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Abstract: Organic matter accumulation and soil compaction is a major concern for 
turfgrass managers, causing an increase in the softness of the surface, decreased water 
infiltration rate, and increased surface water retention. The ideal cultivation practice is 
one, which improves soil physical properties of the green while minimizing injury to the 
playing surface. Shade is another common challenge for putting green management. 
Shaded areas may be weak and more easily damaged from mechanical or foot injury. In 
order to maintain healthy turf, understanding how above ground and below ground 
environmental factors influence the plant is important. Therefore, the objective of this 
research was to evaluate the effect of cultivation practices and temporal shade on 
creeping bentgrass used for golf greens. The longevity and duration of two novel 
cultivation practices [air injection cultivation (AIC) or sand injection cultivation (SIC)] 
alone or in combination with conventional hollow tine cultivation (HTC) was evaluated 
in field studies at the Oklahoma State University Turfgrass Research Center and at six 
golf courses in central Oklahoma. Seasonal variability of several soil physical properties 
and turf quality was recorded regardless of cultivation treatment. Summer measurements 
had a higher infiltration rate, softer playing surface, and reduced ball roll distance 
compared to fall and spring measurements. Compared with the untreated control, HTC 
reduced surface firmness by 5% at 28 days after cultivation event (DACE), increased 
infiltration by 88% at 28 DACE, reduced ball roll distance by 6% up to 14 DACE, and 
reduced normalize difference vegetation index (NDVI) by 10% up to 14 DACE. The AIC 
and SIC had no consistent effect on any soil physical properties. Timing of shade did not 
affect the net carbon assimilation rate. Shoot dry weight was lower in morning shade 
compared to the non-shaded control and afternoon shade treatments. Results suggest 
novel cultivation practices were not as effective as conventional hollow tine cultivation in 
managing soil physical properties. Use of novel cultivation practices should be used in 
combination with, as opposed to in place of, conventional hollow tine cultivation. For 
shade management, there is evidence reducing the amount of morning shade may be 
more critical than doing so for afternoon shade.  These studies contribute to the current 
knowledge regarding creeping bentgrass management in the transition zone.
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CHAPTER I 

 

 

LITERATURE REVIEW 

 

Management of creeping bentgrass [Agrostis stolonifera L.] in the transition zone 

can be a major challenge for golf course superintendents. Soil compaction, lack of soil 

aeration, and excessive organic matter are major problems associated with creeping 

bentgrass management. Shade is another common factor that can be detrimental to 

turfgrasses growth and development. This chapter reviews the pertinent literature 

regarding putting green cultivation strategies and shade management of creeping 

bentgrass. Subsequent chapters describe one case study and three experiments 

investigating aspects of creeping bentgrass putting green management in Oklahoma. 

Root Zone Soil Physical Properties 

The ideal soil for turfgrass root growth and development must be able to retain 

water and nutrients, allow air-exchange, drain quickly, and resist soil compaction. Soil 

structure, soil texture, and organic matter content determine water holding capacity, 

permeability, and soil workability that promote plant growth and development (Bigelow 

and Soldat, 2013). Sand is the largest soil particle and is associated with high 

macroporosity and correspondingly high air-filled porosity, permeability, and drainage
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Clay is the smallest soil particle and is associated with increased microporosity and 

correspondingly high capillary-filled porosity and poor permeability and drainage. The 

United States Golf Association (USGA) recommendation for ideal putting green root 

zone soil has a total porosity of 35-55% with 15-30% air-filled porosity and 15-25% 

capillary filled porosity (USGA, 2004). 

Golf course putting greens established in sand-based root zone mixtures have 

many advantages such as traffic tolerance, resistance to compaction, and higher 

permeability and higher infiltration rates (Gibbs et al., 2001). However, the performance 

of sand-based root zones can be diminished over time. Soil physical properties that 

change with time and use include reduced soil porosity, reduced gas exchange rate, 

reduced infiltration rate, increased root zone bulk density and water retention, and altered 

pore size distribution (Schmid, 2014). High bulk density, for a given soil texture, is an 

indicator of low soil porosity and soil compaction which restricts root growth and makes 

the playing surface firm (Turgeon, 1999). The USGA recommendation for the ideal bulk 

density of sand-based putting greens ranges between 1.2 g cm-3 to 1.6 g cm-3, with an 

optimum level of 1.4 g cm-3 (McCarty, 2001). Plant root growth is restricted if bulk 

density exceeds 1.55 g cm-3 on clay loam, 1.65 g cm-3 on silt loam, and 1.80 g cm-3 on a 

fine sandy loam (Bowen, 1981). Cultivation practices that improve soil structure typically 

reduce the bulk density. In most cases, these improvements are only temporary and 

repeated cultivation is needed to sustain plant growth (Gibbs et al., 2001). 

Surface smoothness and firmness affects the playability of putting green. A soft 

surface holds a ball near the point of impact whereas firm surface result in unpredictable 

movement of ball. (Bigelow et al., 2007; Zontek, 2008). Surface firmness is affected by 
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many factors including soil moisture, thatch and organic matter, and bulk density. A 

strong negative correlation between soil moisture and surface firmness has been found 

(Linde et al., 2011; Young et al., 2017). In contrast, a positive correlation has been 

reported between soil bulk density and surface firmness (Dest et al., 2005; McNitt and 

Landshoot, 2003).  

Firm and fast playing conditions can be achieved through increased mowing 

frequency and rolling (McCarty, 2001). However, daily rolling has been reported to cause 

greater ball mark injury compared to not rolling (Young et al., 2017). Golf ball mark 

recovery time was also longer for greens that received high rolling frequency and foot 

traffic (Young et al., 2017). It was speculated that increased wear from rolling and foot 

traffic increased recovery time for golf ball marks injury (Young et al., 2017). Murphy et 

al. (2003) observed a similar result of delayed ball mark recovery when wear and 

compaction were combined compared to compaction alone. 

Previous studies reported hollow tine cultivation (HTC) softened the surface 

compared to verticutting, air injection cultivation (AIC), and sand injection cultivation 

(SIC) (Bunnell et al. 2001; Dickson et al., 2017; McCarty et al., 2007; Rowland et al, 

2009).  Increasing the number of core aerification events from one to three on a 10-yr-old 

‘TifEagle’ bermudagrass reported reducing bulk density and surface hardiness (Atkinson 

et al., 2012). Furthermore, reducing the frequency of cultivation without reducing the 

surface area impacted improved turf quality but did not improve soil physical properties 

(Atkinson et al., 2012). Rowland et al. (2009) evaluated cultural practice impact on 8-yr-

old ultradwarf bermudagrass and observed that verticutting provided a firmer surface 

than the core aeration. 
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The plant available water within a soil depends on soil structure, porosity, and 

organic matter content. The USGA minimum recommendation for saturated hydraulic 

conductivity is 15.2 cm h-1 (USGA, 2004). The slow infiltration rates of most putting 

greens over time is due to buildup of surface organic matter (OM) and sealing by fine 

particles including those used for topdressing (Carrow, 1998; O ‘Brien and Hartwiger, 

2003). Approximately 5% OM is sufficient to significantly clog micropores of most of 

the sand (Carrow, 1998). 

Organic Matter and Thatch layer 

Dead and decaying plant tissues add organic residue on the soil surface. Organic 

matter greater than 3-4% is considered to have negative effects on putting green 

performance (Carrow, 2003). Organic matter causes the plugging of soil macropores, 

which decreases water infiltration rates and increases surface water retention (Hurto et 

al., 1980). Excess surface water increases the moisture content in the root zone, which 

decreases gas exchange between the soil and atmosphere (Carrow, 1998 and 2003; Hurto 

et al., 1980; Murphy et al., 1993).  

The surface layer of OM can be separated into either thatch or mat. Thatch is the 

layer of dead and partially decomposed plant tissues (Decker, 1974) whereas mat is the 

layer in which thatch becomes mixed with topdressing sand (Williams and McCarty, 

2005). A thin thatch-mat layer is considered to be beneficial on putting green as it 

provides resilience to the turf, receives golf shots, increase tolerance to heavy equipment, 

and acts as a buffer for the moderation of soil temperature (Dernoeden et al., 2012; 

Moeller and Lowe, 2016). However, a thick and dense thatch-mat layer reduces the 

environmental tolerance of turfgrass making it liable to heat stress in the summer, 
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promote disease, harbor insect pests, and make the surface more susceptible to scalping. 

Therefore, the management of greens to reduce thatch-mat layer is essential for 

maintaining smooth, healthier, and firm greens.  

Soil compaction and organic matter accumulation have detrimental effect on 

playability and plant health. Though it is difficult to physically remove organic matter, it 

can be managed by coring, verticutting, and proper use of fertilizers and water 

(Dernoeden, 2012; McCarty et al., 2007). Coring, verticutting, and sand topdressing 

incorporate sand in the OM layer resulting in dilution of OM, which creates better 

growing conditions for roots and soil microorganisms (Carrow, 1998; Fu et al., 2009). 

Coring involves the physical penetration of turf surface and removing of compacted soil 

and organic matter along with cores. The holes created as a result of these practices 

provide multiple channels for gas exchange and water infiltration.  

The main objective of cultivation practices is to either remove or dilute thatch and 

mat, reduce soil compaction, or improve surface properties for playability and plant 

health (Baldwin et al., 2006; Sorokovsky et al., 2007; Turgeon, 1999). Despite these 

beneficial outcomes for long-term plant health and playability, cultivation also results in 

temporary negative outcomes including disturbance of the putting surface, slower ball 

rolls, and greater sensitivity to other stresses. 

History of Cultivation Practices 

Cultivation in the turfgrass industry refers to a mechanical disturbance of soil 

surface to modify the physical properties of root zone mixtures. The earliest form of turf 

cultivation is called forking, which involves the penetration of turf with a pitchfork to 

improve infiltration (Turgeon and Fidanza, 2017). Over time, the practice of physical 
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penetration of the turfgrass surface expanded to spiking, slicing, verticutting, HTC, STC, 

water injection cultivation (WIC), AIC, and SIC (Turgeon and Fidanza, 2017). Spiking 

and venting create small openings on the soil surface that provide multiple channels for 

infiltration and gas exchange (Fontanier et al., 2011). A slicer is a spike with larger 

knives for deeper penetration.  

In the late 1940’s, three cultivators were commercially introduced (Turgeon and 

Fidanza, 2017). The first machine used rotating drills to remove soil as it penetrated the 

turf. Although it was effective in creating holes and removing compacted soil, it was slow 

for use. Later in the 1990’s, a similar concept called the drill and fill cultivator emerged 

(Gross, 2012). This cultivator created deep holes using long drill bits while 

simultaneously filling the holes with dry sand. The second invention of this period was 

the West Point Aerifier (West Point Products Corp., West Point, PA) developed by Tom 

Mascaro (Kauffman, 1999; Sheppard, 1957; Turgeon and Fidanza, 2017).  This device 

pulled soil cores by inserting disk-mounted, half-rounded, open spoons. The cores were 

either removed or broken up with a drag mat and incorporated in the soil. The third 

innovation was designed with hollow tines mounted on a drum. The tines were inserted 

into the turf and cores were removed as the drum rotated (Turgeon and Fidanza, 2017). 

Improvements were made to this last machine, resulting in the replacement of the rotating 

drums with a vertical motion that limited the turf damage. This is now typically referred 

to as coring or core cultivation or HTC (Turgeon and Fidanza, 2017). 

Vertical mowing or verticutting is another aerification technique that uses vertical 

knives mounted on a horizontal rotating shaft. The first vertical mower was developed by 

Tom Mascaro in 1955 (Turgeon and Fidanza, 2017). Shallow vertical mowing reduces 
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the grain in putting greens whereas the deep verticutting alleviates the soil compaction 

and also promotes air and water movement through turf surface. In the 1980s, the Verti-

drain unit (Redexim World, Netherland) was commercially introduced. The Verti-drain is 

using to break deep compaction layers using small diameter long tine (Turgeon and 

Fidanza, 2017). Water injection cultivation (WIC) developed by Toto Company in 1990 

is cultivation equipment that improves infiltration and alleviates soil compaction without 

disturbing the turfgrass surface. Water injection cultivation shoots pressurized water into 

the ground without disturbing the surface. The pressurized stream causes the loosening of 

the soil through which air, water, and nutrients move to the turfgrass root system. Several 

other new cultivation technologies including SIC and AIC have been developed in recent 

years that have minimum surface disruption. Sand injection cultivation is a process in 

which a high-pressure water creates a hole in the root zone and sand is drawn into the 

root zone by a vacuum created by the water blast. This process is accomplished using the 

DryJect (DryJect Inc., Hatboro, PA). The DryJect machine can aerate, amend, and top-

dress in one pass which eliminates the need of a crew to drag or remove cores and also 

allow a smooth surface that is ready to play immediately after treatment. The channels 

filled with amendments help to develop new deep roots. Air injection cultivation injects 

high pressurized compressed air to the depth of 15 to 30 cm. Air injection is applied 

using the Air2G2 (GT Airinject Inc., Jacksonville, FL). The pressurized air is speculated 

to relieve the compaction immediately, increases porosity allowing for better infiltration 

rate, and increases turf cushioning. Greens can be immediately played after AIC as it has 

no surface disruption and does not interfere with ball roll (Dickson et al., 2017). 
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Traditional Aerification 

Cultivation practices such as core aerification, spiking, slicing, and verticutting 

followed by topdressing are used to maintain desirable root zone physical properties and 

reduce organic matter build up. Verticutting and HTC with adequate frequency and 

aggressiveness reduce the net accumulation of OM (Landreth et al. 2008; McCarty et al. 

2007; Murphy et al. 1993). These cultivation practices cause surface disruption which 

affects the playability. (Dickson et al., 2017; McCarty et al. 2007). 

Murphy and Rieke (1990) compared the effect of HTC and STC on ‘Penneagle’ 

creeping bentgrass [Agrostis stolonifera L.] green grown on a loamy sand soil in 

Michigan. Hollow tine cultivation increased the macro porosity compared to STC and an 

untreated control. The HTC also had 49 and 21% greater saturated water conductivity and 

air porosity than STC. The loosening effect of soil surface was a short term for STC 

compared to HTC. The author concluded frequent application of STC is required to 

manage soil compaction. However, the frequent application of STC resulted in the 

development of a cultivation pan. 

Bunnell et al. (2001) investigated the effect of summer cultivation on gas 

exchange, water infiltration, soil hardness, and turf quality on 2-yr-old ‘Crenshaw’ and 

‘Penn A-1’ creeping bentgrass research greens in South Carolina, U.S.A. The cultivation 

treatments applied were HTC, STC, deep hollow and solid tine, WIC, star tine, and 

needle tine. Summer cultivation treatments improved gas exchange, surface firmness, and 

water infiltration up to 30 days after treatment. Deep hollow tine (1.6 cm diameter and 20 

cm deep tine), hollow tine (1.6 cm diameter and 9 cm deep tine), needle tine (0.75 cm 

diameter and 13 cm deep tine), and star tine (1.75 cm diameter and 9 cm deep tine) 
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reduced surface hardness by 10-20% and soil CO2 by 20-30%. Hollow tine cultivation 

increased the infiltration rate by 60%. However, a decrease in turf quality was observed 

with hollow tine, deep hollow tine, and solid tine.  

Sorokovsky et al. (2007) studied the effect of HTC on soil physical properties of 

‘Providence’ creeping bentgrass putting greens on Lower Fraser Valley of British 

Columbia. Core aerified plots had lower soil volumetric water content and a higher 

infiltration rate than the untreated control. The effect of HTC lasted only for one month. 

No significant difference in soil OM, root weight density, and soil bulk density was 

observed. The authors concluded that HTC impacting 5% of the surface area was not 

sufficient to affect soil properties except volumetric water content and infiltration rates.  

McCarty et al. (2007) evaluated the effectiveness of various combinations of 

cultural practice followed by topdressing for managing thatch-mat levels on a 3-yr old 

sand-based ‘A-1’creeping bentgrass putting green in South Carolina. Treatments applied 

were two levels of topdressing applied either twice monthly at 0.6 mm or once monthly at 

1.2 mm from March through October, two vertical mowing treatments applied at a depth 

of 6.4 mm and 19.1 mm, grooming applied twice weekly at a depth of 3 mm with 6.4 mm 

spaced blade, and HTC applied using 16 mm diameter tine at a depth of 76 mm. A 

combination of HTC, verticutting, and grooming decreased OM content by 19% whereas 

topdressing alone did not manage OM content. All treatments that were combined with 

HTC reduced surface hardness by 9% and increased water infiltration by 127 to 168% 

compared to untreated control. Vertical mowing decreased ball roll distance by 6% up to 

7 DAT, and HTC reduced ball roll distance by 5 to 8% up to 14 DAT compared to 

topdressing.  
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Rowland et al. (2009) studied the effect of cultural practice for controlling OM 

and their effects on soil physical properties and performance of an 8-yr-old sand-based 

ultradwarf bermudagrass research green with ‘Champion Dwarf’ and ‘TifEagle’ cultivars 

in Florida. Treatments applied were HTC (1, 2 or 3 times per year), verticutting (3 times 

per year), STC (5 times per year), and untreated control. Hollow tine cultivation impacted 

7.7%, 15.45%, and 23.1% of the surface area with 1, 2, and 3 times application, 

respectively, using 1.6 cm diameter  and 7.6 cm deep tine spaced at 5.1 cm. Solid tine 

cultivation impacted 15.7% surface area using 1.0 cm diameter and 7.6 cm deep tine 

spaced at 5.1 cm. Verticutting impacted 46.8% surface area using 0.2 cm tine spaced at 

1.3 cm at a depth of 2.5 cm. Organic matter decreased throughout the study period, but 

there were no significant differences among cultural practices. The HTC treatment (3 

times per year) increased saturated hydraulic conductivity, reduced volumetric water 

content, and increased localized dry spot. Although verticutting did not reduce soil 

organic matter, it provided the firmest turf with reduced mower scalping, localized dry 

spot, and increased root weights. 

Landreth et al. (2008) evaluated the impact of aggressive verticutting and core 

aerification on organic matter management and turf recovery on 1-yr-old sand-based 

‘Penn G-2’ creeping bentgrass green in Arkansas, U.S.A. Verticutting was applied at a 

tine depth of 2.5 cm using 1, 2, and 3 mm wide blade. Core aerification was applied using 

0.6 cm and 1 3 cm diameter and of 3.8 cm and 5 cm deep tine with a spacing of 3.2 x 3.8 

cm or 5 x 6.4 cm. Aggressive verticutting removed more OM than core aerification, but 

the recovery rate was slow. The recovery rate was faster for small diameter tine than 
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larger tine. However, tine spacing did not affect the recovery time. Closely spaced small 

tine can be used to remove more OM without delaying recovery. 

Atkinson et al. (2012) evaluated the effect of core aerification frequency, area 

impacted, and topdressing on turf quality and soil physical properties of a 10-yr-old 

USGA specified TifEagle ultradwarf bermudagrass research putting green in Clemson, 

South Carolina. Two years of study were conducted impacting 15% and 25% surface area 

through one, two, or three aerification events per year. Turf quality decline for up to 4 

weeks after each aerification event. Increasing the frequency of aerification evets from 

one to three reduced decreased bulk density, surface hardness, and organic matter. 

Although reducing the frequency of aerification event while maintaining the same surface 

area impact improve turf quality but it did not improve soil physical properties. 

