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Abstract: 
 
1. Wetland Reserve Enhancement Program restorations in Oklahoma have become 
overrun by a native invasive species, Carex hyalinolepis, creating a structurally 
homogeneous condition with decreased plant diversity. We investigated the response of 
C. hyalinolepis to winter and summer prescribed burns in a field study. We also 
conducted greenhouse experiments examining the response of C. hyalinolepis shoot 
production and aboveground biomass to fire, simulated grazing, and flooding. Results of 
the field study indicated a short-term response of C. hyalinolepis to fire with C. 
hyalinolepis cover returning to pre-fire levels within several months of the prescribed 
burns. The greenhouse study results suggest a combination of fire and flooding can 
reduce C. hyalinolepis aboveground biomass and shoot growth. Implications of results 
from both the greenhouse and field study indicate that a combination of management 
methods may be most successful at reducing the impact of invasive species.  
 
2. The accuracy and historical accounts of wildfire and prescribed fire on the Texas 
southeastern coast may provide perspective and context on the role fire plays in these 
ecosystems. Using remote sensing techniques, we mapped prescribed fires on the Aransas 
National Wildlife Refuge between 1985 and 2013.  Results indicate that the refuge is 
maintaining the fire dependent ecosystems with a prescribed burn program that includes a 
mean fire return interval between 2 and 10 years on a majority of the refuge. Quantifying 
the current fire regime will be useful for future management efforts on Aransas National 
Wildlife Refuge. 
 
3. The endangered Aransas-Wood Buffalo whooping crane (Grus americana) population 
is growing and will eventually need additional suitable habitat outside of the current 
refuge boundaries in order to achieve the goal of down-listing the species from 
endangered to threatened. Sixty years of crane location data coupled with GIS analyses 
were used to develop predictive models that forecast crane habitat use based on landcover 
and refuge management activities as well as to determine spatial patterns of cranes on the 
refuge. Results indicated that the amount of wetland and tidal flat habitat and the distance 
required for cranes to reach water and wetlands influence habitat selection. Cranes are 
significantly clustered along the southern coast of Aransas National Wildlife Refuge 
(NWR), the Lamar Unit of Aransas NWR, Matagorda and Sand Jose Islands and to the 
east of Aransas across the bay. The areas of high clustering correspond to crane habitat 
preferences. Our results indicate locations that can be protected in the future and what 
habitat types can be increased on and around the refuge.  
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CHAPTER I 
 
 

RESPONSE OF A DOMINANT NATIVE CAREX SPECIES TO NATURAL 

DISTURBANCE ON RESTORED WETLANDS 

 

ABSTRACT 
 Alteration of natural disturbance processes in wetlands can lead to changes in the 

plant community such as decreased species richness and increased invasive species. 

Wetlands are dynamic ecosystems adapted to natural disturbances such as floods and 

these disturbances are important in maintaining ecosystem services provided by wetlands. 

Wetland Reserve Enhancement Partnership (WREP) restorations in central Oklahoma 

have become overrun by a monoculture-forming sedge, Carex hyalinolepis Steud. 

(shoreline sedge), creating a structurally homogeneous condition with decreased plant 

diversity. The loss of both plant community and structural diversity in wetlands reduces 

available wildlife habitat, limits ecosystem services such as nutrient cycling, and can 

impede recreational opportunities for landowners. Returning disturbance to restored 

wetlands can increase the ecological benefits these habitats provide, but it is important to 

understand the effects of disturbance on invasive species occurring on WREP 

restorations. We investigated the response of C. hyalinolepis cover to winter and summer 

prescribed burns in a field study. We also conducted controlled greenhouse experiments  
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examining the response of C. hyalinolepis shoot production and aboveground biomass to fire, 

simulated grazing, and flooding. Results of the field study indicated a short-term response of 

C. hyalinolepis to fire with C. hyalinolepis cover returning to pre-fire levels within several 

months following prescribed burns. The greenhouse study results suggest a combination of 

fire and flooding can reduce C. hyalinolepis aboveground biomass (p<0.05) and shoot growth 

(P <0.0001). C. hyalinolepis is a native wetland obligate that is well adapted to both flooding 

and fire. Simply returning one disturbance mechanism to the restoration may not be enough 

to reduce the cover of C. hyalinolepis and lessen its negative impacts on plant diversity. 

Future research should focus on the interactions of other disturbance mechanisms to help 

reduce the impacts of invasive species. One solution is to leave patches of sedge habitat 

intermixed in a mosaic of wetland habitat types, which could be beneficial for species such as 

bitterns. Our results suggest that prescribed fire alone is not enough to reduce the cover of C. 

hyalinolepis, but a combination of disturbances may be more effective at increasing plant 

diversity on wetland restorations. 

KEY WORDS:   Carex hyalinolepis Steud., flooding, grazing, management, native invasive 

species, prescribed fire, Oklahoma, shoreline sedge   

 
INTRODUCTION 

Wetlands provide many ecosystem services such as wildlife habitat, flood control, 

and groundwater recharge. Despite the importance of wetlands, over half of the wetlands in 

the conterminous United States have been lost or severely degraded (Dahl 1990). As the 

value of wetlands to society has been realized, the focus on mitigating wetland loss and 

restoring degraded wetlands has become a primary goal for some federal and state agencies. 

To help combat wetland losses, the United States Department of Agriculture (USDA) created 
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the Wetland Reserve Enhancement Partnership (WREP). The WREP, formerly called the 

Wetlands Reserve Program, has been instrumental in helping mitigate wetland loss through 

restoration of wetland habitats and establishment of conservation easements on private lands 

throughout the United States (Gray and Teels 2006). The WREP program currently has over 

one million wetland acres enrolled in conservation easements (USDA 2019). Restoration of 

degraded wetlands is important for safeguarding the ecosystem services provided by these 

habitats. While many WREP sites have records of past ditching, channelization, and presence 

of water control installments, many have been successfully restored with functional 

hydrology (De Steven and Gramling 2012). In general, restored WREP wetlands provide 

more ecosystem services and have a higher socio-economic value than agricultural lands (De 

Steven and Gramling 2012, Jenkins et al. 2010). Wetland restoration on WREP properties 

has proven to be successful and beneficial for amphibians, birds, and other wetland 

dependent wildlife at both broad and fine scales (Waddle et al. 2013, King et al. 2006).  

However, the disruption of natural disturbance regimes in wetlands can hinder restoration 

success.  

Inherent heterogeneity in ecosystems is often a product of natural disturbance 

(Fuhlendorf and Engle 2001), and natural disturbance mechanisms such as fire, herbivory, 

and flooding are common in wetlands. However, changes to natural disturbance mechanisms 

in human-modified landscapes that include wetlands have resulted in less diverse ecological 

communities (Marty 2015, Nielsen et al. 2013, Catford et al. 2011, Chambers et al. 1999). 

For example, the change in hydrologic regime or fire frequency and severity resulting from 

the loss of natural disturbance regimes in wetlands can lead to undesirable shifts in 

vegetation communities or foster the introduction of invasive species. Returning natural 
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disturbances to wetlands is a potential management tool to help improve wetland function 

and enhance ecosystem services.  In particular, this approach may be important for 

improving functions and services in wetland restorations.   

Alteration of natural disturbances in wetlands can precede the development of plant 

communities with very low species richness or can promote the spread of invasive species. 

Wetlands are complex ecological systems that are highly susceptible to developing 

monotypic stands of individual species due to the natural buildup of nutrients and organic 

materials (Zedler and Kercher 2004). Native species with invasive characteristics can easily 

dominate wetlands with the same implications as non-native invasive species by creating 

monocultures (Rojas and Zedler 2015, Levin et al. 2006, Adams and Galatowitsch 2005) and 

by altering disturbance regimes (Gaertner et al. 2014, Keeley et al. 2005, Brooks et al. 2004, 

Mack and D’Antonio 1998). For example, invasive wetland plants have been shown to alter 

hydrology by changing surface flow and water table depth (Gordon 1998) and alter fire 

regimes by changing fuel loads (Davies and Nafus 2013, Berry et al. 2011).  

One management tool that has been used to restore the natural disturbance regime in 

wetlands is prescribed fire. Fire is a beneficial ecological disturbance that has occurred on the 

landscape long before human arrival (Bowman et al. 2009) and is a natural disturbance 

mechanism that helps maintain ecosystem states (Cissel et al. 1999). Fire can create gaps in 

canopies, reduce fuel loads, influence nitrogen and phosphorous cycling, improve forage, 

create mosaics of habitat types (DeBano et al. 1998), and improve species richness (Thom 

and Seidl 2016). Scientific literature provides many examples of invasive plant species being 

controlled by the use of prescribed fire (Strong et al. 2013, Ayala-A. et al. 2012, DiTomaso 

et al. 2006, Kyser and DiTomaso 2002). While fire history varies with location, documented 
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records attest to the presence and regularity of fire occurring throughout the Great Plains 

(Engle and Bidwell 2001, Hart and Hart 1997, Ford and McPherson 1996, Stewart 1951), 

which likely burned wetlands, particularly in dry seasons. Fire in wetlands often affect 

inorganic compound composition, macronutrient presence, plant composition, and increase 

or decrease nutrient cycling abilities depending upon the fire frequency and intensity (Liao et 

al. 2013, Gu et al. 2008, Smith et al. 2001, DeBano et al. 1998, Johnson and Knapp 1995, 

Laubhan 1995).  

Returning natural disturbance regimes such as fire to wetlands has potential 

management applications, but vegetation response to prescribed fire in wetlands can be 

variable and equivocal (Flores et al. 2011, McWilliams et al. 2007, Clark and Wilson 2001, 

Kost and De Steven 2000, Johnson and Knapp 1995). Studies have shown increases in 

biomass and changes in vegetation composition post-fire (Flores et al. 2011, Ford and Grace 

1998, Bowles et al. 1996, Johnson and Knapp 1995), while others have shown neither a 

change in annual production by plant species nor compositional changes (Hogenbirk and 

Wein 1991, Smith and Kadlec 1985a, Smith and Kadlec 1985b). Previous research suggests 

that most responses to prescribed fire in wetlands are site and species specific (Wang et al. 

2017, Flores et al. 2011, McWilliams et al. 2007, Pendergrass et al. 1999, Johnson and 

Knapp 1995, Auclair et al. 1976). Given the complexity of relationships among water levels, 

nutrient availability, precipitation, timing of fire, and fire intensity, it is clear why different 

patterns of fire-vegetation relationships have been observed among different wetland 

systems. However, returning fire to wetlands is critical to restoring the structure and function 

of wetlands by preventing woody encroachment (Luvuno et al. 2016), increasing sprouting 

density of seedlings (Wang et al. 2017), maintaining habitat structure (Fuhlendorf et al. 



6 
 

2006), reducing existing fuel loads (North et al. 2012), and improving the nutritive quality of 

plants for wildlife (Boyd and Bidwell 2001, Carlson et al. 1993, Smith et al. 1984).  

Another important disturbance factor in wetlands is herbivory. Bison (Bison bison) 

and cattle herbivory have historically influenced vegetation structure and heterogeneity of 

grassland communities in the Great Plains (Derner et al. 2009, Fuhlendorf et al. 2008, Adler 

et al. 2001, Hartnett et al. 1996). Sedge-dominated wetlands have been described as wetter 

versions of tallgrass prairies (Warners 1997) and as such, herbivory likely played a role in 

these types of wetlands. Furthermore, sedges have been documented as bison forage (Jung et 

al. 2015), indicating sedge wetlands likely experienced both trampling and grazing 

disturbance by bison. This indicates the presence of another disturbance mechanism that 

historically affected wetlands and could be re-established to help wetland restorations 

succeed. Disturbance from grazing herbivores can impact wetlands in several ways. Large 

grazers can displace soil and create bare ground, which affects microclimate and can 

facilitate germination of species that require exposed soil (Touzard et al. 2002). Grazers have 

the potential to transport seeds (either native or non-native) (Morris and Reich 2013), which 

can increase diversity (Mester et al. 2015, Marion et al. 2010). Grazing also has the potential 

to maintain non-native species in lower abundance (Marty 2005), which can alter the 

structure of wetland vegetation (Jones et al. 2011). In addition to trampling soil/vegetation 

and erosion (Morris and Reich 2013), grazing by larger ungulate species can decrease soil 

density and increase salinity (Teuber et al. 2013).  

Flooding is one of the most common disturbances associated with wetlands. Although 

it is common to expect wetlands to be wet at all times, many riverine floodplain wetlands 

experience cycles of flooding and drying with floods supplying important pulses of nutrients. 
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Plant nutrient availability often comes from sediment deposition from these flooding events 

(Olde Venterink et al. 2006). The hydrological impacts of flooding can be grouped into five 

classes: magnitude, timing, frequency, duration, and rate of change of water (van der Valk 

2012). Each of these characteristics can affect plant communities and species present 

(Zhiqiang et al. 2016, Webb et al. 2012). Water levels can affect plant community 

composition (Wilcox and Nichols 2008) based on species specific environmental 

requirements and adaptations (e.g., emergent versus submergent species). For example, 

duration of flooding can influence changes such as obligate wetland species becoming more 

prevalent because they are able to withstand long periods of inundation (Nielsen et al. 2013, 

Raulings et al. 2010, Barrett et al. 2010) versus species adapted to drier conditions that will 

likely perish if wetlands are flooded for long periods of time. Water level manipulation in 

wetlands is a frequently used management tool, particularly in WREP wetlands that have 

water control structures installed during restoration.  

Several WREP wetland restorations in central Oklahoma have become overrun by a 

monoculture forming sedge, Carex hyalinolepis Steud. (shoreline sedge), creating a 

structurally homogeneous condition with decreased plant diversity. Disturbance regimes that 

have been successfully re-established have been able to return restored wetlands to 

conditions similar to natural wetlands (Bortolotti et al. 2016), improve wildlife habitat for 

vulnerable species (Walls et al. 2014, Conway et al. 2010), and restore native obligate 

wetland communities (Martin and Kirkman 2009). Returning disturbance to the landscape 

through management activities has potential to reduce dominant species cover. Therefore, we 

implemented a dual approach to study the response of C. hyalinolepis to fire and other 

natural disturbance mechanisms (e.g., grazing and flooding) with a field study and under 
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controlled greenhouse conditions. The aims of the study were to: 1. Determine if a 

reintroduction of fire as a disturbance mechanism can reduce the cover of C. hyalinolepis and 

improve species richness in restored wetlands; 2. Determine the effect of fire, grazing, and 

flooding on shoot growth and mortality in C. hyalinolepis; 3. Determine the response of 

aboveground biomass of C. hyalinolepis to disturbance mechanisms of fire, grazing, and 

flooding; and 4. Provide management recommendations to reduce the cover of C. 

hyalinolepis.  

METHODS  

We implemented a field study and two greenhouse studies to elucidate the impacts of 

disturbance on C. hyalinolepis-dominated wetlands and on C. hyalinolepis directly. We chose 

this approach to assess the impacts in the field where it is more ecologically relevant, but also 

in a controlled environment where variables could be accounted for and monitored.   

Wetland Field Experiment 

Site Description 

We selected four restored riverine floodplain wetlands (Dvorett et al. 2012, Brinson 

1993) adjacent to the Deep Fork River in Lincoln County, Oklahoma that were enrolled in 

WREP and were predominantly covered by C. hyalinolepis. The restored floodplain wetlands 

that abut the Deep Fork River have dissimilar hydrologic characteristics, soil properties, and 

higher percentages of disturbance tolerant invasive species than were historically present 

(Hough 2011, Nugent 2011, Hartzell et al. 2007). 

All four research sites selected were previously under agricultural cultivation or 

abandoned during the 1980s and early 1990s until wetland restoration was completed 

between 2003 and 2014 under the Wetland Reserve Program (WRP), which is now WREP 
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(D. Fowler, USDA-NRCS, personal communication). Site 1 is approximately 78 hectares and 

was placed under easement at the beginning of 2013. Restoration included constructing new 

embankments and water control structures. Work was completed in January 2014 (Fig.1). 

The property was contracted under the United States Fish and Wildlife Service (USFWS) as 

a part of the Partners for Fish and Wildlife Program, which occurred more than a decade 

prior to enrollment. Site 2, a 98 hectare wetland, was enrolled in the WREP program in 2007 

and restoration work was completed in 2012 (Fig. 2). Prior to restoration, the land was 

planted in sorghum (Sorghum spp.). Restoration work included building new embankments 

as well as rebuilding existing embankments, installing water control structures, and planting 

trees around pond areas. The current management regime is to hold water during the fall and 

winter for waterfowl and to drawdown the water during the spring. Restoration of Site 3, a 79 

hectare wetland, began in 2003 and was completed later that year with construction of new 

embankments and installation of water control structures (Fig. 2). Since completion of the 

restoration, little to no management has occurred on this unit. Site 4 (Fig. 2) was enrolled in 

the WREP in 2003. Restoration included repairing existing embankments, removing an old 

embankment, creating a new embankment, as well as installing water control structures. 

Restoration was completed in 2005. No management has been conducted on the property 

since completion. Unit 4 was previously enrolled in the USFWS Partners for Fish and 

Wildlife Program, who completed the original restoration of the wetlands on the unit in 1992 

(D. Fowler, USDA-NRCS, personal communication).  

Each site had burned and unburned units assigned to it, with location of units 

delineated based on the amount and location of large patches of C. hyalinolepis. This resulted 

in seven burn units and seven unburned units across the four properties, totaling fourteen 
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research units. Each unburned research unit, where the vegetation monitoring took place, was 

approximately 0.72 hectares in size (range: 0.42 – 1.15 ha), while burn units were 

approximately 1.01 hectares each (range: 0.48-1.64 ha). The yearly total precipitation near 

the research locations was 75.16 cm in 2014, 126.72 cm in 2015, 84.05 cm in 2016, and 

129.36 cm in 2017. 2015 and 2017 were much wetter years compared to the long term 

average of 87.12 cm of precipitation for central Oklahoma (Oklahoma Climatological Survey 

2019).  

Prescribed Burns 

Prescribed burns were conducted in mid-February 2015 (Sites 3 and 4) and late 

summer (late August/early September) 2015 (Sites 1 and 2). A wildfire burned site 2 (all 

vegetation on the burned and unburned units was combusted) during early winter 2017. The 

winter burns on sites 3 and 4 were burned with a backfire, but other fire-related data were 

unavailable for the winter burns and wildfire. During the late summer burns, winds were 5.6 

km/h, temperature was between 34.5ºC and 36.1ºC with relative humidity dropping from 

70.4 to 44%. Site 1 had two prescribed fires, one on each of the burn units. The first unit was 

burned with a slow moving headfire with 75% consumption of dry matter and 10% 

consumption of green living matter. The second unit was also burned with a headfire and had 

75% consumption of dry matter and 60% of green material. Research site 2 had two burn 

units as well that were both burned with a headfire. The burn on unit one resulted in 75% 

consumption of both dry and green matter. The prescribed fire on unit two resulted in a very 

spotty burn with only 25% dry matter combusted and 10% green vegetation burned. Re-

evaluating the burn the next day indicated that few plots burned due to the wetness of the 

plant material, particularly Eleocharis spp.; therefore, it was reclassified as an unburned 
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control unit. Inherent variability and unpredictability common in ecological studies resulted 

in fewer burns than planned and uncontrolled flooding on several sites.  

Vegetation Sampling 

Each burned and unburned unit on a research site had ten nested plots placed on them 

for vegetation sampling, resulting in 140 vegetation plots. Each vegetation plot used a nested 

plot design where the large plot was 5 meters long by 2 meters wide, allowing for the 

establishment of 10, 1-meter x 1-meter plots (Fig. 3). T-posts were used to mark the location 

of the plot. Prior to data collection, a randomly selected cardinal direction was used to 

determine the orientation of the plot and location from the t-post marker. The plots were 

located 1 meter away from the t-post to prevent potential influence of disturbance on the 

vegetation where the post was inserted into the ground. Each vegetation sampling plot was 

placed a minimum of 5 meters from water, trees greater than 1 meter tall, and edge habitat 

(e.g., roads and dikes). Each sampling plot was at least 11 meters from all other plots in any 

given direction.  

