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CHAPTER I 

INTRODUCTION 

Beef products currently occup~ an enviable position in the market

place. However 1 considerable consumer resistance to the rising cost of 

beef products as well as competition from plant and 11 synthetic 11 protein 

foodstuffs may well ensue if current practices remain unaltered. 'Thus, 

new methods for handling and fabricating beef carcasses, which would, in

crease :marketing efficiency and enhance the quality of retail beef, must 

be developed .and implimented. To accomplish this task, however, the 

need for more detailed information on the basic biochemical make-up of 

beef muscle and the post-mortem alterations occurring therein, has 

become apparent. 

From the standpoint of market quality in beef 9 an area of primary 

interest centers around the various interactions of the major fibrillar 

protein, :rnyosin, during the development of rigor and the subsequent 

post-mortem changes which occu;r during the 11 aging11 process, From the 

practical point of view, it would be desirable to maintain myosin in 

the 11 free 11 state post-mortem. The importance of this is two-fold: 

1) an improvement in tenderizatio'n and juiciness of retail block beef 

could be obtained without the necessity of prolonged aging and 2) 

:rnyosin acts as the primary emulsifying agent in sausage meat items, and 

as such, has a strong influence on the quality of the final product. 

The objectives of this study were to develop procedures which 

1 
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could be used to evaluate the role of myosin in the various post-mortem 

quality changes occurring in beef muscle, and to investigate the effect 

of various chemicals on the inhibition of myosin ATPase activity. These 

objectives were considered to be pre-requisite to the development of 

methods which could lead to the control of the formation of the rigid 

complex, actomyosin, which occurs post-mortem. 



CHAPTER II 

LITERATURE REVIEW 

The review to follow is divided into the following gene:ra.l areas: 

the structure of myosin; the biological function of myosin and the 

excitation of the contractile system. 

Structure of Myosin 

Molecular Weight 

There has been considerable variation in the reported values for 

the molecular weight of myosin isoiated from rabbit skeletal muscle. 

These values have ranged from 4~0,000 to 860,000 (von Rippel et !J:.., 

1958, and Portzehl~ 1950, respectively). It is now recognized that 

myosin readily 'Uildergoes :;ipontaneous aggregatiqn,·and this phenomenon 

has been the primary reason for the diverse results. Holtzer (1956), 

working with myosin isolated from rabbit skeletal muscle, observed 

that the aggregation of myos::l..n followed a step .. wise process (~.e., 

dimers, trimers, etc.) in which the molecules joined side-to-side. The 

rate of aggregation was found to increase markedly with temperature and 

0 0 occurred about ten times as rapidly at 25 C. as at 4 C. Lowey and 

Holtzer (l.959) conducted further studies on this aggregation reaction 

by investigat::l..on of the type of b9nding involved and whether the 

·reaction coulq be inhibited. Neither metal chelation nor intermole-

cular disulfide bonds were proven to be involved •. Inorganic phosphate 
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was the most effective inhibitor tested. They suggested that the in

hibitory action was caused by anion binding and the subsequent enhanced 

repulsion of · indi victual protein molecules. Connell ( 1960), working 

with cod myosin, found that aggregation of myosin was minimal between 

pH 7.0 and 8,0. He found that the rate of aggregation of cod myosin 

increased at higher ionic strengths, which was in agreement with Lowey 

and Holtzer 1s (1959) observation that the rate was greater in 1.5 than 

in 0.6M KCl. Johnson and Rowe (1961), in their sedimentation and light

scattering experiments with rabbit skeletal muscle myosin, established 

evidence to support the suggestion by Holtzer (1956) that aggregation 

of myosin occurs through an initial side-to-side dimerization. The 

solubility of myosin, which was incubated at 25°c., showed rapid changes 

during this monomer to polymer transformation. A large salt-soluble 

and a smaller water soluble fraction were produced. Since the actin

combi:n,ing activity was confined to the water soluble fraction, they 

suggested that this fraction might correspond to a native subunit. 

Other factors have also been found to influence the molecular 

weight value obtained. In fact, the results from current research has 

indicated that the molecular weight for myosin in any particular experi~ 

ment is dependent upon: 1) the method used in determining the molecular 

weight and 2) the method employed in isolating myosin. 

Using the light scattering technique, Holtzer and Lowey (1959) 

reported a molecular weight of 493,000. Later, as a result of critical 

reappraisal and redetermination, Holtzer ~ al. (1962) obtained a value 

of 525,000. Using this same .light-scattering technique, Brahms and 

Brezner (1961) determined a molecular weight of 440,000. All above 

values were 0btained on myosin isolated from rabbit skeletal muscle by 
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a KC.l salt extraction procedure. Gellert and Englander (1963) obtained 

a molecular weight of 520,000 on rnyosin prepared by ammonium sulfate 

fractionation. 

Using the Archibald approach to sedimentation equilibrium, Kielly 

and Harrington (1960) reported a value of 619,000 for rnyosin isolated 

by ammonium sulfate fractionation, However, Lowey and Cohen (1962) 

reported a molecular weight of 470,000 :t" 25,000 :('or rriyosin isolated by 

KCl salt extraction. Part of the discrepancy between the latter two 

groups was explained by the investigation of.Mueller (1964). He 

demonstrated that the apparent molecular weight is properly.referred to 
! 

the meniscus concentration rather than to the original concentration of 

sample placed in the ultracentrifuge c611, as was done by Lowey and 

Cohen (1962). From his experiments, Mueller (1964) determined a 

molecular weight of 524,000 for rabbit myosin isolated by KCl salt 

extraction. Yet, reassessment of the 619,000 value obtained by Kielley 

and Harrington (1960) did not r~sult in a large change, but did give a 

somewhat lower value of 597,000 (Kielley, 1965). 

Thus, there was sti11 quite a discrepanczy- between values obtained 

using t.he light-scattering technique as we11,fa.s between the values 

obtained by Archibald and light-scattering techniques. However, 

Tominatsu and Palmer (l963) observed that the proper light reflecticm 

for the standarq. Brice-Phoenix cylindrical cell .is quite different from 

the customary correction.· To illustra\e the ;importance of a proper 

reflection correction, Tominatsu (1964) applied the :t·evised correcti.on 

to the Gellert ·and Englander (19.6.3) data, and calculated a molecular 

weight of 600,000. The revised data of Brahms and Brezner (1961) would 

increase the calculated molecular weight value to about 500,000. 



However, the data of Holtzer and Lowey (1959) would not require revi

sion since they used a different kind of light scattering cell. 

Tominatsu (1964) noted that values of .molecular weight were now about 

600,000 for all myosin preparations employing ammonium sulfate 

fractionation, 

In other work on myosin not subjected to the ammonium sulfate 

precipitation step, Tonomura ~ ~. (1966) reported a molecular weight 

of 470,000 - 510,000 which was based on osmotic pressure and low speed 

sedimentation equilibrium. 
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Thus, it appears that myosin isolated from rabbit'·skeletal muscle 

by the KCl salt extraction procedure yields molecular weight values of 

about 500,000, and that myosin prepared by ammonium sulfate fraction

ation has a molecular weight of about 600,000. A possible explanation 

for this difference may be contained in the discussion of Stracher and 

Dreizen (1966). They indicated that myosin prepared by the KCl salt 

extraction procedure usually showed a s;i.ngle, sharp peak on sedimen

tation; whereas, myosin preJ:>aired by amIP.onium s'Lllfate fractionation 

exhibited a discrete leading peak, indicating"'·aggregation of about 5 to 

· 10% of the tota~ p~otein. Thus, ammonium sulfate fractionation seems 

to enhance aggregation of myosin, and this effect presumably accounts 

for the higher (weight average) molecular weight values reported for 

myosin prepared by this method. 

Substructure of M.yosin 

Two approaches he,ve been taken in the study of the physical 

suostructure of myos:i,.ri.. One technique has been to study the subunits 

derived by the use of various dissociating reagents which serve to 
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modify or disrupt the non-covalent bonds involved in the native myosin. 

Various dissociating reagents and conditions have been employed such as 

high concentrations of urea and guanidine hydrochloride, alkaline pH, 

succinylation, acetylation and carboxymethylation •. The last three 

procedures add negatively charged groups to the free amino groups on 

the protein. Urea and guanidine act on water structure, hydrophobic, 

and hydrogen bonding; whereas, alkaline pH acts through electrostatic 

charging of basic residues (Kauzmann, 1959; Gordon and Jencks, 1963). 

The other technique has been concerned with the study of the products 

obtained by controlled proteolytic digestion of myosin. 

Sul:mnits Obtained with Dissociating Reagents 

Kielley and Harrington (1960) reported that the molecular weight 

of each subunit liberated on unfolding of the parent molecule in 5M 

guanidine-HCl was 206,000. Based on the molecular weight for native 

myosin of. 619,000, it was suggested that three polypeptide chains of 

equivalent mass were associated to form one molecule of myosin. These 

workers indicated that each chain was folded into theo<.-helical 

configuration and arranged side-by-side in a linearly extended fashion. 

They pictured the three o(-helices as wound about each other as in a 

three-stranded rope, which was folded over at the end where the molecule 

thickened into a globular head. These researchers later revised their 

molecular weight estimates of myosin and the subunit to 597,000 and 

197,000 respectively, but they did not alter their conclusion that 

myosin was composed of a three-stranded substructure (Kielley, 1965). 

Small et al.. (1961) concluded that urea concentrations, of the order of 

l?.M, were required to obtain complete dissociation of myosin, as judged 



. by ultracentrifuge patterns and gel electrophoresis. The subunit 

molecular weight obtained was 180,000. A slow moving component was 

evident in sedimentation patterns at urea concentrations of 2-SM and in 

.5M · guanidine-HCl; however, this was considered to be a contaminant·, as 

it could be removed by repeated ammonium sulfate fractionation. 

On the other hand, Tsao (1953) using the a.mm,onium sulfate frac-

tionation procedure did recognize a minor component dissociated from 

myosin with 6.7M urea. In addition, Kominz et al. (1959) found a sub-

unit of molecular weight 29,000 which was obtained from myosin by 

bicarbonate treatment at an alkaline pH, which seemed closely related 

to the protein released from myosin by concentrated urea. More 

recently, Dreizen ~ il• (1966and 1967) observed that myosin dissooi

a.ted in 5M guanidine-HCl into a light fraction, which represented about 

10-l.5% of the total protein and had a molecular weight of about 20,000, 

and a heavy component, which had a. molecular weight of about 200, 000. 

Gershman ~ il· (1966) reported that myosin dissociated into a light 

and heavy component at a pH above 9.5. The light a].kali component had 

a molecular weight of 201 200 and represented 11.6% of the total protein. 

Although the light alkali component was monodisperse in sedimentation 

velocity experimei;1ts, it was electrophoretically heterogeneous, usual1¥ 

exhibiting three bands on. cellulose acetate. The heavy alkali component 

indicated a molecular weight of li.30,000 which dissociated in 5M guani-

dine""'.HCl into subunits of about 215,000 molecular weight. 

Oppenheimer et al •. (1966 and 1967) have isolated a low molecular 

weight component from succinylateq myosih which was located in the 

globular head portion of the molecule.· Locker and Hagyard (1967) 

depolymerized myosin by increasing its negative charge through 

·' .. 



acetylation and carbo.xymethylation. Both types of substitution dis

sociated 15% of the total protein into small subunits, while the main 

structure of the molecule remained intact. Tpese subun:i,.ts were 
. . 

separated by preparative gel electrophoresis and were found to consist 

of three components in comparable amoi,mts, with molecular weights of 

17,000, 19,000 and 20,000. Two of these subunits were deter.mined t;,o 

have t;,heir origin in the head of the myosin molecule, and it was 

suggested that the third was also present. 

9 

As pointed out by Perry (1967), the thickened portion of the myosin 

molecul,e could arise either from a folding back and more randomized 

arrangement of the same polypeptide chains of which the rod is composed 

or from independent shorter chains which interact with the main chain 

system at this point. In the former case, no minor component would be 

observed on dissociation; whereas in the latter it should be apparent 

in the ultracentrifuge •. Thus, the recognition of a lower. moiecular 

weight component, :i.n addition to the major subunit dissociated from 

myosin, indicates that the Kielley and Harrington (1960) model needs 

revision. 

S1.1;bunits Obtained l;:,y Proteol;tsls 

Gergely (1950) demonstrated that tryptic digestion converted myosin 

into a soluble form without the loss of ATPase activity. It was found 

that short tryptic digestion of myos:i,.n hydrolyzed the molecule into two 

major fragments, which were termed light meromyosin (LMM) and heavy 

meromyosin (HMM) by Szent-Gyor~i (1953). The HMM retains the ATPase 

activit;,y and actin~combining property of native myosin, and it is 

soluble at low ionic strengths. The LMM fragment possesses the same 



solubility properties as native myosin, but possesses no biological 

activity (Szent-Gyorgyi, 1960). In the electron micrographs of Rice 

(1964), HMM appeared tadpole-shaped, being qomposed of the globular 

10 

head region of the myosin molecule plus a rod-shaped tail segment. The 

LMM fragment was observed to be rod-shaped. The approximate molecular 

weight of HMM was 350,000 and for LMM, 150,000; however, the size of 

each was somewhat dependent upon the conditions of digestion 

(Gibbons, 1968). 

Studies of the kinetics of digestion (Mihalyi and Harringtonj 1959; 

Lowey and Cohen, 1962; Young et. al., 1964) indicated that the 

proteolytic process consists of two, simultaneous, first-order reactions. 

The fast reaction produces the meromyosins and results in the cleavage 

of 60-90 peptide bonds per molecule. This reaction is 8-10 ti.mes faster 

than the slow reaction which, upon prolonged digestion, accounts for the 

hydrolysis of 3 to 4 ti.mes as many bonds as the fast reaction. Thus, 

the fast reaction is associated with the hydrolysis of the region link-

ing the meromyosins and the slow reaction rate represents the simultane-

ous secondary degradation of the light and heavy me;romyosins. During 

the meromyosin formation approximately 5 to 10% of the myosin nitrogen 

is converted to non-protein nitrogen, which is composed o.f peptides 
" 

similar to t1iose obtained by complete d;i.gestion of myosin and is 

presumably derived, in part, from the enzyme ... sensitive area in the rod 

portion of the molecule (Perry, 1967). 

Even though trypsin (Szent-Gyorgyi, 1953), chymotrypsin (Gergely 

~ il·, 1955), and subti:l..isin (Middlebrook, 1959) are proteolytic 

enzymes of differing specificities, ther produce similar LMM and HMM 

fragments. These enzymes appear to induce a transverse cleavage through 
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the same region of the rod-shaped tail of the native myosin molecule 

during the early fltages of digestion. This observation led Mihalyi and 

Harrington (1959) to sti,ggest that the proteolysis-sensitive region 

resulted from an unfolded polypeptide segment embedded within the 

predominantly oc.-helical rod of myosin. More recently, Segal et il· 

(1967) found evidence that this -unusual sensitivity to enzymatic attack 

is primarily dependent On the presence of an appreciable number of 

praline residues, which are concentrated within a narrow belt of the 

rod-like tail portion o~ the molecule, By virtue of their stereo

chemistry, these residues would tend to interrupt the folded o<.":"helical 

conformation common to each polypeptide chain within.the myosin·tail 

segment and render this region mo.re susceptible to proteolytic attack. 

Nevertheless, Lowey et!!.· (1967) suggest an alternate explanation 

for the formation of the meromyosins based on experiments with IMET 

[water-insoluble copoly-(maleic acid-ethylene)-trypsii}. They suggest 

that the central region of the myosin molecule is OC'-helical, but that 

it has a specific amino acid sequence. Cited as evidence for this model 
.. . 

were the finding$ of Kominz et .al. (1965), where papain digestion of 

myosin resulted.in the direct fomiation of a subfragmentfrom HMM • 

.. Also, removal of that part of the myoflinmole~ule responsible for the 

fast initial uptake of alkali in the pH-stat was not accompanied by a 

corresponding .increase in helix content, which might be expected if an 

amorphous region had been degraded. Similarly, the.LMM molecules from 

early digests have t~e same helix content as shorter LMM molecules which 

have had pa.rt of the enzyme-sensitive region digested away. 

