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CHAPTER I 

INTRODUCTION 

1.1 Discussion and Background 
I . 

The widespread use of thin shell structures has created a need for 

a systematic method of analysis which can adequately account for arbi-

trary.geometric form and boundary conditions as well as variable thick-. 

ness and anisotropic material properties. Classical thin shell theory 

yields diffe.rentia.l equations of equiliprium or continuity whose com-

plexity depends greatly on the. shell geometry and whos.e solutio.n depends 

on the geometric configuration of the boundary and the type of force 

or displacement quantity which must. be satisfied there. Therefore, 

classical solutions are available only for simple geometric form1;1 whose 

boundaries coincide with the parametric curves that describe the shell 

surface. In this context the sphere and the circular cylinder are. 

amenabl.e to clasedcal solutiop.s and have been studied extensively. 

Many.times, especially in the aircraft and aerospace industry, the 

engineer is faced with the problem of analyzing cylindrical shells 

which are not circular, Shells of this type do not ea1;1ily lend them-

selves to a classical solution. Oval.fuselage sections.are exampl~s 

of closed, noncircular ,cylindrical· shells. Skin panels between wing 

stx:ingers, spars, and ribs a.re examples of open, noncircular cylindri-

cal shells. Whether the reference is to closed cylinders or to open 

cylinders, most stressed-skin structures employ many noncircular shell 

1 



elements, The lit~rature contains relatively few investigations of 

noncircular cylindrical shells. 

Kempnet (l) deti'9'ed- ene.rgy expressions· and differential equations 

useful in stress and displacement analyses of noncircular cylindrical 

shells. These equations are.equivalent to the equations Flugge (2) 

derived for the circular cylindrical shells. Subsequently, Kempner and 

his students performed·a series of investigations into a class of short 

oval cyl,inders using a simplif:l.ed system of equations equivalent to.the 

well· known Donnell equations (3). 

These oval cylinders.a:re characterized by radii of curvature which 

vary around the circumference of the shells according to a simple mathe­

matical.expression containing an "eccentricity" parameter. Their stud­

ies, which. have continued to date, have contributed significantly to 

the knowledge of the.static behavior o! closed cylindrical shells. 

Boyd (4) develo.ped a met~od for the analysis of arbitrary, open 

cylindrical shells using the simplified system of shell equations 

equivalent to Donnell's (3) equations. These equations.are believed to 

be reasonably accurate for shell segments resembling a curved thin 

plate (such as a typical skin panel). Boyd's (4) work resulted in a 

method of small displacement and stress analysis for a constant-thick­

ness, cylindrical shell segment characterized by arbitrary curvature 

variation around the circumference, arbitrary boundary conditions along 

the straight edges of the segment, and arbitrary normal pressures dis.­

tributed over the surface. 

These investigations, including th<Yse by Kempner' s students were 

primarily concerned with the analysis of .short, nonciraular cylindrical 

shells, and made extensive use of the Donnell equations. While such 



analyses are considerably simpler than those based on the more accurate 

equations de:i::-ived by Kempner (1), they provide no reliable-information 

concerning the displacement and stress analysis of the longer shells. 

In this study two aspects of the problem of noncircu1ar cylindrical 

shells are considered •. One of these is to develop a numerical proce-

3 

dure for ·the solution of the Fhigge equations as derived by Kempner (1). 

The other aspect is. to compare· the accuracy of the Donnell equatiotis for 

noncircular cylindrical shells to the Flugge equations for noncircular 

cylinc;lrical ·. she;Lls. 

1.2 Approach· 

The differential equations of equilibrium derived by Kempner (1) 

were· used as the.basis of this study, The .derivatives of the displace-,. 

ments u, v, and w were replaced by finite-difference quotients·in order 

to reduce the.linear differential equations to a set of linear algebraic 

equat-ions. The closed, noncircular cylindrical shell (Figure 1) and its 

loading are assumed to be symmetrical with respect to the midplanes· 

(s = 0 and s = R,/4) and with respect to the cente;. line of the shell 

(x = .0). · This allows an analysis to be performed by considering only 

one-eighth of the shell (shown with the 8 x 8 finite difference grid 

layout superimposed on the shell surface (Figure 1).) The closed cyl­

inders ate assumed to be simply supported (s.s.) on the two ends. Full 

advantage is taken of the assumed symmetry. 

An open circular cylindrical shell is analyzed as an example. 

This shell (Figure 2) is assumed to be symme,trical with respect to the 

center line of the shell (x = 0), and is assumed to be simply supported· 

(s.s.) along the curved edges and pinned.supported (p.s.) along.the 



SS 

Figure 1. Closed Noncircular Cylindrical Shel.! 

Figure 2 •.. Ope'!l Circ:n.ila.r. 
Cylindrical 
Shell 



straight edges. 

Once the linear algebraic.equations are·obtained, the solution for 

the unknown displacements u, v, and ware obtained by solving the set 

of equations using the Gauss,-Jordon (5) techniq1,1e. 

5 



CHAPTER II 

FORMULATION OF THE SOLUTION 

2.l · Equilibrium Equations 

The equations of equilibrium governing the deformation of nonc.ir-

cular. · cylindrical ,shells are given by Kempner (1). For completeness 

the,derivation is duplicated in Appendix A and given again by the fol-

lowing three equations: 

+ 1 - v + 1 +.v v u' u v --w 'xx 2 'as 2 'xs · · r · 'x 

2 h +--w 12r 'xxx 
Ii(~ (l -. v) w l 
[ 24r · 'x~ 

. '$ 

~
2 (1 ..... v) 

+ 2 . 
24r. 

u,J 
's 

+ l - v + l + v .-(-'wr' ..... ) v,ss 2 v'xx · 2 u,xs 

. 2 
h (L- v) 

+ . 2 
8r 

. 's 

r 2 
's 

=P x 

v,xx 

--2-· v = 
r 

w l 

.P . s 

l .+( rw2 .) w'xxxx + 2W'xxss + w,ssss + 2 w,~s 
r 

+ .:-,-,-4 + - u' r r xx.x 

'ss 

6 
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1 - vc·:·) 3 - /v ) _(r, 9 v) 
v \ '/x 2 + 2 \ r2 

's 's 'ss 

/ r, \ 
- J2.. v + 12w _ .....!£_ u 

-\---f ) v = p (2 . 1) 2 's h2/ h2r 'x z 
r / h r 

where subscripts following a comma indicate differentiation. From 

Figures 1 and 16. 

x, s' z = longitudinal, circumferential, and transverse spatial 

coordinates, respectively. 

u, v, w = displacements in the x, s, z directions, respectively . 

r = variable radius of curvature. 

'J .. Poisson's ratio. 

h = shell thickness (assumed constant) 

= - (1 
2 

p - 'J ) p 
x Eh x 

2 
p (1 - 'J ) p - Eh s s 

p 
z = _12_(.,_1_-_v_2-'-) P 

Eh3 z 

P, P, and P = Loading intensity applied to the median surface x s z 

of the shell in the x, s, and z directions, respectively . 

