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PREFACE

The basic problem of this thesis is the determination of the
extremal elements of the convex cone of n-monotone functions and the
relationships that exist between these functions and the other elements
of the cone. An n-monotone function is a real function f defined on
(0,11 of the real line such that each of the first n differences of f
is eithe;%nonnegative or nonpositive. The results of this study
generalize some results of McLachlan [8] (numbers in square brackets
refer to the bibliography at the end of the paper).

Chapter I gives the background associated with the problem and
introduces the notation and terminology that is used throughout the
study. In Chapter II the extremal elements of the convex cone An of
functions alternating of order n are determined., These functions were
defined by Choquet [4). It is intended that the inclusion of Chapter II
will provide insight into the more general discussion in Chapter III.

In Chapter III the extremal elements of the cone of n-monotone functions
are characterized. An integral representation of n-monotone functions
in terms of the extremal elements is given in Chapter IV by using
Choquet's Theorem (cf. [41, p. 23?)§ Finally, Chapter V is a summary of
the paper and lists some related problems which would be of interest for
further consideration.

It was noted above that the An cones were considered in Chapter II

in order to motivate the more general development. Another reason the

iii



An cones are dealt with in detail is that they are closely related to
the completely monotonic functions. In fact, a real function f defined
on [0,1] is completely monotonic there if, and only if, £(o) + f(1) - £
is in A_, where A°° denotes the intersection of the An cones.

I wish to express my appreciation to all those who assisted me in
pursuing my graduate studies and in the preparation of this thesis. 1In
particular, I would like to thank Professor E. K. McLachlan for his
invaluable guidance and encouragement. My thanks go to Professors J,
Agnew, H. Uehara and D, Boyd for their encouragement and cooperation.
Finally, my deepest thanks go to my wife, Carole, without whose encour-
agement and assistance I could never have completed my graduate studies.

I am indebted to the Department of Health, Education and Welfare
for its financial support through a Title IV National Defense Education

Act Fellowship.
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CHAPTER I
INTRODUCTION
This thesis considers certain classes of real functions defined
on [0,1] of the real line. These classes of functions, which are
defined by finite differences, form convex cones in certain linear

spaces of functions. Preliminary to the main discussion of the problem,

some standard definitions and notation will be given.

Definition 1l.1l: Let A and B be subsets of a real linear space L,

and let A ¢ R, Then

A+B={x+y:xeAandye B},
-4 = {x : -x e A},
A-B=A+ (-B), and

M = {Ax : x & A},

Definition 1.2: A set C in a real linear space L is a convex cone

if 1) C is convex, 2) AC < C for all A > 0 in R, and 3)

C N (=C) = {©} where ©® is the origin in L,

Note.that condition 1 can be replaced by 1') C + C < C,

If K denotes the wedge shaped subset of E2 as illustrated in
Figure 1.1, then K is a convex cone., If y € K and y does not lie on
the ray determined by X, mnor the ray determined by X5 then there are

vectors ¥y and Y, € K such that y = Y+, and MY and y, are not



scalar multiples of y. However, if X, =Y+ 2 where y and z ¢ K,

then y and z must be scalar multiples of x Likewise, x, has this

1° 2
same property. This property of Xy and X5 is made precise in the

following definition,

Definition 1.3: Let C be a convex cone in a real linear space L.

An element x € C is called an extremal element of C if xl, X, € C and

X+ X5 =X imply that Xy and x, are scalar multiples of x. An

extremal element of C is said to be extremal in C.
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(ﬂ.C§g§ider the cone C that is Figure 1.2(a). Let H be a hyperplane
(that is;, a translate of a two-dimensional subspace) which meets every
ray of C but does not contain the origin. Then 8§ = HN C is a convex

set (cf. Figure 1.2(b)).

Definition 1l.4: Let S be a convex set in a real linear space L.

An element x ¢ S is called an extreme point of S if there do not exist

two points y and z in S and a real number a ¢ (0,1) such that
x = ay + (l-a)z. The set of extreme points of S will be denoted by

ext S.

Notice that Xy is both an extreme point of 8 and an extremal
element of C, i = 1,2,3 (cf. Figure 1.2). If x ¢ S, then there are

nonnegative scalars Kl, A,, A, such that

2 '3

)
:E: A. =1 and x = :E: Ax..
i i™i

i=1 i=1

In other words; every point in S can be represented as a finite sum of
extreme points of S, Since S meets every ray of C in exactly one point,
every point in C is a unique scalar multiple of such a representation.
Therefore, every point in C can be represented as a finite sum of
extremal elements of C, since kxi is an extremal element of C for A > O
and 1 = 1,2,3%.

If C is a convex cone,; then C~C is the smallest linear space con-
taining C (¢f. [3], p. 47). If the dimension of C-C is infinite, then
the representation of points of C in terms of extremal elements of C is

not quite as simple. In fact, the representation is no longer a finite



Figure 1l.2(a).
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sum but is instead an "infinite sum'; that is, an integral represen-
tation, This integral representation is made possible by Theorem 39.4
of Choquet [4]. An alternative form of this theorem, the form that is
used in this study, is due to Phelps (cf. [9]; p. 5). In infinite-
dimensional speces the extremal elements of a cone may be dense in the
cone., In this case, the integral representation is of little:value.
Thus, in infinite-dimensional spaces the extremal elements may be '"too
numerous"” to get a meaningful representation in terms of extremal
elements.

‘If a given class C of functions forms a convex cone and the linear
space C~C can be topologized in such a way that Choquet's Theorem will
apply, then the functions in C are completely characterized; via the
integral representation, once the extremal elements of C are determined.
This thesis is concerned with real functions defined on the unit inter-
val [0;1] which satisfy a certain set of difference inequalities. The
interval [0,1] was chosen for convenience and could be replaced by any
closed interval. The problem of finding the extremal elements of a
convex cone of functions determined by a set of difference inequalities
has been considered by Choquet (cf. [4], p. 249) and McLachlan [8]. 1In
fact, it was McLachlan's paper [8] which provided the motivation for
this study.

Before considering the problem of finding extremal elements, it is
necessary to list some of the properties of the difference operator.

These properties can be found in ral.

Definition 1.5: If f is a real-valued function defined on [0,11],

then Ai f(x) = f(x+h) - f(x) for h > O and [x,x+h] & [0,1], and



AE f(x) = A;ﬂl f(x+h) - Ag‘l f(x) for h> 0 and [x,x+nh] < [0,1],

where n > 1.

It is easy to establish by induction the useful formula

k
B 6 = (1) (%) £t ). (1.1)
3=0

Then it easily follows that A operators are permutable; that is,

Ak2[Akl f{(x)] = Akl[AkE f(x)]. The property of the operator A given in
h2 hl hl h2

the following proposition is very useful in the proof of some of the

results of both Chapters II and III.

Proposition 1.1 (Lemma 1 in [2]): If f is a real-valued function

defined on [0,1] and
k
Ah f(X) Z Os

where k > 2, h > 0 and [x,x+kh] < [0,1], then for any k positive

numbers 619 629 0oey 6k

f(x) > 0

provided that 0 < x < x+61+62+°9a+6k <1



CHAPTER II

EXTREMAL ELEMENTS OF THE CONVEX CONE An

OF FUNCTIONS

Let Al be the set of nonnegative real functions f on [0,1] such

that Vi f(x) = £f(x) - £(x+h) < 0, h > 0, for [x,xrh] & [0,1], and

let An9 n > 1 be the set of functions belonging to Ansl such that

f(x) - ol f(x+h) < 0 for [x,x+nh] & [0,1]. Since

h
yE Aﬁ £(x), k > 1, the analogue of Proposition 1.1 for

gh-1
h

v E(x) = (-1

gt
h £(x)

i

the difference operator V is valid. Since the sum of two functions in
An belongs to An and since a nonnegative real multiple’of an An function
is an An function, the set of An functions forms a convex cone. It is
the purpose of this chapter to give the extremal elements of this cone.

Following the notation of Choquet, [4], a function in An is said to be

alternating of order n on 0,1]. The intersection of the An cones,

ﬁAn9 is the class of functions which Choquet denoted as alternating of
order «, Thus, the set of these functions, which will be denoted by A,
forms a convex cone alsr, The extremal elements for the convex cone

A _ are given too.

Proposition 2.1: The extremal elements of Al are precisely the

functions in Al which assume exactly one positive value in [0,1].

Proof: For the function f such that f(x) = 0, x ¢ [0,§),

£f(x) =c >0, x e [§:1] where 0<8<1 and f =1 +f, where

-2



> : 1 : 1 1 . .
A =V ) =V b v A
f; and £, & A then O N f(x) h fl(x) + Y f2<X) implies
Vi fi(x) =0 for 1 =1,2 and [xyx+h] ¢ [€,1]. Therefore, fi(x) = 0,
% e [0,€), fi(x) = ¢, >0, xe [§,1], 1 = 1,2, where ¢, + ¢, = c.

Hence, f is an extremal element of Al°
If f assumes at least two positive values in [0,1], then a non-

proportional decompbsition can be given by taking
fl(x) = min {f(x), (1/2)[£(0)+£(1)]}
and £, = £ - £

Extremal Elements of A2

Since V; f(x) = (ml)k Ai f(x) for k > 1, the functions of A2 are
exactly the nonnegative, nondecreasing and concave functions on [0,1]

(cf. [11]1, p. 148). Hence, if f ¢ A, then f' and fi exist on (041) and

2
(0,1), respmetively. The left derivative f' is a nonnegative, non-
increasing, ieftmcontinuous function and f; is nonnegative, nonin-
creasing and right-continuous (cf. [7], p. 4). In fact, f'(x) exists
for almost all x ¢ (0,1) since fi(x) # fl(x) if, and only if, fl is
discontinuous at x and fl can have at most a countable number of
discontinuities (cf. [5], p. 71).

Since a function in A, must be continuous on (0;1], the only

2

extremal elements of Al which are in A2 are those functions f such that

f=¢>0 on (0,11 while f(0) =0 or f(0) = ¢ and these functions

are again extremal in A If f ¢ A,, £ is not comnstant and £(0) > O,

2° 2°
then a nonproportional decomposition can be given by taking fl = £(0)
and f2 = f = flo If f e A29 £{0) = 0, f is not constant on (0,1] and

£ is not comtinuous at O (that is, f(O+) > 0), then take fl = £f(O+)



on (0,1], fl(O) =0 and f.=f = f

> 1° In so doing, fl and f

5 € Az and

f1 and f2 are not proportional to f. Since this same technique still
can be used for Ang n > 2, the only extremal elements of An such that
f(0) > 0 are the positive constant functions, and the only extremal
elements of An which are discontinuous at O are those functions f such
that f(0) =0 and f =¢ >0 on (0,1].

If T e Az such that f' assumes exactly one positive value in (0,11,

then £(x) = mx, x ¢ [0,€] and m§ for x ¢ [§,1], where 0<§ <1 and

m> 0, If fl and f2 € Az such that £ = fl + f29 then fl and f2 are

linear where f is linear, and fl and f2 are constant where f is

constant. Thus, fl and f_ are proportional to f and f is therefore

2

extremal. The next proposition shows that Az has no extremal elements

other than those already mentioned.

Proposition 2.2:; If f ¢ A, sach that £(0+) = £(0) = O and f'

assumes at least two positive values in (0,1], then there exist two
functions g and h in AZ such that f = g+ h and g and h are not

proportional to £,

Proof: Since f' is left-continuous at 1, there are numbers Xq and

Y ¢ $ - g " - £ 9 > o By

%) such that O < g < X <1 and fm(xo) > ig(xl) 0, Define
g(x) = ficxl) X,

X E Eoﬁxl] and

glx) = £f(x) - [f(xl) - fi(xl)xl]

for x ¢ fxlgl] and let h = f - g. OSince f' is nonnegative and g is

continuous at Xy then g 1s nonnegative and nondecreasing, Since



10
£ (x) 2,f1<xl) = g'(x)
for x ¢ (O9Xl]9 it follows that
h'(x) > 0

for x ¢ (0,1] and h is nondecreasing. Thus, h is nonnegative, since
h(0) = 0.

