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PREFACE 

The basic problem of this thesis is the determination of the 

extremal elements of the convex cone of n-monotone functions and the 

relationships that exist between these functions and the other elements 

of the cone. Ann-monotone function is a real function f d~fined on 

[0 9 1] of the real line such that each of the first n differences off 

~ 
is either -nonnegative or nonpositive. The results of this study 

generalize some results of McLachlan [8] (numbers in square brackets 

refer to the bibliography at the end of the paper). 

Chapter I gives the background associated with the problem and 

introduces the notation and terminology that is used throughout the 

studyo In Chapter II the extremal elements of the convex cone A of n 

functions alternating of order n are determined. These functions were 

defined by Choquet [4]. It is intended that the inclusion of Chapter II 

will provide insight into the more general discussion in Chapter III. 

In Chapter III the extremal elements of the cone of n-monotone functions 

are characterized. An integral representation of n-monotone functions 

in terms of the extremal elements is given in Chapter IV by using 

Choquet's Theorem (cf. [4], p. 237). Finally, Chapter Vis a summary of 

the paper and lists some related problems which would be of interest for 

further consideration. 

It was noted above that the A cones were considered in Chapter II 
n 

in order to motivate the more general development. Another reason the 

iii 



A cones are d~alt with in detail is that they are closely related to 
n 

the completely monotonic functions. In fact, a real function f defined 

on [O,l] is completely monotonic there if, and only if, f(O) + f(l)..;, f 

is in A, where A denotes the intersection of the A cones. 
oo oo n 

I wish to express my appreciation to all those who assisted me in 

pursuing my graduate studies and in the preparation of this thesis. In 

particular, I would like to thank Professor E. K. McLachlan for his 

invaluable guidance and encouragement. My thanks go to Professors J. 

Agnew, H. Uehara and D. Boyd for their encouragement and cooperation. 

Finally, my deepest thanks go to my wife, Carole, without whose encour-

agement and assista:p.ce I could never have completed my graduate studies. 

I am indebted to the Department of Health, Education and Welfare 

for its financial support through a Title IV National Defense Education 

Act Fellowship. 

iv 



TABLE OF CONTENTS 

Chapter 

L INTRODUCTION 000000000000.,,oeooooo 

II. EXTREMAL ELEMENTS OF THE CONVEX CONE A OF FUNCTIONS 
n 

Extremal Elements of A2 •••• 
Extremal Elements of An, n > 2 .•• 
Extremal Elements of Ao:, ••••• 

. ' . 

. . 

Page 

1 

7 

8 
11 
24 

III. EXTREMAL ELEMENTS OF THE CONVEX CONE OF n-MONOTONE FUNCTIONS 29 

Extremal Elements of C(io,i1,i2) •••••• 
Extremal Elements of C( io, i1, ••• , in), n > 2 

IV. INTEGRAL REPRESENTATIONS OF n-MONOTONE FUNCTIONS 

• • 
0 0 it e 

ltCIOOOO 

30 
34 

48 

Compactness ot S(O,i1, ••. ,in) • • • • • • • • • 49 
Closure of ext S(O,i1,i2) • • • • • • 51 
Closure of ext S(O,i1, ••• ,in), n > 2. • •••• 54 
Integral Representations. • • • • • 63 

V. SUMMARY • • • 

BIBLIOGRAPHY • • 

v 

66 

68 



CHAPTER I 

INTRODUCTION 

1his thesis considers certain classes of real functions defined 

on [O,l] of the real line. These classes of functions, which are 

defined by finite differences, form convex cones in certain linear 

spaces of functions. Preliminary to the main discussion of the problem, 

some standard definitions and notation will be given. 

Definition 1.1: Let A and B be subsets of a real linear space L, 

and let '11. e: R. Then 

A+ B = {x + y: x e: A and ye: B}, 

-A= {x: -x e: A}, 

A - B = A + (-B), and 

'11.A = {'11.x: x e: A}. 

Definition 1.2: A set Cina real linear space Lis a convex cone 

if 1) C is convex, 2) '11.C c C for all '11. > 0 in R, and 3) 

C n (-C) ={~}where ~ is the origin in L. 

Note that condition l can be replaced by 1 1 ) C +Cc C. 

If K denotes the wedge shaped subset of E2 as illustrated in 

Figure 1.1 9 then K is a convex cone. If ye: Kandy does not lie on 

the ray determined by x1 nor the ray determined by x2, then there are 

vectors y1 and y2 e: K such that y = y1 + y2 and y1 and y2 are not 



scalar multiples of y. However, if ~ = y + z, where y and z g K, 

then y and z must be scalar multiples of x1 • Like~fse, x2 has this 

same property. This property of x1 and x2 is made precise in the 

following definition. 

Definition 1.3: Let C be a convex cone in a real linear space L. 

An element x g C is called an extremal element of C if x1 , x2 g C and 

x1 + x2 = x imply that x1 and x2 are scalar multiples of x. An 

extremal element of C is said to be extremal inc. 

--------------- / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

Figure l.l. 
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Co!l~ider the cone C that is Figure l.2(a). Let H be a hyperplane 

(that is 9 a translate of a two-dimensional subspace) which meets every 

ray of C but does not contain the origin. Then S = H n C is a convex 

set (cf. Figure l.2(b)). 

Definition 1.4: Let S be a convex set in a real linear space L. 

An element x ES is called an extreme point of S if there do not exist 

two points y and z in Sand a real number a E (0,1) such that 

x = ay + (1-a)zo The set of extreme points of Swill be denoted by 

ext S. 

Notice that x. is both an extreme point of Sand an extremal 
1 

element of 0 9 i :i:: 1,2,3 (cf. Figure 1.2). If x E S, then there are 

nonnegative scalars A1 , A2 , A3 such that 

3 L Ai = 1 and 
i=l 

x = 

3 

I A .x .• 
1 1 

i=l 

In other words 1 every point in Scan be represented as a finite sum of 

3 

extreme points of S. Since S meets every ray of C in exactly one point, 

every point in C is a unique scalar multiple of such a representation. 

Therefore 9 every point in C can be represented as a finite sum of 

extremal elements of C~ since AX. is an extremal element of C for A> 0 
1 

If C is a convex cone, then C-C is the smallest linear space con-

taining C (cf. [3] 9 p. 47). If the dimension of C-C is infinite~ then 

the representation of points of C in terms of extremal elements of C is 

not quite as simple. In fact~ the representation is no longer a finite 
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sum but is instead an "infinite sum"; that is, an integral represen­

tation. This integral representation is made possible by Theorem 39.4 

of Choquet [4]. An alternative form of this theorem, the form that is 

used in this study 9 is due to Phelps (cf. [9], p. 5). In infinite­

dimensional spaces the extremal elements of' a cone may be dense in the 

cone. In this case, the integral representation is of little,value. 

Thus, in infinite-dimensional spaces the extremal elements may be "too 

numeroustt to get a meaningful representation in terms of extremal 

elements. 

5 

If a given class C of functions forms a convex cone and the linear 

space C-C can be topologized in such a way that Choquet's Theorem will 

apply~ then the functions in Care completely characte~ized, via the 

integral representation, once the extremal elements of Care determined. 

This thesis is concerned with real functions defined on the unit inter­

val [O,l] which satisfy a certain set of difference inequalities. The 

interval [O,l] was chosen for convenience and could be replaced by any 

closed interval. The problem of finding the extremal elements of a 

convex cone of functions determined by a set of' difference inequalities 

has been considered by Choquet (cf'. [4), p. 249) and McLachlan [8J. In 

f'act 1 it was McLachlan1 s paper [8] which prc:wided the motivation for 

this study. 

Before considering the problem of finding extremal elements, it is 

necessary to list some of' the properties of the difference operator. 

These properties can be found in [2]. 

Definition L5: If f is a real-valued function defined on [O,l], 

then 6~ f(x) = f(x+h) - f(x) for h > O and [x,x+hJ c: [091]~ and 
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A~ f(x) = 6~-l f(x+h) - A~-l f(x) for h > 0 and [x~x+nh] c [0,1] 9 

where n > 1. 

It is easy to establish by induction the useful formula 

k 

A~ f(x) = L (-l)j (~) f(x+(k-j)h). 
J 

(1.1) 

j=O 

Then it easily follows that /:J. operators are permutable; that is 9 

k- k k k 6h2[Ahl f(x)] = Ahl[6h2 f(x)]. The property of the operator A given in 
2 l l 2 

the following proposition is very useful in the proof of some of the 

results of both Chapters II and III. 

Proposition 1.1 (Lemma 1 in [2]): If f is a real-valued function 

defined on [0 91) and 

where k > 2 9 h > 0 and [xgx+kh] c: [0~1) 9 then for any k positive 

0 0 0 



CHAPTER II 

EXTREMAL ELEMENTS OF THE CONVEX CONE A 
n 

OF FUNCTIONS 

Let A1 be the set of nonnegative real functions f on [0 9 1] sue:\). 

that V~ f(x) = f(x) = f(x+h) :S. 0 9 h > 0 9 for [x 9 x+h] c [0 9 1] 9 and 

let An9 n > 1 be the set of functions belonging to An-l such that 

v: f(x) 

'ii'~ f(x) 

v~·Ql f(x) - v~=l f(x+h) :S. O for [x 9 x+nh] c::. [091]. Since 

k k = (-1) 6h f(x)~ k ~ 1 9 the analogue of Proposition lol for 

the difference operator 'i7 is valido Since the sum of two functions in 

A belongs to A and since a nonnegative real multiple of an A function 
n n n 

is an A function 9 the set of A fu..11.ctions forms a convex cone. It is n n 

the purpose of this chapter to give the extremal elements of this cone. 

Following the notation of Choquet. 9 [4]~ a function in .A is said to be 
n 

The intersection of the A cones, 
n 

nl\19 :is the class of functions which Choquet denoted as alternating of 

order ooo Thus 9 the set of these functions 9 which will be denoted by A 9 co 

forms a convex cone alsnp The extremal eJ.ements for the convex cone 

A are given tooo 
00 

Proposition 2~: The extremal elements of 11.1 are precisely the 

functions in A1 which assume exactly one positive value in [0~1]. 

Proof~ For the function f such that f(x) = 0 9 x e; [0 9 1;), 

f(x) = c > 0 9 x e; [$91] where O < ~ < 1 and f :::i f1 + f 2 where 

7 
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f 1 a~d r2 s Ai then O = V~ f(x) = v~ r1 (x) + V~ r2(x) implies 

1 Vh fi(x) = 0 for i = ls2 and [x 9x+h] C' [S,l]. Therefore 9 fi(x) = 0, 

x e [0 9 ~), f.(x) = c. > 0 9 x e [S 9l) 9 i = 1,29 
l. l. -

where 

Hence 9 f is an extremal element of A1 o 

If f assumes at least two positive values in [091], then a non-

proportional decompo13ition can be given by taking 

f1 (x) = min {f(x) 9 (l/2)[f(O)+f(l)]} 

Extremal Elements of A2 

Since k k k 
Vh f(x) = (-1) 6h f(x) fork~ 1, the functions of A2 are 

exactly the nonnegati.ve, nondec;t"easing and concave functions on [O,l] 

(cfo [11], p. 148). Hence, if f e A2 then f' and f~ exist on (0,1] and 

(0 9 1) 9 resp,::i.ctivelyo The left derivative f 1 is a nonnegative, non-

increasing, left-continuous function and f~ is nonnegative, nonin­

creasing and right-continuous (cf. [7], po 4)o In fact, f 0 (x) exists 

for almost all x e (0,1) since f 1 (x) i f 0 (x) if, and only if, fu is 
- + + 

discontinuous at x and f 1 can have at most a countable number of 
+ 

discontinuities (cf. [5], po 71). 

