths of continuous pinyon-juniper woodland. Unpublished 

reports suggest that Gray Vireos in pinyon-juniper woodlands tend to have higher reproductive 

success than what was shown in chaparral (Barlow et al. 1999, Wickersham and Wickersham 

2015); however, our observed survival probabilities are the highest that I have found in 
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unpublished reports in pinyon-juniper woodlands. It remains unclear why pinyon-juniper 

woodland habitat may have higher probabilities of reproductive success than chaparral or if this 

trend is consistent across the species’ range. However, local population stability, as seen in New 

Mexico, is likely related to the high reproductive success and high site fidelity.  

Based on Hargrove and Unitt (2017), I hypothesized that daily nest survival would be 

positively related to nest height, and negatively related to the height and density of the 

surrounding vegetation. They hypothesized that this was due to decreased Scrub Jay use in areas 

where vegetation was shorter. I tested this finding by incorporating a model with an interaction 

between “nest tree height” and “average tree height”; however, this was our worst performing 

model. At our study site, Gray Vireos nested in juniper savannah and pinyon-juniper woodlands, 

where Scrub Jay occurrence was seemingly ubiquitous relative to vegetation height. However, 

Scrub Jay habitat use was not directly measured. Nest survival at our study site was mostly driven 

by foliage density of the nesting tree and by nest placement. Nests were more likely to survive if 

they were located closer to the interior of the nesting tree when the nesting tree was sparsely 

foliated, or if they were located nearer to the outer tree edge when foliage density was high. This 

result is in consonance with previous studies on passerine nest survival, where concealment is the 

best predictor of survival (Davis 2005). Visual concealment of nests has been shown to be 

particularly important to reduce predation by other avian species (Colombelli-Negrel and 

Kleindorfer 2009). This is compared to mammalian and ground-dwelling predators that primarily 

use olfactory cues to locate nests (Colombelli-Negrel and Kleindorfer 2009).  

Nest concealment may be more critical for species in the Vireonidae family, as vireos are 

often prone to avian predation and brood parasitism. This is likely a consequence of nesting on 

the periphery of their nesting substrate. In our study, the distance of Gray Vireo nests to the outer 

tree edge (0.72 ± 0.57 m) was greater on average than what was seen in previous unpublished 

studies (0.4 m, Wickersham and Wickersham 2015), which may account for our relatively high 
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daily nest survival probabilities. Nesting closer to the interior of the nesting tree would likely 

increase concealment from avian predators, but may increase risk from ground-dwelling 

predators. It is unclear what the most common nest predator was at our study site. However, 

Woodhouse’s Scrub Jays were abundant and frequently observed in Gray Vireo territories and 

California Scrub Jays were the most common nest predator of Gray Vireos in California. 

Brown-headed Cowbird parasitism at our study site accounted for higher proportions of 

failed nests (24%) than what was observed in California (13%, Hargrove and Unitt 2017). Brown-

headed Cowbirds range throughout the United States and can be found in many habitat types 

(Lowther 1993); however, breeding habitat is often characterized by woodland-field transition 

zones (Gates and Gysel 1978). In our study, Gray Vireos often nested in juniper savannahs 

instead of dense pinyon-juniper woodlands. Nest sites were located in areas where juniper density 

was 15–30% at a 25-m radius scale, despite denser juniper cover at higher elevations. This 

transition zone between pinyon-juniper woodland and desert grassland may represent more 

suitable habitat for Brown-headed Cowbirds, and may result in more spatial overlap and 

parasitism risk. Brown-headed Cowbirds are edge specialists that are more likely to parasitize 

nests that occur adjacent to human edges or grasslands (Howell et al. 2007). However, throughout 

their range Gray Vireos seem less susceptible to brood parasitism than other species in 

Vireonidae, such as Black-capped Vireos and Least Bell’s Vireo. This is likely because Gray 

Vireos seem to be capable of identifying Brown-headed Cowbird eggs (Barlow et al. 1999). All 

of the parasitized Gray Vireo nests observed in our study were subsequently abandoned, which is 

consistent with other observations (Barlow et al. 1999). 

MANAGEMENT IMPLICATIONS 

In New Mexico, habitat management recommendations for Gray Vireos have been based 

almost entirely on various reports and unpublished data (Pierce 2007). The current paradigm has 
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been to simply maintain high densities of juniper and shrub cover. Although this strategy may 

allow for sustained habitat availability, current management practices may not be adequately 

considering habitat quality and productivity. This could potentially result in large swaths of 

ecological traps if quality is poor. 

One of the best indicators of Gray Vireo nest success was juniper foliage density, as it 

was consistently included in the top models for Gray Vireo daily nest survival probabilities. 

Greater foliage density for nesting trees provides greater visual obscurity for nests, particularly 

from avian predators and brood parasites. This is a particularly important consideration when 

nests are located in juniper savannahs, where there may be greater Brown-headed Cowbird 

parasitism than in other parts of Gray Vireo breeding range due to habitat selection overlap. 

Habitat management efforts in these areas may seek to maintain junipers with high foliage density 

during thinning and overall juniper health should be monitored for longer-term planning. 

Juniper health is dependent primarily on climate (Meager 1943). Drought in the 

southwestern United States has been shown to cause mortality to 70% of the juniper population in 

grassland systems (Gitlin et al. 2006). In these systems, competition with understory vegetation 

increases water stress and stymies seedling growth (Teague et al. 2001, Gitlin et al. 2006). At our 

study site, Gray Vireos predominantly nested in juniper savannahs, where juniper cover 

represents 15–30% of the available cover and grasses represent the remaining majority. This 

nesting habitat would be at risk of juniper die-off when drought conditions are severe. Juniper 

foliage density should be monitored during drought conditions, particularly in areas where 

junipers are competing directly with understory vegetation for water. Under future climate 

projections, drought conditions are expected to intensify, with temperate drylands potentially 

contracting by 33% (Schlaepfer et al. 2017). Gray Vireos may require additional conservation 

protections given these future threats to habitat quantity and quality. 
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Table 1. Summaries of Gray Vireo nest outcomes on Kirtland Air Force Base in 

Albuquerque, New Mexico from 2016–2018. Nests found in 2018 were minimal due to 

base closure for fire danger restrictions.  

 2016 2017 2018 Total 

Nest Outcome N % N % N % N % 

Fledged ≥ 1 27 0.53 26 0.59 3 0.50 56 0.55 

Depredated 9 0.18 13 0.30 2 0.33 24 0.24 

Parasitized 7 0.14 4 0.09 1 0.17 12 0.12 

Abandoned* 8 0.16 1 0.02 0 0 9 0.09 

Total 51  44  6  101  

*Abandoned nests are not including parasitized nests that were subsequently abandoned. 

 

 

Table 2. Logistic Exposure Models of Gray Vireo daily nest survival probabilities. Models were 

formed from 101 nests found from 2016–2018 on Kirtland Air Force Base in Albuquerque, NM. 

Relative model performance was evaluated using Akaike Information Criterion corrected for 

small sample sizes (AICc). 

Model ΔAICc k weight 

FoliageDensity * EdgeDistance 0 5 0.15 

FoliageDensity + EdgeDistance 0 4 0.15 

Foliage Density 0.2 3 0.138 

Foliage Density + Nest Height 0.8 4 0.102 

FoliageDensity + EdgeDistance + AvgFoliageDensity 1.5 5 0.07 

FoliageDensity + EdgeDistance + NestHeight 1.6 5 0.066 

FoliageDensity + AvgFoliageDensity 1.7 4 0.065 

FoliageDensity + AvgTreeHeight 1.8 4 0.06 

FoliageDensity + AvgTreeHeight + EdgeDistance 1.9 5 0.058 
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FoliageDensity + EdgeDistance + JuniperCount 2 5 0.055 

FoliageDensity * Nest Height 2.5 5 0.043 

Null Model 2.7 2 0.039 

NestTreeHeight * AvgTreeHeight 6.1 5 0.007 

aAICc value of 210.5 

 

 

Figure 1. Box and whisker plots showing the daily nest survival (≥ 1 nestling survives one day) 

for Gray Vireo nests as a function of juniper foliage density for nesting trees. Foliage density was 

measured as the percentage of woody stems obscured by foliage at four angles of each nesting 

tree. Boxes represent the mean, 1st quartile, and 3rd quartile, while vertical lines represent 

outliers. Data are based on 101 Gray Vireo nests found on Kirtland Air Force Base in 

Albuquerque, New Mexico from 2016–2018. 
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Figure 2. Predicted daily nest survival (≥ 1 nestling survives one day) probability for Gray Vireo 

nests as a function of a negative interaction between juniper foliage density and the distance of 

nests from the edge of the nesting tree. Foliage density was measured as the percentage of woody 

stems obscured by foliage at four angles of each nesting tree. Data are based on 101 Gray Vireo 

nests found on Kirtland Air Force Base in Albuquerque, New Mexico from 2016–2018. 
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CHAPTER III 
 

 

INTERACTIONS OF HABITAT SELECTION AND NEST-SURVIVAL PROBABILITIES: 

SPATIAL ESTIMATIONS OF A HABITAT QUALITY RATIO 

INTRODUCTION 

Since Van Horne (1983), many ecologists have recognized that density should not be the 

sole indicator of habitat quality (Hall et al. 1997, Johnson 2007). Consequently, there has been an 

increased effort to use multiple demographic indicators of population growth, including density, 

reproduction, and survival (Paradis 1995, Hall et al. 1997, Johnson 2007). A literature review 

habitat quality studies found that when multiple indicators of population demographics were 

used, a broader understanding of habitat quality was obtained (Johnson 2007). However, perhaps 

the only standardized approach to estimate habitat quality is the habitat suitability index (HSI), 

which only rely on species-habitat relationships (US Fish and Wildlife Service 1981).  

