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CHAPTER I

INTRODUCTION

1.1 Discussion and Background

The widespread use of thin shell structures has created a need for
a systematic method of analysis which can adequately account for arbi-
trary. geometric form and boundary conditions as well as variable thick-
neés and anisotropic material properties. Classical thin shell theory
yields differential equations of equilibrium or.continuity whose com-~
plexity depends greatly on the shell geometry and whose solution depends
on the geometric configuration of the boundary and the type of force
or displacement quantity which must be satisfied there. Therefore,
classical solutions are available only for simple geometric forms whose
boundaries coincide with the parametric curves that describe the shell
surface. In this context the sphere and the circular cylinder are
amenable to classical solutions and have been studied exténsivelya

Many  times, especialiy in the aircraft and aerospace industry, the
engineer is faced with the problem of analyzing cylindrical shells
which are not circular. Shells of this type do not easily lend them-
selves to a classical solution. Oval fuselage sections are examples
of closed, noncircular‘cylindrical*shells, Skin panels between wing
stringers, spars, and ribs are examples of open, noncircular cylindri-
cal shélls. Whether the reference is to closed cylinders or to open

cylinders, most stressed-skin structures employ many noncircular shell



elements. The literature contains relatively few investigations of
noncircular cylindrical shells.,

Kempner - (1) derived energy expressions and differential equatilons
useful in stress and displacement analyses of noncircular cylindrical
shells. These equations are equivalent to the equations Flugge (2)
derived for the circular cylindrical shells. Subsequently, Kempner and
his students performed a series of investigations into a class of short
oval cylinders using a simplified system of equations equivalent to the
well known Donnell equations (3).

These oval cylinders are characterized by radii of curvature which
vary around the circumference of the shells according to a simple mathe-
matical expression containing an "eccentricity" parameter. Their stud-
ies, which have continued to date, have contributed significantly to
the knowledge of the static behavior of closed cylindrical shells.

Boyd (4) developed a method for the analysis of arbitrary, open
cylindrical shells using the simplified system of shell equations
equivalent to Donnell's (3) equations. These equations are believed to
be reasonably accurate for shell segments resembling a curved thin
plate (such as a typical skin panel). Boyd's (4) work resulted in a
method of small displacement and stress analysis for a constant-thick-
ness, cylindrical shell segment characterized by arbitrary curvature
variation around the circumference, arbitrary boundary conditions along
the straight edges of the segment, and arbitrary normal pressures dis-
tributed over the surface.

These investigations, including those by Kempner's students were
primarily concerned with the analysis of short, noncircuiar cylindrical .

shells, and made extensive use of the Donnell equations. While such



analyses are considerably simpler than those based on the more accurate
equations derived by Kempner (1), they provide no reliable information
concerning the displacement and stress analysis of the longer shells.

In this study two aspects of the problem of noncircular cylindrical
shells are considered. One of these is to develop a numerical proce-
dure for the solution of the Flugge equations as derived by Kempner (1).
The other aspect is to compare the accuracy of the Donnell equations for
noncircular cylindrical shells to the Flugge equations for noncircular

cylindrical ‘shells.

1.2 AEEroach‘

The differential equations of equilibrium derived by Kempner. (1)
were used as the basis of this study. The derivatives of the displace-
ments u, v, -and w were replaced by finite-difference quotients in order
to reduce the linear differential equations to a set of linear algebraic
equations. The closed, noncircular cylindrical shell (Figure 1) and its
loading are assumed to be symmetrical with respect to the midplanes-

(s
(x

one-eighth of the shell (shown with the 8 x 8 finite difference grid

0 and s = 2/4) and with respect to the center line of the shell

0). This allows an analysis to be performed by considering only

layout superimposed on the shell surface (Figure 1).) The closed cyl-
inders are assumed to be simply supported (s.s.) on the two ends. Full
advantage is taken of the assumed symmetry.

An open circular cylindrical shell is analyzed as an example.
This shell (Figure 2) is‘assumed to be symmetrical with respect to the
center line of the shell (x = 0), and is assumed to be simply su?ported

(s.s.) along the curved edges and pinned supported (p.s.) along the



Figure 1. Closed Noncircular Cylindrical Shell

Figure 2.  Open CGlrcular
Cylindrical
Shell



straight edges.
Once the linear algebraic equations are obtained, the solution for
the unknown displacements u, v, and w are obtained by solving the set .

of equations using the Gauss-Jordon (5) technique.

e



CHAPTER II
FORMULATION OF THE SOLUTION

2.1 - Equilibrium Equations

The equations of equilibrium governing the deformation of noneir-
cular cylindrical shells are given by Kempner (l). For completeness
the derivation is duplicated in Appendix A and given again by the fol-

lowing three equations:

U ex + 2 g + 2 Voxs T T oy

Lh0 e -y L e -w _F
12r "’xxx- 24 ’xs : 24r2 ’s "x

v sV Lty _ W ‘+ hz(l;— v)
’ss 2 *xx 2 ’xs. \r | 8r2 xx

L"s
B2 (3 - v) 2 Y w h: D 2
P Yoaxe T 3 T Mg VT 5T 7 5V TP,
‘ 12r 12r 12r r
1 w - w 1
Vs gxx Vs xxss ’ssss r2 Yiss +( r2 > +';Z.+ r u’xxx



_ 1 =N Vigs ) + 3 - viﬂv’xx _ffr'sv
2 E 2\: LT 2

\ T
’s ’s ’ss
[ Trg 12 12w 12
ol =Bl = =Y, & -2y, =F (2.1)
K ra.’ h2r s h2r2 h2r X z

where subscripts following a comma indicate differentiation. From
Figures 1 and 16.
X, 8, 2z = longitudinal, circumferential, and transverse spatial

coordinates, respectively.

u, v, w = displacements in the x, s, z directions, respectively.
r = wvariable radius of curvature.
v = Poisson's ratio.
h = ghell thickness (assumed constant)

2

__@ =)

Fx- Eh P

2
RN (¢ S )
B, ® Eh Ps

2
ﬁé _ 12(1 —3v ) Pz
Eh

Px’ Ps’ and Pz = Loading intensity applied to the median surface
of the shell in the x, s, and z directions, respectively.
Equations 2.1 may be rewritten in nondimensional form by using the

following nondimensional parameters:

(2.2)

=
]
=|o



where

L length of cylinder in x-direction,

2

arc length of cylinder in s-direction.