Schmid et al. (2014) studied the effect of HTC, STC, and venting cultivation in 

managing OM and water infiltration of USGA specified Providence creeping bentgrass 

putting greens at the University of Nebraska-Lincoln John Seaton Anderson Turfgrass 

Research Facility, NE. Hollow tine cultivation and STC were applied with 1.27 cm 

diameter and 11.43 cm deep tine spaced at 5 cm. The HTC impacted 5.9% of surface area 

whereas STC and quad needle tine treatment impacted 4.9% surface area. Venting 

treatments were applied with PlanetAir, Hydroject, bayonet tine, or needle tine. Bayonet 

and PlanetAir impacted 2.1% of the surface area using 1.7 cm wide and 0.25 cm thick 

blade spaced at 5 cm. Tine and venting type impacted infiltration rates. Both HTC and 

STC had greater water infiltration rates than non-treated control. Hydroject and quad 

needle tine increased infiltration rates compared with PlanetAir, bayonet-tine, and non-

venting. Cultivation practices had no impact on managing OM management, which the 
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authors speculate was due to the low surface area impacted by all treatments.  To prevent 

excessive organic matter accumulation, it is suggested to impact 15-20% of the surface 

area (Bevard, 2011; Hartwiger and O’Brien, 2001).  

Alternative Aerification 

Alternative aerification practices such as WIC, SIC, and AIC offer a less invasive 

approach for managing soil physical properties. These new cultivation practices improve 

infiltration and drainage, reduce soil compaction with minimum surface disruption (Craft 

et al., 2016; Dickson et al., 2017; Green et al., 2001). Water injection cultivation (WIC) 

was reported to increase the infiltration rate with minimum surface disruption (Green et 

al. 2001; Murphy and Rieke, 1994). In an experiment conducted by Murphy and Rieke 

(1994) on 5-yr- old ‘Penncross’ creeping bentgrass greens grown on modified loamy 

sand, WIC was equal or superior to hollow tine cultivation in reducing bulk density, and 

increasing porosity and saturated hydraulic conductivity in 0 to 76 mm depth root zone. 

Murphy and Rieke also observed WIC was able to alter soil physical properties deeper in 

the soil compared to HTC. 

Green et al. (2001) evaluated the effects of WIC, and STC on 18-yr-old annual 

bluegrass (Poa annua L.) putting greens grown on USGA specification modified root 

zone greens at Industry Hills Golf Course, City of Industry, California. Water injection 

cultivation was better than the control and equal or superior to solid tine in increasing 

infiltration rate. Treatments had no significant effects on bulk density, soil oxygen 

diffusion rate, air porosity, and root weight density. 

Karcher and Rieke (2005) studied the effect of WIC and HTC on mixing the 

topdressing sand layer with underlying native soil on Penncross creeping bentgrass in 
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Michigan. The treatments included WIC (applied weekly, biweekly, and monthly), and 

HTC (applied in spring and fall). After two years of treatment weekly application of WIC 

resulted in less sand in the topdressing layer. However, the soil layer mixing was only 

limited to 2.5 cm. Cultivation practice did not significantly decrease or change the bulk 

density. It was reported that WIC reduced the turf quality throughout the study and 

caused more damage during stress. The author concluded that during stressful conditions 

WIC should not be applied more frequently than biweekly and should only be used to 

supplement, but not to replace HTC to manage surface OM.   

Fontanier et al. (2011) studied the effect of venting aeration in comparison to 

small diameter STC and HTC on thatch-mat accumulation, turf quality, saturated 

hydraulic conductivity, and soil volumetric water content of hybrid bermudagrass that has 

not been cultivated for 5 yrs. The study was conducted on an 11-yr-old sand-based green 

in College Station, TX and consisted of TifEagle, ‘Tifdwarf’, and ‘Mini-Verde’ cultivars. 

Venting aerations were applied monthly, biweekly, and weekly impacting 7.4-9.5%, 

14.7-18.9%, and 29.4-37.8% surface area impacted annually. Hollow tine cultivation and 

STC were applied every three weeks impacting 14.0-16.8% surface area annually. 

Cultivation practices including venting and small diameter core aeration did not reduce 

thatch accumulation compared to untreated control. Although an individual venting event 

had a negligible impact on the playing surface, frequent venting reduced the turf quality 

and hydraulic conductivity and increased surface soil volumetric water content. The 

result from this study suggests that venting alone may not be effective in thatch 

management, but could be best utilized in combination with other cultural practices. 



14 

 

Craft et al. (2016) investigated the best combination of SIC with HTC to improve 

soil physical properties with minimal surface disruption. The study was conducted on 

‘MS Supreme’ ultradwarf bermudagrass practice putting green established on a USGA 

specified root zone in Starkville, MS. The treatments included HTC (1.3 cm and 0.6 cm 

diameter tine), SIC (5 times per year), and a combination of HTC and SIC. They reported 

that HTC (1.3 cm) had a 76% higher infiltration rate than HTC (0.6 cm tine) + SIC. 

Although HTC (1.3 cm tine) was most effective in improving soil physical properties, it 

also had the slowest percentage recovery. The HTC 0.6 + SCI treatment had minimal 

surface disruption but could not provide the same improvement to soil physical properties 

as HTC 1.3 cm.  The author concluded that SIC would be best used in combination with 

HTC to improve soil physical properties. Sand injection and HTC 0.6 cm would be the 

best combination as it improves soil physical properties with minimum surface 

disruption. 

Dickson et al. (2015) tested the effectiveness of an air injection cultivation to 

reduce surface hardness and increase the porosity of compacted silt loam soil of 

bermudagrass athletic fields at the University of Tennessee, TN. Air injections were 

applied once every 15 days or once every 30 days from July through August 2014. 

Surface hardness was decreased immediately after treatment. Surface hardness was found 

to decrease by 21% and the porosity increased by 17% in the top 5 cm soil for both air 

injection treatments. There was no difference in percent green cover immediately after 

treatment. The result demonstrates that AIC decreases surface hardness and increases the 

total porosity of native soil athletic fields with minimum surface disruption. 
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Dickson et al. (2017) conducted two field study in Knoxville, TN, and 

Elizabethtown to investigated the effect of AIC, SIC, STC, HTC, and untreated control 

on 7-yr-old A-1creeping bentgrass greens established over a USGA specified root zone. 

Immediately after treatment AIC did not reduce green turfgrass cover compared to 

untreated control. The HTC treatment resulted in the largest reduction (16%) in green 

cover, while SIC and STC resulted in 9% and 8% reduction in green cover compared to 

the untreated control. The AIC treated plot had the firmest surface, whereas HTC had the 

softest surface among all the cultivation plots. The positive correlation (0.97) was 

observed between the green coverage and surface firmness, which indicates that more 

surface disruption after cultivation leads to a softer surface. Air injection treatment 

increased ball roll distance compared to control and other cultivation treatments. 

Decreased ball roll distance on HTC and STC plot was due to surface disruption and 

remaining topdressing sand on the turf surface. A positive correlation of 0.63 was 

observed between the ball roll distance and surface firmness. There was no difference in 

bulk density among treatment. The results indicate that AIC and SIC have less impact on 

surface playability of putting greens than HTC and STC. 

Traditional aerification practice often reduce the playing quality of the putting 

surface resulting in a temporary closure and loss of revenue. In addition to this, most 

practices require extra labor, equipment, and materials to do work. Periodically, new 

cultivation technologies such as WIC, SIC, and AIC have emerged for managing soil 

physical conditions of putting greens with less invasive approaches. Although the initial 

cost of new technology is high, the benefit of sustained revenue after a cultivation event 

could justify the expense if the efficacy of the practice is known.  
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A considerable amount of research has been done to examine the timing, depth, 

spacing, and frequency of conventional aerification (Bunnell et al., 2001; McCarty et al., 

2007; Rowland et al., 2009; Sorokovsky et al., 2007). Although there is a significant 

interest of superintendents on new less disruptive cultivation events, enough information 

in not available in the literature comparing new technology with traditional methods. 

Uncertainty remains for optimum timing and frequency of application, the longevity of 

the effects, and how these practices could be used to complement conventional top 

dressing and cultivations methods. Currently, there is no quantitative information 

published comparing AIC and SIC. Information is lacking on the magnitude and duration 

of effect from AIC or SIC. There is limited research done on AIC and SIC systems with 

regards to impacts on soil physical properties.  The study that has been conducted only 

compares the short-term impact of AIC. Currently there is no published information on 

seasonal variability of soil physical properties of golf course putting green. No study has 

been done to compare the effectiveness of cultivation practices (AIC, SIC, and HTC) 

applied in spring, summer, and fall season. These technologies should be evaluated 

through scientific research to verify their efficacy and develop best management 

practices. 

Effect of Temporal Shade 

Shade can be detrimental to turfgrass growth, development, and quality. The most 

common and obvious effect of shading is the reduction in light intensity which limits 

energy available for photosynthesis. In the United States, it is estimated that 25% of the 

turfgrass area are under shade condition (Beard, 1973). Grasses under shade are usually 

taller and have lower dry weights and thinner stems (Dudeck and Peacock, 1992). Shade 
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stress also affects the physiology of turfgrasses such as pigment concentration 

(Possingham, 1980; Wilkinson and Beard, 1975) and carbohydrates reserve (Bunnell et 

al., 2005). Shade provided by trees, shrubs, and buildings often reduces air circulation 

and increases relative humidity resulting in a microclimate conducive to disease 

development (Bell and Danneberger, 1999).  

Creeping bentgrass has good shade tolerance in comparison to many other 

turfgrasses (Turgeon, 1991). However, low mowing heights typical of putting greens 

reduces the residual leaf area available for photosynthesis and thus making plants more 

sensitive to shade stress. On golf courses, due to the orientation of trees and other 

structures, shade is rarely constant and instead fluctuates throughout the day. Some areas 

may be shaded for a partial day whereas others may be continuously under shade. Bell 

and Danneberger (1999) reported no difference in turf color, density, and total 

nonstructural carbohydrates of creeping bentgrass exposed to morning shade, afternoon 

shade, or full sun. In contrast, a recent study conducted on ‘007’ creeping bentgrass 

greens in Arkansas demonstrated that afternoon shade was more detrimental to turfgrass 

quality than morning shade (Russell et al., 2019). Afternoon shade was also reported to 

be more detrimental to TifEagle bermudagrass [Cynodon dactylon (L.) Pers x C. 

transvaalensis Burtt-Davy] (Bunnell et al., 2005) and seashore paspalum [Paspalum 

vaginatum Swartz] (Jiang et al., 2003).  

Field observations suggest that morning shaded areas decline more readily than 

those areas shaded in the afternoon (Freeman, 2012). This has been attributed in part to 

the leaf surface remaining wet with dew for many hours thus exacerbating disease 

pressure (Bell and Danneberger, 1999). Despite this, the results of most field studies 
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investigating temporal shade have either been inconclusive or concluded afternoon shade 

as more detrimental. These studies have focused on evaluating turfgrass quality and 

biomass. However, there has been no published work quantifying more basic aspects of 

creeping bentgrass response to temporal shade. 

Research Goal and Objectives 

The ultimate goal of this project was to study the effect of air injection cultivation 

(AIC) and sand injection cultivation (SIC) alone or in combination with hollow tine 

cultivation (HTC) on soil physical properties of creeping bentgrass putting greens and to 

study the effect of morning and afternoon shade on creeping bentgrass performance. 

The objectives of this research are: 

1. To determine the magnitude and duration of effect from AIC, SIC, and HTC 

cultivation on surface firmness, infiltration rate, and surface disturbance of a 

sand-based creeping bentgrass putting green. 

2. To evaluate the effect of AIC and SIC based programs on seasonal playing quality 

and soil physical properties of creeping bentgrass putting green. 

3. To quantify the effect of AIC on soil oxygen content of a sand-based root zone. 

4. To evaluate the effect of morning and afternoon shade on creeping bentgrass 

photosynthesis. 

 Testable hypothesis 

1. Air Injection and SIC will have equal or superior infiltration rates and firmer soil 

surface compared to HTC.  
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2. Novel cultivation practice will have minimum surface disruption and have no 

impact on ball roll compared to HTC. 

3. Air Injection will increase the soil oxygen content of a sand-based root zone 

compared to control. 
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CHAPTER II 

 

 

FIELD ASSESSMENT OF SOIL PHYSICAL PROPERTIES IN PUTTING GREENS 

AT SIX GOLF COURSES IN CENTRAL OKLAHOMA 

Abstract 

Managing soil organic matter and root zone moisture of sand-based putting greens 

is critical to the long-term health of turfgrass. Soil compaction and accumulation of 

organic layers near the root zone surface reduce infiltration rates, influence surface 

firmness, inhibit deep rooting, and negatively affect playability. Cultivation practices 

including core aerification are commonly used to improve or maintain soil physical 

conditions.  However, core aerification is disruptive to the playing surface and results in 

temporary loss of revenue. Less disruptive technologies should be evaluated through 

scientific research to verify their efficacy and longevity of response. The objective of this 

study was to evaluate the soil physical properties of Oklahoma golf courses using various 

methods of cultivation. This research was conducted on six different golf courses in 

central Oklahoma from 2017 to 2018. Cultivation methods used at these locations 

included air injection cultivation (AIC), sand injection cultivation (SIC), hollow tine 

cultivation (HTC), and solid tine cultivation (STC). The parameters evaluated were sand 

particle size distribution, infiltration rate, volumetric water content, surface firmness, and 

ball roll. Results showed HTC and STC significantly increased infiltration rate and 



28 

 

reduced firmness whereas AIC and SIC had no impact on infiltration rate or surface 

firmness. Cultivation treatment had no effect on volumetric water content. Seasonal 

variability of soil physical properties was observed regardless of cultivation treatment. 

Summer measurement had a higher infiltration rate, softer playing surface, and reduced 

ball roll distance compared to fall and spring measurements. Results suggest AIC and 

SIC alone may not be effective for improving infiltration and managing soil physical 

properties. 

Introduction 

Creeping bentgrass [Agrostis stolonifera L.] and ultradwarf bermudagrass 

[Cynodon dactylon (L.) Pers. X C. transvaalensis Burt Davy] are the most prevalent 

turfgrass species used on putting greens, with bermudagrass being predominant in warm 

and humid regions and creeping bentgrass in the cooler regions of the United States 

(Hartwiger and O’Brien, 2006). In the transition zone, both creeping bentgrass and 

ultradwarf bermudagrass are used as putting green turf. Both of these species can produce 

thatch rapidly, which negatively affects the putting green performance and playability 

(Carrow, 1998; Fontanier et al, 2011; McCarty et al., 2007). Thatch is the layer of dead 

and partially decomposed plant tissues (Decker, 1974) whereas mat is the layer in which 

thatch becomes mixed with topdressing sand (Williams and McCarty, 2005). A thin 

thatch-mat layer is considered to be beneficial on putting green as it provides resilience to 

the turf, receives golf shots, increase tolerance to heavy equipment, and acts as a buffer 

for the moderation of soil temperature (Dernoeden et al., 2012; Moeller and Lowe, 2016). 

However, a thick thatch-mat layer reduces the stress tolerance of turfgrass, making plants 
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more susceptible to heat, disease, insects, and mower injury associated with scalping 

(Dernoeden et al., 2012; Moeller and Lowe, 2016).  

The United States Golf Association (USGA) recommends a specific sand-based 

root zone mixture for putting greens designed to have improved air and water 

permeability, drainage, and resistance to compaction. However, these properties of sand-

based root zone diminish over time. Soil physical properties that change as putting greens 

mature include increased bulk density, reduced infiltration rate, and reduced soil oxygen 

diffusion (Murphy et al., 1993). These changes in soil physical properties are associated 

with compaction due to foot and mechanical traffic and blocking of soil pore space by 

organic matter and fine soil particles. The management of greens to reduce thatch-mat 

layer and soil compaction is essential for maintaining smooth, healthy, and firm greens. 

Recommended cultivation frequency and timing depend on a number of factors 

including climate, frequency of play, cultivar, and nutrient management. Increased 

facility usage typically results in more aerification needed to reduce compaction. Core 

aerification is an effective practice to remove soil organic matter and to improve soil 

physical properties (Atkinson et al., 2012; Craft eta l., 2016; Rowland et al., 2009). 

Although core aerification improves soil properties, it can be disruptive to the putting 

surface (Craft et al., 2016; Dickson et al., 2017). Alternative cultivation practices such as 

air injection (AIC) and sand injection (SIC) have been increasingly used due to their 

minimal surface disruption (Craft et al., 2016; Dickson et al., 2017). Although the use of 

new cultivation practice is increasing, there is a lack of information comparing its effect 

with traditional core cultivation.  
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Soil moisture content, surface firmness, and infiltration of greens can change 

throughout the season. In order to efficiently use traditional or alternative cultivation 

methods, superintendents require information on these seasonal changes in soil physical 

properties. Therefore, the objectives of this study were to assess the soil physical 

properties of putting greens in central Oklahoma varying in cultivation management 

programs and quantify the seasonal variability in soil physical properties. 

Materials and Methods 

This study was conducted at six golf courses in central Oklahoma (Table 1). All 

putting greens in the study had been established on sand-based root zones. All cultural 

management decisions were made by the cooperating superintendents. This included 

irrigation, fertility, mowing, and nutrient management which typically resulted in a 

visually healthy playing surface at each location. 

Cultivation events described in Table 1 were applied in spring 2017 and 2018. All 

aerification events were applied by golf course personnel or the relevant contractor with 

equipment settings based on typical local practices. Air injection cultivation was applied 

using the Air2G2 (GT Airinject Inc., Jacksonville, FL). The AIC equipment was operated 

at an injection burst pressure of 345 kPa through a 23-cm-long-tine and a tine insertion 

pressure of 345 kPa on 60 x 60 cm spacing. Sand injection cultivation was accomplished 

using the DryJect (DryJect Inc., Hatboro, PA) on 7.6 x 5 cm spacing at 10.5 cm tine 

depth. Hollow tine cultivation (HTC) and solid tine cultivation (STC) was applied using a 

Pro Core 648 (The Toro Company, Bloomington, MN). The setting for HTC was 5 x 5 

cm spacing using 1.6 cm outside diameter and 6.4 cm deep tine. The STC was applied at 

7.6 x 7.6 cm spacing using a 2 cm diameter tine at a tine depth of 11.75 cm. When HTC 
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or STC was applied, sand was top-dressed and brushed into the holes. The specification 

of topdressing sand is listed in Table 3. 

Two greens were selected at each golf course based on the accessibility and 

preference of the cooperating superintendent. Each green was then evaluated at three 

zones (experimental units) representing the front, middle, and back of the green. 

Measurements of infiltration rate, surface firmness, volumetric water content, and ball 

roll distance were made immediately before selected cultivation events and subsequently 

at 3, 7, and 28 days after cultivation event (DACE). These cultivation events were 

performed in the spring of each year. Each site was also evaluated once during summer 

and fall to estimate seasonal variability of soil physical properties.  

Infiltration rates were measured using a double-ring infiltrometer (15 and 30 cm 

rings) and falling head technique (Fontanier et al., 2011; Gregory et al., 2005). The rings 

were inserted approximately 5 cm below the soil surface. Water was added to the top of 

both rings. The infiltration rate was measured as the decrease in water level within the 

inner ring after ten minutes. The process was repeated until two consecutive readings 

were the same.  

Surface firmness was measured using a handheld firmness meter (Field Scout 

TruFirm, Spectrum Technologies, Inc. Aurora, IL) (Dickson et al., 2017). Firmness was 

assessed as the depth of golf ball impact into the putting green surface at nine points 

along a 90 x 90 cm grid and averaged to obtain a single value for each experimental unit.  

Soil volumetric water content (VWC) was measured using a FieldScout time 

domain reflectometer (TDR 300) soil probe (Spectrum Technologies, Inc.). The mean 
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VWC of 3.8 cm and 7.6 cm depth was collected at nine points along 90 x 90 cm grid and 

averaged to obtain a single value for each experimental unit. 