Vegetation data were collected twice during the growing season from 2014-2017 in 

late May/early June and late July/early August. Data were collected from every 1-meter x 1-

meter plot. We estimated cover using Daubenmire cover classes for functional groups, 

including graminoids, forbs, litter, bare ground, and Carex spp. We also estimated cover for 

each species found within the 1m x 1m plots.  

Feral Hog Damage 

During spring of 2015, feral hogs (Sus scrofa Linnaeus) damaged several sampling 

units. Photos were taken of every 1m x 1m vegetation plot for the duration of the research. 

Therefore, we were able to document the damage done by the hogs with the photographs. A 
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digital grid was placed over the 1m x 1m plot in the photo and percent damage was estimated 

based on how many grids showed vegetation damage and evidence of rooting and trampling.  

Greenhouse Experiments 

The greenhouse experiments were designed to test the effects of disturbance on C. 

hyalinolepis shoot production and aboveground biomass. A minimum of 270 C. hyalinolepis 

plants were extracted from the field research wetlands prior to the beginning of the 

greenhouse experiments. Plants were collected and maintained in native clay soil in 4-L pots. 

Litter and dead material were removed from the pots and C. hyalinolepis plants were allowed 

to grow for several months in the greenhouse before treatments were applied. When 

removing the plants from the field, a group of shoots was selected and a circle was dug 

around the shoots in the approximate diameter of the pots used to contain the plants. We 

attempted to remove the entire rhizome when possible to prevent the sedge from being killed. 

Growing conditions were maintained similar to field conditions by using ambient light from 

the greenhouse and maintaining the temperature at a minimum of 21°C. Plants were watered 

two to three times a week to field capacity. The greenhouse research was divided into two 

experiments. The first experiment tested the impacts of burning, flooding, a combination of 

burning and flooding, and grazing on shoot production of C. hyalinolepis and was conducted 

from June through December 2015. The second experiment focused on the effect of 

treatments on aboveground biomass of C. hyalinolepis and was conducted February through 

August 2016. Fifteen individual 4-L pots with C. hyalinolepis were used for testing each 

treatment. The treatments were chosen because they resembled potential management 

options that could be used on WREP properties by private landowners.  

Greenhouse Experiment 1 
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A randomized block design was implemented to test the efficacy of various 

management treatments that mimicked natural disturbance mechanisms on reducing shoot 

production or inducing mortality of C. hyalinolepis. The number of shoots per pot was 

counted bi-weekly for the extent of the experiment. Each experimental treatment was 

monitored for one month after the treatment to determine if the treatment induced mortality. 

The treatments included flooding, clipping (to mimic grazing), burning, and a combination of 

burning and flooding. Plants were exposed to flooded conditions for one, two, four, and six 

months. Pots were placed in large plastic containers and filled with tap water until the depth 

was 10 cm above the soil level (Ewing 1996), and this depth was maintained for the duration 

of the treatment.  Plants were clipped to various levels above the soil surface to mimic 

grazing. Leaves were clipped to the soil surface (0 cm), 1 cm, 5 cm, and 10 cm above the soil 

surface at the beginning of the experiment and again two weeks after the initial clipping.  

Plants were burned once or twice, with the second burn occurring two weeks after the 

initial burn. To conduct the burns, individual C. hyalinolepis plants in pots were placed under 

a 0.9 x 1.8 m metal table with a 20 cm circle removed from the center that was level with the 

soil in the pot in order to burn one plant at a time (Limb et al. 2011). All fires were conducted 

with a headfire and 0.5 kg of dry native prairie hay, which was equivalent to field litter 

levels, placed around the top of the plant to carry the fire through. The first set of burns were 

conducted with an average air temperature of 27.69°C, relative humidity of 53.92%, and a 

wind speed of 5.9 km/h. Average litter depth was 0.14 m and mean flame height was 0.42 m.  

It took an average of 87 seconds for the fire to carry through and burn individual pots of C. 

hyalinolepis. The second set of burns was conducted with an average air temperature of 

20.84°C, relative humidity of 77.8% and a wind speed of 5.15 km/h. Mean litter depth was 
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0.121 m, average flame height was 0.3 m, and it took an average of 86 seconds for each plant 

to burn. All living biomass was consumed on each pot. Plants that were exposed to the burn 

and flood treatment were first burned with the aforementioned method and flooded 

immediately after the burn, following the same treatment as flooded plants.   

Greenhouse Experiment 2 

For the second experiment, plants were exposed to similar treatments used in 

experiment 1 and followed the same methods for burning, clipping, and flooding. However, 

we did not have as many treatment levels in the second experiment as in the first experiment. 

Aboveground biomass of C. hyalinolepis was monitored to determine effect of the 

treatments. Plants were clipped to the soil level, burned once, flooded for one month, and 

burned and flooded for one month. The pots for the burn and flood and flood treatments were 

removed from the flooded conditions at week 4. Plants were burned using the method 

aforementioned in experiment 1. The burns were conducted in conditions with an average 

temperature of 14.57°C, an average relative humidity of 44.52%, and a mean wind speed of 

7.02 km/h. The average litter depth was 0.141 m, mean flame height was 0.3 m, and it took 

an average of 55 seconds for each pot to burn. All living biomass was consumed in each pot.   

The pots were monitored once a month for six months. Plant aboveground biomass 

was determined using remote sensing techniques similar to field methods of Limb et al. 

(2007) and Boyd and Svejcar (2005). Photographic images were taken of plants, and pixel 

numbers of each plant were used to determine aboveground biomass. A photo booth was 

constructed of white cloth to reduce background noise and to allow ambient light to enter. 

Ambient light from the greenhouse was used as artificial light would have created shadows. 

Pots were placed on the center of a table marked by an ‘x’ so that the same location could be 
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replicated for all plants. The soil was covered with white cloth and a white cloth backdrop 

was placed around the pot and on the table to prevent excess noise in the photo. The plastic 

rim on the pots was trimmed to soil level so that the edge of the pot did not obstruct view of 

the sedge leaves. A tripod mounted camera was placed 112 cm from the edge of the table and 

photos were taken with a Nikon Coolpix AW100 with an ISO of 124, f/3.9 on the portrait 

setting, and 4608 x 3456 pixels in size. Photos were edited to remove the background and 

converted to monochromatic black and white photos (Fig. 4). Pixel number associated with 

each plant was determined using ENVI 5.3 software (Exelis Visual Information Solutions, 

Inc., Harris Corporation, 2017).  

Data Analyses 

Wetland Field Experiment 

We analyzed the impacts of summer and winter prescribed burns on several variables 

using a generalized linear mixed model for repeated measures, which models the covariance 

structure. The variables were species richness and percent cover of Carex spp. (the dominant 

species was C. hyalinolepis, but one site had approximately 25% coverage of Carex crus-

corvi Shuttlew ex. Kunze (ravenfoot sedge)), litter, bare ground, and forbs. All percent cover 

responses were analyzed using a beta distribution and species richness was analyzed using a 

Poisson distribution. All  tests were done to the 0.05 significance level. Analyses were 

conducted separately for winter and summer burns. Burn treatment (summer or winter burn) 

was a fixed effect, and the combination of year and data season were the repeated measures. 

We also included interactions between years, season, and burn. If an interaction occurred, we 

used Tukey-Kramer pairwise comparisons since repeated measures are likely not 
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independent. Data were not collected for both spring and summer seasons for all four years 

due to substantial flooding in 2015 and 2016 that prevented access to the research sites.  

Water depth was not recorded, but coverage of water was monitored and collected 

throughout the experiment and any plot that had three percent or more water present was 

given a value of one, and those that had no water present were given a value of zero. The 

presence of water in the vegetation sample units indicated that the site was currently flooded 

or had been recently flooded. Although flooding occurred on all sites, plots with standing 

water when data were collected were removed for the analyses in order to attempt to 

elucidate the effects of the prescribed fires on the variables in question.  

Greenhouse Experiments  

For the first experiment, we analyzed the impacts of various treatments on shoot 

production of C. hyalinolepis plants using a generalized linear mixed model for repeated 

measures. The treatments were clipping to mimic grazing at 0, 1, 5, and 10 centimeters above 

the soil; burning once or twice; flooding for 1, 2, 4, or 6 months; or burn and flood for 1 or 2 

months. All  tests were evaluated at the 0.05 significance level. Treatments (clip, flood, burn, 

burn and flood) were fixed effects, and weeks were the repeated measures. We included 

interactions between treatments and weeks. If an interaction occurred, we used Tukey-

Kramer pairwise comparisons.  

For the second experiment, and in order to verify that aboveground biomass was 

represented accurately by the number of pixels of each plant in the photos, a linear regression 

was run using aboveground biomass of 43 C. hyalinolepis plants. Plants were dried for two 

weeks and weighed to the gram to model the relationship between aboveground biomass and 

number of pixels in each image of individual plants (adjusted R2 = 0.93) (Fig. 5). A 
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generalized linear mixed model for repeated measures was used to determine if an interaction 

occurred between weeks and treatments. The treatments were burn, flood for 1 month, burn 

and flood for 1 month, and clip to 0 cm.  Treatments (clip, flood, burn, burn and flood) were 

fixed effects and the weeks were the repeated measures. 

RESULTS  
 
Wetland Field Experiment  

We found that the summer burns had no positive or negative statistically significant 

effect among burn, season and year on the amount of cover present for C. hyalinolepis  (F7,34 

=0.43, p = 0.874), litter (F7,34 =1.92, p = 0.096), bare ground (F7,30 =  2.10, p = 0.075), forbs 

(F7,34 = 0.52, p = 0.813) or species richness (F7,34 = 0.91, p = 0.509) (Appendix B, figures 1, 

3, 5, 7, 9; Appendix A, Table 1 shows effects of summer and winter prescribed burns on 

individual plant species; Appendix C lists all species observed on the research sites). While 

there was no significant interaction among seasons, years, and burn treatments, there was an 

interaction between years and seasons, indicating that some environmental variables, likely 

the extensive flooding on the WREP properties during 2015 and 2017, affected the changes 

in percent cover of the aforementioned variables. We found that winter burns did have an 

effect on the variables measured. An interaction occurred between burn, season, and year for 

the percent cover of litter (F5,22 = 12.46, p < 0.0001), bare ground (F5,16 = 6.60, p = 0.002), 

forb (F5,21 = 3.70, p = 0.015), and C. hyalinolepis (F5,22 =9.03, p < 0.0001), and therefore we 

examined the response of each variable to prescribed fire by burn season and compared 

results among years. Winter burns had no effect on species richness (Appendix B, Figure 10).   

At the beginning of the experiment, control sites and the sites to be burned had 

similar amounts of litter during the spring (F1,22 = 0.38, p = 1.00) and summer (F1,22 = 0.44, p 
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= 1.00) of 2014 (Appendix B, Figure 2). After the prescribed fire was conducted during the 

winter of 2015, the amount of litter returned to levels comparable to the control sites by 

summer of 2015 (F1,22 = 4.07, p = 0.712). We were unable to access the sites during the 

spring of 2015. Litter continued to accumulate on both the burned and control sites and there 

continued to be no difference between the control and post-burn sites 1.5 years after the burn 

during the summer of 2016 (F1,22 = 0.34, p = 1.00). A wildfire occurred during the winter of 

2017. As expected, fire removed litter from the research plots. The amount of litter was 

significantly less on the post-burn sites during the spring (p = 0.012) and summer (p = 0.022) 

when compared to the levels of litter on the same site the summer before the burn. The post-

burn sites also had considerably less litter during the spring (F1,22 = 50.53, p < 0.0001) and 

summer (F1,22 = 64.29, p < 0.0001) than the control sites in 2017.  

At the start of the research, both control and treatment sites had similar amounts of 

bare ground present in both the spring (F1,16 = 0.01, p = 1.00) and summer (F1,16 = 0.14, p = 

1.00) of 2014 (Appendix B, Figure 4). As expected, there was a change and more bare 

ground was present on post burn sites during the summer of 2015 when compared to pre-

burn levels during the summer of 2014 (p = 0.003).  However, this increase was short lived, 

and the levels of bare ground decreased quickly. The percent of bare ground present was not 

statistically different during the summer of 2016 when compared to pre-burn levels during 

the summer of 2014 (p = 0.747). While we observed a slight increase in bare ground when 

comparing pre-and post-burn sites, we did not observe any difference from post burn sites 

and the control during summer 2015 (F1,16 = 13.50, p = 0.061) or summer 2016 (F1,16 = 

10.83, p = 0.120). After the wildfire during the winter of 2017, we observed an immediate 

increase in the amount of bare ground exposed, which was greater than bare ground on the 
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control sites during the spring (F1,16 = 30.11, p = 0.002). While bare ground began to 

decrease in the summer as expected because of plant growth and litter accumulation, the 

amount of bare ground present remained statistically higher on the post-burn sites as 

compared to the controls (F1,16 = 30.73, p = 0.002). 

During the spring (F1,21 = 3.56, p = 0.786) and summer (F1,21 = 5.79, p = 0.476) of 

2014, the forb cover on the treatment sites prior to burning and control sites was similar 

(Appendix B, Figure 6). After the prescribed fire during the winter of 2015, the amount of 

forb cover remained similar between the control and burn sites the following summer (F1,21 = 

0.21, p = 1.000). The percent cover continued to remain similar between the sites through the 

summer of 2016 (F1,21 = 0.18, p = 1.000). After the wildfire during the winter of 2017, there 

was a spike in spring forb cover, although it was not significantly different from the amount 

of forb cover on the burn site the previous summer (p = 0.305) and remained similar to 

control sites during both the spring (F1,21 = 6.18, p = 0.429) and summer (F1,21 = 3.18, p = 

0.837) of 2017. The only significant difference that occurred was that more forb cover 

existed on post-burn sites during the spring of 2017 when compared to pre-burn sites during 

the spring of 2014 (p = 0.039). However, this was a very short term result as summer 2017 

post-burn forb levels were the same as those on pre-burn sites during the summer of 2014 (p 

= 0.890).  

The percent cover of C. hyalinolepis was not significantly different on the pre-burn 

sites during the spring of 2014 (F1,22 = 9.77, p = 0.154) or summer (F1,22 = 6.92, p = 0.349) 

when compared to the percent cover on control sites at the same time (Appendix B, Figure 

8). Several months after the winter burn in 2015, post-burn sites were not different from the 

control sites during the summer of 2015 (F1,22 = 2.83, p = 0.0882). The prescribed burn also 
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had no discernable effect on C. hyalinolepis as post-burn levels of sedge cover during the 

summer of 2015 were similar to those during the summer of 2014 prior to burning 

(p=1.0000). The trend of no impacts from the prescribed fire continued as no differences 

were detected in the summer of 2016 between the control and post-burn sites (F1,22 = 9.30, p 

= 0.176). After the wildfire during the winter of 2017, there was a reduction in the cover of 

sedge on the post burn site when compared to summer 2016, but it was not significant (p = 

0.299). There was a significant change on the post-burn sites between the spring and summer 

of 2017 (p = 0.002) where the sedge dramatically recovered. However, the percent cover of 

sedge was not different from the control sites during the spring (F1,22 = 11.51, p = 0.092) and 

summer (F1,22 = 6.59, p = 0.383) of 2017.  

Feral Hog Damage 

 The damage done to the vegetation plots from feral hog resulted in no changes to the 

cover of forbs (F1, 2  = 0.01, p = 0.06), but it did have an impact on litter (F1, 2 = 32.62, p = 

0.03), bare ground (F1, 2 = 57.16, p = 0.02), species richness (F1, 77.23 = 7.85, p = 0.006), and 

sedge cover (F1, 2 = 20.30, p = 0.05). 

Greenhouse Experiments 

Greenhouse Experiment 1 

An interaction between treatments and weeks occurred at the beginning of the initial 

analyses (F60, 840 = 12.46, p < 0.0001), therefore we compared treatments within weeks. For 

clarity, the results are discussed by treatment type and are represented in separate figures 

(Figures 6-12). At the beginning of the experiment there were no differences in shoot number 

among treatment groups and the control or within treatments (F12, 158 = 1.04, p = 0.41). 



21 
 

However, differences were present among treatments for the other weeks (F > 3.93, p < 

0.042).  

Clip Treatments 

C. hyalinolepis shoot production was not impacted after the first treatment. Shoot 

production at week two, prior to the second clip treatment, was not different from the control 

plants at all levels. After the second clip treatment, shoot production was affected by the clip 

treatment at the soil level (0 cm) when compared to the control, with plants clipped to the soil 

level having significantly less shoots than the control plants (p = 0.03) at the end of the 

experiment (6 weeks). The 0 cm clip treatment resulted in fewer shoots produced than the 

control, having 37% less than the average number of shoots compared to the control. 

Clipping C. hyalinolepis to the 1 cm, 5 cm, and 10 cm levels resulted in no significant 

differences from the control at the end of the experiment (Fig. 7). Clipping to the soil level 

induced mortality in 6.7% of the samples, while clipping shoots to 1 cm above the soil 

resulted in 20% of the pots with no shoots post treatment. Clipping shoots to the 5 cm and 10 

cm level above the soil resulted in no mortality to any of the plants.  

Burn Treatment 

Burning C. hyalinolepis plants once resulted in no significant difference in shoot 

number one-month post treatment when compared to the control. Burning once resulted in an 

average of 6.53 !" ± 1.17	shoots per pot at the end of the treatment with the control having 

an average of 9.6 shoots !" ± 0.95	(4 weeks). C. hyalinolepis was negatively affected when 

burned twice, resulting in significantly fewer shoots than the control at the end of the 

experiment (p = 0.006). Burning twice resulted in an average of 3.07 !" ± 0.84shoots while 

the control at six weeks had an average of 10.47 !" ± 1.00shoots (Fig. 8).  Burning plants 
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once resulted in no mortality to C. hyalinolepis, but burning twice induced mortality in 

26.7% of the samples.  

Burn and Flood Treatment 

Burning and flooding for one month produced plants that had an average of 2.67 

!" ± 0.80	shoots one-month post treatment and burning and flooding for two months 

resulted in an average of 0.6 !" ± 0.25	shoots per pot compared to the control at 12 weeks, 

which had an average of 13.8 !" ± 1.36	shoots (Fig. 9). Burning and flooding C. 

hyalinolepis for two months reduced the number of shoots produced, resulting in 

significantly fewer shoots produced than the control plants one month after the treatment 

ended (12 weeks) (p < 0.0001). Burning and flooding one month induced mortality in 33.3% 

of samples post treatment and burning and flooding for two months killed C. hyalinolepis 

plants in 66.7% of samples.  

Flood Treatment 

Flooding plants did not negatively impact shoot production at any treatment level. 

Flooded plants had more shoots than the control after being flooded for two, four, and six 

months, respectively. It had the opposite impact of inducing mortality. The number of shoots 

produced after six months of flooding was significantly, and positively, different than the 

control plants (p = 0.04). Flooding resulted in the following average shoot numbers post 

treatment, with the average shoot number of control plants in parentheses for comparison: 1 

month flood = 16.53 (11.5), 2 months flood = 15.13 (13.8), 4 months flood = 20.27 (16.93), 

and 6 months flood = 25.87 (20.47) (Figs. 10-13).    

Greenhouse Experiment 2  
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An interaction between treatments and weeks occurred at the beginning of the initial 

analyses (F24,347 = 23.79, p < 0.0001), therefore we compared treatments within weeks. For 

clarity, the results are discussed by treatment type and are represented in figure 13.  At the 

beginning of the experiment there were no differences in average pixel number between 

treatment groups and the control and within treatments (F4, 1 = 1.86 p = 0.50). However, 

differences were present among treatments for the other weeks (F > 2.48, p < 0.05).  

Clipping Treatment 

Plants that were clipped to the soil level had significantly different aboveground 

biomass (i.e., the number of pixels of C. hyalinolepis) than the control at week 4 (p < 

0.0001), week 8 (p = 0.02) and week 12 (p = 0.02). Clipped sedges had less aboveground 

biomass than the control group and flooded plants, but more than the burn and flood 

treatment from weeks four through twelve. Clipped sedges had less aboveground biomass 

than both control and flooded plants at week 20 (p = 0.03; p < 0.0001). However, by the end 

of the experiment at 24 weeks, clipped plants had similar aboveground biomass to the control 

group. 