Since f is concave and f(0) = 0, it follows that

I(x) = £1(t) dt (2.1)
0

for x & [0,1] (ef. [7)s p. 5). If x & [ogxljg then

X X
glx) = £1(x,) dt = g'(t) dt.
0 0]
If % & [xlgljg then
WX Xy X X
gl (t) dt = g'(t) dt + g (t) dt = g(x]) + o fr(%) dt
0 0 Xl X

and it follows from equation (2.1) that

gt () at = £1(x )x, + £(x) = £(x)) = glx).
0

Thus,



1l

g(x) = g'(t) dt (2.2)
0

for x ¢ [0,1]. Since h =f -~ g, then

X X
h(x) = £(x) - glx) = [£1(t) = gf(t)] dt = h'(t) dt  (2.3)
0 : 0

for x & [O;1}. Since f' is a nonincreasing function, then g' and h'
are both nonincreasing. Therefore, it follows from equations (2.2) and
(2.3) that g and h are concave on [0,1] and g and h are in A, (ef. (715
Do 7)o

By noting that f£(0) = 0, f is strictly concave on tngl] and

f;(xo) > fi(xl)9 it can be shown that

g(xl) g;(xo)
%) * Wx,)'

and hence, g is not proportional to f.

Thus, the extremal elements of A2 are the positive constant
functions, the functions which are a positive constant on (0,1] and
zero at O and those f such that f(x) = mx, x ¢ [0,8] and m§ for

x ¢ [€,1], where 0<E <1 andm>O0., Designate this latter function

by e(m,E,135).
Extremal Elements of Ang n> 2

It will be shown that the extremal elements of Ang n > 2, are

indefinite integrals of the extremal elements of a cone which is



12
similar to APO This cone is givem in the following definitions.,

Definition 2.1: If g is a real continuous function on (0,1] and

n is a positive integer, then g is said to satisfy property P(n) if

b »t t t
limit _ -1 2 1
6 - O o 00

171 1 Y1

g(t) dt dt, ... dt

exists and is finite.

Definition 2.2: Let Ko(n) denote the convex cone of nonnegative

real continuous functions g on (0,1] such that Vi g(x) > 0 for

[x,x+kh] < (0,11, k = 1,2, and g satisfies property P(n).

Definition 2.3: Let Kl(n) denote the convex cone of nonpositive

real continuous functions g on (0,1] such that Vi g(x) < 0 for

[x,x+kh] © (0,11, k = 1,2, and g satisfies property P(n).

The functions of Ko(n) (Kl(n)) are exactly the nonnegative (non-
positive), nonincreasing (nondecreasing) and convex (concave) functions
on (0,1] which satisfy property P(n). If f(x) = l-x, x ¢ [0,1], then
fe Ko(n) and -f ¢ Kl(n) and it follows that the cones Ko(n) and Kl(n)
are both nonempty. The extremal elements of Ko(n) and Kl(n) are found

in the following two lemmas.

Lemma 2.1: The extremal elements of Kl(n) are the negative con-
stant functions and the functions g such that g(x) = m(x-E), x " (0,€]

and g{x) = 0 for x € [§,1];, where 0<E§ <1 and m> O,

Procf: If g=c¢< 0O and g ='gi + g,y where g and g, € Kl(n),
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1 1 1 €
: =9 =V v impli v =
then O W glx) h gl(x) + Vo gz(x) implies W gi(x) 0 for
i =1,2 and [x,x¢h] © (0,11, Therefore, g =c;5 ¢, <0, i = 1,2,

where ¢, + C

1 5> = Co Hence, g is an extremal element of Kl(n)c If

g e Kl(n) such that g is not constant and g(l) < O, then take

g = g(l) and g = &~ g Inso doing, g and g, € Kl(n)g and g,
and g, are not proportional to g. Thus, the only extremal elements of
Kl(n) which are negative at 1 are the negative constant functions.

If g(x) = m{x~E), x & (0,8] and g(x) = O for x ¢ [§,1], where
0<E&<1 and m>0, then, for g = g *+ 8,5 it follows that g and g,
are linear where g is linear, and & and g, are zero where g is zero.
Thus, 8 and g, are proportional to g, and g 1s therefore extremal.

If ge Kl(n) such that g(l) = O and there are numbers x. and x

0 1
where O < Xy < % <1 and gi(xo) > gi(xl) > 0, ‘then a nonproportion-

1

al decomposition can be given by taking gl(x) = gl(xl)(mel) + g(xl)9

X € (ngllg gl(x) = g(x) for x ¢ Exlgl] and g, = g ~ g - The proof
that g, and g, are nonpositive, nondecreasing, concave and not pro-
portional to g is essentially the same as the proof of Proposition 2.2
and is not given here. The only fact that remains to be shown is that

. ) g = - L

g and g, satisfy property P(n). Since gl(0+) g(xl) gw(xl)x1 and
: is continuous on (0,1], it follows that & satisfies property P(n).
Since g ¢ Kl(n) and g, = g - g then g, also satisfies property P(n).

Hence, g, and g, € Kl(n)o

Lemma 2.2: The extremal elements of KO(n) are the positive con-

it

m(€-x), x g (0,E]

stant functions and the functions g such that g(x)

and g{x) = O for x ¢ [E,1], where O< E <1 and m> O,

Proof: The lemma follows from Lemma 2.1 and the fact that
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Ko(n) = mKl(n)o

It is shown in the next two lemmas heow the An functions are related
to the functions in Ko(n«2) and Kl(nca)9 where n > 2. These results

will be used in finding the extremal elements of Ano

Lemma 2.3%: 1If f g Ang then f(an) 4 Ko(nmE) if n is odd, and

P g Kl(n=2) if n is even, where n > 2.

Proof: The proof will be by induction on n. If f ¢ A59 then

fe A2 and Vi £{x) < 0 for [x,%+3h] & [0,1], and it follows from

Propbsition 1.1l that

f(x) - [2f(x+h) + f(x+8)] + [2Ff(x+h+d) + f(x+2h)] - f(x+2h+0)

2 ol
0 Ve flx) < Q

where h > 0, 6 > 0 and [x,x+2h+8] & [0,1] (cf. equation 1.1). Hence,

f(x+b) = flx) f(x+h+6) - f{x+h) f{x+2h+8) - f{x+2h)
- 5 + 2 5 - 5

AN

Oy

which implies that
9 - 0 1 :
%}x) Eﬁjmh)+ aﬂmﬁh)>00

Therefore, fl is convex on (0,1), which implies that fl is continuous

there, and it follows that ff = fi on (0,1). Since

fi(l) = fi(lm) = limit f;(x) = 1imit £'(x),
b X 1=

f' is continucus on (0,1] by defining f'(1) = f'(1-), and f' is non-

negative, nonincreasing and convex. Also
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£r(t) dt = £(1) - £(0);

that is, f' satisfies property P(1l) and thus, f' ¢ Ko(1).

Assume that f ¢ An implies f(an)

f(n=a2)

£ Ko(nm2) if n is odd and
€ Kl(nm2) if n is even, where n> 2. If f & An+ls then

v vr2 g(x) = T r(x) < 0

for {x,x+(n+1)h] © [0,1]), which implies that

v vy vy Ve £(x) <0

for [x9x+3h+él+62+oou+6n=2] < [0,1] (c¢f. Proposition 1.1). It then

follows that

-1)%2 2 £y < o

h
for [x,x+3h] < (0,1]. Therefore,

n=2 v2 vl

% £7°2)(x) < 0 (2.4)

(=1)

for h > 0, 6§ > 0 and [x,x+2h+8]  (0,1].

(n-2)

If n is odd, then f is nonnegative, nonincreasing and convex,

and it can be shown that £ 1) and finml) exist on (0,11 and (0,1),
respectively; these derivatives are nonpositive and nondecreasing and
fanl)(x) # f£n=l)(x) if, and only if, finml) is discontinuous at x.

Since inequality (2.4) implies
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£$9°2) 0y = 12689 (em) + £ (346)]

p 0289 nen) + £ (ezn)] - £ (gy2ne6) >0

for h > 0, 6 > 0 and [x,x+2h+6] < (0,11, then

ey (872, Y > £07-2) (nes) - 2822 ()
5 ‘ 5

f(nqz)(x+2h+6) - f(nna)(x+2h) > 0
6 ‘ -~ 7

-~

which implies that
£7 V0 - 260 D un) + £ D uean) < o,

f(n"l) is concave, which implies that f(nnl) is continuous

Therefore, N

on (0,1), and it follows that f(nwl) = finﬂl) on (0,1). Since

finﬂlhl) - ffn’l>(1¢) = limit £ () = 1imit £ (),

x-+1- X 1=

f(n=l) is continuous on (0,1] by defining f(nml)(l) = f(nﬁl)(l“)’ and

(n=1) | o i
f is nonpositive, nondecreasing and concave.

. n=2) . . . .
If n is even, then mf( ) is nonnegative, nonincreasing and

convex, and by inequality (2.4),

v2 v [ (0] = w2 vl 2B 5 0

for h > 0, 6 > 0 and [x,x+2h+6] < (0,1]. It follows from the argument

. n=-1) . - .
given above that nf( ) is nonpositive, nondecreasing and concave;

. (n=1) . . . .
that is, f( ) is nonnegative, nonincreasing and convex.

It remains only to show that f(ngl) satisfies property P(n-1l).
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If f ¢ An+19 then f e An’ and

. 2"
limit p{n=1)
é . O g (t) dt dtl o 00 dtn—:a
1 171
o t; et
N 3(2
_ limit p(n-2)
= 5% 0 g (t)) dt, dt, ooo dt
1 191
ot ot
- £(m=2) g 1 at dt:
1772 77 p=2
1 Y1
(n~2)

exists and is finite, since f satisfies property P(n-2) by the

induction hypothesis.

The following definition is given to simplify the notation in the

proofs of Lemma 2.4 and subsequent lemmas.

~ Definition 2.4: If g is a real continuous function on (0,1]

which satisfies property P(n), then define the function I(g,h;)- by

the equation

-
I(g,13x) = g(t) dt,
10
b4 ‘ﬁbn—l ‘ t2 ; tl
I(ggn;x; = » x oo g(t) dt dtl oo dtn_:lg
Y0 Y1l 1 1

= 2,%5. 4, ..., for x g [0,1].

Lemma 2.4: For k >, if ge K (_kml) then I(gy2kal ) € A2k+19

and if g ¢ K1(2k) then I(g,2k;) € A2k£2°



Proof: Since Kl(Zk) = —KO(Zk), it is sufficient to prove that
I(g,n=25) ¢ A, n>2, if (-l)nﬁlg € Ko(n--=2)e This proof will be by
induction on n. If ge Ko(l)g then I(g,1;) is nonnegative on [0,1]

since
I(g,15x) = g(t) dt > 0,
0
for x £ [0,1]. If [x,x+h] < [0,1], then
Vi‘l I(g,13x) = g(t) dt = (~=h)g(§)§ O
x+h

since g(§) > 0, where x < § < xth. Thus, for h > O and

[x,x+kh] ¢ [0,1], where k = 2,3,

k kel o1 k=1
Vh.I(gal‘;X) = vh ‘ vh 1(89133() = ("h)vh g(%) S 0,
S vk"’l > - o
since Vi g(€) > 0 for k = 2,3. Hence, I{(g,1;) ¢ A3 whenever
ge Ko(l)“

Assume that I{g,n-2;) ¢ An for (ml)nclg € Ko(n~2) and n > 2,

£ (-1)%g e Ko(n-1), then let

X
£(x) =g g(t) dt,
1

for x ¢ (0,1]. Since (-1)"g e K (n-1);, it follows that

18
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X X
1" ex) =\ (c1)%g(e) at = - | (<1)%g(t) at > 0
1 1
for x & (0,11,
X
VD) = GDTT | e at = n(-1)"(8) 2 0
x+h
for 0<x<&§<xh<1l and
2 n=1 11 n-1 1 n
VE -1 = T 9 (D) = Y (<1)7g(8) > 0

for 0< x< & < x+2h < 1. The function f also satisfies property

P(n-2) since

| 6
limit “n3 !
P tee £(t) dt dby ... At g

1 J1 1

6
limit “n-3 “1 (%o
- 1mit ee g(t) dt dby o.. At s
1A 1 N

and g satisfies property P(n-1). Hence, («l)nﬂlf £ Ko(n~2) and it

follows from ths induction hypothesis that
I(ggn"l;) = I(fgn""2§> € Ano

By a repeated application of the mean value theorem for a Riemann

integral, it can be shown that

i1 I(gyn-13x) = (mh)n”lg(é)

h
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for [x,x+(n=1)h] € [0,1], where x < & < x+(n-1)h. It follows that

VL I(gn-15%) = ¥, GnPhe(®) = -t 9T (41)7g(8) < 0

for [x;x+(n+1)h] € [0,1], since v2 (=l)ng(§) > 0. This inequality,

h
together with the fact that I(g,n-13) ¢ A, implies that

I(ggnm:l;) & An+lo
In the follcwing proposition, extremal elements of An are found

by integrating the extremal elements of either Ko(n~2) or Kl(n=2)o

Proposition 2.3: The function f such that f(x) = m[%nﬁlm(g-x)n“l]

for x £ [0,€] and m§nﬁl for x ¢ [§,1], where 0< € <1 and m> 0,

is an extremal element of An’ n>2.