Ball roll distance (BRD) was measured using a USGA Stimpmeter (Gaussoin et 

al., 1995: United States Golf Association, 2009). Three balls were rolled in one direction 

and rerolled in the opposite direction. The distance for the six rolls was averaged to 

obtain a single value for each experimental unit. 

In addition, nine 2-cm diameter root zone samples were randomly collected from 

each green before a cultivation event. The thatch layer and actively growing roots were 

removed from the samples, and particle size distribution was measured on the remaining 

soil. 

Statistical Design and Data  

The study was first analyzed as a completely randomized design with three 

replications (zones within each green). The treatment, time (DACE), and treatment × 

time interaction effects were evaluated using a repeated measures analysis in the 

GLIMMIX procedure (SAS version 9.3; SAS Institute Inc., NC) with data pooled across 

locations and greens within locations. Subsequently, data were re-analyzed using the 

GLIMMIX procedure to evaluate the effects of location, season, and the location × 

season interaction on measured parameters. Means were compared using Fisher’s 

protected least significant difference (LSD). All tests were performed at a significance 

level of p < 0.05.  
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Results and Discussion 

Cultivation Effects 

Particle Size Distribution 

Root zone and topdressing sand particle size distributions varied among golf 

courses but was not affected by the age of the green (Tables 2 and 3). Infiltration rate was 

higher for the golf courses that have higher very coarse and coarse sand particles and 

lower fine sand, silt and clay compared to golf courses that have higher fine sand, silt, 

and clay and lower very coarse and coarse sand particles. These findings are not 

surprising and prior research has shown a similar reduction in infiltration due to the 

accumulation of silt and clay particles in root zone (Lewis et al., 2010). 

Volumetric Water Content  

Cultivation practice had a minimal effect on VWC at either the 3.8 cm or 12 cm 

depth (Table 5). At the 3.8 cm depth, HTC increased VWC at 3 and 7 but not 28 DACE, 

and the SIC treatment increased VWC at 3, 7, and 28 DACE. The increase in VWC could 

be influenced by a number of factors including increased water holding capacity of the 

soil after cultivation.  However, the most likely cause for increased VWC immediately 

after cultivation is increased water inputs typically applied to settle sand into the canopy, 

prevent plant tissue damage, and encourage recovery. Furthermore, the SIC process itself 

introduces a substantial amount of water to create channels for sand. In the present study, 

AIC and STC had no effect on VWC. Craft et al. (2016) reported no difference in VWC 

between HTC (0.6 cm tine) and the control, whereas HTC with a larger diameter (1.3 cm 

tine) reduced VWC compared to control. Rowland et al. (2009) also reported that VWC 

of HTC applied 1 or 3 times per year and STC applied 5 times per year was not different 
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than the control. The temporal and spatial variability in soil moisture content likely 

contributes to the inconsistent findings both within this study and those conducted at 

research stations. 

Surface Firmness 

Hollow tine cultivation reduced surface firmness up to 28 DACE (Table 6). In 

contrast, STC reduced surface firmness for only 3 DACE. These findings are in 

agreement with McCarty et al. (2007) and Murphy et al. (1993) who reported that 

creeping bentgrass putting greens treated with HTC had reduced surface firmness 

compared with STC and control. 

Surface firmness was not affected by SIC, while there was a small decrease in 

firmness for AIC at 7 DACE (Table 6). Craft et al. (2016) reported that an ultradwarf 

bermudagrass treated with SIC had no difference in surface firmness compared to 

control. However, Dickson et al. (2017) reported a decrease in surface firmness 

immediately after either SIC or AIC in a creeping bentgrass green. Soil VWC is often 

related to surface firmness, which likely explains much of the effects seen for HTC 

(Linde et al., 2011). However, it is somewhat surprising that SIC would increase VWC 

but not reduce firmness. These findings reinforce that HTC is an effective form of 

mitigating compaction whereas SIC may not be as effective for that goal. Reduced 

surface firmness can be desired for cushioning ball bounce (McCarty et al., 2007). The 

surface firmness affects the golf ball mark severity and recovery. Young et al. (2017) 

observed ball mark severity was small with deep ball mark under soft condition. The golf 

ball mark recovery was slow when low mowing height combine with daily roll and 
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traffic. In contrast, Nemitz et al. (2008) reported increased ball mark injury and longer 

recovery time under soft condition.  

Infiltration Rate 

The HTC and STC events increased infiltration rate compared to baseline values 

at 7 and 28 DACE, respectively (Table 6). In contrast, neither AIC nor SIC affected 

infiltration rates. Core cultivation (HTC or STC) has routinely been reported to increase 

infiltration rate compared to a control (Schmid et al., 2014; Sorokovsky et al., 2007). Key 

factors influencing the relative effect of cultivation on infiltration have included channel 

diameter and depth, particularly if the channel does not completely pass through the 

thatch-mat layer (Craft et al., 2016; Fontanier et al., 2011). Further, cultivation techniques 

which combine aeration with OM removal are likely to enhance infiltration over those 

that only accomplish one goal (Fontanier et al., 2011; Hurto et al., 1980). Furthermore, 

cultivation techniques that require frequent application to manage soil compaction have 

been reported to lead to development of a hardpan over time (Fontanier et al, 2011; 

Murphy et al., 1993).  

Turf Quality 

Turf quality was reduced by HTC and STC events up to 3 and 7 DACE, 

respectively (Table 7). In contrast, neither SIC nor AIC events affected TQ within the 

measurement period.  These findings are in agreement with AIC and SIC equipment 

manufacturer guidelines and research by Dickson et al. (2017) who reported HTC 

reduced green cover by 16%, whereas SIC reduced cover by only 9% immediately after 

cultivation events. Changes to tine spacing and diameter can be made to reduce the 

immediate impact on TQ with corresponding reductions in surface area impacted.   
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Ball Roll Distance 

Ball roll distance was reduced by HTC up to 28 DACE, presumably due to a 

decline in the smoothness of the surface (Table 7). Previous research has reported a 

decrease in ball roll distance after core cultivation (Dickson et al., 2017; McCarty et al., 

2007). In contrast, AIC has increased ball roll distance at 3 DACE, and SIC showed no 

consistent effect on ball roll distance. These findings are in agreements with Dickson et 

al. (2017) who reported increased ball roll immediately after AIC, similar ball roll after 

SIC, and reduce ball roll distance after HTC and STC compared to control.  

Season Effects 

 

For each measured parameter, the season main effect and its interaction with 

location were significant (Table 4). At the 3.8 cm depth, four golf courses out of six had 

higher VWC in summer measurement than in spring and fall (Table 8). Presumably, this 

occurred due to frequent irrigation cycles commonly used to overcome summer heat 

stress. Similarly, VWC at the 12 cm depth showed a strong main effect indicating higher 

values during summer than other seasons. The greater VWC in summer corresponded to 

softer playing surface in summer compared to spring and fall measurements at five of six 

locations (Table 9). Furthermore, weakened root systems and tall mowing heights typical 

of creeping bentgrass putting greens during summer likely influenced firmness 

measurements. 

Each location had infiltration rates greater than the USGA’s recommended 

minimum of 15 cm h-1 throughout the study except for Stillwater Country Club (SWCC) 

in summer and fall and Gaillardia Country Club (GCC) in fall. Three locations had a 

lower infiltration rate in fall than in summer or spring (Table 9). For the present study, 
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factors which may have influenced infiltration rate could include antecedent soil moisture 

content, soil chemical properties, soil texture, and surface compaction. Infiltration rate is 

reported to be affected by organic matter build up (Baker et al., 1999; Baker, 2004) and 

organic matter layering (Curtis and Pulis, 2001). Organic matter can retain or repel water 

(Gaussoin et al., 2013) which may affect the infiltration rate. The methodology used 

should have mitigated the effect of antecedent soil moisture content, thus differences in 

infiltration are likely due to one or more of the other factors. Although most locations 

incorporated a fall aerification event (usually in September or October), surface 

compaction is a likely causal agent as indicated by surface firmness data. What is 

surprising is that fall and spring had similar surface firmness, and thus some other factor 

may also be contributing to the differences in infiltration between fall and spring.  

Four golf courses out of six had lower turf quality in spring compared to summer 

or fall, largely due to discoloration and reduced uniformity typical of cool temperatures 

(Table 10). Four locations demonstrated lower ball roll distance in summer than fall, 

while three locations similarly showed lower ball roll distance for summer than spring.  

The ball roll distance in fall was equal or greater than in spring for each location except 

for Stillwater Country Club. The reduced ball roll distance in summer is unsurprising and 

corresponds well to the greater VWC and softer conditions. 

Conclusion 

Results indicate core cultivation was most effective at increasing the infiltration 

rate and reducing surface firmness. Although core cultivation was able to change soil 

physical properties, the impact was short term. These findings suggest that more than one 

application of cultivation practices impacting more surface area is more likely necessary 
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for long-term improvement of soil physical properties of putting greens. Future research 

should examine how these cultivation practices could be best utilized to improve soil 

physical properties with minimum impact on playing surface. Additional study should 

evaluate the long-term benefit of new cultivation practice in managing the organic matter. 
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Table 1. Description of six case study sites used to evaluate cultivation event and seasonal effects on soil physical properties of 
golf course putting greens in central Oklahoma. 

Location† Green No. Cultivation 
Type‡ 

Cultivar Green Age 
 

Spacing  Tine 
Diameter 

Tine 
Depth 

Event Date 

    yr cm cm cm  

BGC 
 

12 
12 
Practice  
Practice 

Air Injection 
Sand Injection 
Air Injection 
Air Injection 

G2 
G2 
G2 
G2 

17 
17 
9 
9 

60 x 60 
7.6 x 5  
60 x 60 
60 x 60 

  10 July 2017  
27 Mar. 2018 
10 July 2017 
 4 June 2018  

BRGG 
 

10 
14 

Sand Injection 
Sand Injection 

007 
007 

3 
3 

7.6 x 5  
7.6 x 5 

  28 Feb. 2017 
28 Feb. 2017 

GCC 
 

Practice (1) 
Practice (1) 
Practice (2) 

Air Injection 
Sand Injection 
Air Injection 

A4 
A4 
A4 

21 
21 
21 

60 x 60 
7.6 x 5  
60 x 60 

  17 Mar. 2017 
10 Apr. 2018 
17 Mar. 2017 

GCE 
 

18 
10  

Sand Injection 
Sand Injection 

007 
SR1020 

3 
10 

7.6 x 5  
7.6 x 5 

  27 Feb. 2017 
27 Feb. 2017 

LMGC 
 

13 
9 
13 
18 

Sand Injection 
Sand Injection 
Solid Tine 
Solid Tine 

SR1020 
SR1020 
SR1020 
SR1020 

19 
19 
19 
19 

7.6 x 5  
7.6 x 5 
7.6 x 7.6  
7.6 x 7.6  

 
 
2 
2 

 
 
10.2 
10.2 

1 Mar. 2017 
1 Mar. 2017  
7 May 2018 
7 May 2018 

SCC 
 

12 
6 
12 
6 

Hollow Tine  
Hollow Tine  
Solid Tine 
Solid Tine 

L93 
L93 
L93 
L93 

17 
17 
17 
17 

5 x 5  
5 x 5  
7.6 x 7.6  
7.6 x 7.6  

1.6 
1.6 
2 
2 

 6.4 
 6.4 
10.2 
10.2 

12 Mar. 2017 
12 Mar. 2017 
9 Mar. 2018 
9 Mar. 2018 

†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCE = Golf Course of Edmond; GCC = Gaillardia Country 
Club; LMGC= Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡ Air injection cultivation = Air2G2; GT Airinject Inc., Jacksonville, FL; hollow tine cultivation = Pro Core 648; The Toro 
Company, Bloomington, MN; sand injection cultivation = DryJect; DryJect Inc., Hatboro, PA); solid tine cultivation = Pro 
Core 648; The Toro Company, Bloomington, MN. 
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Table 2. Particle size distribution of root zone sand from selected putting greens at six golf courses studied in central 
Oklahoma. 

Golf 
course† Green No. Fine Gravel‡ Very Coarse Coarse Medium Fine Very Fine Silt + Clay 

  (>2.0 mm) (1.0-2.0 mm) (0.5-1.0 mm) (0.25-0.5 mm) (0.15-0.25 mm) (0.05-0.15 mm) (<0.05 mm) 

  --------------------------------------------------------------------------%-------------------------------------------------------------------------- 

BCC 12 0.23 f§ 13.04 a 34.46 ab 42.35 de 8.83 f 0.92 e 0.16 d 

BCC Practice 0.81 cde 6.23 de 24.85 de 50.42 c 16.28 c 1.18 e 0.24 cd 

BRGC 10 0.87 cd 8.00 bc 35.13 ab 43.04 de 11.72 de 1.04 e 0.20 d 

BRGC 14 1.82 a 11.74 a 37.77 a 36.17 f 9.59 ef 2.23 b 0.68 a 

GCC Practice (1) 0.60 def 5.68 de 31.36 bc 45.27 d 13.24 d 3.44 a 0.40 b 

GCC Practice (2) 1.37 ab 8.70 b 38.33 a 39.74 e 9.38 f 2.14 bc 0.33 bc 

GCE 10 0.30 f 5.40 de 29.43 c 44.89 d 16.66 c 2.38 b 0.77 a 

GCE 18 1.11 bc 6.64 cd 28.03 cd 44.00 d 17.64 bc 2.35 b 0.23 cd 

LMGC 9 0.77 cde 4.12 e 21.95 ef 54.18 bc 17.17 c 1.47 d 0.33 bc 

LMGC 13 0.84 cde 4.85 e 23.22 ef 53.18 bc 16.03 c 1.61 d 0.27 cd 

SCC 6 0.40 ef 2.38 f 17.07 g 58.16 a 19.98 a 1.68 d 0.34 bc 

SCC 12 0.38 ef 2.34 f 20.38 fg 55.14 ab 19.68 ab 1.82 cd 0.26 cd 
†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCE = Golf Course of Edmond; GCC = Gaillardia Country 
Club; LMGC= Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡ Particle size was classified based on USDA textural classification system (USDA,1951). Particle size were separated by 
passing soil samples through U.S. standard sieve mesh (No. 10, No. 18, No. 35. No. 60, No. 100, and No. 270). 
§Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level. 
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Table 3. Particle size distribution of top dressing sand used at six golf courses studied in central Oklahoma. 

Golf course† Fine Gravel‡ Very Coarse Coarse Medium Fine Very Fine 

 (>2.0 mm) (1.0-2.0 mm) (0.5-1.0 mm) (0.25-0.5 mm) (0.15-0.25 mm) (0.05-0.15 mm) 
          --------------------------------------------------------%------------------------------------------- 

BGC  20.05 b§ 23.37 c 38.41 c 14.05 c 3.19 bc 0.94 a 
BRGG 09.65 d 36.91 b 43.48 b 07.00 d 2.34 dc 0.60 b 
GCC 27.21 a 36.63 b 28.61 d 05.54 d 1.76 d 0.30 c 

GCE 14.79 c 49.93 a 27.02 d 6.32 d 1.81 d 0.15 c 
LMGC 13.92 c 20.38 c 41.53 c 19.51 b 4.15 ab 0.51 b 
SCC 01.57 e 16.90 d 50.43 d 25.80 a 4.40 a 0.90 a 

†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCE = Golf Course of Edmond; GCC = Gaillardia Country 
Club; LMGC= Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡ Particle size was classified based on USDA textural classification system (USDA, 1951). Particle size were separated by 
passing soil samples through U.S. standard sieve mesh (No. 10, No. 18, No. 35. No. 60, No. 100, and No. 270). 
§Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level
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Table 4. Analysis of variance for volumetric water content (VWC), surface firmness, infiltration rate, ball roll distance (BRD), 
and turf quality for treatment and seasonal measurement at six golf courses in central Oklahoma. 

  VWC     

Effect df 3.8 cm depth 12 cm depth Firmness Infiltration BRD Turf quality 
Treatment effect 

Treatment 3 ** NS NS† NS * * 

DACE 3 *** NS *** *** *** *** 

Treatment*DACE 9 *** NS *** ** * * 

Seasonal effect 

Location 5 NS NS *** NS *** NS 

Season 2 *** *** *** *** *** *** 

Location*Season 10 * *** *** *** * * 
*, **, *** significant at p = 0.05, 0.01, and 0.001, respectively. 
†NS, not significant at p = 0.05 the level.
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Table 5. Volumetric water content VWC at 3.8 cm and 12 cm depth before cultivation events 3, 7, and 28 days after cultivation 
event (DACE) on creeping bentgrass putting greens at six golf courses in central Oklahoma. 

 Volumetric water content† 

 3.8 cm depth  12 cm depth 

DACE AIC‡ HTC SIC STC  AIC HTC SIC STC 

 ------------------------------------------%------------------------------------------ 

0 
26.4 a§ 

28.7 b 12.3 c 30.1 a  18.9 a 22.5 a 19.4 a 22.6 a 
3 25.6 a 32.7 a 21.7 b 30.2 a  18.9 a 26.8 a 19.2 a 22.1 a 
7 25.6 a 32.5 a 26.0 a 32.4 a  17.7 a 26.8 a 20.7 a 23.0 a 
28 24.2 a 30.2 ab 27.0 a 30.9 a  18.7 a 24.6 a 21.7 a 21.9 a 
          

†Volumetric water content was measured using handheld soil moisture meter (FieldScout TDR 300, Spectrum Technologies, 
Inc. Plainfield, IL) in nine randomly selected points across a grid and then averaged to get overall surface firmness of each 
individual plot.   
‡ AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA); STC = solid 
tine cultivation (Pro Core 648; The Toro Company, Bloomington, MN). 
§Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level.
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Table 6. Surface firmness (depth of penetration) and infiltration rate collected before cultivation events 3, 7, and 28 days after 
cultivation event (DACE) on creeping bentgrass putting greens at six golf courses in central Oklahoma. 

 Surface firmness (depth of penetration)†   Infiltration rate‡  

DACE AIC§ HTC SIC STC  AIC HTC SIC STC 
 --------------- cm---------------  --------------- cm h-1--------------- 
0 -0.94 a¶ -0.87 a -0.98 a -1.14 a  52.5 a 11.7 c 32.2 a 27.9 b 
3 -0.96 a -1.05 c -0.97 a -1.22 b  55.2 a 25.7 ab 29.3 ab 42.5 a 
7 -1.00 b -1.04 c -0.95 a -1.07 a  59.1 a 34.0 a 29.0 ab 45.3 a 
28 -0.92 a -0.96 b -0.98 a -1.05 a  48.6 a 16.7 bc 24.4 b 38.3 a 

†Surface firmness (depth of penetration) was measured using a handheld firmness meter (Field Scout TruFirm; Spectrum 
Technologies, Inc. Aurora, IL) which records the penetration depth of a falling plunger as it hits a surface. Firmness was 
measured following single drop of the plunger in nine point across a grid and then averaged to get overall surface firmness of 
each individual plot. Firmness values are presented as negative values indicating depth below the horizon. 
‡Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and falling head technique. Infiltration 
rate was recorded as the decrease in water within the inner ring after ten minutes. 
§ AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA); STC = solid 
tine cultivation (Pro Core 648; The Toro Company, Bloomington, MN). 
¶Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level.
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Table 7. Ball roll distance and turf quality before cultivation events 3, 7, and 28 days after cultivation event (DACE) on 
creeping bentgrass putting greens at six golf courses in central Oklahoma. 