In nondimensional form equations 2.1 become

(%)2 Yy l ; - Yo ¥ 2 (%) -(




r12 (A)(E) 7o 12(E) (HB) 5, -, @

where

P
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Equation 2.3 is a set .of three coupled partial differential equa-
tions with variable coefficients.,. As discussed in the Introduction,
these equations will be solved using the finite difference technique

(2.3).

2.2 Donnell's Equilibrium Equations

The equilibrium equations given by equations 2.1 are very cumber-
some to apply to the solution of .shell problems because.of the laborious
calculations which are associated ‘with them. A somewhat simpler set of
equations, which have met with fairly wide application, were derived by

Donnell (3). By assuming that the transverse shearing force Qs makes



a negligible contribution to the equilibrium of forces in the circum-
ferential :direction, and that the changes of curvature and tﬁist afe
negligibly affected by the tangential displacement, v, the governing
partial -differential :equations for a noncircular shell reduce to the

set gilven.by equations 2.4

1-v ‘ 1+v

V. i
u e u + === v -=w, =P
*xx t 2. ’ss 2 ks r ’x X

s
’s
Yosxxx ¥ Mixes T W’ssss
- #%&'v’s + ;22 v 1§V- sy = ﬁ; (2.4)
h'r hr h™r '

where - the notation is the same as in 2.1.
Using the nondimensional parameters of equation 2,2 the nondimen-

sional form of Donnell's equilibrium equations are

Vonn ¥ 72 (L) Vigg T3 (L)u’:n' [r W] P
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Note that these equations are also a set of three coupled partial dif-
ferential equations with variable coefficients. The accuracy of these

simplified equations will be compared to that of Kempner's form of the

Flugge equatioms.

2.3 Formulation of the Finite Difference Equations

The finite difference technique reduces the linear differential
equations for a continuous system into a set of linear algebraic equa-
tions. Conventional algebraic equations, called finite-difference quo-
tients, are used in place of the derivatives of the displacements.

The finite difference quotients used in this study are conventional

central difference given by Salvadori (6) and given by Equations 2.6.

i _
s 2ot |1 +1,3 " f1-1,4
i,3 L L
£, ik | «
n 2an [f1,9 +1 " %1, -1
1,9 L. ]
£ L [¢ 26, .+ £ 1
» M em— = 2
; _
£, -1 | -2f, 4+ £, . -1 (2.6)
Mgy S a? | BT LT R T

Note that the approximations are given in terms of an arbitrary point
i,j on the shell middle surface. All the approximations needed to ex-
press the governing equations in finite difference form can be generated
from those given by Equations 2.6. For completeness, the finite dif-

ference approximations used in this study are tabulated in Appendix B.



2.4 Boundary Conditions

In accordance with the discussion given by Kraus (7), four boun-
dary conditions must be given for each edge of the shell. These boun-
dary conditions for an open-shell are:

for sides of constant x -

u=90 N =

X
v =20 T =0

8X

OR

w=20 v = 0

x
Bx= 0 Mx = 2.7)

for sides of comstent. s

u=20 T =0
Xs
v=20 N =0
s
OR
w=20 vV =20
s
BS= 0 b MS = 0 (2.8)
where .
B> BS = the slope of the surface (Figure 21).
T, V = Kirchoff shears given by Equations 2.9
N, M = stress resultants given in Appendix A.

The Kirchoff shears.are:

SX 8X

XS
XS X8 r.



i3

Vx = Qx + (st)’s
VS ='QS + (Msx)’x (2.9)
where
Q, M = stress resultants given in Appendix A.

The boundary conditions.for shells closed with respect to s are the
same as those given by Equation 2.7.

In cases where the shell is symmetrical, closed, and symmetrically
loaded, conditions of symmetry can be used to advantage. In this study
two different sé&ts of boundary conditions are used. First, for the
closed shells it was assumed that the shell and its loading are ‘symmet-
rical with respect to the generators at'n = 0 and at n = 1/4; and sym- -
metrical with respect .to the circumference line at Z = 0. This allows
ari analysis to be performed using only one-eighth of the shell as shown

By Figure 1. The boundary conditions used are:

=0
XS
v =20
| ; For n =0 and n =1 with 0 <z < 1
V =20
s
By =0 (2.10)
u =0 )
T =20
sx o
; For £ = 0 with 0 <n <1
V. =.0
%
B, =0 S (2.11)




I

In the case of

Along sides of

tions 2.10 .and

&a-v.;
e

; For £ = 1with 0 < n <1

0 (2.12)

open shells the boundary conditions used were:

> For n=0andn=1with 0 <¢ <1

0 (2.13)

constant £, the boundary conditions are given by Equa-

2.11.

In terms of displacements, the boundary conditions for the closed

shell are:

nnn

> For n=0and n=1with 0 27 <1

L]
o

= 0 (2.14)

it
o

f Forz=0with0<n=<1

=0 (2.15)




15

u =0
s '
v =0
e For g = 1with 0 <n <1
w = 0
Wy = 0 . (2.16)
J

In terms of displacements, the boundary conditions for the open

shell are:

u =.0
v =0
y For £ =0 and -z = 1l with0 <n <1
W =0
= 2.1
Vs on 0 (2.17)

For ¢ = 0 and ¢ = 1 with 0 <'n 2 1 the boundary conditions are,

as before, the same as in the closed shell (Equations 2.15 and 2.16).

2.5  Application of:Finite DifferenceAEquatiqns.

The replécement.of the  continuous domain.D by a .pattern of discrete
points within D is shown in Figure 3, As a result of the approximation,
the~$olutionsufor‘u,»v and w are not continuous solutions but are ap-
proximations to u, v and w at.the isolated points (Figure 3).

The grid system used.in this study is shown in Figure 4.

The equilibrium equations in finite difference form aré applied-at
all interior points; i.e., at point;pij, for 2 < i <8, and 2 <j < 8;
and at certain boundary points depending on the boundary conditions.

For convenience in -this study, the variables are renumbered with a-

single subscript as shown by Figure 5.
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 Figure 3. Approximation of a Continuous Domain by an
Array of Discrete Points



T
\l

=0 i=]

Figure 4.

