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PREFACE 

Tiie objectives of this study were: (1) to evaluate turbidity 

caused by suspended inorganic soil particles as a pollutant by analyzing 

the community structure of benthic macroinvertebrates using species 

diversity indices as well as traditional qualitative methods and (2) to 

.establish causal relationships for the different community structures 

as indicated by physicochemical features, organic content of the sedi­

ments, and primary productivity estimates. 

Dr. Rudolph J. Miller served as major adviser. Dr. Dale Toetz 

directed the research and criticized the manuscript. Dr. Calvin G. 

Beames, Dr. William A. Drew, and Dr. Troy C. Dorris served on the ad­

visory committee and criticized the manuscript. Dr. Jerry L. Wilhm 

assisted with data recording and Nancy Norton wrote the computer program 

for species diversity calculations, Wayne E. Epperson, Greg Keeler, 

John H. Carroll, Jr, and other personnel at the Aquatic Biology Labora­

tory helped make field collections. Tile assistance of all these people 

is appreciated. 

This study was supported by Tile United States Department of the 

Interior, Tbe Office of Water Resources Research, Project No. A-001-0kla. 
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CHAPTER I 

INTRODUCTION 

Water pollution may be defined as any alteration of water quality 

which has an adv~rse effect upon beneficial use of water without neces­

sarily creating a public health hazard (Stroud, 1967), Polluted waters 

are often detected by chemical assays, but biological methods, such as 

analysis of the community structure of the benthic fauna, should also be 

employed because a principal concern of many water pollution scientists 

is the maintenance of diverse aquatic communities. Natural biotic com­

munities typically are characterized by the presence of a few species 

with many individuals and many species with a few individuals of each 

(Odum et al., 1960). Polluted environments, however, are characterized 

by fewer species and often greater numbers of individuals, especially 

in organically enriched environments (Gaufin and Tarzwell, 1956). 

Numerous investigators have sought to associate aquatic populations 

with various levels of pollutants, but their investigations have been 

primarily concerned with organic pollution. Suspensions of inorganic 

particulate matter are also recognized as pollutants, but information 

is lacking on the direct and indirect effects of such suspensions. Tur­

bidity, which is an expression of the optical property of water, may be 

caused by a variety of suspended particulate matter. The turbidity in 

central Oklahoma surface waters is due primarily to suspended inorganic 
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soil particles of a montmorillonite clay type (Irwin and Stevenson, 

1951). These suspended particles cause light rays to be scattered and 

absorbed rather than transmitted in a straight line and may exert an 

indirect effect on the aquatic environment through light exclusion 

(Bartsch, 1960). 
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Macroinvertebrates serve as a useful tool in detection of pollution 

and retain.their sensitivity down to levels at which other methods of 

evaluation cease to be useful (Hynes, 1963). Benthic macroinvertebrates 

are relatively immobile, have aquatic stages lasting long enough to de­

velop complex faunal associations, and serve as natural monitors of en­

vironmental conditions. The use of these organisms as indicators of 

pollution has led to considerable confusion because of the limited range 

of certain species, because different types of pollutants may have varied 

effects on the same species (Gaufin, 1958), and because some organisms 

found in abundance in polluted water may also be found in reduced num­

bers in unpolluted water (Gaufin and Tarzwell, 1952), 

The total assemblage or community structure of benthic macroinver­

tebrates provides a more reliable evaluation method of environmental 

conditions than mere occurrence of specific species. Community struc­

ture has been analyzed in terms of species frequency, spatial distri­

bution of individuals, numerical abundance of species and diversity 

indices (Hairston, 1959). Diversity indices are mathematical expres­

sions which describe a ratio between the number of species and numbers 

of individuals or biomass within a biotic community. Analyzing com­

munity structure by species diversity indices eliminates awkward, de­

tailed lists of species or associations of species and summarizes large 

amounts of data on the abundance of the taxa represented in the 



cemmunity. The indices are also valid indicators of changes and dif­

ferences in community structure (Patten, 1962; Mathis,. 1965; Wilhm and 

Dorris,. 1966; Harrel,.1966; Ransom, 1969). 
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Theoretically, diversity of species in a natural environment lies 