 Ball roll distance†   Turf quality‡ 

DACE AIC§ HTC SIC STC  AIC HTC SIC STC 

 --------------- cm---------------  --------------- 1-9--------------- 
0 317.7 b¶ 308.5 a 304.3a 284.0 a  7.0 a 6.0 b 6.5 a 7.0 a 
3 352.0 a 249.2 b 316.8 a 255.7 b  7.0 a 5.0 c 5.9 b 6.0 b 
7 309.8 b 241.4 b 303.7 a 254.9 b  7.3 a 5.5 c 6.5 a 6.5 ab 
28 293.2 b 225.4 b 279.9 b 255.8 b  7.0 a 7.0 a 7.0 a 7.0 a 

†Ball roll distance was measured using a USGA Stimpmeter. Three balls were rolled in two directions and the average distance 
traveled by balls was measured. 
‡Turf quality measured in a scale of 1-9 (9 = ideal healthy condition; 6= minimally acceptable quality; 1= brown dead leaf). 
§ AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA); STC = solid 
tine cultivation (Pro Core 648; The Toro Company, Bloomington, MN). 
¶Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level.
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Table 8.Volumetric water content at 3.8 cm and 12 cm depth collected in spring, summer, and fall month on creeping bentgrass 
putting greens at six golf courses in central Oklahoma. 

 Volumetric Water Content‡  

 3.8 cm depth  12 cm depth 
Location† Spring§ Summer  Fall  Spring Summer  Fall 
 ------------------------------------------%------------------------------------------ 
BGC 27.4 a¶ 29.6 a 26.8 a  18.8 a 20.0 a 18.6 a 
BRGG 13.1 b 37.1 a 34.0 a  22.6 a 25.1 a 21.0 a 
GCC 24.6 b 33.0 a 26.0 b  19.4 b 26.6 a 19.8 b 
GCE  29.5 a 27.0 a  16.7 a 19.1 a 17.4 a 
LMGC 21.0 b 30.3 a 29.1 a  19.9 a 20.3 a 20.4 a 
SCC 29.7 b 35.6 a 30.0 ab  23.3 a 24.2 a 21.3 a 

†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCC = Gaillardia Country Club; GCE = Golf Course of 
Edmond; LMGC = Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡Volumetric water content was measured using handheld soil moisture meter (FieldScout TDR 300, Spectrum Technologies, 
Inc. Plainfield, IL) in nine randomly selected points across a grid and then averaged to get overall surface firmness of each 
individual plot.   
§Spring measurements were taken in March; summer measurements were taken in July; and fall measurements were taken in 
November 2017 and 2018. 
¶Means with in each row under same location and same parameter followed by the same letter are not significantly different at 
the p = 0.05 significance level.



51 

 

Table 9. Surface firmness and infiltration rate collected in spring, summer, and fall month on creeping bentgrass putting greens 
at six golf courses in central Oklahoma.  

Location† Surface firmness‡   Infiltration rate§  

 
Spring¶ 

Summer  Fall  Spring Summer  Fall 
 --------------- cm---------------  --------------- cm h-1 --------------- 
BGC -1.00 a# -1.04 a -0.96 a  61.1 a 64.5 a 27.7 b 
BRGG -1.04 a -1.27 b -1.21 b  40.2 a 18.5 a 27.0 a 
GCC -0.83 a -1.09 b -0.95 a  30.5 a 36.9 a 14.4 b 
GCE -0.82 a -1.12 b -0.95 a  32.0 a 43.0 a 24.3 a 
LMGC -1.25 a -1.35 b -1.29 a  30.2 ab 43.2 a 19.7 b 
SCC -1.01 a -1.21 b -1.02 a  19.4 a 13.3 a 16.5 a 

†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCC = Gaillardia Country Club; GCE = Golf Course of 
Edmond; LMGC = Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡ Surface firmness was measured using a handheld firmness meter (Field Scout TruFirm; Spectrum Technologies, Inc. Aurora, 
IL) which records the penetration depth of a falling plunger as it hits a surface. Firmness was measured following single drop 
of the plunger in nine point across a grid and then averaged to get overall surface firmness of each individual plot. Firmness 
values are presented as negative values indicating depth below the horizon.  
§Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and falling head technique. Infiltration 
rate was recorded as the decrease in water within the inner ring after ten minutes. 
¶Spring measurements were taken in March; summer measurements were taken in July; and fall measurements were taken in 
November 2017 and 2018. 
#Means with in each row under same location and same parameter followed by the same letter are not significantly different at 
the p = 0.05 significance level.
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Table 10. Ball roll distance and turf quality collected in spring, summer, and fall month on creeping bentgrass putting greens at 
six golf courses in central Oklahoma. 

Location† Ball roll distance‡   Turf quality§ 

 Spring¶ Summer  Fall  Spring Summer  Fall 
 --------------- cm---------------  --------------- 1-9--------------- 
BGC 304.7 b# 281.4 b 355.3 a  7.25 a 7.5 a 7.0 a 
BRGG 276.6 a 218.7 b 317.4 a  6.0 b 7.0 a 7.0 a 
GCC 363.6 a 295.4 b 375.2 a  6.7 b 7.6 a 7.9 a 
GCE 282.2 b 279.9 b 361.5 a  6.0 b 7.5 a 7.0 a 
LMGC 259.1 a 254.4 a 275.1 a  7.0 a 7.5 a 7.0 a 
SCC 317.0 a 260.0 b 267.2 b  6.5 b 7.0 ab 7.5 a 

†BGC = Belmar Golf Club; BRGG = Buffalo Rock Golf and Gun; GCC = Gaillardia Country Club; GCE = Golf Course of 
Edmond; LMGC = Lakeside Memorial Golf Course; SCC = Stillwater Country Club. 
‡ Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter. Three balls were rolled in two directions 
and the average distance traveled by balls was measured. 
§Turf quality measured in a scale of 1-9 (9 = ideal healthy condition; 6= minimally acceptable quality; 1= brown dead leaf). 
¶Spring measurements were taken in March; summer measurements were taken in July; and fall measurements were taken in 
November 2017 and 2018. 
#Means with in each row under same location and same parameter followed by the same letter are not significantly different at 
the p = 0.05 significance level
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CHAPTER III 

 

 

 

EFFECT OF A SINGLE APPLICATION OF AIR INJECTION OR SAND INJECTION 

CULTIVATION ON SOIL PHYSICAL PROPERTIES OF A CREEPING BENTGRASS 

PUTTING GREEN 

Abstract  

Cultural practices including core aerification are commonly used to improve soil 

physical conditions of putting greens. However, core aerification is disruptive and causes 

substantial damage to the playing surface and loss of revenue for the golf course. Less 

invasive cultivation techniques are available, but less is known about their relative 

performance. The objective of this study was to assess the efficacy and longevity of air 

injection cultivation (AIC), sand injection cultivation (SIC), and hollow tine cultivation 

(HTC) on managing soil physical properties of putting greens. A field study was 

conducted at the Oklahoma State University Turfgrass Research Center in Stillwater, 

Oklahoma, on a creeping bentgrass [Agrostis stolonifera L. ‘Penncross’] green from 

September 2017 to September 2019. The two factors cultivation type and timing of 

application were arranged in a split-plot, randomized complete block design with four 

replications. Cultivation type was defined as either AIC, SIC, or HTC, and each was 

applied in spring, summer, and fall. Compared with the untreated control, HTC reduced 
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surface firmness by 5% at 28 days after cultivation event (DACE), increased infiltration 

by 87% at 28 DACE, reduced ball roll distance by 6% up to 14 DACE, and reduced 

normalize difference vegetation index (NDVI) by10% up to 14 DACE. The AIC and SIC 

had no significant effect on any soil physical properties compared to the control. Results 

suggest that a single application of AIC or SIC may not be effective in managing soil 

physical properties. 

Introduction 

Sand based root zones have high permeability and infiltration rates, high gas 

exchange rates, and resistance to soil compaction, which are ideal conditions for putting 

green health and playability. However, these conditions diminish over time due to 

accumulation of organic matter and development of thatch-mat layers (Carrow, 2003; 

Fontanier et al., 2011). Excessive thatch has a negative impact on soil physical and 

biological properties such as reduced infiltration rate, increased localized dry spot, 

reduced tolerance to temperature stress, increased surface compaction, and increased 

disease and pest problems (Dernoeden et al., 2012; McCarty et al., 2007; Moeller and 

Lowe, 2016). 

Mechanical cultivation practices such as core aerification, vertical mowing, and 

topdressing are commonly used to manage soil organic matter or compaction. Core 

aerification is typically considered the most effective method for physical removal of 

organic matter, reducing compaction, increasing infiltration rates, and increasing surface 

aeration and rooting. However, core aerification can reduce the aesthetic and functional 

aspects of a putting green temporarily causing reduced revenue or distaste within the 

course membership. Less disruptive cultivation practices such as sand injection (SIC) and 
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air injection (AIC) are becoming popular which offer a less invasive approach to 

managing soil physical properties. Previous research has shown that summer cultivation 

with water injection and needle tine improved gas exchange, surface firmness, and water 

infiltration but did not reduce turf quality (Bunnell et al., 2001). Increasing the number of 

core aerification events from one to three while impacting the same amount of surface 

area per year was reported to reduce bulk density, surface hardiness and thatch-mat 

organic matter (Atkinson et al., 2012). In contrast, reducing frequency of cultivation 

events but maintaining the same surface area impact per year did not improve soil 

physical properties but improve the turf quality (Atkinson et al., 2012). 

Alternative aerification practices such as venting, water injection cultivation 

(WIC), SIC, and AIC offer a less invasive approach for managing soil physical 

properties. These new cultivation practices have been reported to increase infiltration and 

drainage or reduce soil compaction with minimal surface disruption (Craft et al., 2016; 

Dickson et al., 2017; Green et al., 2001). Water injection cultivation (WIC) has in 

multiple studies been shown to increase the infiltration rate compared to a control (Green 

et al. 2001; Murphy and Rieke, 1994). Fontanier et al. (2011) studied the effect of venting 

cultivation and reported that venting aeration had minimal surface disruption but did not 

improve infiltration rate or reduce organic matter. Schmid et al. (2014) reported venting 

such as WIC and needle tine are effective at improving infiltration but not effective at 

reducing organic matter. A considerable amount of study has been conducted to compare 

the impact of traditional cultivation practices timing, depth, spacing, and frequency on 

soil physical properties (Bunnell et al., 2001; McCarty et al., 2007; Sorokovsky et al. 
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2007; Rowland et al., 2009) while less research has conducted to compare the effect of 

alternative cultivation practices (e.g., AIC and SIC).  

 Although there is significant interest in new cultivation technology, there is a 

lack of unbiased information on efficacy of novel cultivation practices, especially AIC 

and SIC cultivation. Therefore, the objective of this research was to evaluate the efficacy 

and longevity of single applications of AIC and SIC applied at different times of a year. 

Materials and Methods 

Field research was conducted from September 2017 to September 2019 at the 

Oklahoma State University Turfgrass Research Center in Stillwater, Oklahoma, on a 

creeping bentgrass [Agrostis stolonifera L. ‘Penncross’] green constructed on a sand-

based root zone. The green was mowed daily during the growing season at 3.9 mm with 

clippings removed. Slow release granular fertilizer was applied monthly to achieve 

annual rates of 293 kg ha-1 N, 100 kg ha-1 P, and 202 kg ha-1 K. Topdressing was applied 

biweekly with a spinner-type spreader (Quick pass 300, Tyro-crop, McGrath road 

Rosedale, B.C. Canada) during the growing season at a rate of 4.9 m3 ha-1 using a locally 

available kiln-dried sand (Mohawk Materials, Tulsa, OK) that met USGA specifications 

for root zones. A wetting agent (Aquicare™, Winfield solution, LLC, St. Paul, MN) was 

applied monthly from June to August each year at a rate of 19 L ha-1 in accordance with 

typical practices to reduce localized dry spot. The experiment station standard fungicide 

and insecticide program were applied to prevent common diseases and insects. A 

combination of bensulide (5.25%) and oxadiazon (1.31%) (Goosegrass/Crabgrass 

Control, The Andersons Inc., Maumee, OH) was applied at 109 kg ha-1 rate in late winter 

to control annual grassy weeds. 
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The factors were arranged as a split-plot randomized complete block design with 

four replications. The whole main plot was cultivation type which included single 

applications of air injection cultivation (AIC), sand injection cultivation (SIC), hollow 

tine cultivation (HTC), or non-treated control. The subplot was season of application. 

Plots measured 1.8 x 2.0 m. The first cultivation events were applied in October 2017. 

Air injection cultivation was applied using the Air2G2 (GT Airinject Inc., Jacksonville, 

FL). The AIC equipment was operated at an injection burst pressure of 345 kPa through a 

23-cm-long-tine and a tine insertion pressure of 345 kPa on 60 x 6 cm spacing. Sand 

injection cultivation was accomplished using the DryJect (DryJect Inc., Hatboro, PA) on 

7.6 x 5 cm spacing at 10.5 cm tine depth. Hollow tine cultivation was applied using a 

walk behind aerifier (Pro Core 648, The Toro Company, Bloomington, MN) equipped 

with 1.3 cm outside diameter and 6.4 cm long tines set at a 5 x 5 cm spacing. Sand used 

for SIC and HTC was the same material previously described for topdressing.  

Treatment effects were assessed by measuring infiltration rate, surface firmness, 

volumetric water content, ball roll distance, organic matter content, bulk density, 

normalized difference vegetation index (NDVI). Measurements were made within 24-hr 

prior to a cultivation event, and subsequent measurements were conducted 7 days, 14 

days, 21 days, and 28 days, after the cultivation event (DACE). 

Infiltration rates were measured using a double-ring infiltrometer (15 and 30 cm 

rings) and falling head technique (Fontanier et al., 2011; Gregory et al., 2005). The rings 

were inserted approximately 5 cm into the soil surface. Water was added to the top of 

both rings. Infiltration rate was recorded as the decrease in water within the inner ring 
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after ten minutes. The process was repeated until two consecutive readings were the 

same.  

Surface firmness was measured using a handheld firmness meter (Field Scout 

TruFirm; Spectrum Technologies, Inc. Aurora, IL) which records the penetration depth of 

a falling plunger as it hits a surface (Craft et al., 2016; Dickson et al., 2017). Firmness 

was measured following the single drop of the plunger on nine points across a grid and 

averaged within each plot for subsequent analyses.  

Volumetric water content was measured using a handheld soil moisture meter 

(FieldScout TDR 300, Spectrum Technologies, Inc. Plainfield, IL) and the 7.6 cm probes. 

The VWC was measured from nine randomly selected points across a grid and then 

averaged within each plot before subsequent analyses. 

Soil bulk density was measured shortly before each cultivation event, 

immediately after cultivation event, and one week after the cultivation event. A standard 

15 cm soil probe was used to remove a 5 cm diameter core, the upper 1 cm of thatch and 

verdure were removed from the sample, and remaining core oven dried for 48 h at 105 

oC. Bulk density was calculated by dividing dry soil core mass by the total soil core 

volume. 

Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter 

(Gaussoin et al., 1995; United States Golf Association, 2009). Three balls were rolled in 

two directions and the average distance traveled by balls was measured. The distance for 

the six rolls were averaged to obtain a single value for each experimental unit. 
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Organic matter content was determined by the loss on ignition method (Atkinson 

et al., 2012; Snyder and Cisar, 2000). A standard soil probe was used to remove a 5 cm 

diameter core to a depth of 5 cm. Shoots and roots were removed from the sample, and 

the remaining materials oven-dried for 48 h at 105 oC. After measuring the weight dry 

soil samples were placed in a muffle furnace for 3 h at 550 oC. Weight of ashed sample 

was measured after bringing to room temperature. Soil organic matter content was 

calculated as the difference between dry weight and ashed weight on a percentage basis. 

The percent recovery from a cultivation event was estimated visually on a scale of 

0 to 100% (100%=holes fully recovered) (Craft et al., 2016). Recovery was rated 7, 14, 

21, and 28 days after cultivation event. Normalized difference vegetation index (NDVI) 

was measured using a hand-held reflectance meter (Trimble Navigation Inc. Sunnyvale, 

CA). Measurements were made every week after cultivation event as a single pass across 

the middle of the plots. 

Statistical Analysis 

The cultivation type, timing, and their interaction were evaluated using a repeated 

measures analysis with the GLIMMIX procedure in Statistical Analysis of Variance 

(Version 9.4; SAS Institute Inc. Cary, NC). Tukey-Kramer multiple-comparison 

procedure was used when effects were significant (P < 0.05). Since all cultivation events 

were applied by outside vendors and scheduling them for the same day was often 

difficult, not all events were on the same day or in some cases in the same week. Thus, 

each cultivation type (AIC, SIC, HTC) was analyzed separately in comparison to a 

control plot measured on the same date.   
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Results and Discussion 

The treatment by season and the three-way interaction effects were not significant 

for any parameter except for visual recovery in SIC (Table 3). Thus results are presented 

for the treatment by DACE interaction. 

Canopy Loss and Recovery from Event 

Air injection cultivation maintained similar NDVI and visual coverage as the 

control at 7, 14, 21, and 28 DACE (Table 4). The SIC and HTC treatments decreased 

NDVI compared to the control up to 7 and 14 DACE, respectively. At 7, 14 and 21 

DACE, HTC had 53%, 69% and 87% recovery, respectively, whereas SIC had 62%, 

78%, and 92% recovery, respectively. By 28 DACE, both HTC and SIC had a greater 

than 95% recovery. The slow recovery for HTC is unsurprising due to the larger surface 

area impacted compared to SIC. In a similar study, Dickson et al. (2017) reported HTC 

resulted in a 16% reduction in green coverage, while SIC resulted in a 9% reduction in 

green coverage immediately after cultivation event.   

Ball Roll Distance  

Ball roll distance was reduced by HTC at 7 and 14 DAT compared with the non-

cultivated control (Table 4). By 21 DAT, there was no detectable difference in ball roll 

distance compared to control. McCarty et al. (2007) similarly reported a reduction in ball 

roll up to 14 DAT after HTC.  Ball roll distance was not affected by AIC or SIC. Dickson 

et al. (2017) similarly reported that ball roll distance on SIC was similar to a non-treated 

control, while HTC reduced ball roll compared with the non-treated control. The reduced 

injury and unaffected ball roll distance associated with AIC and SIC suggest each has 
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potential to sustain revenues for golf facilities concerned about the disruption associated 

with HTC. 

Surface Firmness 

Hollow tine cultivation reduced surface firmness up to 28 DACE compared with 

the non-cultivated control (Table 5). At 28 DACE, HTC had a 5% softer surface 

compared to non-cultivated control. Several studies have evaluated the HTC impact on 

surface firmness and found similar results as reported in this study (Craft at al., 2016; 

McCarty et al. 2007; Murphy et al. 1993). Bunnell et al. (2001) observed a reduction in 

surface firmness after core aerification compared to control and water injection 

cultivation in a creeping bentgrass green.  Dickson et al. (2017) reported a reduction in 

surface firmness immediately after AIC, SIC, HTC, and STC events compared to non-

cultivated control. Craft et al. (2016) reported that HTC reduced the surface firmness up 

to 28 DACE compared to non-cultivated control, whereas SIC applied 5 times per year 

did not impact the surface firmness compared to the control. Surface firmness reduction 

with HTC is attributed to greater surface area disruption, core removal and greater 

surface fracture (Bunnell et al., 2001). Holes created after HTC provide additional space 

for collapsing the side walls which likely contributes to the playing surface becoming soft 

(Murphy and Rieke, 1994) 

Infiltration Rate 

Compared with the control, the only cultivation type that improved infiltration 

rate was HTC. At 28 DACE, HTC had an 87% higher infiltration rate than the non-

cultivated control (Table 5). The holes created by HTC provide vertical channels near the 

surface and thus increased infiltration.  It has been widely reported that HTC provides a 
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greater infiltration rate compared with a non-cultivated control (Craft et al., 2016; 

Fontanier et al., 2011; McCarty et al., 2007; Rowland et al., 2009; Schmid et al., 2014; 

Sorokovsky et al., 2007). McCarty et al. (2007) measured infiltration to be 157% higher 

after core aerification when compared with a non-treated control, whereas Bunnell et al. 