Since a function in A2 must be continuous on (0,1], the only 

extremal elements of~ which are in A2 are those functions f.such that 

f = c > 0 on (0 91] while f(O) = 0 or f(O) = c and these functions 

are again extremal in A2• If f e A2, f is not constant and f(O) > O, 

then a nonproportional decomposition can be given by taking f1 = f(O) 

and r2 = f - f1 • If f e A2, f(O) == O, f is not constant on (0,1] and 

f is not continuous at O (that is, f(O+) > 0), then take r1 = f(O+) 
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on (0 9 1]~ f 1 (o) = 0 and f 2 = f - f1 o In so doing 9 f1 and f 2 s A2 and 

f 1 and f 2 are not proportional to fo Since this same technique 1:;1till 

can be used for A n > 2 n 9 i the only extremal elements of A such that 
n 

f(O) > 0 are the positive constant functions 9 and the only extremal 

elemer1ts of A which are discontinuous at O are those functions f such 
n 

that f(O) = 0 and f = c > 0 on (0 9 l]o 

If f e A2 such that f~ assumes exactly one positive value in (0 9l]j 

then f(x) ·- ffiX9 x s [09~;] and ms for x E [Ssl]j where O < s < .1 and 

linear where f is linear 9 and f 1 and f 2 are constant where f is 

constanto Thus 9 f 1 and f 2 are proportional to f and f is therefore 

extremalo The next proposition shows that A2 has no extremal elements 

other than those already mentionedo 

ProEosi.tion 2a2~ If f s A.2 such that f(O+) = f(O) = 0 and f 1 

assumes at least two positive values in (0 91] 11 then there exist two 

functions g and h in A2 such that f = g + h and g and hare not 

proportional to f'o 

Proofg Since f~, is left-continuous at l~ there are numbers x0 and 

x1 such that O < x0 < x1 < 1 and f~(x0 ) > f~(x1 ) > Oo Define 

for x s [x19 l] and let h = f = go Since f: is nonnegative and g is 

continuous at x19 then g is nonnegative and nondec:reasingp Sip,ce 
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h 0 (x)~O 

for x e (0 91) and his nondecreasingo Thus~ his nonnegative~ since 

h(O) "' Oo 

Since f is concave and f(O) = O~ it follows that 

f(x) - ex: f'(t) dt - Jo 

g(x) = ~: r:<"i.) dt = ~: g~(t) dt. 

g~(t) dt = g(":i_) + ~x 

~ 

and it follows from equation (2ol) that 

rx g~(t) dt = f~(xl)xl + f(x) - f(xl) ~ g(x)o 

jo 

ThUS9 

(2ol) 

f 1 (t) dt 
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g(x) = ~: g~ (t) dt 

for x e [0 9 l]o Since h = f - g9 then 

h(x) = f(x) - g(x) - \x [f'(t) - g~(t)] dt - Jo = ~: h' (t) dt 

for x s [0 9 l]o Since f 1 is a nonincreasing function 9 then g: and h' 

are both non.increasingo Therefore 9 it follows from equations (2.2) and 

(2o3) that g and hare concave on [0 91) and g and hare in A2 (cf. [7) 9 

P• 7) • 

By noting that f(O) = O, f is strictly concave on [0 9 x1] and 

f~(x0) > f~(x1 ) 9 it can be shown that 

and hence 9 g is not proportional to f. 

Thus 9 the extremal elements of A2 are the positive constant 

functions 9 the functions which are a positive constant on (0 91) and 

zero at O and those f such that f(x) = mx 9 :x e [0 9 !;] and ml; for 

x e [!; 91) 9 where O < !; ~ 1 and m > o. Designate this latter function 

by e (ms S 9 l, L 

Extremal Elements of A 9 n > 2 
n 

It will be shown that the extremal elements of A, n > 2 9 are 
n 

indefinite integrals of the extremal elements of a cone which is 



similar to A2• This cone is given·in the following definitions. 

Definition 2.1: If g is a real continuous function on (O,l] and 

n is a positive integEf:)r, then g is SJ~.id to satisfy property P(n) if 

limit 
b _,. 0 

exists and is finite. 

12 

Definition 2.2: Let K0(n) denote the convex cone of nonnegative 

k real continuous functions g on (O,l] such that Vh g(x) ~ 0 · for 

[x,x+kh] c (Ogl]~ k = 1 9 2, and g satisfies property P(n). 

Definition 2.3: Let 

real continuous functions 

K1 (n) denote the convex cone of nonpositive 

k g on (0,1] such that Vh g(x) ~ O for 

The functions of K0 (n) (K1 (n)) are exactly the nonnegative (non­

positive)9 nonincreasing (nondecreasing) and convex (concave) functions 

on (0 91] which satisfy property P(n). If f(x) = 1-x9 x g [0 91], then 

f g K0(n) and -f e K1(n) and it follows that the cones K0(n) and K1(n) 

are both nonempty. The extremal elements of K0(n) and K1(n) are found 

in the following two lemmas. 

Lemma 2.1: The extremal elements of K1(n) are the negative con­

stant functions and the functions g such that g(x) = m(x-~), x g·'' (O,s] 

and g(x) = 0 for x g [s,l], where O < S ~ 1 and m > o. 

Proofg If g =c<O and g=g +g 
l 2' 
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where = Co Hence 9 g is an extremal element of K1(n)o If 

such that g is not constant and g(1) < 0 9 then take 

and g =g-go 2 l 

and g2 are not proportional to go Thus 9 the only extremal elements of 

K1(n) which are negative at l are the negative c-0nstant functionso 

If g(x) = m(x-~) 9 x € (0 9 ~] and g(x) = 0 for x € [~9l]9 where 

0 < ~ ~ 1 and m > Os thens for g = g1 + g29 it follows that g1 and g2 

are linear where g is linear 9 and g1 and g2 are zero where g is zeroo 

Thus 9 g1 and g2 are proportional to g9 and g is therefore extremal. 

If g € K1(n) such that g(l) = 0 and there are numbers x0 and x1 

where O < x0 < x1 < l and g:(x0 ) > g:(x1 ) > 09 then a nonproportion­

al decomposition can be given by taking g1(x) = g:(x1 )(x-x1 ) + g(~)9 

x g (0 9 x1] 9 g1 (x) = g(x) for x € [x19 l] and g2 = g - g1 • The proof 

that g1 and g2 are nonpositive~ nondecreasing, concave and not pro­

portional tog is essentially the same as the proof of Proposition 2o2 

and is not given hereo The only fact that remains to be shown is that 

g1 and g2 satisfy property P(n)o Since g1 (0!-) = g(x1 ) ... g~(x1 )x1 , and 

g1 is continuous on (Osl] 9 it follows that g1 satisfies property P(n)o 

Since g € K1 (n) and g2 = g = g19 then g2 also satisfies property P(n). 

Hence 9 g1 and g2 € K1(n)o 

Lemma 2o2g The extremal elements of K0(n) are the positive con­

stant functions and the functions g such that g(x) = m(~-x) 9 x e (0 9 S] 

and g(x) = 0 for x s [S 9l] 9 where O < S ~ 1 and m > Oo 

Proof: The lemma follows from Lemma 2ol and the fact that 
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It is shown in the next two lemmas how the A functions are related n 

to the functions in K0(n-2) and K1 (n=2) 9 where n > 2o These results 

will be used in fin.ding the extremal elements of A" 
n 

(n-2) 
If f e An 9 then f 8 K0(n=2) if n is odd 9 and 

f(n= 2) s K1 (n-2) if n is even9 where n > 2o 

Proofg The proof will be by induction on no If f 8 A39 then 

f s A2 and 'i/3 f(x) < 0 for [x 9 x+3h] C:: [0 9 1] 9 and it follows from 
h -

Proposition lol that 

f(x) - [2f(x+h) + f(x+o)J + [2f(x+h+6) + f(x+2h)] - f(x+2h+o) 

where h > 0 9 6 > 0 and [x 9x+2h+6J e [0 91] (cf. equation lol). Hence 9 

f(x+o) - f(x) + 2 f(x+h+b) = f(x+h) 
o o 

f(x+2h+6) - f(x+2h) 
0 :5 09 

which implies that 

f' (x) = 2£ 0 (x+h) + f' (x+2h) > O. 
+ + + -

Therefore 9 ! 0 is convex on (0 91) 9 which implies that f' is continuous 
+ + 

there 9 and it follows that f' = fi 
+ 

Since 

f'(l) = £ 0 (1-) = limit f'(x) = limit f'(x) 9 

x .... 1- X-+ 1-

f 0 is continuous on (0 91] by defining f'(l) = f 0 (l-) 9 and f' is non-

negative 9 nonincreasing and convex. Also 



1 

~O f' (t) dt - f(l) - f(O); 

that is 1, f 0 satisfies property P(l) and thus 1, f' s K0 (l)o 

Assume that f e An implies f(n- 2 ) s K0(n-2) if n is odd and 

f(n= 2) s K (n-2) if n is even 9 where n > 2o 
l If f e A 1 9 then 

n+. 

v3 vn-2 f(x) = vn+l f(x) < o 
h h h 

for [X9X+·(n+l)h] c:: [0 91] 9 which implies that 

0 0 0 'i71 f(x) < 0 
6 
n-2 

for [x 9 x+ 3h+o1+oi, o o o+6n= 2J c: [0 91] ( cfo Proposition Ll) o It then 

follows that 

for [x 9 x+3h] C:: (0 9 l]o Therefore . ., 

15 

(2o4) 

for h > 0 9 6 > 0 and [x 9 x+2h+6] c: ( 0 9 1] o 

. .J..."f • dd th f(n- 2 ) · · · ' · d n is o 9 . en is nonnegat1ve 9 non1ncreas1ng an convex 9 

and it can be shown that /n-l) and f(n=l) exist on (0 9 1] and (0 91) 9 
- + 

respectively; these derivatives are nonpositive and nondecreasing and 

~<n=l)( ) I: f(n=l)( ) 'f d l 'f f(n=l) is discontinuous at Xo :r + x · = x :i 9 an on y 1. 9 + 

Since inequality (2o4) implies 



/n-2) (x) - [2/n-2) (x+h) + /n-2) (x+o)J 

+ [2/n-2) (x+h+o) + /n-2) (x+2h)J - /n-2) (x+2h+o) ~ O 

for h > o, o > O and [x,x+2h+oJ c (O,l), then 

/n-2) (x+o) - /n-2) (x) + 2 r<n-2) (x+h+o) - /n ... 2) (x+h) 
o o 

which implies that 

/n-l)(x) 
+ 

(n-1) Therefore 9 f is concave, 
+ 

.on (0 91) 9 and it follows that 

which implies that f(n-l) is continuous 
+ 

f(n-l) = f(n-l) on (0 1) Since + g O 

/n-l)(l) = /n-l)(l-) = limit f~n-l)(x) = limit /n-l)(x)~ 
x .... 1- x .... 1-

16 

/n-l) is continuous on (0 91) by defining /n-l)(l) = /n-l)(l-), and 

f(n-l) is nonpositive, nondecreasing and concave. 

If n is even, then -f(n-2) is nonnegative~ nonincreasing and 

convex 9 and by inequality (2.4) 9 

for h > 0 9 o > 0 and [x 9 x+2h+oJ c (O,l]. It follows from the argument 

given above that -f(n-l) is nonpositive~ nondecreasing and concave; 

that is 9 f(n-l) is nonnegative~ nonincreasing and convex. 

It remains only to show that f(n-l) satisfies property P(n-1). 



If f e: A the.rr1' e; A and n+l 9 ·n~ 

= 

limit 
6..., 0 

limit 
6 ...., 0 

exists and is finite 9 since /n-2) satisfies property P(n-2) by the 

induction hypothesiso 

The following definition is given to simplify the notation in the 

proofs o.f Lemma 2o4 and subsequent lemmaso 

.Definition 2o 4: If g is a real continuous function on. ( 0 9 1) 

which satisfies property P(n)9 then define the function I(g,n;) by 

the equation 

I(g,l;x) = ~: g(t) dt, 

Lemma. 2o4: Fork~ 1. 9 if g E K0(2k~l) then I(g9 2k-l;) e: A2k+l9 

and if g s: K1 (2k) then I(g92k;) e: A2k+2 o 

17 



Proofi Since K1(2k) = -K0(2k) 9 it is sufficient to prove that 

n > 29 if (-l)n-lg e K0(n-2). This proof will be by 
.,w.; 

induction on n. If g e K0(1)9 then I(g9l;) is nonnegative on [0 91) 

since 

I( g,1 ;x) = ~: g( t) dt .'.'. o, 

1 ~x \7h I(g,l;x) = .· g(t) dt = 
· x+h 

since g(S) ~ 0 9 where x < I; < x+h. Thus 9 for h > 0 and 

[x9x+kh] C: [091]9 where k = 2939 

... 

since ~~-lg(~)~ 0 fork= 29 30 Hence 9 I(g9l;) g A3 whenever 

g s K0 (1)" 

) n-1 Assume that I(g9 n-2; e An for (-1) g e K0(n-2) and n > 2. 