Habitat quality is generally quantified for discrete patches of habitat (Moilanen and 

Hanski 1998, Visconti and Elkin 2009, Mortelliti et al. 2010). Indeed, this is a primary 

assumption for foundational ecological theory, such as Levin’s patch model (Levin 1970), island 

biogeography theory (MacArthur and Wilson 1967) and metapopulation dynamics (Hanski 1998), 

where discrete patches are evaluated by their propensity for population growth, and are thus 

designated as “sources” or “sinks” within the metapopulation framework. However, discrete 

patches are often difficult to delineate in nature or may not exist at the resolution of the study 

(Freckleton and Watkinson 2002). Additionally, delineating patches of habitat as “high quality”  
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or “low quality” within a study area not only requires subjectively identifying spatial boundaries 

across environmental gradients (i.e., patch versus continuous), but also introduces subjective 

thresholds of quality (Alexander et al. 2011). Plant ecologists have long recognized these 

limitations, resulting in extensive discussion about the usefulness of metapopulation theory to 

plant ecology (Freckleton and Watkinson 2002, Ehrlen and Ericksson 2003, Freckleton and 

Watkinson 2003). Consequently, plant community ecologists more commonly view species-

habitat relationships as gradients instead of a network of discrete patches (Choler et al. 2001, 

Cornwell and Ackerly 2009, Elmendorf et al. 2015). Moreover, although metapopulation theory 

has resulted in several advancements in ecological (Howell et al. 2018), a shift in the scale of 

inference to within-patch gradients of habitat quality may result in more detailed information for 

habitat management. However, the necessity of such a shift is dependent on conservation goals. 

Habitat selection and survival can interact in positive and negative ways (DeCasare et al. 

2013). Positive interactions can occur when habitats with abundant resources are selected by 

individuals, which consequently increases reproductive activity and output or survival (DeCasare 

et al. 2013). Negative interactions could also be considered ecological traps, which are commonly 

viewed as a disconnect between habitat cues and habitat quality (Schlaepfer et al. 2002). This 

concept can be visualized graphically (Figure 1), where the area of environmental conditions 

under a habitat selection coenocline that does not overlap with a habitat quality coenocline would 

be where ecological traps may occur (Figure 1). The underlying mechanisms that can cause 

ecological traps may include increased predation rates due to high prey density, increased 

intraspecific competition, or disturbances (Dwernychuk and Boag 1972). 

There have been few attempts in the ecological literature to spatially quantify the 

interactions of habitat selection and habitat quality. Most of these studies attempt to estimate 

predation risk of large herbivores in areas of frequently selected habitat. For example, DeCasare 

et al. (2013) created spatial estimates of the interaction between habitat selection and survival of 
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Woodland Caribou (Rangifer tarandus caribou), which resulted in a map of survival probabilities 

in areas that caribou frequently selected. Similarly, Hebblewhite et al. (2005) estimated both the 

encounter and predation probabilities of Elk (Cervis elaphus) and Gray Wolves (Canis lupus) 

using resource selection functions. These approaches can be extended to locate areas where all 

possible interactions occur (positive and negative). Additionally, the focus of these studies has 

only been on negative interactions of selection and survival instead of spatially estimating all 

possible interactions. Spatial estimations of these interactions would provide us with a percentage 

of highly selected habitat that has a high probability of contributing to population growth, which I 

call a Habitat Quality Ratio (HQR), as this is likely a useful indicator of habitat quality. In 

addition, by identifying locations where selected habitats are not contributing to population 

growth (ecological traps), management efforts could be more precise and detailed for species of 

conservation concern. 

Gray Vireos (Vireo vicinior) are a species of conservation concern according to the US 

Fish and Wildlife Service (2008), New Mexico Avian Conservation Partners (2016), and the New 

Mexico Department of Game and Fish (2018). Gray Vireos generally occur in low densities 

(Schlossberg 2006) and have a breeding range that is limited to pinyon-juniper woodlands of the 

southwestern US (Barlow et al. 1999). As with other species of vireos (Kus and Whitfield 2005, 

Kostecke et al. 2005), one of the primary limiting factors for Gray Vireo population growth is 

likely nest success (Hargrove and Unitt 2017). However, there has been only one study on Gray 

Vireo survival (Hargrove and Unitt 2017) and one study on Gray Vireo nesting habitat (Harris et 

al. 2020). Hargrove and Unitt (2017) found that populations breeding in arid chapparal of 

California experienced unsustainably low reproductive success, predominately due to high rates 

of predation from California Scrub Jays (Aphelocoma californica) and brood parasitism by 

Brown-headed Cowbirds (Molothrus ater). In New Mexico, unpublished reports suggest that 

breeding territories are almost exclusively in pinyon-juniper woodlands and juniper savannahs, 
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and that the primary nesting substrate is one-seed juniper (Juniperus monosperma) (Wickersham 

and Wickersham, unpublished report). It remains unclear if these trends in nesting habitat and 

nest survival are consistent throughout the species’ range. 

The primary limiting factor to habitat selection for migratory birds during the breeding 

season is likely nesting locations. Several studies have shown birds will change their habitat 

requirements during the breeding season to maximize the number of nesting sites (Rodewald and 

Brittingham 2004, Keller and Yahner 2007). Consequently, to determine the approximate amount 

and location of habitat during the breeding season, I analyzed nest-site selection at multiple 

spatial scales. Similarly, to determine the relative habitat quality during the breeding season, I 

calculated the percentage of selected habitat that had a high probability of nesting success. 

Modeling of passerine population growth has shown that nest success is the most important life-

history stage in determining the magnitude of population growth (Clark and Martin 2007). 

My goals were to estimate within-patch gradients of habitat selection and survival, and to 

spatially display their interaction to create a HQR for a species of conservation concern. 

Specifically, I wanted to locate and map areas where Gray Vireo nesting habitat was i) low 

selection and low survival, ii) low selection and high survival, iii) high selection and low survival 

(ecological traps), and iv) high selection and high survival.  

METHODS 

Study Site 

Data were collected on Kirtland Air Force Base (KAFB) in Albuquerque, NM in 2016–

2019. KAFB is approximately 21,000 ha consisting of four primary cover types: arid grasslands 

(including sagebrush steppe, juniper savannah), pinyon-juniper woodlands, ponderosa pine (Pinus 

ponderosa) woodlands, and riparian/wetlands (Department of Defense, unpublished report). 
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Cover types are oriented along an elevation gradient that ranges from approximately 1,600–2,000 

m.a.s.l. (Department of Defense, unpublished report).  

Nest Searching and Monitoring 

I searched for Gray Vireo nests from May–July using stratified random sampling 

locations and opportunistic searching. For detailed methods on my Gray Vireo surveys see Harris 

et al. (2020). Briefly, at 50 random points I used a portable speaker to perform 10-min call-back 

surveys, where a 1-min recording of a Gray Vireo song was played during the 5th-min (Kubel 

and Yahner 2007). Once a breeding territory was identified, nest searching was conducted via 

behavioral observations (e.g., individuals carrying nesting materials, males consistently singing 

from the same tree, etc.) until a nest was located. Nests were observed once per week from a 

distance of ~10 m using binoculars to verify its activity status with minimal disturbance. If nests 

appeared inactive from a distance, I would examine the nest contents to determine if it had been 

depredated, abandoned, or parasitized.  