(2011) reported a 37 to 58% increase in infiltration rate after core cultivation.   

Infiltration rate of AIC and SIC was not different from control. Craft et al. (2016) 

also reported that SIC applied 5 times per year did not improve the infiltration rate 

compared to non-treated control. This lack of effect is possibly due to a relatively small 

area of impact and no alleviation of surface compaction. Craft et al. (2016) speculated 

that the greater rate of infiltration rate for the HTC was due to greater surface area impact 

and removal of soil cores. Similarly, Schmid (2014) also observed higher infiltration rate 

for venting cultivation that impacted higher surface area compared to other venting 

cultivation and non-cultivated control.  

Volumetric Water Content (VWC)   

At 7.6 cm depth, no significant interaction effect of treatment and DACE were 

observed for volumetric water content (Table 6). Similar results were reported by 

Rowland et al (2009) on bermudagrass greens. The reason for no difference in VWC after 

cultivation treatment might be due the good drainage of the green before treatment. The 

control plots averaged an infiltration rate between 25 and 38 cm h-1. This infiltration rate 

is greater than two golf courses studied in chapter 2. 

Organic Matter (OM) 

Organic matter ranged from 2.29 to 2.44% in the upper 6.3 cm, but none of the 

cultivation events reduced organic matter compared to control (Table 6). Schmid et al. 
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(2004) reported OM of 2.08% to 3.40% on 10-yrs old and 1.59% to 2.48% on 7-yrs-old 

‘Providence’ creeping bentgrass green at upper 7.6 cm. Similar to the present study, 

Sorokovsky et al. (2007) and Craft et al. (2016) reported HTC did not reduce OM 

compared to control. In a two-year field study conducted on a ‘Providence’ creeping 

bentgrass putting greens, Schmid et al. (2014) also did not observed reduction in OM 

after HTC, STC, and venting compared to control. McCarty et al. (2007) did not observe 

a decrease in OM concentration even after four HTC events. Atkinson et al. (2012) 

reported reduction in OM concentration with increasing the number of HTC from one to 

three per year. Similarly, Rowland et al. (2009) also reported that HTC two times per 

year and HTC three times per year reduced an OM compared to the non-treated control. 

The lack of any cultivation treatment effect on OM content in the present study may be 

attributed to the small surface area of impact, the duration of the experiment, and 

sampling methodology. Furthermore, the regular topdressing sand applied to all plots 

including control might also have contributed to the inability to detect a difference in 

OM. The USGA recommends impacting 15 to 20% of the surface area yearly to manage 

thatch-mat and soil OM (O’Brien and Hartwiger, 2003). In contrast, HTC and SIC events 

applied in the present study only impacted 4.9 and 3.3% surface area, respectively 

Clearly changes in OM content are difficult to detect unless a substantial area of the 

green is impacted. 

Bulk Density 

Immediately after cultivation, AIC and HTC reduced bulk density compared to 

control. By 7 DACE, a decreased in bulk density was not observed for either treatment 

(Table 6). No change in bulk density was observed for SIC. Dickson et al. (2015) 
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reported AIC decreased bulk density of a compacted native soil bermudagrass athletic 

fields. Craft et al. (2016) and Dickson et al. (2017) reported no change in soil bulk 

density after cultivation events including HTC, SIC, or AIC. Murphy and Rieke (1994) 

reported bulk density was reduced after water injection and HTC. In contrast, Green et al. 

(2001) did not observe reduction in bulk density after STC or water injection cultivation 

on annual bluegrass putting green. Atkinson et al. (2012) observed bulk density decreased 

with increase in surface area impacted and frequency of cultivation events. Previous 

researchers have observed and concluded that the improvement of bulk density might be 

short-lived, difficult to detect, and long-term study is needed to modify the existing soil 

texture that would result in bulk density differences (Green et al., 2001; Lee, 1998; 

Murphy and Rieke 1994; Robert, 1975).  

Conclusion 

The HTC was the best cultivation practice for increasing infiltration rate and 

reducing compaction. Under the conditions encountered in this study, a single application 

of AIC and SIC was not able to influence infiltration rate, surface firmness, or soil 

moisture content. None of the cultivation practices reduced organic matter.
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Table 1. Detailed list of cultivation programs (treatments) with specification and timings of air injection cultivation (AIC), 
sand injection cultivation (SIC), and hollow-tine cultivation (HTC) applied to a creeping bentgrass putting green in Stillwater, 
Oklahoma. 

Treatment† Spacing Depth‡ Tine size 

Surface 
area 
impacted Aerification timing 

     Fall Spring Summer 
 -------------cm------------- % Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 
Control - - - - - - - - - - 
AIC 60 x 60 23  - 25 Sept.  11 Oct. 16 March  18 March  9 June  30 May  
HTC 5 x 5 5 1.3 4.9 2 Oct.  24 Sept.  16 March 20 March  9 June  30 May  
SIC 7.6 x 5 8.8 1.3 3.3 2 Oct.  24 Sept. 19 April 20 March   

†AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA). Treatments 
were applied from September 2017 to May 2019. 
‡ Depth represent tine depth for AIC and HTC and average penetration depth for SIC.
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Table 2. Particle size distribution of root zone mixtures and topdressing sand applied during the study to a creeping bentgrass 
putting green in Stillwater, Oklahoma. 

Golf course Fine Gravel† Very coarse  Coarse Medium Fine Very Fine  Silt+ Clay  
(>2.0 mm) (1.0-2.0 mm) (0.5-1.0 mm) (0.25-0.5 mm) (0.15-0.25 mm) (0.05-0.15 mm) (<0.05 mm) 

 ----------------------------------------------------%---------------------------------------------------- 

Root zone mixture  3.16 18.88 31.17 33.62 9.91 2.67 0.58 

Top dressing sand - 33.05 35.93 25.42 4.59 0.84 0.16 
†Particle size was classified based on USDA textural classification system (USDA, 1951). Particle size were separated by 
passing soil samples through U.S. standard sieve mesh (No. 10, No. 18, No. 35. No. 60, No. 100, and No. 270). 
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Table 3. Analysis of variance for the effect of cultivation treatment (TRT), season, and days after cultivation event (DACE) on 
soil volumetric water content (VWC), surface firmness, infiltration rate, ball roll distance (BRD), normalized difference 
vegetation index (NDVI), and visual recovery of creeping bentgrass putting receiving air injection cultivation (AIC), sand 
injection cultivation (SIC), and hollow-tine cultivation (HTC) events in spring, summer and fall in Stillwater, Oklahoma. 

Effect df VWC Firmness Infiltration BRD NDVI Recovery 
Control vs AIC 

TRT 1 NS† NS NS NS NS NS 
Season 2 *** *** *** ** *** NS 
TRT*Season 2 NS NS NS NS NS NS 
DACE 4 *** *** * NS *** NS 
TRT*DACE 4 NS NS NS NS NS NS 
Season*DACE 8 *** *** ** ** *** NS 
TRT*Season*DACE 8 NS NS NS NS NS NS 

Control vs HTC 

TRT 1 NS ** * * *** *** 
Season 2 *** * *** ** *** * 
TRT*Season 2 NS NS NS NS NS NS 
DACE 4 *** *** *** *** *** *** 
TRT*DACE 4 NS *** *** *** *** *** 
Season*DACE 8 *** ** * *** *** NS 
TRT*Season*DACE 8 NS NS NS NS NS NS 

Control vs SIC 

TRT 1 NS NS NS NS NS *** 
Season 1 NS NS *** * NS ** 
TRT*Season 1 NS NS NS NS NS ** 
DACE 4 * NS ** NS NS *** 
TRT*DACE 4 NS NS NS NS ** *** 
Season*DACE 4 *** * * * *** NS 

*, **, *** significant at p = 0.05, 0.01, and 0.001, respectively. † NS, not significant at 0.05 the level. 
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Table 4. Effect of cultivation type on normalized difference vegetation index (NDVI), recovery percentage and, ball roll 
distance (BRD) at 0, 7, 14, 21, and 28 days after cultivation event (DACE) on a creeping bentgrass putting green in Stillwater, 
Oklahoma. 

  NDVI‡ 
 

Recovery percentage§  
 

Ball roll distance¶ 

Treatment† 0 
DACE 

7 
DACE 

14 
DACE 

21 
DACE 

28 
DACE 

 
7 

DACE 
14 

DACE 
21 

DACE 

 
0 

DACE 
7 

DACE 
14 

DACE 
21 

DACE 
28 

DACE 

 -------------------- 0-1--------------------  --------------- 1-100------------  -------------------cm------------------- 
Control vs AIC 

Control 0.74 a# 0.75 a 0.76 a 0.74 0.75 a 
 

100 a 100 a 100 a 
 

262.4 a 256.1 a 259.5 a 253.9 a 254.1 a 

AIC 0.73 a 0.75 a 0.75 0.73 0.75 a 
 

100 a 100 a 100 a 
 

267.0 a 258.4 a 256.6 a 251.2 a 257.5 a 

Control vs HTC 

Control 0.75 a 0.74 a 0.76 a 0.76 a 0.75 a 
 

100 a 100 a 100 a 
 

263.3 a 259.6 a 259.7 a 257.7 a 257.8 a 

HTC 0.74 a 0.61 b 0.68 b 0.72 a 0.73 a 
 

53 b 69 b 87 b 
 

272.0 a 240.1 b 243.5 b 250.5 a 252.8 a 

Control vs SIC 

Control 0.75 a 0.77 a 0.75 a 0.74 a 0.73 a 
 

100 a 100 a 100 a 
 

258.8 a 263.8 a 264.5 a 259.8 a 267.5 a 

SIC 0.73 a 0.72 b 0.73 a 0.72 a 0.74 a 
 

62 b 78 b 92 b 
 

256.0 a 257.8 a 257.2 a 257.0 a 269.1 a 

†AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA). 
‡Normalized difference vegetation index (NDVI) was measured using a hand-held reflectance meter (Trimble Navigation Inc. 
Sunnyvale, CA). Measurements were made every week after cultivation event as a single pass across the middle of the plots. 
§Recovery percentage was measured on a scale of 0 to 100% (100%= full coverage). 
¶Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter. Three balls were rolled in two directions 
and the average distance traveled by balls was measured.  
#Means followed by same letters within each column are not significantly different at p = 0.05 significance level.
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Table 5. Effect of cultivation type on surface firmness and infiltration rate at 0, 7, 14, 21, and 28 days after cultivation event 
(DACE) on a creeping bentgrass putting green in Stillwater, Oklahoma. 

 Surface firmness(depth of penetration)‡   Infiltration rate § 

Treatment† 0 DACE 7 DACE 14 DACE 21 DACE 28 DACE  0 DACE 7 DACE 14 DACE 21 DACE 28 DACE 

 --------------------cm--------------------  --------------------cm h-1-------------------- 

Control vs AIC 

Control -1.19 a¶ -1.16 a -1.17 a -1.16 a -1.18 a  36.7 a 33.4 a 37.8 a 29.7 a 27.7 a 

AIC -1.21 a -1.17 a -1.19 a -1.18 a -1.19 a  38.0 a 36.0 a 39.8 a 36.1 a 35.5 a 

Control vs AIC 

Control -1.18 a -1.17 a -1.17 a -1.16 a -1.16 a  36.1 a  35.5 b  38.6 b  28.0 b 25.3 b 

HTC -1.19 a  -1.28 b  -1.27 b  -1.23 b  -1.22 b  36.7 a  54.0 a  54.3 a  45.4 a 47.2 a 

Control vs SIC 

Control -1.16 a -1.17 a -1.16 a -1.16 a -1.18 a  35.8 a 36.6 a 32.4 a 26.2 a 25.1 a 

SIC -1.17 a -1.20 a -1.17 a -1.18 a -1.18 a  38.8 a 35.3 a 37.2 a 34.9 a 30.7 a 
†AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA). 
‡ Surface firmness was measured using a handheld firmness meter (Field Scout TruFirm; Spectrum Technologies, Inc. Aurora, 
IL) which records the penetration depth of a falling plunger as it hits a surface. Firmness was measured following single drop 
of the plunger in nine point across a grid and then averaged to get overall surface firmness of each individual plot. Firmness 
values are presented as negative values indicating depth below the horizon.   
§ Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and falling head technique. Infiltration 
rate was recorded as the decrease in water within the inner ring after ten minutes. 
¶Means followed by same letters within each column are not significantly different at p = 0.05 significance level.
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Table 6. Effect of cultivation type on volumetric water content at 7.6 cm depth, organic matter and bulk density at 0, 7, 14, 21, 
and 28 days after cultivation event (DACE) on a creeping bentgrass putting green in Stillwater, Oklahoma. 
 

Volumetric water content (7.6 cm depth)‡ 
 

Organic Matter§  
 

Bulk Density¶ 

Treatment† 0 DACE 7 DACE 14 DACE 21 DACE 28 DACE 
 

Initial Final 
 

0 DACE 1 DACE 7 DACE 

 --------------------%--------------------  ---------%---------  -----------g cm-3----------- 

Control vs AIC 

Control 25.7 a# 24.9 a 25.2 a 26.0 a 26.2 a 
 

2.43 a 2.32 a 
 

1.69 a 1.70 a 1.70 a 

AIC 26.6 a 24.9 a 24.8 a 25.0 a 26.30 a 
 

2.40 a 2.29 a 
 

1.69 a 1.66 b 1.69 a 

Control vs HTC 

Control 24.7 a 25.1 a 24.7 a 26.1 a 26.7 a 
 

2.42 a 2.34 a 
 

1.69 a 1.70 a 1.70 a 

HTC 23.8 a 22.7 a 21.9 a 24.1 a 24.2 a 
 

2.30 a 2.32 a 
 

1.69 a 1.65 b 1.70 a 

Control vs SIC 

Control 23.3 a 25.8 a 27.1 a 28.0 a 28.9 a 
 

2.51 a 2.21 a 
 

1.70 a 1.70 a 1.69 a 

SCI 22.9 a 26.4 a 26.6 a 28.0 a 28.8 a 
 

2.44 a 2.28 a 
 

1.70 a 1.69 a 1.70 a 
†AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA). 
‡ Volumetric water content was measured using handheld soil moisture meter (FieldScout TDR 300, Spectrum Technologies, 
Inc. Plainfield, IL) in nine randomly selected points across a grid and then averaged to get overall surface firmness of each 
individual plot.   
§ Organic matter content was determined by the loss on ignition method. 
¶ Soil bulk density was measured shortly before each cultivation event, immediately after cultivation event, and one week after 
the cultivation event. A standard 15 cm soil probe was used to remove a 5 cm diameter core, the upper 1 cm of thatch and 
verdure were removed from the sample, and remaining core oven dried for 48 h at 105 oC. 
#Means followed by same letters within each column are not significantly different at p = 0.05 significance level.
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CHAPTER IV 

 

 

EVALUATION OF SELECTED CULTIVATION PROGRAMS FOR MANAGEMENT 

OF CREEPING BENTGRASS PUTTING GREENS 

Abstract 

Cultivation is a common practice performed by golf course superintendents on 

putting greens to improve soil physical properties and reduce organic matter. Surface 

disruption after cultivation is a major concern of golf course superintendents. Although 

less invasive cultivation is available and commonly practiced, there is little research 

examining the effect of less invasive novel cultivation. This study was conducted to 

investigate the effect of air injection cultivation (AIC) and sand injection cultivation 

(SIC) alone or in combination with hollow tine cultivation (HTC) on soil moisture 

content, surface firmness, water infiltration rate, organic matter content, and soil oxygen. 

A two-year study was conducted on a sand-based research putting green located at the 

Oklahoma State University Turfgrass Research Center in Stillwater, OK. Hollow tine 

cultivation alone or in combination with AIC or SIC reduced soil moisture content, 

reduced surface firmness, and increased infiltration rates. However, normalized 

difference vegetation index and ball roll distance were reduced at 7 days after HTC. 

Novel cultivation alone (SIC or AIC) did not affect soil physical properties compared to 
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the control. Air injection cultivation did not increase soil oxygen concentration compared 

to the control at 10.2 cm depth. Results suggest annual cultivation programs should not 

rely strictly on SIC or AIC but these novel practices can be useful supplements to HTC. 

Introduction 

Cultivation is a common mechanical practice that involves soil disturbance to 

various degrees without destroying the turfgrass surface to improve soil physical 

properties and turfgrass performance. The main objective of cultivation is to remove 

thatch-mat and organic matter or improve soil physical properties for plant growth. The 

effect of cultivation practice includes increased air-soil gas exchange, reduced soil 

compaction, increased infiltration rate, reduced water runoff and puddling, improved 

fertilizer uptake, and stronger turfgrass roots (Baldwin, 2006; Sorokovsky et al. 2007; 

Turgeon, 1999).  

Hollow tine cultivation (HTC) has often been reported to soften the turf surface, 

even in comparison to other cultivation practices such as verticutting, air injection 

cultivation (AIC) and sand injection cultivation (SIC) (Bunnell et al. 2001; Craft et al., 

2016; Dickson et al., 2017; McCarty et al., 2007; Rowland et al, 2009). Rowland et al. 

(2009) compared verticutting to HTC and solid tine cultivation (STC) and observed that 

verticutting provided a firmer surface than either tine cultivation. Cultivation events that 

include core cultivation typically increase the infiltration rate (Craft et al., 2016; McCarty 

et al., 2007, Rowland et al., 2009). These effects on infiltration rate can last up to one 

month after treatment (Bunnell et al., 2001; Sorokovsky et al., 2007). Core cultivation 

can also reduce soil volumetric water content (VWC) of the upper root zone (Craft et al., 

2016; Rowland et al., 2009; Sorokovsky et al., 2007). 
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Although core cultivation and verticutting can effectively manage thatch and/or 

soil physical properties, each is reported to have temporary reductions in turf quality that 

can be unacceptably slow to recover (Atkinson et al., 2012; Bunnell et al., 2001; Craft et 

al., 2016; Dickson et al., 2017). In a study conducted on a 10-yr-old ‘TifEagle’ 

bermudagrass [Cyanodon dactylon (L.) Pers. X C. transvaalensis Burtt Davy] research 

putting green in Clemson, SC, turf quality declined for up to 4 weeks after each core 

cultivation treatment regardless of cultivation frequency or surface area impacted 

(Atkinson et al., 2012). In another study, conducted on a 7-yrs-old ‘A-1’ creeping 

bentgrass [Agrostis stolonifera L.] in Knoxville, TN and Elizabethtown, KY, HTC 

resulted in an immediate 16% reduction in green coverage whereas SIC resulted in a 9% 

reduction (Dickson et al., 2017). In several instances, decreases in ball roll distance were 

reported after core cultivation, verticutting, or topdressing (Atkinson et al., 2012; 

Dickson et al., 2017; McCarty et al., 2007). Increasing demand for high-quality 

conditions year-round requires a less destructive and fast recovering method of 

cultivation. 

Combining alternative aerification practices such as spiking, slicing, water 

injection cultivation (WIC) and SIC cultivation with core cultivation are becoming 

popular (Craft et al., 2016; Fontanier et al., 2011; Karcher and Rieke, 2005; McCarty et 

al., 2007). McCarty et al. (2007) studied a 3-year-old USGA specification creeping 

bentgrass putting greens at Clemson University in Clemson, SC, to compare various 

combinations of verticutting, core aeration, grooming and topdressing. The only 

treatment that controlled organic matter content was a combination of core cultivation, 

verticutting (6.4 and 19.1 mm deep), and grooming (3 mm deep and 6.4 mm apart). 
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Previous researchers have suggested that new technologies should be used in 

combination with conventional cultivation practices (Craft et al., 2016; Fontanier et al., 

2011; Karcher and Rieke, 2005). Karcher and Rieke (2005) concluded that WIC should 

only be used to supplement, but not to replace HTC to manage surface organic matter. 