Proof: If f is such a function then

#9721 n(ne1) 1 (E-x),

x e (0,€) and O for x ¢ [€,1], and it follows from Lemmas 2.1 and 2.2
is an extremal element of Ko(n=2) if n is odd, whereas
is extremal in Kl(nu2) if n is even. Since f£(0) = 0 and

(nca)?n~2;)9 and it follows

#6)(1) = 0 for 1 <k < n-3, then £ = I(f
from Lemma 2.4 that f ¢ Anu

If n is an odd integer and f

1 and-f2 € An such that f = fl + fag

then f(nm2) and f(nnz) e K {(n-2) and f(n=2) = f(nma) + f(nnz)o Since
1 2 0 1 2 ‘
f(n=d) is extremal in Ko(n~2)$ there are constants Xi >0, i=1,2

such that f;nﬁa) = Aif(n=2)° Since f(0) = O and f(k)(l) = 0 for

1 <k <mn-3 it follows that fi(O) = f§k)(l) =0 for i = 1,2 and

1 <k < n=3 Hence,
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(n-2) (n-=2)

= pegln=2) ooy
£.0= 105,77 n-25) = IO\ £

91‘1‘“2; ) = )\if‘J

i=1,2, and f is therefore extremal.
On the other hand, if n is even then, as in the first part of the

(n=2)

proof, f is extremal in An since f is an extremal element of

K (n-2). Thus, if £(x) = A€o (8-0% Y], x e [0,8] and mERL  for
xe [£,1], where O0< E <1l and m > 0, then f is extremal in An, n> 2,

Denote this latter function by e(m,&,n-1;).

The remaining extremal elements of An, n> 2, are given in the

next proposition.

Proposition 2.4: If m > O, the function e(m,1l,k;) is an extremal

element of An for n > 2 and 1 <k < n-1.

Proofs Since An is a subcone of A and e(m,1l,k;) is an extremal

k+1l
element of Ak+19 it is sufficient to show that e(m,1l.k:) ¢ Ano If

(k=1)

f = e(my;l,k;); then f = I(f sk=13), where

£ D ) o 1) met) (2-x)

for 0< x <1 (ef. proof of Proposition 2.3). It follows from a

repeated application of the mean value theorem for a Riemann integral

that Vi“l f(x) = (-h)k‘lf(k“l>(§)g for h > 0, [x,x+(k-1)h] < [0,1],
where x < & < x+(k-1)h. Since f(kml) is 1inear9
L £y = 92T g = (R 92 sy 0 (e

for h > O, [x,x+(k+1)h] < [0,1], and thus, Vﬁ f(x) = 0 for h > 0,

[x,x+ph] < [0,1] and p > k+l. Hence, f ¢ A for every n, which implies
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that f is extremal in Apg for p > k+l,

To this point it has been shown that the positive constant
functions, the functions which are constant on (0,1] and zero at O, the
functions e(my1,k;), where m > 0 and 1 <k < n-2; and the functions
e(m,E,n-13), where m> 0 and 0 < § < 1, are extremal elements of An’ for
n > 2., The following three lemmas will prove that no ether functions in

An are extremal elements.

Lemma 2.5: Let f ¢ Ang n > 2, such that f(0+) = f(0) = 0 and
f # e(myl,k;), where m> O and 1 < k < n-3. If there is an integer k
such that 1 < k < n-3 and f(k)(l) # 0, then f is not an extremal

element of Anc

Proof: Let k denote the smallest integer such that f(k)(l) # 0.

(k+1)

Then f e A & Ak+3 implies that £ € Ko(k+l) if k is even,

f(k+l)

whereas £ Kl(k+l) if k is odd, and it follows from Lemma 2.4

(k+1)

that I(f Jkels) € A,z Since £(0) = 0 and f(P)(l) =0 for

1< p <k, then

f(k+l)9k

+13) = I(f(k)gk%3

I( - f(k)(l)l(lsk;) = £ = e(msloki),

k=101 /0e0)159%(1) > 0, because (-1)

- )
k lf(k,

kmlf(k)

where m = {(=1) € Ko(k)

anda £ # 0 imply (=1) (1) > 0, Since Vﬁ e(m,1,k;x) = O

for h > O, [x,x+ph] € [0,1] and p > k+1 and f ¢ An9 it follows that

v 10e9 1) i) = v £(x) < 0,

for [x,x+phl < [0,1], k1 < p < n (¢f. equation 2.5). Hence,

f - e(ml,ks) e An“ where m = (ml)kglfl/(k&)}f(k)(l)9 and a
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nonproportional decomposition of f can be given by taking f. = e(my1,k;)

1

and fa = f = flu Thus, f is not extremal.

fi

Lemma 2.6: Let f ¢ Ans n> 2, such that £ # 0, f(O+) = £(0) = O

g pl0=2)

and £ # e(my1,k;), where m> O and 1 < k < n-3. L 0 on (0,17,

i

then £ is not an extremzal element of Anu

£ f(nwa)

Proof: I = O, then there is a positive integer k < n-3

(k)

such that f(k) # 0 and f is constant on (0,1]. Thus, f(k)(l) £ 0

and it follows from Lemma 2.5 that f is not extremal.

It is a consequence of Lemmas 2.5 and 2.6 that if f is an extremal

(n~2) _

element of Ang n> 2, such that f(O+) = f(0) = O and either f
or f(k>(l) # O for some ky 1 < k < n-3, then f = e(my1,k;), where

m>0and 1 <k < n=3

Lemma 2.7: Let f g Ar9 n > 2, such that f(O0+) = £(0) = 0O,

g(r=2) # 0 and £5(1) = 0 for 1 <k < n=3, If f is an extremal element

i

of An9 then f = e(m,1,8~23) or f = e(m;€,n~13), where m > O and

0<E <1,

Proof: Since f(0) = 0 and f(k)(l) = 0 for 1 < k < n-3, then

7/
f = I(f ,0=23). If n is odd then g(n=2)

(m@)zgl+g?_mm1

€ KO(nPE)n If g and

g € Ko(nuz) such that f

]
1
n
~—
i

I(g +8,0n=25) = I(g ,n=25) + I(g,1n-25).

Then fi = I(gignwag)9 i

ii

1,2, implies that fl and f2 £ An and

f=1££ + £ Since f is extremal in Anﬂ there are numbers Ki > 0 such

glm=2) oy g(m-2),

Tt F o P o= )L ch i ; tha =
that £ Kifg i = 1,2, which implies that 8; 1w M
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(n-2)

i=1,2, and £ is therefore extremal in Ko(nm2)° If f(nm2) =¢c > 0,

then £ = I(e,n=-235) = e(m,1,0-25), where m = (ml)n‘lc/(nu2)1 >0, If

f(nmz)(x) = ¢c(E=x), x ¢ (0,€) and O for x ¢ [§,1], where ¢ > O and

f(n=2)

0< & <1, then £ = I( yn=23) = e(m,€,n-13), where

m = (~1)%Te/(n-1)1 > 0.

f(nma)

On the other hand, if n is even, then € Kl(nm2)g and an

(n=2)

argument similar to that above shows that f is an extremal element

(n=2) _ ¢ < 0, then £

of Kl(n~=2)0 If f I(c,n~23) = e(m,1,n~25), where

4

m= (-1)%Le/(n-2)1 > 0. If f(nmz)(x) = ¢(E-x), x & (0,8] and O for

(n=2)

x e [£,1], where ¢ < O and 0 < § <1, then f = I{f yn=23 )

= e(my,€,n~13), where m = (wl)nulc/(nml)ﬁ > 0,

Therefore, the extremal elements of An9 n > 2, are the positive
constant functions, the functions which are a positive constant on (0,1]
and zero at O, the functions e(m,1l,k3), where m > 0, 1 <k < n-2; and

the functions e(m,&,n~13), where m > 0 and 0 < € < 1.

Extremal Elements of Am

It has already been ncted that e(m,1,k;) is an extremal element of
An for each n > k (¢f. Proposition 2.4)., It follows that e(m,1,k;) is
an extremal element of A for every positive integer k. It is shown in
the following proposition that A_ has no other extremal elements which

are continuous and zero at O,

Proposition 2.5: If f & A such that £(0+) = £(0) = O and

f # e(my1,k;), where m > O and k is a positive integer, then f is not an

extremal element of Amo
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Proof: Since [ ¢ Am is a function of class Coo on (0,11, it follows

from a theorem of Bernstein, Theorem 13-31 in [1], that

=, ()
£(x) = ZE: £~E?£;l’(xml)n

n=0

for 0 < x < 1 by noting that the function g defined by g(x) = £(1)
- f(l-x) satisfies the hypotheses of the theorem. If there is a posi-
tive integer k such that f(k)(l) # 0, then assume, without loss of

generality, that k is the least such integer. Then f e A & A

implies that f(k*l) € Ko(k+l) if k is even, whereas f(k+l)

(k+l?sk 1) ¢ Ak 30 Hence,

k+3
€ Kl(k+l)

if k is odd, from which it follows that I(f

(s (k+l)9k 13) = I(f(k> k3) = f(k’)(l)l(l?k;) = f - e(my1,k;),

where m = (=116 (1) > 0. 12 £, = e(m.k;) and

fo=1f - f.l9 then fl e A since f_ ¢ An for every n and f2 e A_ since

2 1
£ Aka and

Y £500) = V) [£(x) - elml,k;x)] = ¥y £(x) < 0,

for h > 0, [x,x+nh] < [0,1] and n > k+3. Since f, is not proportional
to f, this gives a nonproportional decomposition of f; and f is there-
fore extremal. On the other hand, if f(k)(l) = O for each positive

integer k, then f(x) = f(1) for 0 < x < 1, and £(0+) = £(0) = O implies

that £ = O

The results of this chapter are summarized in the following

theorem.,
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Theorem 2.1: The extremal elements of Al are the functions which
assume exactly one positive value in [0O,1]. The positive constant
functions and the functions which are a positive comstant on (0,1] and
zero at O are extremal elements of Ang n > 1, and are therefore extremal
. . e n-1 n-1
in A_. The functions e(m,S,n-13x) = m{§ "-(5-x)" 71, x e [0,€] and
mgn“l for x ¢ [€,1], where m> 0 and 0 < § < 1, are extremal elements of
A, n 2> 2, The only other extremal elements of Ang n > 3, are those

functions e(m;1l,k;)y 1 < k < n=2. The extremal elements of A_ which are

continucus and zerc at O are the functionms e(myl,ky), k > 1.