Extracting Data From GIS 

I used ArcGIS (v. 10.2.2) to extract land cover proportions at nesting locations and 58 

random points. Random points were generated in ArcGIS and were located in either pinyon-

juniper woodland or juniper savannah suggesting they were usable as nesting habitat. All nest 

sites were ≥ 200 m away from random points so that buffers to extract land cover proportions did 

not overlap.  

KAFB personnel provided a GIS layer of coarse polygons representing broad cover types 

on KAFB (grassland, juniper savannah, pinyon-juniper woodland, etc.). I used this layer to define 

boundaries of analyses, where I would only extract data and project findings within areas 

designated as juniper savannah or pinyon-juniper woodland. Juniper savannah and pinyon-juniper 

woodlands were considered as “available habitat”. To project our model results onto a GIS, I 
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required cover-type data at a finer resolution. I created a cover-type raster using 1x1 m resolution 

aerial imagery obtained from KAFB personnel. I used ArcMap to perform an Iso-Cluster 

Unsupervised Classification, which grouped similar pixels into 20 discrete categories. Each 

category was reclassified into seven relevant categories: bare ground/buildings, grass, shrub, 

shrub/cholla mix, juniper, pinyon pine, and ponderosa pine. Ponderosa pine was not included in 

subsequent analyses because it occurred at elevations exceeding those where Gray Vireos were 

surveyed (< 2,300 m.a.s.l.). The resulting raster was then resampled into a 2x2 m resolution cover 

type raster to decrease classification error. Classification error was estimated by ground-truthing 

50 random locations and determining the proportions of points that were correctly classified. 

Thirty-nine out of 50 random points were accurately classified (78%). Seven out of the 11 

inaccurate classifications were due to hill shade effects, when random points were located on hill 

slopes. However, none of our Gray Vireo nests were located in these areas so I assumed 

classification accuracy to be adequate.  

Estimating Habitat Selection 

A detailed description of methodology used to quantify nest-site selection can be found in 

Harris et al. (2020). Briefly, nest-site selection was analyzed by comparing land-cover 

proportions at nest sites with random points. Land-cover proportions were extracted at two scales: 

50-m radius (0.79 ha) and 100-m radius (3.14 ha). These scales were chosen to represent nest-site 

selection within territories, where mean territory size on KAFB has been shown to be 4.5 ha 

(Wickersham and Wickersham, unpublished report). The largest Gray Vireo territory on KAFB 

was estimated as 23.7 ha (Wickersham and Wickersham, unpublished report); however, this was 

calculated using minimum convex polygons, which have been shown to consistently overestimate 

territory size (Barg et al. 2004). For each spatial scale, I extracted the cover types of all pixels and 

determined the proportion of each cover type within each buffer. 
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Statistical analyses were performed in RStudio (2019, v. 1.2.1). I used the “lme4” 

package (Bates et al. 2015, R Core Team 2016) to create generalized linear mixed effect models 

(GLMM) and the “bbmle” package (Bolker and R Development Core Team 2017) to perform 

model selection using Akaike Information Critera corrected for small sample size (AICc) 

(Burnham and Anderson 2002). Given the limited amount of data on Gray Vireo habitat selection, 

our statistical techniques followed a step-wise, exploratory approach. First, I determined the most 

appropriate scale for each land cover type by creating three univariate GLMMs (one for each 

scale) for each land cover type. The random effect was “Territory ID” and all models had a 

binomial error distribution. For each land cover type, I compared the relative AICc values of each 

scale to determine the appropriate scale for each land cover type (Lockyer et al. 2015) (Appendix 

1). The best scale for each land cover type was then incorporated into a global model of nest-site 

selection that was subsequently dredged using the “MuMIn” package (Barton 2019), which tests 

all possible additive combinations of the variables (Doherty et al. 2010). In addition, I 

incorporated post-hoc interactions with elevation, to determine how habitat selection varies across 

changes in elevation. I retained all models with a ΔAICc value < 2.0 and then removed all models 

with uninformative parameters (Arnold 2010). 

Estimating Daily Nest Survival 

I estimated Gray Vireo daily nest survival probabilities as a function of land cover 

proportions at three spatial scales: 25-m radius (0.20 ha), 50-m radius (0.79 ha), and 100-m radius 

(3.14 ha). Land cover proportions were extracted for all nest sites using the same cover 

classification raster and method outlined in nest-site selection section. The 25-m radius scale was 

chosen because preliminary analyses suggested that average foliage densities at this scale may 

influence nest survival probabilities. The 50-m and 100-m radii scales were chosen to account for 

broader-scale effects of predator and Brown-headed Cowbird habitat selection overlap with Gray 

Vireo territories. In addition to cover proportions, I was also interested in how the proximity to 



49 
 

adjacent territories affected daily nest survival probabilities. For each nest, I used ArcGIS to 

calculate the distance to the nearest nest of adjacent territories. 

I used Logistic Exposure Models (LEMs) to estimate Gray Vireo daily nest survival 

probabilities (Shaffer 2004). LEMs were formed using a GLMM model structure with a 

customized log-link function that incorporates exposure time. Exposure time was defined as the 

number of days between nest checks. I used the same multi-step, exploratory approach that was 

used to estimate nest-site selection probabilities, where I first identified the scale with the best 

explanatory power for each variable. Each subsequent scale was then incorporated into a global 

model that was dredged for all possible additive combinations and ranked using AICc. 

Because previous work has identified California Scrub Jay predation and Brown-headed 

Cowbird parasitism as primary causes of Gray Vireo nest failure (Hargrove and Unitt 2017), I 

was interested in determining if habitat selection of Woodhouse’s Scrub Jay (Aphelocoma 

woodhouseii) and Brown-headed Cowbirds corresponded to areas of low habitat quality; this 

would provide some evidence that these species may restrict the amount of available habitat for 

Gray Vireos. To estimate habitat selection, I used abundance data from our point count surveys 

and land cover proportions extracted at the 50-m, 100-m, and 200-m scales to perform a partial 

Canonical Correspondence Analysis (pCCA). CCAs are a constrained, unimodal ordination that 

allow for the inclusion of covariates, which account for variation explained by uninteresting 

parameters (ter Braak and Verdonschot 1995). Cover proportions and their corresponding scales 

were included in the pCCA using forward-selection based on their percentage of variation 

explained and degree of correlation with other environmental gradients (i.e., highly correlated 

variables were excluded). I predicted that Woodhouse’s Scrub Jays would occur at higher 

elevations with greater proportions of juniper and pinyon pine cover than Gray Vireos (Curry et 

al. 2017). Additionally, I predicted that Brown-headed Cowbirds would be more in abundant at 

lower elevations with greater proportions of grass and bare ground cover (Lowther 2020).  
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Estimating a Habitat Quality Ratio 

To create spatial gradients of nest-site selection and daily nest survival, I incorporated our 

top into a GIS. I integrated the coefficients from each top model into the cover type raster using 

the Raster Calculator tool in ArcMap, which produced two rasters illustrating the relative, 

continuous probabilities of nest-site selection and daily nest survival.  

For each raster, I established binary thresholds (i.e., high selection/low selection, high 

survival/low survival). The threshold for nest-site selection raster was defined as the average 

predicted probability of nest occurrence at each nest location (Liu et al. 2005). In other words, I 

extracted the predicted relative probability from the habitat selection raster at each nest location, 

and averaged that value. Similarly, the threshold for the habitat quality raster was defined as the 

average predicted daily nest survival probability at each successful nest. I reclassified the binary 

rasters as described by York et al. (2011), where locations with low selection habitat were 

reclassified as 1 and locations with high selection were reclassified as 2. Similarly, the nest 

survival raster was reclassified as 3 for areas below the threshold (low daily nest survival) and 4 

for areas above the threshold (high daily nest survival). I then multiplied the two reclassified 

rasters to produce a map with four classifications: areas with i) low selection and low survival, ii) 

low selection and high survival, iii) high selection and low survival, and iv) high selection and 

high survival. I determined the total area of each classification by counting the number of pixels 

of each raster. A HQR was calculated using 

𝐻𝑄𝑅 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑉

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑉 + 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝐼𝐼
 

.  

RESULTS 



51 
 

 I found 173 Gray Vireo nests from 2016–2019. All nests were used in nest-site selection 

analyses. However, in 2018 KAFB was closed for the majority of the breeding season, which 

prevented us from monitoring a majority of nests that year. Additionally, “bachelor nests” 

(Barlow et al. 2020) that never contained eggs were not included in survival analyses. This 

resulted in a total of 121 nests used for nest survival analyses.  