For putting greens having a substantial organic layer, venting cultivation alone was not 

effective in reducing thatch or improving water infiltration but could be best utilized in 

combination with other cultural practices to achieve these goals (Fontanier et al., 2011). 

The United States Golf Association Green Section has similarly recommended against 

using SIC to replace core aeration or verticutting (Moeller and Lowe, 2016). 

Compacted soil with limited soil water infiltration and percolation limit gas 

exchange. Reduction of oxygen concentration in soil affects the respiration rate of plant 

roots and microorganisms. Movement of oxygen in the soil mainly occurs by diffusion. 

The rate of oxygen diffusion in the soil is affected by soil physical properties such as 

texture, structures, and pore size and its distribution. Compaction of soil due to foot and 

mechanical traffic modifies the soil structures, which decreases the air-filled pore space, 

increases the soil bulk density, and decreases the oxygen diffusion rate to the level 

unfavorable for plant growth (Neira, 2015). There is a close relationship between oxygen 

diffusion rates, air-filled porosity, and bulk density (Liu, 2004). The root zone soil 

moisture also plays a role in controlling the oxygen exchange rate. A decrease in oxygen 

diffusion rate with profile depth is observed due to an increase in soil moisture at a lower 

profile (Van Wijk, 1980). Mechanical cultivation like coring, slicing, spiking, and forking 

is commonly used to improve the anaerobic condition of the greens. Previous research 

has demonstrated variation in soil aeration status with different cultivation practices 
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(Bunnell et al., 2001; Carrow 2003; Engle and Alderfer 1976; Green et al, 2001; Rieke 

and Murphy, 1989) 

A considerable amount of research has been done to examine the effect of 

venting, WIC, and SIC (Craft et al., 2016; Fontanier et al., 2011; Karcher and Rieke, 

2005). Although there is a significant interest of superintendents on new cultivation 

technology, researchers have suggested the use of novel cultivation in combination with 

conventional cultivation. There is little research examining the effect of a combination of 

new cultivation practice and conventional HTC. Uncertainty remains for how these 

practices could be used to complement conventional top dressing and cultivations 

methods. Currently, there is no quantitative information regarding how it can be 

incorporated with traditional equipment. These technologies should be evaluated through 

scientific research to verify their efficacy and develop best management practices. 

Therefore, the objective of this research was to evaluate the effectiveness of combining 

novel cultivation and conventional cultivation for improving soil physical properties such 

as VWC, surface firmness, infiltration rates, and controlling organic matter. 

Materials and Methods 

A two-year field study was conducted from September 2017 to September 2019 

on a creeping bentgrass [Agrostis stolonifera L. ‘Penncross’] green grown in a sand-

based root zone mixture at the Oklahoma State University Turfgrass Research Center in 

Stillwater, Oklahoma. The putting green was maintained at a height of 3.9 mm using a 

triplex mower with clippings removed after each mowing. The green was fertilized with 

slow-release granular fertilizer to achieve the annual rate to 293 kg ha-1 N, 100 kg ha-1 P, 

and 202 kg ha-1 K. Topdressing was applied biweekly with a spinner-type spreader 



79 

 

(Quick pass 300, Tyro-crop, McGrath road Rosedale, B.C. Canada) during the growing 

season at a rate of 4.9 m3 ha-1 using a locally available kiln-dried material (Mohawk 

Materials, Tulsa) that met USGA specifications for putting green root zones. A wetting 

agent (Aquicare™, Winfield solution, LLC, St. Paul, MN) was applied monthly from 

June to August each year at a rate of 19 L ha-1 to reduce the localized dry spot. The 

experiment station standard fungicide and insecticide program were used on a 

preventative and curative basis. A combination of bensulide (5.25% a.i) and oxadiazon 

(1.31% a.i) (Goosegrass/Crabgrass Control, The Andersons Inc., Maumee, OH) was 

applied at 109 kg ha-1 rate in late winter to control annual grassy weeds. 

The experiment was designed to compare the effects of two novel cultivation 

practices (NCP) alone or combined with conventional cultivation practice (CCP) on soil 

physical properties. The experiment was conducted as a randomized complete block 

design with four replications of each of eight treatments. The plot size was 1.8 x 2.5 m. 

Treatments included AIC, SIC (Fall), SIC (Spring), HTC, AIC + HTC, SIC (Fall) + HTC, 

SIC (Spring) + HTC, and a control (Table 1). All equipment settings were selected based 

on typical local practices. Air injection cultivation was applied using the Air2G2 (GT 

Airinject Inc., Jacksonville, FL) set for an injection burst pressure of 345 kPa through 23-

cm-long-tine and a tine insertion pressure of 345 kPa on 60 x 60 cm spacing. Sand 

injection cultivation was accomplished using the DryJect (DryJect Inc., Hatboro, PA) on 

7.6 x 5 cm spacing at 10.5 cm tine depth. Hollow tine cultivation was applied using a 

walk behind aerifier (Pro Core 648, The Toro Company, Bloomington, MN) equipped 

with 1.3 cm outside diameter and 6.4 cm long tines set at a 5 x 5 cm spacing. Sand used 

to fill holes for SIC and HTC was the same material previously described for topdressing.  



80 

 

Treatment effects were assessed by measuring infiltration rate, surface firmness, 

volumetric water content, ball roll distance, organic matter content, and bulk density. 

Measurements were made within 24-hr before cultivation treatment and subsequent 

measurements were conducted at 1, 2, 3, and 4 weeks after treatment (WAT), and then 

monthly thereafter (Table 2). 

Infiltration rates were measured using a double ring infiltrometer and falling head 

technique (Fontanier et al., 2011). The outer ring measure 30 cm and the inner ring 

measures 15 cm in diameter. Infiltrometer was placed at the center of each plot and 

inserted approximately 5 cm into the soil surface. Water was added until it reaches the 

top of both rings. Infiltration rates were recorded as the decrease in the inner ring after 10 

minutes. Measurements were repeated until the two consecutive readings were the same.  

Surface firmness was measured using a handheld firmness meter (Field Scout 

TruFirm; Spectrum Technologies, Inc. Aurora, IL) which records the penetration depth of 

a falling plunger as it hits a surface (Craft et al., 2016; Dickson et al., 2017). Firmness 

was measured following the single drop of the plunger on nine points across a grid and 

averaged within each plot for subsequent analyses.  

Volumetric water content (VWC) was measured using a handheld soil moisture 

meter (FieldScout TDR300 Spectrum Technologies, Inc.) and the 7.6 cm probes. The 

VWC was measured from nine randomly selected points across a grid and then averaged 

within each plot before subsequent analyses.  

Ball roll distance (BRD) was measured using a modified USGA Stimpmeter 

(Gaussoin et al., 1995; United States Golf Association, 2009). Three balls were rolled 
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from a 35 cm long Stimpmeter in two directions and the average distance traveled by 

balls was measured.  

Normalized difference vegetation index (NDVI) was measured using a handheld 

NDVI meter (Trimble Navigation Inc. Sunnyvale, CA). Measurements were made within 

24 h before cultivation treatment and subsequent measurements were conducted at 1, 2, 3, 

and 4 weeks after treatment (WAT), and then monthly thereafter as a single pass across 

the middle of the plots. 

Organic matter (OM) content was determined by the loss on ignition method 

(Atkinson et al., 2012; Snyder and Cisar, 2000). A soil core of 5 cm was removed to the 

depth of 5 cm using a standard soil probe. Shoots and roots were removed from the 

sample, and the remaining sample oven-dried for 48 h at 105 °C, allowed to cool to room 

temperature and weighed. Dried soil samples were then placed in a muffle furnace for 3 h 

at 550 °C. The weight of the ashed sample was measured after bringing to room 

temperature. The difference between dry and ashed weights was assume to be organic 

matter. 

The gaseous oxygen content of the soil in AIC and control plots was measured 

using a soil oxygen sensor (SO-110, Apogee Instruments, Inc., Logan, Utah) fitted with a 

diffusing head. The sensor was installed vertically with the sensor opening pointed down 

in accordance with manufacturer recommendations. A single sensor was installed at the 

10.2 cm depth in each control and AIC plot. An additional sensor was installed at the 

22.8 cm depth in each AIC plot. The voltage output from the sensor was converted to the 

percentage of oxygen (Eq. 1) by multiplying by manufacturer calibration factors and then 

subtracting the offset: 
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Oxygen (%) = CF. mVM – Offset    Eq. 1 

where CF is calibration factor, mVM is voltage output (mV) and Offset is derived by 

multiplying CF by mVo (Eq. 2) 

CF= 
��.�� %

�	
��	�       Eq. 2 

mVc is sensor voltage output [mV] during calibration and mVo is sensor voltage output 

[mV] under zero oxygen (0 kPa O2). mVc was measured in well-ventilated area. mVo 

was estimated to be 3.0 mV and used same for all sensor as recommended by apogee 

Instrument. 

Statistical Analysis 

The experiment was analyzed as a randomized complete block design having four 

replications of each treatment.  The treatments were arranged as a four by two factor 

design representing NCP (AIC, SIC (fall), SIC (spring), control) and CCP (HTC or 

control). Data were averaged across each year and analysis of variance was performed to 

evaluate main and interaction effects of the two factors with the GLIMMIX procedure in 

Statistical Analysis System (Version 9.3; SAS Inc., Cary, NC). All tests were performed 

at a significance of 0.05. Data collected over two years were pooled (Table 3). To also 

evaluate the immediate response of each treatment, measurements taken 7 days after NCP 

were analyzed separately following similar methods.  

Oxygen data were averaged across each year and the main effect of treatment on 

soil oxygen was evaluated using analysis of variance with the GLIMMIX procedure in 

Statistical Analysis System (Version 9.3; SAS Inc., Cary, NC). All tests were performed 
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at a significance of 0.05. To also evaluate the immediate response of treatment, soil 

oxygen data one day after treatment were analyzed separately (Table 7). 

Results and Discussion 

The main effect of NCP was not significant for any measured variable except for 

firmness. However, the main effect of CCP was significant for all parameters measured 

(Table 3). The two-way interaction effect was significant for VWC and infiltration rate 

but no other variables. Thus, VWC and infiltration rate data are presented as the 

interaction, while other variables are pooled across NCP to examine the CCP main effect. 

Volumetric Water Content (VWC) 

Treatments that included HTC had lower annual mean VWC compared to those 

that did not, with the exception of SIC (fall) alone which resulted in similar VWC as SIC 

(fall) + HTC (Table 4). Combining AIC or SIC with HTC did not provide additional 

reduction in VWC compared to HTC alone. Craft et al. (2016) reported HTC + SIC 

lowered VWC compared to control. The lower VWC in the combination treatment was 

attributed to HTC creating a surface hole, removing organic matter with soil core, and 

AIC creating a subsurface fracture through which water drain.  Not only did NCP have 

limited effect on annual mean VWC, but even at 7 days after cultivation (Table 6), only 

the main effect of CCP was detectable.  

Infiltration Rate 

Treatments with HTC had faster infiltration than those that did not (Table 4). 

Infiltration rate for AIC or SIC alone was similar to the control (Table 4). Combining 

HTC with AIC increased infiltration rate over HTC alone. In contrast, incorporating SIC 

with HTC did not enhance infiltration rates over HTC alone. It has been widely reported 
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that HTC increases infiltration rates (Craft et al., 2016; Fontanier et al., 2011; McCarty et 

al., 2007; Rowland et al., 2009; Schmid et al., 2007; Sorokovsky et al., 2007). McCarty et 

al. (2007) reported cultivation that incorporates HTC had increased infiltration rate 

compared to control, verticutting, and grooming. One explanation for no effect of AIC on 

infiltration rate is the minimum surface area impact. Schmid et al. (2007) reported 

venting treatment which has least surface area impact did not improve infiltration rate. 

Channels created by venting with minimum surface area impact can be sealed before 

infiltration could be measured (Fontanier et al., 2011). No change in infiltration rate after 

SIC may be associated with reduction in macropores, which may have been destroyed or 

compressed by high pressure sand injection.  

Even at 7 DACE, NCP had no effect on infiltration rate (Table 6). Only the main 

effect of CCP was detectable. The larger channel created by HTC and the physical 

removal of OM likely contributed to the larger and longer-term effect on infiltration.   

Surface Firmness 

The main effect of NCP was not significant indicating firmness for AIC and SIC 

were similar to the control (Table 3). Investigation of the interaction suggested no 

differences among any treatment combinations (table 4). However, the CCP main effect 

was much larger and it indicated HTC decreased firmness compared to the control (Table 

5).  

At 7 DACE, only the main effect of CCP was observed. Similar to the present 

study, McCarty et al. (2007) and Murphy et al. (1993) reported that creeping bentgrass 

treated with HTC had reduced surface firmness compared with control. This is 

presumably due to the removal of cores creating less surface stability. 
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Ball Roll Distance (BRD) 

The CCP main effect resulted in HTC having reduced BRD compared to the 

control (Table 5). It is widely reported that HTC can reduce ball roll distance during the 

recovery period but it is still surprising that this effect is detectable when aggregating 

measurements across an entire year (Dickson et al., 2017; McCarty et al., 2007). The lack 

of effect due to NCP for ball roll distance suggests minimal disturbance to the surface 

and fast recovery. Similar evidence was seen when examining data at 7 DACE.  

Specifically, ball roll distance for either AIC or SIC (fall or spring) was similar to control 

even at 7 DACE. McCarty et al. (2007), observed reduction in ball roll distance by core 

cultivation compared to control and topdressing itself at 7 DAT. Similarly, Dickson et al. 

(2017) reported that BRD on SIC were similar to a non-treated control, while HTC 

reduced ball roll compared with the non-treated control. In contrast to our result, Dickson 

et al. (2017) reported increases in BRD immediately after AIC compared to non-treated 

control. 

Normalizes Difference Vegetation Index (NDVI) 

The main effect of CCP resulted in lower NDVI values for HTC compared to the 

control (Table 5). This finding reinforces that HTC resulted in a large surface area 

impacted and slower recovery than AIC or SIC. At 7 DACE, the main effect of CCP 

again resulted in lower NDVI for HTC than the control.  However, the main effect of 

NCP showed that SIC also had lower NDVI than AIC or the control. These results are not 

surprising and closely follow the surface area impacted of each treatment. 
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Organic Matter (OM) 

Differences in OM concentration were not observed between AIC or SIC and 

non-treated control. In contrast, treatments that included HTC reduced OM. The USGA 

recommends impacting 15 to 20% of the surface area yearly to manage thatch-mat and 

soil OM (O’Brien and Hartwiger, 2003). In contrast, SIC applied in this study only 

impact 3.3% surface area. Although both SIC and HTC incorporated sand for dilution of 

the organic layer, HTC is the only treatment that involved removal of organic matter. 

Atkinson et al. (2012) reported that as the number of HTC events per year increased from 

one to three, OM concentration was reduced. Similarly, Rowland et al., (2009) also 

reported that HTC 2 times per year and HTC 3 times per year reduced an OM compared 

to the non-treated control. 

Craft et al. (2016) did not observe differences in thatch-mat depth after SIC 

during a 2-yr study on an ultradwarf bermudagrass putting greens. Similar to thatch-mat 

layer, difference in OM concentration (average 5%) between treatments were not 

observed. The other reason for no detectable difference in OM might be the topdressing 

sand applied across all treatment which could have masked the effect of SIC and AIC. 

Beard (1973) suggested topdressing alone can be effective in controlling. Soil organic 

matter can be highly variable and these studies illustrate the challenge in detecting 

differences in field studies. More numerous or larger soil core sample may be required to 

detect changes in soil organic matter for short duration experiments. 

Soil Oxygen 

The annual average soil oxygen (O2) concentration at 10.2 cm depth is 18.3% and 

at 22.8 cm depth is 17.1%. Similar to findings in our study, Brotherton (2011) observed 
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the O2 concentration of 17.6 to 20.9% in a creeping bentgrass green. The range of O2 for 

optimum plant growth is 5 to 15% (Luxmooree et al., 1970; Barden et al., 1987). 

Regardless of cultivation, soil O2 was adequate for turf growth at 10.2 cm depth. Previous 

research has also reported soil O2 concentration above optimum range for turf growth 

regardless of cultivation practices (Barden et al., 1987; Brotherton, 2010; Green et al., 

2001; Luxmooree et al., 1970). Green et al. (2001) observed cultivation had no effect on 

ODR. In contrast, Bunnell et al. (2001) reported soil oxygen levels were increased 

following conventional hollow tine treatment on ‘Penn A-1’ and ‘Crenshaw’ creeping 

bentgrass compared to control at 15 days after treatment. However, at the 20 cm depth, 

differences in oxygen concentration were not observed. Engle Alderfer (1967) also 

reported a 20% increase in ODR with spoon-type cultivation. Similar to our findings, 

Brotherton reported O2 concentration above optimum range for turf growth during May to 

October. In contrast to our findings, Carrow (2003) reported low O2 concentration levels 

at 3 cm depth under hot summer conditions. The lack of effect and overall high oxygen 

concentration in this green may be attributed to high drainage and air-filled porosity. The 

result might have been different if the study is conducted in compacted soil where gas 

exchange was limited.  

At the 22.8 cm depth oxygen levels were lower than at 10.2 cm depth. Bunnell et 

al. (2001) reported a similar reduction in O2 at the 22.2 cm depth compared to the 9 cm 

depth. A decrease in soil O2 content with profile depth is attributed to an increase in soil 

moisture at a lower profile (Van Wijk, 1980). Soil O2 concentration declined from March 

to August each year at each depth with a larger decline observed at the 22.8 cm depth 

(Figure 1 and 2). 
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Conclusion 

Annual cultivation programs using AIC or SIC alone did not consistently 

influence VWC, surface firmness, or infiltration rate. Incorporation of HTC with AIC or 

SIC increased infiltration rate, reduced firmness, and VWC. Since novel cultivation itself 

was not effective in reducing VWC and surface firmness and increasing infiltration, 

result suggests a need for HTC in maintaining desirable soil physical properties. 

Incorporation of AIC with HTC showed evidence for further increases in infiltration rates 

compared to HTC alone. Although SIC showed minimal effect on any of the measured 

variables, combining SIC with HTC can provide similar benefits as HTC alone with the 

ability to increase the amount of sand incorporated into the thatch-mat layer. Continuing 

research is needed to further investigate the long-term benefit of combination of 

conventional and novel cultivation in managing soil organic matter, soil bulk density, and 

infiltration rate.
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Table 1. Detailed list of annual cultivation programs (treatments) with specification and timings of novel cultivation practices 
(NCP) including air injection cultivation (AIC) and sand injection cultivation (SIC) and conventional cultivation practices 
(CCP) including hollow-tine cultivation (HTC) applied to a creeping bentgrass putting green in Stillwater, Oklahoma. 