Thus, there is agreement that a region in the intact myosin 

molecule between IMM and HMM is unusually sensitive to proteolysis; 
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however, the exact nature of the proteqlysis remains to be clarified. 

Further studies have been madei on the utM a:nd HMM fragments in 

order to gain insight into the structure of myosin, Cohen a.nct Szent

Gyorgyi (1957) found that the LMM component of myosin could .be further 

fractionated by alcohol treatment. About ?CJ/, of the total protein 

resists alcohol denaturation and redissolves in 0.6M KCl after pre

cipitation with alcohol. This soluble fraction was called light 

meromyosin fraction 1 (LMM Fr. 1) • It ha·s an ol-helical content 

approaching 100%. LMM and LMM Fr, 1 are similar in size and shape and 

sediment a.s single peaks, individually, as well as when combined. In 

addition to LMM Fr. 1, LMM contains other loosely associated polypeptide 

.f,'ragrnents, possibly derive~ from other parts of the myosin molecule, 

which are denatured by the alcohol treatment (Szent-Gyorgi ~ g., 1960). 

Lewey and Cohen (l962) concluded that LMM Fr. 1 is the unique o<..-helical 

fragment of myosin. However, the relationship of LMM Fr. 1 to LM.M is 

not clear since it can not be obtained without. alcohol fractionation. 

By further digestion of HMM with trypsin (Mueller, 1965) and with 

chymotrypsin (Jones and Perry, 1966), it can be degraded into two major 

components. These components have been termed subfragment-1 and sub

fragm.ent-2. Subfra.gment-1 constitutes the globular head region of the 

pa.rent myosin molecule, which represents 55 to 60% of the HMM mass, and 

has a m,olecular weight of a.bout 100,000. The enzymatic and actin-

. combining sites of myosin and HMM are localized within this subfragment ..... 

1. Subfragment-2 represents the rod-shaped tail segment of HMM, This 

subfragrnent-2 has also been. called the 3S component by Lewey et al. 

(1967) and it appears similar to the 3S component obtained by Kominz 

and Lewis· (1964). Subfragment-2 was found to be 8o% o(-helical with a 
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molecular weight of 61,000 (Lowey et al., 1967). The molecular weight 

of s~bfragment-1 and 2 are influenced to a great extent by the degree .of 

digestion used for its preparation. In this regard, the preparation of 

subfragrnent-1 with pa.pa.in rather than trypsin or chymotrypsin seems 

preferable due to the shorter digestion time which would reduce random 

degradation. (Weeds and Baker, 1968). 

The question as to whether rnyosin is composed of 2 or 3 identical 

subunits seems to have been clarified by the electron microscope studies 

of Slayter and Lowey (1967). Their findings suggest that the major 

portion of the :myosin molecule consists of two polypeptide chains. A 

significant finding was that the globular head region of rnyosin con-

tained two subupits. These subunits represent the HMM subfragment~l 

portion qf the rnyosin molecule; however, whether these two subfragments 

are identical remains uncertain, 

Dimensions of the Myosin Molecule 
1,. 

From electron micrographs 1 rnyosin was observed to be a rod-shaped 

:molecule which thickened to a globular 11 head11 (Rice, 1964). The overall 

length of the molecule is about 16ooi with a diameter of 2oi for the 

rod portion of the molecule and a diameter of 30~ to 409>.. for the 

globular 11 head11 portion. The reported values for the length of the 

light merornyosin portion of the molecule fall into the range of 600-

7oo'A. The length of the heavy meromyosin portion of the molecule is 

· about 600~,. with the globular "head" representing about 2ooi of this 

distance (Kielley, 1965). 
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Conclusions 

The majority of the evidence on the subunit structure of rnyosin 

indicates that the native rnyosin molecule is composed of two supercoiled 

o<.-helical strands which extend along the length of the rod portion of 

the molecule. Each peptide chain terminates in a separate globular 

conformation. A schematic representation of the rnyosin molecule is 

presented in Figure 1. Further investigation is required to determine 

the significance of the subunits obtained from the globular portion of 

the rnyosin molecule by dissociating agents since the biological activity 

of rnyosin is lost by their use. Yet, the work of Weeds and Baker (1968) 

indicates that treatment of HMM subfragment-1, pl'.'epared by digestion of 

rnyosin with pa.pa.in, with O.lM Naf03 results in a 1.4S peak. This 

suggests that the low molecular weight subu,nits detected by dissociating 

agents are located in the subfragment-1 portion of the molecule. 

Biological Function of Myosin 

Two significant aspects of rnyosin are necessary for an under-

standing of the biological function of rnyosin. The first area of 

consideration is the formation of the rnyos:Ln filament; and hence, its 

localization within the muscle cell. The second area concerns. the 

involvement of myosin with other fibrillar proteins which pertains to 

its role in the muscle contraction-relaxation cycle. In order to expand 

on tnese topics, they will be considered separately. 

Formation and Localization of M.yosin (A filament) within the Muscle Cell 

Allen and Pepe (1965) observed a morphological correlation between 

large polysomes and the appearance of rnyosin in developing muscle cells 
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from the chick emb:cyo. Subsequently Heywood et al. (1967) from their ---
study on embryonic chick muscle tissue, identified a class of very large 

polyribosomes, containing 50-60 ribosomes, as those which synthesize 

myosin. From the size of the polysomal cluster, they inferred that the 

polypeptide chain being synthesized had a molecular weight of 170, 000 to 

200,000. This is of interest because the subunit molecular weight of 

· myosin has been reported to be similar to this value. Thus, "t,hese 

findings dispell earlier concepts which postulated that the origin of 

the myofibrils was from pre-existing cell organelles. 

·The next stage after synthesis involves the assemblage of myosin 

molecules into the A filament. Hu,xley (1963) observed that filaments, 

heterogeneous in length, formed from~,-pure myosin at ionic strengths 

of O .1 to O. 2 were remarkably similar to the A filament of the myo

fibril. From the dimensions of these filaments, he concluded that 

they clearly represented aggregates of myosin molecules. He.suggested 

that the myosin filaments were formed by the scheme illustrated in 

Figure 2. · According to th~s scheme, the molecules of myosin are held 

together by interaction betwe~n the tail-like (LMM) portion of the 

mol~cule in such~ way that the globular heads (HMM) project out from 

the filament, ln the center of the filament the direction of orien-

ta.tion of the molecules is reversed to give the characteristic smooth 

central shaft. Thus, the polarit! of the myosin molecules is reversed 

on ~ither side Qf the center., but all the molecules on the_sa.m.e side 

have the same polarity. In the studies on the formation of synthetic 

myosin filaments by Josephs and Harrington (1966), it was folj.!ld that at 

pH values of 6.8 to 7.1 and ionic strengths greater than 0.35, myosin 

was present in sols as the monomer. As the ionic strength approached · 



- 1 --
l 

} f 

} f 
J { 

} 1 { l f 
l J { 

t 
Figure 2. Schem,e Illustrat:i.ng the Aggregation 

of Myosin Molecules to Form the A 
Filament (Huxley, 1963) 

17 



0.3, aggregates formed and lowering the ionic strength further increased 

their size. In the pH range 6.2 to 7.3, they observed three classes of 

polymers with s0 2. 0 values of 1100S, 330S, and 180S when the ionic 
. ,w 

strength was in the range of 0,2-0.3. Since both the pH and ionic. 

strength influenced the size of the polymer formed, this suggests that 

the specific ionic environment in the developing muscle cell could be a 

factor in determining the final length of the native thick filament. 

It therefore seems very probable that the A filament is formed by a 

process similar to myosin aggregation. 

An interesting area of research suggested by these findings would 

be to investigate the use of various chemicals on the dissociation of 

this myosin A filament at physiological pH and ionic strength. This 

could be studied by the use of the analytical ultracentrifuge as well 

as by other techniques. This ~ind of basic information could have a 

definite bearing on developing methods for enhancing meat quality 

(tenderness) and the emulsifing capacity of myosin. 

Although this review has been limited to the formation of the A 

filament, additional steps are involved in obtaining the final orderly 

array of filaments within. the myofibrils of skeletal muscle. For a 

more detailed discussion of the stages involved in myofibrillogenesis, 

the reader is referred to the review of Spiro and Hagopian (1967). 

In regard to the localization of the A filament within the myo-

fibril, a brief review of the microstructure of the myofibril is in 

order. Each skeletal muscle cell (fiber) is composed of many myofibrils 

which serve as the contractile machine. The myofibrils are character-

ized by regularly repeating units, sarcomeres, which give rise to the 

striated appearance of skeletal muscle fibers as seen in a longitudinal 
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section with the electron mic;:roscope. The sarcomere is defined as that 

portion of a myofibril from one Z line to the next Z line and :represents 

the smallest functional contractile unit within the myofibril. All 

sarcomeres are further subdivided into the A and I bands. Other bands 

such as the M-line, L zone and H zone may also be present a.s illustrated 

in Figure 3. The A band contains the thick (my0sin) filaments plus 

partially overlapping thin (actin) filaments,. The thin, actin, fila

ments are connected to the Z lines and course through the I band into 

the A band. In the central portion of the A band, the thick filament 

exhibits a narrow zone, referred to as the L line, which is of lower 

electron density. This results from the absence of both the thin 

filaments which terminate at this line, as well as from the absence of 

cross-bridges (Spiro and Hagopian, 1967). The mid-portion of the pseudo 

H zone or H ~one, the M-line, is more electron dense because of the 

presence of cross-bridges, known as M-line bridges, which interconnect 

the thick filaments from opposite sides of the A band in the center of 

the sarcomere (Pepe, 1966). 

Muscle Contraction-Relaxation Cycle· 

The function of myosin is 9oncerned with its ATPase activity and 

interaction with actin during muscle contraction. The role of rnyosin 

has been studied from both a morphological and biochemical point of 

view in an attempt to understand the mechanisms and chemical rec3.ctions 

involved. 

Morphological Stuciies 

The sliding-filament theory is the most widely accepted description 
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of the mechanism by which striated muscle contracts (Huxley and Hanson, 

1954; A. F. Huxley and Hiedergerke, 1954). This theory- is based on 

observations which have shown that the A bands remain constant in length 

while the I bands either shorten or lengthen depending on whether the 

sarcomere length is decreasing or increasing. Corresponding changes 

were observed in the width of the H zone. From these observations it 

was concluded that the filaments remained at least approximately constant 

in length, and simply slid past each other during changes in muscle 

length (Huxley, 1965), According to the sliding-filament theory, 

contraction results from the cyclic formation and dissociation of cross

bridges between rnyosin and actin filaments. The splitting of ATP, 

located on the cross-bridges, is believed to be linked to the develop

ment of a relative force between the rnyosin and actin filaments, caus

ing the aotinfilament to slide past the rnyosin filament (Huxley, 1965). 

The tension generated by the cross-bridges along a given thick (rnyosin) 

.filament adds up in parallel, so that the tension generated by the 

system as a whole varies according to the extent of over],.ap of the 

filaments, and also. according to the number of cross-bridges which ' 

have time to attach to th.e active sites of the actin molecules along

side the;rn (Huxley, 1967). The significance of the reverse polarity 

structure of the· A filament becomes apparent in order that the force 

generated by the cross-bridges acts in the appropriate direction. That 

is, all elements of force in one half of the A band must act in one 

direction and those in the other half must act in the reverse direction, 

so that the actin filaments are moved toward the center of the A band 

from each side. Vi/hen the muscle is no longer activated, the cross

bridges detach from the thin filaments, which are then free to be drawn 
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out of the A bands again, and the muscle thereby is re-extended to its 

resting length (Huxley, 1967). 

The way in which the interaction of actin and myosin at the cross= 

bridges could produce movement has been a matter of some conjecture. 

Pepe (1967) proposed that the HMM: portion of the myosin molecule must 

bend back from the filament axis and form a small angle with the actin 

filament. In order to do this, the enzyme-sensittve region in a 

random-coil conformation serves as a hinge between the meromyosins 

permitting motion of the HMM: subunit. Alternatively, Lowey et al. 

(1967) suggested that if the o(-helical coiled-coil conformation 

extends throughout the rod-like portion of myosin, this entire part of 

the molecule would act as an elastic element with uniform bending. The 

findings of Slayter and Lowey (1967) that the two globular subunits 

(subfraction-1) of myosin have the potential for a high degree of 

flexibility may well prove to be .involved in the movement of the cross-

bridges. Although the exact mechanism is still vague, these workers 

believe that the cross..;.bridges physically move the thin filament along. 

In contrast, Metherell ( 1967) suggests that instead of the force for 

movemept being transferred through the cross-bridges, it is transferred 

through viscous shearing in the sarcoplasmic fluid that surrounds the . 
filaments. The viscous shear:Lng can be. set up by gradients in inter= 

face tepsion .caused by the release of energy at the cross-bridge contact 

sites •. Thus, it seems that further experiments must be conducted before 

this question is settled, 

Biochemical Studies 

The complex, actomyosin, formed by the interaction of myosin and 
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actin in the presence of ATP has received considerable attention in an 

attempt to el~cidate the chemical reactions associated with the physical 

events described by the sliding-filament theory. The nature of the 

complex and the precise effects of ATP upon it can be broadly 

distinguished into two groups based on ionic strength (Perry, 1967). 

At high ionic strength (greater than 0.3), the interaction results in 

the formation of a viscous complex, actomyosin. The addition of ATP 

results in a number of changes which have been interpreted as the 

dissociation of actomyosin into actin and myosin. This interpretation 

is based on the findings that viscosity and light-scattering values 

decrease to those equivalent to the additive contribution of the two 

proteins. The fast sedimenting actomyosin, in the presence of ATP, 

gives a peak in the ultracentrifuge which sediments at the same rate 

and has the same distribution as pure myosin. Although ATP brings 

about dissociation, its hydrolysis is not necessary since dissociation 

also results from the addition of inorganic pyrophosphate. At low 

ionic strength (0.05~0.15) the actomyosin complex, like myosin, is 

insoluble. The addition of ATP to the actomyosin suspension results 

in synaeresis, becoming denser and settling rapidly. This effect is 

known as superprecipitation which was defined by Szent-Gyorgyi (1947) 

as a reaction in which the llabundantly hydrated actomyosin molecules 

become a shrunken and dehydrated particle". Hydrolysis of ATP is an 

essential requirement for this response since inorganic phosphate does 

not cause superprecipitation. Under certain conditions after the 

addition of ATP and to a lesser extent with other nucleotide tri

phosphates, but not with pyrophosphate, an immediate reduction in 

viscosity of the suspension occurs, terr:q.ed clearing by Spicer (1952), 



which is then followed by superprecipitation. Both ATP and Mg++ are 

specific requirements for the clearing phase to occur, although its 

appearance also depends on ionic strength and the presence or absence 

of relaxing factors (Maruyama and Gergely, 1962a). Physicochemical 

measurements have shown that the actomyosin is dissociated into 

F-actin and myosin during the clear phase and that the ATPase activity 

of the system is low during this stage, but rises sharply with the onset 

of superprecipitation (Maruyama and Gergely, 1962b). The superpreci

pitation and clearing reactions of actomyosin gels in vitro are 

considered analogous to muscle contraction and relaxation in Yi)[2_ with 

the obvious exception that there is greater structural integrity of 

actomyosin .1.£ ~· 

As previously mentioned, the biologically active sites of myosin 

are associated with the HMM portion of the molecule and localized on 

subfragment-1. The weight of evidence now favors the existence of 

two different sites responsible for biological activity. The conclusion 

that different sulfhydryl residues in myosin are involved in ATPase 

activity and in actin binding came from the findings that the actin

combining activity of myo$in could be retained even though the ATPase 

activity was destroyed (Stracher and Dreizen, 1966; Perry, 1967). 