{52 i=3 i=4 i:5 i=6 i=7 i=8 i=9

Grid System for Finite Difference Operators

17

X1



W —————— 63 62 6l 60 59 58 57 e W

70 69 68 67 66 65 64 ==—Uu

8 s A8 4 B g @ e g L

S R A L e e

i i L L L

O Rl S R R P B

o wl

© st S 42 45 s Lse
4 £ £ F L e

71 56—

T2V | T 1 1 | ]
50 51 52 53 54 55 56_._u

W . 50 5i 52 . 53 54 55 56

Figure 5. Numbering System for Variables



19

'The points. of ‘application of the finite difference approximations‘

for the closed shell are shown on a simplified grid system in Figure .6,

The points of application for the open shell are shown in Figure 7.

0
(e]
(o R

0 6o .0

£ il )
\J 7 1 &

(a) FIRST EQUILIBRIUM
~ EQUATION APPLICATION

)
o

o (e}
c 0
o (o]

o/
©

(c) THIRD EQUILIBRIUM
EQUATION APPLICATION

(b) SECOND EQUILIBRIUM
EQUATION APPLICATION

(d) EQUATION 2.21
APPLICATION

Figure 6. Points of Application of Finite Difference
Approximations for Closed Shell
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(o] (@] (@] (@) (o] O
(o} O (@] O O (@]
(o} (0] (o] o) O (o] (o]
{a) FIRST EQUILIBRIUM (b) SECOND EQUILIBRIUM
EQUATION APPLICATION EQUATION APPLICATION
6 o o o 0
I [s) [o 8 o I
o (o] [0}
(c) THIRD EQUILIBRIUM (d) EQUATION 2.21
EQUATION APPLICATION APPLICATION

Figure 7. Points of Application of Finite Difference
Approximations for an Open Shell

Using the concept of '"fictitious points" (6) outside the boundary

at ¢ = 1 and the conditions of symmetry on the other three sides of the
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closed shell, the boundary conditions. (Equations 2.14, 2.15, and 2.16)
are expressed in terms of the finite difference approximations by Equa-

tions 2.18, 2.19, and 2.20 with the exception of u, = 0 in Equation

4
2.16. Since the boundary at .z = 1-is allowed to translate, the condi-

tion u,C = (0 is expressed in terms of the backward difference expres-

sion (6) given by.Equation 2.21.

out in-
Vour = Vin For n=0and n=1with 0 <7 <1
Voue T Yig. (2.18)
“out = "Yin
Vout = Vin For £ = 0with 0 < n <1
Wl = WL (2.19)
Vout . Vin
For £ = 1 with 0 <n <1
Vot S Vi | (2.20)
u =0 = 3u, , - 4u, .t 2.21
acf D ( _ul,J 4ul -1, ui -2, ( )
i,]

For the open shell Equations 2.19, 2.20, 2.21 were used for the
boundaries of constant 7.- For boundaries of constant n; i.e., n =0

and n = 1 with O < £ < 1; the only condition required is

Voue = Yin {(2.22)



CHAPTER III
COMPUTER SQLUTION

3.1 Coefficient Matrix

The differential .equations which govern.the deformation of a non-
circular cylindrical shell are given by Equation 2.1. The equations
are solved . using the.finite difference procedure as discussed in -Chapter
II. The equations together with the appropriate boundary conditions
and conditions of symmetry are applied at the various grid points
(Figure -4) to set up the relation between the deflections at these grid .
points and the loads applied -at these grid points. This relation is.

given by Equation 3.1.

{p} - = [A] {8} (3.1)
where -
{P} = the grid point-forces
{8} = the grid point-deflections
[A] = the coefficient matrix relating the forces to the deflec-
tions..

"Using the numbering system shown,hin Figure 5, the S-matrix.is or-
dered as shown in<Eduation 3.2. The coefficient matrix, A, in Equation.
3.1 is obtained by applying the equilibrium equations at all inﬁerior
points and at the appropriate boundary points and applying Equation

2.19 at points along the boundary at 7 = 1, as shown in Equations 3.2.

22



e
(%

N — — 7 N
{ 31
1
7 First equilibrium equation applied at all zl
X interior points and at appropriate boundary v2
points 2
w
2
vi8
W48
48
T Second equilibrium equation applied at all 349
8 interior points and at appropriate boundary- w49
points. ' u49
u50
u51
< >= < 2 ;
972
7 Third equilibrium equation applied at all. 550
z » interior points and at appropriate boundary: .51
points ' //v52
V56
W50
W51
0 Equation 2.21 applied aleng z = 1 052'
- D S — W72J
(3.2) -

To eliminate numerical difficulties, some of the equations in the
simultaneous set (Equation 3.2) were scaled in order that the terms of
the coefficient matrix be of approximate equal magnitude. After the
application of the equilibrium equations and the scaling operation was.

completed and the final form of the coefficient matrix was obtained,
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the IBM scientific subroutine (8) _'SIMQ1 was- used to obtain the unknown

deflections, {&}.

3.2 Computer Program

The: computer program was organized to apply efficiently and method-
ically the finite difference form of the equilibrium equations. The
program is separated into subroutines which supply the numerical wvalue
of each term of the coefficient matrix and a subroutine to store these
values in the correct position in the matrix. The logic of the program

is shown in the flow chart in Figure 8.

. 18IMQ is a subroutine which obtains the ‘solution of a set of si-
multaneous linear equations.
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Figure 8. Computer Program Flow Chart



CHAPTER IV
NUMERICAL RESULTS

To check the validity of the formulation and the computer program
several comparisons with existing solutions are made. Examples from
References 4, 9, 10, and 1l are solved in this study and comparisoﬁs

made in the following sections.

4.1 Comparison with Known Result for a Circular Cylindrical Shell.

The basic boundary conditions discussed in Chapter II were modi-
fied so that a closed circular cylindrical shell with pinned ends could
be analyzed. This circular cylindrical shell is acted upon by a uni-
form pressure loading and is shown in Figure 9, The axisymmetric shell
with an axisymmetric load is almost a trivial case since the Donnell
and Flugge equations are identical., However, to develop confidence in
the method and the computer program, the analysis of closed circular
cylinders was made and since the data was available, it is presented
here for completeness. Timoshenko (9) gives as the magnitude of the
radial deflection at the midpoint of the shell the relation in Equation

4.10

4

_ _PL _ __2 cosa cosha ‘
v 4 (l cos 20 '+ cosh 2&) (4.1)
64Ko
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Figure 9. . Pinned Supported Circular Cylinder
With Uniform Pressure Load
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el

where
P = intensity of the pressure léading

L = length of the shell

o - &
64 _ Eg
4r°K

h, r, and K are the same as used in this study (Chapter II).
Comparisons between Equation 4.1 and numerical results are given by
Table I.