between two extremes. A maximum diversity exists when all individuals 

belong to separate species and a minimum diversity exists when all indi­

viduals belong to the same species. Margalef (1956) derived an index of 

species diversity from information theory. Information theory does not 

attempt to explain observed phenomena but provides the amount of infor­

mation required to explain them (Hairston, 1959). Diversity and un­

certainty are equated regarding individuals and species selected at ran­

dom from a community (Margalef, 1961). For example, a community with 

relatively equal numbers of individuals belonging to different species 

has a greater uncertainty, i.e., a greater diversity. A community with 

unequal abundance among species reflects·less uncertainty, i.e.,.less 

diversity. 

Wilhm and Dorris (1968) stressed that certain requisites should be 

met when selecting an index •. The index must be independent of sample 

size, since with increasing sample size, the number of indiyiduals in­

creases considerably faster than the number of species; it must express 

the relative importance of different species because. the compositional 

wealth of the same species in different areas may beheterogeneous; and 

it must be dimensionless when using.biomass units instead of numbers of 

individuals. If the latter condition is not met, the values generated 

will depend upon the arbitrary choice of weight units. 

Wilhm (personal communication) concluded that Patten's (1962) equa­

tions met the criteria of Wilhm and Dorris (1968) better than other 
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commonly used diversity equations and were effective indices. Community 

diversity, diversity per individual and redundancy can be calculated 

using Patten's equations. Diversity per individual reflects the compo• 

sitional richness of mixed species aggregations of organisms, while re­

dundancy expresses the dominance of one pr more species. The latter is 

inversely proportional to the wealth of the species within a community. 

The present study evaluates turbidity as a pollutant by analyzing 

the community structure of benthic macroinvertebrates in four farm ponds 

with different levels of turbidity. Community structure was subjected 

to traditional qualitative methods and summarized by species diversity 

indices of Patten, which were derived from information theory. It will 

be shown that the primary consequence of pollution by suspended inor­

ganic soil particles was the elimination of aquatic plants and second­

arily, the reduction of the benthic fauna diversity. 



CHAPTER II 

PROCEDURES 

Physicochemical 

Physicochemical data were obtained for the surface,waters of the 

ponds studied from June, 1966 through May, 1967. (See Chapter III for 

a description of the ponds.) The water level of each pond, relative to 

the spillway level, was measured with a permanet guage. Precipitation 

data were obtained from records of the U. S. Weather Station at 

Stillwater, Oklahoma. Conductivity was measured with a Hellige compa­

rator. Phenolphthalein and methyl orange alkalinity of the pond water 

were ascertained by standard methods (APHA, 1960). In February, 1968, 

five randomly selected sediment samples were collected from each pond, 

using an ooze sucker designed by Moore (1939), and the organic content 

was determined by the Oklahoma State University Agricultural Extension 

Service, using a chromic acid oxidation technique, 

Dissolved oxygen concentration of the ponds was determined at three 

hour intervals for a period of 24 hours on August 17 and 18, 1966, and 

June 30 and July 1, 1967, with a Galvanic Cell Oxygen Analyzer and at­

tached thermistor (Precision Instruments Company). Photosynthetic pro­

ductivity, community respiration and diffusion rates were then calc\,1-

lated by construction of 24 hour rate-of-change curves (Odum and Hoskin, 

1958; Copeland, 1961). 
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Turbidity was the main criterion in selection of the ponds. Al­

tho4gh they were in the same vicinity, the ponds displayed different 
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but relatively constant transparency levels prior to the study. While 

turbidity is often expressed gravimetrically (ppm), it is not truly a 

measure of the suspended matter, but rather an expression of the optical 

property of the water (Bartsch, 1960). Therefore, turbidity was measured 

with a Bausch and Lomb Spectronic 20 colorimeter and was expressed as 

per c~nt transmission at 450 mµ •. The volume and surface area of each 

pond were calculated monthly. The area of the drainage basin of each 

pond was estimated from aerial photographs and field observations. 