Since An is a subcone of Al for n > 1, An is in the linear space

AlmAl and

) D an'o‘ D { “ooo °
A 28,2 e @ A DA =

If @lgﬂlaﬂl - R such that ¢l(f) = f(1), for f ¢ Almﬁlg then it is

easily seen that @1 is a linear functional and it follows that

H = [@131] ={f s f¢ Al= 1 (1) = 1)

is a hyperplane in A mAlo Since H meets every ray of'An in & unique
pointy; n > 1, and does not contain the origin, that is the zero
function, then the extreme points of Cn = HN An are precisely those
extremal elements f of An such that f(1) = 1,

Since {An} is a nested sequence of cones, it follows that
{Cn} = {HEN An} is a nested sequence of convex sets. If fO(O) = 0
and f(x) =1, x e (0,1), and f,(x) =1 for x ¢ [0,1], then f, and f,

are extreme points of Cn for n > 1. In fact,
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]

ext Gl {f ¢+ £ e A, and £f{x) is either O or 1 for x ¢ [0,11},

1

ext C2

i

{fos £ U {e((1/8):8,1;5) 2 0< § <1},

ext Cn+l = {fog fl} U {e(loloks) ¢ 1 < k < n=1}

U {e((1/8)*&,n;) ¢+ 0< & < 1)
for n> 1, and

ext C, = {fy, £} U {e(1,1.k3) 5 k > 1},

where C_ = ﬁqu Hence, ext Cn is uncountable, n > 1, and ext Coo is
countable.
Figure 2.1 gives a pictorial representation of Cn9 1<n<5, and

illustrates how Cn+ is related to Cno Each region Cn is bounded below

1

by the positive x-axis, Cl is bounded above by the semicircle with

radius 2 and center (2,0). The curved portion of the boundary of C2 is
a part of the semicircle with radius 1+(1/2) and center {1+(1/2),0) and

the line segment with endpoints f. and e(1l,1,1;) is tangent to this

1
semicircle at e(1l,1,13); the curved portion of the boundary of C3 is a
part of the semicircle with radius 1+(1/4) and center (1+(1/4),0) and
the line segment with endpoints e(1l,1,13) and e(1l,1,2;) is tangent to

this semicircle at e(1,1,23); and so forth. This diagram should aid in

understanding the distribution of the extremal elements of Ano
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CHAPTER III

EXTREMAL ELEMENTS OF THE CONVEX CONE

OF n~MONOTONE FUNCTIONS

Let C(io,il)g io and i1 = 0 or 1, be the set of real functions f on

[0,1] such that (al)(io)f is nonnegative and
08! 160 = (1 sem) - 201 3 0,

h > 0, for [x,x+h] © [0,1]. Let C(iogils,o“g:in)9 n > 1, be the set of

functions belonging te C(iogooogingl) such that
DR 20 = (DI fGen) - 63 0] > 0

= Qor i1, =1 for 0< k < n, If

for [x,x+nh] € [0,1], where ik K <k <

fe C(iOvOOQQin)Q then f is said to be an n-monotone function. Since the

sum of two n-monotone funcitions is in C(iogoougin) and since a non-
negative real multiple of an n-monotone function is an n-monotone
function, the set of n-monotone functions forms a convex cone. It is
the purpose of this chapter to determine the extremal elements of
C(iogooogin)g n>1l, It should be noted at this point that in order to
find the extremal elements of C(iog,MM)J°.,D)<J n>1, it is sufficient to

determine the extremal elements of C(Ogilg“wivl)9 since
e

C(lgilguoogin) = "’C(Oglg’i QOOQlein)o

1

29
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Proposition 3.1; The extremal elements of C(Ogil) are the

functions in C(Ogil) which assume exactly ome positive value in [0,1].

Proof; If = 0 then C(C,0) = ”19 and the proposition is true by

1
Proposition 2.1. If il = 1 then f ¢ G(0,1) if, and only if,

g e C(0,0) = A19 where g(x) = f(l-x) for x € [C,1]. It then follows
that f is an extremal element of C(0,1) if, and only if, g is an

extremal element of Al° Thus, f is extremal in C(0,1l) if, and omnly if,

f assumes exacltly one positive value in ([0,1].

Extremal Elements of C(iovil$ia)

) and let a. =0 if i, =0 and a. =1 if i, = 1.

Let f ¢ C(0,1i > o 1 o 1

-
9 ok

1

If f(ao) > 0 and f is not constant, then take fl = f(ao) and

fo=f = f e C(0,i.,i.) and fl and f. are not

2 1° 2 2

proportional te f. Since the same technique still can be used for

In so doing, fl and f

172

C(Ogil“”gin)9 n > 2, the only extremal elements of C(Ogilsooogin)

such that f(ao) > O are the positive constant functions.

Let f g C(O?ilgi and define

5)

2y = (1/2) + 032tz - a8,

where a_. is defined as above. It has already been noted that an 4

6] 2

function must be continuous on (0,11: in this case, 4. = C(0,0,1) and

2
al = a,. = 0, By similar reasoning, 1t can be shown that if

fe C(Ogilpiz)v then f must ve continuocus on [0,1] except at aéo It
follows that the only extremal elements of C(Ogil) that are in

C(Ogilgia) are those which are continuous on [0,1] except, possibly,

at al, and these functions are again extremal in C(0,1

0 i)
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If £ ¢ C(0,i.,0), f is not constant on (0,1) and f is discontinuous

1’

at a! = laaos thern take £

5 (x) = O for x ¢ [0,1] and x ¥ a',

1

, N R
fl(ao) L(ao) limit f{x) > O

-+ gf
785

and f2 = f = 1

1° In so doing, fl and f

€ C(Ogil,O) and f. and f2 are

2 1

not proportional tc f. Since the same technique still can be used for

c(0,i Ogonogiq)g n > 2, the only extremal elements of C(O,ilgoguoo$in)

l‘)
that are discontinuous at aé = lmao are the functions which are positive
at aé and zero elsewhers on [0,1].

On the other hand, if f ¢ C(Ogijgl), f is not constant on (0,1) and

f is discontinuous at aé = a5y then take

fl(x) = limit £(x) > O,
-’ x=al

| 1 / ] vy = an - = f - . .
x e [0,1] and x # als fl(ao) 0 and f2 £ fl Then fl and f2 are in

C(Ogilgl) and £

1 are not proportional to f. Again, since the

and f.
S T2

same technigque can be used for C(Og‘ilglg”ngin)9 n > 2, the only

extremal elements of C(Ogilglgauogin) that are discontinucus at aé = 8

are the functions which are zerc at aé and equal to a positive constant

elsewhere on [0,1].

Consequently, the extremal elements of C(0,i 9M”,:'Ln), n > 1, which

1

are not extremal in C(Ogil) must be zero at a_ and continuous on [0,1].

0
The extremal elements of C{0,1,1) which are extremal in C(0,1) are the
positive constant functions and the functions f such that f = ¢ > 0 on
[0,1) while f(1) = O. The remaining extremal elements of C(0,1,1) are

found in the following proposition by using the fact that the extremal

slements of &2 = ¢(0,0,1) are known.
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Proposition 3.2: Let f g C(0,1,1) such that f(1) = 0, £ # O and

f is continuous at 1. Then f is an extremal element of C(0,1,1) if, and
only if, f(x) = m(1-E), x ¢ [0,&€] and m(l-x) for x ¢ [§,1], where

0<E&€<1andm>0,

Proof: It is easily seen that £ ¢ C(0,1,1) if, and only if,
g e C(0,0,1) = A, where g(x) = £f(1-x), x e [0,1], which implies that
f is an extremal element of C(0,1,1) if, and only if, g is extremsl in

A Therefore, since T is continuous at 1 and nonconstant, f is

5
extremal in C(0,1,1) if, and only if, f{l-x) = mx, x ¢ [0,&] and mf for
x e [€,1], where 0< § <1 and m > 0. It follows that £f(x) = mE,

x e [0,2-8] and m(l-x) for x g [1-§,1], which is equivalent to

f(x) = m(1-8), x ¢ [0,B] and w(l-x) for x ¢ [B,1], where 0 < B <1

and m > O,

McLachlan [8] has found the extremal elements of the convex cone B2
which is & subcone of C(0,0,0). In fact, B2 is the set of functions in
£(0,0,0) which are continuous at 1. It easily follows from McLachlan's
results that the exiremal elements of C{0,0,0) which are continuocus at

1 and nonconstant are precisely those functions f such that f(x) = O,

x & [0,€] and m(x-§) for x ¢ [§,1], where 0 <€ <1 and m > O, Once

this is known, the extremal elements of C(0,1,0) which are nonconstant

and continuous at O can be determined.

Proposition 3.%: Let f ¢ C(0,1,0) such that £f(1) = 0, £ # 0 and

f is continuous at O. Then f is an extremal element of C(0,1,0) if, and
only if, f(x) = m(E-x), x ¢ [0,8] and O for x ¢ [§,1], where 0 < § <1

and m > O,
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Proof: It ik easily seen that £ ¢ C(0,1,0) if, and only if,
g & €(0,0,0), where g(x) = f{l-x), x e [0,1], which implies f is an
extremal element of C(0,1,0) if, and only if, g is extremal in C(0,0,0).
Therefore, since f is continuous at O and nonconstant, f is extremal in
C{0,1,0) if, and only if, f(l-x) = 0, x ¢ [0,8] and m(x-§) for x ¢ [§,1],
where 0 < § <1 and m > 0. It follows that f(x) = m(1-E-x), x ¢ [0,1-E]
and O for x € [1-§,1];, which is equivalent to f(x) = m(B-x), x ¢ [0,B]

and O for x ¢ [B,1], where 0O < B < 1 and m > 0,

By using the results from Chapter II, McLachlan's results and
Propositions 3.2 and 3.3, it can be verified that any extremal slement

of C(0,i i2> which is nonconstant and continuous on [0,1] must be of

l‘)

the form

e e ) pe, v .
mlh(x, 854,01, )+0(8,851,,1,)+(~1) " 72 Ih(xeéa.i.l,lz)«h(%g%,lly12)ﬁL (2.1)
where m 2 O and

B(x,Eiip0d,) = (1/2) - D2 -

- (1201 ¢ 002 - o rae) - e

for x e [0,1] and § £ (0,1) or § = a; = (1/2)[1 - (-1)11¥12)7 ) pet

si.3x) is given by

mf(igilsi2;) denote the function such that mf(ggil 2

(3.1). The results to this point are summarized in the following

theorem,

Theorem 3.1: The extremal elements of C(O,i,) are the functions
which assume exactly one positive value on [0y1]. The extremal elements
of C(Ogil) which are continuous on [0,1] except, possibly, at

= {1/2)[1 + (nl)(ll+12>] are again extremal in C(0,1i The

10400

Oea
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remaining extremal elements of C(Ogijgiz) are the functions mf(§9ilgizg)9

where m > O and € ¢ (0,1) or & = a; for

a) = (1/2)1 - (-1)¢1%i)y,

Extremal Elements of C(i lgcoogin), n>2

O’i

The extremal elements of the convex cone C(i 9””in)g n>2,

Ogil
will be found by integrating the extremal elements of a convex cone

which is similar to G(i It is necessary to undertake a

nw2?ln~191n>°

study of the properties of the derivatives of an n-monotone function
before defining this cone., The following two lemmas should be compared

with Lemma 2.3,

. . . . . n
Lemma 3.1: If f ¢ C<10“179”°°91n+2)° n > 0, then f( )

1 exiets on

(0,1) and
(ml)<in+k)A§ f(n)(x) >0

0 p(mdsy = £(8) gy,

for h > 0, [x,x+kh] < (0,1) and k = 0,1,2, where Ah

A= =1) P2’ 2(x) = (wl)(ima)ﬁfz £(x) 2 0

(n)

Proof: Since
for h > C and [x92+(n+2)h] < {0,1], it follows that f exists on (0,1)

and (ml)<ln+2)fkn) is convex on (C,1) [23. Thus,
(wl)(in+2)A§ f(nj(x) = Ai (ml)<in+2)f(n)(x) >0

for b > 0, [x,x#2h] © (0,1). The proof that (-1)*a’{™ () > o,
Lg

. (2)(x) > 0, [xux+h] € (0,1) will be by

x e (0,1) and (m1)<ln+l)ﬂ

induction on n.
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If fe C(iogi :1,3)$ then f' exists on (0,1) and

1912?
(al)(lk)A¥ f(x) > 0 for [x,x+kh] © [0,1] and k = 1,2. It follows that

(ml)(ik)A§“1 by £(x) > 0

for h > 0, 6 > 0, [x,x+(k-1)h+8] & [0,1] (cf. Proposition 1.1). Hence,

)(ik)Aiml f(x+8) - f(x)

(=1 3

>0,

which implies that

(wl)(ik)Aiwl £1{x) > 0

for k = 1,2, and thus, the lemma is true for n = 1.