Burn Treatment 

Plants subjected to the burn treatment maintained significantly less aboveground 

biomass than flooded sedges from week 4 through the end of the experiment (weeks 4-24: p 

< 0.0001). Burned plants also maintained a lower aboveground biomass from the control 

group between weeks 4 and 20 (p values ranged from p < 0.001 to p = 0.01), but by the end 

of the experiment the biomass was similar to that of the control (p = 0.09). 

Burn and Flood Treatment 
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Burned and flooded plants had less aboveground biomass as compared to the control 

group from weeks 4 through 24 (p values ranged from p < 0.0001 to p = 0.004). While 

burning and flooding reduced aboveground biomass in C. hyalinolepis plants, it did not cause 

mortality.   

Flood Treatment 

The production of above ground biomass by C. hyalinolepis was not negatively 

affected by flooding. Flooding produced a higher average biomass throughout the experiment 

than all other treatments. It produced significantly more aboveground biomass than the 

control at weeks 4 through 24 (p values ranged from p = 0.0001 to p = 0.04). The flood 

treatment was only similar to the control plants aboveground biomass at week 8.  

DISCUSSION    

Wetlands provide essential ecosystem services. However, the natural disturbance 

regime of wetlands is critical for maintaining these services. In WREP wetlands in 

Oklahoma, more intense and/or more frequent disturbance may be needed to break the 

feedback loop keeping the wetlands dominated by a monoculture forming sedge. C. 

hyalinolepis is a native sedge with invasive characteristics and is well adapted to flooding 

and fire. The most effective method to reduce the negative impacts of C. hyalinolepis is to 

use a combination of disturbances. Restoring the natural disturbance regime of fire in 

connection with the natural cycle of riverine flood pulses may be more effective. Results 

from the field study indicate that burning alone had no impact on reducing C. hyalinolepis 

presence in the wetlands, but results from the greenhouse study suggest that combining 

disturbance mechanisms was effective in reducing aboveground biomass and effectively 

inducing mortality of C. hyalinolepis shoots. Combining different disturbance mechanisms or 
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altering the intensity and timing of disturbances has the potential to be effective in reducing 

the cover of some invasive plant species (Zhang and Shea 2012, Firn et al. 2010, Schooler et 

al. 2010, Davies et al. 2009, Turner 1988). 

Field Study 

Prescribed fire increased the cover of C. hyalinolepis, particularly after the winter 

burn. Two factors influencing this effect of fire could be the season of burn and the intensity 

of the fires. Spring burns in March or April may be more effective at reducing C. 

hyalinolepis while plant nutrients and energy are invested in producing seeds, when 

flowering occurs, and when new tillers are being produced. The prescribed fires were likely 

not intense enough. The winter burn would have been more intense than the summer burn 

because of the buildup of dead vegetative material and low moisture content. The summer 

burn had low intensity fires due to the high moisture content of the vegetation. Several of the 

summer burned areas had to be reclassified as unburned because the fire consumed less than 

ten percent of the vegetation. Sedges are dissimilar to many grass species by having their 

apical meristem below ground, protecting the plant from fire (Strong et al. 2013). Many also 

reproduce vegetatively and can respond quickly to fire through rapid tiller production 

(Kimura and Tsuyuzaki 2011, Auclair et al. 1976). More intense fires may have had more of 

an effect if they had been able to burn hot enough to kill rhizomes below the  soil surface. 

Burns in sedge-dominated systems have had little, if any effect on reducing sedges or 

increasing species richness, or results were very short term (Kost and De Steven 2000, 

McWilliams et al. 2007).   

One of the objectives of this study was to determine if prescribed fire could be used to 

improve species richness on restored WREP wetlands in central Oklahoma. We did not 
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observe any changes in species richness or forb cover post-fire or in conjunction with the 

decrease in litter and increase in the amount of bare ground. Prescribed burns implemented 

once did not increase species richness or reduce aboveground biomass of C. hyalinolepis.  In 

fact, C. hyalinolepis has been documented to respond positively to fire in Florida (Cypert 

1973). Burned wetlands often experience increases in graminoid cover with a concomitant 

decrease in forb cover after fire (Flores et al. 2011, Warners 1997, Bowles 1996, Johnson and 

Knapp 1995), or experience results that were short term with prior conditions returning 

within less than a year (Schmalzer et al. 1991). Results from the prescribed burns in C. 

hyalinolepis-dominated wetlands were similar in that any changes we observed were 

temporally short. In contrast to our study of fire in sedge dominated wetlands, Middleton 

(2002) did observe an increase in species richness post fire in sedge meadows. However, 

many other examples of burning in sedge-dominated wetlands indicated little to no long-term 

changes in reducing sedge cover or improving species richness (McWilliams et al. 2007, 

Kost and De Steven 2000), which is similar to our results. McWilliams et al. (2007) suggest 

that the effects of burning are more evident when looking at individual species and that the 

moisture gradient of the wetland likely has more of an impact on plant species community 

than prescribed fire (Norton and De Lange 2003, Ford and Grace 1998, Taylor et al. 1994). 

The rapid growth rate and high biomass produced by sedges could provide one explanation 

of why species richness does not increase as rapid growth and litter buildup allow sedges to 

outcompete other species.  

Several species besides C. hyalinolepis were routinely encountered in the WRP 

wetlands and exhibit invasive characteristics. Cardiospermum halicacabum became very 

dominant during 2017 and has the potential to become a problematic invasive species on the 
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WREPs due to its quick growth, ability to spread, ample seed production, and seeds that can 

survive flooded environments before germinating (Noble and Murphy 1975). Mature plants 

also have the ability to adapt and survive under a range of conditions, including the ability to 

survive floods (Dempsey 2011). This species is also considered invasive in other regions 

(Gildenhuys et al. 2013, Hui et al 2011). Although native, Ambrosia trifida, similar to C. 

hyalinolepis, has characteristics that make it a potential invasive species that can limit overall 

diversity in the ecosystems it overruns. A. trifida seeds germinate earlier than other species 

and the seeds have the ability to germinate in a wide range of conditions, giving it a 

competitive advantage (Abul-Fatih and Bazzaz 1979).  Also, A. trifida produces large leaves 

and is taller than many species, resulting in more biomass, which allows the plants to 

outcompete understory species and reduce overall diversity (Abramova 2012, Bassett and 

Crompton 1982). This indicates that the WREP wetlands may be prone to other invasive 

species even if the cover of C. hyalinolepis is reduced.  

Greenhouse Study 

The interaction of disturbance mechanisms that involve fire, mowing, or grazing have 

been successfully used to reduce invasive plants when followed by flooding to a depth and 

duration that prevents any remaining leaves, shoots, and roots from obtaining oxygen 

(Herndon et al. 1991, Ball 1990, Smith and Kadlec 1985b). Combining disturbance methods 

(i.e., burning and flooding in combination) was more effective at reducing overall sedge 

biomass than any one management option alone. The most effective method is to burn and 

immediately flood the wetland to a level above all living sedge material for a minimum of 

two months. Once the sedge is burned and aboveground biomass is removed, inundating the 

plant will deprive the roots of oxygen, and if no method such as rapid underwater shoot 
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extension can be produced by the plant to get oxygen, (Cronk and Fennessy 2001), anoxic 

conditions will eventually kill the plant or damage plant tissues depending on the species’ 

tolerance to flooded conditions (Crawford 2003).  Many WREPs have water control 

structures that allow them to flood and hold water, making this a viable management option 

for many landowners. Another benefit of using prescribed fire to remove litter followed by 

flooding will create more bare ground, which will allow other species to germinate when the 

water is eventually drawn down (Kimura and Tsuyuzaki 2011, de Szalay and Resh 1997, 

Kirkman 1995, van der Valk 1986, Smith and Kadlec 1985b). Flooding alone at the depth 

and duration in our study had no negative impacts and instead increased the number of shoots 

and aboveground biomass of C. hyalinolepis.   

Many native sedge species become dominant monocultures in wetlands (Bernard et 

al. 1988, Gorham 1979) and are resilient to disturbances such as grazing (McGranahan et al. 

2014) and fire. Sedges (Carex spp.) have been shown to have high growth rates in shallow 

water (Hultgren 1988) and respond positively to grazing due to efficient nutrient uptake from 

the rhizomes. Grazing causes shoots to remain in a physiologically younger state with high 

nutrient concentrations (Bernard 1988). Our greenhouse experiment indicates that clipping 

sedges to mimic grazing resulted in no discernable difference in above ground biomass 

before and after clipping, which has been demonstrated by other studies (Boyd and Svejcar 

2012, Dovel 1996). Grazing could be effective only if the grazer repeatedly eats shoots down 

to the soil, as clipping sedges to the soil level twice in our study reduced the number of 

shoots produced. Burning C. hyalinolepis plants twice did reduce the number of shoots 

produced and killed several plants. Burning consecutively in quick succession is an unlikely 

option as landowners would be required to provide a litter substitute to carry the fire because 
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not enough dry litter would be produced naturally in such a short amount of time following 

the initial burn. However, this could provide additional insight on using different burn 

approaches such altering the season of burn or considering fire intensity and taking into 

account fire dynamics such as fuel moisture, fuel load, and weather conditions (Twidwell et 

al. 2013). Future research could focus on the short-term and long-term effects of different 

burning techniques and combinations of disturbance on C. hyalinolepis.  

Conclusions and Implications 

Although C. hyalinolepis plants may not be completely eradicated from the wetland, 

reduction of  C. hyalinolepis cover presents an opportunity to create more patchiness on the 

landscape. Maintaining a complex of various habitat patches in wetlands has proven 

successful for bird conservation (Gabrey et al. 1999). Patches of C. hyalinolepis can be 

managed for the benefit of species such as king rail (Rallus elegans) and American bittern 

(Botaurus lentiginosus) for nesting habitat (Dechant et al. 1999, Meanley 1953). Both 

Thripsaphis ballii (Jessie et al. 2018) and although not yet documented in Oklahoma, Duke’s 

skippers (Euphyes dukesi) use C. hyalinolepis as host plants (Calhoun 1995).  

Many invasive grass species are adapted to fire and are more difficult to remove 

(Grace et al. 2001). Invasive graminoids in wetland ecosystems may have developed similar 

adaptations. For example, invasive Phalaris arundinacea (reed canarygrass) shows high 

genetic diversity and phenotypic plasticity, making it a successful invasive species in 

wetlands (Lavergne and Molofsky 2007), but fire has been shown to reduce dominance of 

this species when the timing of burns is taken into consideration (Lavergne and Molofsky 

2006). Therefore, future research could investigate the impacts of the timing of fires on C. 

hyalinolepis. We observed a short term reduction in sedge cover due to the rooting behavior 



30 
 

of feral hogs. This suggests that C. hyalinolepis could potentially be controlled through 

disking of the rhizomes and tillers as it has had some success with other invasive species 

(Bryson and Carter 2012, Annen 2010). Additionally, some Carex species have been killed 

with extensive flooding (Harris and Marshall 1963), suggesting the need for additional study 

on the impacts of the length and depth of flooding on C. hyalinolepis. Future research could 

also examine the interactions of disturbances such as fire and grazing. While use of 

herbicides could be studied in combination with disturbance methods, the impacts on wetland 

wildlife could be detrimental. Reduction in the invasive common reed (Phragmites australis) 

has been successful when glyphosate, a common herbicide ingredient, was applied (Knezevic 

et al. 2013). The potential problem with its use in wetlands is that some surfactants mixed 

with glyphosate can create a toxic environment (Moore et al. 2012). 

Wetland restorations are critically important for restoring ecosystem services on the 

landscape and reversing the loss of wetlands throughout the U.S. However, provisioning of 

many of the important ecosystem services may not be completely achievable in these 

engineered ecosystems if the natural disturbance regime is not restored and maintained. The 

need to improve restored wetland function and diversity will continue to present challenges 

to scientists and managers, but the benefit outweighs the effort because it is necessary to 

protect wetlands for all the ecosystem benefits they provide (Ghermandi et al. 2010, Jenkins 

et al 2010). Overall, the control and reduction of C. hyalinolepis in restored wetlands will 

likely require a multi-pronged approach and continuous management to control the spread of 

this native invasive. The interacting elements of disturbances will produce differing results 

depending on the disturbance mechanisms and management goals. Simply returning one 

historic disturbance regime may not be enough to reduce impacts of invasive species and 
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increase wetland plant diversity, but the combination of disturbance mechanisms offers the 

potential to reduce the impacts of a monoculture forming native species on wetland diversity. 
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TABLES AND FIGURES 
 
Figure 1. Research site 1 located on a Wetland Reserve Enhancement Program (WREP) 

property in Lincoln County, Oklahoma, USA. Research site 1 had two burn and two 

unburned units located in or near C. hyalinolepis stands on the property. Each burn and 

unburned unit had ten vegetation plots used as either a control or to monitor vegetation 

changes post fire. 
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Figure 2. Research sites 2, 3, and 4 on Wetland Reserve Enhancement Program properties in 

Lincoln County, Oklahoma, USA. Research sites 2 and 3 had two burn and two unburned 

units located in or near C. hyalinolepis stands on the property. One burn unit on both sites 

two and three were re-classified as unburned units and used as control units. Site 4 had one 

burn and one unburned unit located on the property. Each burn and unburned unit had ten 

vegetation plots used as either a control or to monitor vegetation changes post fire. 
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Figure 3. Diagram of vegetation plots used for data collection. Each 5 m x 2 m plot contained 

10, 1 m x 1 m nested plots. Each 1 m x 1 m nested plot was used to monitor percent cover of 

functional groups and plant species composition. Ten 5 m x 2 m vegetation plots were placed 

on each burn and unburned unit. 
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Figure 4. Example of the method used to determine aboveground biomass for individual C. 

hyalinolepis plants. A. Original image of an individual plant taken every four weeks. B. 

Background noise was removed from the photo to isolate C. hyalinolepis leaves.  C. Images 

were converted to monochromatic black and white images and black pixels were used to 

determine aboveground biomass. 
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Figure 5. Linear model with a fitted regression line representing aboveground biomass of 

individual C. hyalinolepis plants dried to the gram compared to the total number of pixels 

making up the leaves in an image of the corresponding live individual C. hyalinolepis plants.  
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Figure 6. Change in mean number of shoots (±SE) produced per pot after C. hyalinolepis 

plants were clipped at the start of the experiment and again at week 2. Plants were clipped to 

the soil level (0 cm) and 1 cm, 5 cm, or 10 cm above soil level. C. hyalinolepis plants were 

monitored for one month post treatment.  

Figure 7. Change in mean number of C. hyalinolepis shoots (±SE) produced per pot after 

plants were burned once or burned twice two weeks apart. C. hyalinolepis plants were 

monitored for one month post treatment.  

Figure 8. Change in mean number of shoots (±SE) produced per pot after C. hyalinolepis 

plants were burned and flooded for one month or burned and flooded for two months. C. 

hyalinolepis plants were monitored for one month post treatment.  

Figure 9. Change in mean shoot number (±SE) for C. hyalinolepis plants flooded for one 

month. C. hyalinolepis plants were monitored for one month post treatment.   

Figure 10. Change in mean shoot number (±SE) for C. hyalinolepis plants flooded for two 

months. C. hyalinolepis plants were monitored for one month post treatment. 

Figure 11. Change in mean shoot number (±SE) for C. hyalinolepis plants flooded for four 

months. C. hyalinolepis plants were monitored for one month post treatment.   

Figure 12. Change in mean shoot number (±SE) for C. hyalinolepis plants flooded for six 

months. C. hyalinolepis plants were monitored for one month post treatment.   

Figure 13.  Change in mean aboveground biomass (±SE) over six months for C. hyalinolepis 

plants under various treatments and represented by pixel number. C. hyalinolepis plants were 

burned once burned and flooded for one month, flooded for one month, and clipped to the 

soil level. Plants were monitored for six months.    
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CHAPTER II 
 
 

PRESCRIBED FIRE ON NATIONAL WILDLIFE REFUGES: A CASE STUDY ON 

ARANSAS NATIONAL WILDLIFE REFUGE 

 

ABSTRACT 

Southeastern coastal Texas is comprised of fire dependent ecosystems. Fires were 

common during pre-European times and were historically anthropogenic in origin. In 

general, the estimated mean fire return interval ranged from an average of 1-15 years, 

although the accuracy of historical accounts is more qualitative in nature and some local 

areas may have had substantially longer fire frequencies. We suggest that the accuracy 

and historical accounts of both wildfire and prescribed fire on the Texas southeastern 

coast may provide perspective and context on the role fire plays in these ecosystems. 

Using the normalized burn ratio and differenced normalized burn ratio methods, we 

mapped prescribed fires on the Aransas National Wildlife Refuge between 1985 and 

2013. Results indicate that the refuge is maintaining fire dependent ecosystems with an 

extensive burn program that includes a fire return interval between 2 and 10 years on a 

majority of the refuge with some locations having much longer intervals. The 

northwestern and southern portions of Aransas and most of Matagorda Island burned 

frequently, while the middle of the refuge burns less frequently. Keeping running live oak 

(Quercus virginiana) from spreading and preserving the openness of the herbaceous 
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wetlands and grasslands is essential for the continued survival of overwintering 

Whooping Cranes (Grus americana) and other wildlife. Quantifying the current fire 

regime will be useful for future management efforts on Aransas National Wildlife 

Refuge. 

KEY WORDS: Burn regimes, fire dependent ecosystem, mean fire return interval, 

normalized burn ratio, LANDFIRE, Aransas National Wildlife Refuge 

INTRODUCTION 

As a historic disturbance mechanism, fire resets succession, can promote plant 

germination, create a mosaic of habitat types, and provide habitat for fire-adapted species 

(Stambaugh et al. 2014a, Turner et al. 1997). Fire is important to ecosystem development 

and maintenance, particularly in sustaining grasslands and prairies (Nelson et al. 2006, 

Keeley and Rundel 2005, Morgan and Lunt 1999). While fire plays an important role in 

natural ecosystems, fire suppression has become a dominant paradigm of land 

management over the past century (Bowman et al. 2011, Dombeck et al. 2004, Keane et 

al. 2002). In fact, throughout most of the 20th-century, fire suppression resulted in altered 

fire regimes and excessive accumulation of fuel leading to more extreme and severe 

wildfires (Ryan et al. 2013, Stambaugh et al. 2014a). Following World War II, the 

explicit focus on fire suppression was enhanced as an increase in manpower and surplus 

military equipment allowed additional resources to be used to fight wildfires, and since 

then, federal agencies have continued to be more reactive rather than proactive when 

addressing fire (Dale 2006, Dombeck et al. 2004). 

The United States Fish and Wildlife Service (USFWS) has been successful in 

maintaining prescribed fire programs on national wildlife refuges and provides a good 
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case study to examine the impacts of prescribed fires on the landscape. For example, the 

USFWS has incorporated policies that focus on using prescribed burns to improve 

wildlife habitat, reduce fuel loads, and maintain fire dependent ecosystems on lands the 

agency manages. The USFWS burns approximately 121,000 ha annually and more 

recently, has burned 206,248 ha between 2016 and 2017 (USFWS 2017, 2016). The 

agency was given clear instruction for developing and implementing management 

objectives under the National Wildlife Refuge System Improvement Act of 1997 (Dolin 

2003, Federal Register 1997). Each refuge is encouraged to manage for historical 

conditions, including the use of fire when applicable (Meretsky et al. 2006, Schroeder et 

al. 2004). However, the USFWS faces a challenging conundrum when re-introducing fire 

to the landscape. For example, does the agency attempt to return the landscape to historic 

conditions or do they manage the landscape for current objectives that result in vegetation 

types that are different from what was historically present? Moreover, if restoring the 

landscape to historical conditions is an objective, how are historic conditions determined, 

and what date from the past is the target? Understanding the effects of fire on vegetation 

community development and change is important for wildlife refuges because answering 

these questions can help guide future management efforts. This is particularly relevant for 

wildlife refuges that contain critical habitat for endangered species. The need to protect 

endangered species often guides and prioritizes management activities on refuges. The 

objective of this case study is to discuss the current fire regime in the context of historical 

regimes by mapping the current fire regime and comparing it to literature describing fire 

regimes of the past.  
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Aransas National Wildlife Refuge (ANWR) provides critical habitat for 

endangered species, and prescribed burns are an important part of management for 

wildlife on the refuge. It benefits the refuge to understand the spatial patterns of fires 

related to vegetation in order to maintain critical habitat. We performed a descriptive 

analysis of the current fire regime of ANWR using remote sensing and GIS techniques. 