If (-l)ng e K0(n-1) 9 then let 

f(x) = ~: g(t) dt, 

for x e (0 91). Since it follows that 

18 



for x s: (O~l]9 

1 n-1 n-1 ~x n v'h (-1) f(x) = (-1) g(t) dt = h(-1) g(~) ~ O 

x+h 

for O < x < ~ < x+h < l and 

for O < x < t < x+2h ~ 1. The function f iil.lso satisfies property 

P(n-2) since 

000 dt 3 n-

and g satisfies property P(n-1). Hence 9 
n-1 (-1) f s: K0(n-2) and it 

follows from the induction hypothesis that 

By a .repeated application of the mean value theorem for a Riemann 

integra1 9 it can be shown that 

19 
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for [x~x+(n~+)h] C [0 91] 9 where x < g < x+(n-l)ho It follows that 

together with the fact that I(g~n-1;) e A. 9 
n 

im~lies that 

In the following proposition9 extremal elements of A are found 
n 

by integrating the extremal elements of eith~r K0(n-2) or K1 (n=2)o 

Proposition 2o3g The function f such that f(x) = m[sn-l_(s-x)n-l] 

for x e Co9sJ and m~n-l for x e [s91]9 where o < s ~ 1 and m > 09 

is an extremal element of A, n > 2o 
n 

Proofg If f is such a function then 

x E (0 9 S] and O for x E [~ 91), and it follows from Lemmas 2ol and 2o2 

that f(n= 2) is an extremal element of K0(n~2) if n is odd 9 whereas 

/n=Z) is extremal in K1 (n-2) if n is eveno Since f( 0) - 0 and 

(k) ( .(n-2) , ) 
f (1) = 0 for 1 ~ k ~ n-3, then f =If ,n-2, 9 

from Lemma 2o4 that f e Ao n 

and it follows 

If n is an odd integer and r1 and f 2 e An such that f = f 1 + f 2 , 

then rf n=2 ) and f~n- 2) c: K0(n-2) and f(n= 2) = ff n=2 ) + f~n- 2 ) o Since 

f ( n=2) . 
l.S 

such that 

extremal in K0(n-2) 9 there are constants A.> o, i = 1 9 2 9 
l. -

/n-2) = A./n-2 ) o Since f(O) = 0 and /k)(l) -· 0 for 
l. l. 

.l ,:S k ,:S n=3 9 it follows that f.(O) = f~k)(l) = 0 for i = 1 9 2 and 
l. l. 



IO .. /n-2 ) .n-2;) 
1. ' . 

i = 1 9 2 9 and f is therefore extremalo 

A. f 9 
1. 

On the other hand 9 if n is even then, as in the first part of the 

proof 9 f is extremal in A 
n 

· f ( n-2 ) · t 1 1 t f since is an ex rema e emen o 
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K1 (n=2)o Thus 9 if f(x) = m[Sn-l_(S-x)n-l] 1 X E [O,s] and i:n-1 
ID":;:, for 

and m > 0 9 then f is extremal in A I n> 2. 
n 

Denote this latter function by e(m,~,n-l;)o 

The remaining extremal elements of A, n > 2 9 are given in the 
n 

next propositiono 

Proposition 2o4: If m > 0 1 the function e(m,l,k;) is an extremal 

element of A for n > 2 and 1 < k < n-lo 
n 

Proofi Since An is a subcone of Ak+l and e(m 1 l 1 k;) is an extremal 

element of 1\.+i' it is sufficient to show that e(m,l,k;) e Ano If 

where 

for O < x < l (~fo proof of Proposition 2o3)o It follows from a 

repeated application of the mean value theorem for a Riemann integral 

that 

where x < S < x+(k-l)ho Since f(k-l) is linear, 

'vk+l f(x) 
h 

_ '72 'vk-1 f(x) 
h h 

0 

for h > 0 9 [x 9 x+(k+l)h] c [0 9 1] 9 and thus, <vP f(x) = 0 for h > O, 
h 

Hence 1 f e A for every n9 which implies 
n 



that f is extremal in A 9 for p ~ k+l. 
p 

To this point it has been shown that the positive constant 
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functions 9 the functions which are constant on (0 91) and zero at 0 1 the 

functions e(m 9 l 9 k;) 9 where m > 0 and 1 S k S n-2 9 and the functions 

e(mv~9n-l;)9 where m > 0 and O < ~ S 19 are extremal elements of A, for n 

n > 2. The following three lemmas will prove that no other functions in 

A a.re extremal elements. 
n 

Lemma 2.5: Let f c A 9 n > 2 9 such that f(o+) = f(O) = 0 and n 

where m > 0 and 1 S k :S n-3. If there is an integer k 

such that 1 S k S n-3 and f(k)(l) i 0 9 then f is not an extremal 

element of A. 
n 

Proof~ Let k denote the smallest integer such that f(k)(l) IO. 

Then f c An c: ~+3 implies that f(k+l) g K0(k+l) if k is even 9 

whereas f(k+l) c K1 (k+l) if k is odd 7 and it follows from Lemma 2.4 

that I{f(k+l),k+l;) g ~+30 Since f(O) = 0 and f(p)(l) = 0 for 

1 :S, p < k 9 then 

where m = (=ll-1[1/(k!)]f(k\1) > 09 

and f(k)(l) IO imply (-l)k=lf(k)(l) 

because 

for h > 0 9 [x 9 x+ph] e:: [0 9 1] and p > k+l and f c A 9 it follows that 
- n 

for [xgx+ph] c [091] i k+l S p Sn (cf. equation 2.5). Hence9 

f = e(m 91 9 k;) g As where m = (-l)k-l[l/(k!)]f(k)(l) 9 and a 
n 
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nonproportional decomposition off can be giYen by taking f 1 = e(m 9l~k;) 

and f 2 = f - r1 o Thus 9 f :is not extremal" 

Lemma 206~ Let f E A 9 n > 2 9 such that f ,f. 0 9 f(O+) -
n 

~ ( ) > < If f(n= 2 ) and f .r e m9 l 9 k; 9 where m O and l _ k S: n-.3o ... -

then f is not an extremal element of A" 
n 

f(O) = 0 

O on (091), 

Proof: If f(n= 2) = 0 9 then there is a positive integer k S n-3 

such that /k) 'f' 0 and /k) is constant on ( 0 9 1) a Thus 9 /k\1) f. 0 

and it follows from Lemma 2o5 that f is not extremalo 

It is a consequence of Lemmas 2a5 and 206 that if f is an extremal 

element of A i n > 2 9 such that f( O+) = f( 0) = 0 and either /n-2 ) = O 
n 

or /k)(l) IO for some k 9 1 < k < n-3, then f - e(m 9 19k;)9 where 

Lemma 2o7,~ Let f E A 9 n > 2 9 such that f(O+) = f(O) = 0 9 
n 

/n=2 ) I, O and /k)(l) = O for 1 :S, k :S, n=3o If f is an extremal element 

0 < S < L 

Proofg Since f(O) - 0 and r'k)(l) = 0 for l .S k .S n=3 9 then 

f ::a; l(f(n~~2) 2 ,) 
, s n- i o If g1 and 

K0 (n=2) such that f(n= 2 ) = 

Then fi ""° I(gi.~n=2; ) 9 i '"' 1 9 2 9 impl::Les that f 1 and f 2 E An and 

f '"' f., + f 2 o Si.nee f is extremal in A 9 there are numbers A, > 0 such .,_ n 1 -

~h · f 'f · 1? h' h' 1· th t f(n- 2.) = 1 .f(n-2 ). \, at ·. '"" "·· s 1. = -1-1 w 1.c 1.mp ies , a- g. "".. " , 
1 .l. J. 1 '{t.:· 1 
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i. = 1 9 2 9 and /n-2 ) is therefore extremal in K0 (n=2) o If /n=2 ) = c > O~ 

then f = I(c: 9 n-2;) = e(m 9 l 9 n-2;) 9 where m - (=l)n-lc/(n-2H > Oo If 

/n=2 )(x) = c(S=X)9 x E (OssJ and O for x 8 [$91]9 where c > 0 and 

o < ~ ~ li then f"" I(/n-2 )9n=29) = eCmsSsn-l;)s where 

m = (=l)n-lc/(n--lH > Oo 

(n=2) 
On the other hand 9 if n is e'Ven 9 the.n f E K1 (n:-o2) 9 and an 

argument similar to that above shows that /n=2 ) is an extremal element 

of K1 (n-2)., If r<n= 2 ) ""' c < 0 9 then f - I(c9n~2;) = e(m 9 l 9 n-2; ) 9 where 

m = (=l)n-,lc/(n-2H > Oo If /n-,2 )(x) -· c(l;-x) 9 x E (0 9 1;] and O for 

x E [S 9 1] 9 where c < 0 and O < S ~ 1 9 then f = I(f(n-2) 9 n-2;) 

-- e(m 9 1; 9 n-,l; )9 where m = (-1.)n=lc/(n-lH > Oo 

Therefore 9 the extremal elements of An,1 n > 2, are the positive 

constant functions 9 the functions which are a positive constant on (0 91] 

the functions e(m 9 S9 n=l;) 9 where m > 0 and O < s < L 

Extremal Elements of A 
00 

It has already been noted that e(m 9 l 9 k;) is an extremal element of 

A for each n> k (c:fo Proposition 2a4)o It follows that e(m 9 l 9 k,) is 
11 

an extremal element of A for every positive integer ka It is shown in 
00 

the following proposition that A00 has no other extremal elements which 

are continuous and zero at Oo 

Proposition 2o5~ If f E A such that f(O+) "" f(O) = 0 and 
00 

f ,': e(m 9 1. 9 kj) 9 where m > 0 and k is a positive integer 9 then f is not an 

extremal element of Ao 
00 
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Proofg 
00 

Since f e A is a function of class C on ( 0 91) 9 it follows 
co 

from a theorem of Bernstein 9 Theorem 13-31 in [1), that 

00 

f(x) = I /n)(l) n 
(x-1) 

n=O 

for O < x :,S l by noting that the function g defined by g(x) = f(l) 

- f(l=x) satisfies the hypotheses of the theoremo If there is a posi­

tive integer k such that /k) (1) I 0 9 then assume, without loss of 

generality, that k is the least such integero Then f e A C Ak 3 00 + 

, l' tha"" f(k+l) ,c K0 (k+l.) 1.'.f. k , h f,(k+l) ,,. K (k+·l) :Lmp ies ,., . ._ _ is even, w ereas "" 1 

if k is odd, from which it follows that r(/k+l) 9 k+l,) e: 1\:+3 o Hence 9 

f 2 = f = f 1 9 then f 1 e A00 since f 1 e An for every n and f 2 e A00 since 

vn f(x) < O h - \) 

for h > 0 9 [x: 9 x+nh] c [0 9 1] and n ~ k+3o Since f 1 is not proportional 

to f 9 this gives a nonproportional decomposition of f. 9 and f is there­

fore extremaL On the other hand 9 if /k\1) = 0 for each positive 

integer k 9 then f(x) = f(l) for O < x $ 1 1 and f(O+) = f(O) = 0 implies 

that f ""• Oo 

The results of this chapter are summarized in the following 

theoremo 



Theorem 2ol~ The extremal elements of A1 a.re the functions which 

assume exactly one positive value in [0 9 l]o The positive constant 

functions and the functions which a.re a positive constant on (0 9 1] and 
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zero at Oare extremal elements of A 9 n > 1 9 and are therefore extremal n -
n-1 n-1] ] in Ao The functions e(m 9 S9 n-l;x) = m[~ -(~-x) 9 x e [0 9 S and 