Assume that if f e C(i

)

O9i190009
W x) > 0 for h > 0, [x,xkh] < (0,1) and k = 0,1,

ln+2)9 n> 1, then
(ml)(ln+k

If fe C(iogilgocogi ), then T g C(iogi in+2)° and it

gl cae
2’ T+ 3 1° :

follows from the induction hypothesis and the first part of the
proof that

k-1

(ul)(in+k)Ah

Ay £M ) > 0

for h > 0, 6> 0, [x,x+(k-1)k+6] € (0,1) and k = 1,2. Hence,

k-1 f(n)(x+6) - f(n)(x)‘> o
Jol Z Vs

(i)
(=l)_ ntk’A 5

which, by replacing k with k+l, implies

(=l)(in+l+k)Ai f<n+l)(x) >0

for k = ;1. This completes the induction.
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The following definition is included here in order to simplify the

notation in the proofs that follow.

Definition 3.1: If g is a real continuous function om (0,1), then

define the function

Tlgaiyody qoeeesdpdp i)

by the equation

I(gglkglk+1ﬂoooglm91m+l;x)

X i Yl f mml'y m
‘\ i i o o
\ o % % glt) dt db eeo dby o
ak+l bamml tam

for x & (0,1) and aj = (1/2)(1 - (ml)(lj+lj+l)], where i_j =0 or

<.

Lemma 3.2: If f e C(iogilgooogimz)9 n > 0, then
1imit I(”(n) )il)ovog;n 1gin;x)
K>l ao -

exists and is finite.

Proof: The proof will be by induction on n. If f ¢ C(ioﬂilgiagiB)g

then

i{’")d\.
i 2 (= ¢ ) = T e ( q
LCEagagsx) = | £1(8) ab = £(x) - £(ay),
2
%0

which implies that
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limit I(f'giogil;x) = f(lwao) - f(ao),

x»lmao

and the lemma is true for n = 1,
Assume the lemma is true for n > 1 and let f be in

C(iovi yooogk

1 n+agin+3)o Then f € C(iogil,wugimz)9 and by Lemma 3.1,

(-1 s £ () > 0

i

for [x,x+kh] © (0,1) and k = O,1. Ifi =4 ., thena =0 and

n

£200) = £ ory = 1imit £ (x)
X~ Ob

is finite., If i #1 ., thema =1 and
n n+l n

f(n)(l) - f(n>(1m) - limit f(n)(x)
x> 1-

iz finite. It follows that

f(n)(an) - limit £ (x)

Xx=+a
n
is finite., Therefore,
oy 1l ) , .
1imit I(f( )910?113000g1n91n+l;x)
X l=a
0]
- - {n 'n . \
= limit I&f< >¢f( >(an)?10911900091n;x)
xolea
¢}
o n) . . . (n) . .. )
= 1imit I(f( )glogllguuuoln;x) - f (an)l(lglogllgooogln;lmao)
xwlmao

exigts and is finite by the induction hypethesis.



),

It is & consequence of Lemmas %.1 and 3.2 that if f ¢ C(i
{n-2)

|

9i0 0 g ok
0% ’7n

n > 2, thean f is an element of the comvex cone given in the

following definition.

Definition 3.2: Let K(inngin 19in) be the set of real functions

g on (0,1) such that

(

(-1)Fae2008¥ g(x0) > 0

for > 0, [x,x+kh] ¢ (0,1), where k = 0,1,2, and

limit I(godgsiqoeeesd i%)
Xﬁlwao

is finite.

From this point, I(g,i will denote the function

i 500 3)
09119% uangﬂi
which is the continucus extension to [0,1] of the function given in
o d

Definition 3.1, where g ¢ K(in

2 gin)o The proof of the following

n-1
proposition is very similar to that given for Lemma 2.1 and is not

included here.

Proposition 3.4:; A function g e K(in agin 19in) is an extremal
element of K(i .
D2

restriction of f to (0,1), where f is an extremal element of

)o

ginglgin) if, and only if, g # O and g = £|(0,1), the

Cl1 S N §
( n=2""n-1""n

The result obtained here will be used in the proof of the next

lemma,

Lemma 3.3: If g is a real continuous function on (0,1) such that

)

I(g,i 9Mo?:imn;;x) is finite on (0,1) and (ml)(ln

grdy glx) > 0, x ¢ (0,1),



then

(ml)klk)l(ggikgik+lgonmgin;x) >0

for x ¢ (0,1) and 0 < k < n-1.

Proofs

The proof will be by finite induction on k beginning with
k = n=1, If i =1 4 then a . = 0 and
-1 n n=1

=3

3 X CoaX
2 - i [ .
(«1)(¢n91)1(gsinmlgin;x) - (-1)tpr? X g(t) dt = K 1) a(t) at > o,
\ -
JO JO

whereas if i # i , then a
n-1 n o}

1 X

Q : f
(~l><lnml)l(g9in®ly¢n;x) = (1) "1

ki

o X OX
. g(t) dt = ~%'(m1)(in)g(t) at > o,

J1 J1
for x & (0,1), since (al)(in)g(t) >0, te (0,1).
Assume that (=1)(ik)1(gﬁikgik+lgoangin;x) > 0 for x & (0,1), where
0 <k <np=l, If ikml = ik9 then By g = O =znd
AX
(-1 %1710, 1

0 n (1, )4 ; ,
kg19lkgoooglngx) = (ml) kal) I(gglkgqooglﬂ;t) dt

e
[@]

\ (ml)(lk)l(ggikgeuogin;t) at > o,

i
by the induction hypothesis. On the other hand, 1f 1

el # i then
&a.

el = 1 and
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y X

)

1

)

(1) 31 (=1) 31

I(ggikclgikgooogin;x) I(ggik?oon“in;t) dt

X )
- @ 1% 1(g,1

)
1

i

oogin;t) dt 2 0,

again by the induction hypothesis.

In the next lemma, an n-monotone function f is obtained by

(n=2)

specifying f on (0,1).

Lemma 3.4: If ge K(i ,.i 151 )y 0> 2, then fe Cligd,..esi),
where f = T(godqsdjseecsd  55)0

Proof: The technique used in the proof of Lemma 3.2 can be

employed here to show that f is finite om [0,1]. Since, by Lemma 3.3,

-1 260 = (-1)301(g,1 1, 53%) 20

Ogilgooo

for x g (C,1), f(ao) = 0 and f is continuous at l-nao9 it follows that
(ml)<io)f(x) > 0 for x € [0,11. The proof that (ml)(ik)Ai f(x) >0
for h > 0, [x,x+kh] & [0,1], where 1 < k < n~3, will be by induction
on k.

For h > C and [x,x+h] &€ [0,1],

(s X+ h
1 . 1 . . , .
Ah f(x) = X I(ggllgoooglnngt) dt = h I(ggllgonoglnpa;gl)g
dx

| K ke, .. o
where x < §l < x+h. Assume that Ah f(x) = h I(gglkglk+lgoooglnwzggk)s

where 0 < x < § < x+tkh <1 andl <k<n-3 For h>O and

k
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[xox+(k+1)h] & [0,1],

k+l Al sk
8T £(x) = A AT £(x)

1]

koL .
by B T(gedy oty qooeesdy 538))

i1

. u§k+h
h i I(gglk+lgoougln¢23t) dt

K

k+1

h I(gz)i oo;}i

B

kel®” 125 e )

where §. < < x+(k+1)h. Therefore, it

*k

follows from Lemma 3.3 that

< §k+h and hence, x < §k+

g
kel 1

(ml)(ik)Ai f(x) = (nl)(ik)hkl(ggikgouugin_zggk) > 0,

where 0 < x < §k <x+tkh <1 and 1 <k < n-3

If h > O and [x,x+kh] < [0,1], for n-2 < k < n, then

k oo k=-n+3 ,n-3
8, f(x) Lo &y £(x)

i

_ pk=m+3 on-3 : . o E
= Ah h I(gglntS’lnwE?gan)

_ pken+2 41 n-3 . . .
= Ay b h I(gglnuﬁglnmaagnm3)

(inmfh

g(t) dt
g .

n=3

1

hQFBAkmn+2
b )

[

n=2Akmn+a g(g)e

= h o

where x < § < x+(n-2)h. It easily fcllows that («1)(lk)A§ f(x) >0
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for h > 0, [x,x+kh] € [0,1], where n-2 < k < n, and thus,

i Cll gd. gooogd Jo
£ e (logﬂl, ,1n)

In the proofs that follow, f(k)(ak) should be interpreted as

f(k)(ak) = 1imit £ (x),

Xx—+a
k

k)

‘ . . , , ( P .
where f ¢ C(J,Ogll,”ogln) and 1 < k < n-2, Since f € h(lk’lk+l’lk+2)"

this limit will always exist and be finite. It is shown in the

following proposition that extremsl elements of C(io$ilgooogin) can be

obtained directly from extremal slements of K(i o1 o1 Do
n=2""n-1""n

Proposition 3.5: Let g e K(lnmE”ln«l?ln)9 n> 2, and let

£ = I(gﬂiogilgoooginmag)o If g is an extremal element of

K(d g:in)(J then f is an extremal element in C(i 9com;i.r’)m

n=-2°tn-1 o'

Proof: It has already been shown that f ¢ C(iogijgooogi )

ii
}-4)
+

)

{(cf. Lemma 3.4), If fl and f2 g C(i .1 ﬂooogin) such that £ =

o' 7L
, (n=2) (n=2) ;. . . (n=-2) (n-2) _ (n-2)
then fl and f2 e K(i ng*nal°ln) and fl + f2 = f

n_;
= g, This implies that there are constants Xi > 0, i = 1,2 such that

= h.go Tt is evident from the definition of f that f ) = 0

where O < k < n=3, This, together with the fact that f;k) is in
= ] at N = o3 o
Kklkglk+191k+2) for 0 < k < n-3, implies that f. <ak> 0, i = 1,2

Hensce,

o eln=2) . C
fi = 1(fi 8logllgoooglnm29)

it

I(Xigslosllgoeoglnmas)

)

L so000sd
19 9 n‘“29

i

i

KiI(gg iotf

i

A fs
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for i = 1,2, and f is therefore extremal.

Thus. Proposition 3.5 gives a sufficient condition for f to be

extremal in C(3i vooogin)o The following lemma will be used in the

O”il
proof of Proposition 3.6, in which a necessary condition for f to be an

extremal element in C(i 9uoogin) is given.

o't

Leuma 3.5: Let f ¢ C(iogilgows,in)9 n > 2, such that f is not an
extremal element of G(io,ilg,uwginal)o If £ is extremal in

C(iopil9upogin)a then f(k)(ak) =0 for 0 < k < n-3.

Proof: Since f is not extremal in C(i09i1)$ it follows that
f(ay) = 0. The proof that f(k)(ak) =0 for 1 < k < n=3 will be by
contraposition.