 
NCP† 

 
CCP Spacing Depth‡ 

Surface Area 
Impacted 

  cm cm % 
Control Without HTC§    
AIC  60 x 60  23  
SIC Fall  7.6 x 5 8.8 3.3 
SIC Spring    3.3 
Control HTC 5 x 5 5 4.9 

AIC  5 x 5 
23 
5 4.9 

SIC Fall 
   

7.6 x 5 
5 x 5 

8.8 
5 8.2 

SIC Spring 
  

7.6 x 5 
5 x 5 

8.8 
5 8.2 

†AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); HTC = hollow tine cultivation (Pro Core 648; 
The Toro Company, Bloomington, MN); SIC = sand injection cultivation (DryJect; DryJect Inc., Hatboro, PA). Treatments 
were applied from September 2017 to May 2019. 
‡Depth represent tine depth for AIC and HTC and average depth of penetration for SIC. 
AIC applied 3 times per year in March, June, and September; SIC Fall applied 1 time per year in September; SIC spring 
applied 1 time per year in March; HTC applied 2 times per year in March and Spring.  
§HTC treatment was applied approximately 1 week before SIC. 1.3 cm diameter tine was used for HTC. 
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Table 2. Particle size distribution of root zone mixtures and topdressing sand applied to a creeping bentgrass putting green in 
Stillwater, Oklahoma. 

Golf course 
Fine 
Gravel† Very Coarse  Coarse  Medium Fine  Very Fine  Silt + Clay 

 (>2.0 mm) (1.0-2.0 mm) (0.5-1.0 mm) (0.25-0.5 mm) (0.15-0.25 mm) (0.05-0.15 mm) (<0.05 mm) 

 --------------------------------------------------------%--------------------------------------- 

Root zone mixture  3.13 22.34 33.12 30.73 8.17 2.09 0.42 

Top dressing sand - 33.05 35.93 25.42 4.59 0.84 0.16 
†Particle size was classified based on USDA textural classification system (USDA, 1951). Particle size were separated by 
passing soil samples through U.S. standard sieve mesh (No. 10, No. 18, No. 35. No. 60, No. 100, and No. 270). 
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Table 3. Summary analysis of variance table for the effect of novel cultivation practices 
(NCP) and conventional cultivation practices (CCP) on volumetric water content (VWC), 
surface firmness, infiltration rate, ball roll distance (BRD), and normalized difference 
vegetation index (NDVI) of a creeping bentgrass putting green in Stillwater, Oklahoma 
during the years 2017 to 2019.  

Effect DF VWC  Infiltration  Firmness BRD  NDVI OM 
Annual Means 

NCP 3 NS† NS NS NS NS NS 
CCP 1 *** *** *** * *** * 
NCP × CCP 3 **  * NS NS NS NS 

7 Days after NCP 
NCP 3 NS NS NS NS ***  
CCP 1 *** *** *** ** ***  
NCP × CCP 3 NS NS NS NS NS  

*, **, *** significant at p = 0.05, 0.01, and 0.001, respectively. 
† NS, not significant at p = 0.05 significance level.
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Table 4. Interaction effect of novel cultivation practices (NCP) using air injection (AIC) 
or sand injection (SIC) and conventional cultivation practices (CCP) using hollow-tine 
core aerification (HTC) on annual mean volumetric water content (VWC) at 7.6 cm 
depth, surface firmness, infiltration rate, ball roll distance (BRD), normalized difference 
vegetation index (NDVI), and organic matter content (OM) on a creeping bentgrass 
putting green in Stillwater, Oklahoma. 

NCP CCP 
VWC† 

7.6 cm depth Firmness‡ Infiltration§ BRD¶ NDVI# OM†† 

  % cm cm h-1 cm 0-1 % 
Control without HTC 22.4 a††† -1.14 a 36.6 c 258.4 a 0.72 a 2.3 a 
AIC  22.4 a -1.14 a 37.4 c 259.1 a 0.72 a 2.2 a 
SIC Fall  21.2 ab -1.12 a 39.5 c 260.7 a 0.71 a 2.2 a 
SIC Spring  21.5 ab -1.14 a 39.7 c 256.2 a 0.71 a 2.2 a 
Control with HTC 19.6 c -1.18 a 52.6 b 255.1 a 0.70 a 2.1 a 
AIC  19.1 c -1.16 a 58.3 a 255.8 a 0.70 a 2.1 a 
SIC Fall  20.3 bc -1.16 a 53.1 b 257.1 a 0.70 a 2.2 a 
SIC Spring  19.6 c -1.17 a 56.5 ab 254.2 a 0.70 a 2.1 a 

†Volumetric water content was measured using handheld soil moisture meter (FieldScout 
TDR 300, Spectrum Technologies, Inc. Plainfield, IL) in nine randomly selected points 
across a grid and then averaged to get overall surface firmness of each individual plot.  
‡Surface firmness was measured using a handheld firmness meter (Field Scout TruFirm; 
Spectrum Technologies, Inc. Aurora, IL) which records the penetration depth of a falling 
plunger as it hits a surface. Firmness was measured following single drop of the plunger 
in nine point across a grid and then averaged to get overall surface firmness of each 
individual plot. Firmness values are presented as negative values indicating depth below 
the horizon. 
§Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and 
falling head technique. Infiltration rate was recorded as the decrease in water within the 
inner ring after ten minutes. 
¶Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter. Three 
balls were rolled in two directions and the average distance traveled by balls was 
measured. 
#Normalized difference vegetation index (NDVI) was measured using a hand-held 
reflectance meter (Trimble Navigation Inc. Sunnyvale, CA). Measurements were made 
every week after cultivation event as a single pass across the middle of the plots. 
††Organic matter content was determined by the loss on ignition method. 

†††Means within each column followed by the same letter are not significantly different at 
the p = 0.05 significance level. 
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Table 5. Main effects of novel cultivation practices using air injection (AIC) or sand 
injection (SIC) and main effects of conventional cultivation practices using hollow-tine 
cultivation (HTC) on annual mean volumetric water content (VWC) at 7.6 cm depth, 
surface firmness, infiltration rate, ball roll distance (BRD), normalized difference 
vegetation index (NDVI), and organic matter content (OM) on a creeping bentgrass 
putting green in Stillwater, Oklahoma.  

Treatment VWC (7.6 cm depth)† Firmness‡ Infiltration§ BRD¶ NDVI# OM†† 

 % cm cm h-1 1-9 cm % 

Main Effect of Novel Cultivation Practices 
Control 21.0 a††† -1.16 b 44.6 a 0.71 a 256.8 a 2.2 a 

AIC 20.8 a -1.15 ab 47.9 a 0.71 a 257.4 a 2.1 a 

SIC Fall 20.8 a -1.14 a  46.3 a 0.71 a 258.9 a 2.2 a 
SIC Spring 20.6 a -1.16 b 48.1 a 0.71 a 255.2 a 2.1 a 

Main Effect of Conventional Cultivation Practices 

With HTC 19.7 b -1.16 b 55.1 a 0.70 b 255.5 b 2.0 b 
Without HTC 22.0 a -1.13 a 38.3 b 0.72 a 258.7 a 2.2 a 

†Volumetric water content was measured using handheld soil moisture meter (FieldScout 
TDR 300, Spectrum Technologies, Inc. Plainfield, IL) in nine randomly selected points 
across a grid and then averaged to get overall surface firmness of each individual plot.  
‡Surface firmness was measured using a handheld firmness meter (Field Scout TruFirm; 
Spectrum Technologies, Inc. Aurora, IL) which records the penetration depth of a falling 
plunger as it hits a surface. Firmness was measured following single drop of the plunger 
in nine point across a grid and then averaged to get overall surface firmness of each 
individual plot. Firmness values are presented as negative values indicating depth below 
the horizon.  
§Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and 
falling head technique. Infiltration rate was recorded as the decrease in water within the 
inner ring after ten minutes. 
¶Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter. Three 
balls were rolled in two directions and the average distance traveled by balls was 
measured. 
#Normalized difference vegetation index (NDVI) was measured using a hand-held 
reflectance meter (Trimble Navigation Inc. Sunnyvale, CA). Measurements were made 
every week after cultivation event as a single pass across the middle of the plots. 
††Organic matter content was determined by the loss on ignition method. 

††† Means within each column followed by the same letter are not significantly different at 
the p = 0.05 significance level. 
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Table 6. Main effects of novel cultivation practices using air injection (AIC) or sand 
injection (SIC) and main effects of conventional cultivation practices using hollow-tine 
cultivation (HTC) on annual mean volumetric water content (VWC) at 7.6 cm depth, 
surface firmness, infiltration rate, ball roll distance (BRD), normalized difference 
vegetation index (NDVI), and organic matter content (OM) one week after cultivation 
event on a creeping bentgrass putting green in Stillwater, Oklahoma.  

Treatment VWC (7.6 cm depth)† Firmness‡ Infiltration§ BRD¶ NDVI# 
 % cm cm h-1  cm 

Main Effect of Novel Cultivation Practices 
Control 20.4 a‡ -1.16 a 49.7 a 0.72 a 255.3 a 
AIC 20.3 a -1.15 a 53.1 a 0.72 a 257.9 a 
SIC Fall 20. 6 a -1.16 a 50.7 a 0.70 b 261.1 a 
SIC Spring 20.6 a -1.17 a 48.5 a 0.70 b 253.2 a 

Main Effect of Conventional Cultivation Practices 
With HTC 19.3 b -1.19 b 61.1 a 0.69 b 252.5 b 
Without HTC 21.7 a -1.13 a 40.0 b 0.73 a 261.2 a 

†Volumetric water content was measured using handheld soil moisture meter (FieldScout 
TDR 300, Spectrum Technologies, Inc. Plainfield, IL) in nine randomly selected points 
across a grid and then averaged to get overall surface firmness of each individual plot.  
‡Surface firmness was measured using a handheld firmness meter (Field Scout TruFirm; 
Spectrum Technologies, Inc. Aurora, IL) which records the penetration depth of a falling 
plunger as it hits a surface. Firmness was measured following single drop of the plunger 
in nine point across a grid and then averaged to get overall surface firmness of each 
individual plot. Firmness values are presented as negative values indicating depth below 
the horizon. 
§Infiltration rate was measured using a double-ring infiltrometer (15 and 30 cm rings) and 
falling head technique. Infiltration rate was recorded as the decrease in water within the 
inner ring after ten minutes. 
¶Ball roll distance was measured using a 35 cm long modified USGA Stimpmeter. Three 
balls were rolled in two directions and the average distance traveled by balls was 
measured. 
#Normalized difference vegetation index (NDVI) was measured using a hand-held 
reflectance meter (Trimble Navigation Inc. Sunnyvale, CA). Measurements were made 
every week after cultivation event as a single pass across the middle of the plots. 
††Means within each column followed by the same letter are not significantly different at 
the p = 0.05 significance level. 
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Table 7. Analysis of variance for effect of air injection cultivation on daily mean soil 
oxygen concentration of a creeping bentgrass putting green in Stillwater, Oklahoma. 

Effect df Soil oxygen 

 Averaged within Each Year 
Treatment 2 *** 
Year 1 *** 
Treatment*Year 2 NS† 

One Day after a Cultivation Event 
Treatment 2 *** 
Year 1 *** 
Year*Treatment 2 NS 

*, **, *** significant p = 0.05, 0.01, and 0.001, respectively. 
† NS, not significant at p = 0.05.
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Table 8. Effect of air injection cultivation (AIC) on daily mean soil oxygen concentration 
of a creeping bentgrass putting green in Stillwater, Oklahoma. 

Treatment† Oxygen concentration‡  

 Annual Mean One Day after Event 
 ---------------%--------------- 
Control  18.30 a§ 18.13 a 
AIC at 10.2 cm 18.31 a 18.29 a 
AIC 22.8 cm 17.09 b 17.12 b 

† AIC = air injection cultivation (Air2G2; GT Airinject Inc., Jacksonville, FL); air 
injection is applied on March, June and September. 
‡The gaseous oxygen content was measured using a soil oxygen sensor (SO-110, Apogee 
Instruments, Inc., Logan, Utah) fitted with a diffusing head. The sensor was installed 
vertically with the sensor opening pointed down in accordance with manufacturer 
recommendations. 
§Means within each column followed by the same letter are not significantly different at 
the p = 0.05 significance level.
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Figure 1. Effect of air injection cultivation (AIC) on daily mean soil oxygen concentration of a 
creeping bentgrass putting green in Stillwater, Oklahoma from September 2017 to September 
2018. Air injection cultivation was applied on 25 Sept.  2017, 16 March 2018, and 9 June 2018
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Figure 2. Effect of air injection cultivation (AIC) on daily mean soil oxygen 
concentration of a creeping bentgrass green in Stillwater, Oklahoma from October 2018 
to September 2019.  Air injection cultivation was applied on 11 Oct. 2018, 18 March 
2019, and 30 May 2019  

0

5

10

15

20

25

O
xy

g
e

n
 c

o
n

ce
n

tr
a

ti
o

n
 (

%
)

Control AIC- 10.2 cm depth AIC - 22.8 cm depth



103 

 

CHAPTER V 
 

 

EFFECTS OF TEMPORAL SHADE ON PHOTOSYNTHETIC RATE OF CREEPING 

BENTGRASS 

 
Abstract 

Shade can be detrimental to turfgrass growth, development, and quality. The most 

common and obvious effect of shading is the reduction in light intensity which limits 

energy available for photosynthesis. Shade is rarely constant and instead fluctuates 

throughout the day. The effect of shade timing on turfgrass performance has been 

examined under field studies for several species but still remains unclear. The objective 

of this study was to determine the effect of temporal shade on photosynthesis of creeping 

bentgrass (Agrostis stolonifera L.). Plugs of ‘007’ creeping bentgrass were established in 

2.5 cm diameter growth tubes containing sand and allowed to establish in the greenhouse 

for 4 weeks. Subsequently, growth tubes were placed adjacent to a vertical shade 

structure in order to apply “morning shade”, “afternoon shade”, or “non-shaded”. Net 

photosynthesis was measured at multiple light intensities between 0 and 2000 µmolm-2s-1. 

Plants subjected to shade demonstrated lower light compensation points (LCP), light 

saturation points (Amax), and dark respiration (RD) compared to plants grown in the non-

shaded environment. There was no difference between morning shade and afternoon



104 

 

shade for Amax, LCP, or RD. Shoot dry weight was lower in the morning shade compared 

to afternoon shade and non-shade control. Photosynthetic rate of creeping bentgrass 

under morning shade was not different from afternoon shade. 

Introduction 

Shade can be detrimental for the growth and development of turfgrass. In the 

United States, it is estimated that 25% of the turfgrass area are under shade condition 

(Beard, 1973). The most common and obvious effect of shading is the reduction in light 

intensity. Shading causes, the partial or complete interception of direct solar radiation. 

Morphological and physiological changes have been observed in turf growth in the 

presence of shade (McBee, 1969; Standford et al., 2005). Plants adapt to changing light 

conditions by adjusting leaf morphology, structure, and biochemistry (Patterson, 1980). 

Shaded plants are usually taller and have lower dry weights and thinner stems (Dudeck 

and Peacock, 1992). Shade also affects the internode length, stem, and rhizome 

branching. Root production as well as root: shoot ratio are reduced by a low light 

environment (Wherley et al., 2015). Shade stress also affects the physiology of 

turfgrasses such as pigment concentration and carbohydrates reserve (Bunnell et al., 

2005c). Shade provided by trees, shrubs, and buildings often reduces air circulation and 

increases relative humidity resulting in a microclimate conducive to disease development 

(Bell and Danneberger, 1999).  

Creeping bentgrass has good shade tolerance in comparison to many other 

turfgrasses (Turgeon, 1991). However, low mowing heights typical of putting greens 

reduces the residual leaf area available for photosynthesis and thus making plants more 

sensitive to shade stress. On golf courses, due to the orientation of trees and other 
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structures, shade is rarely constant and instead fluctuates throughout the day. Some areas 

may be shaded for a partial day whereas others may be continuously under shade. 

Morning shade is often considered detrimental to turfgrass health (Freeman, 2012). When 

shade occurs in the morning, the leaf surface can remain wet with dew for many hours 

thus exacerbating disease pressure (Bell and Danneberger, 1999). Bell and Danneberger 

(1999) reported that creeping bentgrass receiving sunlight only for 40% of the day 

maintains color, density, and tissue mass even when it receives 31% less light than full 

sun. The result suggests that shade intensity and duration limits the turfgrass growth and 

development rather than timing of shade (Bell and Danneberger, 1999). The minimum 

quantity of light required to maintain healthy turfgrass can be defined in terms of a daily 

light integral (DLI), which is the accumulated photosynthetic photon flux density (PPFD) 

for a 24 h period and is measured in units of mol m-2 d-1 (Zhang et al., 2017). 

Morning shade is often considered detrimental to turfgrass health (Freeman, 

2012). However, Bell and Danneberger (1999) did not found any difference in turf color, 

density, and total nonstructural carbohydrates (TNC) of creeping bentgrass exposed to 

morning shade, afternoon shade, and full sun. In contrast, a recent study conducted on 

‘007’ creeping bentgrass greens in Arkansas demonstrated that afternoon shade was more 

detrimental to turfgrass quality than morning shade (Russell et al., 2019). Afternoon 

shade was more detrimental to ‘TifEagle’ bermudagrass [Cynodon dactylon (L.) Pers x C. 

transvaalensis Burtt-Davy] growth and performance than morning shade in South 

Carolina (Bunnell et al., 2005c). Dense afternoon shade (90%) reduced the turfgrass 

quality and lateral root growth by 31% and 17%, respectively, compared to the control 

whereas the morning shade reduced turfgrass quality and lateral root growth by 13% and 



106 

 

11%, respectively, compared with the control (Bunnell et al., 2005c). Seashore paspalum 

[Paspalum vaginatum Swartz] receiving 90% morning and afternoon shade for five hours 

exhibited no detrimental growth effects in the absence of traffic (Jiang et al., 2003). 

However, afternoon shade was more detrimental than morning shade when plants were 

subjected to concurrent traffic stress (Jiang et al., 2003).  

Turfgrasses gain carbon through photosynthesis and utilizes it for growth, 

reproduction, and metabolic functions. If the assimilated carbon is more than required, 

then it is stored as carbohydrates for later use. The major nonstructural carbohydrates 

found in turfgrass are water soluble carbohydrates (i.e., glucose, fructose, sucrose) and 

storage carbohydrates (i.e. starch and fructans) (Smith, 1972). These TNC are considered 

as the energy reserve and used under stress conditions when its production could not meet 

the plant requirement. Total nonstructural carbohydrates are used as a physiological 

measure of stress tolerance in grass (Beard 1973; Watschke, et al., 1973). Previous 

studies have reported a reduction in TNC with reduced irradiance (Bunnell et al., 2005c; 

Jiang et al., 2005; Schnyder and Nelson, 1988). The total production of TNC in 

bermudagrass decreases with reduced irradiance (Bunnell et al., 2005a, 2005b, and 

2005c). The TNC decreased by 43% when the irradiance was reduced from 300 to 60 

µmol m-2 s-1 (Schnyder and Nelson, 1988). The content of water soluble carbohydrate 

was decreased by 52% in Sea Isle 1 seashore paspalum and 66% in ‘Tifsport’ 

bermudagrass grown under low light conditions (60-100 µmol m-2 s-1) (Jiang et al., 2005). 

Morning and afternoon shade application is reported to influence the TNC concentration 

of TifEagle bermudagrass (Bunnell et al., 2005c). Dense afternoon shade (90%) reduced 

TifEagle bermudagrass TNC by 27% compared to no afternoon shade. Morning shade 
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had no effect on TNC (Bunnell et al., 2005c). In a contrast, Bell and Danneberger (1999) 

did not find any difference in TNC of creeping bentgrass exposed to morning shade, 

afternoon shade, and full sun. 