00 

n~l 
ms . for x g n: 9 l] 9 where m > 0 and O < s s 19 are extremal elements of 

A 9 n > 2o The only other extremal elements of A 9 n >_ 3 9 are those n - n 

The extremal elements of A which are 
00 

continuous and zero at Oare the functions e(m 11 9 k;) 9 k > L 

Since An is a subcone of A1 for n > 1 9 An is in the linear space 

A :::> A. :::> o.o.., .,::::, 1l :::> A. l :::> o o o o 
1 2 · n n+ 

If cp1 ~A1~,A1 ...,, R such that cp1 (f) = f(l) 9 for f g A1~A19 then it is 

easily seen that cp1 is a linear functional and it follows that 

Since H meets every ray of A in a unique 
n 

point 9 n ~ 1 9 and does not contain the ori.gin 9 that is the zero 

functi.on 9 then the extreme points of 

extremal elements f of A such that f(l) -· L n 

are precisely those 

Since {A} is a nested sequence of cones 9 it follows that 
n 

{C} = {H n A} i.s a nested sequence of convex setso If f 0(o) = 0 
n n 

are extreme points of C for n > 1o In fact 9 n 



ext cl = {f f e: A1 and f(x) is either O or l for x e: [0 9 1]} 9 

ext c2 = {fos r1} U {e((l/s) 9 ~ 91;) gO<~~l}g 

ext c n+l = {fog fl} u (e(l 9 l 9k;) 1 ~ k ~ n=l} 

u {e((l/~)n9 ~ 9 n;) 0 < ~ ~ l} 

for n > L1 and 

where C® = ncno Hence 9 ext Cn is uncountable 9 n ~ 1 9 and ext C® is 

countableo 

Figure 2.1 gives a pictorial representation of C 9 1 < n < 5, and 
n - -
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illustrates how C 1 is related to Co Each region C is bounded below 
~ n n 

by the positive x-axiso c1 is bounded above by the semicircle with 

radius 2 and center (2 9 0). The curved portion of the boundary of c2 is 

a part of the semicircle with radius 1+(1/2) and center (1+(1/2) 9 0) and 

the line segment with endpoints f1 and e(l 9lsl;) is tangent to this 

semi.circle at e(l 9 l 9 l; ); the cur·ved portion of the boundary of c3 is a 

part of the semicircle with radius 1+(1/4) and center (1+(1/4) 9 0) and 

the line segment with endpoints e(l 9l 91;) and e(l 9 l 9 2;) is tangent to 

this semicircle at e(l 9l 9 2;); and so forth. This diagram should aid in 

understanding the distribution of the extremal elements of Ao 
n 
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CHAPI'ER<III 

EXTREMAL ELEMENTS OF THE CONVEX CONE 

OF n~MONOTONE FUNCTIONS 

Let C(;0 9i1 )9 i 0 and i 1 = O or 1, be the set of real functions f on 

[0 91] such that (-l)(iO)f is nonnegative and 

h > 09 for [X9X+hJ c [09l]o Let C(io9il9ooo?in)' n > 1, be the set of 

functions belonging to C(i09000 9 in=l) such that 

for [x 9 x+nh] e: [09 1]~ where ik = 0 or ik = 1 for O ~ k ~ no If 

f g C(i09 ooo 9 in) 9 then f is said to be an n=monotone function. Since the 

sum of two n-ll',\onotone functi.ons is in C( i 09 • o o ~ i ) and since a non-
n 

negative real multiple of an n-monotone function is an n-monotone 

fu:nction 9 the set of n-monotone functions forms a convex coneo It is 

the purpose of this chapter to determine the extremal elements of 

C(i09 ••• 9 i ) 9 n > 1. It should.be noted at this point that in order to 
n -

find the extremal elements of C(i0?••• 9 in), n ~ 1, it is sufficient to 

determine the extremal elements of C(09i1 , ••• 9 in)9 since 
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~osition 3ol: The extremal elements of C(0 9 i 1 ) are the 

functions in C(0 9 i 1 ) which assume exactly one positive value in [091]. 

Proof~ If i 1 = 0 then C( 0 9 0) ·- i\ 9 and the proposition is true by 

Propos.i.tion 2oL If i.1 = 1 then f € C(0 9 l) if 9 and only if 9 

g c C(0 9 0) = A~ 9 where g(x) = f(l-x) for x s [0 91] o It then follows 
.L 

that f is an extremal element of C(0 9l) if 9 and only if 9 g is an 

extremal element of A1 o r.rhus 9 f is extremal in 0(0 91) if~ and only if 1 

f assumes exactly one positive value in [0 9 l]o 

Let f s C(0 9 i 19 i 2) and let a = O if il = 0 and a = 1 if il 0 0 

If f(a0 ) > o and f is not constant9 then take fl = f(a0 ) and 

f = f = fl. In so doing 9 fl and f-::, s C(0 9 i 19 i 2 ) and f 1 and f2 are 
2 "-

proportional to fo Since the same technique still can be used for 

n > 2 9 the only extremal elements of C(0 9 i 19 ooo 1 in) 

such that f(a0 ) > 0 are the positive constant funct:i.onso 

Let f s C(0 1 i 1 ,i2 ) and define 

-

not 

where a0 is defi.ned as aboveo It has already been noted that an A2 

ft1.nction must: be continuous on (0 9 1]; in this case 9 A2 = C(0,0 91) and 

a' ""a = Oo By similar reasoning9 it can be shown that if 0 0 

:f E C(O"il,i2L then f must be continuous on [0,1] except at aoo It 

follows that the only extremal elements of C(0 1 i 1 ) that are in 

C(O, 9i) are those which a.re continuous on [O,l] except, possib1y 9 

at a0, and these functions are again extremal in C(09i1 1i2 )o 

L 
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If :f 8 C(09i1 iO), f is not constant on (091) and f is discontinuous 

at a0 "'' l=a09 then take f 1 (x) "" 0 for x e [0 9 1] and x I ac)' 

= f(ao) - limit f(x) > 0 
X-<>a 1 

0 

and f = f => f O 

2 1 

not proportional to fo Since the same technique still can be used for 

C(O,)i19 0iooo 9 in) 1 n > 2 1 the only extremal elements of C(O,i11 0po•jin) 

that are discontinuous at ao = l~ao are the functions which are positive 

at ao and zero elE.ewhere on [09l]o 

On the other hand9 if f i;; C(09i1 il), f is not constant on (0 91) and 

f is discontinuous at ao = ao9 then take 

- limit f(x) > 0, 
X"""ao 

x e [0 11 1] and x /. a 01 f 1 (a.0) = 0 and f 2 = f = f 1 o Then f 1 and f 2 are in 

C(09i1 il) and f 1 and f 2 are not proportional to fo Again 9 since the 

same technique can be used for C(Oji19 l 9.oo 9in)i n > 2 1 the only 

extremal elements of C(0 9 i 19 1 90 00,,in) that are discontinuous at a0 = a.0 

a.re the functions which are zero at ao and equal to a positive constant 

elsewhere on [0 91] o 

Consequently 9 the extremal elements of C(0 1 :i19 ooo 1 in) 1 n > 1 1 which 

are not extremal in C(Oii.1 ) must be zero at a0 and continuous on [0 9l]o 

The extremal elements of C(0 1 l 1 l) which are extremal in C(0 1 l) are the 

pos.itive constant functions and the functions f suc:h that f "' c: > 0 on 

[0 91) while f(l) = Oo The remaining extremal elements of C(0 9 l 91) are 

found in the following proposition by using the fact that the extremal 
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,Eroposit.ion 3o2~ Let f E C(Oil 9 1) such that f(l) = 0, f,; 0 and 

f is continuous at L Then f is an extremal element of C(0 9 l,l) if 9 and 

only if, f(x) '"' m(l=s)9 x E [09s] and m(l=x) for x E Cs1l]9 where 

0 < I; < 1 and m > Oo 

Proof~ It is easily seen that .f E C(0 1 1 9l) if 1 and only if 1 

g c: C(0 9 091) = A2, where g(x) ""f(l=x) 9 x E [0 91] 9 which implies that 

f is an extremal element of C(0 1 l,l) if, and only if, g is extremal in 

A2 o Therefore, since f is continuous at 1 and nonconstant, f is 

extremal in C(0,1 1 1) if, and only if, f(l~,x) '"" mx\, x i:; [0 9 ~] and ms for 

x c: [S 9 l] 9 where O < S <land m > Oo It follows that f(x) = ms, 
x E [091=S] and m(l-x) for x E [l-s91], which is equivalent to 

f(x) = m(l=i3)9 x E [0 9 i3) and m(l~,x) for x e [i3 9 l) 9 where O < 13 < 1 

and m > Oo 

McLachlan [8] has found the extremal elements of the convex cone B2 

which is a subcone of C(0~0 9 0)o In fact 9 B2 is the set of functions in 

C(090i0) which are continuous at L It easily follows from Mc:Lac:hlan's 

results that the extremal elements of C(0 9 0~0) which are continuous at 

1 and nonconstant are precisely those functions f such that f(x) = 0 9 

x c: [01,~;J and m(x=S) for x s: [s91]9 where o S s < 1 and m > o, Once 

this is known 1 the extremi;,.l elements of C(O'JJ. 9 0) which are nonconstant 

and continuous at O can be determinedo 

~reposition 3o3: Let f c:: C(0 9 l 9 Q) such that f(l) = 0 9 f /. 0 and 

.f :Ls continuous at O" Then f is an extremal element of C(0 1 1 9 0) if, and 

only i:t\ f(x) ""' m(S=X) 9 X E [09!;] and O for X c [S 91] 9 where O < S < 1 

and m > Oo 
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Proof~ It i\s easily seen th.at f.f: C(0 9 l~O) if 9 and only if 9 

g e C(09 0~0), where g(x) = f(l·=X) 9 x e: [0 91], which implies f is an 

extremal element of C(0 9 l 9 0) if, and only if 9 g is extremal in C(0,0,0). 

Therefore 9 since f is continuous at O and nonconstant, f is extremal in 

C(0 9 l,O) if 9 and only if 9 f(l-x) = O, x: e: [O,s] and m(x-$) for xi:; [s,l], 

where O < S <land m > O. It follows that f(x) = m(l-s~x), x e: [0,1-s] 

and O for x e: [l=S,1] 9 which is equivalent to f(x) = m(~-x), x e: [O,~] 

and O for x e: [~ 91], where O <~~land m > O. 

By using the results from Chapter II 9 McLachlan's results and 

Propositions 3c2 and 3.3, it can be verified that any extremal element 

of C(0 9 i 1 ,i2 ) which is nonconstant and continuous on [O~l] must be of 

the form 

where m > 0 and 

h(x,s;il,i2) = (1/2) - (=l)(il)[(l/2) = x] 

- <1/2)c1 + <-1)<i2)J{C1/2) = <=1><i1>cc1;2) - sJ} 

for x e: [O,l] and Se: (0 91) ors= a1 = (1/2)[1 = (=l)(il+i2)]. Let 

mf(s,i1 ,i2;) denote the function such that mf(~ 1 i 1 ,i2;x) is given by 

(3.1). The results to this point are summarized in the following 

theorem. 