Habitat Selection and Survival 

Gray Vireos only nested in one-seed junipers. The best performing spatial scale for Gray 

Vireo nest-site selection varied by cover type. For proportions of grass, bare ground, and juniper 

the best performing scale was at a 50-m radius. For proportions of shrubs, and pinyon pines, the 

best performing scale was at a 100-m radius scale. The top model for Gray Vireo nest-site 

selection was a negative interaction of proportion of juniper cover at the 50-m radius scale and 

elevation (Table 1). The probability of nest occurrence increased with proportions of juniper 

cover at low elevations (< 1950 m.a.s.l.), and decreased with proportions of juniper cover at high 

elevations (> 1950 m.a.s.l.). Consequently, Gray Vireo breeding habitat was almost exclusively in 

areas where juniper cover represented 15–30% of the available cover, at elevations ranging from 

1800–1950 m.a.s.l. (Figure 2). 

 Daily nest survival was 0.98 and overall nest survival probability of 0.44. Seventy nests 

fledged ≥ 1 young (58%) and 51 failed (42%). Of the failed nests, 27 were caused by predation 

(53%), 12 by Brown-headed Cowbird parasitism (23%), 10 by abandonment (20%), and 2 by 

severe weather (4%). All parasitized nests were abandoned. Clutch size for Gray Vireo was either 

three or four eggs, with an average of 3.4; the number of fledglings ranged from 1–4 individuals. 

The best performing model to predict daily nest survival probabilities included a negative 

response to proportions of juniper cover at the 50-m radius scale and a positive response to 

proportions of shrub cover at the 25-m radius scale (Table 2).  
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 To understand habitats that may be more prone to predation from Woodhouse’s Scrub 

Jays and parasitism from Brown-headed Cowbirds, I performed a pCCA to test their relative 

abundances across environmental gradients. The pCCA explained 29.2% of the variation in 

relative abundances of Gray Vireos, Woodhouse’s Scrub Jays, and Brown-headed Cowbirds. The 

forward selection resulted in eight variables, with juniper at the 100-m radius scale contributing 

the most to variation explained (8%). The primary environmental gradient represents a transition 

from grass and bare ground cover at lower elevations to higher proportions of juniper cover at 

higher elevations (Figure 3). A secondary gradient is one of increasing proportions of pinyon pine 

cover. Woodhouse’s Scrub Jays were more abundant in locations of higher proportions of juniper 

cover and at higher elevations than Gray Vireos (Figure 3). Brown-headed Cowbirds occurred in 

areas with greater proportions of pinyon pine than Gray Vireos (Figure 3). Gray Vireos were 

generally found at lower elevations, with lower proportions of juniper cover and pinyon pine than 

Woodhouse’s Scrub Jays and Brown-headed Cowbirds (Figure 3). 

Estimating a Habitat Quality Ratio 

Using the cover-type polygons provided to us by KAFB, I determined the spatial extent 

of our projections to be 28,242 m2 of available habitat (juniper savannah or pinyon-juniper 

woodlands). The model coefficients from each of our top models (nest-site selection and daily 

nest survival) were projected onto this extent (Figure 4). Our binary raster of nest-site selection 

estimated that 45% of available habitat (28,242 m2) would be suitable nesting habitat (12,580 m2) 

(Figure 4). This area represents optimums of juniper cover proportions (15–30%) and elevation 

(1800–1960 m.a.sl.).  

The nest-site survival raster was patchier than the nest-site selection raster (Figure 4). In 

total, areas designated as high quality represented 63% (17,906 m2) of the available habitat 
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(28,242 m2). The majority of this region was characterized by high proportions of juniper cover 

on the eastern half of our study extent, which was rarely selected as nesting habitat. 

I calculated a HQR as  

10,730 𝑚2

10,730 𝑚2 + 1,850 𝑚2
= 0.85 

where 10,730 m2 is the total area of high selection, high survival habitat, and 1,850 m2 is the total 

area of high suitable, low quality habitat (Figure 5). An HQR of 0.85 suggests that approximately 

85% of the highly selected habitat had a high probability of contributing to Gray Vireo population 

growth. Gray Vireos tended to select nesting habitat that had the highest probability of nest 

success (Figure 5). Specifically, these locations had enough juniper cover to provide variation in 

nesting substrates, while avoiding areas of high juniper density that may have higher 

concentrations of nest predators and brood parasites.   

DISCUSSION 

 Spatial projections of habitat selection and survival allowed me to determine the ratio of 

highly selected habitat that has a high probability of contributing to population growth, which is a 

useful indicator of habitat quality. I found that densities of Gray Vireos on KAFB were high, with 

much of KAFB having a high probability of being nesting habitat. Gray Vireos selected areas 

where juniper cover only represented 15–30% of the available cover, despite juniper being the 

only nesting substrate used. At higher proportions of juniper cover, daily nest survival 

probabilities decreased; however Gray Vireos rarely nested in these locations, resulting in a high 

HQR of 0.85. Approximately 85% of the area of highly selected Gray Vireo nesting habitat had a 

high probability of increasing population growth.  

 Gray Vireos tended to select nesting habitat that had a high probability of nest survival 

and avoided locations with greater predation and parasitism risk. Despite juniper being the only 
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nesting substrate used on KAFB, Gray Vireos predominately selected nesting locations where 

15–30% of the available cover was juniper. These areas were mainly juniper savannahs, where 

sparse densities of junipers were mixed with grass and shrub cover. Locations with higher 

densities of juniper had higher probabilities of nest failure. Higher densities of juniper were also 

correlated with higher abundances of Woodhouse’s Scrub Jays and Brown-headed Cowbirds. I 

expected Gray Vireo nesting habitat to be positively related to juniper densities because that 

would equate to an increase in available nesting habitat. However, Gray Vireos on KAFB have an 

upper threshold of juniper density corresponding to greater risk of nest failure. This suggests that 

Woodhouse’s Scrub Jay and Brown-headed Cowbird may be limiting the amount of available 

breeding habitat for Gray Vireos. If so, this would be an example of fundamental versus realized 

niche (Hutchinson 1958), where higher densities of juniper cover would normally be suitable 

habitat for Gray Vireos if not for the higher risk of predation and brood parasitism. However, 

additional limitations to higher densities of juniper cover may be related to colder or windier 

microclimates at higher elevations, different arthropod communities, or another unknown 

ecological effect. To actually determine that Woodhouse’s Scrub Jays and Brown-headed 

Cowbirds are limiting the available Gray Vireo habitat, more data would be needed to directly 

identify Woodhouse’s Scrub Jays as nest predators and to more directly link their predation risk 

with gradients of juniper density.  

In general, the interaction of habitat selection and survival was consistently positive 

throughout KAFB, resulting in few locations of potential ecological traps. Given that there was 

little within-patch variation in this interaction, KAFB might be a “source” patch where the high 

reproductive output is supplementing poorer quality habitats in other locations. However, more 

data would be needed to determine if the high probability of nesting success is actually 

contributing to population growth and if the resulting growth is contributing individuals to sink 

patches. In California, reproductive success for Gray Vireo populations was low, which is 
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believed to be contributing to population declines in the state (Hargrove and Unitt 2017). 

Population modeling of Puerto Rican Vireos (Vireo latimeri) suggested that brood parasitism and 

nest predation were critical parameters to population growth rate, despite a wide range of adult 

and juvenile survival rates (Woodworth 1999). The high rates of nest failure were due 

introduction of the invasive Shiny Cowbird (Molothrus bonariensis) and various mammalian 

predators, which resulted in the Guánica Forest becoming a “sink” for Puerto Rican Vireos 

(Woodworth 1999). Consequently, the high reproductive output on KAFB is likely aiding in local 

population growth. However, Gray Vireos tend to have high site fidelity (Barlow et al. 1999), 

which may minimize the effects of population growth on surrounding habitats. If KAFB reaches 

some theoretical carrying capacity, I would expect surplus individuals to begin to occupy sites of 

lower quality. 

I wanted to estimate the ratio of highly selected habitat that also has a high probability of 

contributing to population growth as an indicator of habitat quality. To do so, I spatially projected 

probabilities of nest-site selection and daily nest survival probabilities, and determined the 

percentage of overlap. The potential benefits of this approach are two-fold. First, a HQR provides 

a continuous estimate for the propensity of a habitat to contribute to population growth, instead of 

binary distinctions in the source-sink model. This is beneficial because binary thresholds are 

obviously coarser and tend to be arbitrarily defined. Secondly, spatial projections used to produce 

a HQR allow for approximate locations of ecological traps where management efforts can be 

focused. Additionally, these methods can be extended to other fauna and other indicators of 

population growth. For breeding birds, nest success has been shown to be the best predictor of the 

magnitude of population growth (Clark and Martin 2007). However, additional indicators of 

habitat quality could be modeled and projected, such as offspring or adult survival.  