For the case of open circular cylindrical shells, a simply sup-
ported cylindrical shell segment under uniform pressure p, was consi-~
dered. Comparison with the exact solution of the Donnell equations as
given by Boy& (4) was made using both the Donnell and Flugge equations
of the present study. The geometric properties of the shell considered
as well as the results of the comparison are shown in Figure 10. The
boundary conditions for this cylindrical shell segment are the same as
those for open shells discussed in Section 2.4, For this example, the
radial deflections, w, are given in Table II for the solution of both
the Donnell equations and the Flugge equations. In the case of this
open shell segment under uniform pressure loading, the solutions given
by the :Donnell equations are in exact agreement with those giVen by the

Flugge equations. -
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Figure 10. Radial Deflections for a Circular Shell Segment With
Uniform Pressure Loading
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RADIAL DEFLECTION AT MIDPOINT OF CIRCULAR CYLINDRICAL
SHELL ACTED UPON BY A UNIFORM PRESSURE LOADING

TABLE I

-
WITH n 200

%_ W.—- Theoretical w - Numerical % Error
0.1 1013.21 - 989.879 2
0.2 1013.21 989.879 2
0.3 1013.21 989.879 2
0.4 1013.21 989.880 2
0.5 1013.21 989.881 2
0.6 1013.21 989.883 2
0.7 1013.21 989.887 2
0.8 1013.21 989.893 2
6.9 1013.21 989.902 2
1.0 1013.21 989.914 2
2.0 1013.20 990.427 2
3.0 1012.95 - 992,367 2
4.0 1007.54 996.095 1
5.0 1016.51 - 1000.56 2
6.0 1049,26 1004 .05 - 5
7.0 1090.80 1006.00 8
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TABLE II

RADIAL DEFLECTIONS OF A CIRCULAR SHELL SEGMENT ACTED
UPON BY A UNIFORM PRESSURE LOADING
=7, 2_= .25, % 200

% W - bonnell w - Flugge
0 0 0
»125 37463 37465
.250 64335 64338
.375 80356 80360
»500 85676 85680
.625 80356 80360
750 64335 64338
875 37463 37465

1.0 0 0

4.2 Comparison With Known Results for the Noncircular Cylindrical Shell

The short, slightly noncircular shell is well behaved and the solu-
tion is obtainable by several different analysis procedures. It .is ex-
pected that all numerical methods of analysis based on the Kirchoff-
Love assumptions should give good results for these shells. Two anal-
yses, Romano (10) and Mah (11) were selected to establish the validity
of the present method as applied to this type of shell. In the first
example, Romano (10) used a Fourier series solution to obtain a solu-
tion of the Donnell equations for noncircular shells. Romano also ob-
tained an approximate solution by solving the Donnell equations for a

circular cylindrical shell using for the radius of the circular shell
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the corresponding radius of the noncircular shell at the points of in-
terest. This, of course, requires the solution of many circular cases
in order to solve one noncircular case. The method was applied only to
short shells. -

The example problem solved by Romano (10) is a short, closed cylin-
drical shell with an oval cross section acted upon by a uniform pressure
loading. The geometric properties and the radial deflections are given
in Figure 11. The finite difference method of the present study com-
pares very well with the solution given by Romano's exact method. As
illustrated by Figure 11, the values of radial deflection along genera-
tors at s/% = 0, s/% = 1/8, and s/% = 1/4 from x/L = 0 to x/L = 1 are
identical to Romano's exact solution. For this short shell, Table III
compares the solutions given by the Donnell equations and by the Flugge
equatiohsw As -expected, the Donnell equations compare faborably with
the Flugge equations.

In the second example, Mah (11) uses a Fourier series to obtain a
reduced set of differential equations, and then applies the finite dif=~
ference method to obtain.the solution of this reduced set of equations.
Although the governing equations are equivalent in form to the Kempner
form of the Flugge equations and should be applicable to long éhell
problems, Mah applies the solution procedure to short shells only.
However, it should be pointed out that for long shells the series used
converged much more slowly and a greater number of terms were required
to perform the analysis. The present method, on the other hand, gives
the solution for moderately long shells using the same basic setup as
used for the short shells.

The sample problem selected for comparing the present method with
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Figure 11. Radisl Deflections for an. Oval Cyllndrical Shell With
Uniform Pressure Load



TABLE IIX1

RADIAL DEFLECTION COMPARISON FOR AN OVAL CYLINDER
L=576 L=20 R=1,10
h ! L. a —°

= =0 %= 1/8 | 2=1/4
w - Donnell w - Flugge w — Donmell w - Flugge w - Donnell w - Flugge
0 6828 6790 8543 8494 - 10818 10758
.125 6720 6680 8402 8352 10634 - 10573
.250 6393 6350 - 7978 7927 10082 10019
.375 5843 5797 7272 7218 9167 9104
.500 5069 5022 6286 6233 7899 7838
625 4072 4029 5029 4982 6298 6245
.750 2866 2834 3527 3490 4401 4361
.875 1487 1470 1824 1805 2270 2249
1.0 0 0 0 0 0‘ 0.

e
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that of MAH is a closed cylindrical shell of elliptical cross section
loaded by a uniform pressure. The geometric properties of this shell
and the radial deflections are shown in Figure 12, The radial deflec~
tions of the shell along the curve at x/L = 0 for s/2 = 0 te s/& = 1/4
using the finite difference method of the present study are alsc shown
in Figure 12. As expected here also, agreement is good, with the maxi-
mum difference in the two solutions 4 percent.. For this short shell,
Table IV compares solutions given by the Donnell eguations and by the

Flugge equations. Here, too, good agreement is obtained.