Equations 2.1 may be rewritten in nondimensional form by using the 

following nondimensional parameters: 

x 
L 

s 
n = t (2 . 2) 



where 

L = length of cylind~r in x-direction, 

R. = arc length of cylinder in·s-direction, 

In nondimensional form equations 2.1 become 

1-V- _],+v(R..)- /R,)(R.-)-
2 1,1,nn + 2 \t v'tn -\r 1 w,t 

R, 
(1 - v) -

L 

1-v(R.)2 - l+v(R..·)-v,nn + 2 [ v,z.;z.; + - 2 L u,z.;n 

=P n 

=P z.; 

(R,)4- (R,)2- _ '(R,)2- CTR,,2_~ -
I - w + -2 - w + w + - w · + - w ,1 'z.;z.;z.;z.; L. 'ttnn 'nnnn r 'nn \r) 

'nn 

+(!)4 
w + (_!)3 '('!) u ___ 1 - v ~!)- l + 3 ... \)(!)2 -''(!)- _l r L · r 'ttt 2 ~r v,z.;~ 2 L Qr v,z.;~ 

'n 'n 



.where· 

(Jl,)2(!1,)2 _ (Jl,)2 (Jl,)(R.)-+ 12 · [ ~· w - 12v h [ ~ u,r,; 

2 (R,)2 PX 
pr,; = - (1 .;.. \) ) h p 

z 

. 2 '( n \2 .P = w:-· (!- \I )' h/ PS' 

2: 

2 '( R,)4 . 
Pr. = 12 (1 ·... v ) . h 

= p 
r 

(2. 3) · 

Equation 2 .3 is a set .. of three coupled partial,. differential equa-

tions with varial;>le co,efficients •. As ·discussed in the. Introduction,, 

these equaUone will be solved using the finite difference technique 

(2. 3). 

2.2 ·· Donnell's Eguil~brium Equations 

The· equilibrium .equations given by. ~quations 2 ~ 1 · .are very cumber-

some to apply to tQe solution of shell problems because.of the laborious 

calculations which are assoc:tated with them... A somewhat silllpler set .of· 

equations,.which have m1at ~ith fairly wide application,'were derived by 

Donnell ( 3) • By assuming that the transverse shearing force Qs makes 
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il negligible contribution to the·equilibrium of forces in the circum-

feren1;ial;direction, and tha1; the changes of curvature and twht are 

negligibly a~fected by the.tangential displacement, v, the.governing 

part:ial ·differen~ial .equations for a noncirc4la.r .shell. reduce to the 

set given.by equations 2.4 

1-v l+v " . p u'xx +.-u, + T v'xs --w = 2 . SS r ':it x 

1 ... v + l+v -( ;) = P. v,ss +Tv,. --u . xx 2 'xs s 
's 

W + 2w + W· '-xxxx xxss 's~ss 

(2 .4) 

where · the notatj,.on is the . same as in 2 • l •. 

Using the.nondimensional parameters of equation 2.2 the nondimen ... 

sional fo:rm of Donnell's equilibrium. equations are 

1-v ( R. )2 - l+v ( fl )- If( fl) -;l v'nn + T L v,·z;r; + 2 i.·· u,,n, -~-; wj. 
. 'n 

I !l)4 _ 2 · 
\ L w, z;z;z;z;; + 2(~). w~ r,;z;nn + w'nnnn 
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Note that these equations are also a set of three coupled partial dif-

ferential equations with variable coefficients. The accuracy of these 

simplified equations will be compared to that of Kempner's form of the 

Flugge equations. 

2.3 Formulation of the Finite Difference Equations 

The finite difference technique reduces the linear differential 

equations for a continuous system into a set of linear algebraic equa~ 

tions. Conventional algebraic equations, called finite-difference quo-

tients, are used in place of the derivatives of the displacements. 

The finite difference quotients used in this study are conventional 

central difference given by Salvadori (6) and given by Equations 2.6. 

f I --1 If -f J ,~ i,j 26~ Li+ 1,j i - 1,j 

f 'nli,J • 2!n ~i,J + 1 - fi,J - ~ 

f,ssli,j • A~2 ti+ 1,j - 2fi,j + fi - 1,j] 

f, I = ~ lfi j + 1 - 2fi j + fi j _ 1J-
nn i,j t.n L , ' ' (2. 6) 

Note that the approximations are given in terms of an arbitrary point 

i,j on the shell middle surface . All the approximations needed to ex-

press the governing equations in finite difference form can be generated 

from those given by Equations 2.6. For completeness, the finite dif-

ference approximations used in this study are tabulated in Appendix B. 



12 

2.4 Boundary.Conditions 

In accordance with the .discussion given by Kraus· (7), foux: boun-

dary conditions must be given.for.each edge.of the shell. These boun~ 

dary conditio.ns for an iopen shell are: 

for sides. of constant x · 

u = 0 N . = 0 x 

v = 0 T = 0 
SX 

OR 
w = 0 v = 0 x 

s = 0 M 
x x 

for sid~~·of constant .s 

u= 0 T 
XS 

v = 0. N s 
OR 

w = 0 v s 

s = 0 s M s 

where, 

Sx, Ss = .the slope of the surface (Figure 21). 

T, V = Kirchoff shears given by Equations 2.9 

N, M = stress resultants given in Appendix A. 

The Kirchoff shears:are: 

T = N sx sx 

M 
T .. = N. + XS 

XS XS r .. 

= 0 

= 0 

= 0 

= 0 

=. 0 

(2. 7) 

(2 .8) 
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(2 ,9) 

where 

Q, M = stress.resultants given in Appert4ix A. 

The boundary conditions.for shells closed with respect to s are the 

same as those.given by Equation 2.7. 

In cases where the shell is symmetrical, closed, and symmetrically 

loaded, conditions of symmet:ry can.be used to advantage. In this study 

two differeht seu of boundary conditions are used. First, for the 

closed shells it was .assumed that the shell and its loading a.re :symme:t­

rical with i-espect .to the generators at ··n = O and at n = 1/4; and sym-:- · 

metr.ical with respect to the circumference line at z;, = O. This allows 

an analysis to be performed using.only one-eighth of the shell as shown 

gy Figure 1. The boundary conditions used are: 

T = 0 xs· 

v = 0 

v = () 
For n =.O and. n = 1 with O ~ z; < 1 

s 

as = 0 (2.10) 

u = 0 

T = 0 sx 
For z; = O 'tlTith O ~ n < 1 

v =·O x· 

.ax = 0 (2.11) 



N = 0 x 

v = 0 

For I',; = 1 with o < n .::.. 1 -w = 0 

M = 0 
x 

In the case of open shells the boµndary conditions used were: 

u = 0 

v = 0 

w = 0 

M == 0 s 

For n = O and n == 1 with O .::_I',;< 1 

(2,12) 

(2, 13) 

Along sides of constant t;, the.boundary.conditions are given by Equa-

tions 2,10 and 2,11, 

In terms of displacements, the boundary conditions·. for the closed 

shell ar:e: 

v = 0 

u,n = 0 

For n = 0 and n = 1 with O .::._I',;< 1 
w,nnn = 0 

w, = 0 
n 

(2.14) 

u = 0 

v = 0 

For I',;= 0 with O .::_ n < 1 
w,' = 0 

w,l,;l,; = 0 (2 .15) 
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u, 1'; = 0 
\ 

\ 

v = 0 
For 1'; = 1 with 0 < n < 1 -

w = 0 

w,r;r; = 0 (2 .16) 

In terms of displacements, the boundary conditions for the open 

shell are: 

u = 0 

v = 0 
For r; = 0 and r; = 1 with O,::.. n < 1 

w = 0 

w = 0 'nn (2 .17) 

For,= 0 and r; = 1 with O 2-_ n.::. 1 the boundary conditions are, 

as before, the same as in the closed shell (Equations 2.15 and 2.16). 