We also examined accounts of historic burn regimes (LANDFIRE, Stambaugh et al. 

2014b, Guyette et al. 2012, Frost 1998) in comparison to the current prescribed fire 

program at ANWR to foster a better understanding of the ecological relationship of 

prescribed fires to vegetation types on the refuge. Further, we will discuss the 

implications and challenges of implementing a prescribed fire program at ANWR relative 

to current and future management objectives of the refuge.   

ARANSAS NATIONAL WILDLIFE REFUGE  

ANWR is a remnant of a coastal prairie fire-dependent ecosystem and is located 

along the southeastern coast of Texas, USA, at the junction of Aransas, Calhoun, and 

Refugio counties (Fig. 1). The refuge is composed of 5 administrative units:  Aransas, 

encompassing 19,126 ha; Tatton, a 3,063 ha unit that serves to protect a remnant of low 

upland dark soil coastal prairie; Matagorda Island, a barrier island protecting the Texas 

coast, with the refuge portion of the island comprising 22,939 ha;  Myrtle Foester-

Whitmire, which encompasses 1,392 ha and provides nesting and overwintering 

waterfowl habitat; and Lamar, which comprises 396 ha of salt marsh habitat and native 

coastal woodlands. The refuge is buffered by 5,234 ha of bay area waters (for a more 

detailed description, see Aransas National Wildlife Refuge Comprehensive Conservation 

Plan and Environmental Assessment (USFWS 2010)). San Antonio Bay borders the 
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refuge to the northeast and Saint Charles Bay borders the western/northwestern side. 

Carlos Bay and Mesquite Bay are part of the Gulf Coast Intracoastal Waterway between 

Aransas and Matagorda Island. The eastern portion of Matagorda Island abuts Espiritu 

Santo Bay to the north, while the Gulf of Mexico is located to the south of the island. 

Aransas is comprised of Galveston-Mustang-Dianola soil associations, while Matagorda 

Island is primarily comprised of sand soils of the Galveston-Adamsville soil types. The 

Myrtle Foester-Whitmire Unit is comprised of the Livia-Francitas soil association 

(USFWS 2010, Guckian 1988).   

The refuge is comprised of fire-adapted vegetation communities. On the main 

portion of the refuge (Aransas Unit), the most prevalent vegetation type is the Texas 

coastal bend live oak-redbay forest that includes Texas live oak (Quercus fusiformis 

Small), live oak (Quercus virginiana Mill), redbay (Persea borbonia (L.) Spreng.), 

Darlington’s oak (Quercus hemisphaerica Bartram ex Willd.), yaupon (Ilex vomitoria 

Aiton), and American beautyberry (Callicarpa americana L.) (USFWS 2010). The live-

oak redbay forest is also associated with grassland patches that tend to include seaside 

bluestem (Schizachyrium scoparium var. littorale (Nash) Gould), brownseed paspalum 

(Paspalum plicatulum Michx.), big bluestem (Andropogon gerardii Vitman), Indiangrass 

(Sorghastrum nutans (L.) Nash), whip nutrush (Scleria triglomerata Michx.), and 

gulfdune paspalum (Paspalum monostachyum Vasey). The second predominant 

vegetation type is the Texas coastal bend interdune swale grassland, which is adapted to 

fire and periodic flooding. Plant species affiliated with this community consist of 

saltmeadow cordgrass (Spartina patens (Aiton) Muhl.), switchgrass (Panicum virgatum 

L.), Carolina fimbry (Fimbristylis caroliniana (Lam.) Fernald), saltmarsh fimbristylis 



56 
 

(Fimbristylis spadicea (L.) Vahl), and largeleaf pennywort (Hydrocotyle bonariensis 

Comm. Ex Lam.). Coastal prairie and salt/brackish tidal marsh compose portions near the 

Intracoastal Waterway.  

HISTORIC FIRE REGIME 
 
LANDFIRE  
           We used the models developed by LANDFIRE to examine the historic burn 

regime on ANWR.  LANDFIRE, the Landscape Fire and Resource Management Tools 

Project, was developed by the US Forest Service and the Department of the Interior to 

manage wildland fire-related fuels and vegetation with a reference era based on pre-

European conditions (Reeves et al. 2009). Thirteen wildland fuel layers designed to be 

nationally consistent across the conterminous United States were developed based on GIS 

layers, satellite imagery, and biophysical inventories from georeferenced field data (Ryan 

and Opperman 2013, Rollins 2009). LANDFIRE uses a 30 meter-grid spatial resolution, 

which matches the resolution of the Landsat imagery used in the mapping the fires on 

ANWR. We accessed the Mean Fire Return Interval (MFRI) and Fire Regime Group 

(FRG) GIS layers to compare historical burns on the ANWR to the current fire regime. 

The MFRI represents the time between fires based on the assumed historic fire regime 

and the data are assigned to 1 of 22 classes ranging from 0-5 (continuous to frequently 

burned) years to >1,000 years (USGS 2013). The FRG represents the historic fire regime 

for a given area and represents 5 classes based on fire return interval and burn severity: 

Group I is a  ≤ 35-year return interval with low and mixed severity fire, Group II is a ≤ 

35-year return interval with replacement severity level fire, Group III is a 35-200 year 

fire return interval with low and mixed severity fire, Group IV is a 35-200 year fire return 
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interval with replacement severity, and Group 5 is a  200+ year fire return interval at any 

level of severity. 

        A majority (59.9%) of the refuge is considered to be in Fire Regime Group III 

according to LANDFIRE (Appendix D, Figures 1 and 2). Group II comprises 36.9 % of 

the refuge, meaning a 35 year or less fire return interval with replacement severity fire.  

Group I is found primarily on the edges of the refuge and Matagorda Island, otherwise it 

appears patchy throughout the landscape. This indicates that the model estimates the 

refuge historically burned between 35 and 200 years with low and mixed severity fire.  

The most common mean fire return interval based on LANDFIRE is 81-90 years (59.84% 

of the refuge), followed by 26-30 years (23.65% of the refuge), with the third most 

common fire return interval of 0-5 years comprising 10.07% of the refuge. (Appendix D, 

Figures 3 and 4).  

         In addition to LANDFIRE, several other studies have attempted to provide an 

estimate of the historical fire regime of the United States and more specifically, Texas 

(Table 3). Frost (1998) created an estimate of pre-settlement fire regimes of the United 

States based on elevation, vegetation, fire scars, and historical accounts. Frost (1998) 

believed that landscapes with little elevation change, continuous fuel, and little to no 

natural fire breaks indicated a short fire return interval. Any ignition would be able to 

burn larger portions of the landscape and the larger the landscape available to burn, the 

more ignitions were possible. Guyette et al. (2012) took a different approach to analyze 

the historic fire regime of the United States based on climatic factors. The authors 

concluded that the shortest fire return intervals were found in places with warm 
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temperatures, and in some cases higher levels of precipitation, where rapid vegetation 

growth provided continuous fuel. 

           Research by Stambaugh et al. (2014b) highlights that little quantitative 

information exists on the fire regime for this region, but qualitative historical accounts 

indicate that burns occurred quite frequently. Historical accounts suggest that burning 

was a common practice in Gulf coastal communities and throughout Texas (Sparks et al. 

2012, Nyman and Chabrek 1995, Box et al. 1967, Lynch 1941), particularly the Southern 

Coastal Plain Region (Christensen 2000, Hanselka 1980) and low intensity fires helped 

shape the presence of open grasslands and savannah like ecosystems in the southeastern 

United States (Fowler and Konopik 2007, Boyd 1999). The landscape structure also 

facilitates the spread of fire as there is little change in elevation and large areas where 

natural fire breaks do not exist, allowing fires to spread over larger areas, thus increasing 

the likelihood that an ignition in one area has a greater potential to cause more fire as it 

can spread farther (Frost 1998).         

CURRENT FIRE REGIME (1985-2013) 
 
Mapping Prescribed Fires on the Refuge 

We used a database of prescribed burns that occurred from 1985 thru 2013 

containing the ignition dates and estimated acreage of burns on the refuge (Aransas, 

Matagorda Island, Tatton and the Myrtle Foester-Whitmire Unit; we include the Tatton 

Unit as part of the Aransas Unit from this point forward) provided by the USFWS. Using 

the information from the database, we mapped the boundaries of each burn using remote 

sensing techniques to create a spatial database containing locations and sizes of fires.  
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Cloud-free pre- and post-burn Landsat images from the US Geological Survey 

Earth Resources Observation and Science Center (http://glovis.usgs.gov) were acquired 

to compute the Normalized Burn Ratio (NBR; discussed below). The images were 

radiometrically corrected after download and calibrated from raw brightness values to top 

of atmosphere (TOA) reflectance using the dark object subtraction method, which 

standardizes bands and corrects for sunlight and topographic illumination errors (Chavez 

1988). 

 Due to the requirement of cloud-free images within a short timeframe before and 

after the fire for the 28-year time span of this study, we used imagery from both the 

Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+). 

Both the TM and ETM+ sensors were designed specifically to capture wavelengths that 

can aid in differentiating plant and soil moisture (Jensen 2016), which is useful in 

capturing changes pre and post fire. We used NBR for its ability to discern pre- and post-

fire vegetation changes. NBR was developed to detect burn severity based on reflectance 

values from Landsat Bands 4 (near-infrared) and 7 (short-wave near-infrared). These 

bands are useful for discerning vegetation and plant moisture conditions (Key and 

Benson 2006, Brewer et al. 2005, Cocke et al. 2005). Specifically, the decrease in 

moisture content that occurs in vegetation post-fire due to plant cell death and the 

cessation of chlorophyll production causes a reduction in absorption of short-wave 

infrared wavelengths (Rogan and Yool 2001). The Normalized Burn Ratio is defined as:  

NBR = 	!"#$	&'!"#$	(!"#$	&)!"#$	(  
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By differencing the NBR values from pre- and post-fire, it is possible to identify 

areas that have been burned during a specific time period. The differenced normalized 

burn ratio (dNBR) is defined as:  

dNBR = 	NBR*+,'-.+,	−	NBR*/01'-.+,	  
 

The resulting dNBR values range from -2 and 2, with positive values indicating burned 

areas. We isolated and selected the burned areas, using values >0.15 to classify burned 

areas as this is value indicates a change in vegetation due to the burns (Key and Benson 

2006). We then created maps based on the work of Robertson et al. (2007) describing the 

spatio-temporal movement of fires that occurred on the refuge over time. To model the 

spatial and temporal change in fire patterns over 5-year increments, we used the Program 

R StampR package (Long and Robertson 2018, Robertson et al 2007). Burns were 

categorized to show areas that were burned during the first time increment (i.e., burns 

conducted from 1985-1989), burns that were conducted during the second increment but 

not the first (i.e., 1990-1994), and areas that were burned during both (i.e., 1985-1994) 

time frames, which highlights areas the refuge burns continuously.  

Vegetation Classification  
 

We used the Terrestrial Ecological Systems classification system created by 

NatureServe and the Missouri Resource Assessment Partnership (MoRAP) to map the 

vegetation communities present on the refuge (Ludeke et al. 2010a, Ludeke et al. 2010b, 

NatureServe 2009). National Agriculture Imagery Program data from 2004 and 2005 

were used to develop the Terrestrial Ecological Systems classification, but because the 

images were taken between 2004 and 2005, we could only relate burn data with 
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vegetation data from 2004-2013. Detailed vegetation classes were merged into groups 

based on dominant plant height and category (i.e., forest vs. shrubland).  

           A total of 375 burns were mapped on the refuge from 1985-2013.  We were unable 

to map 106 burns due to the inability to obtain cloud free digital images for analysis. The 

quick vegetation regrowth post-fire in the sub-tropical climate of south Texas means 

accessing data more than three months post-fire would likely not indicate a burn had 

occurred (Lonard et al. 2004). Wildfire may have occurred on the refuge complex, but 

only the date of one wildfire was known and was not included in the results. On average, 

the refuge conducts 13 prescribed burns per year with an average burn size of 183 ha. 

The most common burn sizes were those that ranged between 81-202 ha (37.1% of all 

burns), followed by burns between 203-405 ha (26.1%) (Table 1).  

           According to the ANWR Comprehensive Conservation Plan, most burns should 

occur during the winter (December-February) and summer months (June-August). 

Between 1985 and 2013, 45.6% (n=171) of the burns were conducted during the winter 

months and 20.0% (n=75) occurred during the summer months. The remainder of burns 

occurred during the fall (26.13%, n = 98; September-November) and spring (8.27%, 

n=31; March–May).  

         Large portions of the refuge were burned more than once between 1985 and 2013 

(Figures 2 and 3), resulting in high mean fire return intervals. Aransas has developed 

administrative burn units, which we used in conjunction with the mapped burns, to 

develop average fire return intervals for each unit. We were able to account for 58 of the 

missing burns by using old notes and descriptions from refuge staff to make an estimate 

about the location or the administrative unit where the burn occurred on the refuge. 
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However, our estimate of the fire return interval is still slightly conservative. All of the 

administrative burn units designated by the refuge on Matagorda Island are burned at an 

average rate of 4.8 years between burns, with a range of 1.8–14 years. The mean Aransas 

fire return interval of units that are burned is 7.5 years, with a range of 1.3-28 years 

(Figures 4 and 5). There are sections of the Aransas Unit that were not burned during the 

prescribed fire program and likely have a much longer fire return interval (greater than 28 

years). Most of the Myrtle Foester-Whitmire Unit has been burned in recent years. The 

refuge did not acquire the land designated as the Myrtle Foester-Whitmire Unit until 

1993 and did not start burning on the unit until 2004.  

Fire rotation is an important component of understanding a fire regime and can 

help determine available biomass and species composition of an area. The fire rotation 

for the refuge is calculated as: 

Fire rotation =      numbers of years 
  (area burned/total area) 

We included the full time span of the prescribed burn plan on the refuge using all units, 

even though some were not burned until well into the program. The fire rotation indicates 

that the entire land area of the refuge burns every 13.9 years. We also mapped burns in 

five year increments to show the locations where the refuge burns repeatedly. Figures 6 

A-E show where the refuge burned during the previous five years (e.g., burns from 1985-

1989 that did not overlap areas from 1990-1994), areas during the second five years that 

were burned (e.g., burns from 1990-1994 that did not overlap areas from 1985-1989) and 

the overlap between the two time frames. The maps show that the refuge consistently 

burns the same locations. The burns largely occurred on the Tatton Unit, the southern 

coast of Aransas and the majority of Matagorda Island, which is consistent with the 
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refuge’s management goals of reducing woody plant stature and dominance in the coastal 

prairies. The vegetation types that were burned repeatedly were the grasslands and 

shrublands. The vegetation types that were burned the most included coastal and 

sandsheet deep-sand grassland swale marsh, coastal sea ox-eye daisy flats, and coastal 

salt and brackish low tidal marsh, (Table 2). Between 2004 and 2013, the vegetation 

types that were burned the least or were not burned at all included coastal and sandsheet 

deep sand live oak shrubland, coastal and sandsheet deep sand live oak forest and 

woodland, and coastal and sandsheet deep sand grassland.  

           The mean fire return interval of Guyette et al. (2012), Stambaugh et al. (2014b), 

and Frost (1998) all suggest that the average time between burns on the Texas gulf coast 

varied between one and twelve years, which is more often than the average suggested by 

LANDFIRE, indicating that burns historically occurred at a much higher frequency. 

ANWR therefore likely has a historically higher fire return interval than what 

LANDFIRE indicates. While the exact historical fire frequency estimates vary between 

these sources, the overall trend is that the Gulf Coast of Texas was a fire-dependent 

ecosystem. Variation in vegetation will inherently exist on smaller scales across the 

landscape and will affect fire frequency. Additional factors support the more frequent fire 

return interval. For example, the warm climate of the Texas Gulf Coast contributes to 

rapid vegetation regrowth and fuel replenishment that is conducive to the increased 

presence of fire on the landscape (Guyette et al. 2012).  

        There is considerable vegetative variability on ANWR, but what makes the refuge 

unique is the landscape structure and climate which support the ability to have a frequent 

fire return interval with a prescribed burn program. Aransas relies almost entirely on 
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human ignition to maintain fire on the landscape. ANWR continues to implement a 

prescribed fire program that mimics the frequency of burns in some historic accounts but 

may be higher than others. However, returning the landscape to prior conditions based on 

historic fire regimes may not be in line with management needs on the refuge.    

OBJECTIVE-BASED MANAGEMENT FOR ENDANGERED SPECIES 

A critical objective of management on ANWR is to maintain the appropriate 

extent of oak communities, open grassland, and wetlands for federally-listed endangered 

species such as the whooping crane (Grus americana) and Aplomado falcon (Falco 

femoralis). Whooping cranes and Aplomado falcons have specific habitat requirements 

that fire helps maintain. Cranes tend to avoid the areas of dense live oak woodland and 

shrubland. Continuous prescribed burns help set vegetation back to early successional 

stages and lower overall plant height as cranes prefer visual acuity and field of view 

below 1.4 meters to allow for predator detection (Armbruster 1990). The whooping crane 

prefers unobstructed visual areas to roost, feed, and nest (Timoney 1999) as do 

Aplomado falcons for hunting (Macías-Duarte et al. 2004, Perez et al. 1996).  

Winter burns are conducted at ANWR to create additional food resources for the 

whooping cranes because burned locations provide areas for opportunistic feeding due to 

removal of vegetation that make prey easier to spot (Venne and Frederick 2013, Chavez-

Ramirez 1996). Blue crabs (Callinectes sapidus) and clams are high in crude protein and 

constitute a large proportion of whooping crane diets by volume, but when population 

levels of these species are low, there is an increased risk of mortality for the cranes 

(Pugesek et al. 2013, Nelson et al. 1996, Hunt and Slack 1989). The upland winter burns 

provide access to small reptiles, amphibians, and acorns, which may be particularly 
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important during times of low crab availability (Chavez-Ramirez et al. 1996, Hunt and 

Slack 1989). Specific objectives can be met with prescribed fire such as maintaining the 

grasslands and prairie habitat as well as the coastal savannah habitat that benefits not only 

whooping cranes and Aplomado falcons, but also National Wildlife Refuge migratory 

bird program focal species such loggerhead shrikes (Lanius ludovicianus), seaside 

sparrows (Ammodramus maritimus) and painted buntings (Passerina ciris), which inhabit 

and rely on habitat similar to whooping cranes (USFWS 2010). 

Certain ecosystems may be more susceptible to woody plant encroachment due to 

climatic conditions that promote invasion. ANWR may be more susceptible to woody 

invasion due to rainfall and overall productivity levels because it is located in a 

subtropical climate (Archer et al. 2017, Ratajczak et al. 2012) and therefore, the refuge 

must consider encroaching woody species as a potential problem that prescribed fire can 

help ameliorate. Early descriptions of the vegetation on the refuge indicated that 75% of 

the refuge was covered in live oak and the remainder was either grassland or salt marsh 

near the shore (Hanselka 1980, Lehman 1965). The encroachment of woody species can 

increase or decrease the existing fuel load and create a feedback loop that results in a 

changed fire regime that can alter the ecosystem permanently (Zouhar et al. 2008, Brooks 

et al. 2004). 

Shortly after the establishment of the refuge in the late 1930s, cattlemen noted 

that burns were needed to reduce and prevent brush buildup on the refuge (Halloran 

1943). Summer burns are conducted to help combat woody plant encroachment from live 

oak and other species with invasive characteristics such as the camphor tree 

(Cinnamomum camphora (L.) J. Presl), Chinaberry (Melia azedarach L.), Chinese tallow 
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(Triadica sebifera (L.) Small), saltcedar (Tamarix gallica L.), and mesquite (Prosopis 

glandulosa Torr.) on marsh habitat (USFWS 2010). A primary habitat management goal 

on the refuge is to limit live oak, which has been described as an aggressive native 

species that has invasive characteristics that can alter the vegetation composition of the 

refuge (USFWS 2010).  Studies indicated that burning can top kill live oak, but stem 

densities did not change or increase in response to cool season burns and repeated 

summer burns show a decrease in stem densities and openness of the thickets (Hays 

1999, Kelley 1980). Woody plant encroachment on coastal grasslands is a global problem 

and a potential problem for the conservation of whooping crane and Aplomado falcon 

habitat. There is a need to understand the role of fire in the ecosystem to guide future 

maintenance and restoration efforts to the landscape. 