TABLE IV
RADIAL DEFLECTION COMPARISON FOR AN ELLIPTICAL CYLINDER

L= 763.7 L=30,55 B=1.413

h L a
4'% w - Donnell W - Flugge
0 45064 45012
125 43238 43190
. 250 37651 37615
. 375 29970 29949
. 500 21635 21628
.625 ' 14281 14284
.750 ' 8993 8999
.875 ' 6061 6067

1.0 ‘ 5221 5226
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Figurellz. Radial Deflectlons for.an. Ellipt;cal Cyllndrical
.Shell With Uniform Pressure Loadmg
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4.3 Accuracy of the Donnell Equations

' The accuracy of the Donnell equilibrium equations (Equation 2.3)
was established by comparing with-numerical;solutidns to the Flugge -
equilibrium equations (Equation 2.1) using both a circular cylinder and
an elliptical»éylinder loaded along a generator as shown‘in-Figﬁre»13.
The  results of this comparison which are shown in Tables V and VI; are
similar to those.of Kraus (7). The present solution indicates the same
gharacteristics, i.e., for the circular shell loaded alohg a generator"
the Donnell -equations give unreliable results as the shell becomes long-
er and as the thickness approacheé the lower limit of thinness. The:
noncircular cylinder exhibits the same characteristic. The resuits of
this comparison are discussed in the next few paragraphs.

Corresponding to the tabulation bnyraus, Table V shows. the com-
parison of -the numerical solutions of the Donnell equations and the,
Flugge equations for a circular cylindrical -shell, ' The radial deflec~-
tion of point P- (s = 0, s = %ﬁ”FigurenIB) is used as the basis for-the
comparison.  The values of this radial deflectiqn is tabulated for~&

b
ratios of 50, 100, 200; 400, and 800; and for = ratios of 10.0, 1.0, -

L

and 0.1. Inspection of this table shows that for very thin-circular -
shells the finite difference solution of the Domnnell equations is no.
different than the finite difference solution of the Flugge equations.
As the thickness and the length 6f the.shell is increased, the Donnell
equations become more and more‘inacgurate; The greatest influence on
thisvinaccuracy is felt to be the effect of the transverse shearing
forces, QS acting on the thickness of the shell secti§n. Obviously as.

the shell becomes thicker (but still a thin -ghell) the influence of.the

contribution of the transverse shear forces to the second equilibrium



Figure 13, Elliptical Cylinder With Line
Load
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TABLE V

COMPARISON OF ACCURACY OF DONMNELL EQUATIONS FOR
CIRCULAR CYLINDRICAL SHELL WITH LOADING
APPLIED TO GENERATORS

%- %~ ﬁ; - Donnell E; ~ Flugge
50 0.1 - 150.68 - 147.25
50 1.0 - 70.82 - 70.02
50 10.0 L - 0.0013 - 0.0119
100 0.1 - 603.56 - 600.08
100 1.0 - 286.68 - 285.85
100 10.0 - 0.106 - 0.110
200 0.1 ~2415,1 -2411.6
200 1.0 ~1150.0 -1149,2
200 10.0 10,105 0.100
400 0.1 =9661.,2 ~9657.7
400 1.0 -4603.4 -4602.6
400 10.0 - 0.627 - . 0.634
800 0.1 -38645.7 ~38642.2
800 1.0 ~-18417.0 -18416.1
800 10.0. - 3.553 - 3.561
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TABLE VI

COMPARISON OF ACCURACY OF DONNELL EQUATIONS FOR ELLIPTICAL
CYLINDRICAL SHELL WITH LOADING APPLIED
TO GENERATORS

bos b =10

%~ %- 'ﬁ% - Donnell ﬁ% - Flugge Wﬁ - Donnell ﬁb - Flugge
50 0.1 - 55.77 - 18,888 - 21.978 - 0.499
50 1.0 - 20.332 - 8.954 - 6.133 -  0.228
50 10.0 - 0.0365 - 0.0390 - 0.0047 - 0.0040
100 0.1 - 244,579 - 161.79% - 115.12 - 11567
100 1.0 - 105,698 - 79.148 - 41.69 - 6,271
100 10.0 - 0.380 - 0.353 -  0.114 - 0.0523
200 0.1 - 1004.19 - 889.02 ~ 507.17 - 160.66
200 1.0 - 465.25 - 428.65 ~ 218.38 - 90.75
200 10.0 - 0.639 - 0.620 - 0.808 - 0.559
400 0.1 - 4044.09 - 3916.82 -2085.6 ~1357.5
400 1.0 - 1913.20 - 1873.03 - 965.04 - 712.97
400 10.0 + 0.700 + 0.698 - 1.379 - 1.229
800 0,1 -16204.1 ~16073.4 -8402.8 -7410.24
800 1.0 - 7708.24 - 7667.08 -3973.83 -3650.38
800 10.0 + 1.259 + 1.256 1.415 1.376
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equation (Equation A.2) becomes greater and should not be neglected.

To illustrate the effect of noncircularity on-the accuracy of the
Donnell equations, an elliptical c¢ylindrical shell loaded by a line load
(Figure 13) is analyzed. The radial deflection of point P given by this
analysis is tabulated (Table VI) for E—ratios of 5 and 10; and for %

h
ratios of 50, 100, 200, 400, and 800, and for £=ratios'of 10.0, 1.0,

L

and 0.1, A similar comparison to further illustrate the effect of non-
circularity on the accuracy of the Donnell equations is shown in Tables
VII, VIII, and IX. Here the radial deflection of point P for the ellip-
tical cylindrical shell of Figure 13 is tabulated for %-ratios of 1 to
10 for three %-ratios {100, 200, and 400) for the single nondimensional
length of 0.1, Alsc shown in these tables is the percent error of the
Donnell equations with respect to the Flugge equations. Inspection of
these tables shows that the noncircularity of the section plays an im-
portant role in the accuracy of the Donnell equations.

In order to establish limits for the use of the bonnell equations
one final comparison is made. Figure 14 shows the radial deflection
comparison for the elliptical cylindrical shell as a functien of &

L

Inspection of the figure shows that for a ratioc of %Vg 50 the %>value

of 8§ should be the limiting value for the use of the Donnell equations

for %-= 5. From Figure 15 the corresponding limits for %~E 100 are

— = 8 for = 5 and %-= 15 for §-= 10, The finite difference method

IS
m o

provided no¢ significant information for a limit for the circular shell.