!heorem 3~: The extremal elements of C(0 9 i 1 ) are the functions 

which assume exactly one positive value on [O,l]. The extremal elements 

of C(09i1 ) which are continuous on [Ogl] except 9 possibly, at 

a0 = (1/2)[1 + (-l)(il+i2)] are again extremal in C(O,i1 gi2). The 
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remaining extremal elements of C(09i1 9i2 ) are· the functions rnf(S 9i 1 ~i2 ;L 

where m > 0 and S s (0 9 1) or I; = a 1 for 

The extremal elements of the convex cone C(i01 i 1 ioooiin)~ n > 2, 

will be found by integrating the extremal elements of a convex cone 

which is similar to C(i 2,i 11 i )o It is necessary to undertake a 
n-· · n-· n 

study of the properties of the derivatives of an n-monotone function 

before defining this cone. The :following two lemmas should be compared 

with Lemma ,2. 3 o 

(0 91) and 

Proof~ C' o.u1ce 

for h > 0 and [x 9 x+(n+2)h] c [0 91) 1 it fo1lows that f(n) exists on (0 91) 

d ( l) (i 2)'"(n) ' (" 1) L-·2] r,· an - . n+ ::. H3 convex on o~ . o lhus 9 

for h > 0 9 [x 9 x+2h] c ( Oil )a The proof that (-1 / in) /n) (x) ~ 0 1 

x s (0 1 1) and (=~)(in+·l)ll~ /n)(x) > 0 9 [x 1 x+h] c (0 9 1) will be by 

induction on llo 
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If f s C(i0,i1 si2,i3) 9 then f' exists on (0 91) and 

(-l)(ik)l\~ f(x) > 0 for [x9x+kh] C: [09lJ and k = 1,2. It follows that 

for h > 09 o > O, [x 9 x+(k-l)h+oJ ~ [01lJ (cf. Proposition Ll). Hence, 

(-l)(ik)6k-l f(x+o) - f(x) 
h o ~ o, 

which implies that 

fork= 1,2 1 and thus~ the lemma is true for n = 1. 

Assume that if f e C(i0 ,i1 , ••• <iin+2 ), n> 1, then 

(-1) ( in+k) A~ /n) (x) ~ 0 for h > Oi [x 9 x+kh] c (0,1) and k = 01L 

If f e C(i0,i1 , •.• ,in+2,in+3), then f e C(i0 ,i1 , ••. 9 in+ 2), and it 

follows from the induction hypothesis and the first part of the 

proof that 

.for h > o~ 6 > o, [x,x+(k-l)h+oJ c (O,l) and k = 1,2. Hence, 

which, by replacing k with k+l, implies 

fork= 0,1. This completes the induction. 
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'rhe following definition i.s included here in order to simplify the 

notatio.n in the proofs that follow,. 

Defi.nition 3ol~ If g is a real continuous function on (0 11), then 

define the function 

by the equation 

a.= 
J 

i. = 1, 0 < k ~ j < m. 
J 

where i. 
,) 

l.im1'.t I(f(n) ~ i ~ i ·x) . ' .... 0 ') 1 9 • " • 9 . .L.n~l i n' . 
x ...... 1-,a 

0 

exists and is finite. 

then 

which implies that 

. ., 
(IV .en.. 

,,.. \ f 0 ( t.) dt - f(x) = f(a0 ) i 

Ja 
0 

O o:r 
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and the lemma is true for n "" L 

Assume the lemma is true for n >land let f be in 

/n)(O) :::: /n\O+) = limit /n\x) 
x--,. ()+, 

is finitea If i ~ i 11 then a = 1 and n n+ n 

f(n)(l) - f(n)(l-) = limit f(n)(x) 
x-1-

is finite" It follows that 

l o 't f(n)( ) = im1 x 

x-a 
n 

is finiteo Therefore, 

exists and is finite by the induction hypothesisa 



It i.s a consequence of Lemmas 3ol and 3o2 that if f E C(i0 

n > 2 9 then /n-2 ) is an element of the convex cone given in the 

following definition. 

is :fini.teo 

Let K( i. ~, 9 i _ ~ i ) be the set of real functions 
n'°c n=J_ n 

From this point9 I(g 9 i 01 i 1 90009:in~ 2;) will denote the function 

which is the continuous extension to [0 91] of the function given in 
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Definition 3ol 9 where g z K(i 2 9:i. 1. 9i )o The proof of the following 
n= n""' n 

proposition is very similar to that given for Lemma 2.1 and :ls not 

inc:luded hereo 

A function g s K( i 2. 9 i 11 i ) is an extremal n~ n- n 

restriction off to (0 91) 9 where f is an extremal e1ement of 

The result obtained here w:ill be used in the proof of the next 

~ 3o3~ If g :is a real continuous function on (0 11) such that 

I(g9i01i1 ,.o.,in;x) is finite on (O~l) and (-l)(in)g(x) ~ 0 1 x E (0 1 1), 
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then. 

for x E (0 9 1) a:nd O < k < n=L 

Proof: The proof will be by fini.te induction on k beginning with 

If i = i , then a _ ""0 and 
n-1 n · n-.L 

. t'X 
I ( i ) 

dt = \ (-1) n g(t) dt ~ o, 
Jio 

whereas if i 1 ,J i ~ then a 1 -- l and n- n n=. 

for x 8 (0,1L since (-0 l)(in)g(t)::. O, t E (O,l)o 

·" 'h'(_)(ik)I(.. . )>Of '"'1.SSU!Tle t.at =.l . g,:1k,1k+l'ooo1l.n;x or XS (0,1), where 

0 < k < n=L If :i.1 .. , "" :ik, then ak 1 = 0 and 
:{=l, . ·= .. 

dt ~ o, 

by the indt1.ction h,ypothesiso 0:n the other hand, if ik-l 'F ik' then 

ak=·l = 1 and 
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,X 

(-l)(ik-l)I(g,1.,_1 ,ik'"'"'in;x) ~ (-1)(1.:.1) ~l I(g,ik, ••• ,in;t) dt 

dt ~ o, 

again by the induction hypothesis. 

In the next lemma~ an n-monotone function f is obtained by 

· f · f(n- 2 ) (0 1) spec1. y1ng on 9 • 

Lemma 3.4: If g e K(in_2 ,in-l'in), n > 2, then f e C(i0 ,i1 , ••• ,in), 

where f = I(g,i0 ,i1 p••9in_2;). 

Proof: The technique used in the proof of Lemma 3.2 can be 

employed here to show that f is finite on [O,l]. Since, by Lemma 3.3, 

for xi;; (0 9 1.), f(a0 ) = O and f is continuous at 1-a09 it follows that 

(=l)(iO)f(x) >_ 0 for x € [091]. The proof that (-l)(ik)6k f(x) > 0 
h -

for h > O, [x9 x+kh] C: [091)9 where 1 ~ k ~ n~3, will be by induction 

on k. 

where x < ~l < x+h. Assume that A~ f(x) = hkI(g,ik,ik+l'•••,in_2;~k), 

where O ~ x < Sk < x+kh ~land 1 < k < n-3. For h > 0 and 



[X9X+(k+l)h) C: [09l]9 

where sk < ~k+l < Sk+h and hence~ :X < ~k+l < x+(k+l)ho Therefore9 it 

follows from Lemma 3o3 that 

where O ~~ x < sk < x+kh :S: l and 1 :5 k ~ n=3o 

If h > 0 and [x 9 x+kh] c [0~1] 9 for n-2 :5 k S n 9 then 

where x < S < x+(n~2)ho 

41 
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In the proofs that fo1low~ /k) (ak) should be interpreted as 

X-,,a 
k 

( . ) S. f(k) K'(. . . ) where f e; C .1 09 i 19 ooo 9 in and 1 :S: k ::S, n=2o ince 1:: 1k91k+l?ik+2 ~ 

this limit will always exist and be f:initeo It is shown in the 

following proposition that extremal elements of C(i0 9i19 oooii11 ) can be 

obtained directly from extremal elements of K( i 2 9 i l. 9 i ) o 
n- n-.. n 

Proposition 3o5~ Let g e: K(in_ 29 in=l 9 i 11 ) 9 n > 2 9 and let 

f ::::, I(g?i0 9i1 poo9in~ 2 ,)o If g is an extremal element of 

K(in= 2 9in=l',in)9 then f is an extremal element in C(i0 ~i1 ,1 ooo?in)o 

Proofg It has already been shown that f E C(i09i1 90009in) 

(cfo Lemma 3o4)o If fl and f 2 s C(i01 i 19 ooo 9 in) such that f :;::: fl + 
.,,. 
J. 2 i 

then /n=2) d /n=2) K(. . . ) d /n-2) 
1 an 2 8 1 n=·2 9 in-1 91n an l + 

/n-·2) = /n=2) 
2 

This implies that there are constants A,> 0 1 i = 1~2 such that 
J. -

/n~2 ) = A, go It is evident from the definition of f that /k\ak) ~·· 0 1 
:1 1 

where O < k < n=3o 

Hencei 

This 1 together with the fact that /k) is in 
1 
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for i = 1 9 2:i and f is therefore extremaL 

Thus? Proposition 3o5 gives a sufficient condition for f to be 

extremal i.n C( i 0 9 i 1 ~ o o o i in)o 'l'he following lemma will be used in the 

proof of Propositio:n 306 1 in which a necessary condition for f to be an 

Lemma 3o5i Let f E C(i0 ii1 10009in)1 n > 29 such that f is not an 

extremal element of C( i 01 i 1 9 o o o I in=l) o If f :i.s extremal in 

C(i0 ,i11 000 1i 11 ) 1 then /k)(ak) ""0 for O < k < n=3o 

Proof: Since f is not extremal in C(i01 i 1 ) 1 it follows that 

f(a0 ) '"' Oo The proof that f(k)(ak) = 0 for l :5, k::: n-3 will be by 

contrapositiono 

Suppose there is a k such that 1 :5, k :S n=3 and /k)(ak) I Oo Let 

p denote the smallest such integero 

and 

I(f.(p+l) .; ., 1,' os,-) 
,, 9...&01Jd~190009,.p+l<j.,O,,, ·-

002) 

for x IS [0 9 1) 9 because /k) (ak) - 0 for O S k S p=L Since /p) is in 

t"(" , .. ) d f(p)( ) LO th t i.. f '' f(p)( ) ' ,1. 1 i1 1 91 2 an a r ·9 e cons an1, unction a 1.s 
p pt,. p+ p p 

extremal in K(.i 9 i 19 i 2 ) by Proposition 3o4o If 
p p+.. p+ 
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It follows that Lt f 1 (x) = 0 for h > O, 
ll 

[x 1 x+kh] c [091] and p+2 ~ k Sn~ which implies that L £ C(i01 ••• ~:i ... ,)9 
i • n . 

and since 

~~ f 1 (x)] 
ll 

for h > 0 9 [x,1x+kh] e [0 91] and p+3 S k :S, n, it follows that f 2 is in 

C(i09 il 7 ooo 9 in)o Thus 9 fl and f 2 E: C(i09 :i19 ooo 9 in) such that 

f = f 1 + f 2 9 and since f 1 is extremal in C(i09 i 19 ooo 9 i 0 ,2 ) 9 1 < p :S, n-39 

f 1 is not proportional to fo Therefore 9 f is not extremal in 

C(i0 9i1 90009in)o It follows9 by contraposition9 that. if f is extremal 

" C(" . ' ) "h f'(k) ( ~ ) 0 f l ' k < -lrl. 1Q91l90009:ln 9 \,.en... ak "" . or . 2::.. _ U=_?o 

,(k) 
Proof~ By Lemma .3"5, f (ak) = 0 

. (' ) f(n=2) = are 1.n K 1 ~" i 1 ,, i such that n=c::" n- · 11 

f 1 and f 2 e: C(i0 ;,i1 iooo 9 in) such that f - f 1 + f 21 where 

""I(gi9i0 1i1 10009in=2;L i ""1920 Since f is extremal in 

C(i0 ,,L 9 000,,i ) 9 there are constants 'A. > 0 such that f, = A"f 1 :i.:;:: 1 1 2, 
· ~ · n 1 - i 1 
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which implies that g'. = /n-2 ) 
. J. J. 

therefore extremal.o 

If f ( n-2) ( n·~ 2) -' ( n-3) 
is c:onstant 9 then f r O and f is linear on 

(0,,11L If n -· 3i then f is extremal in C(i01 i 19 i 2 ) 1 since f is linear 

( 0 1 ) d ~ ( ). (- ~ f > ·.: th L" ( n= 3) · t l · on 9 an :!: a.0 = Jo .L .. n . .l'J en ;.. l.S ex rema, J.n 

K(in=3;,in=21 in-l) 9 since /n-3) is linear on (0 1 1) and /n-3)(an=3) = Oo 

It follows from Proposition 3 o 5 that f is extremal in C ( i 0 1 i., i o •• 1 i 1 ) 1 
l. n-

., f I( f(n-,3) . . ) 
since = i loi O O O 9 J.n=39 0 

However 1 sincEi f is not an extremal 

( ) (n-2) . 
element of C i 0 9 i 1 9 , ,, " 9 in~l 9 it must follow that f is nonconstant. 