Biological 

Benthic samples were taken approximately every two weeks from June 

through October, 1966. Monthly samples were obtained from the latter 

date through May,. 1967 .. Samples. were not taken during December, 1966, 

because of extensive ice cover. Gridded maps of each pond were used to 

randomly choose eight benthic sample stations before going to the field. 

Two Elanan dredge samples were obtained from each of the eight selected 

areas. Samples were seived (0.42 mm openings) in the field, and remain­

ing debris and organisms were preserved in 10% formalin. Additional 

washing and sorting by hand were accomplished in the laboratory, and 

the organisms were preserved in 80% isopropyl alcohol. 

Mean ash-free weights were determined for all species. Organisms 

such as Odonata, which varied considerably in size, were weighed on a 

monthly basis for each pond. Mean .. seasonal weights were determined for 

such organisms with less size variation, and annual mean weights were 

calculated for organisms of sparse abundance (e.g., most dipterans). 
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): 
Known quantities of each species were dried at 90 C f'or 24 hour~,in 

tared crucibles. and then weighed again to determine the d~Y,·,:weight. 
···i 

The dried organhms were burned in a muffle furnace at 600 C for two 

hours. After cooling in a dessicator, the crucibles were reweighe~ to 

obtain the ash weight. The ash-free weight (organic content) has been 

expressed as mean annual biomass per meter square for each species col-

lected (Table IV). 

Species Diversity 

The species diversity models employed (Patten, 1962) estimate com-

munity structure in terms of species diversity.(d), diversity per indi­

vidual (d), a theoretical maximum diversity (d ) , a theoretical minimum max 

diversity (d. ), and redundancy (r) where n is the total number of indi­min 

viduals in the sample, n. is the number of individuals of species i, 
]. 

ands is the number of species. When applying the indices to biomass, 

n is replaced by w (the sample·weight), and w. becomes the sample weight 
]. 

of the ith species. The equations used to make the calculations are set 

out below. 

d - En. log 2 n. /n 
]. ]. 

d = (1/n) (iog2 n! - s log 2 (n/s) 0 max 

d = (1/n) (lo,~ 2 n! - log 2 Iii.- ( -15] !} 
min 

' ,!· 
,; 

d d 
r = .,__,_m.;.;;a;;;;;;x ____ _ 

d d . max min 



CHAPTER III 

TURBIDITY AS A POLLUTANT 

Morphoedaphic Features and Range Practice 

The four ponds investigated are located in Payne County, Oklahoma, 

approximately eight miles north of Stillwater. The ponds are referred 

to as Ponds A, B, C, and D and are all located in Range 2E, Township 

20N, with A in Section 5, Bin Section 7, C in Section8, and Din Sec­

tion 4. The greatest distance between any two ponds is 3.5 kilo~eters. 

The turbidity levels of the four ponds may have been governed by 

several factors. All of the following factors probably influenced the 

water transparency: rainfall and runoff rate, condition of the vege­

tation in the watershed, drainage basin size, ionic concentration, ex­

tent of aquatic macrophyte abundance, wave action, and roiling by live­

stock. 

Buck (1956) arbitrarily grouped turbid waters into three categories. 

Those with less than 25 ppm particulate solids were ncle~r, 11 those with 

25-100 ppm were "intermediate," and those greater than 100 ppm were 

"muddy." Using.this classification and calibrating per cent transmis­

sion against a Jackson turbidimeter, Pond A with an annual mean trans­

mission of 90% (13 ppm) would be 11clear" (Fig. 1, Table I). Ponds C 

.and D were continually "muddy," with annual values of 11% and 0% trans­

mission (261 ppm and> 310 ppm) recorded. Pond C values ranged from 0% 

to 18% but were relatively steady from September to March. Pond D was 
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TABLE I 