Suppose there is a k such that 1 <k < n-3 and f(k)(ak) # 0, Let
p denote the smallest such integer. Since f g C(iogilsooogin)

< C(iogilw“gip+3)9 it follows that fkp*l) € K(ip+ ) and

172 o3

1) . . , A . .
I(f(p+ )910911900091 3x) = I(f(p)mi(p>(ap)9logll9oooglp;x)

prl

(p)

(7,1

it

Oaiivoouvip;x) - I(f(P>(ap)giovilgooogip;x)

it

£(x) - I(f(P‘)(ap)gi SRS (3.2)

O‘Jil‘?

for x g [0,1], becausse f(k)(ak) = 0 for 0 < k < p-1. Since f(p) is in

K(lpglp+lglp+2) and f (ap) # O, the constant function T (ap) is

extremal in K(ipgi ) by Proposition 3.4. If

pr1®tpe2
fl = I(f(p)(ap)qioqilgouogipg)9

then by Proposition 3.5, f. is extremal in C(iogilgpoogi ). It was

1 Pk
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shown in the proof of Lemma 3.4 that Af*l £ (x) = hpAi f(P)(ap) = 0 for

1
b > 0 and [z (ptl)h] < [0,1]. Tt follows that Ai £ (x) = 0 for h > 0,

[x,x+kh] & [0,1] and p+2 < k < n, which implies that £l e C(iogggegxn)o;

If f2 = f - flg then

1) .. . :
f = I(f(p+ )glogllgooogl *)9

2 p+tl

by equation 3.2. Hence, by Lemmas 3.1, 3.2 aand 3.4, f2 € C(iogaoagi Y,

p+3
and since

(ml)(ik)Ai £,(x) = (ml)cik)[Ai f(x) - Ai £,(x)] = (=l)(ik>A§ f(x) >0

for b > 0, [x,x+kh] € [{0,1] and p+3 < k < n, it follows that f? is in

C(logilgooogxn)c Thus, fl and £, e C(logllgooogln) such that

£f =% + f., and since f

. 5 1 is extremal in C(ioail9agogip+2)9 1<p< 03

f1 is nct proportional o f. Therefore, f is not extremal in

C(iogiigooo\Din)° It follows, by contraposition, that if f is extremal

(k) .

in C(i ogin)9 then f (ak) = 0 for 1

AN

Ogllr)co k _<; n“’jo

Proposition 3.6: Let f e C(i ogin)g n> 2, such that f is

b WP
o'’

Yo If f is extremal in-

(n-2)

not an extremal element of C(ioﬂilgouugi

(n=2)

n=1

ci{i uoogin)g then f is nonconstant and f is extremal in

Oﬁ)ilﬁ

K{i i si Do
9 At

n=2""n~=1

Proof: By Lemma 3.5, f(k)(ak) =0 for 0 <k <n3 If g and g,

(n-2)
are in K(in (n-2) g * 8, then by Lemma Boliy

maglnmlgln) such that f

. o s s 4 cach that £ o= , 2
il and i, e C(109119°°°Jln) such that fl * f29 wher

fi = I(gigiogilguooginmag)g i =1,2, Since f is extremal in
C{i si.se0usd ) there are constants A, > O such that £, = A\.f, i = 1,2,
0 "1 n i i i



therefore extremal.

.(nGB)

If f(n 2) is constant, then f<nm£) £ 0 and f is linear on

(0,1}, Ifn =3, then £ is extremal in C(iogilgia)ﬁ since f is linear
on (0,1) and f(ao) =0, Ifn>3, then £ (n=3)

(n=-3)

), since f

is extremal in

(n- 3)( ) 0.

K(i “BQ;n PYE is linear on (0,1) and f
)s

It follows from Proposition 3.5 that f is extremal in C(iogilOQUOgi

(n~ 3)9 Ogooaglngag)o

n-1
However, since f is not an extremal

(n-2)

), it must follow that f is nonconstant.

since £ = I(f

element of C(logllgoooglnml

If £ e C(d 1900091 ), n> 2, such that f is an extremal element

0¥

of G(ioﬂco°9in l)9 then since C(i ,11300091 ) is a subcone of

) , o . , B .
c{i O““°°91nm1)9 f is extremal in C(i aln)o This set of functions

Ogilgooo

is the subject of the following proposition.

Proposition 3,7: Let f ¢ C(iogil9000$in)@ n > 2, such that f is

nonconstant and continucus on [0,1]. If £ is an extremal element of

C(iogooogirml)g then ¥ is linear on [0,1] and f(ao) = O, or there is an

integer k, 3 < k < n-l, such that 1(k “) is extremal in K(lk ﬁjlkwl 4k)9
f<p)(ap) =0 for 0< p < k-3 and f(kml) is constant on (0,1).
-
Proof; Since f(n 2) is continucus on (0,1), by Lemma 3.1, f(p) is

continuous on (0,1) for L < p < n-2. Since f is a nonconstant extremal
element of C(iogi1gooogin)g it follows that f(ao) = O, There is a
unique integer k, 2 < k < n~1l, such that f is extremal in C(io.,”ogik)

J. If k=2, then f is a non~

)(il)f'

but is mnot extremal in C(iogupogikal

constant extremal element of C(l )1 ), and it follows that (-1

104

assumes exactly one positive value in (0,1) (c¢f. Theorem 3.1). Since
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ENEED) ‘
' must be continuous on (0,1}, (=1) *17f1 = ¢ > 0 on (0,1); that is,

f is linear on [0,1].

£ k > 2, then by Lemma 3.5, £P’

Proposition 3.6, f(k“2> is extremal in K(i

(ap) = 0 for 0 < p < k=3, and by

kngik;jgik)o It follows from

Propesition 3.4 and Theorem 3.1 that (ml)(lknl)f(k‘l) assumes at most

(k=1)

one positive value in (O,1). Since £ must be continuous on (0,1),

(i, ;) (k=1)

{(=1)""k=17"f = e > 0 on (0,1).

It should be noted that if f satisfies the hypothesis of Propo-

f(n=2) - (n-2)

sition 3.7, then Qor £

is extremal in K(i _,i_ .,i ).
n-2" "n-l""n

The results of the last three propositions are summarized in the
following theorem which gives & characterization of the extremal

elements of C(i l;qoogin) for n > 2,

09:i

Theorem 5.2: Let f ¢ C(iogilgu”oin)s n > 2, such that £ is not
constant and 7 is continuous on [0,1]. Then f is an extremal element of

C(iOgijgooogin) if, and only if, f is linear on [0,1] and f(ao) = 03 or

there is an integer k, 3 < k < n-l, such that fck&a) is extremal in

. o p P (p)/ - P (k:’l) a
rf . E 4 . ot o P .
h(ikmag;kmlglk)g £ xap) =0 for 0< p<k-3and f is constant on

(n-2)

(0,1); or f is an extremal element of K(in

mayablgin)and

f(pDCap) = 0 for 0 < p < n-3.

Proof: If £ is extremal in C(iogi.gooogiq)9 then there is a unique

integer k, 2 < k < n, such that f is extremal in C(iogoou?ik) but is not

extremal in C(ioggoogih Yo If & < n-l, then f is extremal in
15 e

1
C(icgooogin 1) and the conclusion follows by Proposition 3.7. If k = n,

(n-2)

then f(p)(ap) =0 for 0<p<n3and f is extremal in

K(1m52°lnml9ln) by Lemma 3.5 and Proposition 3.6, respectively.
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The proof of the converse will be given in three parts. First, if
f is linear on [0,1] and f(ao) = 0, then f is extremal in C(iO“il’iZ)
and A,l f(x) = 0 for h > 0, [x,x+2h] < [0,1]. It follows that

Ai f(x) = O for h > O, [x,x+kh] © [0,1], 2 < k < n, and thus, £ is in

Ccli. nllgcaugl ). Singce C(iogil?ooogin) is a subcone of C(io,ilgia)g £
is again extremal in b(logilﬁooovin)o
. \ . o (k=2) e e ,
In the second place, if f is extremal in K\lk ZSLk ]glk)g

“(p)(a ) = 0 for 0 < p < k-3 and f<kml)

(k=2)

is constant on (0,1), where

3 <k < n~1, then f = I(f . OgnoUglk 29) and f is extremal in

(k=2)

C(io9oougik) by Proposition 3.5. Since f is extremal in

K(ikmaﬁikmlgik>g (al)(lkml)f(kai> assumes at most one positive value on
{0,1) (cf. Proposition 3.4 and Theorem 3.1). It follows that

m’)
(= l)(lk l)*(k 1) = ¢ > 0 and thus, f(k 2) is either linear or constant

on {(0,1). It was shown in the proof of Lemma 3.4 that Aimz f{x)

f<Km£)(§) for 0 < x < § < x+(k-2)h < 1, from which it follows that

k-2

2 (k=2) N
Ah T (8) =0

fx) = Ah 1

for h > O, [x,xkh] ¢ [0,1]. Hence, AE f(x) = 0 for h > O, [x,x+ph]

< [0,1], where k < p < n, and thus f ¢ C(iogilg,oougin)° Since
C(iogilﬁnuo9in) is & subcone of C(ioguougik}v £ is extremal in

{4 4 ER
C\loqllg oooguLn)o

Thirdly, if f(p)(ap) = 0 for 0 < p < n-3, then

(nwa
fou I(f ) ,1. ollqokogln DN

= L

. a=2) . . . . , . .
Since f( ) is extremal in Kklw qqln 19:Ln)V f is an extremal element of
N =

cli. allq<\OJ1 ) by Proposition 3.5%.



CHAPTER IV
INTEGRAL REPRESENTATIONE OF n-MONOTONE FUNCTIONS

The set of functions C(iogooo?in)mC(i gin)g n > 1, forms the

O‘)OD\)
smallest linear space containing the convex cone C(iogoaogin) {of., [3],

po 47). If
U = {Ulp,g) 2 p finite subset of [0,1] and ¢ > 0),

where

L

Ulpse) = {f ¢ C(iogooogin}aC(i ?voogin} ; [f(x)] < e for x € pl,

0

then ¥ forms a local base at O and C(iovaoovin)mC(iOQQQVQin) together
with the local base ¥ is a Hausdorff locally convex space. The topology
induced by ¥ is called the topology of simple convergence and is
equivalent to the topology of pointwise convergence (cof. [1C], p. 155).
It is the purpose of this chapter to prove that the extremal elements of
C(ioacQOQin) form a cloged set in a compaet convex set which meets every

ray of the cone C(i 9Oﬁegin) but does not contain the origin, and to

0
show that for the functions of the cone an integral representation in

terms of extremal elements is possible. Since

C(lg ilg oo o 5\in) = ""‘G(O;\,l"“il‘g 000 Ql‘“j,n;) @

it is sufficient to obtain these resulis for the case where io = 0,

48
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If
S(Oyilgouogin) = {f & C(Osil'sooogin) 3 f(l“"ao> = 1}9

where n > 1, then 5(0,1i S,‘,{,\,gin) is a convex set which meets every ray

1

of C({0O,i 9Mwin) once and only once but does not contain the origin,

1
that is the zerc function. It then follows that [ is an extreme point
of S(Ogilgeaagin) if, and only if, f is an extremal element of

c(ogilgoaogin) which lies in S(ogi.gooogin) (ef. [4), p. 235).

1

Compactness of S(Ogilgooogin)

Since each function f in S(Ogilgoeogin) is nonnegative and
monotonic, then O < f(x) <1 for x e [0,1). If I = [0,1], then it

follows from the Tychonoff theorem that
II = {f:[0,1] - [0,1] : f is a function)}

with the product topolegy is a compact space. Since the topology of
simple convergence 1s equivalent to the product topology, it follows
that S(Oyilgouooin) can be imbedded in IIQ Therefore, in order to prove
that S(Ogilgooogin) is compact, it is sufficient to show %that
S(Oﬂilgvouain) is a closed set, This will be done in ths following

proposition by showing the complement of §(0,i 9°°°9ir) is open.
i

1

Proposition 4.1l: The set S(Ogi‘“oo._,in)9 n > 1, is closed.