RADIAL DEFLECTION COMPARISON FOR AN

TABLE VII

ELLIPTICAL CYLI%DER WITH

£=0.1andg=

100
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E— ﬁ% -~ Donnell ﬁ; - Flugge %4 Error
1 -603.56 -600.08 1/2
2 -501.34 -498.87 1/2
3 -383.46 -374.33 2
4 -301.29 ~258.54 17
5 -244 .58 ~161.79 51
6 ~203.65 ~ 96.44 111
7 -173.19 - 56.30 207
8 ~-149.45 - 32.63 360
9 -130.50 - 19.30 580
10 -115.12 - 11.67. 890
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TABLE VIII

ELLIPTICAL CYLINDER WITH
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£=0.1 48 £ = 200

b W. - Donnell w_ - Flugge . %2 Error
a P p

1 =-2415.09 - ~2411.59 -
2 -2011.26 -2008.76 -
3 -1547.05 ~1537.49 1
4 -1225.12 -1175.67 4
5 -1004.19 - 889.02 13
6 - 846,10 - 660.76 28
7 - 728,66 - 478.86 52
8 - 637,90 - 337.24 90
9 - 565.73 - 233.70 144
10 - 507.17 - 160.66 280




RADIAL DEFLECTION COMPARISON FOR AN

TABLE IX

ELLIPTICAL CYLINDER WITH

&4

£=0.1 A £ = 400

b w_ - Donnell w_ - Flugge % Error
a P P

1 ~9661.20 -9657.7 -
2 -8051.0 -8048.5 -
3 -6201.69 -6192,01 -
4 -4921,21 ~-4869.78 1
5 -4044,09 -3916.82 3
6 -3418.58 -3194.05 7
7 -2954,41 —2613.09 13
8 -2597.28 -2124.05 22
9 -2314.54 ~1708.99 35
10 -2085.60 -1357.45 54
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CHAPTER V

SUMMARY AND CONCLUSIONS

5,1 Summary

A method has been presented to determine the deformation of -a
general noncircular cylindrical shell, either open or closed; using the
Flugge equations of equilibrium. A special case of a general noncir-
cuiar shell is the circular shell. From this study the following ob-
servations were made:

1. Through comparison of deflections obtained by other methods
for identical noncircular shells, the finite difference method of anal-
ysis was shown to give valid results for the solution of the partial
differential equations for néncircular shells.

2. For short noncircular shells the Donnell equilibrium equations
compare favorably with the more accurate Flugge equilibrium equations.

3. For noncircular shells with axisymmetric loads the finite dif-
ference method does not indicate any significant inaccuracy of . the
Donnell equations as compared with the Flugge equations,

4, For a fixed shell cross section, properties, and loading, the
accuracy of - the Donnell equations was found to be adversely affected by
an-increase in the thickness of the shell.

5. For a fixed shell thickness, length, and loading, the accuracy
of the Donnell equations was-found to be adversely affected by an in-

crease in the noncircularity of-the shell crosssection.

47
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6. For a fixed shell thickness, cross gectiomn, and loading, the
accuracy of the Donnell equations was found to be adversely affected by
an-increase ih,the length of the shell.

7. The tabulation of the.accuracy of the Donnell equations with
respect to the Flugge equations fulfills a much needed comparison here-

tofore not published in -the literature (7).
5.2 " Conclusions

The calculation of -the deformation of noncircular cylindrical
shells using the more accurate Flugge equations was possible using this
method. The method provides engineers with a tool for applying these
more accurate equations. It also provides a basis for extending the
more accurate equations to the dynamic and stability analyses of non-
circular cylindricalashells; This study indicates a limiting value of
%—fo:‘the application of the Donnell‘equations to noncircular shells
loaded along a generator, The study points.up the fact that the accu-
racy of the Donnell equations is.sensitive to increasing shell thick-.
nesses, the length of the shell, and the noncircularity of the cross

section. The study also indicates that of these three, the thickness

has the most effect on the accuracy.of.the Donnell equations.

5.3 Suggestions for. Further Work

During this study, many interesting topics were noted which should
be studied, 1In the finite difference method of solving the partial
differential equations it is recognized that the grid spacing used in-
this study is not accurate for very long shells, A study should bé

made to improve.the accuracy of the method for long shells. This could
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be done by using a variable instead qf a constant grid spacing. Further
study in this area may: 1) incorporate higher order finite difference
quotients; 2) evaluate and optimize a grid size as a function of -the
length -of ﬁhe shell.

Additional properties of the shell should be incorporated into
this theory. For example, when applying the method to the analysis of
shell structures for aircraft, including helicopters, submarines, and
space vehicles it would be desirable to incorporate anisotropic material
properties as well as variable thicknesses. In order for the investi-
gation of noncircular cylindrical shells to be complete, studies should
be made to determine the dynamic.and stability characteristics of long
shells. Also it would be desirable to obtain experimental verification

of the deformations obtained in this study.
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APPENDIX A

DERIVATION OF PARTIAL DIFFERENTIAL

EQUATIONS -OF EQUILIBRIUM (1)

A,l Assumgti@ns

In the derivation of the partial -differential equations which give
the deformations u; v, and w of the shell, the following assumptions
are made:

1. The shell is cylindrical, i.e., its cross section is charac~
terized -by -the plane curve resulting from the intersection of the median
surface and a plane normal-to the axis of the cylinder:

2. The right-handed coordinate system shown in Figure 16 gives
the coordinates of any point (x, s, z) in the wall of the shell,

3. The material of the shell is isotropic, homogeneous and:
elastic,

4. The thickness of the shell is very small compared to the other
dimensions of the shell. -

5. The deformations u; v, and w are. small compared to the thick-
ness of the shell and d6 not significantly change the geometry of the
shell,

6. The Kirchoff-Love assumptions of thin walled shell theory are
applied; i.e., normals to the median surface of the undeformed shell>
remain straight, unextended; and normal to the median surface after

deformation.

5l



Figure 16.

-4 0

Sign Convention for Coordinates.
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7. The loading is applied at  the median surface.
8. The stresses-at any point in the shell wall are related to the

strains through Hooke's Law for plane stress,

A.2 Equilibrium of Stress Resultants

Referring to Figures 17 and 18, equilibrium of forces in the x, s,

and z directions and equilibrium of moments about these. axes leads to

the following six equations:!