Likewise in actin, Bailin and Bara.ny (1967) have concluded that 

different parts of the actin molecule are responsible for the actin,.. 

actin interaction and the actin-myosin interaction. In addition, it 

appears .that these different sites are associated with sulfhydryl 

groups. 

The enzymic properties o,f myosin are altered by its interaction 

with actiri-.· In the apsence of actin, myosin ATPase activity is 

!·•, 



stimulated by Ca+t, but is inhibited by Mg++ regardless of the ionic 

strength of the incubation sy.stem. However in the presence of actin, 

myosin ATPase is activated by Mg+t in low ionic strength incubation 

media, termed actomyosin ATPase. 

Several reports indicate that Mg-ATP is the moiety that controls 
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dissociation of actin and myosin by altering the critical level of Ca+t 

needed for association, however, the mechanism involved is a matter of 

conjecture (Gergely, 1966). From the results of Davies (1965), it is 

now clear that ATP breakdown occurs during contraction, and therefore 

is the source of energy driving contraction. The source of ATP for 

this.reaction comes primarily from the resynthesis of ATP by the 

creatine kinase and myokinase enzyme systems. In addition, studies by 

Barany et al. (1966) have shown that the bound ADP of F-actin is not . -.-.·--..-, ·. 

involved in its interaction with myosin to form actomyosin, thus 

dispelling the concept that the bound nucleotide of actin was a source 

of energy for contraction. However, Hayosni (1967) concludes that 

the nucleotide of actin is necessary to bring about contraction in the 

actin-myosin interaction, but its specific role in the p:J;Ocess is 

uncertain. 

Evidence for the functional relationship between ATPase activity 

and contraction has been obtained in several studies. Gergely & al. 

(1965) have reported that myosin from red skeletal muscle has a lower 

specific ATPase activity than myosin from white skeletal muscle of the 

same.species. This was in keeping with the ·slower contraction-
. . 

relaxation cycle of red muscles versus white muscles. Barany (1967) 

has shown that the ATPase activity of actomyosin and myosin wa~ 

approximately proportional to the shorte.ning speed of the muscle. Thus, 
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it appears that hydrolysis of ATP and contraction are tightly coupled 

processes allowing contraction to be controlled through the enzyme 

center. In vitro studies have shown that when the enzymic interaction 

between actin and myosin is inhibited, contraction is also inhibited 

(H. Weber, 1964). Certainly from the standpoint of the palatibility 

characteristics of muscle as food, improvement in tenderness and 

juiciness could well result from the development of methods to maintain 

myosin and actin dissociated post-mortem. In considering this aspect, 

a fruitful approach to the problem would be to investigate methods of 

inhibiting myosin ATPase activity. 

Role of the Other Myofibrillar Proteins 

In recent years additional myofibrillar proteins have been found 

to be involved in the muscle contraction-relaxation cycle •. A perplexing 

question arose from the results of Perry and Grey (1956) and A. Weber 

and Winicur (1961) which was manifest in the variability of response 

of actomyosin preparations to Ca++. While superprecipitation of natural 

actomyosin (myosin B) was consistently inhibited by chelating agents, 

synthetic or reconstituted actomyosin (prepared from the separately 

purified proteins) showed erratic behavior. Subsequently, this 

question was resolved by the finding that if actin was contaminated by 

another protein or if a purified fraction of a protein resembling 

tropomyosin ( termed unati ve tropomyosinll) was added to the preparation 

made with pure actin, the presence of Ca++ in the medium was required 

for superprecipitation to occur (Ebashi and Ebashi, 1964). Since the 

presence of this protein factor in actomyosin preparations caused 

clearing upon the addition of EGTA [ethylenedioxbis ( ethyleneamino) 
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tetraacetic acicf}, the terms EGTA sensitizing factor, calcium.

sensitizing factor, and relaxing protein have all been used in reference 

to this protein. Thi$ native tropornyosin was found to consist of two 

proteins, tropornyosin and troponin (Ebashi and Kodama, 1966). In 

addition, it was found that both proteins were required to make acto

rnyosin sensitive to Ca++. Purified tropornyosin (tropornyosin B) as 

prepared by Bailey (1948) was found to be devo:i,d of calcium.-sensitizing 

activity. The observation that calcium is not required for super

precipitation of actomyosin in the absence of "native11 tropornyosin 

(Schaub~ al., 1967) has been used as an argument against the direct 

role of calcium ion in cross-bridge attachment as suggested by Davies 

(1963). In addition, Schaub et al. (1967) fourid that the addition of 

11 native 11 tropornyo1;3in to purified actornyosin modified its enzymic 

properties by inhibiting ca++-.activated A'l'Pase activity while leaving 

Mg++-activated activity intact. Yasui et al. (1968) found that troponin 

was a potent calcium binding substance, possessing high affinity 

calcium-binding sites which were not present in tropornyosin. They 

hypothesized that the binding of Ca++ to these sites inactivates 

troponin and that this is the mechanism whereby Ca++ activates rnyo

fibrillar contraction. The protein termed crude metin, which consists 

of tropornyosin plus a minor component metin, appears to be analogous to 

11nati ve11 tropornyosin, or tropornyosin combined with troponin (Peachey, 

1968). 

Another protein which can be isolated from usual actin preparations, 

called oC-actinin, was found by Eba1;3hi and Ebashi (1965). They found 

that it was similar to actin in amino acid composition, and it promoted 

the superprecipitation of purified actin ~nd myosin, This effect was 



originally interpreted to mean that cx-actinin was required for 

contractility. Other investigations have shown that o<..-actinin is 

not required for contraction although it cap cause superprecipitation 

under specific conditions (Briskey, 1967), 

The limitation of F-actin particle length to a range similar to 

that at which they occur in vivo has been attrib~ted to another protein, 

called e-actinin, with an amino acid composition like that of actin 

(Maruyama, 1965). 

Thus, muscle contraction represents a complex scheme which may 

well contain other proteins unknown to date. 

Excitation of the Contractile System 

The sarcoplasmic reticulum network is the system responsible for 

conducting a nervous impulse to the muscle fiber which results in 

excitation of the contractile system. The terminology and location 

of the sarcoplasmic reticulum complex is illustrated in Figure 4. The 

junction of the transverse tubules and the lateral sacs or vesicles of 

the longitudinal tubules, called triads, occurs at the A-I junction of 

the sarcomere in mammalian muscle; whereas in frogs, fish and reptiles, 

they occur at the Z band (Bendall, l966). It is now well established 

that the transverse tubules are continuous with the cell membrane 

(sarcolermna), and this provides the means by which the nerve impulse 

is conducted into the interior of the muscle fiber (Peachey, 1968). 

A dense material has been found to be located in the lateral sacs of 

.the sarcoplasmic reticulum of frog and fish body muscle, however, in 

most other muscles it is spread throughout the sarcoplasmic reticulum. 

It has been suggested that this dense material contains calQiurn-binding 
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sites (Peachey, 1968). Continuity of the transverse tubules and lateral 

sacs has never been reported. In fac;:t, there is a space of about 25011 

separating the membranes of the two systems (Rostgaard and Behnke, 1966), 

The results of Winegrad (1968) have been interpreted to mean that while 

the terminal sacs are the site of calcium storage and release, the 

longitudinal tubules are the site of rapid calcium uptake, 

The mechanism of calcium release and uptake has been the subject 

of considerable research. Ebashi (1965) cites two plausible mechanisms 

for the "Ca-release system11 • One mechanism assumes that the release of 

calcium is due to leakage of stored calcium from the lateral sacs as 

free ions, resulting from an increase in the permeability of the 

vesicular membrane to calcium ions, According to this mechanism, the 

release and uptake of calcium are mediated by different mechanisms 

analogous to the active and passive transport system of sodium. The 

other mechanism is to assume that the site of calcium release is the 

same as that of calcium binding. In this case, calcium release is a 

result of the loss of binding capacity of the site for calcium. 

An active transport system is involved in the uptake of calcium 

since it is transported against a concentration gradient. A current 

view is that the mechanism of c;:alcium uptake consists of the trans ... 

portation across the membrane of the longitudinal tubule by the forma

tion of a Ca-carrier complex within the membrane which is specific for 

calcium. The hydrolysis of ATP occurs either for the formation of this 

complex or for the release of calcium from this complex and resu,lts in 

the accumulation of calcium within the longitudinal system (A. Weber, 

1966). 

Calcium accumulation by the reticulum is sufficiently rapid to 
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account for the decrease in calcium concentration from -10-6M to 10-7M 

during the period of relaxation. In addition, the only well documented 

instance of calcium reversible relaxation by reticulum is relaxation by 

calcium removal rather than by the presence of a soluble relaxing 

substance (A. Weber, 1966). 

Sununary 

To establish a degree of continuity to the previously reviewed 

structures and functions, the following consists of a description of 

the muscle contraction-relaxation cycle. The nervous impulse, a wave 

of depolarization, is conducted via the transverse tubules within the 

muscle fiber •. When the action potential arrives at the triads, Ca++ 

is released, either by a change in the permeability of the membrane 

of the lateral sacs or by an inactivation of the Ca-binding sites, 

and diffuses into the sarcoplasm. When the intracellular Ca++ level 

increases to about 10-6M, the contraction response is initiated. Once 

in the sarcoplasm, Ca++ interacts with Hnativeu tropomyosin 

(tropomyosin + troponin) which results in inactivating the relaxing 

effect of these proteins. This activates the enzymic centers located 

on the projections from the thick filament, HMM subfragment.-1 portion 

of the myosin molecule, resulting in Mg++ activated hydrolysis .of ATP. 

At this point, it will be recalled that pure myosin ATPase activity 

is activated by Ca++ and inhibited by Mg++ at low ionic strengths. 

However, it is believed that it is the actomyosin type ATPase activity 

(which is activated by Mg++ as well as by Ca++ at low ionic strength 

in vivo) which is responsible for cleaving ATP. -- ++ The reason that Mg 

is considered to be the major participating divalent cation in vivo 
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is that concentrations of 10-JM Ca+!- rather than the observed require

ment of ,-,10-~ would be necessary to produce significant enzymic 

activity (Perry, 1965). The mechanism by which actin is able to confer 

Mg+!- activated properties to the enzymiG active site i£. vivo is not 

clear, however, it may well be associated with the interaction of Ca+!-

with the 11 nati ve11 tropomyosin. At any rate, the hydrolysis of ATP 

results in a cross-bridge between actin in the thin filament and HMM 

subfragment~l of the myosin in the thick filament. Due to the opposite 

polarity of the projections in the thick filament, the thin filaments 

slide towards the center of the sarcomere (indicated by the decrease 

in the H zone) by a series of make and break cross-bridges. The 

synchronization between sarcomeres within the same myofibril occurs 

from theactin molecules on one side of the Z line having.a reverse 

polarity to the act in molecules on the other side (Huxley, 1963) • The 

exact nature of the bonds fanned in the .interaction of actin with the 

actin-combining sites of HMM subfragment-1 is unknown, however, they do 

possess some electrostatic character sinGe the binding constant and 

rate of fom.ation is reduced with increasing ionic strength (Perry, 

1967) • Upon removal of the stimulus, Ca+!- is actively removed from the 

sarcoplasm to the longitudinal tubules of the sarGoplasmic reticulum. 

The level of Ca+!- falls to the 10-?M which results in the 11native11 

tropomyosin factor again being active which inhibits enzymic activity. 

The ATP levels are rapidly returned to nom.al (rJ10-3M) primarily from 

the creatine kinase system. ATP then exerts its llplasticizing effect 11 

allowing the thin filaments to freely extend to their original 

positions in the sarcomere; hence, relaxation. The dual function of 

ATP (that is, if hydrolyzed, contraction occurs and if not hydrolyzed, 
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relaxation occurs) comes from the fincUngs that interaction inhibitors 

only exert dissociating or relaxing effect on actomyosin in the presence 

of ATP (H. Weber, 1964). 

To be sure, this scheme is by no means complete in its minute 

detail. Yet, an understanding of the events now known provides the 

fundamental knowledge on which improved approaches can be taken in the 

study of the changes _in myofibrillar proteins post-m?rtem, 



CHAPTER III 

ISOLATION OF MYOSIN 

Due to the complexity and number of biochemical determinations 

made on each steer, it was not possible to study more than one animal 

at a time. The steers used in this study were obtained from the 

Oklahoma Agriculture Experiment Station. The criterion for selection 

was that the steers be of the Hereford breed and approximately 408 kg. 

live weight. 

Feed and water were withheld for 24 hours prior to slaughter. 

Care was taken to avoid any violent handling of the steers in order to 

prevent any undue stress or excitation of the animals. 

The longissimus dorsi muscle from the right side was excised as 

rapidly as possible after the steer was bled. After the muscle was 

removed, it was taken to the cold room where all subsequent operations 

0 were conducted at O C. The muscle was freed of surrounding fat and 

epirnysial connective tissue, then minced twice through a 3 mm. plate in 

a stainless steel grinder. Approximately 20 minutes were required to 

obtain and prepare the muscle sample. A random 500 gm. aliquot of the 

muscle mince was taken for the isolation of myosin. The pH of the 

muscle was also determined at this time. This was accomplished by 

mixing 50 ml. of glass distilled water with a 10 gm. aliquot of the 

minced muscle. The pH was determined with a Coming rriodel 10 pH meter. 

The purpose of obtaining the pH reading was to provide some measure of 
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the rapidity of sample preparation post-mortem. The pH values obtained 

were in the range of 6.89to 6.95 which indicates that sample prepa~ 

ration was accomplished before a large reduction from in~ pH 

(assuming 7.0) had occurred. In addition, there was no visual 

indication of "abnormal'1 muscle characteristics (i.e. bruises, dark 

cutter). 

Myosin was isolated from the minced.muscle by the salt extraction 

procedure outlined in Figure 5. This procedure is a modification of 

the one developed by Szent-Gyorgyi.(1943). The average yield of myosin 

per 500 gm. aliquot of minced muscle was approximately 4 gm., after 

recrystallization. The purity of the myosin preparation was assessed 

by ultracentrifuge sedimentation, electrophoresis, and Mg-activated 

ATPase activity which will be discussed in detail in the subsequent 

chapters. 
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1. E:ictract minced muecle with three volumes of cold buffer: 0 • .3M KCl + 
Q.09M KH2Po4 + 0.06M K2Hro4;. pH 6~5. Stir for 1.5 min. and extract 

2. 

is obtained by centrifugation at J0,000 x G for 10 min. Supernatant 
is strained through cheese cloth to remove fat, 

! 
Muscle extract is dialyzed for 18 hr. without stirring against 10 
volumes of distilled water to an ionic strength :of 0.05. ·Ad<;i .300 
ml. of distilled water to dialyzed extract and centrifuge: 10,000 
x G for 10 min. [ 

,J, Jt 
.3. Discard supernatant .:t'luid. Dissolve precipitate in 

6. 

7. 

"' Dilute supernatant.fluid with 
distilied water to 4 liters. 
Add water slowly with rapid 
stirr{ng. Centrifuge: 10,0QO · 
x G for 15 min. 

J; 
Discard supernatant fluid. 

+ .. 
Dilute supernatant fluid with 
dist:i,lled water to .3 liters. Add 
water slowly with rapio. stirring. 
Centrifuge: 10,000 x G for 15 min. · . . r . 
.. ·~ · ... 

Discard supernatant .fluid. 

buffered 2M KCl (pH 6.8) to 
a final volume of 400 ml., 
ionic strength: 0,5. 

J, 
Add .300 ml. of distilled 
water while stirring rapidly, 
then centrifuge: 10,000.x G 
for 15 min •. . I . . .··. •. .·. i. 
Discard precipitate. 

Dissolve prectpitate by the 
addition of 75 ml. of 2M KCl 
and water to .300 ml. 
Centrifuge: .10,000 x G for 
15 min. 

I '1, 
Discard precipitate. 

R t llJ t• . T k ecrys a· iza ion: a e 
re.sultant precipitate and 
repeat steps 5 and 6. 