If f e C(i01 i 190 oosin) 1 n > 2 1 such that f is an extremal element 

of C(i09 ooo 9 in-l) 9 then since C(i01 i 110 00 9 in) is a subcone of 

C( i 0 1" "" 9 :in=l) 9 f is extremal in C( i 0 i i 1 oo o o; in) o 'I'his set of functions 

is the subject of the following proposition" 

Propo_!?.:.1::..t.ion 3o7• Let f E C(i0 9i1 ;ooo 9 in)? n > 2 9 such that f is 

nonconstant and continuous on [O?l]. If f is: an extremal element of 

C(i0 ,,0009i 1 )" then f is linear on [Ool] and f(a0 ) = 09 or there is an 
n-. 

integer k 0 .3 ::5_ k S n=l 9 such 

f(p) (a ) = 0 for O S p S: k-3 
p 

th . .,(k-,2) . t .1 ., K(. .. . ) 
.. at I 1.s ex rema,.c :in 1k=2 9 :tk~l 9 J.k o 

, f(k-1) ' ' '- ( 0 1) ana . is constan-,,, on · 9 o 

Proof: 
( ?) ( ) 

Since f n=~ is continuous on (0 01) 9 by Lemma 3ol 9 f p is 

continuous on (0 91) for l < p S. n-2" Since f is a nonc:onstant extremal 

element of C(i01 i 100 00 0 in) 9 it follows that f(a0 ) = Oo There is a 

unique integer k 0 2 2: k S: n-1 9 such that f is extremal in C(i09 ooo 9 ik) 

but :Ls not extremal in C( i 0 , "o ", 9 ik-l)" If k "= 2 9 then f is a non-· 

constant extremal element of C(i0 9:i11 i 2) 0 and it follows that (-l)(il)f, 

as.sume:e; exactly one positive value in (0 9 1) (cfo 'rheorem 3o1L C'' .)1.nce 
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f is linear on [0 1 l] o 

If k > 2 9 then by Lemma 3o5 9 /P)(a ) = 0 for O < p < k-3 9 and by 
p - -

P 't, -- .- f,(k= 2 ) ' t l' ' K(. . ' ) Ii. f 11 f ropos1 :ton ;Job9 is ex rema in ik_ 21 1k=l 1 :1k" ·~ o. ows rom 

Proposition 3o4 and Theorem 3ol that (=l)(ik-1)/k-l) assumes at most 

one positive value in (0 9 l)o Since /k=l) must be continuous on (0 9 1) 9 

(=1)( 1k=l)f(k-l) ,=: c: > 0 on (OilL 

It should be noted that if f satisf:i.es the hypothesis of Propo-

. ,,. , 3 7 t" f(n= 2 ) 0 f(n= 2)' t l' · K(' ' ') sJ..t,1.0:n o. 9 nen ""' or 1s ex rema :in 1 2 i i 1 i 1. o n- n- n 

The r,esults of the last three propositions are summarized in the 

following theorem which gives a characterization of the extremal 

Theorem 3o2: Let f s C(i0 9i_ii~oo 9 in) 9 n > 2 1 such that f is not 

constant and f is continuous on [O?,l]o Then f is an extremal element of 

C(i0 9i1 9000 9 in) if 9 and only if 9 f is linear on [0 9 1] and f(a.0 ) "'' O, or 

there is an integer k 9 3 S k :'.S n··,1 9 such that /k- 2) is extremal in 

r ) fk l' 
K;. ,, . -) f\p,' ) 0 f O <' < l 3 d f' = 1 . . + ~\J., ...,9:tk 1 91.k 9 1.a. ""' OZ' p ~= an is constan,., on 

K=c. = p - ·-

( 0 9 l); or /n=2 ) is an extremal element of' K( i ;,<) i 1 9 i ) and 
n=- n=.. n 

O for O ~ p :'.S n=3o 

If f is extremal. in C( i 09 i.1 9 o"" 9 i., ) 9 then there is a unique 
. n 

integer k 9 2 _:S k S n 9 such that f is extremal in C(i0 9 o" o ,1ik) but is not 

extremal in G(i09 ooo 9 ik-l)o If k ~ n=1 9 then f is extremal in 

C(i0 ,ooo.,in=l) and the conclusion follows by Proposition 3o7o If k"" n 1 

then /p) (a ) = 0 for O < p < n-3 and /n-2) is extremal in 
p - - -

K(i 2,)i 1 9 i ) by Lemma 3o5 .and Proposition 3o6 9 respectivelyo 
n~· n=~ n 
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'l'he proof of the converse will be given in three partso First 9 if 

f is linear on [0 9 1] and f(a0 ) ""0\, then f is extremal in C(i09 i 11 i} 
'.) 

and 6t f(x) = 0 for h > 0 9 [x 9 x+2hJ C:: [0 9 1] o It follows that 
n 

k 
•\ f(x) '"' 0 for h > 0 9 [x9x+kh] C: [0 9 1) 9 2 .:,S k ~ n 1 and thus 1 f is in 

C(i01 i 19 o,,o 9in)o Since C(i0 1i190 ooiin) is a subcone of C(i01 i 11 i 2 ) 1 f 

is again extremal in C(i0 ii1 90009inL 

In the second place 9 if /k-2 ) is extremal in K( ik= 2 i ik.=·l 9 ik) 1 

for O 5, p :$, k=3 and /k=l) is constant on (0 91), where ip)(a ) "'' 0 
p 

3 < k < n=L - - . 
., h f' I( f(k~ 2 ) ' " ) d f ' . l . t. en . = 91.09 o o o 9 J.k= 2 ; an is extrema. in 

Since /k=2 ) is extremal in 

assumes at most one positive value on 

(0 9 1) (cfo Proposition 3o4 and Theorem 3olL It follows that 

( l) (i;. 1),:-(k=l) ., .. > 0 d th·· f(k= 2 ) . . ··1 l' ' + 
= K= ... -· c _ an .us~ 1s e::i.t~1er . 1near or constan., 

011 (O?l)o It was shown in the proof of Lemma ;io·4 that ll:=2 f(x) 

"" /k=2 )(0 for O < x < S < x+(k=2)h ~- 1 9 from which it follows that 

for h > Oi [:x:9x+khl c: [091] o Hence~ L:i; f(x) "" 0 for h > 09 [x 9 x+ph] 

C: [091] 9 where k ~ p 2: n 9 and thus f E C(i0 9i11,000 9 in)o Since 

C(i.0 ,1i11 0009in) is a subcone of C(i0 iuo,, 9:ik)., f is extremal in 

~ooo~i )o 
n 

f 

S · "',(:a-~ 2 ) " , l .. Kt· ' 0 ) f ' t l 1 t f :ince " :is extrema l.n \ 1. 2 i 1 .l 91 9 · is an ex. rema . e emen . o. n-, n=. n 



CHAPTER IV 

INTEGRAL REPRESENTATIONS OJ!' n-MONOTONE ]'UNCTIONS 

'l'he set of functions C( i 09 o o o \) i )-C( i 0 p "o ~ i J 9 n > L forms the 
n n --

smallest linea.:,~ space containing the convex cone C(i0 1 o" "9in) (cfo [3] 1 

po ~,7)o If 

p finite subset of [0 9 1] and s > O} 1 

t:hen ii! forms a local base at O and C(i0 " o o o ,in)=C(i0 9 "o" ,,irt) together 

with the local base ~.! .is a Hausdorff' locally convex space o The topology 

iw:.'l.uc:ed by Q.f is called the topology of si.mple conve:rgenrcie and is 

equiv,a.lent to the topology of po:L:ntw:i.se convergence ( cf o [10] ,1 po 1.5.5)" 

It is the purpose of this chapter to prove that the extremal elements of 

C(i09 ooo~in) form a closed set :in a compact convex set which meets every 

ray of the cone C( i 0 ~ o" o 9 ir) but does not contain the orig:in 9 and to 

show thai;; for the functio:n.s of the cone an integral reprto;sentat.ion in 

terms of extremal elements is possibl.eo Since 

it is suf.fioient to obte.in these results for the case where i 0 ""' Oo 
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where n :'.'.'., 19 then S(O,i1 90009in) is a convex set which meets every ray 

of C(09i1 90009in) once and only once but does not contain the origin, 

that is the zero function. It then follows that f is an extreme point 

of S(09i1 9••• 9in) if 9 and only if, f is an extremal element of 

C(01i1 ,.009in) which lies in S(0 9 i 1 9••• 9 in) (cf. [4] 9 p. 235). 

Since each function fin S(0 9 i 1 i•••iin) is nonnegative and 

monotonic 9 then O ~ f(x) ~ 1 for x E [0 91]. If I c [0 91) 9 then it 

follows from the Tychonoff theorem that 

I I = {f: [0 9 1] ..... [0 9 J.J ~ f is a function) 

with the product topology is a compact space. Since the topology of 
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simple convergence is equivalent to the product topology 9 it follows 

that S(Oii1 9•••9in) can be imbedded in I 1 • Therefore 9 in order to prove 

that S( 09 i 1 9 , .•• 9 in) is compact 9 it is sufficient to show that 

S( 0 9 i 1 9 ••• 9 in) is a .closed set. This will be done in the foll.owing 

proposition by showing the complement of S( O~ i 1 , ,, q. ~ in) is open. 

Proposition 4.1: The set S(01i 1 1•••,i ) 1 n > 1, is closed. 
n -

Proof~ If g e: C(O,i.1 , ••• 1 in)\S(O,i1 poo 9 in) 9 then g(l-a0 ) f. 1 and 

the set 
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g + U( {l-a0} ,e:) 

= {f e: C(09ilgooogin)-C(O,il90009in) g lf(l-ao) - g(l-ao)I < e:}, 

where e: = (l/2)ll-g(l-a0)1, is an open set about g that fails to meet 

S(O,i19 ••• 9 in). If g i C(O,i1 , ••• ,in)' then there are numbers x0 , k and 

h such that 

k 

(-l)(ik)6! g(x0 ) = (-l)(ik) ~ (-l)j (~) g(x0+(k-j)h) = o < o. 
j=O 

Let 

U = g + U({x0 ,x0+h 9 ••• 9x0+kh},e:) 

= (fe:C(O,i1 , ••• ,in)-C(O,i1 , ••• 9 in):lf(x0+jh)-g(x0+jh)l<e:, 0 _'.:S j _'.:S k}, 

k where e: = (1/2) (-o). If f e: 0 9 then 

(-l)(ik)6: f(x0 ) "" (-l)(ik\i: [f(x0 ) - g(x0 )J + (-l)(ik)ll! g(x0 ) 

< IA: [f(x0 ) - g(x0 )JI + (-l)(ik)A: g(x0 ) 

k 

< I (~)if(x0+(k-j)h) - g(x0+(k-j)h)I + o 
j=O 

= O, 
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Since C(0 9 i 19 ••• ,in)-C(0 9 i 1 , ••• 9 in) is a Hausdorff space and 

S(Oii1 poo9in) i.s compact 9 then ext S(0 9 i 190 •• 9 in) is compact if 1 and 

only if, ext S(0 9 i 1 , .•• ,in) is closed relative to S(O,i1 , ••• 9 in). The 

proof that ext S(O,i1 , ••• 9in) is closed relative to S(O,i19 ••• 9 in) will 

be by iln~uction on n. If f e S(O,i1 ) such that f is not an extremal 

element of C(0 1 i 1 ), then there exists a number x0 g [O,l] such that 

O < f(x0 ) < f(l-a0 ) = 1 (cf. Proposition 3.1). Let U = f + U({x0},i:;) 9 

where e = min {f(x0), l-f(x0 )}. If g is an extreme point of S(0 9 i 1 ) 

(that is9 g is an extremal element of C(0 1 i 1 ) which lies in S(O,i1 )), 

then g assumes exactly one positive value in [0 91] 9 and since 

g(l-a0) = 1 1 g(x) is either O or 1 for each x e: [0 11]. If g(x0 ) = O, 

then f(x0 ) = g(x0 ) = f(x0 ) ~ g 9 whereas if g(x0) = 1, then 

g(x0 ) = f(x0) = 1 = f(x0) ~ e:. Therefore 9 g i U and it follows that 

ext S(01 i 1 ) is closedi where ext S(O,i1 ) denoteE;l the set of extreme 

points of S(0 1 i 1 ). 