1

Proof: If ge C(0,i ,coogin)\s(oei vovesi )y then g(l-a) # 1 and

1 1

the sat
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g+ U({lmao},s)

= {f g C(O,1 oougin)~C(Ogilgooogin) 3 lf(lmao) - g(lmao)l < e},

19

where g = (l/2)[l-=g(l—ao)l9 is an open set about g that fails to meet

S(O7il?omgin)° If g ¢ C(Oﬂilgooo?in)g then there are numbers x., k and

o?
h such that

k
(»1)(ik)A; g(xo) = (ul)(ik) j%: (-1)" (?) g(xo+(kmj)h) =8 <0,

J=0

Let

()
i

O+kh}ss)

ooyin)wC(O,ilgoogsin):lf(xo+jh)~g(xo+jh)t<si 0< i<k},

g+ U({xogxo+hgoongx

if

{fsC(Ogil90

where ¢ = (l/2)k(e6)n If £ ¢ U, then

(«-l)(ik)ﬁll; £(x,)

i

DI Tox ) - glx )] + (1 EIBE gl )

AN

|65 Loty - ax] + (-1 R08Y glx)

k
E (?)'ﬂf(xo+(k-=j)h) - g(xo+(k==j)h)l + 6
J=0

k
k
7)) + 6
£ iE: (J)
§=0

Eks + 6

in

AN

i

it

0O,

and it follows that f ¢ S(O,i Doogin)c Hence, if g ¢ S(Ogilgaoo,in)9

1‘3
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then g ¢ cl[S(Ogil,ooogin)] which implies that S(Ogilgonogin) is closed,

Since C(Ogilgooo,in)-C(Ogi oosin) is a Hausdorff space and

1

S(Ogilyoaogin) is compact, then ext S(Osilgoooﬂin) is compact if, and

only if, ext S(O,1i oo,in) is closed relative to S(O,il,coogin)u The

1°°
proof that ext S(O,ilgooogin) is closed relative to S(O,ilgaoogin) will
be by induction on n. If f e $(0,i)) such that f is not an extremal

element of C(Ogil)g then there exists a number x_ e [0,1] such that

0
0 < f(xo) < f(lmao) = 1 (¢f. Proposition 3.1). Let U = f + U({xo},e)9
where € = min {f(xo), l--f(xo)}° If g is an extreme point of S(Ogil)
(that is, g is an extremal element of C(O,il) which lies in S(O,il))9
then g assumes exactly one positive value in [0,1], and since

g(lmao) =1, g(x) is either O or 1 for each x ¢ [0,1]. If g(xo) = 0,
then f(xo) - g(xo) = f(xo) > ¢, whereas if g(xo) = 1, then

g(xo) - f(xo) =1 = f(xo) > £. Therefore, g ¢ U and it follows that

ext S(Ogil) is closed, where ext S(O,il) denotes the set of extreme

points of S(Ogil)o

Closure of ext 5(0,i. . i.)

1’72

If it has been shown that ext S(0,i Dogin) is closed, where

1’

)]

ext S 1. 50009l oi
cllex (O,:Llg o ol 4

i

cllext S(O,llgooqgln+l) \ ext S(O$1lgooogln)]

U el{[ext S(Ogilgooogin)] n S(Ogilgooogin+l)}

cllext S(0911900091n+l) \ ext S(Ogllgooaﬁln)]

fl

U {lext 8(0,1 °°9in)3 N s(ogil(,omi )Y,

1°° n+l
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since S(0,i ooo3in+l) is closed. It follows that

1‘3

cllext S(0,1 )]

c cllext s(o,il,aoogin+l) \ ext s(oﬁil,ouogin)]

coogl ol
1°? 0 o+l

U ext S(Ogilguoogi )o

n+l

Therefore, in order to show ext S(O,il,ooo,in+l) is closed; it is
sufficient to prove that

cllext s(o,il,oaa,in*l) \ ext s(ogilgqoogin)J C ext s(o,ilgooogi ).

n+ 1l

Proposition 4.2: The set ext S(0,0,0) is closed,

Proof: In view of the above remarks, it suffices to show that

cllext $(0,0,0) \ ext $(0,0)] € ext 5(0,0,0), If
f e cllext 8(0,0,0) \ ext 8(0,0)]1,

then f ¢ 8(0,0,0) by Proposition 4.1. There is a sequence {fi} of
functions converging pointwise to f on [0,1] such that each fi is an
extreme point of S(0,0,0) which is not extreme in S(0,0). It follows
from Theorem 3.1 that fi = mif(gigovoa) such that fi(l) = l; that is,
fi(x) = 0, X & [osgij and (lngi)”l(x-gi) for x ¢ fgiﬁll, where

0< §i < 1, If the sequence {gi} of real numbers converges to 1, then
it is easily seen that %imit fi(x) = 0, for x ¢ [0,1) while

%imi: fi(l) = 1, Sincelt;e topology on €(0,0,0)-C(0,0,0) is Hausdorff,
iﬁ; sequence {fi} of functions has a unique pointwise limit. It follows
that f(x) = 0, for x € [0,1) and f(1) = 1 and f 1s therefore an extreme
point of S(0,0). Since f g€ S(0,0,0), f is again extreme in $(0,0,0).

On the other hand, if {§i} does not converge to 1, then there is a
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nonnegative number §O < 1 and a subsequence {Ej} of {gi} such that {§j}

converges to §O° If 0<x< gO’ then

limit f.(x) = 03

j-—»oo

whereas

1

limit f,(x) = TE (x~€ ),

jo o d 1- 0 0

if §O < x <1, Therefore, since the topology is Hausdorff, f(x) = O,
-1

X € [O;%OJ and (1-@0) (x~§o) for x ¢ [50,130 Hence,

f= (1O§O)“lf(§ogo,o;) and it follows from Theorem 3.1 that f is in

ext 5(0,0,0).

Corollary 4.1: The set ext S(0,1,0) is closed.

Proof: The corollary follows from Proposition 4.2 by noting that
f e 8(0,1,0) if, and only if, g e 8(0,0,0), where g(x) = f(1-x) for

x g [0,1].

Corollary 4.2: The set ext 8(0,1,1) is closed.

Proof: If f e cllext $(0,1,1) \ ext $(0,1)], then £ & S(0,1,1) by
Proposition 4.1 and there is a sequence {fi} of functions which are
extreme in S(0,1,1) but not extreme in S(0,1) converging to f pointwise
on [0,1]., It follows from Theorem 3.1 that fi’= mif(gi,l,l;) such that
£.(0) = 1; that is, f.(x) =1, x¢ [osii] and (1~§i)‘l(1~x) for
x ¢ [§,,1]; where 0 < §, <1. Since 1-f; = (l-§i)°1f(§i9090;) (that is,
1-£,(x) = 0, x e [0,8.] and (l»gi)“l(xagi) for x e [§;,11), then

lmfi e ext 8(0,0,0) \ ext 8(0,0), for each i. It follows from
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Proposition 4.2 that 1-f ¢ ext §(0,0,0), since 1-f is the pointwise
limit of the sequence {l—fi} on [0,1], which implies that f is in
ext 5(0,1,1). Hence, by the remarks preceding Proposition 4,2,

ext 5(0,1,1) is closed.

Corollary 4.3: The set ext $(0,0,1) is closed.

Proof: The corollary follows easily from Corollary 4.2 by noting
that f ¢ $(0,0,1) if, and only if, g e S5(0,1,1), where g(x) = f(1l-x)

for x ¢ [0,1].

It follows from Proposition 4.2 and Corollaries 4.1, 4.2 and 4.3

that ext S(0,i i2) is a closed set, where ij =0 or 1, j=1,2.

l‘)

Closure of ext S(O,il,uua,in), n>2

It has already been noted that in order to show ext S(o’il’°°°’in)

is closed, where n > 2, it is sufficient to prove

cllext S(0yiqseeesi ) \ ext S(0,i )] < ext s(ogilgnoo,in),

o ¢ o0 i
10 1° *Tn-1

If £ e cllext 5(04ijyeoesi ) \ ext 85(0,3y,0005i 1)), then £ is in

1

S(O,il,aao,in) by Proposition 4.1 and there is a sequence {fi} of

functions in ext S(O,il,ono,in) \ ext S(O,il,,,,,i l) which converges

pointwise to f on [0,1]. It follows from Proposition 3.6 that fgn—a)
is a nonconstant extremal element of K(in—z’in—l’in)° By using Propo-

sition 3.4, Lemma 3.5 and Theorem %.l, this implies that

(n=2) _ . . . _ (n=2) _ . .
fi = mif(gigln_l,ln,) for i,= 0, fi = —mif(§i,l~1n_l,l-1n,)
. _ (n-2) . . .,
for io= 1 and fi = I(fi ,O,ll,eoogln_a,), where m, > 0 and

E. e (0,1) or €, = a = (1/2)[l~(—l)(lnnl+ln)], for each i, since
i 1 n-1
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KKl,lnnlgln) = -K(O,l-lnwl,lwln). These ohservations are summarized in

- the following remark.

Remark 4.1: In order to show ext S(O,il,,pu,in), n> 2, is closed,
it suffices to prove that f ¢ ext S(O’il"°°’in) whenever f is the point-

wise 1limit on [0,1] of a sequence (fi} of functions with the property

that
SRR O MIRERD
for in~2 = O,
fgn-a) = -m £(§,,1-1 1,1-1 )
faor i o= 1, fi(l—ao) = 1 and
£,= 0,0 0005,

where §i e (0,1) or §i =a 4= (1/2)[1—(—1)(in—1+in)] and m, > 0, for

each i. The function mf(g,il,izg) is given by equation 3.1 on page 33.

It will be shown, by considering every possible case, that

technique still can be used to prove ext S(O,1

29i3) is closed. Then it  will be shown that the same

1’°°°’in) is closed for

n> 3,

Proposition 4,3: The set ext 8(0,0,0,0) is closed.

Proof: Let {fi} be a sequence of functions in 5(0,0,0,0) con-
verging pointwise to a function f on [0,1] such that fi = I(fi,0,0;)
and f! = mif(gi,0,0;); that is, fi(x) =0, X ¢ [Oqgi] and mi(x—gi)

for x e [§,,11, where m; > 0 and 0 < § < 1. Since f, = I(£},0,0;)
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and fi(l) = 1, it follows that fi(x) =0, X e [O,ﬁi] and

for x ¢ [gi’lj' If the sequence {gi} of real numbers converges to 1,

then it is easily seen that

]
(@]

limit fi(x)

100
for x ¢ [0,1) and

limit fi(l)

i

]
[

Since the topology of simple convergence is Hausdorff, the sequence {fi}
has a unique pointwise limit and it follows that f(x) = 0, x ¢ [0,1) and
£f(1) = 1. Since f is an extreme point of $(0,0,0) which is in
5(0,0,0,0), f is again extreme in $(0,0,0,0),

If the sequence {Ei} does not converge to 1, then there is a number
g

o ¢ [0,1) and & subsequence {§j} of {gi} such that {gj} converges to

§Oo It will be shown that the subsequence {fj} of {fi} converges
uniformly on [0,1] to an extreme point of $(0,0,0,0). Then, since the
topology is Hausdorff, it must follow that f ¢ ext $(0,0,0,0).

If ¢ is a positive number and & = (1/2)(1—§O)25, then there is a
positive integer N such thaﬁ lgj"go' < & whenever j > N. Define the
function g such that g(x) =0, x ¢ [O,EO] and

(x-8)
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- 3 | I 3
for x ¢ [%o,ll. If Ej = §o, for some j, then fj =g. If j>N, §j < §O

"
°

and x € [O,gj], then Ifs(x).w g(x)] If j > N, §j < §o and

X € (gjggo)g then

x=-§ . §o—§. g ~E
lfS(x) - gx)] =2 d 2 <2

J
£ )~ _E )2 _E
1 §j) 1 €j) 1 JO)

A

If j > N, §j < §o and X € [§o,l], then

x—EO x—§j E;

3~ 2 2
(1-%0) (1—§j)§

lfs(X) - gx)| =12

but since f& and g are linear on [§o,l], then

lfg(g) - g(x)| < max {lf‘zj(go)‘— g(ﬁo)l, If'j(l) - g(l)l}

-
555 »

. _ 2 }
(1_§j)2 1+§j 1+§o

< max {2

€,E.
< max {2~————1§, 2(§O-§.)}
(1) !
g _E .
-:2_£._J_.
(1-€ )%

By a completely analogous argument, it can be shown that |f3(x)~g(x)|<e
for x ¢ [0,1], j > N and §j > §O. Thus, the sequence {fé} converges
uniformly to the function g on [0,1]. Therefore, the sequence {fj}
converges uniformly to the function I(g,0,0;) on [0,1] because

‘"fj = I(fB,O,d;), Since g is an extremal element of K(0,0,0) and

I(g,0,0;1) = 1, it follows from Proposition 3.5 that I(g,0,0;) is an
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extreme point of 8(0,0,0,0). Hence, f e ext S(0,0,0,0) since
f = I(g,0,0; ), and it follows from Remark 4.1 that ext $(0,0,0,0) is

closed.