2.5 Application of Finite Difference Equations 

The repla.cem~nt of the. continuous domain. D by a. patt1?rn of discrete 

points withi;n D is·sh6wn in Figure 3, As a result of the approximation, 

the solutions for u, v and w are not continuous. solut:Lons ·but are ap-, 

proximations to u, v and w at ,the isolated points (Figure 3), 

The grid system .used in thi.s study is shown in Figure 4, 

The equilibrium equations in fin:i,.te difference form are applied at 

all int~rior points; .Le,, at point pij' for 2 .::. i < 8, and 2 .::_ j .::_ 8; 

and at certain boundary points p.epending on .the boundary conditions. 

For convenience .in this study, the variables are·renumbered with a· 

single subscript as shown.by Figure 5, 



·lti, . 

P P ·p + 1 
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Figu;e. 3. Appro:dtnation of a Continuous Dow.in by: an 
Array of Discrete Points 
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Figure 4. Grid System for Finite Difference oper_ators 
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I . 

w 63 62 61 60 59 58 57 w 

I ·ro 69 68 67 66 65 64..--u 

u 

-141 ' 65 50 -ji3 -t!4 -f!5 -f46 -f8 -f49 63 

66 51 -¥6 . -f7. ~8 ~9 ~o ~I _,!2 62 

67 · 52 -f9 -Po ..pi ..p2 -P3 -f4 -f5 "61 

68 53 -f2 -f3 ~4 --f!5 -f6 ~7 ~8 60 

69 54 -fl9 ~ -41-1 -f!-8 --f!-9 --,o +1 - 59 

70 55 ~ ~ -f-0 -fU ~ -f1-3 ~- 58 

71 56 -fl -¥ -f --¥ ~ ~ -f 57 

1 t 
72 v u 

50 51 52 53 54 55 56-u 

w 50 51 52 53 54 55 56 

Figure 5. Numbering System for Variables 

' -, 
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The points of application of the finite difference approximations 

for the closed shel+ are shown on a simplifiEad grid system in Figure;6, 

Th~ points of application.for the open'shell are shown in Figure 7. 

0 0 0 

0 0 0 

() () 0 

(a) FIRST EQUILIBRIUM 
EQUATION APPLICATION 

C> 0 0 

0 0 0 

0 0 0 

(c) THIRD: EQUILIBRIUM 
!EQUATION APPLICATION 

0 0 0 

0 0 0 

0 0 0 

( b) SECOND EQUILIBRIUM . 
EQUATION APPLI.CATION 

(dl EQUATION 2. ~ t 
APPLICATION 

Figure 6. Points of Application of Finite Difference 
Approximations.for Closed Shell 
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0 0 0 

0 0 0 

(a.) FIRST EQUILIBRIUM 
EQUATION APPLICATION 

0 0 0 

0 0 () 

0 0 0 

(c) THIRD EQUILIBRIUM 
EQUATION APPLICATION 

O O O 

0 0 0 

0 0 0 

(b) .SECOND EQUILIBRIUM 
EQUATION APPLICATION 

(d) EQUATION 2.21 
APPLICATION 

I J. 

0 

Figure 7. Points of Application of Finite Difference 
· Approximations. for an Open Shell 

Using the concept of "fictitious points 11 (6) outside the boundary 

20 

at~= 1 and the conditions of symmetry on the other three sides of the 
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closed shell, the boundary conditions (Equations 2014, 2.15, and 2,16) 

are expressed in terms of the finite difference approximations by Equa-

tions 2.18, 2.19, and 2.20 with the exception of u,~. = 0 in Equation 

2.16. Since the.boundary at l;; = 1 is allowed to translate, the condi-

tion u,1; = 0 is expressed in terms of the backward difference expres­

sion (6) given by.Equation 2.2L 

u = u .. out in' 

v = -v out :tn For n = 0 and n = 1 wi t;h O ~ l;; < 1 

w = w. out in· (2 .18) 

u = -u. out in 

v = v. out · in For 1; = 0 with O ~ n < 1 

w.· = w. out· in 
(2 .19) 

v = v. out .. in 
For .1; = 1 with O ~ n < 1 

w = -w. out,. in 
(2.20) 

u, 1; I 
i,j 

= 0 = 3u. j - 4u. 1 , + u, 2 , 
. J., 1. - ,J J. - ,J. 

(2o21) 

For the open shell Equations 2.19, 2.20, 2o2l were used for the 

bouridaries of constant 1; •. For·boundaries of .. constant n; i.eo, n =·O 

and n = 1 with O ~ 1; ~ l;._ the _only condition required is 

w = -w. out in. (2.22) 



CHAPTER· III 

COMPUTER SOLUTION 

3.1 Coefficient Matrix 

The differential -,equations wh;lq.h govern. the deformation of: a non-

circula:i:- cylindrical -shell. are given by Equation 2 •. 1. The equat.ions 

are·. solved. using· the: finite difference· procedure as discus.sed in ,chapter 

II .. '!'he equation$ together wit4 the appropriate boundary conditiona 

and conditio~s of. symme.try are applied at the various grid points 

(Figure 4) to 13et up the. relation -.between the de:Uections at these grid 

points and the loads applied at·these grid· points. Th~s i;:elation is. 

given by Equati.on 3.l. 

{P} · = [A] {o} (3.1) 

where·. 

{P} = the grid point-forces 

· {o} · = the grid point-deflections 

[A] = the cqeff icient matrix relating the forces. to the de flee .... 

tions •. 

Using the numbering system shown. in Figure ·5, · the a-matrix .-is or ... 

dered as shown in Eql.lation 3.2. The coefficient: matr;i.x, A, in.Equation. 

3.1 is obtained by applying the equ:Uibrium equations at all .interior 
i 

point:s and at ··the appropriate. bounc;lary. points· and applyi:r;ig Equation 

2.1~ at points. along the_ boundary at ~ = l, as show:r;i in Equations3.2 •.. 



p 
x 

p 
s 

p 
z 

0 

First equilibrium equation applied at all 
interior points and at appropriate boundary 
points 

Second equilibrium equation applied at all 
interior points and at appropriate boundary· 
points· 

Third equilibrium equation applied at all. 
interior points and at appropriate boundary 
points 

Equation 2.21 applied along t = 1 

(3,2) · 

To eliminate numerical difficulties, some of the equations i.n the 

simultaneous set (Equation 3.2) were scaled in order that the terms of 

the coefficient matrix be of approximate equal magnitude, After the 

application of.the equilibrium equations and the scaling operation was 

completed and the final form.of the coefficient matrix was obtained, 
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the I:m-:t scienti.fic subroutine (8) SIMQ1 was- used to obtain the unknown 

deflections,·{~}~ 

3,2 Computer :erograw 

The computer program was·organized to apply.efficiently and method"'." 

ically the finite difference form of the equilibrium equations. The 

program is separated into subroutines which supply the. numer.ical value 

of each term .of· the coefficient matrix and a subrout.ine .to store these 

values -in -,the co:rrect ·position in -the matrix. The· logic of. the program 

is shown in the flow cha.rt in Figure· 8. 