If it has been shown that ext S(0 1 i 19 ••• 9 in) is closed 9 where 

n ~ 1 9 then 

cl[ext S(0 1 i 11 ••• ~i 9 i 1 )) 
n n+ 

= cl[ext S(0 1 i 1 1•••9in+l) \ ext S(Oii1 s•••iin)] 

U cl{[ext S(O,i, ,.a. 1 i )] n 8(0 1 11 , ••• ,i 1 )} 
.;. n n+ 

= cl[ext S(O,i1 io••,in+l) \ ext S(O,i1 , ••• ~in)] 

U {[ext S(0 1 i 190 •• 9 in)] n S(O,i1 90••1in+l)}9 



cl[ext S(O,i1 , ••• ,in,in+l)] 

c:: cl[ext S(O,i1 , .•. ,in+l) \ ext S(o,i1 , •.• ,in)] 

U ext S(O,i1, ..• ,in+l). 

Therefore, in order to show ext S(O,i1 , ... ,i 1 ) is closed, it is n+ 

sufficient to prove that 

Proposition 4.2: The set ext S(O,O,O) is closed. 

Proof: In view of the above remarks, it suffices to show that 

then f e: B(O,O,O) by Proposition 4:.l. There is a sequence {f.} of 
1 

functions converging pointwise to f on [091] such that each f. is an 
l. 

extreme point of S(O,O,O) which is not extreme in S(O,OL It follows 

from Theorem 3·+ that fi = mif(Si 1 0,0;) such that fi(l) = l; that isi 

f.(x) = 0, x e: [O,~.] and (l-$.)~1(x-$.) for x e: [S.,l], where 
1 . l. l. 1 l. 
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0 < S. < 1. If the sequence {S.} of real numbers converges to 1, then 
- 1 l. 

it is easily seen that limit f.(x) = O, for x e: [0,1) while 
. 1 l. .,,, 00 

limit f.(l) = L Since the topology on C(0,0,0)-C(O,O,O) is Hausdorff 1 

i-->00 l. 

the seqµence {fi} of functions has a unique pointwise limit. It follows 

that f(x) = O, for x e [0 11) and f(l) = 1 and f is therefore an extreme 

point of S(O,O). Since f e S(O,O,O), f is again extreme in S(O,O,O). 

On the other hand, if (S.} does not converge to 1, then there is a 
l. 
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nonnegative number g0 <land a subsequ~nce {gj} of {~i} such that {~j} 

converges to $0• If O S x < ~O' U;en 

limit f .(x) = O; 
j-+CO J 

whereas 

~imit fj(x) = 1_1~ (x-g0), 
J-+CO . Q 

if ~OS x S l. Therefore, since the topology is Hausdorff, f(x) = o, 

x e: [o,~0] and (1-,0)-1 (x..,~0) for x e: [~0,1]. Hence, 

f =. (l-~0)-1 f(~ 0,o,o;) and it follows from Theorem 3.1 that f is in 

ext S(O,O,O). 

Corollary 4.1: The set ext S(0,1,0) is closed. 

Proof: The corollary follows from Proposition 4.2 by noting that 

f e: S(0,1,0) if, and only if, g e: S(O,O,O), where g(x) = f(l-x) for 

x E: [0,1). 

Corollary 4.2: The set ext S(0,1,1) is closed. 

Proof: If f e: cl[ext S(0,1,1) \ ext S(0,1)], then f e: S(0,1,1) by 

Proposition 4.1 and there is a sequence (f.} of functions which are 
l. 

extreme in S(O,l,l) but not extreme in S(O,l) converging to f pointwise 

on [0,1]. It follows from Theorem 3.1 that f.- = m.f($.,l,l;) such that 
l. l. l. 

f.(O) = l; that is, f.(x) = 1, x e: [O,t.] and (l..,~.)-1 (1-x) for 
l. l. l. l. 

x e: [$.,1], where o < g, < 1. Since 1-f. = (1..,t.)-1f(g.,o,o;) (that is, 
1 - l. 1 l. l. . 

1-f.(x) = O, x e: [O,~.] and (1-g.)-\x-~.) for x e: [g.,l]), then 
l. 1 l. l. l. 

1-f. e: ext S(O,O,O) \ ext S(0,6), for each i. It follows from 
l. 
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Proposition 4.2 that 1-f e: ext S(O,O,O), since 1-f is the pointwise 

limit of the sequence {1-fi} on [0,1], which implies that f is in 

ext S(0,1,1). Hence, by the remarks preceding Proposition 4.2, 

ext S(0,1,1) is closed. 

Corollary 4.3: The set ext S(O,O,l) is closed. 

Proof: The corollary follows easily from Corollary 4.2 by noting 

that f e: S(O,O,l) if, and only if, g e: S(0,1,1), where g(x) = f(l-x) 

for x e: [O,l]. 

It follows from Proposition 4.2 and Corollaries 4.1, 4.2 and 4.3 

that ext S(O,i1 ,i) is a closed set, where i. = 0 or 1, j = 1,2. 
J 

It has already been noted that in order to show ext S(O,i1 , ••• ,in) 

is closed, where n > 2, it is sufficient to prove 

If f e: cl[ext S(O,i1, ... ,in) \ ext S(O,i1 , ••• ~in-l)], then f is in 

S(O,i1 , ••• ,in) by Proposition 4.1 and there is a sequence {fi} of 

functions in ext S(O,i1 , ••• ,in) \ ext S(O,i1 , ••• ,in-l) which converges 

. [ J f P 't' 3 6 that r<.n-2 ) po1ntwise .to f on O,l. It follows rom ropos1 +on • 
1 

is a nonconstant extremal element of K(i 2,i 1 ,i ). By using Propo-,. 
n- n- n 

sition 3.4, Lemma 3.5 and Theorem 3.1, this implies that 

f~n- 2) = m.f(r:;.,i 1 ,i ;) for i 2 = O, f~n- 2) = -m.f(r:;.,1-i 1 ,1-i ;) 
1 1 1 n- n n- 1 1 1 n- n 

for i 2 = 1 and f. = I(f~n-2),o,i1 , ••• ,i 2;), where m. > 0 and 
n- 1 1 n- 1 

( i +i ) ' 
r:;. e: (0,1) or r:;. = a 1 = (l/2)[1-(-1) n--1 n ] , for each i, since 

1 l n-
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K(l,i 1 ,i) = -K(0,1-i 1 ,1-i ). These observations are summarized in n- n n- n 

the following remark. 

Remark 4.1: In order to show ext S(O,i1 ,.P•,i ), n > 2, is closed, n . 

it suffices to prove that f g ext S(O,i1 , ••• ,in) whenever f is the point­

wise limit on [O,l] of a sequence {f.} of functions with the property 
1 

that 

f~n- 2 ) = m.f(S.,i 1 ,i ;) 
1. 1 1 n- n 

for i = O, n-2 

/n-2 ) = -m. f(S. ,1-i 1 ,1-i ; ) 
1 1 1 n- n 

for i = 1, f 1.(l-a0) =land n-2 

f I(f(n-2) 0 . . ) . = . ' ,11,•••11 2; ' 
1 1 n-

where S. g (0,1) or S - a 1. = (1/2)[1-(-l)(in-l+in)] and m. > O, for 
1 i - n- 1 

each i. The function mf($,i1 ,i2;) is given by equation 3.1 on page 33. 

It will be shown, by considering every possible case, that 

ext S(O,i1 ,i2,i3) is closed. Then ~twill be shown that the same 

technique still can be used to prove ext S(O,i1 , ••• ,in) is closed for 

n > 3. 

Proposition 4.3: The set ext S(0,0,0,0) is closed. 

Proof: Let {f1} be a sequence of functions in S(O,O,O,O) con­

verging pointwise to a function f on [O,l] such that f. = I(f! ,O,O;) 
1 1 

and f~ = m.f(S.,0,0;); that is, f!(x) = O, x g [O,s.] and m.(x-S.) 
1 1 1 1 1 1 1 

for x s [l;.,l], where m. > 0 and O < !;. < 1. Since f. = I(f!,O,O;) 
1 1 - 1 1 1 



and f.(l) = 1, it follows that f.(:x:) = 0, XE [0,S.] and 
1 1 1 

f. (x) 
1 

for x E [S.,l]. If the sequence{$.} of real numbers converges to 1, 
1 1 

then it is easily seen that 

for x E [O,l) and 

limit f.(x) = 0 
1 i ..... 00 

limit f. (1) = 1. 
i i.,... 00 

56 

Since the topology of simple convergence is Hausdorff, the sequence (f.) 
1 

has a unique pointwise limit and it follows that.f(x) = O, x E [0,1) and 

f(l) = 1. Since f is an extreme point of S(0,0,0) which is in 

S(O,o,o,o), f is again extreme in S(O,O,O,O), 

If the sequence {S.} does not converge to 1, then there is a number 
1 

[0,1) and a subsequence {S .} of {S.} such that($.} converges to 
. J 1 J 

It will be shown that the subsequence (fj} of (fi} converges 

uniformly on [O,l] to an extreme point of S(O,O,O,O). Then, since the 

topology is Hausdorff, it must fqllow that f s ext S(O,O,Q,O)" 

Ifs is a positive numoer and 5 
2 = (1/2)(1-~0 ) s, then there is a 

positive integer N such that I~ .-s01 < o whenever j > N. Define the 
. J 

function g such that g(x) = 0, XE [O,S 0] and 

g(x) = 2 ( x-$ ) 
(1-~ )2 0 

0 
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for x E [g0,l]. If gj = g0, fo~ some j, then fj = g. If j > N, Sj < s0 

and x e [0,$.], then I f'.(x) - g(x) I = O. If j > N, .l.;J. < s0 and 
J J . 

x e (I _,g 0 ), then 
J 

x-1.; . go_g . 
I fJ'.(x) - g(x) I = 2 2 < 2 -(1-_-ll' ....... _J)...,_2 < 2 

(1-s .) - ":, 
J J 

If j > N, Sj < g0 and x e: [g0 ,l], then 

I f'.(x) - g(x) I 
J 

but since fj and g are linear on [so,l], then 

~o-s. 
= 2 J 

2 (l-$ ) 
0 

< €. 

go .. g. 
J 2 < e:. 

(1-§ ) 
0 

By a completely analogous argument, it can be shown that lf'.(x)-g(x)l<e: 
J 

for x e: [O,l], j > N and Sj > g0• Thus, the sequence {fj} converges 

uniformly to the function g on [0,1]. Therefore, the sequence {fj} 

converges uniformly to the function I(g,O,O;) on [O,l] because 

·· f. = I(f'.,0,0; ). Since g is an extremal element of K(0,0,0) and 
J J 

I(g,O,O;l) = 1, it follows from Proposition 3.5 that I(g,O,O;) is an 
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extreme point of S(O,O,O,O). Hence, f e; ext s(o,o,o,o) since 

f = I(g,0,0;), and it follows from Remark 4.1 that e~t S(O,O,O,O) is 

closed. 

Corollary 4.4: The set ext S(0,1,0,1) is closed. 

Proof: The corollary follows easily from Proposition 4.3 by noting 

that f e; S(O,l,O,l) if, and only ::l.f, g e; S(0,0,0,0), where 

g(x) = f(l-x), x e; [O,l]. 