OBSERVED VALUES OF PER CENT LIGHT TRANSMISSION OF SURFACE WATERS OF FOUR FARM PONDS 
AND THE MORPHOMETRY AND WATERSHEDS OF RESPECTIVE PONDS 

Pond A B c 

Per Cent Transmission 
Mean 90 34 11 
Range 7 2-98 2-56 0-18 

Surface Area (ha) 
Mean 0.225 o. 209 0.406 

D 

0 
none 

0.405 
Range 0.195-0.310 0.152-0.351 0.308-0.697 0.303-0.608 

-3 
Volume (m) 

Mean 3096 2698 8862 3370 
Range 2650-4461 1800-4691 2706-4765 2162-5974 

= 

Depth (m) 
Maximum 3.53 3.68 3. 23 2.26 
Mean 1.38 1.29 1.17 0.83 

Drainage Area (ha) 0.9 4.0 .17.0 1.9 

Drainage Area/Spillway 
Volume 

Ratio 2.02 8.53 19.02 3.18 

Axis Direction NE-SW NNE-SSW NNW-SSE N-S 

'° 
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Figure 1. Monthly Variation of Per Cent Light Transmission. Pond 
A-open circle; Pond B-closed circle; Pond C-open tri­
angle; Pond D-closed triangle. 

M 

never greater than 0% light transmission for the entire study period. 

Turbidity of Pond B w,;1s "intermediate" during the period from October 

to February, but the annual mean turbidity was considered "muddy" for 

the entire study period. 

Over one-half of the annual rainfall, 78.99 cm, fell during June 

and July, 1966, and in May, 1967 (Fig. 2). Less than one cm fell in 

November and February. Water levels of the ponds responded to the 
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amount of precipitation and evaporation. During July, Pends A, B,. and 

D reached the spillway level, and Pond c.contained its maximum volume. 

Water levels in all ponds receded during late summer, fall and winter 

but increased with the abundant rainfall of spring. P~nd B exhibited 

the greatest reduction in volume during the period between August and 

March because the landowner intermittently pumped water from the pond. 

Cattle had access to all pasture land in the watersheds of all 

ponds. The extent of grazing was reflected in the condition of vege­

tation, which in turn appeared to reflect some relation to turbidity. 

The principal grasses of the watersheds of Ponds A, B, and C were 

Andropogon gerardi and f:.. scoparius. The condition.of the vegetation 

.in these pastures was variable. Only best plants were grazed in the 

basin of Pond A ("light"). Grazing in the drainage basins of Ponds B 

and C was "close" (completely covered, with.some repetition.of grazing 

and some use of low-value plants). The principal grasses in the water­

shed of Pond D included Cynodon dactylon, Andropogon saccharoides, 

Aristida oligantha, and Buchloe dactyloides. The presence of the latter 

two grasses indicated overgrazing. The general condition of the vege­

tation in the basin was "severe" (hedged appearance and trampling damage 

with primary forage plants almost completely used and low-value plants 

carrying :the grazing load). Pond D also received some drainage from a 

cultivated field, and Pond C .drainage area included an unpaved road. 

Esmey et al., (1955) found that ponds in well-grazed watersheds were 

more turbid than those in cultivated or pastured areas, but Irwin (1945) 

reported that turbid conditions existed when overgrazed and/or culti­

vated fields were included in the drainage basin. Turbidity of the 

ponds, as related to condition of the watershed in this study, appear 
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to be in agreement with the findings of Irwin. 

The size of the drainage basin did not appear to influence tur­

bidity, Ponds A and D had small. drainage areas.(0.9 and 1.9 ha, respec­

tively) but represented the two extre~es in transparency (90% and 0%) 

(Table I). Willrich (1961) suggested that the ratio of watershed area 

to·pond storage capacity affected turbidity, i.e., the smaller the 

ratio, the lower the turbidity. The same conclusion cannot be drawn 

for the ponds investigated. The watershed-spillway capacity ratio of 

Pond D was only slightly larger than A and considerably smaller than B 

and C, yet Pond D had the highest levels of turbidity (Table I). 