1SIMQ is a subroutine which obtains the ·solution of a set . .of si·­
mult.aneous linear equations. 
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Read structural parameters 
~ 

and load intensities 

Construct Load Matrix 

{P} 

Apply finite difference form Develop coefficient matrix 
of equilibrium equations - [A] 

and boundary conditions 

equation~] Solve simultaneous 

"SIMQ" 

Print out titles and 

structural parameters 

'· Substitute grid point 

displacements into ,_ Print out grid 
, __ 

EQS A.37 - A.46 
point displacements 

"STRMOI' --· 

Print out grid point 
Stress.analysis 

>-
· stress resultants · 

required? 

' Calcomp plots \ 
desired? ' Call plotting routines 

-

"PLOTl" and "PLOT'' 
Multiple analysis 

I 
desired? 

8 
Figure 8. Computer Program Flow Cpart 



CHAPTER IV 

NUMERICAL·RESULTS 

To check the validity of the formulation and .the computer program 

several comparisons with existing solutions are made. Examples from 

References 4, 9, 10, and 11 are solved in this study and comparisons 

made in the following sections. 

4.1 Comparison with Known Result for a Circular C¥1indrical Shell 

The bas~c boundary conditions discussed in Chapter :II were modi-

fied so that a closed circular cylinqric~l. shell with p:l,nned ends could 

be analyzed. This circular. cylindrical shell is acted upon by a uni-

form pressure loading and is shown in·Figure 9, The·axisymmetric shell 

with an axisymmetric load is almost a trivial case since the.Donnell 

and Flugge equations are identical. However, to develop confidence in 

the method·and the computer program, ·the analysis of closed circular 

cylinders was made and·since the data was available, it is presented· 

here for completeness. Timoshenko (9) gives as the magnitude of the 

radial deflection at the midpoint of the shell. the. relation in Equation 

4.1. 

w = (4 .1) 

26 
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I---· -- L __ Pz ---·1 
Figure 9 ~ .. Pinned Supported Circular Cylinder 

With Uniform Pressure Load 
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where 

P = intensity of the pressure loading 

L = length of the shell. 

= (31 
2 

Eh 

4r2K 

h, r, and Kare the same as used in this study (Chapter II). 
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Comparisons between Equation 4.1 and numerical results are given by 

Table I. 

For the case of open circular cylindrical shells, a simply sup:-

ported cylindrical, shell segment under uniform pressure p was consi,­
z 

dered. Comparison with the exact solution of the Donnell equations as 

given by Boyd (4) was made using both the Donnell and Flugge equations 

of the present study. The·geometric properties of the shell considered 

as well as the results of the comparison are shown in Figure 10. The 

boundary conditions for this cylindrical shell segment are the same as 

those for open shells discussed in Section 2.4. For this example, the 

radial deflections, w, are given in Table II for the solution of both 

the Donnell equations and the Flugge equations. In the case of this 

open shell segment under uniform pressure loading, the solutions given 

by the.Donnell equations are in exact agreement with those given by the 

Flugge equations. 



-!(; 

0 -
Y'. 

¢ 

c:o« 
~ a.. 

5 

4 

3 
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~ FINITE DIFFERENCE SOLUTION 
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Figure 10. Radial Deflections for a Circular Shell Segment Witl:i. 
Uniform.Pressure Loading 
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TABLE I 

RADIAL DE~LECTION AT MIDPOINT OF CIRCULAR CYLINDRICAL 
SHELL ACTED UPON BY A UNIFORM PRESSURE LOADING 

WITH t =.200 

JI. w - Iheoretical w - Numerical % Error 1· 

0.1 1013.21 · 989.879 2 

0.2 1013.21 989.879 2 

0.3 1013.21 989.879 2 
0.4 101~.21 989.880 2 

0.5 1013.21 989.881 2 

0.6 1013,21 989,883 2 

0.7 1013.21 989.887 2 

0.8 1013.21 · 989.893 2 

0.9 1013.21 989.902 2 

1.0 1013.21 989.914 2 

2.0 1013.20 990.427 2 

3.0 1012.95 · 992,367 2 
4.0 1007.54 996.095 1 

5.0 1016 .51 · 1000.56 2 

6.0 1049.26 1004.05 · 5 

7,0 1090.80 1006.00 8 



s 
:R, 

0 

.125 

.250 

.375 

,500 

.625 

,750 

.875 

1.0 

TABLE II 

RADIAL DEFLECTIONS OF A CIRCULAR SHELL SEGMENT ACTED 
UPON BY A UNIFORM PRESSURE LOADING 

2 = TI & = 25 & = 200 
'.f' Z. ' 1· • ' h 

w - Donnell 

0 

37463 

64335 

80356 

85676 

80356 

64335 

37463 

0 

31 

w - Flugge 

0 

37465 

64338 

80360 

85680 

80360 

64338 

37465 

0 

4.2 Comparison With Known Results for the Noncircular Cylindrical Shell 

The short~ slightly noncircular shell is well behaved and the solu-

tion is obtainable by several different analysis procedures. It ,is ex-

pected that all numerical methods of analysis based on the Kirchoff-

Love assumptions. should give good results for these. shells o Two anal-

yses, Romano (10) and Mah (11) were selected to establish the validity 

of the present method as applied to this type of shell. In the first 

e~ample, Romano (10) used a Fourier series solution to obtain a solu~ 

tion of the Donnell equations for noncircular _shells, Romano also ob-

tained an approximate solution by solving the Donnell 'equations for a 

circular cylindric~l shell using for the radius of the circular shell 
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the corresponding radius of the noncircular shell at the points of in­

terest. This, of course, requires the solution of many circular cases 

in order to solve one noncircular case. The method was applied only to 

short shells. 

The example problem solved by Romano (10) is a short, closed cylin­

drical shell with an oval cross section acted upon by a uniform pressure 

loading. The geometric properties and the radial deflections are given 

in Figure 11. The finite difference method of the present study com­

pares very well with the solution given.by Romano's exact method. As 

illustrated by Figure 11, the values of radial deflection along genera­

tors at s/t = O, sit= 1/8, and s/t = 1/4 from x/L = 0 to x/L = 1 are 

identical to Romano's exact solution. For .this short shell, Table III 

compares the solutions given by the Donnell equations and by the Flugge 

equations. As expect,ed, the Donnell equations compare faborably with 

the Flugge equations. 

In the second.example, Mah (11)· uses a Fourier series to obtain a 

reduced set of differential equations, and then applies the finite dif­

ference method to obtain.the solution of this reduced set of equations. 

Although the governing equations are equivalent in form tq the Kempner 

form of the Flugge equations and should be applicable to long she.11 

problems, Mah applies the solution procedure to short shells only. 

However, it .should be pointed out that for long shells the series used 

converged much more slowly and a greater ·number of terms were required 

to perform the analysis. The present method, on the other hand, gives 

the .solution for moderately long shells using the same basic setup as 

used for the short shells. 