80 Dissolve final recrystallized myosin in 0~5M KCl. 

Figure 5. Isolation of Myosin from Bovine Muscle 



CHAPTER IV 

ULTRACEWTRIFUGE SEDIMENTATION STUDIES ON BOVINE MYOSIN 

Int rodu.ction 

In assessing the purity of a particu.lar protein isolation, one of 

the most commonly used methods is to determine its sedimentation 

characteristics in the analytical ultrac;:entrifuge. Accordingly, the 

objectives of this study were to determine the pu.rity of the myosin 

preparation as isolated by procedures refined in our laboratory and 

to define suitable ultracentrifuge conditions for evaluating the 

sedimentation characteristics of bovine myosin. 

Materials and Methods 

Isolation of M.yosin 

Myosin was isolated according to the procedure outlined in Chapter 

III. After the re~rystallization step, the myosin preparation wa.s 

dissolved in 0.5M KCl and dialyzed against 50 volumes of 0,5M KCl -+ 

O.OlM Tris""'.HCl bu.ffer (pH 7.1) for 12 hours. Three aliquots of the 
. . 

dialyzed myosin were diluted to a final protein concentration of :, mg. 

per ml. by_the addition of one of the following solvents: unbuffered 

0.5M KCl (pH 6.8)., 0.5M.KC1 + 0,05M phosphate (pH 7.1) and 0.5M KCl + 

G.05M phosphate (pH 7 .1) + sucrose. When. sucrose was used in this 

study, it.was added in an amo'U!lt equal to twice the protein 
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concentration (6 mg. per ml.). 

Protein Concentration 

Protein (myosin) concentration was determined via the biuret 

method of Iayne (1957). Crystalline bovine serum albumin was used as 

the standard. 

Ultracentrifugation 

The sedimentation pattern of each sample was obtained on a Spinco 

model E analytical ultracentrifuge which was equipped with a phase plate 

and RTIC temperature control. All runs were conducted using the 

analytical D rotor and 2° sector.cell •. This cell had.a sample volume 

of 0.4 ml. and was equipped with an epoxy centerpiece. The specific 

conditions for ea.ch runare described in the figure legends. The plates 

were measured with a Nikon comparator. ·. The observed sedimentation 

coefficient was calculated and corrected to standard conditions 

. according to the procedures outlined by Schachman (1957). In correcting 

. the. observed sedimentation coefficient to standard conditions, the 

value for the partial specific.volume of myosin was taken as 0.72$ 

(Parrish and Mo:mmaerts, 1954). Ultracentrifuge sedimentation patterns 

were obtained after the samples had been storea for 7 days at o0 c. 

Results and Discussipn 

The initial ultrace11trifuge sedime.ntation study was conducted on 

. the myosin preparation dissolved in 0.5M KCl. For this run, the 

ultracentrifuge w:as operated at a speed of 42,040 r.p~m. and at a 

0 6 temperature of 20 C. The pH of the myosin sample solution was .8. 
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The sedimentation patterns obtained at various time intervals are 

presented in Figure 6. These results show that the myosin sedimented 

as a rather sy:mmetrical, homogeneous entity until approximately 16 min. 

after operating speed had been attained. After this time, however, a 

number of minor peaks could be observed in the sedimentation patterns. 

Moreover, these minor peaks tended to increase in magnitude as the 

centrifugation time was prolonged. 

These observations led to a question as to whether the minor peaks 

resulted from actual impurities in the myosin preparation or whether 

they were due to the formation of aggregates of myosin molecules into 

higher molecular weight entities, i.e. dimers, trimers, etc., during 

prolonged ultracentrifugation. 

To investigate this question, anothe) :run was conducted, using the 

myosin preparation dissolved in 0.5M KCl (pH 6.8), in which the temper

ature was maintained at 2°c. throughout the time course of the run. In 
... ·~'P&. 

addition, care was taken to avoid exposure df'.the myosin sample to 

temperatures above 2°c. during the ultracentrifuge preparatory steps. 

In this run the ultracentrifuge was operated at a speed of 59,780 

r.p.m. From the sedimentation patterns presented in Figure 7, it can, 

be seen that a significant reduction in the number of minor peaks as 

·well as a much sharper major peak was obtained when sedimentation was 

performed at this lower temperature. This indicates that the heter-

ogenity observed in the previous run (Figure 6) was largely due to 

formation of aggregates of myosin molecules, and that by lowering the 

centrifugation temperature from 20° to 2°c. the tendency of myosin to 

form aggregates was significantly lessened. 

These data suggest an interesting corollary concerning the 



8 min. 16 min . 24 min. 32 min. 40 mi n. 

48 min. :;6 ;nin. 72 min. 88 min. 104 min. 

Figure 6. Ultracentrifuge Sedimentation of Bovine Myosin Dissolved in 0.5M KCl 
(pH 6.8). Protein Concentration, 3 mg./ml.; Speed, 42,040 r.p.m.; 
Temperature, 20°c.; Direction of Sedimentation, Left to Right; 
Time Intervals Measured After Rotor Reached Operating Speed. Top 
Plate: Diaphragm Angle, 700; Bottom Plate: Diaphragm Angle, 60°. 
s20,w = 5.89. 

~ 
0 



O min~ 8 min, 16 min, 24 min. 32 Mir,, 

4t3 !:'!'lil'l 80 min. 96 min, 

Figure 7, Ultracentrifuge Sedimentation of Bovine Myosin Dissolved in 0.5M KCl 
(pH 6.8). Protein Concentration, 3 mg./ml.; Speed, 59,780 r •. p.m.; 
Temperature, 2°c.; Diaphragm Angle, 70°; Direction of Sedimentation, 
Left to Right. Time Intervals Measured After Rotor Reached Operating 
Speed. s20 ,w = 5,89. 

~ 
I-' 
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response of bovine and rabbit myosin to. temperature. Several investi-

gators (Holtzer, 1956; Johnson and Rowe, 1960; Laki and Carroll, 1955) 

have found that the rate of aggregation of rabbit myosin increased as 

temperature was increased, In addition, they found that the amount of 

aggregation of rabbit myosin was dependent upon the duration of exposure 

to the elevated temperature. The present results with bovine myosin 

(Figure 6 and 7) show that as duration of centrifugation at 20°c. was 

prolonged, the amount of spontaneous aggregation increased, and that 

when the ultracentrifugation temperature was lowered to 2°c., a 

significant reduction in the amount of aggregation occurred. Based on 

these results, all subsequent runs were conducted at 2°c. in order to 

avoid any spontaneous temperature induced aggregation. Also, all 

subsequent sedimentations were run at 59,780 r.p.m. 

To determine if the observed aggregation could be reversed or 

further reduced, sucrose was added, 24 hr. prior to the run and in an 

amount equal to twice the protein concentration (6 mg, /ml.) to the 

remainder of the myosin sample used for the previous study (Figure 7). 

Results show that with the exception of a discrete, leading peak, which 

became readily apparent 45 min. after operating speed was attained, no 

other leading peaks or 11 aggregation11 could be observed (Figure 8). 

These data suggest that sucrose has a stabilizing effect on the 

myosin molecule, This conclusion is based on the two observations: 

1) the addition of sucrose eliminated the aggregation previously 

obtained and 2) the sedimentation coefficient (s20,w) was reduced 

from 5.89 to 5.63. 

Lowey and Holtzer (1959) reported that the addition of inorganic 

phosphate. tended to stabilize the myosin molecule and retard the 



5 min. 13 min. 21 min. 2g min. 37 min. 

45 min . 53 •r,in 69 min. 85 min. 

Figure 8, Ultracentrifuge Sedimentation of Bovine Myosin Dissolved in 
0 . 5M KCl (pH 6.8), Sucrose Added 24 Hours Prior to Run . 
Protein Concentration, 3 mg./ml.; Speed, 59,780 r.p.m.; 
Temperature, 2°c.; Diaphragm Angle, 700; Direction of 
Sedimentation, Left to Right. Time Intervals Measured 
After Rotor Reached Operating Speed, s20 ,w = 5,63. 

t; 
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formation of aggregates in myoain isolated from rabbit muscle. To 

determine if a siiD.ilar response occurred in bovine myosin, the myosin 

preparation.was dissolved in 0.5M KCl + 0.05M phosphate (pH 7.1) im

mediately upon completion of the isolation procedure. From the results 

obtained (Figure 9), it appears that the addition of phosphate to 

bovine myosin did not significantly lower the spontaneous aggregation 

observed in the no phosphate run at 2°c. (Figure 7). 

To test the effe.ct of added sucrose to the 0.5M KCl + 0.05M phos

phate (pH 7.1) dissolved bovine myosin, sucrose was added 24 hr. prior 

to centrifugation to the remainder of the sample us.ed in the previous 

run (Figure 9). From the results presented in Figure lO, all aggre~ 

.... ,g~t;i,on, save the discrete lead:i..:qg. ,PeA~ .d.etected at the 53 min. interval, 

was eliminated. 

The results in Figures 8 and 10, suggest that the reduction in 

aggregation of bovine myosinwas dueto the protective effect of sucrose 

rather tha.n the phosphate ions. · · . 

To determine if this protective effect of sucrose could be ex

panded to eliminate the minor irreversible aggregation (discrete lead

ing peak in Figures 8 and 10) which occurred during storage at 0°C., 

sucrose was added, immediately after isolation, to the 0.5M KCl + 

· 0.05M phosphate (pH 7.1) 9-issolved myosin sample. 

Since the sedimentation P13-tterns in Figure 11 show a single, 

sharp, symmetrical peak and are devoid of any aggregation, includ.ing 

. the discrete leading peak, it can be concluded that sucrose, added to 

the myosin sample immediately after isolation, precluded any 

spontaneous aggregation which can occur during the 7 day storage 

period or subsequent ultracentrifugation. 



5 min. 13 min. 21 min. 29 min. 37 min. 

45 mi n. 61 mi11. 77 min. 93 min. 109 min . 

Figure 9. Ultracentrifuge Sedimentation of Bovine Myosin Dissolved in 
0.5M KCl + 0.05M Phosphate (pH 7.1). Protein Concentration, 
3 mg./ml.; Speed, 59,7SO r.p.m.; Temperature, 2°c.; Diaphragm 
Angle, 70°; Direction of Sedimentation, Left to Right. Time 
Intervals Measured After Rotor Reached Operating Speed. 
S.--0 = 5,57. ,:, ,w .;:-.. 

v, 



5 min. \3 min. 21 min. 29 min. 37 min. 

53 min. 6G q in, 85 m in . 10 1 m in. 117 min. 

Figure 10. Ultracentrifuge Sedimentation of Bovine Myosin Dissolved in 
0 .5M KCl + 0.05M Phosphate (pH 7.1), Suc r ose Added 24 Hours 
Prior to Run. Protein Concentration, 3 mg./ml.; Speed, 
59,780 r.p .m.; Temperiture, 2oc.; Diaphragm Angle, 70°; 
Direction of Sedim~nta"'tion, Left to Right. Time Intervals 
Measured After Rotor Reached Operating Speed . s20 ,w = 5.58. 

.;::-
°" 



5 mi"'I. 13 min. 21 min. 29 min. 37 min. 

45 min. 6! n--in. 77 min. 93 min . 109 min. 

Figure 11. Ultracentrifuge Sedimentation of Bovine Myosin Dissol ved in 
0 . 5M KCl + 0.05M Phosphate (pH 7 . 1) + Sucrose . Protein 
Concentration, Jmg./ml .; Speed, 59 ,780 r.p .m.; Temperature, 
2oc .; Diaphragm Angle, 70°; Direction of Sedimentation, Lef t 
to Right. Time Interval s Measured After Rotor Reached 
Operating Speed . s20 ,w = 5 .58. 

-1>-
-..J 
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The above studies indicate that from the standpoint of ultra-

centrifuge sedimentation characteristics, the isolation procedure 

outlined in Chapter III yielded a pure, homogenous myosin preparation. 

Also these studies emphasize the importance of continuing to examine 

the sedimentation pattern for extended time intervals after operating 

speed has been attained in order to avoid missing significant obser-

vations. For example, the discrete leading peak, which occurred in 

two of the above runs after sedimentation proceeded 45 min., would not 

have been observed if the centrifugation had been terminated prior to 

this time. 

Since the same protein concentration (.3 mg./ml.) was used through-

out these experiments, the s20 w values could not be extrapolated to 
' 

zero concentra.tion. In view of the results obtained with rabbit myosin 

(Johnson and Rowe, 1961; Baril et al.: 1966) and cod myosin (Connell, 

196.3)' where it has been found that the sedimentation coefficient (s20 w) 
' 

decreases as protein concentration increases, the s20,w values obtained 

in this study probably represent conservative estimates. However, it 

is interesting to note that the s20,w value of 5.89 obtained on myosin 

dissolved in.0.5M KCl at 2°c. is in close agreement with the value of 

5.85 obtai~ed on rabbit myosin by Johnson and Rowe (1961) under the 

same conditions. 

·' . 
\. \ 
'\ •', 



CHAPTER V 

ELECTROPHORETIC STUDIES ON BOVINE MYOSIN 

Introduction 

The purpose of this study was to establish the electrophoretic 

characteristics of purified bovine myosin. It was believed that, this 

would be an important first step in developing standard objective 

techniques to evaluate the role of myosin in the various post-mortem 

quality changes occurring in beef muscle. 

Materials and Methods 

Isolation of Bovine Myosin 

Myosin was isolated according to the procedure outlined in 

Chapter III. After the recrystallization step, an aliquot of the 

myosin preparation was dissolved in 0.5MKC1, It was then dialyzed 

against 50 volumes of O.OlM Tris-HCl buffer (pH 7.1) for 12 hours. 

Following dialysis, the sample was lyophilized and stored at o0 c. 

until used. 

Electrophoretic Analysis 

The electrophoretic behavior of bovine myosin was studied by the 

use of a disc electrophoresis unit (model 12), manufactured by Canalco 

Instrument Company. Aqueous and 8M urea solutions of the lyophilized 
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myosin were prepared and electrophoresed on polyacrylamide gels 

according to procedures outlined by the manufacturer (Canalco, 1962). 

The spacer and separating gels were polymerized at a temperature of 

25°c., whereas the sample gel was polymerized at 2°c. The electrode 

buffers contained 14.4 gm. glycine and 3,0 gm. Tris in 1 liter of 

distilled water (pH 8.4). All electrophoretic tests were performed at 

a temperature of 2°c. The current setting for protein separation was 

5 ma. per tube, and the dye front was allowed to migrate (cathode to 

anode) 5 .• 7 cm. in about 45 minutes. Gels were. stained with 1% Amido

Schwartz in 11% acetic acid:45% methanol and destained electropho

retically. 

Results and Discus.sion 

The electrophoretic pattern obtained on an aqueous solution of the 

myosin preparation exhibited seven faint, but distinct bands, which 

could be grouped into three zones along the gel. Zone 1, 2 and 3, 

contained 2, 3 and 2 bands, respectively (Figure 12). 

From a preliminary experiment, it was found that high inorganic 

salt solutions could not be successfully electrophoresed on polyacryl

amide gels. Hence, for the electrophoretic studies the myosin prepara

tion could not be dissolved in its usuai (0. 5M KCl) solvent. Consider

able difficulty was encountered in getting sufficient lyophilized myosin 

to dissolve in water. Consequently, the electrophoretic patterns 

obtained on myosin in aqueous solutions were always rather faint 

(Figure 12). 

Experimentation revealed that the lyophilized myosin preparation 

was readily soluble in 8M urea. This observation led to the comparison 



Figure 12. Electrophoretic Separation of Bovine 
}:1yosin in Aqueous Solution 
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of the electrophoretic patterns of myosin dissolved in water and in 

8M urea. The results presented in Figure 13 showed that the myosin-urea 

electrophoretogram had greater band density and definition. Also, it 

can be noted that the myosin-water and myosin-urea electrophoretograms 

were very similar in terms of the number of zones, bands within each 

zone and overall mobility with the exception that band 2 in zone 2 

showed a little more aniodic migration on the 8M urea gel,(Figures 12 

and 13). 