The axes.of all ponds approximated a north-south orientation; hence, 

wind direction would not tend to favor any one pond. Tu:i:bulence caused 

by wind tends to keep the soil particles in suspension, especially when 

the bottom sediments are disturbed by wave action. Pond A was located 

in a ravine which protected it from the wind on two sides., but other 

ponds were unprotected. Pond D probably was affected most by wave dis­

turbance because of its shallowness. 

Livestock access to the ponds inevitably affected the turbidity. 

Hall (1959) stated that many potentially clear ponds have been made 

turbid by cattle usage. The extent to which·the cattle influenced tur­

bidity is unknown since all the ponds were used by cattle. However, 

since the volume of water in Pond B was reduced considerably because 

water was pumped from it, excessive roiling may have occurred and may 

have influenced transparency to a greater degree in comparison to other 

ponds. 
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Conductivity 

Generally, conductivity was directly related to light transmission 

of the surface waters (Figs. 1 and 3). Addition of various ions to 

turbid waters has been known to aid in flocculation of clay particles 

(Esmey et al., 1955; Keeton,.1959; M;athis, 1965; Harrel, 1966). Pond A 

had a mean annual concentration of 481 micromhos/cm with lesser conce_n­

trations in the other ponds. Pond B was intermediate between Ponds A 

_and C (259 micromhos/cm). Conductivity in Ponds C and D was similar 

with annual means of 146 and 136 micromhos/cm, respectively. Concen­

tration of ions due to evaporation and reduced dilution by runoff water 

may have been important in settling clay particles and may explain the 

increased transparencies between August and March (Fig. 3). 

irobable Clearing M;echanisms 

The growth of aquatic macrophytes is governed largely by the depth 

of effective-light penetration and e~tent of fluctuation of the water 

levels (Welch, 1952). Aquatic macrophytes were abundant in Pond A 

throughout the study period and included.Potamogeton sp., Najas 

guadalupensis, and Ceratophvllum demersium. Although a sparse popula-

tion of Potamogeton sp. was present in Pond B prior to the investigation, 

it disappeared after the rise in water level during July. Ponds C and D 

contained no rooted aquatic plants. 

Macrophytes may serve indirectly to aid in settling out soil par­

ticles in suspension. Irwin (1945) observed that if aquatic vegetation 

developed in a new impoundment, the water remained clear. Macrophytes 

may actas natural clay p:r;-ecipitating agents through photosynthetic 

activity which is reflected in forms :of alkalinity and hydrogen ion 



-15 

500 

-~ 400 u 
.......... 

"' 0 :c ;. -
~ 300 -> -t-u 
::, 
A z 200 0 u 

100 

J J A -- S O N D J F M A M 
1966 1967 
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concentration, An irregular and high pH was observed in Pond A, which 

also had an abundance of aquatic vegetation (Fig. 4). The relatively 

high pH values in Pond A.during the fall coincided with a relative re­

duction of bicarbonates and an increase.of .carbonates. Aquatic plants 

can use bicarbonates.as a carbon source for photosynthesis when carbon 

dioxide is limiting (Ruttner, 1965) •. The persistence of carbonates in 

the pond also indicated the absence of free·carbon dioxide; hence, the 

bicarbonates were probably used as a carbon source for photosynthesis 

in Pond A, Increased hydroxyl ions may combine-with multivalent cations 

to form a hydroxide which neutralizes the charge· on such negative col­

loids as turbidity particles, causing them to agglomerate (V. Knudson, 

personal communicat:i,on). Although the mechanism .responsible· for the 

flocculation of soil particles is not clearly understood, the effects 

of high pH and hydroxide may be instr~ental in precipitating suspended 

particles .. Thus, aquatic macrophytes may have acted indirectly as a 

natural clearing system. 

Fluctuation of the water level was greater in the more turbid ponds 

(Fig. 2) which had little or no aquatic vegetation. The latter factor 

may have accounted for lower variability of bicarbonates and pH. The 

lack of carbonates in these ponds was also reflected in the lower pH 

values; therefore,.the natural clearing agent found in Pond A appeared 

to be lacking in the more turbid ponds. 