The sample problem selected for comparing the present method with 
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Figure ll. Radial :Deflectio.ns · for an Oval: Cylindrical Shell With 
Uniform Pressure Load 
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x ~=O 
L R, 

w - Donnell 

0 6828 

.125 6720 

.250 6393 

.375 5843 

.500 5069 

.625 4072 

.750 2866 

.875 1487 

LO 0 

TABLE III 

RADIAL DEFLECTION COMPARISON FOR AN OVAL CYLINDER * = 576. f = 24 i = 1.10 . 

~ = 1/8 
R, . 

w - Flugge w - Donnell. w - Flugge w - Donnell 

6790 8543 8494 10818 

6680 8402 8352 10634 · 

6350 · 7978 7927 10082 

5797 7272 7218 9167 

5022 6286 6233 7899 

4029 5029 4982 6298 

2834 3527 3490 4401 

1470 1824 1805 2270 

0 0 0 0 

~ = 1/4 
R, 

w - Flugge 

10758 

10573 

10019 

9104 

7838 

6245 

4361 

2249 

0 ·, 

w 
..i:--



that of MAH is a closed cylindrical shell of elliptical cross section 

loaded by a uniform pressure. The geometric properties of this shell 

and the radial deflections are shown in Figure 12. The radial deflec-

tions of the shell along the curve at x/L = 0 for s/1 = 0 to s/1 = 1/4 

using the finite difference method of the present study are also shown 

in Figure 12, As expected here also, agreement is good, with the maxi-

mum difference in the two solutions 4 percent, For this short shell, 

Table IV compares solutions given by the Donnell equations and by the 

Flugge equations~ Here, too, good agreement is obtained. 

TABLE IV 

RADIAL DEFLECTION COMPARISON FOR AN ELLIPTICAL CYLINDER 
~ = 763.7 t = 30.55 ~ = 1.413 

4~ 
1 w - Donnell w - Flugge 

0 45064 45012 

,125 43238 43190 

.250 37651 37615 

.375 29970 29949 

,500 21635 21628 

.625 14281 14284 

.750 8993 8999 

,875 6061 6067 

LO 5221 5226 
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L = 10 
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h = 0.2 
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Figure l~ I Rad.:t.a'l Def l_~qt.~ODfL f or..:,Ji,U_· El lip tic..al : Cyl:f,.ndt:ical 
· ,Sheil ·with Uni.fe>rm Pressure Loading . 
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4.3 Acc~racy of.the Donnell,EguaUons 

The accU:racy of the Donnell equilibrium.equations (Eq~ation 2.5) 

was established -by comparing with numerical .. solutions to the Flugge · 

equilibrium eq:uations. (Equa_tion 2 .1) using bot_h a circular cylinder and 

an elliptical·. cylinder loaded along. a generator as shown, in. Figure ·13. · 

The· -results of thi$ compar:l,.f3on which· are shown . in·· Tables V and -VI; are 

similar to tq.ose. of Kraus (7) ~· The 'present solutioii. indicates the. same 

characteristics, Le., for the circular .shell load,ed along a generator· 

th~ Do'nnell equations give. \,\n're_liable results as . the shell becomes long-

er.· and as the thickness approaches the · lower limit of • thinness. The 

noncircular cylinqer exhibits the ·same· characteristic.. The .results of 

this comparison are-discussed in the-next .few paragraphs.· 

Corresponding to. the .tabulation by.Kraus, Table V shows.the com­

parison ·of .. the numer;l.cal -solutions of the ·Donnell equations· and the .. 

Flugge equations fo;r a circular cylindrical ·shell. · The ra4ial def lee ... 

tion of point P. (s = o, s = fr Figure -13) ia used_ as the ba~is for the 

comparison. · The values of this radial.. deflection is tabulated for ! 
ratios of 50, 100, 200; 400, and aoo; and for ~ ratios of 10.0, -1.0, · 

and O.L Inspect:l,-on of this table shows th.at for very th!n circ'lllar · 

shells the fi11ite difference solution of the Donnell equatipns-is no. 

different, than the: finite difference. solution of the Flugge equations. 

As the thi,c.kness and the .length of the.shell is increased, the.Donnell 

equations .. become 'mor,e · and i;nore ·inaccurate~ - The greatest in.fluence--on 

this inaccuracy is felt ·to.be'the effect of the transverse shearing 

forces., Qs aet:ing ori the thickness of the shell secti6n.. Obvipusly as .. 

the shell ,becomes thicker -(but still a ,thin -.shell.) th~ influence of, the 

contribut:l;ori of the transverse shea:r forces to the sec.i;,ncil,equilibrium 
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2a 

Figure 13~ El.liptical Cylinder Wit~ Line. 
Load. 



Q, 

h 

50 

50 

50 

100 

100 

100 

290 

2bo 

200 

400 

400 

400 

800 

800 

800 

TABLE V 

COMPARISON OF ACCURACY OF DONNELL EQUATIONS FOR 
CIRCULAR CYLINDRICAL SHELL WITH LOADING 

APPLIED TO GENERATORS 

Q, 

39 

L 
w - Donnell w :.. Flugge 

p p 

O.l - 150.68 - 147, 25 

1.0 - 70.82 - 70.02 

10.0 .,~ ,-: 0,0013 0.0119 

0.1 - 603.56 - 600.08 

1.0 - 286,68 - 285.85 

10.0 0.106 0.110 

0.1 -2415.1 -2411.6 

LO -1150.0 -1149.2 

10.0 0.105 0.100 

0.1 ,9661,2 -9657.7 

1.0 -4603.4 -4602,6 

10.0 0,627 . O, 634 

0,1 -38645,7 -38642.2 

1.0 -18417.0 -18416.1 

10.0 3,5.5~ 3,561 



9, 

h 

50 

50 

50 

100 

100 

100 

200 

200 

200 

400 

400 

400 

800 

800 

800 
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TABLE VI 

COMPARISON OF ACCURACY OF DONNELL EQUATIONS FOR ELLIPTICAL 
CYLINDRICAL SHELL WITH LOADING APPLIED 

TO GENERATORS 

b 5 b 
- = - = 10 a a 

9, w - Donnell - Flugge w - Donnell w - Flugge 
L 

w 
p p p p 

0.1 55, 77 18.888 - 2L978 0.499 

1.0 20,332 8,954 6,133 0.228 

10.0 0,0365 0.0390 000047 0,0040 

0,1 - 244,579 - 161.794 - 115.12 - 11.67 

1.0 - 105,698 79.148 - 41.69 6 .271 

10.0 0.380 0.353 0,114 0.0523 

0.1 - 1004.19 - 889,02 - 507,17 - 160.66 

LO - 465.25 - 428.65 - 218.38 - 90,75 

10.0 0,639 0.620 0.808 0.559 

0.1 - 4044,09 - 3916.82 -2085,6 -1357,5 

LO - 1913.20 - 1873.03 - 965.04 - 712.97 

10.0 + 0.700 + 0.698 1.379 L229 

0.1 -16204.1 -16073.4 -8402.8 -7410.24 

1.0 - 7708.24 - 7667.08 -3973.83 -3650 • .38 

10.0 + 1.259 + 1.256 L415 L.376 
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equation (Equation A.2) becomes greater and should not be neglected. 