N +N = - p (a.1)
X, SX, b4
X s
: Qs

N +N - —=-P (A.2)

Ssg B, r 8
NS ‘

L N “-3
MS’S + st’x - QS = 0 (A.4)
Mx’x + Msx,s - Qx = 0 (A.5)

: Msx
N - N - —— = O (Ae6)
XS sX r

in which the stress resultants N, (membrane) and M (bending or twisting)

are related to the axial, circumferentigl, and shear stresses 0> Oy

y

and Txy ( =.Tyx) at any distance z from the median surface (Figure 19)

INotation is given in Chapter II and not recorded here.



L
£~

Qg+Qs, ds Ns+Ns, ds

Figure-l7° Sign Convention for Membrane and Trans-
verse Shear Force Resultants and Loads-

Mys + My, dx

Mx'l’Mx,x dx

Ms+Ms, ds

MSX+ Msx,sds

Figure-18., Sign Convention for Bending and Twist-
o ing Moment Resultants
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Figure 19. Sign Convention for Stresses
on -the Element



by the following relations:

o

1/2 h .
Nx = o 1 - ?9 dz (A.7)
-1/2 h
1/2 h i
Nxs = ’/- s (1 - ;D dz (A.8)
-1/2 h
1/2 h
Nsx = f Tex dz (A.9)
-1/2 h
1/2 h
Ns = f % dz (A.10)
-1/2 h
1/2 h .
M= o, (1 -5 zdz (A.11)
-1/2 h
1/2 h .
Moo= :/. s (1- ?) zdz (A.12)
-1/2 h
1/2 h
Msx = f P zdz (A.13)
-1/2 h
1/2 h
MS = OS zdz (A.14)
-1/2 h

From Equations A.4 and A.5 the

by Equations A,15 and A.16.

transverse shear resultants are defined

(A.15)
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Q=M -NM | (A.16)

Note: Equation A.6 is identically satisfied when Equatioms A.8, A.9,
and A.12 -are substituted.therein,

The threé~equilibriﬁm equations in terms of the stress resultants.
are obtained by substituting Equations A.l5 and A,16 into Equations A.2

and ‘A.3. Thus

N + N = - P A.1)
X, X8, X
X- s
M M
S,S xs,x \
N +N ""< + > = - P (Aal7)
s, XS, T T . s
s X
M +M + M -M ) N
X, s, sx pE] +-—==-P (A.18)
XX - ss s T - Tz -

Note; Up to this point in the derivation, the equations are identical
in form to the corresponding equations for circular cylindrical shells

‘(see, for example, Reference 2).

A.3 Strain-Displacement Relations.

With assumptions. 5 and 6 the axial, circumferential, and radial
displacements at any point in the shell wall, U5 Vs and-wz, respec=~
tively, can be expressed in terms of the corresponding median surface
displacements u(x, s), v(x, s), and w(x, s) as well as the axial and.
circumferential cquonents of rotation of the normal at the median sur-

face W and W respectively. From Figures 20 and 21.



Z,W,w, A

Figure 20.

XU, Wy

Sign Convention for Displacements.
and Rotations

Figure 21.- Element Deformation
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u, = u+t oz (A.19)
v, SV o= ozu {A:20)
w, =W (A.21)
where
=3 X
w =W, + 2 (a.22)
Wy =Wy (A.23)
and
Vi
W = - W + — (A.24)
X, s, r.
X s

The strains at.any point in the shell wall are related to the

corresponding displacements by means of the.well-known strain displace-
ment relations-expressed in cylindrical coordinates. Hence,

€, = U, (A:25)
’x
W
e =—t |y --Z (A.26)
s 1.zl 3z, x -
r
_ 1
g =g =.y + u (A.27)
XS sX 2, 1. % 2
- ‘

in which €0 Eys E oo respectively, are the axial, circumferential, and

shearing strains describing the state of strain in any plane tangential
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to the cylindrical surface 1r(s), z . In terms of the displacement and
rotation components of the median surface, the strain displacement re-

lations become:!"

€ = Us + wa’ (A.28)
x.
- 1 A
e = peill B PP sz5 (A.29)
l--= s
r
€ = 1 -u, + v, + -2 W - ;w (A,.30)
X8 z s ’x z' s, X, ¥
1—';' l-"r— S X

In terms of the corresponding median surface displacements-and their

derivatives the strains ares

g = Wy T By, (A.31)
£ = —k a-5Hv| -z +¥ (A.32)
s .2 r ’ss  r. )
r ]
8
-1 A EN _ 1
Crs = T E-.\.1,S_+ Qa - r) Vs 1+ Tz V5 (A.33)
r r

A.4 Stress Resultants in Terms of Displacements

The stresses at any point in the shall wall are related to the
strains through Hooke's law for plane stress.

and mx
L ’.S

1Physicéi interpretation and notation change.of the w

‘are available:in many references, ‘See, for example, Refer-

ence 2.
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o = (e + ve ) (A.34)
X l_\)2 X s .
c = E (e + ve ) {A.35)
s 2 s x’ ¢
1-v’
T mor omem ¢ (A.36)
Xs sx 2(1+v) xs )

in which E is Young's modulus and v is Poisson's ratio. Substitution
of these stresses into Equations A.7 through A,14 and integrating yield
expressions for the stress resultants in terms of the median surface"

displacements, Equations A,37 through A.44,

N_ =D l},x + vy, - v % + K_[% W (A.37)
N, = D(-]-'—E—Y> J )v,. (A.38)
] 2)(e) o (B w,| @
N_ = D»l},s -2 - vu,X] - K %)[}:,ss +% —(riz) (x, ) {l (A.40)
M= - K’Eq,xx.+ wy o+ v(lr’-) +(%) u',;JA (A.41)

-
M =K (l—v.)'&v, % J (A.42)

50 [0 g (2o (2)0] e

Moo= - K[}W,SS + c(-j%)-—(~%?) (r,s) v + vw,xé] (A.44)
‘ r” r ‘

=0
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and from Equations A.15 and A,16

Q =-KSw, +1/2[1+v+ec (dL+v)]w
1-v 1 _lvle _1::3(3>
T G Wogs t Yogx T T2 [r u’%], T\ S | (4.43)
s X8
W
QS = - K< cw, + W’XXS + C’S W’SS + C’S(?)