Turbidity levels appeared to be determined by the amount of clay 

. entering the ponds by runoff, the extent of roiling by cattle, and the 

amount of wave action. Flocculation of the clay particles in suspension 

appeared to depend upon the amount of available cations and hydroxyl 

ions, the latter of which was absent in Ponds B, C, and D. 
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Sources.of Environmental Stress in the Ponds 

Odum (1956) classified communities into autotrophic and hetero-

trophic types. An autotrophic community yields a P/R ratio greater than 

one (i.e., productivity exceeds respiration), while a heterotrophic com-

munity exhibits a P/R ratio less than one (i.e., respiration exceeds 

productivity). Ponds with continuous organic enrichment have a photo­

synthetic rate often exceeding 20 g o2/m2/day (Bartsch and Allum, 1957; 

Copeland, 1963), but respiration is also usually high and the P/R ratio 

is low, especially during spring and st.nnmer (Copeland and Dorris, 1962). 

The photosynthetic rates and P/R ratios.in the ponds investigated 

were directly related to the transparency of the water (Table II). 

Oxygen production ranged from 2.10 to 

and D, which were turbid, and 3.28 to 

2 4.46 g o2/m /day 

7 .11 g O/m2/day 

in Ponds B, C, 

in Pond A, which 

was clear. B~tler (1964) reported similar values of 0.3 to 4.9 

g O/m2 /da.y in tu_rbid farm ponds and 5 .1 to 16 .1 g O/m2 /day ir.. clear 

ponds. The higher P/R ratio in Pond A (1.12 and 1.20) indicates that 

Pond A is an autotrophic community while the other ponds with P/R < 1 

are heterotrophic. The P/R ratios in heterotrophic ponds were a result 

of decreased euphotic zone for photosynthesis rather than excessively 

high respiration rates, which are typical of organically enriched en-

vironments. 

Concentrations of organic matter in the sediment were inversely re-· 

lated to turbidity. The greatest mean organic content was found in 

Pond D (2.69%) with 1.99, .1.84, and 1.78% of dry sediment recorded for 

C, B, and A, respectively. The organic content of the bottom sediments 

of the four ponds were within the average range of values reported in 

Midwestern reservoirs in which chromic acid oxidation procedures were 
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TABLE lI 

COMMUNITY METABOLISM AND LIGHT TRANSMISSION IN FOUR FARM PONDS 

Pond Gross Community P/R Ratio Per Cent: 
Productivity Respir~tion Transmission 

2 
g 0/m /day 

2 
g 0/m /day 

(450 mµ) 

August 17-18, 1966 

A .7.11 6.34 1.12 92 
B 2 .• 81 2.93 0.96 25 
c 2.48 3.05 0.62 0 
D 4 .• 46 5.06 0.88 0 

June 30. - July 1, 1967 

A 3.28 2.73 1. 20 . 90 
B :3 .92 15.79 Q.25 2 
c 2.65 6.56 0.40 4 
D 2.10 9.06 0.23 0 
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employed (Larson et al., 1951; Larson et al., 1951; Stall et al., 1951, 

1952, 1953,. 1954; Stall and Melsted, 1951; Norton, 1968). The mean 

organic content found by these investigators was 0.79 to 3.05% of the 

dry sediment. Although the observed concentrations of organic matter 

of the sediments in the ponds may not be indicative of the true mean 

annual content because samples were secured only in February, 1968, no 

pond appeared to exhibit excessive organic enrichment. 

Analyses of the productivity, sediment organic content, and phys:i,.­

cochemical conditions indicated that the primary variable causing stress 

in the ponds was suspended soil particles. The effect of this pollutant 

on the bottQn;J. fauna was indirect, and a description of its magnitude is 

given below. 