To illustrate the effect of noncircularity on the accuracy of the 

Donnell equations, an elliptical cylindrical shell loaded by a line load 

(Figure 13) is analyzed. The radial deflection of point P given by this 

analysis is tabulated (Table VI) for! ratios of 5 and 10; anq for Ii, 

ratios of 50, 100, 200, 400, and 800, and for i ratios of 10.0; 1.0, 

and 0.1. A similar comparison to further illustrate the effect of non-

circularity on the accuracy of the Donnell equations .is shown in Tables 

VII, VIII, and IX. Here the radial deflection of point P for the ellip­

tical cylindrical shell of Figure 13 is tabulated fo.r E. ratios of l to a 

10 for three~ ratios (100, 200, and 400) for the.single nondimensional 

length of 0.1 •. Also shown in these tables is the percent error of the 

Donnell equations w:i,th r~spect to the Flugge equations,, Inspection of 

these tables shows that the noncircularity of the section plays an.im-

portant role in the accuracy of the Donnell equations. 

In order.to establish limits for the use of the Donnell equations 

one final comparison is made. Figure 14 shows the radial deflection 

comparison for the elliptical cylindrical shell as a function of£. 

fl, . fl, 
Inspection of the figure shows . .that for a ratio of h = 50 the 1 value 

of 8 should be the limiting value for the use of the Donnell equations 

b for - = 5. 
a From Figure 15 the corresponding limits for~= 100 are 

fl, b fl, - = 8 for - = 5 and - = L a L 15 · for E. = 10. 
a 

The finite difference method 

provided no significant in:l;orm9-tion for a limit for the circular shelL 
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a WP 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE VII 

RADIAL DEFLECTION COMPARISON FOR AN 
ELLJPTICAL CYLI~DER WITH 

1 = 0.1 and n = 100 

- Donnell w - Flugge 
p 

-603.56 -600.08 

-501.34 -498,87 

-383.46 -374.33 

-301.29 -258.54 

-244,58 -161.79 

-203.65 - 96.44 

-173.19 - 56.30 

-149.45 - 32~63 

-130.50 - 19.30 

-115.12 - 11.67. 
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% Error 

1/2 

1/2 

2 

17 

51 

111 

207 

360 

580 

890 



TABLE VIII 

RADIAL DEFLECTION COMPARISON FOR AN 
ELLIPTICAL CYLI~ER WITH i = 0.1 AND h = 200 

b WP - Donnell w - Flugge. % Error -a p 

1 -2415.09 -2411,59 

2 -2011.26 -2008.76 

3 -1547,05 -1537.49 l 

4 -1225,12 -1175,67 4 

5 -1004,19 - 889.02 13 

6 - 846.10 - 660.76 28 

7 - 728,66 - 478.86 52 

8 - 637.90 - 337.24 90 

9 - 565.73 - 233.70 144 

10 ..., 507,17 - 160.66 280 
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TABLE. IX 

RADIAL DEFL~CTION COMPARISON FOR.AN 
ELLIPTICAL CYLINDER WITH 

f = Ool ~ ~ = 400 

b - Donnell w - Flugge % Error w a p p 

1 ,-9661.20 -9657.7 

2 -8051.0 -8048.5 

3 -6201.69 -6192.01 

4 -4921.21 -4869078 1 

5 -4044,09 -3916.82 3 

6 -3418.58 -3194005 7 

7 -2954.41 -2613.09 13 

8 -2597.28 -2124.05 22 

9 -231.4. 54 -1708.99 35 

10. -2085.60 -1357.45 54 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5,1 Summary 

A method has been presented to determine the deformation of a 

general.noncircular cylindrical shell, either open or closed; using the 

flugge equations of .equilibrium. A special case.of a general noncir­

cular shell is the .. circular shell. From thi.s study the following ob­

servations were made~ 

1. Through comparison.of deflections obtained by other methods 

for identical noncircular shells, the finite difference method of anal.,.. 

ysis was .shown to give valid .results for the solution of the·partial,. 

differential equations for n6nc.ircula.r .shells. 

2. For·short. noncircular shells the Donnell equilibrium equations 

compare favorably with the more accurate Flugge equilibrium equations. 

3. For noncircular shells with axisymmetric loads the finite dif­

ference method does not indicate any significant inaccuracy of.the 

Donnell equations as compared with the Flugge equa~ionso 

4. For a fixed shell cross section, properties, and loading, the. 

accur.acy of the Donn.ell equation~ was· found to be adversely affected by 

an·increase·in.the thickness of the shell. 

5. For .a fixed shell thickness, length, and loading, th.e accuracy 

of the Donnell equations was found to be adversely affected by an in~ 

crease·in the.noncircularity of-the shell·crosssection. 
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6, For a fixed shell thickness, cross section, ,Eu:i.d loading, the 

accuracy .. of the Donnell equatione; was. found to be adversely affected by 

an increase in the length of the shell. 

7. The tabulation of the.accuracy of the Donnell equations with 

respect to the Flugge equations fulf i.lls a much needed comparison here,­

tofore not published in the literature (7). 

5.2 Conclusions 

The calculation of the deformation of noncircular cylindricd 

shells using the· more. accurate Flugge equations was possible using th.is 

insithod. The method provides engine.ers with a tool for applying these 

more accurate equations. It also provides a basis for extending the 

more accurat.e equations to the dynamic and stability ari.alyses of non,­

circular cylindrical shell.s. This study· indicates a limiting value of 

f for the application of the Dom:iell equations to noncircular shells 

loaded along a generatori The study points.up the fact that the accu­

racy of the Donnell equations·is sensitive to increasing shell thick­

nesses, the length of the shell, and the noncircularity of the cross 

section, Thestudy also indicates that of these three, the thickness 

has the most effect on the·accuracy of the Donnell equations. 

5.3 Suggestion$ for Further.Work 

During this study, many interesting top:t.cs were noted which should 

be studied, In the finite differen<:,!e method of solving the partial 

differential equations.it is.recognized tha.t·the grid spacing used in· 

this study is not accurate .for very long shells, A study should be 

made to improve.the accuracy .of the method for long shells. This could 
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be done by using a variable instead of .a constant grid spacing. Further 

study in this area may: 1) incorporate.higher order finite difference 

quotients; 2) evaluate and optimize a grid size as a function of the 

length of the shell. 

Additionalpropert;ies of the shell should be incorporated into 

this theory. For example, when applying the method to the analysis of 

shell structures for aircraft, including helicopters, submarines, and 

space ve}J.icles it :would be desirable to incorponi.te anisotropic material 

properties as. well as variable thicknesses. In . order for the investi­

gation of noncircular cylindrical shells to be complete, studies should 

be made to dete.rmine the dynamic, and stability characteristics of long 

shel.ls. Also it would be desirable· to obtain experimental verification 

of the deformations obtained in this study. 
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A,l Assump~ions 

APPEND!~ A 

DERIVATI01'l:OF PARTIAL DIFFERENTIAJ:i 

EQUATIONS OF.EQUILIBRIUM (1) 

In. the derivation of the partial-differential equations which give 

the deformat;ions u; v,. and w of the she.11, the following assumptions 

are.made: 

1. The shell is cylinqrical, i.e., its cross section is ch~rac.,, 

terized -by the plane curve re,sulting from -the it?,tersection of the .median 

surf ace and a plane normal -,to the axis of the cylinder •. 