Corollary 4.4: The set ext S$(0,1,0,1) is closed.

Proof: The corollary follows easily from Proposition 4.3 by noting
that f ¢ $(0,1,0,1) if, and only if, g ¢ 5(0,0,0,0), where

g{x) = £f(1-x), x ¢ [0,1].

Corollary 4.5: The set ext $(0,1,1,1) is closed.

Proof: Let f be the pointwise limit on [0,1] of a sequence {fi} of
functions such that fi = I(fi,O,l;) and fi(O) = 1 for each i, where
fi = ~mif(§i,0,o;):£or m, > 0 and Ei ¢ [0,1). Then fi(x) =1,
X e [O,Ei] and 1-(l~§i)¢2(x—§i)2 for x ¢ [§i,1]g and by Remark 4.1, it
suffices to show f ¢ ext 5(0,1,1,1), Since l~fi(x) =Q, X € [Og§i] and

-2 2 ‘
(l—gi) (x~§i) for x ev[gi,l], then
1-f, e ext $(0,0,0,0) \ ext $(0,0,0)

for each i. Since 1-f is the pointwise limit of the sequence {lmfi} on
[0,1], it follows from Proposition 4.3 that 1-f e ext $(0,0,0,0).

Hence, f e ext $(0,1,1,1) and ext $(0,1,1,1) is closed.

Corollary 4.6: The set ext 5(0,0,1,0) is closed.

Proof: Since f e 5(0,0,1,0) if, and only if, g e 5(0,1,1,1), where
g(x) = £f(1-x) for x ¢ [0,1], it follows from Gorollary 4.5 that

ext 5(0,0,1,0) is closed.

The remaining cases for n = 3 follow from the next proposition,
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Proposition 4.4: The set ext 5(0,0,0,1) is closed.

Proof: Let.{fi} be a sequence of functions in $(0,0,0,1) con-
verging pointwise to a function f on [0,1] such that fi = I(fi,0,0;)
and f! = mif(ii,o,l;); that is, £, (x) = mx, x ¢ [o,éi] and mi§i for
X € [§i,l], where m, > O and O < §i < 1. Since £, = I(fi,0,0;) and

fi(l) = 1 for each i, it follows that

1 2
fi(x) = ETToETy X
1 1
1
fl(X) = Ewgl (2}(“51)

for x € [§i,l]° If the sequence.{gi} of real numbers converges to O,
then it is easily seen that

}imit'fi(x) = x

is o0
for x ¢ [0y1]. Since the topology of simple convergence is Hausdorff,
the pointwise limit of the sequence {fi] is unique ahd it follows that
f(x) = x, x ¢ [0,1]. Hence, f is an extreme point of 5(0,0,0) which
implies that f is again extreme in 5(0,0,0,1).

If the sequence {Ei] does not converge to O, then there is a number
gO e (0,1] and a subsequence {§j] of {Ei} such that {§j} converges to
Eoo It will be shown that the subsequence {fj} of {fi} converges
uniformly on [0,1] to an eitreme point of S(0,0,0,1). Then, since the
topology is Hausdorff, it must follow that f ¢ ext S(0,0,0,1).

If ¢ is a positive number and 6 = (1/4)565, then there is a



60

positive integer N such that |§j—§ol < b whenever j > N. Define the

function g such that

X € [O,go] and,

2

g(x) = —2:%

for x € E§o,1]. If §j = §o,

for some j, then fé =g. If j>N, Ej > §o

and x ¢ [0,8,], then

' 2 2 i,
560 - 860 = ooy = - emEy <5
J J 0 0
but since f:j(o) = g(0) = 0 and f:_j and g are linear on '[o,§O], then

Ifs(x) - g < lf&(@o) - g(go)!

a 2E
= i O - 2
gij(z—v"{j) ~§O
5 | §O g, 1
S E. |2=E. " 2¢
J J 0

2 22 1

2
SE 12 - (55

< gl (4.1)
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If j > N, gj >f§o and x ¢ [Ej,l], then
IfB(X) - gx)| = }E:ET - E:E—E < 2(§j-§o) <e. (4.2)

i >
if j > N, §j §O and x g (§O,§j), then

[ PAN

£ - gl < max (1£5(80) - g8, [£4(B.) - 8(8 )}

2€

0 2
£.(2-E.) - 2-§
J J

max {

]

! 2 2 !}

4 Q’F’ - - 9

ol {255 2 %o

since f& is linear and g is constant on (§O,§j), and it follows from
inequalities 4.1 and 4.2 that IfS(X) - g(x)] < e. By a completely
analogous argument, it can be shown that lfs(x) - g(x)| <€ for

x e [0,1], j > N and §j <E Thus, the sequence {f&} converges

o
uniformly to the function g on [0,1]. Therefore, the sequence {fj}
converges uniformly to I(g,0,0;) on [0,1] because'fj = I(fé,0,0;)a
Since g is an extremal element of K(0,0,1) and I(g,0,0;1) = 1, it
follows from Proposifion 3.5 that I(g,0,0;) is an extreme point of
3(0,0,0,1). Hence, f ¢ ext 8(0,0,0,1) and it follows from Remark 4.1

that ext 5(0,0,0,1) is closed.

Corollary 4.7: The set ext S(0,1,0,0) is closed.

Proof: The corollary follows easily from Proposition 4.4 by noting
that f € 8(0,1,0,0) if, and only if, g e 8(0,0,0,1), where g(x) = f(l-x)

for x € [0,1].

Corollary 4.8: The set ext $(0,1,1,0) is closed.

Proof: Let f be the pointwise 1limit on [0,1] of a sequernce [fi}_of
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functions such that £, = 1(£},0,1;) and £,(0) = 1 for each i, where

fi = —mif(gi,o,l;) for mi > 0 and gi e (0,1]. rhen

1 2

f.(x) =1 - - -~ X,
i .gi(a-giS

X € [Osgij and

2 §
-fi(X) é 2‘%- (l—X)

1

for x ¢ [Ei,l], and by Remark 4.1, it suffices to show that f is in
ext $(Q,1,1,0). Since 1—fi(x) = [gi(z-gi)l"lxz, X € [o,gij and

(2—§i)-l(2x-§i) for x e [§i,l], then
'1-fi e ext 5(0,0,0,1) \ ext $(0,0,0)

for each i. Since 1-f is the pointwise limit of the sequence {l-fi} on
[0,1], it follows from Proposition 4.4 that 1-f ¢ ext $(0,0,0,1).

Hence, f ¢ ext $(0,1,1,0) and ext 5(0,1,1,0) is closed.

Corollary 4.9: The set ext 8(0,0,1,1) is closed.

Proof: &Since f ¢ 5(0,0,1,1) if, and enly if, g ¢ S(0,1,1,0), where
g(x) = £(1-x) for x e [0,1], it follows from Corollary 4.8 that

ext 5(0,0,1,1) is closed.

It follows from Propositions 4,3 and 4.4 and Corollaries 4.4« 4.9

that ext 8(0,1,,1 ,13) is closed. The proof that ext S(0,ij,...,i ),

2
n > 3, is closed is essentially the same as that for n = 3. Let f be
the pointwise limit on [0,1] of a sequence {fi} of functions with the

property that
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vfin'z) = mif(gi,in_l;in;)
for in_2 = 0,
LN (SRS I
for in~2 =1, fi(l-ao) = 1 and
£ = I(f(ir,l-?),o,il.,.._.,in,_a;),

1

- - (i .+i)
where my > 0 and §i g (0,1) or §i =a ;= (1/2)(1~-(-1) n-; n’],
for each i and n > 3, If the sequence {§i} of real'numbgfs converges to
l—an_l, then as in the first part of the proofs of both Proposition 4.3

and Proposition 4.4, it can be shown that f ¢ ext S(O,i l) and

P |
l k) 9 n-

f is again extreme in S(O’il’°°”in)‘
On the other hand, if the sequence {§i} does not converge to

l—an_l, then there is a real number §O € Eo’lj\{l—annl} and a sub-

sequence {EJ] of {gi} such that {§j] converges to §O. If in—2 = in

(in_2 # in)9 then the technique used in the latter part of the proof of

Proposition 4.3 (Proposition 4.4) can again be used to show that the

(n~2) (n-2)

subsequence {fj } of {fi } convergeé uniformly to an extremal

element g of K(in

~2’in~l’in)° In either case, it must follow that

{fj} converges uniformly to I(g,o,il,c,b,ih_a;) on [0,1] because
fj = I(fénga),o,il,e.egin_a;). Since the topology of simple convergence

is a Hausdorff topology, then f = I(g,0,1i ,,co,in_a;) and it follows

1

from Proposition 3.5 that f is an extreme point of S(O,il,ao,,in).
Integral Représentations

Since ext S(0,1i

l,o,a,in) and S(O,il,o,a,in) are both compact
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1ree i =00y, s ),

n > 1, it follows from Theorem 39.4 of Choquet [4] that for any function

subsets of the locally convex space C(0,i

fO € S(O,il,...,in) there exists a probability measure Bo on the extreme

points of S(0,i ..,in) such that

1’

(%) =§f(X) Y

for x € [0,1]. Since S(0,i ,.,o,in) meets every ray of C(O,il,,.egin)

1
and does not contain the origin, it follows that each function of
C(O’il"°°’in) is a scalar multiple of such a representation.

If the extreme points of 3(0,1 ”""in) were dense in

1
S$(0yigseeesi );  that is, if

ext S(O,il,ooo,in) = S(O’il’oa.’in),

4

then the integral representation above would be of little value. To see

that this is not the case whenever n 2> 2, let
g(x) = (1/2) + (1/2)£(x),
x € [0y1], where

)e

oo,i

1

f e ext s(o,il,.oo,in)‘\ egt 5(0,i o1

Then g € S(0,i ,..o,in) \ ext S(O’il’°"’in) since g is not constant

and g(ao) = (1/2) > 0. Likewise, if

g(x) = (1/2) + (1/2){(1/2) - -1ra/2)-26:01),

x ¢ [0,1], where f(x) = 0, x ¢ [0,(1/2)) and 1 for x ¢ [(1/2),1],

then it follows from Proposition 3.1 that g e 5(0,i,) \ ext S(O,il).



Therefore, the set S(0,i

for n > 1.

1

,...,in) \ ext S(O,il,.;o,in) is nonempty
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CHAPTER V
SUMMARY

The basic purpose of this study has been to determine the extremal
structure of the convex cone of n-monotone functions and to determine
the relationships that exist between the extremal elements and the
elements of this cone. The extremal elements of the cone of n-monotone
functions were completely characterized and it was shown that for any
n-monotone function an integral representation in terms of extremal
elements is possible.

By using the results of Chapter IV and the Krein-Milman Theorem, it
is evident that any n-monotone function can be approximated at a finite
number of points in [0,1] by a convex combination of extremal elements
of the cone of n-monotone functions. This fact may be useful in the
numerical solution of certain difference equations. Another problem of
interest is that of characterizing>the functions in the linear space
C(io,“ogin)--:C(iO(,.,‘,.,gj_n)‘J where n > 1.

There are several problems analogous to the one in this study for
which the same type of investigation would be of interest. One such
problem is that of coﬁsidering real-valued functions on a partially
ordered semi-group with a smallest element whose first n differences
saﬁisfy certain inequalities;’ for example, the functions might be
defined on the half-line [0,»). The domain of the functions in question

could also be the unit rectangle in E, (that is [0,1] x [0,1]).
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The n~monotone functions are obtained by spééifying the first n
differences. A problem of interest would be that of considering the
convex cone of real functions on [0,1] where only some of the first n |
differences are specified. For example, each difference of even order

less than n might be specified.
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