r >

1 w 1+y c
Seg(Z) @R vre(F) T e [:"'2 ) V]
’s

where

h
1+ 2r,_
h

L -9

e
a1y

log 1 =1

Substitution of these stress resultants.  into the equilibrium equa-~
tions in terms of the stress resultants and using c=l1 gives the final.
form of the equilibrium equations. These equations are recorded in
Chapter 2 as Equations 2,1. Note that these equilibrium equations are-
three coupled partial differential equations in u, v, and w with vari-

able coefficients; in which



u=u (x,s)
v =v (x,s)
w=uw (x,s)
r=1r (s)

A.5 Domnell's Partial Differential Equations of Equilibrium

In addition to the assumptions in A.l Donnell (3) made the fol=

lowing,assumptiQns to derive a simplified set of equilibrium equations:

}.» The transverse shearing force, st(Figurel7) makes a negligi-
ble contribution to the equilibrium of forces in the circumferential
direction.

2. The changes in curvature and twist are negligibly affected by
the-tgngential displacement, v..

These assumptions reduce the stress resultants in Equations A.37

through A.44 to the following

3

=D T 4
N = D [%’x Vs -V r:] (A.47)
N =N =D<4]2:’\-)-) u, +v (A.48)
X8 sX 2 ’s ’x °
N =D ~; - L+ v (A.49)
s ’s ’x :

M =-K [%’xx + vw,x%] (A.50)
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Mo =M =K Q) w, (A.51)
M= - K [};,SS +»vw,xx] (4.52)
Donnell's assumptions a150»reduce-Equation A.17 to
N  +N. =-P (A.53)
S, %8, s :
s X

Substituting the stress resultants A,47 through A.52 into the
equilibrium equations A.l, A.53, and A.1l8 gives the Donnell equatioms

of equilibrium (Equations 2.4).



APPENDIX B
FINITE DIFFERENCE QUOTIENTS

The finite difference approximations used in this study are tabu-
lated term by term (except for duplication) for each of the Equations
2.3 below.  Note, the approximations are given in terms of point i, ]

in the discrete system.

1 |
“’cc’ 5 N Ei + 1,5 My, T l,j:l

| L |
“"nnl T ‘;i,'j 17 By Ty 1]

i,]
1
V’cn’ 2A;AnE’i+1,j+1“’i+1,'j—1“Vi-1,j+1,
1,3 .
+ vi - 1, j - %}
r/ ’g ’ 207171 + 1,3 i-1,j\r
i,3 3
%
(?>w’c;c’ ZMBE’:L + 2,] s 4 1,j * 2wy 1,3
i,j
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- (2)
= W ‘ -w .
sacaZ 1 E [T L 2T g

-

’n

i,3
—wi—l,j+2+Wi-l,_il

L .
‘-(?)j_lE’1+1,j'wi.+1,j-2“"1-1,j+wi—1,-j.-21

(& | | —22{® [usees
) % 2 1\x i, 3+2 7 Y%,5)
v_ , j+1

4An

) (%)j _1 E‘i,j M, 8- 2]

The terms v,nn, v’ﬁC’ u,gn are similar to the terms u,nn, u’CC’ V’Cn'
respectively.
(£ = |(2 . € .
YA 25n |\x i, 3+ 1 " \T 1, 3 -1
nli, j+1 i=-1
: — 2
2 1 2
(%) Vers I R I WL I <r)
AR T - i)
(&)w L r—w 2w
) 3 . s -
\r/) eenyy 2az2an i+1, 5+1 i, 3+ 1
+ w w + 2w w (&>
i-1,3-1 i+1l, j~-1 i, 3 -1 i-1,3-1|\r
&) () - ()16, - ()
H]
r 2 . nn 2An3 r L y+1 [} 5 -1
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1
w e e | - 4w, , + 6w, .
F 3444 i,j AC4 [i.'l' 2, j i+ l, ] i, ]
- 4Wi -1, +'wi‘_ 2, j:]
W, — - 1 w - 2w, 2
zznn Az;ZMZ i+1, 3+1 i+1,5
i,3 :
R T R I B 0% Bl PV B

LA IO TR I PR TP TLAL PN J g i:}

87



2 ) .2
2\° 1 2 AN
(?) W T %m () Vii+ 1 T 2AE) Vi
i, ] j+1 §
/3 2
+,_) 3
\r Vi, - i‘E
j-1
4 4
(£) | —(2)
r r i,3
i,j h
2 5 (F) |
\z) ®orrr a3 F/ P23 T e ay T - 2
l»j J
N A ! A
(5 L))
3 , >
T Zn 80702 . 141, 5+2
Sn i’j J

By el T -1, 52T o, %}

/
3
Q?) B 1,3 TP+, -2 %1, T, -2
j -1
- o O PUPRRE
L_r 44 aaztan |VE/. .1 i+1, §+1- i, 3+1
gn i"j -
+ v +(% 2
i-1,3+1 r> Vi+l,3-17°",3-1
j -1
+vi -1, 3§ - l]
& &) v S |G -6
" 2 . | 2An3 r a1 2 a2 2 i, 1 +1




69



VITA 2
Jimmie D. Ramey
Candidate for the Degree of

Doctor of Philosophy

Thesis: A NUMERICAL ANALYSIS OF NONCIRCULAR CYLINDRICAL SHELLS
Major Field: Engineering
Biographical:

Personal Data: Born September 25, 1933, in Springfield, Missouri,
the son of James H. and Freida E. Ramey.

Education; Graduate from Central High School, Tulsa, Oklahoma, in
May, 1951; received the degreée of Bachelor of ‘Science in
Civil Engineering from Oklahoma State University in August,
1960; received the degree of Master of Science from Oklahoma
State University in August, 1962; completed requirements for
the degree of Doctor of Philosophy from Oklahoma State Uni-
versity in-August 1969.

Professional Experience: Part-time engineering aild for the Soil
Conservation Service, June 1959-June 1961; part-time instruc-
tor for the School of Civil Engineering, June 1961-June 1964;
research engineer for North American Aviation, Tulsa, June
1964-September 1965; instructor for the School of Civil
Engineering, September 1965-January 1968; research engineer
for The Boeing Co., Wichita, January 1968 to present time.
Registered Professional Engineer .in the State of Oklahoma.