Gray Vireos are considered a species of conservation concern throughout the species’ 

range due to limited habitat (Barlow et al. 1999), low breeding densities (Schlossberg), and 
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concerns about poor reproductive success (Hargrove and Unitt 2017). For poorly studied species, 

such as Gray Vireos, management efforts can be difficult without information on potential drivers 

of habitat quality. In pinyon-juniper woodlands, the importance of junipers as a nesting substrate 

seems self-evident given that all of our nests were located in junipers. However, optimum 

densities of juniper cover may drive habitat selection so as to maximize reproductive success. 

This suggests that optimum juniper density may be dependent on nest predator community 

composition and the presence of Brown-headed Cowbirds. In our study system, care should be 

taken to maximize the area of juniper savannah cover, as habitat quality was high in these areas. 
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Table 1. Results from nest-site selection analysis from Harris et al. (2020). Models were formed 

used generalized linear mixed-effect structure, with territory as a random effect. The top model 

illustrates a negative interaction between the proportion of juniper cover at the 50-m radius scale 

and elevation.  

Model K ΔAICc ωi Deviance 

Juniper50*Elevation 5 0 0.9920 174.8 

Juniper50+PinyonPine100+Elevation 5 13.4 0.0012 188.2 

Juniper50+PinyonPine100 4 13.4 0.0012 190.3 

Juniper50+PinyonPine100+Shrub100 5 13.9 <0.001 188.6 

Juniper50+PinyonPine100+Shrub100+ Elevation 6 14.1 <0.001 186.7 

Juniper50+PinyonPine100+Shrub100+ChollaMix100  

+Elevation 
7 14.1 <0.001 184.6 

Juniper50+PinyonPine100+Shrub100+ChollaMix100 6 15.0 <0.001 187.6 

Juniper50+PinyonPine100+ChollaMix100+Elevation 6 15.2 <0.001 187.8 

Juniper50+PinyonPine100+Grass50 5 15.2 <0.001 190.0 

Shrub50+PinyonPine100+Juniper50+Bareground50 6 15.3 <0.001 187.9 

Juniper50+PinyonPine100+ Grass50+Elevation 6 15.3 <0.001 188.0 

PinyonPine100*Elevation 5 15.8 <0.001 190.6 

Null Model 2 28.0 <0.001 209.1 

Juniper50*Shrub100 5 29.2 <0.001 204.0 

Shrub100*Elevation 5 33.0 <0.001 207.8 

 

 

Table 2. Top eight Logistic Exposure Models (LEMs) from dredging a global model predicting 

daily nest survival probabilities. Models with uninformative parameters (Arnold 2010) were 

excluded. The top model suggests that daily nest survival was negatively related to the proportion 

of juniper cover at the 50-m radius scale and positively related to the proportion of shrub cover at 

the 25-m radius scale. 

Model K ΔAICc ωi Deviance 

Juniper50+Shrub25 4 0 0.283 280.4 

Juniper50 3 0.3 0.238 282.8 

Juniper50+PinyonPine25 4 2.1 0.098 282.5 

Juniper50+Bareground50 4 2.2 0.094 282.6 

Juniper50+Grass25 4 2.3 0.091 282.7 

Null Model 2 2.4 0.087 286.8 

Shrub25 3 3.2 0.058 285.6 

PinyonPine25 3 3.5 0.05 285.9 
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Figure 1. A coenocline illustrating optimums for habitat selection and survival across 

environmental gradients, and the environmental space in which ecological traps occur. 

 

 

 

Figure 2. Optimum proportions of juniper cover at the 50-m radius scale and elevation for Gray 

Vireo nesting probabilities. Best-fit lines were generated using Locally Weighted Smoothing 

(LOESS). Black dots represent nest locations (y-value = 1) and random points (y-value = 0). Gray 

area represents a 95% confidence interval. 

 

 

Selection 
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Figure 3. Biplot from a partial Canonical Correspondence Analysis (pCCA). Results suggest that 

the variance in relative abundances for our three species (Gray Vireo, Woodhouse’s Scrub Jay, 

and Brown-headed Cowbird) is best explained by gradients of bare ground, juniper, elevation, 

and pinyon pine. Woodhouse’s Scrub Jays and Brown-headed Cowbirds were more abundant in 

areas of higher juniper and pine cover, at higher elevations, relative to Gray Vireos. 
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Figure 4. Spatial projections of Gray Vireo nest-site selection (A and B) and daily nest survival 

probabilities (C and D) based on our top models. Gradients of nest-site selection (A) nest survival 

(C) were converted into binary outputs (B and D). Warmer colors represent areas of higher 

selection and survival, colder colors represent poor selection and survival. Black dots on A and B 

represent Gray Vireo nest locations from 2016–2019. 
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Figure 5. A spatial projection of the interaction between habitat selection and survival. Light blue 

represents a positive interaction (high selection and survival), purple represents a negative 

interaction (high selection but low survival), red represents low selection and quality, and white 

represents low selection but high survival. An HQR was quantified by dividing the total area of 

light blue by the total area of light blue plus purple.  
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CHAPTER IV 
 

 

GRAY VIREOS (VIREO VICINIOR) UTILIZE NEST ORIENTATION TO OPTIMIZE NEST 

MICROCLIMATE 

INTRODUCTION 

The thermal landscape is an environmental dimension that species have to account for in 

their life-history and ecology (Peterson et al. 2011). At broader scales, species’ distributions are 

likely constrained by the climatic conditions for which they are physiologically adapted (Somero 

2005); while at finer scales, the thermal landscape can directly affect population dynamics 

through survival, fitness, and reproductive success (Olsson and Uller 2003, Dawson et al. 2005). 

Despite this, ecologists more commonly focus on biotic relationships (Hovick et al. 2014) and 

rarely consider the thermal environment when establishing management actions for species of 

conservation concern (Elmore et al. 2017) or when considering behavioral evolution.  

Behavioral adaptations to thermal stressors are common in arid environments (Cloudsley-

Thompson 1993). For birds, such behavioral adaptations include selection of cooler microhabitats 

during foraging (Cunningham et al. 2015), roosting (Barrows 1981), and nesting (Hartman and 

Oring 2003, Tieleman et al. 2008, Carroll et al. 2015). The importance of microclimate to nest-

site selection in arid environments has been demonstrated for a variety of species and nesting 

strategies, where cooler microclimates in arid environments have been linked to increased
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survival probabilities (Carroll et al. 2015, Grisham et al. 2016) and normal rates of embryo 

development (Webb 1987). Consequently, species-specific nesting strategies in arid environments 

tend to minimize thermal variances and lower maximum temperatures (Hartman and Oring 2003, 

Tieleman et al. 2008, Carroll et al. 2015). For example, some ground-nesting species will select 

nest sites with greater proportions of woody and grass cover to increase visual obstruction for 

shade (Carroll et al. 2015), while cup-nesting species may increase the height of their nests as 

temperatures increases to decrease conductive warming (Tieleman et al. 2008) or utilize 

orientation to increase shade (Hartman and Oring 2003).  

The majority of species in the Vireonidae family have pensile nests placed on the edge of 

the nesting substrate (Bent 1965). This is particularly true for species which breed in arid 

environments, such as Bell’s Vireo (Vireo belli) (Kus et al. 2020), Plumbeous Vireo (Vireo 

plumbeus) (Goguen and Curson 2020), Black-capped Vireo (Vireo atricapilla) (Grzybowski 

2020), and Gray Vireo (Vireo vicinior) (Harris et al. 2020), compared to vireos that breed in 

cooler climates with pensile nests closer to the interior of their nesting substrate, such as Blue-

headed Vireos (Vireo solitaris) (Morton and James 2020), Yellow-throated Vireos (Vireo 

flavifrons) (James 1976), and White-eyed Vireos (Peake and Ritchison 1998). Nesting at the edge 

of the nesting substrate may be beneficial in arid environments because nest orientation can be 

used to maximize shade during the hottest parts of the day (Hartman and Oring 2003) and 

increase solar radiation in cooler mornings. 

The Gray Vireo is a short-distance migrant that predominantly breeds in the southwestern 

United States (Barlow et al. 2020) from May–August. Breeding habitat is generally in pine (Pinus 

spp.) and juniper (Juniperus spp.) woodlands that have higher densities of juniper than pine 

(Schlossberg 2006, Harris et al. 2020). In pinyon-juniper woodlands, Gray Vireos will almost 

exclusively nest in junipers (Harris et al. 2020) and nests are commonly located on the periphery 
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of the juniper (Barlow et al. 2020, Harris et al. 2020). Orientation of nests relative to the center of 

the nesting tree varies. Hargrove and Unitt (2017) found that Gray Vireo nests in California 

tended to be located on the south side of nesting shrubs, however nests in other regions can be 

north or west facing (Barlow et al. 2020).  