Many wildlife refuges must decide between managing habitat with the goal of 

restoring the landscape to previous historic conditions or managing for specific wildlife 

species. Mimicking a historic fire regime may be an irrelevant concept when more than 

one management goal needs to be met. Other wildlife refuges likely face the same 

competing objectives of maintaining the historic fire regime while meeting refuge 

specific management goals or actively managing for endangered species dependent on 

fire prone habitats. Examples include the key deer (Odocoileus virginianus clavium) 

(Carlson et al. 1993) and the red-cockaded woodpecker (Picoides borealis) (Wilson et al. 

1995).  One example of choosing modern management actions over historic use includes 

using refuge lands for corn production to provide adequate food reserves for the 

overwintering Rocky Mountain population of greater sandhill (Grus canadensis tabida) 

cranes rather than restoring the land to pre-European conditions (Schroeder et al. 2004).  
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The risk of following the historic burn regime according to LANDFIRE would likely 

create a scenario of increased woody plant encroachment, including from oak species 

along the northern part of ANWR and mangroves along the coast. The loss of open 

estuarine marsh habitat would be detrimental to the cranes. The need to manage habitat 

for critically endangered and threatened species should take precedence over returning 

the landscape to historic conditions.  The loss of biodiversity is a larger ecological 

concern if species were to go extinct, therefore maintenance of biodiversity should be a 

more important primary objective than historic restoration, particularly on refuges with 

critical habitat designations.    

The decision to recreate the historic burn regime is confounded when different 

sources provide different frequencies. The burn frequency on Aransas is much shorter 

than LANDFIRE indicates. The historic description of fire in coastal Texas is better 

represented by Guyette et al. (2012) and Stambaugh et al. (2014b). LANDFIRE is a tool 

designed by and for federal agencies, which the USFWS may not wish to rely on in the 

case of the endangered whooping cranes. Because Aransas is required to conserve habitat 

that the whooping crane population depends on, they burn a large portion of the refuge at 

a much shorter frequency of 1-4 years than the historic fire return intervals of 80–90 

years suggested by LANDFIRE. The cranes have acclimated to the shorter burn 

frequency and it may be more detrimental to return to the natural historical burn regime. 

The historic frequency suggested by LANDFIRE could lead to woody plant 

encroachment which is habitat the cranes avoid (Faanes 1992).  

Overall, the burn regime on ANWR is different from what is indicated by 

LANDFIRE’s historical view of natural fire since it does not take into account 
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anthropogenically induced prescribed burns that have been occurring for many years on 

the land where the refuge was established. While it is important to take the historical 

natural fire regime into consideration (i.e., fires caused by lightning), focusing on the 

management needs of each individual refuge is more important in the long run. The short 

fire return interval benefits endangered species that use habitat on ANWR and therefore 

should be continued to ensure habitat is available for vulnerable wildlife species in the 

future.  
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TABLES AND FIGURES 

Table 1. Record of fires on Aransas National Wildlife Refuge 1985-2013. 

Years No. 
of 

fires 

Sum of 
actual  

burned area 
(ha) 

Avg. size 
of fires 

(ha) 

Min. 
mapped 
fire size 

(ha) 

Max. 
mapped fire 

size (ha) 

Sum of burned 
area according 

to USFWS 
estimate (ha) 

Avg. size of 
fires according 

to USFWS 
estimate (ha) 

No. of 
fires not 
mapped 

Sum of area 
burned by 
USFWS 

estimate (not 
mapped) 

Average 
size of 
fires by 
USFWS 
estimate 

(not 
mapped) 

1985-
1989 

24 8,994.95 374.79 9.34 1,264.70 8,380.76 349.20 9 1,296.61 144.07 

1990-
1994 

50 7,816.44 156.33 8.15 863.22 8,441.01 168.82 19 2,273.08 119.64 

1995-
1999 

98 16,344.04 166.78 2.05 1,024.79 21,488.44 219.27 49 10,196.01 214.03 

2000-
2004 

60 9,347.95 157.30 5.52 398.36 12,827.81 213.80 11 2,783.83 253.07 

2005-
2009 

93 15,161.95 163.03 7.74 669.72 21,733.64 233.69 15 3,026.24 201.75 

2010-
2013 

50 10,907.57 218.15 5.08 1,356.17 16,433.07 328.66 3 1,156.19 385.38 

1985-
2013 

375 68,662.95 183.10 2.05 1,356.17 89,308.73 238.15 106 21,023.34 198.33 
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Table 2. The vegetation types present on Aransas National Wildlife Refuge and the 

percentage of hectares of each type burned by prescribed fires between 2004 and 2013. 

 
 
 
 

Group 

 
 
 
 

Vegetation Communities  

 
Total 

Hectares 
Present 

on 
ANWR 

Total 
Hectares 
Burned 

Between 
2004-
2013 

Grassland Coastal sandsheet: deep sand grassland, 
Coastal bend: riparian grassland, Gulfcoast: 
coastal prairie, Gulfcoast: coastal prairie 
pondshore, Gulfcoast: salty prairie 

13,037.43 9,090.22 

Forest/ 
Woodland 

Coastal and sandsheet: deep sand live oak 
mesquite woodland, Coastal and sandsheet: 
deep sand live oak forest and woodland, 
Coastal bend: floodplain hardwood forest, 
Coastal bend: floodplain live oak forest, 
Coastal bend: floodplain live oak hardwood 
forest, Native invasive: deciduous woodland, 
Non-native invasive: Chinese tallow forest, 
woodland, or shrubland 

3,514.45 680.692 

Wetland/ 
Marsh 

Coastal and sandsheet: deep sand grassland 
swale marsh, Coastal bend: floodplain 
herbaceous wetland, , Coastal: salt and 
brackish high tidal marsh, Coastal: salt and 
brackish low tidal marsh, Coastal: sea ox-
eye daisy flats, Coastal: tidal flats, Native 
invasive: common reed, South Texas: algal 
flats 

5,856.35 1,624.58 

Shrubland Coastal and sandsheet: deep sand live oak 
shrubland, Coastal and sandsheet: deep sand 
live oak swale marsh, Coastal and sandsheet: 
deep sand shrubland, Coastal bend: riparian 
evergreen shrubland, Coastal: salt and 
brackish high tidal shrub wetland, Coastal: 
mangrove shrubland, Gulf coast: salty 
prairie shrubland, Native invasive: baccharis 
shrubland, Native invasive: mesquite 
shrubland, Non-native invasive: salt cedar 
shrubland, South Texas: clayey mesquite 
mixed shrubland 

10,065.61 4,628.39 

 

 



77 
 

Table 3. Comparison of fire regime studies of the Texas Gulf Coast Region. 

Study Fire Return 
Interval (years)  

Scale 

This Study  1.3-9.3 Fine (30 m2) 
Frost (1998) 1-3 Broad (U.S.) 
Stambaugh et al. (2014b) 1-12 Broad (Texas) 
Guyette eta l. (2012) 2.01-4 Broad (1.2 km2) 
LANDFIRE 35-200 Fine (30m2) 
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Figure 1. Location of Aransas National Wildlife Refuge and its  five administrative units 

(Aransas, Tatton, Lamar, Matagorda Island, and Myrtle Foester-Whitmire) along the 

Texas Gulf Coast.  
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Figure 2. Repeated prescribed fires represented by the number of times an area was 

burned on Aransas and Lamar Units between 1985 and 2013.  
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Figure 3. Repeated prescribed fires represented by the number of times an area was 

burned on Matagorda Island and the Myrtle Foester-Whitmire Unit (inset) between 1985 

and 2013.  
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Figure 4. Average fire return interval (28 years/number of times burned) per 

administrative prescribed burn unit on Aransas between 1985-2013. Blue areas with 

28.1+ years fire return interval indicate areas where there were no burns during the 1985-

2013 time frame.  
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Figure 5. Average fire return interval per administrative prescribed burn unit on 

Matagorda Island between 1985-2013 (28 years/number of times burned) and the Myrtle-

Foester Whitmire Unit  between 2004-2013 (9 years/number of times burned), including 

unmapped burns.  Blue areas with 28.1+ years fire return interval indicate areas where 

there were no burns during the 1985-2013 time frame.  
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Figure 6. Areas burned and categorized in five year increments which show areas that are 

burned during the first set of five years, areas that are burned in the second set of five 

years, and areas that are burned during both time frames. A. Spatio-temporal changes of 

fires (1985-1989) through (1990-1994). B. Spatio-temporal changes of fires (1990-1994) 

through (1995-1999). C. Spatio-temporal changes of fires (1995-1999) through (2000-

2004). D. Spatio-temporal changes of fires (2000-2004) through (2005-2009). E. Spatio-

temporal changes of fires (2005-2009) through (2010-2013). 
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CHAPTER III 

 

 

WHOOPING CRANE (Grus americana) OVER-WINTERING HABITAT USE AT 

ARANSAS NATIONAL WILDLIFE REFUGE AND IMPLICATIONS FOR FUTURE 

CONSERVATION 

 

ABSTRACT 

The endangered Aransas-Wood Buffalo whooping crane (Grus americana) 

population overwinters on a limited area along the Gulf Coast of Texas, USA, on the 

Aransas National Wildlife Refuge. The population is growing and will eventually need 

additional suitable habitat outside of the current refuge boundaries to achieve the goal of 

down listing the species from endangered to threatened. The objectives were to determine 

spatial and temporal patterns in whooping crane occurrences during the winter and to 

determine the spatial relationship between environmental variables and whooping crane 

occurrence on Aransas National Wildlife Refuge. This study used sixty years of crane 

location data coupled with spatial analyses to develop predictive models that forecast 

crane habitat use based on landcover and refuge management activities as well as 

determining spatial patterns of the population that could impact future management. The 

results indicated that the amount of wetland and tidal flat habitat as well as the distance 

required for cranes to reach water and wetlands influence habitat selection. Crane 

presence increased in areas that were closer to herbaceous wetlands with more wetland 
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habitat available nearby. Cranes were significantly clustered along the southern coast of 

Aransas, on the Lamar Unit and adjacent land, as well as on Matagorda and Sand Jose 

Islands. Cranes were also highly clustered to the east of Aransas, across San Antonio 

Bay. The areas of high clustering correspond to crane habitat preference. Protecting 

additional preferred habitat can help the crane population continue to grow and establish 

territories outside of refuge boundaries.   

KEYWORDS: Aransas National Wildlife Refuge, endangered species, prescribed fire, 

spatial aggregation 

INTRODUCTION 

The endangered whooping crane (Grus americana) population in North America 

once contained approximately 1,300 birds during the mid-1800s (Allen 1952). However, 

by the early 1900’s, overhunting and habitat loss caused a rapid decline in the population, 

reducing it to approximately 15 birds, bringing whooping cranes to the brink of 

extinction. Through intensive conservation efforts, the only remaining wild population of 

whooping cranes, known as the Aransas-Wood Buffalo population (AWBP), has 

significantly increased over the last 75 years. While protected areas have been 

established, the goals of down-listing the whooping crane from endangered to threatened 

and eventually removing it from the endangered species list are dependent on 

understanding crane habitat selection in conjunction with population dynamics and crane 

behavior, particularly on their known wintering grounds. The AWBP are philopatric and 

return to the same locations each year to breed in Wood Buffalo National Park, Alberta 

and Northwest Territories, Canada (Johns et al. 2005, Timoney 1999, Lewis 1995) and to 
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overwinter on Aransas National Wildlife Refuge (ANWR) along the Texas gulf coast, 

USA (Stehn and Prieto 2010, Lewis 1995). 

According to the international recovery plan for the whooping crane (CWS and 

USFWS 2007, Endangered Species Act 1973), three stable populations of reproductive 

birds capable of surviving environmental disturbances are required and each must be self-

maintained for ten years before the species can be down-listed from “endangered” to 

“threatened”. However, as the AWBP is the only wild viable population in the world, a 

higher minimum of 1000 individuals and 250 breeding pairs is required if two other self-

sustaining populations cannot be maintained. It is likely that this target population will 

allow the species to withstand stochastic environmental events such as hurricanes and 

severe drought, as well as remain genetically sound (CWS and USFWS 2007). One-

hundred and eighty-three pairs of breeding whooping cranes were counted and the 

population was comprised of approximately 505 birds in 2018 (Harrell and Bidwell 

2019). More than 67 pairs with average territory sizes of 172 ha will likely exceed the 

protected boundaries of the refuge (Gil-Weir et al. 2012, Miller et al. 1974). The question 

remains, will there be enough habitat with essential resources on Aransas and 

surrounding lands to support the needed 1,000 birds to delist the whooping crane? The 

exponential population growth of the AWBP over the last 70 years has created a need to 

evaluate habitat selection to protect additional critical habitat, particularly as the 

population continues to expand their overwintering territory (Gil de Weir 2006).  

Research regarding whooping crane behavior and habitat use has led to several 

conclusions about habitat selection during the breeding season and migration, but less is 

known about habitat selection on overwintering sites. Breeding sites in boreal Canada are 
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dominated by graminoids, open water, and a mosaic of ponds and marshes with calcium 

carbonate and lime-rich bottoms (Timoney et al. 1997, Lewis 1995). Generally, cranes 

select habitat that is visually open and away from forested wetlands; typically more than 

90 meters from the nearest visual obstruction, and even further from human 

developments (Pearse 2017, Austin and Reichert 2005, Baker et al. 1995). Cranes also 

prefer shallow water for foraging and roosting with depths no deeper than one meter 

(Austin and Richert 2005). Migration is risky for whooping cranes as they experience 

increased mortality rates due to collisions with powerlines, unavailable habitat, and 

higher likelihood of human disturbance (Stehn and Wassenich 2008, Johns et al. 1997, 

Faanes 1992, Lewis et al. 1992). Whooping cranes may be more opportunistic when 

selecting resources during migration. However, studies show that most roost sites are 

located less than one kilometer from wetlands (Belaire et al. 2014, Austin and Richert 

2005).  

Generalizations about habitat use during winter include preference for visual 

openness (Hunt 1987) and shallow water (Pickens et al 2017, Wright et al. 2014). Cranes 

are widely known to use salt marsh habitat in known territories (Chavez-Ramirez and 

Slack 1999, Chavez-Ramirez 1996) and prefer upland habitat closer to salt marshes on 

ANWR (Hunt 1987). Anecdotal evidence has suggested cranes use recently burned 

upland habitat on ANWR (Chavez-Ramirez 1996, Hunt 1987), which is important as 

managers at ANWR routinely conduct summer and winter prescribed burns to maintain 

crane habitat by reducing woody plant encroachment. However, beyond some of these 

generalizations, most winter studies of whooping cranes have focused on resource 

availability and crane behavior (Pickens et al. 2017, Tiegs 2017, LaFever 2006, Chavez-
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Ramirez and Slack 1999, Chavez-Ramirez 1996, Hunt 1987) rather than on the attributes 

of essential habitat.  

Current threats to endangered species include habitat degradation, habitat loss, 

and invasive species, among a growing list of other threats (Venter et al. 2006). Declining 

species have a higher risk of extinction if they exhibit traits such as low population 

density, low reproductive rates, or have a small geographic range (Purvis et al. 2000). As 

threats to these species become compounded, preventing the extinction of threatened and 

endangered species has become a priority. Setting aside protected areas has been a 

preferred method of ensuring suitable habitat remains for species of conservation 

concern. For many endangered species, protecting habitat is essential for their survival.  

For example, species listed under the Endangered Species Act with critical habitat 

designations were more likely to see increasing or stable populations than those without 

protected critical habitat (Taylor et al 2005). It is important to understand the 

characteristics of the landscape that drive species use of habitats to protect or restore 

habitat that is more valuable to a particular species. While critical habitat has been 

designated for the whooping crane on ANWR, the refuge and the cranes still face threats.  

The intracoastal waterway is causing erosion and degrading available wetland habitat 

(Evans and Waring 1993). Habitat is being lost to woody plant encroachment from both 

oaks on the upper portions of the refuge and black mangroves (Avicennia germinans) 

along the coast. Finally, habitat is threatened by rising sea levels and climate change as 

well as weather disasters such as hurricanes. If habitat is degraded or lost, we need to be 

able to replicate the habitat and landscape characteristics preferred by whooping cranes. 

Additionally, as the population is growing and expanding use of habitat beyond the 
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borders of the protected area, investing in protecting additional habitat should be guided 

by crane habitat preference.    

While resource availability affects crane habitat preference, research is still 

needed on winter habitat selection on ANWR and what landscape level factors may be 

driving selection to help focus future conservation efforts by recommending habitat types 

and locations for the growing whooping crane population. Our objectives were to 1. 

determine spatial and temporal patterns in whooping crane occurrences on ANWR during 

the winter 2. Evaluate the spatial relationship between environmental variables and 

whooping crane occurrence on ANWR 3. Provide recommendations for future 

conservation efforts for wintering whooping cranes.  

METHODS 

Site Description 
 

ANWR was created to protect the habitat of the whooping crane in 1937 (Evans 

and Waring 1993, Stevenson and Griffith 1946) and was eventually declared critical 

habitat for the whooping crane in 1978 (USFWS 1978). ANWR is located along the 

southeastern coast of Texas, USA, north of Corpus Christi and south of Austwell (Figure 

1). There are several administrative units that comprise the refuge complex. The main 

unit of the refuge is Aransas (also referred to as Blackjack Peninsula), which is 

comprised of 19,126 hectares and is bordered by Aransas Bay and San Antonio Bay. The 

second largest section of the refuge, Matagorda Island, is 22,939 hectares and is bordered 

by Mesquite Bay to the southwest and Espiritu Santo Bay to the northwest and by the 

Gulf of Mexico on the south. Carlos Bay and Mesquite Bay are part of the Intracoastal 

Waterway between Aransas and Matagorda Island. The remaining units of the refuge are 
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known as the Tatton Unit (3,063 hectares), which is to the northwest of the Aransas unit, 

the Lamar Unit (396 hectares), which is across Saint Charles Bay to the west of Aransas, 

and the Myrtle Foester-Whitmire Unit (1,392 hectares), which is located approximately 

37 kilometers northeast of Aransas. The vegetation on the northern half of Aransas 

consists of live oak (Quercus virginiana) dominated woodlands. Along the southern half 

of the Aransas unit and Matagorda Island, grasslands, salt marsh, and tidal flats are 

prevalent, with saltmeadow cordgrass (Spartina patens (Aiton) Muhl.) and sea-oxeye 

daisy (Bocconia frutescens L.) common species. The climate is humid and subtropical, 

with an average rainfall of 883 mm and a yearly average temperature range between 19.5 

and 25.5°C.  Elevation ranges from sea level to 28 meters throughout the refuge. For the 

remainder of the document, ANWR will refer to the Aransas unit, the Tatton unit, the 

Lamar unit, and Matagorda Island unless otherwise specified.  

The refuge managers have implemented a variety of management activities over 

the years. Prior to being designated as a national wildlife refuge, winter prescribed burns 

were conducted between 1919 and 1935 when under private ownership (Halloran 1943). 

Management on the refuge between 1945 and 1981 included brush reduction via roller 

chopping, disking, and planting when needed. Cattle were grazed on the refuge through 

the middle of the twentieth century (Allen 1952). However, the current management 

program focuses on the use of prescribed burns, which the refuge began implementing 

regularly in 1985. ANWR, similar to much of the Texas Gulf Coast region, has 

experienced substantial landcover change in the form of woody plant encroachment 

(Saintilan and Rogers 2015, Brown and Archer 1999). Summer burns are conducted to 
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reduce the spread of oaks, while winter prescribed burns are used to create opportunistic 

foraging opportunities for whooping cranes (USFWS 2010).  