2. The right-handed _coordinate system shown in F:l,gure 16 gives 

the coordinates .. of any point (x; s, z) in the wall of the shell. 

3. The material of the shell is isotropic, homogeneous and· 

elastic~ 

4. The thickness.of the shell is _very small, compared to tl)e other 

dimenE!_ions of the · she.11. '. 

5. The defo.rmat;i6nE! u; v ,; and. w are. small compared to the thick-. 

ness ,of the shell·· and do not significantly change the geometry. of. the 

shell. 

6. The -Kirchoff-Love·· assl,lmptions of thin walled shell theory are · 

applied; i.e. , normals · tq the-.. median surface of the undeformed.- shell 

remain straight, unextended; and normal _to the .. median surface after 

deformation. 
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Figure 16, Sign Convention for Coordinates. 
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7. The-loading is applied at the median surface. 

8. The stresses-at·any point in the shell-wall.are related to the 

strains through Hooke's Law for plane stress. 

A.2 Equilibrium-of Stress.Resultants 
I 

Referring to Figures 17 and 18, equilibr;i.um of forces in the x, s, 

and z directio~s and equilibrium of moments about these.axes leads to 

th.~ following six equations: 1 

N 

N + N = - P x, sx x x . 's 

s, s 
+N sx, x 

N 

- p 
s 

Q + Q + ...!. = - Pz .. 
x,x· · s,s r 

M + M 
s,s xs,x 

- Q = 0 . s 

- Q = 0 x 

N 
XS 

,.. N 
SX 

M 
SX - -- = .o 
r 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.S) 

(A.6) 

in which the stress resultants N. (membrane) and M (bending or _twisUng) 

are related to. the axial, circumferential, and shear stresses cr , cr , 
~- y 

and 'xy ( =-•yx) at a1_1y distance z from the median surface_ (Figure 19) 

1N.otat:Lon is given in Chapter ll and not -_recorded here. 



Figure.17. 

Mx 

A 
Mxs 

~X,Px 

/ \s,Ps 

Z,Pz r %Nsx•Nsx ds 

r I\.. •s 

Os+Os,sds Ns+Ns,sds 

Sign Convention for Membrane.and Trans"'." 
verse Shear Force Resultants and Loaq.s 

t(x 
I s 
z 

Figurel8. Sign Convention for Bending and Twist­
ing Moment Resultants 
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Figure 19. Sign Convention for Stresses 
on-the Elemetit 

x 
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by the following r elations : 

Nx = f 1/2 h ax 

-1/2 h 

fl/2 h 
N = T 

XS XS 

-1/2 h 

f 1/2 h 
N = sx 

-1/2 h 

f 1/2 h 
N = s 

-1/2 h 

f 1/2 h 
M = CJ 

x x 
-1/2 h 

11/2 h 
M = T 

XS XS 

-1 / 2 h 

M - f 1/2 h 
sx 

-1/ 2 h 

f 1/2 
h 

M 
s 

- 1/2 h 

z (1 - -) dz 
r 

(1 - ~) dz 
r 

T dz sx 

CJ dz s 

z (1 - -) zdz r 

z (1 - -) zdz r 

T zdz 
SX 

CJ zdz 
s 

56 

(A , 7 ) 

(A . 8) 

(A , 9) 

(A . 10) 

(A . 11) 

(A.12) 

(A . 13) 

(A , 14 ) 

From Equations A.4 and A,5 the transverse shear resultants are defined 

by Equations A.15 and A. 16 , 

Q = M + M 
x x , x sx,s 

(A . 15) 



57 

Q 
s M 

XS, 
X· 

(A,16) 

Note: Equation A.6 is identically satisfied when Equations A.8, A.9, 

and A.12 ·are substituted,therein, 

The three equilibri,um equations.in terms of the.stress resultants 

are obtained by substituting Equations A.15 and A.16 into Equations A.2 

and A.3. Thus 

N 

N + N 
s,s xs, 

M +M 
x'xx · s'ss 

x, x 

x 

+ N 
xs,s 

= - p 
x 

(
M s, 

- 7 + - p 
s 

N 
+~= - p + (M ..-M) 

SX XS 
'xs r z 

(A.1) 

(A, 17) 

(A.18) 

Note; Up to this point in the derivation, the equations are identical 

in form to the·corresponding equations for circular cylindrical shells 

(see, for example, Refer.ence 2). 

A.3 Strain-Displacement Relati,ons 

With assumptions.5 and 6 the axial, ·circumferential, and radial 

displacements at any point in the shell wall, u, v, and.w, respec.., z z z 

tively, can.be expreseied in ter111,s of the correeiponding median surface 

displacements u(x, s), v(x, s), and w(x; s) as well as; the.axial and. 

circ4mferential cc,,mponents of rotation of the normal at the median sur.,-

face wx and ws, respectively. From Figures 20 and 21. 



Z,W,Wz 
v, CAJ5 

Figure 20.. Sign Convention for Displacements 
and.Rotations 

· Figure 2J,.. ·· Element Defo.rmation 
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where 

and 

u = u.+ zw z s 

v =·. v ... zw 
z x .. 

W =! W· 
z· 

w = w, 
x s 

+.Y. 
r 

Ul = ·- Ul x,x s, s 

v, 
+---! 

r .. 

The strains at ,·any point in the shell ·wall · are related to the 

59 

(A.19) 

(A;20) 

(A.21) 

(A, 22) 

(A. 23) 

(A. 24) 

corresponding displacements by means of the·. well-known strain d;l.splace.,. 

ment. relations, expres1;1ed in cylindrical.· coordinates. Hence, 

€ =. 
s 1 

€ = € 
XS sx 

= u 

v 

z, x. 

l[ z z ,.., "'."'." 's 
r. 

... v + 

- : WJ 

1 
u z, z x l·- -

r 
z, s. 

(A.~25) 

(A.26) 

(A, 27) 

in which. E , E , Ex. y '. re spec ti vely, are . the axial, cireumf erential, and . x y 

sheating strains describing the.state of strain in any·plane·tangential,. 
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to the cylindrical surface· r(s), z , In .terms of the displacement and 

rotation components of the median surface, the strain displacement .re-

lations become:l · 

E = u· + zw x 'x s, x 
(A, 28) 

1 [v,s w 
E = 

zw J s z r x· L- 's 
r 

(A. 29) 

l + 'V + 
·z 

e; = u .w - zw 
XS 1 z 's . 'x 1 z s, x,x ""'"-- s r r 

In terms of the corresponding median surface displacements and·their 

d~rivatives the strains are: · 

E = u - zw'xx x 'x (A, 31) 

1 { [1 - :) v J +~ } e; = - zw . 
s 1 

z 'ss r 
r 's 

(.1.\. 32) 

= 1 
+ (1 - :) v,x - t + 1 1 J E u,s zw 

XS 
1 z _ f 'xs 

r 
(A. 33) 

A.4 Stress Resultants in Terms of Displacements 

The stresses at any point in.the shall wall are·relatec;l to the 

strains through Hooke's law for plane stress.· 

1Physicai interpretation and notaticm change. of the w 
s,x 

and w .. 
:it' x 

are available.in maQ,y·references~ Seef for example, 

ence· 2, 

and w 
x,s 

Refer-
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(~.34) 

a =-E_. · (e: + ve: ) 
s l-v2 s x . 