Recent studies with polyacrylamide gel electrophoresis have 

indicated that the ammonium persulfate catalyst, an oxidizing agent 

used in polymerizing the separating gel, can leave this gel in an 

oxygen-rich state which could result in increased electrophoretic 

heterogeneity of the separated compounds (Brewer, 1967). Since myosin 

has a high sulfhydryl content, it was considered possible that this 

phenomenon might have an adverse effect on the electrophoretic behavior 

of myosin. To test this condition, sodium thioglycolate, an anionic 

reducing agent, was layered in front of the sample gel ( 0. 7)..\M Na

thioglycolate in 50% sucrose per tube). Due to the similarity between 

the water and urea dissolved myosin electrophoretograms, and to avoid 

the solubility problem, this condition was tested on myosin dissolved 

in urea. The results obtained indicated that myosin still migrated 

as three primary zones with the same number of bands within each zone 

(Figure 14). Since a greater length of time was required to destain 

the gel when sodium thioglycolate wa::, used, the two bands in zone 3 

became quite faint. It should be pointed out that the two stained 

bands at the sample end of the gel (cathode end) represents the portion 

of the gel length occupied by the added reducing agent. Consequently, 



Figure 13. Electrophoretic Separation of Bovine 
Myosin in 8M Urea 
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Figure 14, Elect r ophor etic Separation of Bovine 
Myosin in 8M Urea wi th Na-thioglycolate 
Layered i n Front of the Sample Gel 
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these two bands simply represent immobile protein. Since the addition 

of the reducing agent,to the gel did not signi;f'icantly alter the myosin 

electrophoretogram, it can be concluded that the ammonium persulfate 

effect was negligible in this test. 

When the molecl.+lar sieving effect of the separating gel was 

reduced by decreasing its acrylamide concentration from 7% to 3.5%, the 

electrophoretic pattern obtained on an aqueous solution of the myosin 

preparation showed only one band in each of the three zones (Figure 15) • 

. As expected, greater migration of the protein occurred in the 3.5% gel. 

These results emphasized the influence of gel concentration·upon the 

sensitivity of this technique. 

It is interesting to note that while the myosin preparation 

sedimented. as a homogeneous entity in the ultracentrifuge, it exhibited 

considerable micro-heterogenity when electrophoresed on polyacrylamide 

gels. This lends weight to the sensitivity of the latter analytical 

technique. 



Figure 15. Electrophoretic Separation of Bovine 
Myosin in Aqueous Solution Using a 
3.5% Separating Gel 
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CHAPTER VI 

ELECTROPHORETIC CHARACTERISTICS OF THREE PROTEIN FRACTIONS 

ISOLATED FROM BOVINE LONGISSIMUS DORSI MUSCLE 

Introduction 

Considering the fact that the procedure for the isolation and puri

fication of myosin is very tedious and time consuming, it is obvious 

that a rapid method for fractionating this protein would greatly 

facilitate the assessment of various treatment effects on myosin. In 

addition, this would remove the limitation on the number of samples 

which could be handled in such studies and permit a more accurate 

evaluation of the inherent variation which might exist between animals, 

muscles, etc., in the basic characteristics of this protein. 

Towards this goal, disc electrophoresis on polyacrylamide gels 

was employed to determine the electrophoretic. characteristics of three 

protein fractions from bovine musc],e, classified as Total, Sa.rcoplasmic 

and Myofibrillar. The objective of this investigation was to study the 

electrophoretic behavior of proteins contained in these three fractions 

and to compare their electrophoretograms with that of purified myosin. 

Materials and Methods 

Protein Fractionation 

Thelongissimus dorsi muscle wa.s excised and minced as previously 
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described for the isolation of myosin (see Chapter III). A random 100 

gm. al;i.quot of the muscle mince was homogenized in a Sorval Omni-mixer. 
f,, ;:: 

Random 4 gm. aliquots were taken from this muscle homogenate for the 

isolation of the respective protein fractions. The Total protein 

fraction was isolated by the procedure outlined in Figure 16. The 

Sarcoplasmic and Myofibrillar p;rotein fractions were obtained according 

to the procedure presented in Figure 17. The resultant supernatants, 

containing the respective protein fractions, were dialyzed against 50 

volumes of distilled water, then lyophilized. All operations in the 

0 isolation procedure were conducted at O C. The lyophilized samples 

were stored at o0 c. until used. 

Myosin Isolation 

Myosin was isolated according to the procedure outlined in 

Chapter III. The lyophilized myosin sample was prepared as described 

.in Chapter V. 

Electrophoretic Anabysis 

Aqueous solutions of the respective protein fractions were pre-

pared and electrophoresed on.polyacrylamide gels as described in 

Chapter V. All runs were accomplished within two weeks after the 

respective protein fractions were isolated. 

Results and Discussion 

In studying the electrophoretic patterns obtained on the Total, 

Sarcoplasmic and Myofibrillar fractions, it was observed that the 

various protein 11 bands 11 separated could be uniformly grouped into four 
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Figure 16. Extraction Procequre for the Total 
Protein Fraction 
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distinct zones (which were designated as A, B, C and D) along the gel. 

This permitted the classification of the "bands'1 separated according 

to the order of their appearance in one of the major zones. This also 

provided a means for making systematic comparisons between the 

respective protein fractions. In Figure 18, it can be seen that the, 

initial band in the A, B, C and D zones of the Total and Sarcoplasmic 

patterns was very distinct, being much larger than the other bands 

~j,thin their respective zones •. In the .. IYry'ofibrillar pattern, however,. 

these major bands were not as distinct, yet they co~ld be delineated. 

The electrophoretic pattern obtained on each of the three protein 

fractions is presented in Figure 18. In the Total protein pattern, 

3, 7, 2 and 7 protein bands were discernible in the A, B, C and.D 

zones, respectively; while the Sarcoplasmic and Myofibrillar patterns 

exhibited .3, 4, 2, 2 and 3, 3, 2, 5 bands in these four respective 

zones. Thus, in terms of the' number of bands, the major differences 

in the electrophoretic patterns of these protein fractions occurred in 

the Band D zones. Of greater significance was the distribution of 

the protein along the gel for the Sarcoplasmic and Myofibrillar 

fractions in relationship to the Total protein fraction. The majority 

of the protein components of the Sarcoplasmic fraction was contained in 

the A and B zones; whereas, the Myofibrillar proteins separated 

predominantly in the C andD zones. In addition, it was noted that 

the c1 band in the Total and Sarcoplasmic fraction was always red in 

color prior to staining; whereas the c1 band in the Myofibrillar 

fraction did not exhibit any color in the unstained state. It was 

concluded that the c1 band in the Total and Sarcoplasmic fractions 

contained a portion of the proteinaceous p;Lgment, rnyoglobin. These 



Figure 18. Electrophoretic Separation of Three 
Protein Fractions. 1) Total 
2) Sarcoplasmic and J) Myofibrillar 
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results indicate the possible methods by which standards could be 

developed to identify the various protein "bands" obtained during 

electrophoresis of whole muscle extracts. 

63 

Figure 19 ~hows the electrophoretic patterns of the Myofibrillar 

fraction and purified rnyosin dissolved in 8M urea. In comparing these 

patterns, a rather stri~ing similarity was observed in the number and 

character of bands in the C and D zones. Each pattern contained 2 

bands in the C zone and 5 bands in the D zone, however, there were 

some differences in the mobilities of the bands within the D zone. In 

addition, the electrophoretogram obtained with the purified rnyosin was 

devoid of protein in the A and B zones. These results strongly suggest 

that rnyosin can be rapidly isolated via polyacrylamide electrophoresis 

from semi-purified muscle extracts. 
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Figure 19. Electrophoretic Separation 
1) Myofibrillar Fraction 
2) Myosin in 8M Urea 



CHAP'l'ER VII 

STUDIES ON MYOSIN ADENOSINETRIPHOSPHATASE ACTIVITY 

Introduction 

The primary biologically important aspects of myosin are its 

ATPase and actin-combining properties, Recent evidence favors the 

existence of two different sites on the myosin molecule responsible for 

the enzymic activity and its actin~combining ability, nevertheless, 

these two centers are closely related (Perry, 1967), Evidence for a 

functional relationship between myosin ATPase activity and contraction 

has been obtained in several studies, Gergely etal. (1965) have re

ported that myosin from red skeletal.muscle has a lower specific ATP

ase activity than myos:i,.n from white skeletal muscle of the same species~ 

This is in keeping with the slower contraction-relaxation cycle of red 

versus white muscles. Also, Barany (1967) has shown that myosin ATPase 

ac'tivity is related to the speed of muscle contraction, In addition, 

he indicates that it is the myosin mol~cule which pl~ys the key role 

:i.,n the interaction between actin, myosin, and ATP. Thus, it seems 

reasonable to suppose that if the enzymic center of myosin is inhibited, 

the interaction between actin and myosin, in the formation of the 

complex actomyosin, would also be inhibited. 

Certainly from the standpo:i,nt of the pala.tibility charact'eristics 

of muscle as food, improvement in tenderness and juiciness could 

65 



66 

well result from the development of methods to keep rnyosin and actin 

dissociated post-mortem. In consideration of this aspect, the purpose 

of this study was to investigate methods of inhibiting bovine rnyosin 

ATPase activity. An exploratory approach was taken in this study in 

order to determine the influence of a combination of factors on rnyosin 

ATPase activity. This would serve as a logical first step in defining 

conditions for future experiments dealing with the effect of various 

chemicals on the actin-binding capacity of rnyosin. 

Materials and Methods 

Chemicals Studied 

The selection of the chemicals studied was based on the type of 

reaction they cause and the sensitive group with which they react 

(Neilands and Stumpf, 1955), Ethylenediaminetetracetic acid (EDTA) 

functions as a chelating agent, which would result in divalent cation 

inactivation. Alkylating agents ·such as iodoacetic acid or iodoaceta

mide react with sulfhydryl or amino groups •. Para-chloromercuribenzoate 

(PCMB) ties up free sulfhydryi groups by the formation of mercaptides. 

N-ethylmaleimide (NEM) reacts with sulfhydryl groups by addition. 

Isolation of Myosin 

Myosin was isolated from the longissimus dorsi muscle of two 

Hereford steers according to the procedures described in Chapter III. 

The final recrystallized rnyosin precipitate was dissolved in 0.5M KCl 

and diluted to a final protein concentration of 15 mg. per ml. It 

was then dialyzed against 50 vol. of 0.5M KCl + O,OlM Tris-HCl buffer 
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(pH 7.1) for 12 hours. This step was included to remove the free di-

++ ++ va.lent cations, Ca and Mg , from the myosin solution. 

Sucrose has been found to protect the enzyme active center of the 

myosin molecule against inactivation by various physical or chemical 

operations such as thawing, lyophilizing, and shifting the pH of the 

solution to the acid or alkaline side (Hashimoto and Yasui, 1966). 

Thus, it was postulated that sucrose might counteract any inhibitory 

effect of myosin ATPase activity caused by the various added chemicals. 

It was reasoned that this could be of practical importance since 

sucrose is used in the preparation of cured meat items. Consequently, 

another factor included in these,e.xperiments was the addition of sucrose 

to the myosin sample~ This was accomplished by dividing the final, 

dialyzed myosin preparation into two equal aliquots and adding sucrose 

to one of these aliquots. Sucrose was added in an amol,Ult equal to 

twice the weight of the protein.present. 

·The myosin preparations were stored at o0 c. until used. 

Protein Determination 

The protein concentration of the myosin solution was determined 

using the biuret method (Layne, 1957). Crystalline bovine serum 

albumin was used as the standard. 

Calcium and Magnesium Determination 

After the addition of sucrose, duplicate 2 ml. aliquots were 

taken from both the sucrose and non~sucrose myosin solutions. The 

samples were dried and then ashed at 6oo0 c. for 24 hours. The ash was 

dissolved in 1 ml~ of l2N HCl. ++ ++ The Ca and Mg content was deter-
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mined using a Perkin-Elmer Absorption Spectrophotometer, by methods 

set forth by the manufacturer. 

Enzyme Assay ,Conditions 

Three incubation systems were employed in the determination of 

myosin ATPase activity. Based on the cation used and the ionic strength 

of the assay media, they were termed: 1) CaC12 high ionic strength 

system(µ= o.6), 2) CaC12 low ionic strength system(µ= 0.06) and 

3) MgC12 low ionic strength system(µ= 0.06)p Since Mg++ inhibits 

the ATPase activity of pure myosin, but activates actomyosin ATPase 

activity, this latter system was used only as a test of purity of the 
K 

myosin preparation. The composition of the reaction mixtures for the 

h;i.gh and low ionic strengthsystems was based on those described by 

Baril et~· (1966) and Kielley (1955), respectively, with modifica. 

tions. The contents of the reaction mixture for each of the three 

systems were as follows: 1) CaC12 high ionic strength system: 1.5 n0-. 

of 0.6M KCl + O.OlM Tris-HCl (pH 7,0), 0.2 ml. of 0.05M CaC12 in 0.6M 

KCl (unbuffered), 0.2 ml. of 0.02M ATP in 0.6M KCl buffered with O.OlM 

Tris=HCl (pH 7 .0), and O.lml. myosin in 0.5M KCl (ca. 15 mg./ml.); 

2) CaC12 low ionic strength system: 0.6 ml. of 0.15M KCl + 0.2M Tris

HCl (pH 7,0), 0.2 ml. of 0,05M CaC12, 0.2 ml. of 0.02M ATP+ O.Ol;M 

Tris-HCl (pH 7.0), 0.9 ml. of deionized, distilled water, and 0.1 ml. 

of myosin in 0.5M KCl (ca. 15 mg./ml.); 3) MgC12 low ionic strength 

system; 0,2 ml. of 0.05M MgC12 was substituted for the CaC12 in the 

previous procedure. The total vollUlle for each assay was 2 ml. 

These above reaction mixtures served as the controls in deter~ 
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mining the effect of the various added chemica],s on myosin ATPase 

activity. The different levels of the added chemicals were obtained 

by replacing a portion of the buffer voli.;une with the chemical, in 

question, dissolved in 0.6M KCl for the CaC12 high ionic strength 

system. Replacement of a portion of the distilled water with the de

sired level of the chemical dissolved in distilled water was used for 

the CaC12 low ionic strength system. Only in the EDTA experiment was 

CaC12 omitted from the reaction mixture. This was accomplished by 

add,ing buffer or distilled water to replace Cac12 in the high and low 

ionic strength systems, respectively. In this manner, the 2 ml. total 

volume of the reaction mixture as well as the proper ionic strength of 

the respective systems were maintained. 

All reaction mixtures, for the respective systems and level of 

added chemical, were prepared in quadruplicate. To one set of 

· duplicates, trichloroacetic acid was added prior to the addition of 

myosin and was termed the zero time sample. The other set of dupli~ 

cat es was used for the timed assays. This procedure allowed. for the 

correction of the duplicate timed assays for inorganic phosphate not 

derived from the myosin catalyzed hydrolysis of ATP. 

The reactions were initiated by the addition of myosin and allow

ed to proceed for 5 minutes at o0 c. at pH 7.0. Initially, incubation 

times of 5, 10, 15, and 30 minutes were used with all control enzyme 

systems, and the 5 minute reaction time was selected since this was 

in the region where ATPase activity was a linear function of reaction 

time. A pH of 7.0 was chosen since this closely approximates the pH 

of bovine skeletal muscle at the time of slaughter. The temperature of 

o0 c. was used. The reactions were terminated by the addition of 1 ml. 



of 20% trichloroacetic acid. After the samples were centrifuged at 

2000 x G at o0 c., 2 ml. aliquots were taken for inorganic phosphate 

analysis. 

Inorganic Phosphate Detennination 

Inorganic phosphate was determined by the method of Fiske and 

Subbarow (1925). In a preliminary experiment, considerable variation 

was encountered between duplicate inorganic phosphate determinations. 