Whooping Crane Data 

Since 1950, the United States Fish and Wildlife Service (USFWS) has conducted 

regular surveys of the AWPB to monitor the size of the population and document crane 

locations during the winter months (October through May). Prior to 2011, aerial surveys 

were conducted on a bi-weekly basis with one pilot and one observer in a Cessna single 

engine aircraft. Flights were conducted at a height of 61 meters above sea level at an 

average speed of 167 km/h and targeted known crane territories (Stehn and Taylor 2008). 

During surveys, observers recorded each crane location and the number of cranes at each 

location on paper maps. Of note, the historic survey method described above has received 

some scrutiny for its unsystematic approach and inability to detect all individuals within 

the population as the population has continued to grow. A new survey methodology was 

introduced in 2012 to address this issue (Strobel and Butler 2014). Strobel and Butler 

(2014) concluded that the previous method of aerial surveys resulted in a probability of 

less than one that all whooping cranes were surveyed and a new survey methodology was 

implemented in 2011 (Butler et al. 2014). However, because the population was so small, 

it is likely that surveyors knew the landscape and where cranes were likely to be located 

and therefore could account for almost all of the population. The ability to have spatial 

data over decades before the availability of GPS provides useful insights on long term 

patterns and trends. We are focused on long-term patterns in whooping crane occurrences 

and habitat use and we relied on the historic data from 1950 to 2010 for our analyses.  

The entire dataset contained 37,373 observed crane locations (Table 1).   
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Ancillary Data Acquisition 

Landcover 

We acquired landcover data from the Ecological Systems Classification project, 

which was a collaboration of the Texas Parks and Wildlife Department, the Texas Natural 

Resources Information Service, and the Missouri Resource Assessment Partnership 

(MoRAP) at the University of Missouri. The collaboration created a high-resolution 

vegetation (10 meter resolution) landcover database for Texas (Ludeke et al 2010a, 

Ludeke et al. 2010b, NatureServe 2009). Using the geospatial vegetation data and 

descriptions of the vegetation, we condensed and reclassified the vegetation layer into 

nine landcover types: open water, bare ground, grassland, herbaceous/grassland wetland, 

row crops, tidal flats, urban, woody shrubland, and woody-shrub wetland (Figure 2). (See 

Appendix E, Table 1 for a list of combined vegetation associations). 

Fire Data  

ANWR implemented a prescribed burn program on the refuge in 1985 to create 

habitat and forage opportunities for the whooping cranes. A list of prescribed burns 

conducted on ANWR between 1985-2010 was provided by the USFWS. We mapped the 

extent and location of fires on ANWR using the normalized burn ratio and differenced 

normalized burn ratio methodology (Key and Benson 2005) based on burn date and 

Landsat satellite imagery (see Appendix F for detailed explanations of these indices). 

Because it has been suggested that whooping cranes use recently burned habitat (Chavez-

Ramirez et al. 1996), we created a fire-related variable for the predictive statistical 

models based on the mapped burns.  

Analyses Overview 
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To address our first objective of determining the spatial and temporal patterns in 

whooping crane occurrences on ANWR during the winter, we used exploratory spatial 

data analysis, including spatial statistics, and GIS analyses, including the kernel density 

and mean center methods. To address the second objective of evaluating the spatial 

relationship between environmental variables and whooping crane occurrence on ANWR, 

we developed two global generalized linear mixed models (GLMM). The first, a Poisson 

GLMM, was used to determine if the distance to landcover types influenced the number 

of cranes present. The second, a binomial GLMM, was used to determine if the amount 

and type of landcover available affected crane presence/absence. The landcover predictor 

variables in both GLMM analyses were bare ground, grassland, herbaceous-grassland 

wetland, tidal flat, urban, woody shrub wetland, woody shrubland, row crops, and open 

water. The landcover variables were chosen to reflect known whooping crane 

preferences. For example, distance to urban areas could indicate avoidance of human 

disturbances. For the first model, the distance to nearest burned habitat was included, 

while for the second model, the number of times an area was burned was included as the 

fire-related predictor variable. We chose not to include variables related to climate and 

weather as they were too spatially broad to influence the analyses at a fine scale.  

Density and Aggregation Spatial Statistics 
 

To track the movement of the crane population over the course of the study, we 

used the mean center calculation to determine the geographic center of the documented 

crane locations, which shows the central tendency of movement of the crane population 

over time.   
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Kernel density estimation provides a visual representation of the density of spatial 

features, in this case, mapped crane point locations. It is a non-parametric approach to 

estimating the probability density function for a variable of interest, in this case, the 

cranes. A kernel is constructed around each point with a smoothing parameter 

(bandwidth) guiding the extent of the kernel, and the overlapping kernels are summed to 

create a grid of density values. Values can be weighted by the number of cranes present 

at each observation point location, which is key in this instance since the observation 

record often includes multiple cranes at a single point. Kernel density estimation is useful 

for indicating where point locations are most densely clustered, but the statistic cannot 

determine whether or not the observed patterns are random or are being driven by some 

underlying ecological processes (Kalinic and Krisp 2018). Therefore, it is primarily used 

in an exploratory manner to identify ‘hotspots’ of occurrences that can then be used to 

investigate the underlying processes. Kernel density was calculated using crane locations 

by decade from 1950-2010 to show the progression of areas of highest crane density and 

how they change over time (Worton 1989). Kernel density is calculated using the kernel 

function: 

!"!	($) 	= 	
1
)ℎ# 	+, -$ − /$ℎ 0

%
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Where, K = probability of occurrence, X1 = independent sample from an unknown 

density (crane point locations), n = random sample of independent points, and  

h = bandwidth.  The default bandwidth calculated in ArcMap is based on the mean center 

of the point data. We calculated KDE using the default bandwidth for each year between 

1950 and 2010. We chose the median value and ran kernel density estimations based on a 

bandwidth of 1857 meters. The bandwidth is calculated as:  
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Where, Dm = the weighted median distance from the mean center, n = the sum of the 
population field values (number of cranes per location), and SD = standard distance. 
 
We then used the Jaccard Index to determine if the areas of high kernel density were 

similar from year to year or whether the ‘hotspots’ of crane occurrences were changing 

over time, as this would indicate expanded resource use. The Jaccard index was 

calculated for every five years from 1950-2010 and each segment of five years was 

compared to the 1950-1954 area of high density. The Jaccard index calculates a range 

from zero to one, the closer to one, the more overlap between areas of kernel density are 

present (Rice and Belland 1982). The Jaccard index is calculated as: 

J(I,j) = a/(a+b+c) 
 

Where, i,j = area of kernel density in five year divisions, a = area (hectares) of overlap 

between kernel densities, using the bandwidth calculated above, for i and j, b = area of 

kernel density for time period, and c = area of kernel density for time period j. 

Generalized Linear Mixed Models  

We developed two global models to assess landcover associations with crane 

locations on ANWR based on two different response variables (number of cranes and 

crane presence/absence). We used a subset of 24,038 crane spatial point locations 

collected over 25 years between 1985-2010, which corresponds closely to when the 

vegetation data were created and to the prescribed burn program on ANWR. This allowed 

us to include either the amount of burned area or the number of times an area was burned 

as a predictor variable.  
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The first global model, a Poisson GLMM was used to determine whether distance 

to landcover type increased the number of cranes present. Predictor variables used in the 

Poisson GLMM included distance to landcover type (measured in meters) for the 

following: bare ground, grassland, herbaceous grassland wetlands, tidal flat, urban, 

woody shrub wetland, woody shrubland, burned area, row crop, and open water. Planar 

distance in meters from each crane spatial point location to the closest polygon of 

landcover type was used to calculate distances.   

The second global model, a binomial GLMM was used to determine whether 

crane presence or absence was influenced by the amount and type of landcover available. 

Model variables included: number of fires conducted in an area, bare ground, urban, tidal 

flat, open water (we did not distinguish between fresh, brackish, or saltwater), herbaceous 

grassland wetland, grassland, woody shrubland, woody-shrub wetland, and row crop. The 

study area was determined by drawing a bounding polygon around all crane locations 

from the full dataset of mapped crane locations (1950-2010). Next, a digital hexagon grid 

was overlain on the study area. Each side of individual hexagons was 750 meters, 

resulting in the area of each hexagon being slightly smaller than the average crane 

territory (Stehn and Prieto 2010). Landcover types (square meters) were summed for each 

hexagon across the study area. For the binomial model, the number of cranes was 

converted to a presence/absence variable. If crane points were located in a landcover type 

(e.g., tidal flat) they were re-coded as present and given a value of one for that landcover 

within each hexagon, and if no cranes were located within a landcover class, they were 

re-coded as absent and given a value of zero. The variable, “number of burns conducted” 

was created by using all mapped burn polygons (created using NBR and dNBR, see 
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Appendix F). A new polygon layer was created using the count overlapping polygons 

tool in ArcGIS.  The burns were then summed per hexagon to create the predictor 

variable. Generalized linear mixed models were run using Program R (2014). Spatial 

statistics were conducted using ArcGIS Desktop Version10.4.1 (ESRI 2016). 

We performed a backward stepwise model selection using AIC for both global 

models to select the best model from the global model for each response variable and the 

set of alternative models. Backward stepwise selection is a common method used to 

determine the most parsimonious model. Models were considered competitive if they 

were within two units of the model with the lowest AIC value.  

RESULTS 

Population Distribution Change 

The mean center of the crane population moved 1,000 to 2,600 meters between 

1950-2010 (Figure 4). The mean center exhibited a trend of moving towards Matagorda 

Island from the coast of ANWR. Between 1950 and 1960 the population mean center 

moved ESE by 1,231 meters. The mean center of the population then shifted southwest 

by 2,537 meters between 1960 and 1970. The population mean center then shifted ENE 

by 2,967 meters between 1970 and 1980.  Looking at the decade 1980-1990, the mean 

center moved northeast by 2,542 meters. It eventually shifted southeast between the 

1990s and 2000s by 1,130 meters.  

The whooping crane locations showed a pattern of spatial aggregation (Figure 3).  

The areas of high density were similar during the late 1950s and early 1960s when 

compared to the kernel density hot spots of the early 1950s (Jaccard index = 0.708 (1955-

1959) and 0.622 (1960-1964)), but continued to be more dissimilar by the 2000s when 
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compared to the early hotspot (Jaccard index comparing 1950-1954 to 2005-2010 = 

0.195) (Table 6). Areas of high density began to expand towards Matagorda Island during 

the 1970s until areas of high crane density were located on both shorelines of ANWR and 

Matagorda Island. Areas of high density were associated with the Lamar unit and areas 

adjacent to the north and east, Matagorda and San Jose Islands, the southern edge of 

ANWR, and directly to the east of ANWR and approximately 7.5 -13 kilometers south of 

the town of Sea Drift.  

 Using ArcMap, we clipped the MoRAP landcover layer to the areas of highest 

density and were able to get a more detailed description of habitat that the cranes use.  

This layer was then used to indicate where potential areas are located near the refuge with 

similar habitat.  Within the areas where kernel density was highest, the habitat types that 

comprised most of the area (90.30%) included coastal: tidal flat (2.60%), Gulf Coast: 

salty prairie (4.92%), South Texas: algal flats (5.51%), Coastal and Sandsheet: deep sand 

grassland (10.02%), Coastal and sandsheet: salt and brackish high tidal marsh (10.59%), 

coastal and sandsheet: salt and brackish low tidal marsh (18.12%), and open water 

(38.55%).  These habitats have low vegetation heights and are usually dominated by 

graminoids, bluestem spp., Paspalum spp., Physalis spp., croton spp., Spartina spp, 

Distichlis spp, and blue-green algae.  

Generalized Linear Mixed Models 

 Detection of cranes was predicted by distance to several landcover types. The 

closer to water and herbaceous-grassland wetlands, the more likely more cranes would be 

detected. The likelihood of detecting cranes increased as distance to herbaceous 

grassland-wetlands decreased (p = 0.01). Also, as the distance to open water decreased, 
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the likelihood of crane detection increased (p = 0.000). Furthermore, the closer to woody 

shrubland habitats, the likelihood of detecting cranes decreased (p = 0.01). Between 1985 

and 2010, crane locations were an average of 35 (SE ±	0.54) meters from herbaceous-

grassland wetlands and an average of 137 (SE ±	1.57) meters from water (Table 2), with 

yearly averages ranging from 13-81 meters and 61-247 meters.  Crane locations tended to 

be further away from areas of bare ground and row crops at average distances of 9,239 

(SE ± 28.76) and 16,484 (SE ± 31.00) meters, with yearly averages ranging from 8,073-

10,531 meters and 15,228-17914 meters. The stepwise model selection with AIC 

produced three comparable models for the distance to habitat (Table 4). Model selection 

suggests that three models performed well (∆AICc <2), but the best model was model 3, 

which included variables of distance to: herbaceous-grassland wetlands, water, row 

crops, urban habitat, woody shrubland, and woody-shrub wetland, and burned area. The 

global model performed poorly compared to these models (∆AICc ³ 3.65). 

Crane presence/absence was predicted by the type of landcover available. In 

summary, the more herbaceous-grassland wetland landcover, the more burned habitat, 

and the more tidal habitats were available, the likelihood of crane presence increased. 

The likelihood of crane presence increased in locations that contained more herbaceous-

grassland wetlands (p = 0.000), more tidal flats (p = 0.000), and a larger amount of 

burned area (p = 0.000). As habitat coverage of water (p = 0.001) and grassland also 

increased (p = 0.001), so did the likelihood of crane presence. As the area of woody-

shrub wetland increased, so did the likelihood of crane presence (p = 0.01). This may be 

tied to the fact that there are small patches of woody wetlands within the herbaceous-

grassland wetland habitat that the cranes prefer. More than 75% of cranes locations were 
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located in either water or herbaceous-grassland wetlands (Table 3). Based on habitat 

available, cranes are using habitat that is available in the smallest amounts. Within the 

study area, water comprised the largest landcover type at 111,928 hectares, followed by 

herbaceous-grassland wetlands at 53,828 hectares. However, tidal flats covered only 

3,112 hectares, indicating that this landcover provides important habitat because they are 

using it a higher proportion when there is much less available. The stepwise model 

selection with AIC produced two comparable models for amount of habitat available 

(Table 5). Model selection results for presence/absence based on landcover type indicate 

models two and three performed well (∆AICc <2), but model three performed best. The 

variables included in this model were herbaceous-grassland wetland, tidal flats, water, 

grassland, bare ground, burned area, and woody-shrub wetland.  The global model and 

model 1 performed poorly compared to models two and three (∆AICc ³ 3.24). 

DISCUSSION  

Protection under the Endangered Species Act has allowed the AWBP to begin 

recovering from a population low of 15 birds, but the requirements to down-list the 

whooping crane have not been met. Limited habitat serves as a potential limiting growth 

factor of the population (Lewis 1995). It can affect overwintering survival, competition 

for needed resources, and can potentially affect success during the breeding season 

(Norris et al. 2003). While habitat is not necessarily a restricting variable yet, it could 

become a problem in the near future as the AWBP continues to grow exponentially. 

While the number of individuals in the AWBP is increasing, our results indicate that the 

core area used by the population has also expanded.  The results indicate that the mean 

center of the population has moved towards Matagorda Island. The results of the kernel 
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density analysis indicate that although one area of high density remains on Aransas, the 

rest have spread towards Matagorda Island and towards San Jose Island, the Lamar Unit 

of ANWR, and areas to the east of San Antonio Bay. Areas of high density and crane 

location indicate that cranes may prefer protected areas, such as the spread of high 

density areas to the Lamar Unit, all of Matagorda Island, and the area in and surrounding 

Welder Wildlife Flats, which is located on the eastern side of San Antonio Bay, further 

from Aransas. The AWBP has also continued to stay clustered on refuge habitat and near 

protected areas in the vicinity of the refuge, with only a one percent chance that the 

clustering was random in nature. Areas of high crane density have expanded, indicating 

the importance of these area for overwintering habitat.  

Territoriality could be a partial explanation for the clustering. The territory size of 

overwintering cranes has been changing as the population increases (Stehn and Prieto 

2010). The average size of territories on ANWR has decreased as the population has 

grown (Harrell and Bidwell 2013, LaFever 2006). The current average territory size at 

172 hectares, coupled with over 183 breeding pairs, will likely exceed the boundaries of 

the refuge (Harrell and Bidwell 2019, Gil-Weir et al. 2012, Miller et al. 1974). 

Territoriality is a common behavior in cranes (Alonso and Alonso 1999) and juvenile 

cranes and young pairs may be simply establishing new territories next to previously 

established territories and not seeking potential sites farther from the rest of the 

overwintering population, as suggested by Stehn and Prieto (2010). Essentially, as new 

pairs are formed, the juveniles establish territory as close as they can to their parents, thus 

they are forced to move further away from the core center of the territories yet remain 
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close to other pairs on the refuge, indicating that the suitable habitat immediately 

surrounding the refuge is important for whooping crane winter survival.   

Whooping crane food preferences influence the selection of foraging habitat. 

Cranes spend a majority of their time foraging during winter (LaFever 2006). The quality 

of resources such as water salinity and depth affect food availability, abundance, and 

nutritive quality (Wozniak et al. 2012, Darnell and Smith 2004). Cranes require a high 

abundance of blue crabs in order to survive the winter (Pugesek et al. 2013) and the 

availability of crabs is directly related to the amount of wetland habitat. This further 

supports our results that being closer to wetland habitat and open water in addition to 

having more wetland habitat available increases the likelihood of crane presence. The 

size of blue crabs was found to be lower in inner marsh areas rather in the connected 

ponds of the outer marsh area on ANWR (Hoeinghaus and Davis 2007). Creating 

connectivity between these habitats (i.e., wetlands and tidal flats) would be an asset 

because cranes can benefit from larger crabs as they provide a primary source of crude 

protein in their diet (Nelson et al. 1996, Hunt and Slack 1989).  

Crane behavior and habitat preferences influence aspects of habitat use. Cranes 

prefer unobstructed views up to one kilometer (Faanes 1992) and shallow water for 

roosting during migration (Armbruster 1990), making the logical assumption that similar 

requirements may be preferred for overwintering roosting locations. Cranes spend more 

time foraging and resting in open water and marshes, whereas more alert behavior has 

been demonstrated in the uplands on ANWR (Bishop et al. 1987). Variation in seasonal 

water levels impact crane habitat use because prey densities change, which leads to more 

movement to other habitat types on the refuge when food becomes scare (Kang and King 
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2014, Chavez-Ramirez and Slack 1999). The availability of additional food sources in 

uplands when blue crab abundance is low due to high salinity levels or drought may draw 

the cranes to the upland woody-shrub habitat on the refuge. Cranes may also be drawn to 

the woody-shrub uplands to access sources of fresh water. Whooping cranes will drink at 

inland ponds when brackish water near the coast becomes too saline (Lewis 1995).  

The results of the binomial model showed cranes were likely to be present on 

woody-shrub wetland habitat. This could be related to the refuge’s fire management. 

ANWR routinely conduct prescribed burns to create suitable habitat for cranes. Winter 

burns are conducted to provide feeding opportunities such as access to small reptiles and 

amphibians as well as exposed acorns (Venne and Frederick 2013, Chavez-Ramirez et al. 

1996, Hunt and Slack 1989). Summer burns are conducted to maintain the openness of 

the coastal prairie grasslands and wetlands and to help prevent further encroachment of 

woody species. Prescribed fires can reduce woody plant cover that can in turn reduce 

visual obstruction of potential predators to cranes (Chavez-Ramirez and Wehtje 2012). 

The data were too temporally broad to indicate that cranes used recently burned habitat, 

but it could indicate that burned habitat provides open areas and potential sources for 

opportunistic foraging. This could also be related to patches of woody-shrub wetland 

interspersed with habitat cranes prefer.  