CHAPTER IV 

COMMUNITY STRUCTURE OF BENTHIC MACROINVERTEBRATES 

AS RELATED TO TURBIDil'Y 

Species Collec~ed 

A total of 50 species-of 1:>enthic macroinvertebrates was collected 

from all ponds during the study period. Forty-four species were col­

lected from Pond A, 40 from B, 34 from C, and 29 from D. The range of 

the number of species taken at any sampling date was more narrow, and 

the annual mean number of species was lower in the more turbid.ponds 

(Table III). Seasond differences-in the num))er of species showed 

similar trends (Fig. 5). 

Although the number of species collected was inversely related to 

t1,1rbidity, most of the species were common to two or more-of the ponds. 

Species collected exclusively from Pond A included three odonates, one 

coleopteran, and four dipterans, while species unique to Pond B were one 

nematode, two oligochaetes, and one dipteran. All species found in C 

and D were also present in either A or B or both (Table IV). 

Seasonal Changes in Numbers and Biomass of Benthic Fauna 

The seasonal and annual mean numbers of individuals and the biomass 

of the benthic macroinvertebrates were similarly associated with tur­

bidity. Maximal number of individuals and the greatest biomass occurred 

in Pond A (least turbid), and the minimal numerical abundance of 
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TABLE III 

ANNUAL MEAN VALUES AND RANGES OF THE NUMBER OF SPECIES, INDIVIDUALS, 
AND BIOMASS OF ORGANISMS COLLECTED FROM FOUR FARM PONDS 

Pond A B c 

MEAN NUMBER OF SPECIES 22 14 13 
Range (9- 26) (7-21) (5-18) 

MEAN NUMBER OF INDIVIDUALS/m2 1519 607 1032 
Range (266-4804) (113-1344) (532-2562) 

MEAN BIOMASS mg/m 
2 821 423 460 

Range (139-1541) (90-794) ( 231-1260) 

D 

10 
(5-18) 

435 
(20-1035) 

205 
(65-501) 

!',.) 
!',.) 



TABLE IV 

MEAN ANNUAL NUMBER OF. INDIVIDUALS AND BIOMASS <lF BEN'll!IC MACROINVERTEBRATES 

Individualslm2 Biomass Cms£m2) Individuals£m2 Biomass {mg/m2l 
Taxon Pond Pond Taxon Pond Pond 

A B c D A B c D A B c D A B c D 

* * NEMATODA NC p NC NC 0.01 DIP'JERA 894 76 634 27 139.87 13.74 80.51 5.35 

OLIGOCIIAETA 114 21 3 229 31.34 2.14 0.91 63.62 CERATOPOGONIDAE 
Branchiura sowerbyi NC p NC NC 0.12 Paipomyia sp. 43 2 9 3 16.01 0.90 3.55 1.60 
l!!l!.2 sp. 76 16 NC 1 4.64 0.90 0.03 
Limnodrilus sp. 36 4 3 228 26.70 1.10 0;91 63.59 CULICIDAE 
!!!! sp. NC p NC NC 0.02 aiaoborus punctipennis 693 13 578 2 79.15 1.81 68.31 0.24 

CRUSTACEA TABANIDAE 
Hyalellam 209 2 1 4 31.40 0.20 0.14 0.51 ~Sp. 9 NC NC NC 24.08 

EPIIEMEROPTERA 133 488 307 135 187.42 323.09 290.15 85.16 TEBDIPEDIDAE 149 61 27 22 20.63 11.03 8.65 3.51 
~sp. 35 4 1 p 5.74 0.89 0.12 0.08 Calospectra sp. 54 1 NC NC 4.15 0.06 
Callibaetis sp. 7 p p p 3.24 0.08 0.08 0.17 Clintotanypus sp. 2 2 2 p 0.30 0.49 0.29 0.03 
Hexagenia .ll!!!2!!.! 91 484 306 134 178.44 322.12 289.95 84.91 Coelotanypus sp. 11 11 10 1 3.51 3.24 2.98 0.40 

~tochironomus sp. p 4 1 1 0.02 0.53 0.10 0.17 
ODONATA 61 5 3 4 282. 75 34.57 9.71 39.29 Dicrotendipes sp. 3 5 1 2 0.40 0.73 0.15 0:28 