(A.35) 

(A.36) 

in which E is Young's.' modulus a"Q..d -· v is. Poisson~ s ratio. Substitution 

of these stresses into Equati-0ris,A.7 t~rough A.14 an4 integrating yield 

expressions for the stress resultant;s in terms of the median surface 

dbplacements, Equa,tions A.37 th:i;-ough A.·44. 

Nx " D t•x + \lv, 8 - v ~ + K[t w,xx] (A,37) 

t!xs = n(1;") [u, 8 + v,~ u(1;" X!) ~'xs + ( ! ) v,~ (A,38) 

Nsx ~ n(1;v) [u, 8 + v,x] - lC(1;")(;) [w,xs -( ! ) u,~ (A,39) 

M =, - Kt, + w,· + v(v ) + ( !.) u,~ (A.41) x xx ss r r . x 
's . 

M =-K (b·v) · lw, · + (.!.) v, l_ 
xs L xs ·. r· ~ 

(A.42) 

M8x = - lC(1;") [cl+c) w'xs + ( !)v,x -( ; ) u,J (A.43) 

(A.44) 



and from Equations A.15 and A.16 

where 

Q = - K {w, + 1 I 2 [ 1 + v + c ( 1 + v) ] w, 
X XXX XSS 

1-v 1 
+ -2- c,s w'xs + r u,xx _ 1-v [.S. u J 

2 r 's 
-'s 

l+v +--v r 'xx 

Eh 
D = --2 

1-v 

Eh3 K = .......,..,...... __ _ 

12 (1.:.v2) 

+ l;v ( ~) } 
'xs 

-[_£. (r ) 
2 's 

r 

(A. 45) 

(A.46) 

Substitution of these stress resultants into the equilibrium equa-

tions in terms of the stress resultants and using c=l gives the final 

form of the equilibrium equations, These equations are recorded in 

Chapter 2 as Equations 2.1, Note that these equilibrium equations are. 

three coupled partial differential equations in u, v, and w with vari-

able coefficients; in which 
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u = u (x,s) 

v = v (x,s) 

w = w (x,s) 

r = r (s) · 

A. 5 Donnell.' s Partial Differential Equations of Equilibrium 

In addition to the assumptions in A.l Donnell (3) made the fol-

lowing. assumpUons to derive a simplified set ,.of. equilibriuf!l equations: 
.,. ' ),. . . . . . . 

1. The . tra~sverse shearing force, . Qs (Figure 17) makes a negligi­

ble contribµtion to the equilibrium of forces in the circumferential 

direction. 

2. The changes i~ curvature and twist are negligibly affected by 

the· tangential displacement, v ~ . 

These assumptions .reduce the stress resultants in Equations A.37 

through A.44 to the following 

N = D lu' + \JV - \) wr J x - l: x 's 
(A,47) 

N = N = D ( l-2v) lu, + v, J 
XS sx ,. L s x 

(A.48) 

N = D Iv, - w + vu, J 
s L s r x 

(A.49) 

M = - K lw, + \JW, 1 
x L' xx xxJ 

(A.SO) 



M = M = K (1-~) W, __ B 

xs ·sx ....... 

Donnell's assumptions also reduce Equation A.17 to 

N s, s 
+N_-_ =-P 

xs· s. 'x, 

·. 64 -

(A.51) 

(A,52) 

Substituting the stress resultantsA.47 through A.52 into the 

equilibrium equations A.1, _A~S:3, and A.1~ gives the.Donnell equations 

of equilibrium (Eq~ations 2.4). -

) 



APPENDIX B 

FINITE DIFFERENCE QUOTIENTS 

The finite difference approximations used in this study are·tabu-

lated term by term (except for duplication) for each of the Equations 

2.3 below. Note, the approximations. are given in terms of point i, j 

in the discrete system. 

u,,;,;I 
1,j 

1 r . J ----u -2u. +u . 61;2 i + l,j i,j · i - 1,J 

u'nnl 
i,j 

~ ~i j. + 1 - 2ui j + ui j - 1] 
6n [ ' ' ' 
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The terms v,nn' v,~~' u,~n are similar to the terms u,nn' u,,,, v,~n' 

respectively. 

1 
2lln 

+ 1 

w. 
J.' j + 1 - ( f) wi, j 

j - 1 

+ w i - 1, j - 1 - w i + 1, j - 1 + 2" i, j - 1 - w i - 1, j - ~ ( ! ~ 
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R :t R~).J 2 vl . 
[ L n J i,j 

w, I nnnn i,j 

w, z;z;z;z; I 
. i,j 

j + 1 . - 2w i 'j + w i' j - l J 
2~n (;)4~~) -(f) J 

j~ j + 1 j - 1 · 
wi , ,J 

. 2 

~ ( ~t ~ ~) -( ~ ) J vi ,j 
4/ln . j ~ j + 1. j - 1 

A~4 [ w;, j + 2 - 4wi, j + 1 + 6w 1,j 

- 4w1, j - 1 + "1, j - 2 J 
A~4 ["1 + 2, j - 4"1 + 1, j + 6"1,j 

- 4w 1 - 1, j + "i. - 2, j J 
· i 2 lw i .+. 1, j + l - 2w i + .1, j · 
Ill.; lln L 

+ w ;l. + l, j _ 1 - 2w ;l., j + ,l +. 4w i, j - 2w i , . j _ 1 

+w - 2w +w ~ . i . - 1, j + l . · i - l , .. j · i .... 1, . j - 1 J 

( R, )2 . l ( JI, )2 f - W ~ - - W -·2w· + W· 
r · 'nnj . 6 2. r . i,j + -1 ·i,j i,j 

.. .. . i,j n J 
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~ R,)i ~ . l ~( R,)2 .( J/,)2 -w *'--- w =2-w· 
r ., 26n r i~j + 1 · r i~j 

'nn i ,j j + 1 j 

( 
fl \ ' 
r) U'l;n .E 

9 n i,j .. 

> 8A~A J(~) lui+ l; j + 2 
n l j + 1 l 

-ui + l,j - ui - 1 0 j .+ 2 + ui - 1, j] 
( JI,). ~ ~} + - u - u - u + u 
:r.j _ l i + 1,j i + 1, j - 2 i - 1,j i - 1, j - 2 

~ ! ) v,,] -- ...,...2A-,~-An J( !) l,,i + 1, j + l - 2vi, j + 1 

'11 i,j t j + 1 L 

+ vi - · .1, j + 1] + ( ! ) Iv i + 1, j - 1 - 2v i, j - 1 
j - 1 l 

+vi-1, j-1]} 

fo2 (f), J . - 2:3 ~!i2 i(t) -(nJ vi, j + 1 
~· n J,,,,, i,j n L j + 1 ~ J + 2. j 
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-.2 (!/ fo -(~) lvi~j 
J ~ j + 1 • j - 1 

+(:) I(~)-(~) Jvi 9 j -1 l 
j -:. 1 ,l j j ... 2. J 

r7:t (n, v] . . . 
[ n i,J 

(!)v,nl 
i,j 

1 ·( R,) f J - - v - v· 
2An . r j . i,j + 1 i~j - l 

-·(!)2 w r i,j 
j •. . 
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