Huylenbroeck et al. (2001) observed that net photosynthesis of shade tolerant 

grasses reached saturation at a lower photosynthetic photon flux density (PPFD) 

compared to less tolerant species. A field study was conducted to evaluate the effect of 

reduced irradiance (65% of ambient sunlight) on photosynthetic capacity, pigment 

content, and growth of commercial cultivars of perennial rye grass (Lolium perene L.), 

red fescue (Festuca rubra L.), smooth-stalked meadowgrass (Poa pratensis L.) and 

crested (Koeleria macrantha (Ledeb.) Schultes). Difference between species in net 

photosynthesis measured at 700 µmol m-2 s-1 were observed. A reduction in maximum 

photosynthetic rate, increased in maximum photosynthetic rate, and no difference in light 

response curve were observed between turf plots grown under shade and non-shade 

control. A decrease in light saturation, net photosynthesis rate, dark respiration, and light 

compensation point was also observed in grass grown under shade (Wilkinson et al., 

1975). In contrast, Kephart et al., (1992) reported C3 and C4 grass grown in 37 and 70% 

of ambient sunlight regimes for 55 days had similar net CO2 exchange rate compared to 

those grown in full sunlight.  

Field observations suggest that morning shaded areas decline more readily than 

those areas shaded in the afternoon (Bell and Danneberger, 1999; Freeman, 2012). 

Despite this, the results of most field studies investigating temporal shade have either 

been inconclusive or concluded afternoon shade as more detrimental. A filed study 

conduct at University of Arkansas on creeping bentgrass reported afternoon shade 
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resulted in lower turfgrass coverage than morning shade (Russell et al., 2019). The 

objective of this study was to evaluate the effect of morning or afternoon shade on 

creeping bentgrass photosynthesis and to evaluate the difference in photosynthesis 

measured in morning vs afternoon. 

Materials and Methods 

Two greenhouse studies were conducted at the Oklahoma State University 

Horticulture Research Greenhouse located in Stillwater, Oklahoma. Experiment 1 was 

conducted from 10 June to 10 Aug. 2019. Experiment 2 was conducted from 10 Aug. to 

20 Oct. 2019.   

Plugs of ‘007’ creeping bentgrass were collected to 2.5 cm depth from an 

established green and grown in a pot of 3.8 cm diameter and 10 cm in height (LI COR, 

Inc., Lincoln, NE). The pot contained sand as a growth medium. Grasses were fertilized 

at 4.8 kg ha-1 N using Peters Professional 20-20-20 N-P2O5-K2O (The Scotts Company, 

Marysville, OH) every week. Grasses were clipped at a height of 1 cm every three days 

and clippings were collected. Irrigation was provided to avoid drought stress or wilt. 

Grasses received natural light plus supplemental lighting from a 400-watt high pressure 

sodium lamp (Rudd lighting Inc., Racine, WI). One month after planting, pots were 

assigned one of three shade treatments: ‘morning shade’, ‘afternoon shade’, or ‘no 

shade’. The experiment was designed as a completely randomized design with four 

replications of each treatment.  Pots were rearranged every week within their respective 

shade treatment. The shade was created using 90% light reduction black polyester shade 

cloth (International Greenhouse Company, model # SC-BL90, Danville, IL) (Bell and 

Danneberger, 1999; Russell et al., 2019) hung on a vertical structure constructed using 
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polyvinyl chloride pipe. The shade structure was 150 cm long and 150 cm high and 

oriented facing the east and west. Pots were placed within close proximity of the structure 

such that shade was applied uniformly to plants in accordance with their respective 

treatment assignment (e.g., morning shade was applied from dawn to ~1200 h to plants 

on the west side of the structure). 

Net photosynthesis was measured using a portable photosynthesis system (LI-

6400XT, LI COR, Inc., Lincoln, NE) equipped with an Arabidopsis chamber following 

methods similar to Kreuser (2004). The chamber provides constant relative humidity of 

60% and at 30 oC and 400 ppm sample CO2 concentration. Measurements were made at 

discrete light intensities using an AutoProgram that progressively lowered PPFD from 

2000 to 0 µmol m-2s-1 (2000, 1500, 1000,750, 500, 250, and 0 µmol m-2s-1). 

Measurements were taken in morning (0900- 1200 h) and afternoon (01300- 1600 h) and 

measurements were completed in 2 days. In Experiment 1, measurements were made at 6, 

7, and 8 weeks after treatment (WAT), and in Experiment 2 measurements were made at 

5, 6, 9 and 10 WAT. 

A non-rectangular hyperbola model (Eq. 1) was used to fit the photosynthetic-

light response curve (Lambers et al., 1998). 


 = ��������(�������)����������
�� -RD    Eq. 1 

Where φ is the apparent quantum efficiency, Q is the PPFD, Amax is the 

asymptotic estimate of maximum net CO2 assimilation, θ is the curvature factor, and RD is 

the rate of dark respiration. 
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The light compensation point (LCP) was calculated as described by Lobo et al., 

2013 (Eq.2). 

LCP =
��(������ !)

�(����� !)        Eq. 2 

Photosynthetic photon flux was measured using a quantum light sensor (Spectrum 

Technologies, Inc., Plainfield, IL), and data were recorded every 30 min using Watchdog 

1000 (Spectrum Technologies, Inc., Plainfield). The PPFD data were converted to a daily 

light integral (DLI) and averaged over treatment period for each experiment. Relative 

humidity and air temperature were also recorded at a similar resolution using the same 

instruments. 

Shoot dry weight (SDW) and root dry weight (RDW) were determined at the end 

of the study. Roots were washed over a sieve to remove sand. Shoots and roots were then 

oven dried at 80 °C for 48 hours, allowed to cool to room temperature, and then weighed.  

Statistical Design and Analysis 

Light response curves were fitted to the nonrectangular hyperbola model (Eq.1) 

using a non-linear least square procedure using ‘onls’ package in R (Spies, 2015). 

Analysis of variance was performed to determine the effects of shade on Amax, light 

compensation point (LCP), and dark respiration (RD) derived from light response curve, 

and the treatment difference was analyzed with the GLIMMIX procedure in Statistical 

Analysis System (Version 9.3; SAS Inc., Cary, NC). All tests were performed at a 

significance of 0.05. 
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Results and Discussion 

Vegetative Growth 
 

In both Experiment 1 and Experiment 2, SDW was lower in plants subjected to 

morning shade compared to afternoon shade or non-shaded control (Table 2). In 

Experiment 1, root dry weight was lower in plants subjected to shade than non-shaded 

control regardless of timing. In Experiment 2, morning shade resulted in lower RDW 

than non-shaded control (Table 1). Root dry weight was not different between shaded 

treatments. Similar to this study, Kosugi et al. (2010) reported lower shoot and root 

weight in the shaded plots compared to plots on open sun. In contrast to our result, Bell 

and Danneberger et al. (1999) reported no variation in root mass and density among 

100% morning, 100% afternoon, 80% morning, 80% afternoon, and full sun. Lower 

clippings and root mass under afternoon shade suggest little growth or development. 

Plant growth is directly related to carbon assimilation rate and process that limit 

photosynthesis reduces the growth rate (Monteith, 1978; Taiz and Leigher, 2005). The 

result of present study is in agreement with earlier report showing morning shade had 

lower SDW compared to a non-shaded control under greenhouse conditions (Loewer et 

al., 2020). Their study also showed morning shade had lower TNC compared to the non-

shaded control and afternoon shade.   

Leaf Photosynthesis Light Response 
 

 Experiment 1.  

The treatment effect was significant for Amax, and RD. No treatment effect was 

observed for LCP. The shaded plant had lower Amax and RD compared to non-shade 

control (Table 3). Time of measurement had no effect on Amax, LCP or RD.  The non-
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shaded control had higher or equal Amax, LCP and RD compared to morning and 

afternoon shade. In contrast, no difference was observed among morning and afternoon 

treatment. The shaded plants had higher assimilation rates under low PPFD and lower 

rates under higher PPFD (Figure 1). A low light compensation point and lower carbon 

assimilation rate is the common attributes of plant grown under shade. Lower light 

compensation point is the advantageous attributes of shade tolerance as it may help to 

maintain positive carbon balance under low light conditions. At 6 WAT, no differences in 

Amax, LCP, and RD were observed among treatments (Table 4). At 8 WAT, non-shaded 

control resulted in higher Amax, LCP, and RD compared to afternoon shade but not 

different than morning shade. In contrast, at 8 WAT, morning shade and non-shaded 

control had similar Amax and LCP. 

Experiment 2.  

The treatment effect was significant for Amax, LCP and RD. Time of measurement 

had no effect on Amax or RD, but the morning measurement had lower LCP than in the 

afternoon (Table 3). Similar to Experiment 1, shaded plants had higher assimilation rates 

under low PPFD and lower rates under higher PPFD (Figure 2). In the morning 

measurement, afternoon shade had lower Amax than non-shaded control at 5, 6, and 10 

WAT; lower LCP at 10 WAT and lower RD at 5 and 10 WAT (Table 5). In the morning 

measurement, RD of morning shade and afternoon shade was not different. During the 

morning, afternoon shade had a lower LCP than morning shade at 10 WAT and lower 

Amax at 5 WAT. Similarly, in the morning measurement, morning shade had lower Amax 

than non-shaded control at 5 and 10 WAT. The LCP of morning shade was not different 

from the non-shaded control at 5 and 10 WAT.  
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In afternoon measurement, afternoon shade had lower Amax than the non-shaded 

control sun at 9 and 10 WAT; lower LCP at 9 WAT; and lower RD at 9 and 10 WAT. 

Similarly, in the afternoon measurement, morning shade had higher Amax than the non-

shaded control at 5 WAT.  The LCP of morning shade was lower than the non-shaded 

control at 9 WAT while the RD was lower at 9 and 10 WAT. Afternoon shade had lower 

Amax than morning shade at 5, 9, and 10 WAT and a lower LCP at 10 WAT.  

Morning measurements had higher carbon assimilation rates than afternoon 

measurements (Figure 1 and 2). It is known that photosynthesis increased after sunrise, 

reached maximum around mid-morning and then decreased in afternoon. The causes of 

this pattern are high afternoon temperature, photorespiration in C3 plant, and feedback 

regulation by accumulated carbohydrates (Koyama and Takemoto, 2014). 

 It is speculated that differences in Amax were mainly due to acclimation to the 

light environment, which included reduction in the amount of photosynthetic tissues per 

unit area of leaf area in shade plants (Dias-Filho, 2002). Although the results were not 

consistent, the non-shaded control had higher Amax and RD compared to shaded plants. 

Afternoon shade plant had lower Amax compared to morning shade. No difference in RD 

was observed between morning and afternoon shade.  

The study was conducted inside the greenhouse using upright and single sided 

shade structure which causes little disturbance to air movement. In real field condition, 

the shade combines with other environmental factors like reduce air movement, dew 

formation, and root competition. In our study, there was no root competition and no or 

little disturbance to air movement. Addition of other factors like restricted air movement 

and root competition may add adequate information for the selection and use of trees in 
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the landscape maintaining a healthy environment for turfgrass.  The present study also 

used a neutral density shade fabric which may not be representative of vegetative shade 

which typically has a lower red to far red ratio (R:FR). The R:FR ratio of sunlight is 

reported to be 1.15 (Homes and Smith, 1977) whereas the R:RF ratio under deciduous 

and conifer shade is reported to be 0.91 and 0.80, respectively (Bell et al., 2000). 

Wherley et al. (2005) reported the R:RF ratio of full sun, neutral shade and deciduous 

shade as 1.16, 1.02 and 0.428 respectively.  

Conclusion 

Under the condition encountered in this study, morning shade had lower shoot dry 

weight (SDW) compared to afternoon shade and non-shaded control. Consistent 

differences were not observed for light saturation (Amax), light response curve (LCP), and 

dark respiration (RD).  Further study is needed to evaluate the carbohydrate concentration 

in plant tissue to better understand the relationship between photosynthesis, growth, and 

carbohydrate accumulation under changes in temporal shade.
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Table 1. Mean air temperature and average daily light integrals measured during shade 
study.  

 Month 

Treatment†  July August September October 

 Mean Air Temperature (oC) 

  33.5  31.9 31.5 25 

 Daily light integral†  

 ----------------------------mol m-2 d-1---------------------------- 

Non-shade control 36.14‡ 27.63 25.02 23.64 

Afternoon Shade 17.9 16.76 15.7 13.29 

Morning Shade 20.65 17.76 17.59 14.29 
† Non-shade control received sun from sunrise to sun set; afternoon shade received full 
sun from sunrise to solar noon and then gets 90% shade; morning shade received 90% 
shade from sunrise to solar noon and then gets full sun until sun set. 
‡Photosynthetically active radiation was recorded every 30 min using quantum light 
sensor and data were aggregated across month.
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Table 2. Shade treatment effect on shoot and root weight of creeping bentgrass. 

† Non-shade control received sun from sunrise to sun set; afternoon shade received full 
sun from sunrise to solar noon and then gets 90% shade; morning shade received 90% 
shade from sunrise to solar noon and then gets full sun until sun set. 
‡Means within each column followed by the same letter are not significantly different at 
the 0.05 significance level. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

 

Treatment† Shoot biomass  Root biomass  

Experiment 1 

 ---------------------------g--------------------------- 

Non-shade control 0.339 a‡ 0.101 a 

Afternoon shade 0.331 a 0.067 b 

Morning shade 0.301 b 0.055 b 

Experiment 2 

Non-shade control 0.405 a 0.102 a 

Afternoon shade 0.392 a 0.076 ab 

Morning shade 0.363 b 0.061 b 
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Table 3. Shade treatment effect on light saturation (Amax), light compensation point 
(LCP), and dark respiration (RD) of a creeping bentgrass. 

 

 

 

 

 
 

† Non-shade control received sun from sunrise to sun set; afternoon shade received full 
sun from sunrise to solar noon and then get 90% shade; morning shade received 90% 
shade from sunrise to solar noon and then get full sun until sun set. 
‡Means within each column followed by the same letter are not significantly different at 
the p = 0.05 significance level.

Treatment† Amax LCP RD 

Experiment 1 

 µmolCO2m-2s-1 µmolm-2s-1 µmol CO2m-2s-1 

Non-shade control 30.1 a‡ 176.9 a 5.7 a 

Afternoon shade 21.6 b 132.5 a 4.2 a 

Morning shade 22.8 b 147.5 a 4.5 a 

Experiment 2 

Non-shade control 25.7 a 186.7 a 6.5 a 

Afternoon shade 21.1 b 163.5 b 5.0 b 

Morning shade 20.9 b 154.9 b 4.8 b 
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Table 4. Model parameter estimates for light saturation (Amax), light compensation point (LCP), and dark respiration (RD) as 
affected by shade treatment and time of application of shade treatment in experiment 1. 

 6 weeks after shade  7 weeks after shade 8 weeks after shade 

Treatment† Morning‡  Afternoon Morning Afternoon Morning  Afternoon 

                  ------------------------A max (µmol CO2m-2s-1) ------------------------ 

Non-shade control 28.7 a§ 32.0 a 24.5 a 33.8 a 33.9 a 27.6 a 

Afternoon shade 28.5 a 22.5 a 22.5 ab 17.3 b 19.8 b 19.1 b 

Morning shade 30.7 a 30.0 a 17.0 b 11.7 b 22.0 ab 25.3 ab 

             -------------------------LCP (µmolm-2s-1) ------------------------ 

Non-shade control 180.4 a 185.9 a 143.1 a 229.6 a 205.9 a 116.4 b 

Afternoon shade 142.7 a 74.9 a 154.0 a 156.7 a 67.1 b 199.4 a 

Morning shade 190.8 a 103.4 a 164.3 a 152.9 a 138.6 a 135.2 ab 

                 --------------------RD (µmol CO2m-2s-1) ----------------------------- 

Non-shade control 5.6 a 5.6 a 4.9 a 7.1 a 6.8 a 4.0 b 

Afternoon shade 5.0 a 2.8 b 4.5 a 4.0 b 3.1 b 6.1 a 

Morning shade 6.8 a 2.8 b 4.2 a 2.6 b 4.4 b 6.0 a 
† Non-shade control received sun from sunrise to sun set; afternoon shade received full sun from sunrise to solar noon and then 
get 90% shade; morning shade received 90% shade from sunrise to solar noon and then get full sun until sun set. 
‡Morning measurement was taken from 0900 h to 1200 h and afternoon measurement was taken from 1300 to 1600 h. 
§Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level.
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Table 5. Model parameter estimates for light saturation (Amax), light compensation point (LCP), and dark respiration (RD) as 
affected by shade treatment and time of application of shade treatment in experiment 2. 

 5 weeks after shade 6 weeks after shade 9 weeks after shade 10 weeks after shade 

Treatment† Morning‡ After Morning After Morning After Morning After 

--------------------A max (µmol CO2m-2s-1) ----------------------------- 

Non-shade control 34.3 a§ 20.3 b 29.4 a 25.1b 15.8 a 18.4 a 29.9 a 32.2 a 

Afternoon shade 24.1b 16.5 b 22.1 b 35.6 a 16.8 a 11.7 b 23.3 b 18.4 b 

Morning shade 16.1 b 29.9 a 28.8 a 20.4 b 13.4 a 18.0 a 17.5 b 22.9 a 

-------------------------LCP (µmolm-2s-1) ------------------------ 

Non-shade control 226.6 a 109.8 a 133.3 a 215.8 a 183.6 a 318.1 a 185.9 a 120.7 a 

Afternoon shade 173.6 a 169.9 a 156.8 a 293.8 a 139.2 a 135.5 b 113.4 b 125.7 a 

Morning shade 149.5 a 128.2 a 120.0 a 231.5 a 129.9 a 178.3 b 171.4 a 130.2 a 

--------------------RD(µmol CO2m-2s-1) ----------------------------- 

Non-shade control 10.5 a 3.7 a 5.8 a 7.0 a 4.5 a 7.5 a 7.2 a 5.9 a 

Afternoon shade 5.8 b 4.6 a 5.6 a 7.7 a 4.5 a 3.2 b 4.4 b 4.2 b 

Morning shade 4.3 b 5.0 a 5.0 a 5.7 a 3.8 a 5.0 b 5.5 b 4.3 b 
† Non-shade control received full sun from sunrise to sun set; afternoon shade received full sun from sunrise to solar noon and 
then get 90% shade; morning shade received 90% shade from sunrise to solar noon and then get full sun until sun set. 
‡Morning measurement was taken from 0900 h to 1200 h and afternoon measurement was taken from 1300 to 1600 h. 
§Means within each column followed by the same letter are not significantly different at the p = 0.05 significance level.
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   a      b     c   

   d      e     f   

Figure 1. Effect of temporal shade on net CO2 assimilation rates (A) in experiment 1; a, b, and c morning measurement at 6,7, 
and 8 weeks after treatment; d, e, and f afternoon measurement at 6,7, and 8 weeks after treatment. Vertical bars indicate + 
standard error of means (n=4) 

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-10

0

10

20

30

afternoon shade
non-shade control
morning shade

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-10

0

10

20

30

afternoon shade
non-shade control
morning shade

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-10

0

10

20

30

afternoon shade
non-shade control
morning shade

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-20

-10

0

10

20

30

afternoon shade
non-shade control
morning shade

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-10

0

10

20

30

afternoon shade
non-shade control
morning shade

PPFD (µmolm-2s-1)

0 500 1000 1500 2000

A
 (

µ
m

o
l C

O
2

m
-2

s
-1

)

-10

0

10

20

30

afternoon shade
non-shade control
morning shade



126 

 

 

           g    h    i     j  
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Figure 2. Effect of temporal shade on net CO2 assimilation rates (A) in Experiment 2; g, h, i, and j morning measurement at 5, 
6, 9 and 10 weeks after treatment; k, l, m, and n afternoon measurement at 5, 6, 9, and 10 weeks after treatment. Vertical bars 
indicate + standard error of means (n=4)                                               
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