This led to an investigation of color development and color stability 

as measured by the Fiske and Subbarow method. It was found that the 

optical density of the samples increased with time of reading after 

the addition of the Fiske-Subbarow reagent. The ATPase activ.ity 

calculated from an optical density reading taken after 5 hours color 

development was 36% higher than that detennined on the same sample 
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read after 10 minutes. This response was probably due to the catalytic 

effect of molybdate on the hydrolysis of the ATP"left after termination 

of the enzymic reaction (Weil-Ma.lherbe and Green, 1951). It was also 

observed that centrifugation at room temperature, with no temperature 

control, often res'L1lted in erroneously high inorganic phosphate values. 

Further, it was found that storage of samples for 24 hours at 25°c., 

prior to .the inorganic phosphate determination, resulted in values 

which were as much as 110% higher than that of the control values. 

This would suggest that the unreacted ATP underwent spontaneous hydro

lysis to yield inorganic phosphate. 

To circumvent these sources of error and to improve the repeata

bility between runs made on different days, the following procedure 

was followed: 1) After the reactions were terminated, samples were . 
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centrifuged at 2000 x Gin the cold foom at o0 c. 2) a 2 ml. aliquot 

from the supernatant of each sample was pipetted into pre-chilled 

test tubes in the co.ld room at o0 c. 3) The volume of the sample was 

made to 3.6 ml. with distilled water at 25°C. This served to bring the 

sample to room tem~erature without prolonged standing at 25°c. 

4) Then the following reagents were added in rapid succession to one 

tube at a time in order to maintain a constant time of 10 minutes for 

color development: a) add 0.4 ml. of lON H2so4 • b) add 0.8 ml. of 

2.5% ammonium molybdate, c) add 0.4 ml~ of Fiske-Subbarow reagent, and 

d) make to total volume of 10 ml. with distilled water. 5) Color 

was allowed to develop for 10 minutes in a 25° c., temperature-control-

led, water bath. 6) The % transmittance was read at a wavelength of 

660 mu, using the Bausch and Lomb Spectronic 20. The% transmittance 

readings were converted to optical density (O.D.) by the formula: 

O.D. = 2 - log %T. The standard was prepared to inclu.de the concen-

tration range of 0.1 )1..mole to 1.0 )l._mole inorganic phosphate from a 

stock solution of KH2Po4 • The procedure for the standard was the 

same from step 3 on. A fresh standard was prepared for each day's run. 

Calculations of ATPase Activity 

The mean O.D. of the duplicate zero time samples was subtracted 

from each of the duplicate· 5 minute timed reactions in the calculation 

of myosin ATPase activity. This enabled the calculation of the experi-

mental error term in the statistical analysis of the data. Myosin 

ATPase activity, expressed as micromoles of inorganic phosphate per 

milligram protein per minute, was calculated from the following 

formula: 



(K) (l.5) (d.f .) (O.D. min.- O.D.o time) 
~ Pi/min./mg. protein = 5 min. mg. protein ml. of fraction) 

where the proportionality constant K = O.D./1}¥1 Pi as calcu.lated from 

the phosphate standard, 1.5 is the fraction of the total volume from 

which the 2 ml. aliquot for phosphate analysis was taken, d.f. is the 

dilution factor to put the myosin fraction on a 1 ml. basis, and mg. 

protein/ml. of fraction refers to the protein concentration of the 

myosin preparation. 

Statistical Analysis 

Due to the different solubilities of the various chemicals used 
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in this study, they could not all be prepared in equal concentrations. 

Therefore, the results obtained with each chemical were analyzed as a 

separate experiment. The data from each experiment were analyzed as 
{ 

a completely randomized experiment with treatments arranged factorially 

on a within steer basis. Analysis of. variance and calculation of 

standard errors were conducted according to the methods outlined by 

Steel and Torrie (1960). 

The experimental layout for the EDTA experiment is presented in 

Table I. The four factors studied were designated as; A) ionic 

strength of the incubation system, B) CaC12 level, C) sucrose added 

to the myosin sample, and D) level of EDTA. 

The experimental layout fo~ the other chemicals studied is presen

ted in Table II. The three factors considered were: A) ionic' 

strength of the incubation system, B) sucrose added to the myosin 

sample, and C) level of the chemical under investigation. 

Since these ~xperiments were designed to find the factor or 



A: 
··;;)t 

.,_ B: 

G: 

D: 

Control 

O.OlmM 

0.02mM 

0.04mM 

o.o&nM 

TABLE I 

EXPERIMENTAL LAYOUT FOR. THE EDTA EXPERIMENT 

Animal 

High Ionic Strength System ... Low Ionic Strength System 

No CaC12 + CaCl2 

·No Sucrose + Sucrose No Suc:r6~:~ - + Sucrose 

2 samples 2 samples 2 samples 2 samples 

II II II II 

--
If II u II .. ·-

-- ·-
II II II II 

-

II ti . 11 . II 

A: Ionic strength of the incubation system. 

B: GaC12 level. 

C: Sucrose added to the myosin sample. 

D: Level of EDTA a.dded (mM/tube). 

No GaGl2 + GaCl2 

No Sucrose + Sucrose No Sucrose + Sucrose 

2 samples 2 samples 2 samples 2 samples 

II II II II 

II II II II 

II II II II 

II II II " 
-· 

~ 
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TABLE II 

EXPERIMENTAL LAYOUT FOR THE OTHER CHEMICALS TESTED 

Animal 

A: Ca.Cl2 High Ionic Strength 
System 

CaC12 Low.· Ionic Strength 
· · System 

B: No Sucrose + Sucrose No Sucro.se + Sucrose 

C: -
0 2 samples 2 samples 2. samples 2 samples 

1 " II II II 

2 II II II II 

3 II II II II 

4 II II II II 

A: Ionic strength of the incubation system. 

B: Sucrose added to the myosin sample. 

C: Level of the re~pective added chemicals (JiM/tube): 

Level ~ NEM - Iodoacetic Acid Iodoac etamide 

0 control control control control 

1: .5 x 10-4mM .OlmM .lmM .OlmM 

2: 1 x 10-4mM .02mM .2mM .02mM 

3: 2 x 10-4mM .04,niM .4mM .04mM 

4: .4 x 10..:.4mM. .08mM .BmM ~oBmM 



combination of factors which. cause the greatest variation, only the 

critical regions of~= .01 and o<.= .005 were used in determining the 

significance of the results., 

Results and Discussion 

Purity of the Myosin Pre!?eration 
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As shown in Chapter IV, the myosin sample appeared homogeneous in 

the ultracentrifuge. In addition:, no detectable ATPase activity was 

found for the myosin preparation isolated from steer 1 or steer 2, 

either in the presence or absence of sucrose, using the MgC12 low ionic 

strength system. These results indicate that the isolated myosin was 

free from any actin or actomyosin contamination since Mg++ serves as an 

activator of myosin ATPase activity only when aotin is also present 

(Perry, 1955). Thus, myosin of a high degree of purity was obtained 

using the isolation procedure outlined in Chapter III. 

Calcium and Magnesium Determination 

The results of the calcium and magnesium determinations are 

presented in Table III. The addition of sucrose to the myosin solution 

after the dialysis step did not result in an appreciable increase in 

Ca++ or Mg++ contamination. The Ca++ and Mg++ concentrations for 

the myosin isolated from steer 1 were in close agreement. Also, the 

Mg++ concentration for myosin isolated from steer 1 and 2 were 

similar. The most striking difference occurred in the Ca++ content 

of the myosin preparations from the two steers. The two possible ex

planations for this are: 1) myosin from steer 2 contained more bound 



TABLE III 

·CALCIUM AND MAGNESIUM CONTENT OF MYOSIN1' 2 

Animal 1: 

Myosin (No Sucrose) 
Myosin (+ Sucrose) 

Animal 2: 

Myosin (No Sucrose) 
Myosin (+ Sucrose) 

Calcium 

0.24 
.0.28 

0.55 
0.58 

1 Values represent the mean of two determinations. 
2 Values are expressed in terms of p.g./mg. protein. 

Magnesium 

0.23 
0.28 

0.22 
0.23 

Ca +t and 2) greater Ca +t concentrations existed in the solvents used 

in the isolation of myosin in steer 2, and might have been removed if 

dialysis had been prolonged,. No distinction can be made between 

bound or free calcium since the detennina.tions were made on aliquots 
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of the myosin dissolved in O. 5M KCL Thus, it appears that dialysis 

was more effective in the removal of free Ca+t in the myosin prepara-

tion from steer 1 than from steer 2. 

Effect of Ethylenediaminetetraacetic Acid. (EDTA) on M:zosin ATPase 

Activity 

The results of the analysis of variance on the four factors 

studied are presented in Table IV. Three of the four main effects: 

ionic strength of the incubation system, sucrose addition, and level of 

EDTA, had a highly significant effect (P~.005) on myosin ATPase activity. 

However, several interactions were also significant. The fact that 

two of the interaction terms that were non-significant in animal 1, 
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TABLE IV 

ANALYSIS OF VARIANCE ON THE EFFECTS OF IONIC STRENGTH, CaC12 LEVEL, 

SUCROSE ADDITION, AND LEVEL OF EDTA ON MYOSIN ATPase ACTIVITY 

Animal 1 Animal 2 
Source d.f. Mean Square Mean Square 

Total 79 
Treatments 1 . 

39 .00032041 .00039444 

A l • 007 4285 8-)Ht- • 0090l21JlHt-

B 1 .00002679 .00001540 

c 1 • 00066528-JHt- • 00014018-JHt-

D 4 • 000245 85-lHt- • 000207 43-lHt-

AB 1 .00002893 .00035913-lHt-

. AC 1 • 00032603-~Ht- • 00009397-lHt-

AD 4 .• 00031556-lHt- .00051170-lH*: 

BC 1 .00000118 .00003991 

BD .4 • 00027151-lHt- .00045889-lHt-

CD 4 .00002586 .00000809 

ABC 1 .00000610 .00000599 

ABD 4 · .0001.1187-lHt- • 00019890-lHt-

ACD 4 .00000962 .00001289 

BCD 4 .00000074 • 0000254 7-it-

ABCD 4 .00002246 .00000577 

Error 40 .00001001 .00000607 

lA: Ionic strength of the incubation syst.em 

B: Level of CaC12 
C: Sucrose added to l!IYOsin sample 

D: Level of EDTA 
-lt-p (. .01 

-lHt-P<.005 



but were significant in animal 2, indicates the existence of variation 

between animals and/or the inability to duplicate p:i;,ocedures. · No 

distinction can be made between these two sources of variation since 

the data was collected from each steer at different times. 

The cause of these significant interactions becomes more apparent 

from the plots of the simple effects for animal 1 and animal 2 presented 

in Figures 20 and 21, respectively. The significant ionic strength 

x CaC12 interaction found for animal 2 resulted from the greater myosin 

ATPase activity, averaged over all levels of EDTA and sucrose addi

tion, obtained using the high ionic strength incubation system without 

CaC12 than with CaC12; whereas the reverse occurred using the low ionic 

strength incubation system (see Figure 21). Although this same trend 

occurred with animal 1, it was not statistically significant, probably 

because the response with the high ionic strength incubation system 

was not as pronounced (see Figure 20). The significant ionic strength 

x sucrose addition interaction found for both animals was due to the 

larger depression in ATPase activity, averaged over all levels of 

EDTA and CaG12, caused by the addition of sucrose when measured by 

the high ionic strength over the low ionic strength systems ( see Fig

ures·· 20 and 21 for animals 1 and 2, respectively), A more obvious 

significant interaction, ionic strength x level of EDTA, resulted from 

EDTA functioning more as an activator in the high ionic strength system, 

but as an inhibitor in the low ionic strength system, The significant 

CaC12 x level of EDTA interaction is apparent from the inhibitory action 

of 0.01 mM EDTA in the presence of CaC12, but activates ATPase activity 

in the absence of CaC12 at this same concentration (see Figures 20 and 

21 for animals 1 and 2, respectively). The significance of the three-
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way interaction, ionic strength :x: CaC12 x level of EDTA, implies that· 

the effect on myosin ATPase activity of EDTA is influenced by both the 

ionic strength of the incubation system as well as the presence or 

absence of CaC12• In addition, for animal 2, the three-way interaction 

between CaC12 x sucrose addition x level of EDTA was significant 

(P<.Ol). The significance of this interaction implies that the effect 

of EDTA on myosin ATPase activity is governed .by the presence or ab-

sence of both CaC12 or sucrose. Also, this interaction was not sig

nificant for animal 1 which illustrates the between animal va~iation. 

The fact that several interactions were found highly significant, 

clearly emphasizes the complexity of the problem in tenns of defining 

a set of conditions for the maximum inhibition of myosin ATPase activity~ 

Yet, there are some very interesting and similar trends apparent from 

the data plotted in Figures 20 and 21. · These results show that the 

effect of EDTA on myosin ATPase activity was strongly influenced by 

the ionic strength of the incubation system.· 

Using the high ionic strength incubation system with no added 

CaC12, the maximum rate of ATPase activity occurred at the O.OlmM 

concentration of EDTA; whereas in the presence of CaC12, :rp.a.ximum 

acceleration did not occur until the concentration of EDTA exceeded 

that of CaC12• The inhibition. of the ATPase activity, which occurred 

when the added EDTA and CaC12 concentrations were equivalent (O.OlmM), 

was probably due to the preferential binding of EDT~ to Ca++. It 

is also interesting to note that EDTA, at a concentration equivalent 

to CaC12 (O.OlmM), had a greater activating effect on myosin ATPase 

activity than did Ca++: This response is illustrated by comparing the 

CaC12 controls (0 level of EDTA in Figures 20-A and 21~A) with the. 
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O.OlmM level of EDTA in Figures 20-B and 21-B. Since Mg++ was present 

in the final myosin preparation and is a known inhibitor of myosin 

ATPase activity, a logical explanation for this effect is that EDTA 

combined with the Mg++ present, thereby causing the added stimulation 

of myosin ATPase activity. Although the specific values obtained with 

the sucrose myosin sample were lower, the general trend in response 

was si:m:i,.lar for both the non-sucrose· and sucrose myosin samples in the 

high ionic strength systems. When the sucrose added myosin sample 

was assayed in the high ionic strength GaG12 activated system, the 

O.OlmM concentration of EDTA was the most effective in inhibiting 

myosin ATPase activity over the control (Figures 20-A and 21-A). When 

Cac12 was omitted, only the 0.08mM concentration of EDTA caused a 

depression in activity that approached or was lower than the control 

value since the response was different in magnitude between the two 

animals (Figures 20-B and 21-B). 

In the low ionic strength systems, EDTA had, in general, a sup--

pressing effect on myosin ATPase activity. For the GaG12 low ionic 

strength system, maximum inhibition over the control was obtained at 

the O.OlmM concentration of EDTA for the sucrose myosin sample and at 

0.02mM concentration for the non-sucrose myosin sample (Figures 20-A 

and 21-A). This implies that sucrose also complexed with Ca++, which 

would result in this added inhibition. The addition of EDTA had little 

effect on myosin ATPase activity in the low ionic strength system 

without CaG12 (Figures 20-B and 21-B). In fact, with this incubation 

system, very little ATPase activity occurred. 

In contrasting the control values in Figures 20-B and 21-B, it 

can be noted that myosin ATPase activity was obviously stimulated by 
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Animal .1 

· A. With CaCt2 ' 

2 I 5- = .224 x 10··. 
·x .· 

,-~ - - .:... - - -e.... . 
l . - ............ 

4 I . . . --~ 
... .... \J' ·· .. 

\~ .. ~ -•o·---· .... · •e.s•=-:::aa•.a::• :--::=&LIPP ·. ~~ 
0 .• Ol .02 .04 

EDTA Concentration (mM/tube) 

B. No CaCI 
2 

.08 

... ····---il, 

High J.t + no sucrose 

High~+ sucrose 

Low J4 + no sucrose 

Low J.l + sucrose 

I s_ ~ . 224 x 10 •2 
1'"-- ..... 