Corollar~ 4 .. 5: The set ext S(0,1,1,1) :i,.s closed. 

Proof: Let f be the pointwise limit on [0,1] of a sequence (fi} of 

functions such that f. = I(f!,O,l;) and f.(O) = l for each i, where 
l. 1 l. 

f! = -m.f(E!.,O,O;) .. !form.> 0 and~. e; [0,1). Then f.(x) = l, 
1 J. 1 '" l. l. l 

x e; [o,g .] and l-(1.g. )-2(x .. g. )2 for x e; [g. ,ll, and by Remark 4.1, it 
l. 1 l. l. . 

suffices to show f e; ext S(o 11,1,1). 

(1-!i;. )'"" 2(x-!i;. )2 for x e; [s. ,l], then 
l. l. l. 

Since 1-f.(x) = O, x e; [O,!i;.J and 
l. l 

1-f. e; ext S(0,0 9 0 9 0) \ ext S(O,O,O) 
l. 

for each i. Since 1-f is the pointwise limit of the sequence (l-f.} on 
:i 

[O,l], it follows from Proposition 4.3 that 1 .. f e; ext S(O,O,O,O). 

Hence, f e; ext S(0,1,1,l) and ext S(0,1,1,1) is closed. 

Corollary 4.6: The set ext S(0,0,1,0) is closed. 

Proof: Since f e; S(O,O,J.,O) if, and only if, g e; S(O,l,l,l), where 

g(x) = f(l-x) for x e; [O,l], it follows from Gorqllary 4.5 that 

ext S(O,O,l,O) is closed. 

The remaining cases for n = 3 follow from the next proposition, 



Pro;position 4.4: The set ext S(0,0,0,1) is closed. 

Proof: Let {fi} be a seque;n,ce of functions in S(0,0,0,1) con­

verging pointwise to a function f on. [0 11] such that f. = I(f'.,O,O;) 
1 . 1 

and f '. = m. f( s . , O, 1; ) ; 
1 1 1 

that is, f.(x) = m.x, x e; [0,S.] and m.S. for 
1 1 1 1 1 

x e; [S.,l], where m. > 0 and O < S. < L Since f. = I(f!,O,O;) and 
1 1 1 - 1 1 

f.(l) = l for each i, it follows that 
1 

for x e; [!; 1 ,1). 

f.(x) l 2 
1 = ~.(2-~.) x I 

1 :l. 

1 f.(x) = ~2 ~ (2x-s.) 
1 .. ~. 1 1 . 

If the sequence { !; . } of real numbers converges to O, 
J. 

then it is easily seen that 

1 imit f . ( x) = x 
i ... co J. 

for x e; [0,1]. Since the topology of simple convergence is Hausdorff, 

the pointwise limit of the sequence {f.} is unique and it follows that 
1 

f(x) = x, x e: [0,1]. Hence, f is an extreme point of S(0 1 0,0) which 

implies that f is again extreme in S(0 1 0,0 1 l). 
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If the sequence{$.} ~oes not converge too, then there is a number 
1 

s0 e; (0,1] and a subsequence {S .} of {S.} such that {S .} converges to 
J J. J 

~0• It will be shown that the subsequence {f .} of {f.} converges 
. J 1 

uniformly on [0,1) to an extreme point of S(0,0,0 91). Then, since the 

topology is Hausdorff, it must follow that f ~ ext S(0,0,0,1). 

If e: is a positive number and b = (l/4)s0s, then there is a 
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positive integer N such that lg .-s01 < b whenever j > N. Define the 
J . 

function g such that 

2 
g(x) = 2-so 

for x E [so,l]. If sj = So, for some jj then fj::::: g. If j > N, l;j > so 

and XE [0,1; 0], then 

but since fj(O) = g(O) = O and fj and g are linear on (o,s0J, then 

I f'.(x) - g(x) I < I f'.(s 0 ) - g(s 0 ) I 
J ~ J . 

= I 2so - 2 
1s/2-$j) 2-s0 

ll' F.' I 

2 . ':)o :, . I 
== r 2-C - 2-~0 J J 

4 < r- (F.; ,-$ ) 
'::,. J O 

J 

< E • (4.1) 
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If J. > N, S . > 's0 and x e: [S ., l], then 
J J 

I f'.(x) - g(x) I = 1+ --. ~ I ~ 2(SJ.-so) < 8. J 2-';:, j 2-;,0 
( 4. ~, 

since fj is linear and g is constant on (s0 ,sj), and it follows from 

inequalities 4.1 and 4.2 that I f'.(x) - g(x) I < e:. By a c;:ompletely 
J 

analogous argument, it can be shown that I f'.(x) - g(x) I < e: for 
J 

x e: [O,l], j > N and sj < g0 • Thus, the sequence 

uniformly to the function g on [0,1). Therefore, 

{ f'.} converges 
J 

the sequence {f .} 
J 

converges uniformly to I(g,0,0;) on [0,1] because· f. = I(f'.,0,0; ). 
J J 

Since g is an extremal element of K(O,O,l) and I(g,Q,O;l) = 1, it 

follows from Proposition 3.5 that I(g,O,O;) is an extreme point of 

S(0,0,0,1). Hence, f e: ext S(0,0,0 9 1) and it follows from Remark Lt.l 

that ext S(O,O,O~l) is closed. 

Proof: The corollary follows easily from Proposition 4.4 by noting 

that f e: S(0,1 1 0,0) if,· and only if, g e: S(0,0,0,1), where g(x) = fCl-x) 

for x e: [O,l]. 

Corollary 4.8: The set ext S(0,1,1,0) is closed. 

Proof: Let f be the pointwise limit on (0,1) of a sequence (f.} of 
1 



functions such that f. = I(f!,0,1;) and f.(O) = l for each i, where 
1 1 1 

f! = -m.f(!;.,0,lj) form.> 0 and(. E (.0,1]. ihen 
1 1 1 + -1 

· ·1 2 
fi(x) = l - e;.( 2-t;.) x , 

• J,. • 1 

f. (x) ""~ (1-x) · 
1 2-$i 

for x E [s.,1], and by Remark 4.1, it suffices to show that f is in 
1 

ext S(Q,1,1,0). Since 1-f.(x) = [~.(2-i::-.)r1x2, x E [O,~.J and 1 . '::,J. . ';,1 ';,1 

1-fi E ext S(O,O,O,l) \ ext S(O,O,O) 
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for each i. Since 1-f is the pointwise limit of the sequence {1-f.} on 
1 

[0,1), it follows from Proposition 4o4 that 1-f E ext S(0,0,0,1). 

Corollary 4.9: The set ext S(0,0,1,1) is closed. 

Proof: Since f E S(0,0,1,1) if, and only if, g E S(0,1,1,0), where 

g(x) = f(l-x) for x E [O~l], it follows from Corollary 408 that 

ext S(0,0,1,1) is closed. 

It follows from Propositions L~.3 and 4.4 and Corollaries 4.4 ... 4.9 

that ext S(O,i1 ,i2,i3) is closed. The proof that ext S(O,i1 , ••. ,in), 

n > 3, is closed is essentially the same as that for n = 3. Let f be 

the pointwise limit on [0,1] of a sequence {f.} of functions with the 
1 

property that 
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/n-2) = m.f(g.,i l';i. ;) 
1 1 1 n- n 

· for in_2 = 0, 

(n-2) ( . . ) f. = -m.f g1,1 ... 1 1 ,l-i ; 
1 1 n- n 

· ( (n-2) . . ) f. = I f. . , O, 1 1 , ••• , 1 . 2 ; , 
.1 1 . .· n-. 

where m. > 0 and (. s (0,1) or I;. = a 1 = (l/2)[1-(-1) (in-l+in\, 
1 1 1 n- · 

for each i and. n > 3. If the sequence {~i} of real numb~£~ converges to 

1-a 1 , then as in the first part of the proofs of bot;h Proposition 4.3 n-

and Proposition 4.4, it can be shown that.f c: ext S(O,i1 , •.• ,in-l) and 

f is again extreme in S(O,i1 , ••• ,in). 

On the other hand, if the sequence {!;.} does not converge to 
1 . . 

1-an-l' then there is a real number 1; 0 c: [O,l]\{1-an-l} and a sub-

If i 2 = i 
n- n 

( i 2 F i ) , then the technique used in the latte.r part of the proof of 
n-· n 

Proposition 4.3 (Proposition 4.4) oan again be used to show that.the 

subsequence 
(n-2) (n-2) · · . · · 

{f. } of {f. } converges uniformly to an extremal 
J 1 . 

element g of K(i 2,i 1 ,i ). In either case, it must follow that 
· n- n-. n 

{f .} converges uniformly to I(g,o,i1 , ••• ,i 2;) on [O,l] because 
. J . ~ 

( ( n-2) . • ) f. =If. ,0,11 , ••• ,i 2, • Since the topology of simple convergence 
J J ~ 

is a Hausdorff topology, then f = I(g,O,i1 , ••• ,i .2;) and it follows . n-
. . 

from Proposition 3.5 that f is an extreme point of S(O,i1 , ••• ,in). 

Integ.i:-al Represe·ntations 
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subsets of the locally convex space C(O,i1 , ••• ,i )-C(O,i1 , ••• ,i ), 
. n n 

n :::, 1, it follows from Theorem 39. 4 of Choquet [ 4) that for any function 

f 0 e: S(O,i1 , ••• ,in) the:re exists a probability measure µ. 0 on the extreme 

points of S(O,i1 , ••• ,in) such that 

for x c: [O,l]. Since S(O,i1 , ... ,in) meets every ray of C(O,i1 , ... ,in) 

and does not contain the origin, it follows that each function of 

C(O,i1 , ••• ,in) is a scalar multiple of such a representation. 

If the extreme poi!lts of S(o,i1 , ••• ,in) were dense in 

S(O,i1 , ••• ,in); that is, if 

then the integral representation above would be of little value. To see 

that this is not the case whenever n > 2, let 

g(x) = (1/2) + (1/2)f(x), 

x e: [O,l], where 

Then g e: S(O,i1 , ••• ,in) \ ext S(O,i1 , ... ,in) since g is not constant 

and g(a0) = (1/2) > o. Likewise, if 

g(x) = (1/2) + (l/2){(1/2) - (-l)(il)[(l/2)-f(x)]}, 

x e; [0 91], where f(x) = 0, x e: [0,(1/2)) and 1 for x e: [(1/2),1), 

then it follows from Proposition 3.1 that g e: S(O,\) \ ext S(O,i1 ). 



Therefore, the set S(O,i1 , ••• ,in) \ ext S(O,i1 , ••• ,in) is nonempty 

for n > 1. 
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CHAPTER V 

SUMMARY 

The ba~ic purpose of this study has been to determine the extremal 

structure of the convex cone of n-monotone functicns and to determine 

the relationships that exist between the extremal elements and the 

elements of this cone. The extremal elements of the cone of n-monotone 

functions were completely characterized and it was shown that for any 

n-monotone function an integral representation in terms of extremal 

elements is possible. 

By using the results of Chapter IV and the Krein-Milman Theorem, it 

is evident that any n-monotone function can be approximated at a finite 

nwnber of points in [O,l] by a convex combination of extrem'+P,- elements 

of the cone of n-monotone functions. This fact may be useful in the 

numerical solution of certain diffe.L·1:mce equations. Another problem of 

interest is that of characterizing the functions in the linear space 

C(i0 , ••• ,i )-C(i0, ••• ,i ), where n > 1. 
n n -

There are several problems analogous to the one in this study for 

which the same type of Jnvestigation would be of intereet. One such 

problem is that of con'sidering real-valued functions on a partially 

ordered semi-group with a smallest element whose first n differences 

satisfy certain inequalities;' for example, the functions might be 

defined on the half~line [o,~). The domain of the functions in question 

could also be the unit rectangle in E2 (that is [0,1) X [O,l]). 

66 



Then-monotone functions are obtained by specifying the first n 

differences •. A problem of interest would be that of considering the 

convex cone of real functions on [O,l] where only some of the first n 

differen,ces are specified. For example, each difference of even order 

less than n might be specified. 
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