Future threats that face whooping cranes include shoreline erosion and major loss 

of tidal flat and wetland habitat due to the Gulf Intracoastal Waterway (GIWW) that 

exists between their two major habitat locations (ANWR and Matagorda Island) (Davis et 

al. 2009, Evans and Waring 1993). The GIWW development and maintenance resulted in 

an 11% loss of critical crane habitat from erosion, particularly affecting low marshes and 
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tidal flats (Sherrod and Medina 1992, Evans and Waring 1993). Additionally, vessels 

traversing the GIWW impact the sedimentation and water flow levels of wetland habitat 

near the waterway (Davis et al. 2009), affecting habitat quality and food sources. Since 

the development of the GIWW, known crane territories have been altered, particularly on 

Sundown Bay near Mustang Lake, Dunham Bay, and South Matagorda Island (Labuda 

and Butts 1979).  

The future of whooping crane habitat protection should focus on several factors. 

First, the prescribed burn program on ANWR should be evaluated, particularly in context 

with the threat of woody plant expansion into the areas where crane locations are densest.  

The burns help re-set succession and likely kill woody seedlings thereby limiting the 

expansion of woody plants. The burns also help maintain herbaceous-grassland wetlands 

that the cranes prefer. Second is to work on creating engineered wetlands with similar 

characteristics to the habitat found within the high density areas. This is particularly 

important with the threat of climate change and rising sea levels. Future research is 

needed to determine what is unique about the juxtaposition and interaction among the 

preferred wetland habitat types. Third, protecting areas where cranes are now clustering 

outside of the refuge should be a priority. Several of the areas where the cranes are 

already clustering or areas near the refuge that appear to provide the required habitat are 

partially protected in some cases. The cranes are clustering around Welder Flats Wildlife 

Management Area (WMA).  Additional land surrounding this WMA could be set aside to 

create a larger protected area.  Similarly, area surrounding Mustang State Park and area 

north of the Lamar Unit of ANWR would be prime areas to expand protection. Looking 

further from the refuge, areas around Long Lake, Mad Island Wildlife Management Area, 



107 
 

Port Bay, and Swan Lake all demonstrate potential habitat within distance of the refuge 

that would benefit the cranes if protected. Fourth, reduce the impact of erosion from 

traffic on the gulf coast intracoastal waterway. The habitat on the coast of ANWR and 

Matagorda Island is important to the cranes, but this unfortunately buffers the intracoastal 

waterway. Work could be done to reduce the traffic using the intracoastal water way 

(e.g., limiting traffic to a few days a week).  

Marshes and tidal flats, as indicated by our results, are two habitat types where the 

more acreage present, the more likely cranes are to use the habitat, highlighting the need 

to continue protecting these valuable habitat types for the endangered whooping cranes. 

Not one specific variable is more important than another in predicting crane habitat use or 

preference as they are just one of many factors. These additional factors could include 

how much boat traffic on the intracoastal water way influences habitat use, as well as 

salinity levels, abundance of crabs, and potentially other landscape level patterns and 

interactions among the landcover types. However, understanding the habitat preferences 

and where cranes cluster is important because sea level rise, habitat alteration, and 

unpredictable impacts from climate change are likely to affect the coastal overwintering 

habitat of whooping cranes (Chavez-Ramirez and Wehtje 2012).   
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TABLES AND FIGURES 

Table 1. Number of georeferenced crane locations used in spatial analyses by decade 

from 1950-2010. 

Years Number of georeferenced crane locations 

1950-1959 1,408 

1960-1969 2,878 

1970-1979 5,893 

1980-1989 5,971 

1990-1999 9,260 

2000-2010 11,963 
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Table 2. The average distance to each habitat type (meters) from crane locations on ANWR and Matagorda Island from 1985-2010 
(+/- standard error). 
Year Bare 

Ground 
Grassland Herbaceous 

Grassland 
Wetland 

Water Row 
Crops 

Tidal 
Flats 

Urban Woody-
Shrub 
Wetland 

Woody 
Shrubland 

Burned 
Area 

1985 9,996.6 
(151.5) 

678.0 
(18.9) 

34.6 (2.5) 78.9 
(5.6) 

16,177.5 
(137.1) 

251.4 
(8.3) 

4,180.8 
(74.9) 

1,553.7 
(33.8) 

890.2 
(19.4) 

1,817.6 
(94.3) 

1986 9,864.3 
(177.5) 

698.4 
(23.5) 

38.8 (3.6) 84.7 
(9.3) 

15,612.0 
(165.2) 

283.8 
(12.1) 

3,888.5 
(88.5) 

1,451.1 
(37.7) 

882.7 
(26.1) 

1,712.8 
(111.3) 

1987 10,499.6 
(185.7) 

628.6 
(21.7) 

28.2 (2.3) 60.8 
(4.5) 

15,252.8 
(169.7) 

233.9 
(9.1) 

3,684.5 
(91.6) 

1,384.2 
(38.0) 

855.1 
(25.0) 

1,596.6 
(122.0) 

1988 10,530.6 
(134.7) 

514.9 
(15.2) 

39.8 (3.2) 158.9 
(9.0) 

15,374.1 
(119.7) 

264.4 
(8.7) 

3,709.5 
(67.8) 

1,201.5 
(26.2) 

737.2 
(18.7) 

1,504.4 
(85.6) 

1989 9,945.0 
(227.0) 

541.3 
(24.5) 

49.5 (6.1) 174.8 
(17.2) 

15,936.7 
(192.6) 

309.6 
(16.3) 

3,754.7 
(106.2) 

1,416.2 
(48.0) 

715.7 
(26.6) 

1,864.8 
(148.7) 

1990 9,992.3 
(155.5) 

497.9 
(16.4) 

35.2 (3.4) 143.6 
(9.4) 

15,646.2 
(149.1) 

263.0 
(9.8) 

3,685.6 
(77.7) 

1,395.0 
(34.5) 

733.7 
(19.0) 

1,811.5 
(103.3) 

1991 9,771.1 
(122.9) 

538.3 
(13.1) 

25.8 (2.1) 148.2 
(7.8) 

15,562.4 
(125.6) 

248.6 
(7.8) 

3,624.5 
(62.6) 

1,390.6 
(27.9) 

766.1 
(14.7) 

1,837.6 
(81.3) 

1992 9,581.3 
(145.2) 

550.5 
(14.8) 

29.2 (2.5) 122.1 
(7.1) 

16,029.7 
(138.3) 

242.6 
(8.8) 

3,932.0 
(74.7) 

1,368.7 
(31.7) 

796.5 
(16.8) 

1,884.9 
(93.6) 

1993 9,403.3 
(189.7) 

538.2 
(20.2) 

28.9 (3.6) 152.1 
(14.2) 

15,228.1 
(193.1) 

274.0 
(12.4) 

3,504.7 
(99.8) 

1,362.1 
(42.1) 

780.7 
(22.8) 

1,985.5 
(129.7) 

1994 9,380.4 
(143.3) 

532.0  
(15.2) 

21.0 (1.6) 103.0 
(4.1) 

16,021.1 
(157.6) 

234.8 
(7.5) 

3,880.4 
(74.0) 

1,463.1 
(29.6) 

847.7 
(17.4) 

2,168.4 
(97.1) 

1995 9,519.7 
(158.4) 

520.9 
(16.5) 

35.7 (2.7) 135.7 
(9.5) 

16,203.8 
(176.4) 

267.8 
(9.3) 

3,950.9 
(79.6) 

1,505.9 
(36.6) 

811.8 
(19.2) 

2,360.2 
(116.8) 

1996 8,650.7 
(127.5) 

467.8 
(12.9) 

26.1 (2.0) 134.1 
(7.1) 

16,447.9 
(148.2) 

243.6 
(7.4) 

4,050.9 
(64.7) 

1,493.2 
(28.8) 

773.5 
(14.2) 

2,739.8 
(100.0) 

1997 8,844.7 
(131.4) 

555.2 
(14.6) 

24.9 (2.2) 126.2 
(6.6) 

16,172.3 
(150.7) 

248.2 
(7.7) 

3,993.5 
(68.6) 

1,474.2 
(30.4) 

819.1 
(15.7) 

2,536.7 
(103.1) 
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Year Bare 
Ground 

Grassland Herbaceous 
Grassland 
Wetland 

Water Row 
Crops 

Tidal 
Flats 

Urban Woody-
Shrub 
Wetland 

Woody 
Shrubland 

Burned 
Area 

1998 8,652.1 
(139.3) 

633.5 
(15.0) 

13.0 (1.2) 102.3 
(3.7) 

16,883.3 
(150.4) 

232.2 
(6.8) 

4,267.3 
(71.2) 

1,560.0 
(30.0) 

905.9 
(17.1) 

2,661.2 
(104.9) 

1999 9,134.3 
(143.9) 

490.6 
(14.5) 

39.3 (3.1) 148.2 
(10.3) 

15,498.3 
(152.8) 

248.6 
(9.5) 

3,837.9 
(73.7) 

1,333.9 
(29.6) 

743.7 
(17.3) 

2,545.9 
(113.5) 

2000 8,954.9 
(132.6) 

494.1 
(13.3) 

38.6 (3.1) 188.0 
(9.8) 

16,086.1 
(162.9) 

272.8 
(8.1) 

3,765.1 
(62.1) 

1,370.1 
(26.2) 

806.9 
(15.8) 

3,055.8 
(116.3) 

2001 8,579.3 
(118.4) 

554.4 
(12.2) 

18.7 (1.2) 88.8 
(3.2) 

17,038.1 
(128.5) 

232.3 
(5.6) 

3,983.7 
(59.7) 

1,565.9 
(26.7) 

856.1 
(13.6) 

3,076.7 
(97.6) 

2002 8,628.8 
(124.2) 

513.6 
(11.6) 

19.1 (1.2) 98.1 
(3.0) 

17,298.5 
(128.1) 

222.9 
(6.0) 

4,124.8 
(61.7) 

1,587.0 
(30.8) 

847.3 
(13.9) 

2,849.2 
(95.1) 

2003 8,836.2 
(126.9) 

444.7 
(11.3) 

22.4 (1.5) 116.2 
(4.1) 

17,418.8 
(132.3) 

199.6 
(5.5) 

4,233.2 
(62.0) 

1,525.2 
(28.0) 

756.1 
(13.7) 

2,682.3 
(90.2) 

2004 8,977.3 
(127.3) 

489.9 
(12.1) 

26.2 (1.8) 114.8 
(5.2) 

17,379.9 
(127.7) 

209.6 
(5.9) 

4,281.2 
(62.1) 

1,639.7 
(31.1) 

803.7 
(14.4) 

2,691.6 
(90.0) 

2005 9,135.4 
(118.0) 

502.5 
(12.6) 

32.2 (2.0) 118.6 
(4.8)  

17,328.0 
(128.4) 

225.0 
(5.9) 

4,163.4 
(59.0) 

1,682.6 
(32.8) 

802.4 
(14.5) 

2,615.8 
(90.3) 

2006 9,087.9 
(160.5) 

431.1 
(15.9) 

30.1 (3.3) 147.1 
(7.9) 

17,456.5 
(179.3) 

212.1 
(7.5) 

3,990.9 
(82.0) 

1,651.9 
(46.8) 

761.5 
(19.0) 

2,608.3 
(129.9) 

2007 8,769.5 
(157.9) 

522.7 
(15.9) 

30.8 (2.7) 115.7 
(6.9) 

17,645.0 
(164.0) 

210.4 
(7.5) 

4,232.0 
(78.8) 

1,674.2 
(39.0) 

838.5 
(19.1) 

2,842.3 
(116.9) 

2008 9,051.7 
(149.1) 

423.5 
(14.8) 

65.0 (4.5) 236.0 
(14.1) 

17,497.9 
(164.6) 

287.8 
(9.8) 

3,809.4 
(71.5) 

1,593.4 
(39.3) 

691.0 
(18.1) 

2,493.5 
(114.0) 

2009 8,350.9 
(167.8) 

341.0 
(14.9) 

67.2 (5.5) 246.9 
(13.7) 

17,913.8 
(206.) 

267.1 
(11.5) 

3,831.7 
(83.6) 

1,515.0 
(46.3) 

649.0 
(19.2) 

2,892.8 
(144.6) 

2010 8,072.6 
(207.4) 

428.1 
(20.1) 

80.8 (8.6) 211.9 
(18.8) 

17,469.3 
(258.9) 

277.3 
(15.7) 

3,851.6 
(103.6) 

1,524.6 
(50.1) 

733.3 
(26.9) 

3,241.1 
(184.8) 
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Table 3. The percent of cranes found in each landcover type by year from 1985 through 

2010. Cranes were documented more than 75% of the time in water or herbaceous-

grassland wetland landcover. 

Water Water Herbaceous 

Grassland 

Wetland 

Grassland Tidal 

Flats 

Woody 

Shrubland 

Woody 

Shrub 

Wetland 

Row 

Crops 

1985 57.3 37.8 1.7 2.9 0.3 0 0 

1986 58.1 38.1 1.2 1.5 1.1 0 0 

1987 57 41.6 0.4 0.6 0.4 0 0 

1988 40.5 45.7 4.6 1.8 5.2 2.2 0 

1989 41.5 41.9 5.3 3.6 7.5 0 0.2 

1990 38.4 49.1 5.4 2.8 4 0.3 0 

1991 31.9 55.7 4.8 3.8 3.6 0.2 0 

1992 36.9 52 3.3 4.3 3.4 0 0 

1993 34.5 55.9 3.9 3.4 1.7 0.6 0 

1994 38.8 53.7 2 4.9 0.5 0 0 

1995 45 44.3 6.3 3.1 1.3 0 0 

1996 34.4 56.6 3.4 5 0.7 0 0 

1997 35 57.1 3.8 3.4 0.7 0 0 

1998 30.8 64.2 1.2 3.4 0.3 0 0 

1999 41.2 45.8 6.8 2.9 3.1 0.2 0 

2000 30.9 56.4 7.4 2 2.1 1 0.2 

2001 37.6 57 1 4 0.2 0.1 0 

2002 34.9 59.3 0.7 4.8 0.2 0 0 

2003 33.4 56.1 3.4 6.5 0.6 0 0 

2004 35.7 55.8 2 5.2 1.1 0.2 0 

2005 36.8 53.1 3.9 4.7 1.5 0 0 

2006 30.1 58.4 5.7 4.5 1.2 0.1 0 

2007 34.4 55 2.4 5.4 2.7 0 0 

2008 28.4 49.4 11.8 2.9 7 0.5 0 

2009 24.9 53.1 14.2 4.2 3.5 0.1 0 

2010 46.6 37.8 7.2 3.4 4.7 0.3 0 
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Table 4. Model selection analysis based on a generalized linear model using backwards 

stepwise selection for the importance of distance to habitat type based on variables 

included in each model, the number of parameters, AIC value, and difference between the 

models. 

Model  Variables (Distance to Each 

Habitat Type) 

K AICc ∆AICc !! 

Global Bare ground, grassland, 

herbaceous grassland wetland, 

water, row crops, tidal flats, urban 

area, woody shrub wetland, 

woody shrubland, and burned area   

11 46791.13 3.66 0.07 

Model 

1 

Grassland, herbaceous grassland 

wetland, water, row crops, tidal 

flats, urban area, woody shrub 

wetland, woody shrubland, and 

burned area  

10 46789.30 1.83 0.18 

Model 

2 

Grassland, herbaceous grassland 

wetland, water, row crops, urban 

area, woody shrub wetland, 

woody shrubland, and burned area   

9 46788.12 0.65 0.32 

Model 

3 

Herbaceous grassland wetland, 

water, row crops, urban area, 

woody shrub wetland, woody 

shrubland, and burned area   

8 46787.48 0.00 0.44 
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Table 5. Model selection analysis based on a generalized linear model using backwards 

stepwise selection for the importance of amount of habitat type available affecting crane 

presence/absence based on variables included in each model, the number of parameters, 

AIC value, and difference between the models. 

Model Variables (Square Meters 

of Habitat Type 

Available) 

K AICc ∆AICc !! 

Global Bare ground, grassland, 

herbaceous grassland 

wetland, water, row 

crops, tidal flats, urban 

area, woody shrub 

wetland, woody 

shrubland, and burned 

area   

11 860.52 5.25 0.04 

Model 1 Bare ground, grassland, 

herbaceous grassland 

wetland, water, tidal flats, 

urban area, woody shrub 

wetland, woody 

shrubland, and burned 

area   

10 858.58 3.31 0.11 

Model 2 Bare ground, grassland, 

herbaceous grassland 

wetland, water, tidal flats, 

urban area, woody shrub 

wetland, and burned area   

9 856.79 1.53 0.27 

Model 3 Bare ground, grassland, 

herbaceous grassland 

wetland, water, tidal flats, 

woody shrub wetland, 

and burned area   

8 855.27 0.00 0.58 

 

 

 

 

 



120 

 

Table 6. Jaccard similarity index results for area (hectares) of kernel densities based on 

crane locations by five year divisions from 1950-2010. The closer to one, the more 

overlap that exists between areas.  

Years Compared Jaccard Similarity Index 

1950-1954, 1955-1959 0.708 

1950-1954, 1960-1964 0.622 

1950-1954, 1965-1969 0.456 

1950-1954, 1970-1974 0.481 

1950-1954, 1975-1979 0.421 

1950-1954, 1980-1984 0.467 

1950-1954, 1985-1989 0.347 

1950-1954, 1990-1994 0.349 

1950-1954, 1995-1999 0.293 

1950-1954, 2000-2004 0.233 

1950-1954, 2005-2010 0.195 
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Figure 1. Aransas National Wildlife Refuge is located on the Texas Gulf Coast just south 

of Austwell, Texas, USA. It is comprised of 5 administrative units that total 46,916 

hectares: Aransas, Matagorda Island, Tatton, Lamar, and Myrtle Foester-Whitmire. 
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Figure 2. Landcover types on Aransas National Wildlife and the surrounding area.  
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Figure 3. Kernel Density of whooping crane locations between 1950-1959 (A), 1960-1969 (B), 1970-1979 (C), 1980-1989 (D), 1990-

1999 (E), and 2000-2010 (F). 
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between 1950-2010.  
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Appendix A 

 Table 1. Change in mean percent cover before and after summer and winter prescribed burns on control and treatment WREP 

research sites, Lincoln County, Oklahoma, USA (±	#$)	[±	#'].  