Our objective was to determine the thermal and radiative benefits of nesting on the 

periphery of a tree in an arid environment. Specifically, I hypothesized that Gray Vireos would 

choose an orientation (i.e., cardinal direction relative to the center of the tree) that would be 

warmer in the colder mornings and cooler in the hotter afternoons than at the opposite orientation 

of the nesting tree. Additionally, because Gray Vireos may also utilize foliage to increase shade at 

nest sites, wanted to measure microclimate as a function of vegetation structure. To do so, I 

measured temperature and solar radiation at i) Gray Vireo nests, ii) the opposite orientation of 

nests within the nesting tree, and iii) the same orientation as nests but in adjacent trees.  

METHODS 

Study Site 

 I monitored microclimate at Gray Vireo nests on Kirtland Air Force Base (KAFB) in 

2016, 2017, and 2019. KAFB is located south of Albuquerque, New Mexico, and consists of 

approximately 108 ha of pinyon-juniper woodlands and juniper savannah (U.S. Air Force 2012). 

The area is immediately west of the Manzanita mountains, with elevation ranging from 1600–

2400 m (U.S. Air Force 2012). During June 1–August 1 of 2016–2019, the mean precipitation 

totals for each summer were 88.0 mm (range: 57.4–118.9 mm) (New Mexico Climate Center). 

The mean high and low temperatures from June 1–August 1 in 2016–2019 were 33.7℃ (± 2.8℃ 

SD) and 23.7℃ (± 4.3℃ SD), respectively (New Mexico Climate Center). There was a maximum 

ambient temperature of 39.4℃ and a minimum ambient temperature of 2.8℃ (Figure 1) (New 

Mexico Climate Center, https://weather.nmsu.edu/coop/request/station/290234/data/).  
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Locating Nests 

 I located Gray Vireo territories using call-back surveys at 50 random points in pinyon-

juniper woodlands and juniper savannahs (U.S. Air Force 2012). For detailed methods on Gray 

Vireo nest searching, see Harris et al. (2020). Briefly, I surveyed for Gray Vireos using methods 

from Kubel and Yahner (2007). When Gray Vireos were observed at a point I recorded a distance 

and direction to determine the approximate location of the territory. Once a breeding territory had 

been identified, I searched for nests using behavioral cues, such as carrying nesting material, 

males singing from nests, or following females. Nests were monitored once a week until 

completion (i.e. fledged, depredated, abandoned).  

Microclimate Monitoring 

 Within one week after a nest had completed, I recorded air temperature (TN) and solar 

radiation (LN) at the nest site, at the opposite orientation of the nest (TO, LO) within the nesting 

tree, and at the same orientation of the nest but in an adjacent tree to account for variation in 

vegetation structure (TS, LS) (Figure 2). TN and LN were measured with a temperature/light data 

logger (HOBO pendant, Onset Computer Corporation, Bourne, MA) within the nest, yet situated 

so that the light sensor was above the rim of the nest. For destroyed nests, data loggers were hung 

in the tree at the location of the nest prior to destruction. TO and LO were measured by placing a 

data logger at the opposite orientation of the nest within the nesting tree, yet at the same relative 

location as the nest (i.e., same nest height and distance from the edge of the tree). Similarly, data 

loggers used to measure TS and LS were placed in the nearest adjacent tree of the same species, 

with the same orientation, nest height, and distance from the edge of the tree (Figure 2). For 

example, if a nest was located on the east side of a tree (90°), I placed data loggers at the nest site, 

at the west side of the nesting tree (270°), and at the east side of an adjacent tree (90°). Data were 

recorded every 30 minutes from 0700–1900 hr (approximate hours of sunlight) and were 
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averaged across five consecutive days. Five days were chosen somewhat arbitrarily but allowed 

us to avoid single-day weather extremes in analysis.  

Statistical Analyses 

 To test the hypothesis that Gray Vireos select nest orientations that increase temperatures 

during early mornings and decrease temperatures during hot afternoons, I compared TN, TO and 

TS throughout the day. I compared temperature/light exposure TN, TO and TS using linear mixed 

effect models via the “nlme” package in Rstudio (2019, v. 1.2.1; Pinheiro et al. 2020, R Core 

Team 2016). I also used the same model structure to compare temperature/light exposure 

differences between nest sites as a function of cardinal direction (north, south, east, west). I used 

the “lme” function to assign an autocorrelation structure to our model, to account for temporal 

autocorrelation among 30-minute temperature/light readings. I used a first-order autoregressive 

process as autocorrelation structure, with “Time of Day” as time variable. Temperature (℃) and 

light (lm) were dependent variables with “Sample Location” (Nest, Opposite Orientation, or 

Adjacent Tree) and “Time of Day” as independent variables. Both models incorporated an 

interaction between “Sample Placement” and “Time of Day” to account for changing effects of 

sample locations during hotter or cooler times of the day. As a post-hoc analysis, I used the 

“emmeans” package (Lenth et al. 2020) to calculate estimated marginal means (or least squares 

means) with a Bonferroni correction and a Tukey-adjusted pairwise comparison. I used an alpha 

value of 0.05 to determine differences in temperature and light at various combinations of sample 

locations and times.  

RESULTS 

Gray Vireos initiated nesting on KAFB as early as 24 April (2019) and as late as 03 

August (2017). I monitored temperature of 71 nests, with a subset of 37 nests for light exposure. 

The distribution of nest orientations was similar among cardinal directions (north: 19, east: 17, 
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south: 19, west: 16). The range of temperatures were 10.1℃–47.0℃. Both extremes were 

recorded on TO samples, while the range of TN was 10.5℃–45.6℃. Nests began cooling at 

approximately 1600 hr, compared to TO, which began cooling at approximately 1730 hr (Figure 

3). Additionally, the rate of cooling for TN was faster than for TO in the afternoon (Figure 3). 

From 1600–1800 hr, TN decreased at a rate of 3.1℃/hr, while TO decreased at a rate of 1.5℃/hr.  

 Both “Sample Placement” (nest, opposite orientation, or adjacent tree) and “Time of 

Day” significantly influenced differences in average temperature, however their interaction was 

not significant (Table 1). While average TN was less than average TO and TS at all times of the 

day (except at 0700 hr), differences only occurred between 1700–1830 hr (Figure 3). During 

these times TN was cooler than TO (Table 2, Figure 3), where nests were 3.0 ℃ (± 0.4 ℃) cooler. 

TN was also slightly cooler in the mornings (0830–0900 hr) than TO, however this relationship 

was not significant (0830 hr: P = 0.06, 0900 hr: P = 0.07) (Figure 3).TN was only significantly 

cooler than TS at 1800 hr. Differences in TN at different orientations were minimal. North-facing 

nests were cooler than nests at other orientations from 0900–0930 hr (Figure 4). Generally, north 

and east-facing nests had the most variability in temperature throughout the day, while south-

facing nests tended to have lower variation (Figure 4). However, I found little evidence that any 

one orientation was optimal for nest microclimate (i.e., less thermal variation and/or lower overall 

temperatures). 

 Light exposure was different between “Sample Placement” and at different times (Table 

1). Nests received less light on average than LO and LS, where the average LN was 6,569 lm (± 

4,153 lm) less than the average LO and 9,780 lm (± 9,624 lm) less than LS throughout the day 

(Figure 5). The degree of difference changed by time (P = <0.001). Differences between LN and 

LS occurred between 1000–1200 hr and 1300–1400 hr (Table 3). Similarly, differences between 

LN and LO occurred between 0930–1030 hr and then sporadically in the afternoon (Table 3, 
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Figure 5). However, the overall variance of light exposure was greater than temperature across all 

samples and all orientations. Variation in LN was less throughout the day (𝛔 = 35,439 lm) than LO 

(𝛔 = 39,413 lm) and LS (𝛔 = 40,702 lm). Additionally, variance of light exposure within time 

periods was also less for LN than LO and LS (Figure 5) I did not find a link between nest 

orientation and light exposure with time of day (Figure 6).  

DISCUSSION 

Gray Vireo nests were cooler than the nesting tree’s opposite orientation at all times, with 

the greatest difference occurring from 1700–1830 hr. In Albuquerque during the summer months 

(May–August), the highest ambient temperature occurs between 1600–2000 hr (Albuquerque 

International Airport, https://weatherspark.com/y/3318/Average-weather-in-Albuquerque-New-

Mexico-United-States-Year-Round). These findings suggest that the nests had a cooler 

microclimate during the hottest times of the day, with an average temperature difference of 3 ℃ 

cooler than the opposite orientation of the nesting tree. Nests also had a smaller range of 

temperatures throughout the day and began cooling in the evenings faster than the opposite 

orientation.  