I .. - --
I ---/ . ........~ 

x. 

I '~ 
I 

' 
0 .01. .02 ·. .04 .08 

EDT A Conc;entration (mM/tube) 

F{g'l,l.r,e 20. · · ~e ·Il'.lfluence of Ionic Strength, Sucrose · 
· · Addition ·and .Level of EDTA on Myosin 

ATPase . Acti"lti ty 
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Animc;il 2 

A. With CaC12 

I 5- - . 17 4 x 10-2 
x 

0 .01 .02 .04 .08 

0 

EDTA Concentration (mM/tube) 

B. No CaCl2 

.01 .02 .04 

0---:-0 High J.( + no sucrose 

-----. High 1-1+ sucrose 

Ir- -IJ,. Low u + no sucrose 
.,,,-A Low .u..= sucrose 

I 5,r = , 17 4 x 10-2 

.oa 
EDTA Concentrat.ion (mM/tube) 

Figure 21. The Influence of Ionic Strength, Sucrose 
Addition and Level of EDTA on Myosin 
ATPase Activity 



· . the K+ ion. This is indicated by the significantly higher activity 

obtained .in the high ionic strength contro.ls over the low ionic strength 
. . . . . .· 

. controls ~n the absence of both CaC12 ~ri.d. ED'.t'A~ .· 

. EDTA activation.of myosin ATPa.$e,,·under· ce~4iri_ conditions, has 
. '''.-.:.t_;-...,_-.:/ .• 

.been :recognized for myosin isolated .. from other speci~s. Friess (1954), 

using. rabbit· skeletal muscle myosin, found that EDTA ac~eHirat-ed: · 

ATPa.se activity in o.6MKC1, but inhibited AT:Pase activity in 0.05M KCL 

Porcine myosin ATPase wB.s also activated by EP;A in 0~'5~ KCl (Quaas 

and Briskey, 1968). These results, coupled with those obtained in 

this experiment, indicate that there·is some similarity in response to 

EDTA in myosin isolated from different species. 

A number of experiments have .b~eri conducted in an attempt to u.nder

-_. st~nd the mechanism of EDTA activation. Eba.Shi et al. (1960) indicated 
: : _...,.. .. -0:- . . . 

. · that the activation of :rn;rosin ATPase in O. 6M KCl followed the order of 
. .· . 

the Mg...;chelating capacity. of the reagents tested with:i.n a .series· of 

EDTA analogues. Martonosi and :Meyer (1964} suggested that EDTA 
. · ... · 

activation was due to the removal of Mg -I+~ .- The· consideration -of other. -
' . ., . i ·.·.... .· .· . . . _.: . .... . ·- .. ·· . 

· .. factors,-· such as conf<?r:tnational changes or allosteric effects, has 

beensuggested by Sekine (1965). The results of Seidel (1969} indicate 

that the ATPa.se activity in th~ presence of EDTA is B.ctually a K+ - .· 
. ·. : . 

-a.cti vated ATPa.se. Despite these efforts to understand this interesting 

~henomenop; there is still no general agre~ent conc~rning th~ mec_hanisrn 

.of EDTA activation. 

The. results obtained in this experiment fit well with both the 

Mg+t removal and:,~+dependence hypotheses for EDTA activation. From the . . .. 

practic~l · point of view, a knowledge of the ionic ·_ strength as_ well as 

the Ca.Cl2 content is necessary in the planned use of EDTA as a means 
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of inhibiting myosin ATPaseactivity, 

Effect of.Alkylating Agents on Myosin.ATPase Activity. 

A. Iodoacetic Acid (IAA) 

After this experiment was completed, it was found that the high 

ionic strength incubation media contained insufficient buffer to main

tain a constant pH of 7 ,0 when the selected levels of IA.A. were added. 

Consequently, th~ depression of ATPase activity observed with the high 

ionic strength system could have been due to this increasing acidity 

of the media rather than the direct involvement of IAA with myosin 

(Figure 22). Thus, the significance of the ionic strength term and its 

interactions obtained in the analysis of variance was probably due to. 

this lowering of' pH (Table V). 

·. This find,ing does serve to emphasize a very important· point. In 

literature concerned with the effects ,df various chemicals. on rnyosin 
. . . . . .. ·. . , .. , · .. ·.; :~;t;jA),~}:>1.~~ \· ·. 

ATPa.se activity, rarely is any mention ma.de as j,o whether~ or not a 
. . ... : -~·.. . . 

specified chemical was neutralized.or huffered ,prior to its inclusion 
. . . . .. . . . . . , . ..---· ··:··;~1tf' . 

. in a given incubation system~ It is., left to the .reader to assume .that 

the buffering capacity of the incubation system.was sufficient to 

offset any resultant change in pH •. Yet, as observed i;n this experiment,· 

this assumption can lead to a misinterpretation of the data •. 

For the low ionic strength system, the buffering capacity of the 
' . . . ' . . 

. . 

incubation media was sufficient to maintain .the desired pH of 7.0. 
. ' 

Thus, valid assessments of the effect of IAA could be made in this 

· system. 

The curves in Figures 22-A and B show that for the non~sucrose · 

samples, .the lower levels of IAA caused an elevation in ATPase activity. 
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TABLE V 

ANALYSIS OF VARIANCE ON THE EFFECT OF IONIC STRENGTH, 
SUCROSE ADDITIOl,'J, AND LEVEL OF IODOACETIC ACID 

ON MYOSIN ATPase ACTIVITY 

Animal l 
Source d.f. Mean Square 

Total 39 

Treatment 1 
19 .00026047 

A 1 , 00102718-lH!-

B 1 • 00042706-lH!-

c 4 • 00032712-lH~ 

AB 1 .000014:zg· 

AC 4 , 00043301-lH!-

BC 4 • 00005734-l!-

ABC 4 .00005266-l!-

Error 20 .00001073 

1A: Ionic i;itrength of the incubation system 

B: Sucrose added to rnyosin sample 

C: Level of Iodoacetic Acid 

sl!-p .l ,01 

-lf-l!-P .(. 005 

Animal 2 
Mean Square 

.00068243 

.00715295-lH!-

• 00048651-lH~ 

,00061038-lH~ 

• 00016362-l!-

, 00044485-lH!-

, 00012330-lH!-

, 00011222-lH!-

.00001773 



)( 

4.4 

4.0 
3.6 
3.2 

~.8 
2.4 
2.0 
1.6 
1. 2 

.8 

.4 
0 

5.2 

4.8 
4.4 

4.0 
3.6 

3.2 
2.8 

2.4 

2.0 
1.6 

·1.2 

.8 

0 

A. Animal 1 

I -2 5-= .232 x 10 
x 

.. 1 .2 .4 .8 
lodoacetic Acid Concentration (mM/tube) 

B. Animal 2 
0--.-.......-.no High .&( + no sucrose 

------.• 4 . ---.- ---
. 0 .._ __ ....., __ ...,. ____ +---------1i.-------------------.... 

0 . • 1 ·• 2 .4. .8 
lodoacetic Acid Concentration (mM/tube) 

Figure 22. The Ef.f.'ect of Iodoacetio Acid on Myosin ATPase 
Activity as Influenced by the Addition of 
Sucrose to the Myosin Sample and the Ionic 
Strength of the Incubation System 
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When the IAA level was increased beyond 0.4mM, ATPase activity was 

depressed, becoming significantly lower than that of the control in 

animal 2, at the 0.8mM concentration, With one exception (O.lmM con

centration), the sucrose samples followed a similar trend in response 

to IAA. The difference in level of response between animals land 2 

may be partly explained by the difference in the magnitude of the con

trol values for these two animals. 

A surprising response was the acceleration of ;myosin ATPase 

activity caused by the lower levels ot added IAA. A possible explana

tion for this observation is that IAA. reacted with a few of the "free" 

sulfhydryl groups which resulted in activation. This seems reasonable 

in view of the results of Kielley and Bradley (1956). These authors 

found that partial titration of thiol groups with sulfhydryl reagents 

caused an increase in Ca ++-activated rabbit rnyosin ATPase. This may 

;not be the only factor involved since IAA is not specific for thiol 

groups. It can also react with amino groups at physiological pH 

values, however, this reaction occurs very slowly (Barron, 1951). 

In this experiment, no distinction can be made as to which functional 

groups reacted. Yet, the pH and reaction time used in this experiment 

would favor the slow rate of reaction between IAA with amino groups, 

therefore, the reaction with sulfhydryl groups seems more logical. 

Certainly this point warrants further investigation. 

B, Iodoacetamide 

The mean squares for this experiment are given in Table VI. A 

high:)..y significant (P<.005) effect on rnyosin ATPase activity was ob

tained for the three main effects: ionic strength of the incubation 
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TABLE VI 

ANALYSIS OF VARIANCE ON THE EFFECT OF IONIC STRENGTH, 
SUCROSE ADDITION~ AND LEVEL OF IODOACET.AMIDE 

ON MYOSIN ATPase ACTIVITY 

Source 

Total 

Treatment1 

A 

B 

c 

AB 

AC 

BC 

ABC 

Error 

d.f. 

39 

19 

1 

1 

4 

1 

4 

4 

4 

20 

Animal 1 
Mean Square 

.00012142 

• 0006 913 9-lH~ 

.00077352-lH~ 

• 00007370-lH~ 

• 00027 51 Q-lH~ 

.00003562 

.00000380 

.00002864 

.00001012 

1A: Ionic strength of the incubation system 

B: Sucrose added to myosin sample 

C: Level of Iodoacetamide 

-lH~P <.005 

Animal 2 
Mean Square 

.00011522 

• 00092930-lH~ 

.00036361-lH~ 

• 00013 53 6-lH~ 

.00000002 

.00006108 

.00002492 

.00000270 

.00001803 
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Figure 23. The Effect of Iodoacetamide on Myosin ATPase 
Activity as Influence by the Addition of 
Sucrose to the Myosin Sample and the Ionic 
Strength of the Incubation System 
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system; sucrose addition, and level of iodoacetamide. In addition, 

the ionic strength x sucrose addition interaction was also highly 

significant (P(.005) for animal 1. This interaction was due to sucrose 

having a greater inhibitory effect on rnyosin ATPase activity at the high 

over the low ionic strength systems, when averaged over all levels of 

iodoacetamide. 

The results for the low ionic strength system plotted in Figures 

23-A and B indicate that the response to Iodoacetamide was similar to 

that observed for IAA (Figures 22-A and B). However, the concentration 

of Iodoacetamide to obtain inhibition of myosin ATPase was considerably 

lower than that required for IAA, implying that Iodoacetamide is a more 

effective inhibitor than IAA. 

Although there was variation in the magnitude of response to 

Iodoacetamide, in the high ionic strength system, between the two 

animals, the results suggest that lower concentrations of Iodoacetamide 

are required to obtain inhibition in the low versus the high ionic 

strength systems (see Figure 23). 

Effect of Sulfh.ydryl ;Reagents on Myosin ATPase Activit:y 
. I 

A. p-Chloromercuribenzoate (PCMB) 

Although all levels of PCMB tested resulted in the inhibition of 

myosin ATPase activity over the respective controls, the concentration 

at which maximum inhibition .occurred was influenced by both ionic 

strength and sucrose addition (Figure 24). This accounts for the 

significance of the interactions found from the analysis of variance 

for PCMB (Table VII). Even the lowest concentration of PCMB caused a 
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TABLE VII 

ANALYSIS OF VARIANCE ON THE EFFECT OF IONIC STRENGTHj SUCROSE 
ADDITION, AND LEVEL OF p-CHLOROMERCURIBENZOATE 

Source 

Total 

Treatment 1 

A 

B 

c 

AB 

AC 

BC 

ABC 

Error 

ON MYOSIN ATPase ACTIVITY 

d.f. 

39 

19 

1 

1 

4 

1 

4 

4 

4 

20 

Animal 1 
Mean Square 

.00007354 

.00000015 

, 00007 209-lH~ 

• 00025283~8~ 

, 00002739-lH~ 

, 0000161 ~H~ 

• 00002.269-lH~ 

, 00003270-lHt 

.00000141 

1A: Ionic strength of the incubation system 

B: Sucrose added to myosin sample 

C: Level of p=Chloromercuribenzoate 

Animal 2 
Mean Square 

.00011089 

.00001232 

• 00023233-lH~ 

.00035155-lHt 

.00000017 

, 0000396Q.JHt· 

• 00005403-lHt-

, 00002033-lH~ 

,00000182 
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Figure 24. The Effect of p~Chloromercuribenzoate on Myosin 
ATPase Activity as Influenced by the Addition 
of Sucrose to the Myosin Sample and the Ionic 
Strength of the Incubation System 
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sharp, significant depression in ATPase activity over the control. 

These results suggest that even lower concentrations of PCMB might 

be effective in causing an inhibition of myosin ATPase activity. An 

interesting adjunct to this experiment would be to determine the 

sulfhydryl content of the myosin preparation in conjunction with the 

study of ATPase activity. Certainly, a source of variation between 

myosin preparations from different animals could be reflected in the 

sulfhydryl content; and hence, influence ATPase activity. 

B. N-ethylrnal.eimide (NEM) 

From the results of the analysis of variance (Table VIII), all 

factors tested, with the exception of the ionic strength x sucrose 

interaction in animal 1, were highly significant (P<.005). The sig

nificance of these interactions was due to the variation in the amount 

of NEM required for maximum inhibition of myosin ATPase activity over 

the respective controls (Figure 25). Nevertheless, all of the selected 

levels of NEM caused a significant decrease in ATPase activity over the 

controls. These results augment the findings obtained with PCMB. 

However, PCMB appears to be a more effective inhibitor than NEM since 

much lower concentrations of PCMB were required for inhibition. 

These resuits obtained with PCMB and NEM clearly emphasize the 

importance of the sulfhydryl groups on bovine myosin ATPase activity. 

This is in agreement with findings obtained on myosin isolated from 

other species. Based on the results obtained in these experiments, it 

was interesting to note that the concentration of PCMB and NEM required 

to inhibit bovine rnyosin ATPase a c ti vi ty were both less than the 

amount found necessary for the inhibition of rabbit rnyosin ATPase by 
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TABLE VJII 

ANALYSIS OF VARIANCE ON THE EFFECT OF IONIC STRENGTH, SUCROSE 
ADDITION, AND LEVEL OF N-ETHYIMA.LEIMIDE 

ON MYOSIN ATPase ACTIVITY 

Animal 1 
Sucrose d.f. Mean Square 

Total 39 --
Treatment 1 

19 ~00008270 

A 1 • 00004 97JlH!-

B 1 • 00009181-lB!-

c 4 • 00028545slH!-

AB 1 .00000449 

AC 4 • 00002814-lH!-

BC 4 .• 00002684-lH!-

ABC 4 .0000158~!-

Error 20 .00000343 

1A: Ionic strength of the incubation system· 

B: Sucrose added to :myosin sample 

C: Level of N-Ethylma;:Leimide 

Animal 2 
Mean Square 

• 00001809-lH!-

• 00014 9,3 ~H!-

• 000,38152-lH!-

• 00007 86~8!-

• 0000291,3-lH!-

• 0000281 ~H!-

• 0000244JlH!-

.00000170 
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Figure 25. The Effect of N-ethylmaleimide on ~osin ATPase 
Activity as Influenced by the Addition of 
Sucrose to the Myosin Sample and the Ionic 
Strength of the Inc~bation System 
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Kielley and Bradley (1956). This could mean that the sulfhydryl groups 

associated with the active center of bovine myosin are either fewer in 

number or more reactive than those for rabbit myosin. However, in the 

Kielley and Bradley pa.per, the temperature used for ATPaee assay was 

not clearly stated. The results of more recent experiments have indi

cated that the amount of PCMB or NEM re~uired to inhibit Ca++-a.ctivated 

myosin ATPase can be influenced by the temperature used for qssay 

(Gilmour, 1960; Sekine and Kielley, 1964). 