Species Burn 
Season 

 Pre-
burn 
2014  

Control    
2014 

Pre-burn 
2015 

Control  
2015  

Post-
burn 
2015 

Post-
burn 
2016 

Control 
2016 

Postburn 
2017 

Control 
2017  

Iva annua Summer 5.028 
(0.5364) 
[13.139] 

7.569 
(0.598) 
[18.900] 

1.283  
(0.245) 
[5.479] 

2.643  
(0.333) 
[8.811] 

NA 9.779 
(0.660) 
[16.155] 

9.289 
(0.696) 
[22.009] 

0.000 
(0.000) 
[0.000] 

0.000 
(0.000) 
[0.000] 

Iva annua Winter 0.273 
(0.113) 
[2.263] 

12.079 
(0.812) 
[22.981]  

NA 7.590 ( 
0.667) 
[13.338] 

0.820 
(0.225) 
[3.187] 

0.000 
(0.000) 
[0.000] 

5.890 
(0.447) 
[10.954]   

11.155 
(0.816) 
[21.579] 

5.591 
(0.678) 
[13.559] 

Persicaria Spp. Summer 2.804 
(0.418) 
[10.243]  

17.766 
(0.962) 
[30.430]  

1.452  
(0.289) 
[6.459] 

1.697  
(0.233) 
[6.161]  

NA 6.562 
(0.344) 
[9.153]  

5.789 
(0.344) 
[10.870] 

0.614 
(0.181) 
[2.678]  

0.395 
(0.161) 
[2.284] 

Persicaria Spp. Winter 1.314 
(0.256) 
[5.117]  

4.757 
(0.388) 
[10.982] 

NA 3.360 
(0.393) 
[7.863] 

5.965 
(0.710) 
[10.034] 

0.170 
(0.087) 
[1.236]  

0.608 
(0.111) 
[2.713] 

7.033 
(0.564) 
[14.931] 

2.838 
(0.403) 
[8.052] 

Eleocharis spp. Summer 0.164 
(0.0606) 
[1.483] 

4.108 
(0.410) 
[12.952]  

0.162  
(0.058) 
[1.308] 

5.633  
(0.617) 
[16.318] 

NA 0.233 
(0.076) 
[1.851]  

5.021 
(0.481) 
[15.206] 

0.086 
(0.074) 
[1.097] 

0.535 
(0.181) 
[2.560] 

Eleocharis spp. Winter 0.333 
(0.131) 
[2.613] 

11.620 
(0.666) 
[18.831]  

NA 22.573 
(1.551) 
[31.013]  

0.620 
(0.259) 
[3.660]  

0.000 
(0.000) 
[0.000] 

13.918 
(0.900) 
[22.053] 

5.159 
(0.606) 
[16.034] 

7.923 
(0.861) 
[17.223] 

Cardiospermum 
halicacabum 

Summer 2.417 
(0.290) 
[7.095]  

1.400 
(0.179) 
[5.671] 

3.751 
(0.357) 
[7.979]  

 2.535  
(0.267) 
[7.076] 

NA 3.482 
(0.306) 
[7.506]  

2.777 
(0.238) 
[7.517] 

24.450 
(2.0226) 
[30.000] 

20.560 
(2.165) 
[30.613] 
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Species Burn 
Season 

 Pre-
burn 
2014  

Control 
2014 

Pre-burn 
2015 

Control  
2015  

Post-
burn 
2015 

Post-
burn 
2016 

Control 
2016 

Postburn 
2017 

Control 
2017  

Cardiospermum 
halicacabum 

Winter 0.188 
(0.0723) 
[1.447] 

1.269 
(0.1402) 
[3.967] 

NA 0.865  
(0.177) 
[3.533] 

0.000 
(0.000) 
[0.000] 

0.015 
(0.015) 
[0.212]  

2.240 
(0.213) 
[5.215] 

0.261 
(0.056) 
[1.484] 

2.446 
(0.401) 
[8.024] 

Persicaria 
amphibia 

Summer 9.004 
(0.836) 
[20.468]  

2.047 
(0.368) 
[11.651] 

9.118  
(0.882) 
[19.733] 

2.944  
(0.498) 
[13.174]  

NA 5.81 
(0.510) 
[12.490]  

1.689 
(0.309) 
[9.725] 

 8.723 
(1.251) 
[18.557] 

1.030 
(0.301) 
[4.258]  

Persicaria 
amphibia 

Winter 0.008 
(0.008) 
[0.150] 

0.756 
(0.192) 
[5.419]  

NA 1.305  
(0.347) 
[6.939] 

0.015 
(0.015) 
[0.212] 

0.390 
(0.209) 
[2.958]  

0.963 
(0.228) 
[5.590] 

0.181 
(0.086) 
[2.283] 

1.658 
(0.375) 
[7.510] 

Ambrosia 
trifida 

Summer 5.583 
(0.621) 
[15.218]  

1.972 
(0.232) 
[7.348]  

0.006 
(0.006) 
[0.134] 

0.0256 
(0.010) 
[0.277]  

NA 3.023 
(0.325) 
[7.965] 

0.636 
(0.101) 
[3.19] 

0.000 
(0.000) 
[0.000] 

0.255 
(10.139) 
[1.959] 

Ambrosia 
trifida 

Winter 0.000 
(0.000) 
[0.000] 

7.735 
(0.624) 
[17.647] 

NA 1.123  
(0.405) 
[8.100]  

0.000 
(0.000) 
[0.000] 

0.000 
(0.000) 
[0.000] 

2.468 
(0.486) 
[11.915] 

4.919 
(0.470) 
[12.432] 

0.943(0.191) 
[3.829] 

Woody Species Summer 0.005 
(0.005) 
[0.122]  

0.281 
(0.080) 
[2.535] 

0.024  
(0.012) 
[0.268]  

1.070  
(0.229) 
[6.054]  

NA 0.010 
(0.007) 
[0.173] 

0.822 
(0.171) 
[5.400) 

0.114 
(0.076) 
[1.131] 

0.270 
(0.139) 
[1.969] 

Woody Species Winter 0.403 
(0.174) 
[3.477]  

0.0438 
(0.029) 
[0.806]  

NA 0.048  
(0.041) 
[0.814]  

0.0950 
(0.081) 
[1.150] 

0.160 
(0.113) 
[1.596]  

0.100 
(0.047) 
[1.154] 

0.010 
(0.006) 
[0.165] 

0.148 
(0.061) 
[1.210] 
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Appendix B 

Figure 1. Change in mean percent cover (±SE)	of litter before and after a summer 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA.  A small decrease was observed one year post burn. Litter levels on 

post burn sites were comparable to control sites two years post-burn. 

Figure 2. Change in mean percent cover (±SE) of litter before and after a winter 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA. No decrease in litter was observed one year post-burn. Two years post-

burn, litter levels were much higher than on control sites, and three years post-burn, litter 

levels were much lower than on control sites. 

Figure 3. Change in mean percent of bare ground (±SE) present before and after a 

summer prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA.  The mean percent of bare ground present was much higher one year 

post-burn, but had returned to levels similar to control conditions two years post-burn. 

Figure 4. Change in mean percent of bare ground present (±SE)	before and after a winter 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA.  The mean percent of bare ground present was much higher than control 

sites for all three years following the burn. 

Figure 5. Change in mean percent cover (±SE) of forbs before and after a summer 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA.  Mean percent forb cover was higher on post burn sites one and two 

years post-burn as compared to control sites. 
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Figure 6. Change in mean percent cover (±SE) of forbs before and after a winter 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA. Forb cover increased one and three years post-burn and remained 

higher than mean forb cover on control sites. 

Figure 7. Change in mean percent cover of Carex spp. (±SE) before and after a summer 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA. Mean Carex cover was slightly higher one year post-burn compared to 

pre-burn levels and was similar to control sties one and two years post-burn. 

Figure 8. Change in mean percent cover of Carex spp. (±SE)	before and after a winter 

prescribed burn on control and treatment WREP research sites, Lincoln County, 

Oklahoma, USA. Cover of Carex increased one year post-burn, but mean percent cover 

was lower than control sites three years post-burn. 

Figure 9. Change in species richness (±SE)	before and after a summer prescribed burn on 

control and treatment WREP research sites, Lincoln County, Oklahoma, USA. Species 

richness was slightly higher one year post-burn, but was similar to control sites two years 

post-burn. 

Figure 10. Change in species richness (±SE)	before and after a winter prescribed burn on 

control and treatment WREP research sites, Lincoln County, Oklahoma, USA. There was 

very little difference between species richness pre-burn and one and three years post-

burn. 
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Figure 3 
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Figure 5 

Figure 6 
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Figure 7 

Figure 8 

        Pre-Burn 
 
        Post-Burn     
 
        Control 



133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 

Figure 10 
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APPENDIX C 

Table 1. Plant species documented at each of the research sites from spring 2014 through 

summer 2017. 

Scientific Name Common Name Research 
Site 1  

Research 
Site 2 

Research 
Site 3 

Research 
Site 4 

Acer negundo  Box elder   x  
Alisma subcordatum  American water 

plantain 
  x  

Alopecurus 
carolinianus 

Carolina foxtail x x x  

Amaranthus 
tuberculatus 

Roughfruit 
amaranth 

x x x  

Ambrosia 
artemisiifolia 

Common ragweed x    

Ambrosia trifida Great ragweed x x x x 
Ammannia coccinea Valley redstem x x x  
Apocynum 
cannabinum 

Hemp dogbane  x x  

Asclepias syriaca Common 
milkweed 

x  x  

Azolla filiculoides Pacific 
mosquitofern 

  x x 

Brassica juncea Indian mustard  x   
Bromus inermis Smooth brome   x  
Bromus racemosus Bald brome x x x x 
Bromus tectorum Cheatgrass x  x  
Cardiospermum 
halicacabum 

Balloonvine x x x x 

Carex spp. Sedge spp. x x x x 
Carex hyalinolepis Shoreline sedge x x x x 
Carya spp. Hickory spp.  x  x  
Ceanothus cuneatus Buckbrush x    
Cephalanthus 
occidentalis 

Common 
buttonbush 

x x x x 

Chenopodium 
album 

Common 
lambsquarters 

x x x x 

Cichorium intybus Chicory x    
Conyza canadensis Canada horseweed x x x x 
Coreopsis tinctoria Plains coreopsis  x x  
Cuscuta spp. Dodder spp.  x  x 
Cynanchum laeve Honeyvine 

milkweed 
x x   
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Scientific Name Common Name Research 
Site 1  

Research 
Site 2 

Research 
Site 3 

Research 
Site 4 

Daucus carota Wild carrot x   x 
Echinochloa colona Jungle rice  x   
Echinochloa crus-
galli 

Barnyard grass x    

Echinodorus 
berteroi 

Upright burhead x x   

Eclipta prostrata Eclipta x x x x 
Eleocharis spp. Spikerush spp.  x x x x 
Elymus virginicus Virginia wild rye   x  
Erigeron strigosus Daisy fleabane x    
Eupatorium 
altissimum 

Tall thoroughwort x x x  

Eupatorium 
serotinum 

Lateflowering 
thoroughwort 

x x x  

Euphorbia 
marginata 

Snow on the 
mountain 

x x   

Euphorbia prostrata Prostrate sandmat x x   
Fraxinus spp. Ash spp.    x  
Galium spp. Bedstraw spp. x x x x 
Geranium 
carolinianum 

Carolina geranium x x   

Gleditsia 
triacanthos 

Honey locust x  x  

Helianthus annuus Common 
sunflower 

x x x x 

Hibiscus laevis Halberdleaf 
rosemallow 

 x x x 

Iva annua Annual marsh 
elder 

x x x x 

Juglans spp. Walnut spp.  x    
Lactuca serriola Prickly lettuce x x   
Lamium 
amplexicaule 

Henbit x x   

Lathyrus hirsutus Caley pea  x  x 
Lemna spp. Duckweed spp.  x x x x 
Lepidium spp. Pepperweed spp.  x x   
Lespedeza virginica Slender lespedeza  x   
Ludwigia peploides Floating primrose x  x x 
Lythrum alatum Winged lythrum x x x  
Melilotus spp. Sweet clover spp.    x x 
Melothria pendula Guadeloupe 

cucumber 
x  x x 

Myosurus minimus Tiny mousetail x    
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Scientific Name Common Name Research 
Site 1 

Research 
Site 2 

Research 
Site 3 

Research 
Site 4 

Nelumbo lutea  American lotus    x 
Packera plattensis Prairie groundsel x x   
Parthenocissus 
quinquefolia 

Virginia creeper x  x  

Passiflora suberosa Wild passionfruit x    
Persicaria amphibia Water knotweed x  x x 
Persicaria 
hydropiperoides 

Swamp smartweed x x  x 

Persicaria 
lapathifolia 

Curlytop 
knotweed 

x x  x 

Persicaria 
pensylvanica 

Pennsylvania 
smartweed 

x x x x 

Peltandra virginica Green arrow arum x    
Phyla lanceolata Lanceleaf fogfruit x x x x 
Physalis angulata Cutleaf 

groundcherry 
x x x x 

Phytolacca 
Americana 

American 
pokeweed 

x    

Plantago 
rhodosperma 

Redseed plantain  x   

Fallopia  
convolvulus 

Black bindweed  x   

Polygonum 
ramosissimum 

Bushy knotweed x x x x 

Populus spp. Cottonwood spp.  x    
Prunus spp.  Plum spp. x    
Pyrrhopappus spp.  Chicory spp. x    
Ranunculus 
sceleratus 

Cursed buttercup x x x x 

Rhus spp. Sumac spp.  x    
Rorippa palustris Bog yellowcress x x x x 
Rudbeckia 
amplexicaulis 

Clasping 
coneflower 

x x x  

Rumex crispus Curly dock x x x x 
Sagittaria ambigua Kansas arrowhead    x 
Salix nigra Black willow x  x x 
Schizachyrium 
scoparium 

Little bluestem x    

Setaria pumila Yellow 
bristlegrass 

x    

Solanum 
physalifolium 

Hairy nightshade x    

Solidago canadensis Canada goldenrod x x x  



137 
 

Scientific Name Common Name Research 
Site 1 

Research 
Site 2 

Research 
Site 3 

Research 
Site 4 

Sonchus asper Spiny sowthistle  x   
Sorghum halepense Johnsongrass x x   
Stellaria media Chickweed x    
Symphyotrichum 
subulatum 

Eastern annual 
saltmarsh aster 

x x x x 

Teucrium canadense American 
germander 

x  x  

Torilis arvensis Spreading 
hedgeparsley 

x  x x 

Toxicodendron 
radicans 

Poison ivy x  x  

Triticum aestivum Common wheat  x   
Ulmus spp.  Elm spp. x x x  
Utricularia spp. Bladderwort spp.     x 
Valerianella radiata Beaked cornsalad x x   
Verbena urticifolia White vervain   x  
Veronica peregrina Neckweed x x x x 
Vicia ludoviciana Louisiana vetch   x  
Xanthium 
strumarium 

Cocklebur  x  x 

Zizaniopsis miliacea Giant cutgrass  x   
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APPENDIX D 

Figure 1. LANDFIRE Fire Regime Group (FRG) classification on Aransas and Lamar. 
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Figure 2. Matagorda Island and the Myrtle Foester Whitmire Unit LANDFIRE Fire 

Regime Group (FRG) classification. 
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Figure 3. LANDFIRE Mean Fire Return Interval (MFRI) of historic wildfires on Aransas 

and Lamar. 
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Figure 4. Matagorda Island and the Myrtle Foester Whitmire Unit LANDFIRE Mean Fire 

Return Interval (MFRI) of historic wildfires. 
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APPENDIX E 

Table 1. Habitat types grouped to created broad landcover variables based on vegetation 

types classified by NatureServe and MoRAP. 

Habitat Type 
Category 

Vegetation Types Classified by NatureServe and MoRAP 

Bare ground Active Sand Dune 
Barren 
Central and Lower Coastal: Beach 

Water Open Water 
Woody Shrubland Coastal and Sandsheet: Deep Sand Live Oak - Mesquite 

Woodland 
Coastal and Sandsheet: Deep Sand Live Oak Forest and 
Woodland 
Coastal and Sandsheet: Deep Sand Live Oak Shrubland 
Coastal and Sandsheet: Deep Sand Shrubland 
Coastal Bend: Floodplain Evergreen Shrubland 
Coastal Bend: Floodplain Hardwood Forest 
Coastal Bend: Floodplain Deciduous Shrubland 
Coastal Bend: Floodplain Live Oak - Hardwood Forest 
Coastal Bend: Floodplain Live Oak Forest 
Coastal Bend: Riparian Deciduous Shrubland 
Coastal Bend: Riparian Evergreen Shrubland 
Coastal Bend: Riparian Hardwood Forest 
Coastal Bend: Riparian Live Oak - Hardwood Forest 
Coastal Bend: Riparian Live Oak Forest 
Gulf Coast: Salty Prairie Shrubland 
Native Invasive: Deciduous Woodland 
Native Invasive: Huisache Woodland or Shrubland 
Native Invasive: Mesquite Shrubland 
Non-Native Invasive: Chinese Tallow Forest, Woodland, or      
Shrubland 
Non-native Invasive: Saltcedar Shrubland 
Post Oak Savanna: Live Oak Motte and Woodland 
Post Oak Savanna: Live Oak Shrubland 
Invasive: Evergreen Shrubland 
Native Invasive: Baccharis Shrubland 
South Texas: Clayey Blackbrush Mixed Shrubland 
South Texas: Clayey Live Oak Motte and Woodland 
South Texas: Clayey Mesquite Mixed Shrubland 
South Texas: Sandy Live Oak Motte and Woodland 
South Texas: Sandy Mesquite - Evergreen Woodland 
South Texas: Sandy Mesquite Dense Shrubland 
South Texas: Sandy Mesquite Woodland and Shrubland 
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Habitat Type 
Category 

Vegetation Types Classified by NatureServe and MoRAP 

Woody-shrub 
Wetland 

Coastal and Sandsheet: Deep Sand Live Oak Swale Marsh 
Coastal: Mangrove Shrubland 
Coastal: Salt and Brackish High Tidal Shrub Wetland 

Grassland Coastal and Sandsheet: Deep Sand Grassland 
Coastal Bend: Floodplain Grassland 
Coastal Bend: Riparian Grassland 
Gulf Coast: Coastal Prairie 
Gulf Coast: Salty Prairie 
Native Invasive: Common Reed 

Herbaceous-
Grassland Wetland 

Coastal and Sandsheet: Deep Sand Grassland Swale Marsh 
Coastal Bend: Floodplain Herbaceous Wetland 
Coastal Bend: Riparian Herbaceous Wetland 
Coastal: Salt and Brackish High Tidal Marsh 
Coastal: Salt and Brackish Low Tidal Marsh 
Gulf Coast: Coastal Prairie Pondshore 

Tidal Flat Coastal: Tidal Flat 
South Texas: Algal Flats 
Coastal: Sea Ox-eye Daisy Flats 
South Texas: Wind Tidal Flats 

Row Crops Row Crops 
Urban Urban High Intensity 

Urban Low Intensity 
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Appendix F 

Cranes have been documented using upland areas post fire (Chavez-Ramirez et al. 

1996) and we therefore wanted to include fire as a variable that could potentially affect 

habitat use by whooping cranes. ANWR has implemented a prescribed burn program on 

the refuge over the past three decades for the benefits of the cranes. We received a list of 

prescribed burns by date that were conducted on Aransas, Matagorda Island, and the 

Myrtle-Foester Whitmire Unit between 1985-2013. We used remotely sensed satellite 

imagery collected before and after each burn date to develop GIS layers of each 

individual burn on the refuge. We first had to obtain and correct the satellite imagery. We 

downloaded Landsat imagery and the raw Landsat imagery was calibrated from its raw 

brightness pixel values to top of atmosphere reflectance (Key and Benson 2005) to 

correct for sunlight and topographic illumination errors. The effects of atmospheric 

transmittance can then be corrected after conversion to top of atmosphere reflection of 

the images. As light enters the atmosphere, it can be scattered by aerosols and alter the 

reflectance (Jensen 2005). Dark object subtraction was performed to reduce and correct 

for atmospheric effects found in satellite imagery (Chavez 1988) and it does not rely on 

spectral ground readings, which are impractical to obtain for historical datasets or remote 

locations.  

Normalized Burn Ratio 

The Normalized Burn Ratio (NBR) is a spectral index used to delineate burned 

areas using Landsat Tm/ETM+ bands 4 (near-infrared) and 7 (short wave infrared). We 

used the method of determining the NBR to spectrally find the locations and sizes of the 

burns on the refuge. Healthy vegetation responds strongly in the near-infrared (NIR) 
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portion of the electromagnetic spectrum. Destruction of plant cell structure by fire and 

reduced chlorophyll production results in decreased reflectance at this wavelength 

(Jensen 2005). The shortwave infrared (SWIR) portion of the electromagnetic spectrum 

also responds significantly to the changes in vegetation post burn. Fire-altered landscapes 

display reduced absorption in the SWIR due to the decrease of water content in the 

vegetation (Rogan and Yool 2001). These attributes of vegetation response to fire make 

infrared reflectance ideally suited for burn severity studies. The normalized burn ratio is 

defined as: NBR = (B4 – B7) / (B4 + B7), where B4 and B7 are the reflectance values of 

bands 4 and 7 (Key and Benson 2005).  

Differenced Normalized Burn Ratio  

A differenced normalized burn ratio (dNBR) can be calculated to isolate pixels 

that indicate a burn from those that do not. The dNBR better differentiates low severity 

pixels from those that represent non-vegetated areas (Escuin et al. 2005). The differenced 

normalized burn ratio is calculated as: dNBR = NBRpre-fire – NBRpost-fire.  Resulting values 

range from -2.0 to 2.0, with positive values indicating pixels that represent burned areas.  

For our analysis, pixels with values greater than 0.15 were classified as burned.  

Biophysical reactions of vegetation to fire have been well documented in spectral 

responses of Landsat TM data (Jakubauskas et al. 1990); specifically, the spectral 

response to fire in the mid and near-infrared ranges has been successfully employed to 

assess fire severity (Patterson and Yool 1998). All of the burn map layers were created 

using ArcMap v10.4.1 (ESRI 2016) and ENVI 5.3 (Harris Geospatial Solutions, Inc. 

2019).  
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