Although thermal extremes in our study would not likely induce direct mortality of 

embryos (Webb 1987), minimizing thermal stress and variability could be important to other 

aspects of reproductive success and embryonic development. Grenõ et al. (2008) found a negative 

correlation between nest temperatures and fledgling survival probabilities. Additionally, several 

studies have shown that nest temperatures greater than 34 ℃ can negatively affect nestling 

physiology for a variety of songbirds (Ardia 2013, Cunningham et al. 2013, Rodriguez and Barba 

2016). Specifically, nestlings can experience higher hematocrit (proportion of blood volume 

composed of red blood cells) levels (Ardia 2013), stunted growth (Rodriguez and Barba 2016), 

and delayed fledging (Cunningham et al. 2013). The threshold of 34 ℃ was reached by 65 of our 
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Gray Vireo nests (92%) and 68 of the opposite orientation samples (96%). Temperatures I 

measured could have even greater adverse effects on nestling physiology, considering I measured 

ambient temperature as opposed to operative temperature, which may be higher when accounting 

for relative humidity (Yahav et al. 1995) and solar radiation (Dzialowski 2005).  

Although Gray Vireos seem to choose the cooler orientation of their nesting tree, I did 

not find a pattern in certain cardinal directions being more commonly selected or having cooler 

microclimates. Some cavity nesting species, such as Tree Swallow (Tachycineta bicolor), utilize 

the orientation of nest openings to maximize wind exposure (Ricklefs and Hainsworths 1969) and 

to increase solar exposure during colder mornings (Ardia et al. 2006). Conversely, Horned Larks 

(Eremophila alpestris) have been shown to disproportionately nest on the north-facing side of 

their substrate to increase the amount of shade the nest experiences throughout the day (Hartman 

and Oring 2003). Some studies have found that Gray Vireos more commonly nest on the south 

side of the nesting tree (Hargrove and Unitt 2017, Barlow et al. 2020), however I did not see this 

trend. At our study site, the south side of nesting trees was significantly warmer than the north 

side of nesting trees between 0900–0930 hr. But generally, there was no clear relationship 

between the four cardinal directions and temperature at almost any time of day. Similarly, I did 

not find a clear pattern between light exposure and cardinal direction. The high variance in 

temperature and light exposure at any given orientation may be because of the topographic 

variation at our study site (U.S. Air Force 2012). Nest sites were almost always situated in valleys 

with slopes immediately to the north, east, or south. Such topographic variation could result in 

shade effects that vary light exposure considerably. Additionally, unlike the Hargrove and Unitt 

(2017) study, our nests were located in wooded areas, where nesting trees were likely to receive 

shade from taller adjacent vegetation. These factors may lead to inconsistency in light exposure 
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and temperature by orientation, resulting in Gray Vireos using all nesting orientations. 

Consequently, the cues that Gray Vireos use to determine optimal nest placement remain unclear.  

Although differences between LN and LO were observed, almost all differences occurred 

in morning, when there were not temperature differences. Seemingly, relative differences 

observed in light exposure did not translate into differences in temperatures. Part of this may be 

accounted for by latency effects, where locations exposed to more light in the mornings maintain 

greater heat throughout the day. However, this may also be due differences between ambient and 

operative temperatures. I measured ambient temperature instead of operative temperature because 

I was more interested in relative comparisons of thermal conditions than modeling thermal stress 

an animal experiences. Operative temperature directly accounts for solar radiation and convective 

heat transfer (Campbell and Norman 1998). Another possible explanation for why light exposure 

did not translate into differences in temperature, is that variation between light readings was high, 

particularly in LO and LS. Light exposure was measured instantaneously every 30-minutes, which 

could result in high variation between readings. Our study site frequently had high winds and tall, 

adjacent vegetation which may have resulted in inconsistent shade when collecting instantaneous 

samples.  

 The biggest differences in light exposure were between LN and LS. This finding suggests 

that Gray Vireos utilize vegetation structure (more so than orientation) to increase shade and 

minimize variance in light exposure at nests. The utilization of vegetation to increase visual 

obstruction and shade has been documented for a wide variety of species, most commonly with 

ground-nesting species (Flaspohler et al. 2000, Hubbard et al. 2006, Carroll et al. 2015). Although 

I did not measure visual obstruction directly, the relative lower light exposure in the late 

mornings suggests that Gray Vireos utilize overhead vegetation cover, particularly in the south-

easterly direction. However, this did not translate to differences in temperature between TN and 
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TS. Consequently, the use of overhead vegetation cover may be more attributable to increased 

visual obstruction from aerial predators. Hargove and Unitt (2017) found that the most common 

nest predator of Gray Vireos was the California Scrub Jay (Aphelocoma californica), which 

accounted for 67% of all predation events. At our study site, Woodhouse’s Scrub Jays 

(Aphelocoma woodhouseii) were common and are a likely nest predator of Gray Vireos (Barlow 

et al. 2020). Additionally, Brown-headed Cowbirds (Molothrus ater) are a common cause of Gray 

Vireo nest failure (Hargrove and Unitt 2017).  

 The distance that a nest placed from the center of a tree varies among species in the 

Vireondae family (Bent 1965). This seemingly corresponds to differences in latitudinal gradients, 

where northern species of vireos tend to nest closer to the center of a tree and southern species 

tend to nest near the edge of a tree. Intraspecific variation in nest orientation across latitudinal 

gradients has been shown for eight species of passerines, where species with nests in lower 

latitudes tended to have more northerly orientations than in higher latitudes (Burton 2007). 

However, thermal evidence for this pattern has been missing.  

In arid environments, minimizing thermal variation and decreasing maximum 

temperatures at nest sites is critical to reproductive success and survival (Carroll et al. 2015, 

Grisham et al. 2016). I found evidence that Gray Vireos were able to do this by selecting 

orientations of nest sites that are cooler than the opposite orientation of the nesting tree, 

particularly at the hottest times of the day. Conversely, temperatures of samples located at the 

same orientation, but with different vegetation structures, were not different from nests, 

suggesting that microclimate slection had more to do with nest orientation than the vegetation 

surrounding nests. This provides some evidence that nesting on the periphery of a nesting 

substrate does play a role in maintaining microclimates at nesting sites. However, it remains 

unclear if the advantages of this behavior are the result of behavioral plasticity or are adaptive 
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(i.e., selected for). Further information on the microclimates and nest placements of other species 

across latitudinal gradients is needed to effectively demonstrate that this behavior is evolutionary 

in nature. 
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Table 1. Results from linear mixed-effect models testing differences in temperature and light 

exposure as functions of sample placement, orientation, and time. Data are based on 71 Gray 

Vireo nests found on Kirtland Air Force Base, Albuquerque, NM in 2016–2017 and 2019. 

 

Dependent Variable Intercept Independent Variable P-value Pseudo R2 

Temperature 

 Placement Time Placement*Time  

16.7 <0.001 <0.001 0.999 0.31 

 Orientation Time Orientation*Time  

16.3 0.133 <0.001 0.39 0.41 

Light Exposure 

 Placement Time Placement*Time  

302.7 <0.001 <0.001 <0.001 0.428 

 Orientation Time Orientation*Time  

200.8 0.11 <0.001 0.763 0.434 

 

 

 

 

 

 

 

 



84 
 

 

 

 

Figure 1. The recorded ambient temperature at Albuquerque International Sunport from June 1–

August 1 in 2016–2019. Data are available at the New Mexico Climate Center. 

 

 

 

Figure 2. An illustration of the experimental design with the three sample locations. The black dot 

represents the location of a Gray Vireo nests (location of TN and LN samples). The orange dot 
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represents the opposite orientation of the Gray Vireo nest but at the same relative position (TO 

and LO). And the blue dot represents the same orientation of the Gray Vireo nest in an adjacent 

tree to compare differences in vegetation structure (TS and LS). 

 

 

 

Figure 3. Average temperatures at Gray Vireo nest sites (TN), the opposite orientation (TO), and in 

different vegetation structures (TS) with 95% confidence intervals. Significant differences 

between TN and TO occurred between 1700–1830 hr. 
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Figure 4. Average temperatures at Gray Vireo nest sites (n=71) in each cardinal direction with 

95% confidence intervals. North-facing nests were significantly cooler than other orientations 

from 0900–0930 hr. 

 

 

Figure 5. Average light exposure at Gray Vireo nest sites (LN), the opposite orientation (LO), and 

in different vegetation structures (LS) with 95% confidence intervals. Significant differences were 

generally greatest between  LN and LS, with largest differences occurring between 1000–1130 hr. 