Effect of Sucrose on M¥:osin ATPase Activity 
I I, 

In studying the results of the previous experiments, a rather 

consistent trend towards lower ATPase activity was observed for the 

sucrose added myosin samples when compared to its non-sucrose counter-

pa.rt. These observations led to. the further analysis of the data in 

order to determine the effect of sucrose, per se, on myosin ATPase 

activity. This was accomplished by comparing the control values obtain

ed from the four primary treatment combinations (i.e., CaC12 high and 

CaC12 low ionic strength incubation systems, with the sucrose and non

sucrose myosin samples). 

Due to the complexity of these experiments, it was not possible 

to complete the chemical assays for all chemicals tested within a given 

day. Consequently, the controls used for this comparison were from 

separate runs. Therefore, another factor included in this analysis of 

the data was time. This provided the means for evalvating any varia

tion which might have resulted from day-to-day differences and/or from 

myosin denaturation. The time factor has relevance only on a within 

steer basis oecause the data from ea.ch animal were collected at 
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different times. 

From the analysis of variance (Table IX), it can be seen that both 

ionic strength and sucrose addition had a highly significant (P<.005) 

effect on myosin ATPase activity. In addition, for animal 1 only, the 

interaction between ionic strength and su~rose addition was highly 

significant.(P<.005). The time factor was non-significant (P>.1), 

indicating that the between-run differences, as well as any possible 

physico-chemical alterations which might have occurred in the myosin 

preparations during storage, were minimal and hence did not significantly 

influence the assessment of ATPase activity over the period of time 

required to complete all c hemical analyses. Moreover, this was taken 

as justification for pooling the values obtained from the different 

runs. 

The pooled mean, for each of the four treatment combinations was 

plotted, on a within animal basis, in Figure 26. As illustrated in 

F-igure 26-A the significant interaction, noted in animal 1, between 

ionic strength and sucrose addition resulted from sucrose having a 

greater suppressing effect on ATPase activity in the high ionic strength 

system than it did in the low system. For animal 2, the degree of 

inhibition due to sucrose addition was approxi~tely the same regardless 

of the ionic strength of the incubation system (Figure 26-B). Though 

there were differences in the magnitude of AlPase activity due to 

animal effect, the a.rd.er of response to the various treatment combina

tions was the same for both animals. 

Duncan's New Multiple Range Test was used to test the simple 

effects (i.e. the four treatment combinations) on a within animal basis. 

All four treatments means from each animal were significantly different 
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TA:\3LE IX 

ANALYSIS OF VARIANCE ON THE EFFECT OF SUCROSE ADDITION, 
IONIC STRENGTH, AND TIME OF ASSAY 

Source 

Total 

. 1 Treatment 

A 

B 

c 

AB 

AC 

BC 

ABC 

Error 

1 

ON MYOSIN ATPase ACTlVITY 

d.f. 

47 

23 

1 

1 

5 

1 

5 

5 

5 

24 

Animal 1 
Mean Sq~re 

.00009494 

.00058590-lH~ 

, 00122311-lH~ 

.00001625 

.00017366-lH~ 

.00000739 

.00000666 

.00000989 

.00000902 

A: Ionic strength of the incvbation system 

B: Sucrose added to myosin sample 

C: Time of assay 

Animal 2 
Mean Square 

.00008859 

o 00025346-lH~ 

.00157209-ip,~ 

.00000877 

.00000063 

.00001139 

.00001016 

.00001195 

.00001709 
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(P(.05). The ranking from highest to lowest ATPase activity was as 

follows: Cac12 high p + no sucrose> Cac12 lowµ+ sucrose:> Cac12 

high)l +sucrose> CaC12 low )l + sucrose. These results clearly indi

cate that sucrose, as added in this experiment, caused a significant 

inhibition of myosin ATFase activity. 

These results prompted further investigation in order to ·gain 

insight into the possible reasons for the inhibit9ry action of sucrose 

on myosin ATPase activity. It was reasoned that a good starting point 

would be to examine the effect of sucrose using the same four treatment 

combinations, but without added CaC12• 

The analysis of variance of the results from this experiment are 

shown in Table X. Ionic strength of the incubation system was found to 

have a highly significant.(P<=005) effect on myosiri ATPase activity for 

.both animals. Sucrose did not have a statistically significant effect 

on myosin ATPase activity in this experiment, which was in contrast to 

the results obtained when CaC12 was included in the incubation system. 

As can be seen in Figure 27 the addition of sucrose did cause some 

inhibition of myosin ATPase activity in the high ionic strength system, 

and the effect was more pronounced for anim.al.1 than animal 2. However, 

the degree of inhibition was not large enough to be statistically 

significa~t for either animal. Although the response to sucrose when 

assayed by the low ionic strength system was reversed between the two 

animals, the difference in either case was not significant. 

·Thus, in the absence of CaC12, sucrose did not cause a significant 

depression in myosin ATPase activity. In contrast, when assayed in the 

presence of CaC12, a significantly lower rate of activity was obtained 

when sucrose was added. These data suggest that the primary action of 
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TABLE X 

ANALYSIS OF VARIANCE ON THE EFFECT OF IONIC ST;RENGTH AND SUCROSE 
ADDITION ON MYOSIN ATPase ACTIVITY AS ~ASURED 

Source 

Total 

Treatment1 

A 

B 

AB 

Error 

IN THE ABSENCE OF CaC12 

d.f. 

7 

3 

1 

1 

1 

4 

Animal 1 
Mean Square 

.00009622 

.000255J~H~ 

.00002964 

.00000365 

.00000768 

1A: Ionic strength of the incubation system 

B: Sucrose added to myosin sample 

-lH~P <. .005 

Animal 2 
Mean Square 

.00004011 

• 00011250-lH!-

.00000024 

· .00000761 

.00000168 
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sucrose in effecting a suppression of the ca+t activated myosin ATPase, 

was to combine with or chelate the activating Ca-t+ ion. 

In addition to the important effect of sucrose, the results from 

this experiment have brought to light other factors concerning myosin 

ATPase. A discussion of these results involves the cross-reference of 

data portrayed in Figures 26 and 27. 

In considering the no sucrose systems, it can be seen that CaC12 

added to the low ionic strength system resulted in a greater increase 

in ATPase activity than when added to the high ionic strength system. 

Also the data show that in both the high and low ionic strength systems} 

animal 2 responded to a much higher level to the added CaC12 than did 

animal 1. 

By examining the data for the no sucrose systems for both 

animals in Figure 27, it can be observed that in the absence of CaC12 

the dominant factor influencing ATPase activity is the ionic strength 

of the system. Since the ionic strength of the high and low systems 

simply reflects the amount of KCl present, it can be concluded that the 

increased activity of the high ionic strength system is a direct result 

of the effect of the K+ ion, Again, the data show an artimal difference 

regarding the magnitude of response to the K+ ion, with animal 1 having 

the greater ATPase activity in both the high and low ionic strength 

systems, 

The difference in individual animal response to CaC12 and KCl 

could be related to the effect of the divalent cation, Mg++ on myosin 

ATPase activity. It is well established that Mg-I+ inhibits ATPase 

activity of pure myosin. Consequently, the presence of any Mg-I+ 

contamination in the reaction mixture would lead to the suppression in 
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the rate of myosin ATPase (in animal 2). The inhibitory effect of 

++ Mg would be more critical when assayed in the absence of Cac12, 

particularly at the low ionic strength, since both CaCl2 addition 

and/or high KCl concentration would counteract the suppressing effect 

-t+ of Mg • In addition, the complexity of the analyses conducted on the 

myosin preparations necessitated the preparation of fresh reagents in 

order to complete the ATPase assay for animal 2. As a result, the 

possibility exists that the reaction mixtures used for animal 2 con= 

tained more Mg-t+ contamination. 

It is implied in the data obtained from animal 2 (Figure 27-B) 

that Mg-++ contamination was partly responsible for the suppression in 

ATPase activity. This would account for some of the differences ob

served between the two animals. Thus, the chelation of Mg-t+ by sucrose 

could account for the small rise in ATPase activity observed in the low 

ionic strength system for animal 2 (Figure 27-B). 

It is pointed out that the above discussion, though largely 

theoretical, is interjected here to partially explain the differences 

in animal response to the various treatment combinations and in no 

way alters the conclusions as to the primary effect of sucrose, and 

C~-t+ and K+ ions on myosin ATPase activity. Finally these resu],ts 

emphasize the importance of the "total ionic milieu" (added, as well 

as inherent) in incubation systems used to assess ATPase activity of 

myosin. 



CHAPTER VIII 

GENERAL SUMMARY AND CONCLUSIONS 

The objectives of this study were to develop procedures which 

could be used to evaluate the role of myosin in the various post

mortem quality changes occurring in beef muscle, and to investigate 

the effect of various chemicals on the inhibition of myosin ATPase 

activity. These objectives were considered to be pre-requisite for 

the development of methods to cont,rol the formation of the rigid complex, 

actomyosin, which occurs port-mortem. 

The experiments included in this study were done on myosin iso

lated from bovine longissimus dorsi muscle. The isolation and purifi

cation of myosin was accomplished by use of a salt extraction procedure 

perfected in this laboratory. The longissimus dorsi muscle was 

excised, immediately post-mortem, from Hereford steers of approximately 

408 kg. live weight • 

The experiments contained in this study were concerned with: 1) 

the isolation and purification of bovine myosin, 2) establishing the 

electrophoretic characteristics of bovine myosin, 3) comparing the 

electrophoretic characteristics of three protein fractions, classified 

as Total:, Sarcoplasmic and Myofibriilar with those obtained for bovine 

myosin, and 4) the effect of various chemicals {Ethylenediamine

tetraacetic acid, ED'l'A; Iodoacetic acid, IAA; Iodoacetamide; p-chloro

mercuribenzoate; PCMB; N-ethylmaleimide, NEM) on myosin ATPase 
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activity. The enzyme assay studies were designed to evaluate the 

influence of a number of factors on myosin ATPase activity. The factors 

included were: A) Catt-activated high and low ionic strength incuba

tion systems (M=0.6 andM..:;::().06, respectively), B) sucrose and non-

sucrose myosin samples and C) level of added chemical under investi-

gation, Another factor, CaC12 omitted frqm the incubation system, was 

included in the EDTA study. 

Initial research efforts were concerned with the purity of the 

myosin preparation. Two methods were ~sed in assessing the purity of 

the myosin preparation: 1) Mg++-activated ATPase activity and 2) sedi-

mentation characteristics in the analytical ultracentrifuge. No detec-

table ATPase activity was obtained with the MgCl2 low ionic strength 

system, indicating that the myosin preparations were free of.any actin 

or actomyosin contamination. Also, the sedimentation pattern of myosin 

showed a single, sharp, symmetrical peak in the ana.],ytical ~ltracen-

trifuge. These two criteria indicate that myosin of a high degree of 

purity was obtained by the procedure developed in these studie.s. 

The ultracentrifuge studies showed that both temperature and 

duration of centrifugation were of considerable importance in the inter-

pretation of the sedimentation patterns of bovine myosin. A signifi

cant reduction in the amount of heterogenity observed in the sedimen-

tation patterns occu.rred when the temperature of the ruri was lowered 

from 20° C. to 2°c. The addition of sucrose to myosin solutions which 

had been stored in 0.5M KCl or 0.5M KCl + 0.05M P04 (pH 7.1) for 7 days 

at o0 c. led to further reduction in the number of leading peaks. A 

discrete leading peak became apparent in some of the sedimentation 

patterns when centrifugation proceeded for 45 minutes after reaching 
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operating speed. Thus, had the r-Qn been terminated prior to this time, 

this significant observation would not have been detected. When sucrose 

was added to the myosin preparation immediately after isolation, the 

sedimentation patterns showed a single, sharp, symmetrical peak indica

ting that the heterogenity observed in other patterns was due to myosin 

aggregation and not to impurities. Also, the data obtained suggest 

that sucrose has a stabilizing effect on the myosin molecule which 

results in reducing the tendency of myosin to undergo spontaneous 

aggregation. 

The electrophoretic characteristics of bovine myosin were investi

gated by means of disc electrophoresis on polyacrylamide gels. Under 

the conditions employed in this study, myosin migrated as an anionic 

entity. The electrophoretic pattern obtained on an aqueous solution 

of myosin exhibited seven faint, but distinct bands, which could be 

grouped into three zones along the gel. Zone 1, 2 and 3 contained 2, 

3 and 2 bands, respectively. Results indicated that the major solu

bility problem encountered in getting sufficient lyophilized myosin to 

dissolve in water could be circumvented by using SM urea as a solvent. 

The electrophoretograms of myosin dissolved in SM urea showed greater 

band density and definition and were very similar to those obtained 

with myosin dissolved in water in terms of the number of zones and 

bands within each zone. The addition of a reducing agent (Na

thioglycolate) to the gel did not significantly alter the electropho

retic pattern of myosin dissolved in SM urea •. Based on this test, 

it was concluded that the ammonium persulfate catalyst used to poly

merize the separating gel did not have an adverse effect on the 

electrophoretic behavior of myosin. When the molecular sieving effect 
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of the separating gel was reduced by decreasing its acrylamide concen

tration from 7% to 3.5%, the myosin pattern showed only one band in 

each of the three zones, and as ex;pected, greater mobility. 

In studying the electraphoretic results obtained on the three 

protein fractions isolated from bovine longissimus dorsi muscle, it 

was found that the various protein 11 bands 11 separated could. be unifo;rmly 

and logically grouped into four distinct zones, designated as A, B, C 

and D, along the gel. Consequently, all 11 bands 11 separated, from the 

three protein fractions isolated, were classified according to their 

appearance in a particular zone. In the Total protein pattern, 3, 7, 

2 and 7 protein bands were discernible in the A, _B, C and D zones, 

respectively. The Sarcoplasmic and Myofibrillar patterns exhibited 

J, 4, 2, 2 and 3, 3, 2, 5 bands in these four respective zo~es. Thus, 

in tenns of the number of bands, the major differences between the 

electrophoretic patterns of these protein fractions occurred in the B 

and D zones. In comparing the Sarcoplasmic and Myofibrillar patterns 

with the electrophoretogram obtained for the Total protein fraction, 

it was found that the majority of the protein components in the Sarco

plasmic fraction was contained in the A and B zones; whereas, the 

Myofibrillar proteins separated predominantly in the C and D zones. 

A striking similarity was observed between the myosin in 8M urea anct 

the Myofibrillar electrophoretograms. They were very comparable with 

respect to the number of bands within the C and D zones; however, 

there was some difference in the mobility of the bands within the D 

zone. 

In regard to the effect on myosin ATPase activity of the various 

chemicals studies, it is pointed out that many of the interactions 
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between the various factors tested were found to be highly significant 

when analyzed statistically. Consequently, only the general trends 

are sununarized herein. 

The effect of EDTA on myosin ATPase activity was strongly influen

ced by the ionic strength of the incubation system. In general, EDTA 

caused activation if present in concentrations above the Ca++ ion 

concentration, when assayed in the high ionic strength system. In 

contrast, for the CaC12 low ionic strength system, EDTA had a suppress

ing effect on myosin ATPase activity. The addition of EDTA had little 

effect on activity in the low ionic strength system without CaC12• 

For the CaC12 low ionic strength system, the lower levels of IAA 

caused an elevation in myosin ATPase activity. The lower levels of 

Iodoacetamide also tended to enhance activity. The results indicate 

that lower concentrations of Iodoacetamide are required to cause 

inhibition in low versus high ionic strength media. 

All levels of PCMB and NEM tested resulted in inhibition of myosin 

ATPase activity. These results emphasize the importance of sulfhydryl 

groups on bovine myosin ATPase activity. Of the chemicals studied, 

PCMB was the most effective inhibitor. 

The addition of sucrose to the myosin sample resulted in a sup

pression of myosin ATPase activity. The data suggest that the primary 

action of sucrose, in effecting this response, was to combine with or 

chelate the Ca++ ion. 
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