 

 

Figure 6. Average light exposure at Gray Vireo nest sites (n=37) in each cardinal direction with 

95% confidence intervals. There were no clear differences in light exposure between orientations 

except for western orientations receiving more light at 1500 and 1700 hrs than other orientations.  



87 
 

APPENDICES 
 

 

Appendix 1. Pairwise P-value matrices for temperature and light exposure, showing post-hoc 

comparisons between nests (TN, LN), the opposite orientation (TO, LO), and the same orientation 

with different vegetation structure (TS, LS). The bracketed diagonals are the sample means, the 

upper triangle shows P-values, and the lower triangle shows pairwise differences. P-values 

representing significant differences from nests are highlighted in bold in the upper triangle.  

 

 Temperature Light 

Time = 0700       

 Nest Orientation Structure Nest Orientation Structure 

Nest [16.7] 0.9919 0.9982 [303] 0.9892 0.9876 

Orientation 0.1328 [16.5] 0.9978 -531.5 [834] 1 

Structure 0.0624 -0.074 [16.6] -564.6 -33.1 [867] 

       

Time = 0730       

 Nest Orientation Structure Nest Orientation Structure 

Nest [17.7] 0.8218 0.9291 [ 885] 0.8914 0.9221 

Orientation -0.651 [18.4] 0.972 -1796 [2681] 0.997 
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Structure -0.401 0.25 [18.1] -1506 290 [2392] 

       

Time = 0800       

 Nest Orientation Structure Nest Orientation Structure 

Nest [20.1] 0.1356 0.7751 [ 4990] 0.2399 0.4208 

Orientation -2.087 [22.2] 0.4444 -6092 [11082] 0.9162 

Structure -0.747 1.34 [20.8] -4602 1490 [ 9592] 

       

Time = 0830       

 Nest Orientation Structure Nest Orientation Structure 

Nest [23.4] 0.0566 0.595 [ 6331] 0.1152 0.0416 

Orientation -2.51 [25.9] 0.3925 -7626 [13956] 0.9356 

Structure -1.07 1.44 [24.5] -8934 -1308 [15265] 

       

Time = 0900       

 Nest Orientation Structure Nest Orientation Structure 

Nest [25.7] 0.0684 0.559 [ 7890] 0.426 0.152 
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Orientation -2.42 [28.2] 0.4704 -4806 [12696] 0.8545 

Structure -1.13 1.29 [26.9] -6908 -2102 [14798] 

       

Time = 0930       

 Nest Orientation Structure Nest Orientation Structure 

Nest [27.7] 0.1833 0.5902 [11232] 0.0002 0.2269 

Orientation -1.921 [29.7] 0.7232 -15192 [26424] 0.057 

Structure -1.076 0.846 [28.8] -6281 8911 [17513] 

       

Time = 1000       

 Nest Orientation Structure Nest Orientation Structure 

Nest [29.1] 0.2051 0.7233 [12500] 0.0461 <.0001 

Orientation -1.856 [31.0] 0.6282 -9400 [21900] <.0001 

Structure -0.843 1.014 [29.9] -35159 -25759 [47659] 

       

Time = 1030       

 Nest Orientation Structure Nest Orientation Structure 
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Nest [30.0] 0.498 0.5764 [11280] 0.0002 <.0001 

Orientation -1.23 [31.2] 0.9924 -15209 [26489] 0.1195 

Structure -1.1 0.13 [31.1] -22727 -7518 [34007] 

       

Time = 1100       

 Nest Orientation Structure Nest Orientation Structure 

Nest [30.5] 0.544 0.4782 [14355] 0.0909 <.0001 

Orientation -1.148 [31.7] 0.993 -8208 [22564] <.0001 

Structure -1.273 -0.125 [31.8] -35015 -26807 [49370] 

       

Time = 1130       

 Nest Orientation Structure Nest Orientation Structure 

Nest [31.0] 0.4856 0.3644 [22979] 0.1 <.0001 

Orientation -1.251 [32.2] 0.9745 -7703 [30682] 0.0001 

Structure -1.49 -0.239 [32.5] -22663 -14961 [45643] 

       

Time = 1200       
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 Nest Orientation Structure Nest Orientation Structure 

Nest [31.6] 0.5766 0.5049 [15018] 0.0182 0.0016 

Orientation -1.092 [32.7] 0.992 -10437 [25455] 0.7178 

Structure -1.225 -0.133 [32.8] -13394 -2957 [28412] 

       

Time = 1230       

 Nest Orientation Structure Nest Orientation Structure 

Nest [32.4] 0.7191 0.3105 [23630] 0.8601 0.8382 

Orientation -0.844 [33.2] 0.77 -1992 [25622] 0.999 

Structure -1.604 -0.76 [34.0] -2159 -167 [25789] 

       

Time = 1300       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.0] 0.8336 0.4509 [18548] 0.0785 0.0505 

Orientation -0.627 [33.7] 0.8033 -8173 [26721] 0.9865 

Structure -1.323 -0.695 [34.4] -8772 -599 [27320] 
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Time = 1330       

 Nest Orientation Structure Nest Orientation Structure 

Nest [32.9] 0.7793 0.5522 [14139] 0.0044 0.0009 

Orientation -0.734 [33.6] 0.9275 -12279 [26418] 0.8968 

Structure -1.142 -0.407 [34.0] -13887 -1608 [28026] 

       

Time = 1400       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.2] 0.8338 0.7638 [15660] 0.0586 0.0065 

Orientation -0.627 [33.8] 0.991 -8562 [24222] 0.7552 

Structure -0.768 -0.141 [34.0] -11263 -2701 [26923] 

       

Time = 1430       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.3] 0.9638 0.6715 [20529] 0.6502 0.2566 

Orientation -0.282 [33.6] 0.8246 -3370 [23899] 0.7786 

Structure -0.934 -0.652 [34.2] -5942 -2572 [26471] 
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Time = 1500       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.3] 0.9258 0.8389 [18745] 0.3018 0.0649 

Orientation -0.408 [33.7] 0.9798 -5479 [24225] 0.7153 

Structure -0.62 -0.212 [33.9] -8408 -2929 [27154] 

       

Time = 1530       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.7] 0.9684 0.9264 [18382] 0.0407 0.0196 

Orientation -0.263 [34.0] 0.9904 -9263 [27645] 0.9658 

Structure -0.409 -0.146 [34.1] -10202 -939 [28584] 

       

Time = 1600       

 Nest Orientation Structure Nest Orientation Structure 

Nest [33.0] 0.953 0.9695 [25468] 0.999 0.8835 

Orientation -0.3225 [33.3] 0.9982 158 [25310] 0.8633 
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Structure -0.2604 0.0621 [33.3] -1778 -1936 [27246] 

       

Time = 1630       

 Nest Orientation Structure Nest Orientation Structure 

Nest [32.0] 0.3375 0.5065 [24359] 0.9948 0.9998 

Orientation -1.535 [33.6] 0.9564 -370 [24729] 0.9926 

Structure -1.222 0.313 [33.2] 70 440 [24289] 

       

Time = 1700       

 Nest Orientation Structure Nest Orientation Structure 

Nest [30.9] 0.0584 0.2756 [14955] 0.1254 0.2735 

Orientation -2.492 [33.4] 0.7441 -7240 [22195] 0.916 

Structure -1.684 0.808 [32.6] -5769 1471 [20724] 

       

Time = 1730       

 Nest Orientation Structure Nest Orientation Structure 

Nest [29.7] 0.0147 0.1537 [13211] 0.3112 0.0869 
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Orientation -3.08 [32.8] 0.622 -5517 [18728] 0.8137 

Structure -2.05 1.02 [31.8] -7814 -2298 [21025] 

       

Time = 1800       

 Nest Orientation Structure Nest Orientation Structure 

Nest [26.8] 0.0041 0.0413 [ 8362] 0.2791 0.3302 

Orientation -3.52 [30.4] 0.7307 -5634 [13996] 0.9926 

Structure -2.687 0.832 [29.5] -5212 422 [13574] 

       

Time = 1830       

 Nest Orientation Structure Nest Orientation Structure 

Nest [26.6] 0.0445 0.2771 [ 9327] 0.2231 0.7323 

Orientation -2.64 [29.3] 0.6705 -5963 [15290] 0.6406 

Structure -1.7 0.94 [28.3] -2691 3272 [12018] 

       

Time = 1900       

 Nest Orientation Structure Nest Orientation Structure 
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Nest [26.3] 0.2829 0.5679 [5656] 0.5966 0.7029 

Orientation -1.685 [28.0] 0.8704 -3547 [9203] 0.9844 

Structure -1.13 0.555 [27.4] -2928 619 [8584] 
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