Argia sp. p p NC NC 0.06 1.56 Endochironomus. sp. 1 1 p NC 0.06 0.08 0.06 
Enallagma sp. 20 NC NC 0 NC 20.39 Glyptotendipes sp. 1 2 1 1 0.01 0.03 0.06 0.01 
Epicordula sp. 6 2 1 p 79.42 1.75 0.87 2.55 Hetirocnemus sp. p 4 3 NC 0.04 0.52 0.38 
Gomphus sp. 7 2 1 3 71.25 31.06 8.02 35.74 Paralauter borniella sp. l 1 p NC 0.09 0.08 o_.02 
~.sp. 15 NC 1 1 25.83 0.82 1.00 Pelopia sp. 23 NC 2 p 4.34 · 0.36 0.07 
Libellula sp. 12 NC NC NC 82.05 Pentam,ra sp. 7 14 12 2 1.33 2.38 2.22 0.41 
~sp. p p NC NC 3.55 0.20 Polypedium sp. p 2 l 2 0.04 0.64 .0.09 0.26 
Pachydiplax longipennis p NC NC NC 0.20 Procladius sp. 19 4 9 6 1.97 0.52 1.11 0.74 

Psewlotendipes NC p NC NC 0.05 
NEUROPTERA Stenochironomus sp. p 3 p 1 0.05 0.46 0.06. 0.23 

.fil!ll! sp. p 7 22 10 0.22 8.15 24.16 8.80 Stictochironomus sp. 2 2 2 4 0.30 0.44 0.35 0.76 
.Tendipes nr. attenuatus 2 2 1 p 0.23 0.23 0.13 0.04 

TRICHOPTERA 4 1 p p 3.03 0.74 0.11 0.11 Tendipes plumosus 20 3 2 l 3.76 0.55 0.29 O.ll 
~lip. 3 p p p 1.17 0.11 0.11 o.u Tendipes (Einfeldia) sp. p NC .NC NC 0.01 
Psychamyia sp. 1 p NC NC 1.86 0.63 Tendipes sp. p NC NC NC 0.02 

COLEOPTERA 39 1 p. 2 31.02 1.28 0.27 0.91 MOLLUSCA 68 3 56 p 112.00 2.48 54.20 0.21 
Agabus sp. p NC NC p 0.15 0.15· Gyraulus sp. 1 1 NC NC 0.10 0.02 
Berosus striatus 15 p p 2 12.08 0.10 0.27 0.76 Physa sp. 67 l p p 111.90 1.47 0.93 .0.21 
Halipus~ 2 NC NC NC 2.19 Sphaeri um sp. NC l 56 NC 0.99 53.27 
Hydrophorus sp. 22 .l NC NC 16.60 1.18 

*p = Present but less than l individual/m2; NC = Not .collected 

N 
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individuals and lowest biomass occurred in Pond D, which'.was extremely 

turbid (Table III, Fig. 6). Ponds B and C were simi. lar in biomass con-

tent, but the numerical abunda1;1.ce was greater in C .. Biomass and numbers 

of individuals from these-two ponds were intermediate between Ponds A 

and D. Generally, the speci~s -with the bulk of individ.uals contained a 

large·portion of the biomass, but some·less numerically abundant species 

of greater size, odonates for example, also contributed a large share 

of the biomass (Table IV). The seasonal changes in numbers of indi-

viduals.and biomass were.caused by seasonal changes in growth, repro-

duction, and emergence of many benthic species. 
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Diversity Indices Using Numbers of Individuals 

and Biomass Units 

26 

Dive.rsity is equated with uncertainty regarding the r~ndom selec­

tion of an individual of a particular species present in the communi~y. 

Uncertainty is greater and redundancy is reduced when the number of 

species is large or when the number of each species within the commu-

nity is nearly the same (i.e., distribution of species is relatively 

homogeneous). When the distribution of species is unequal or when one 

or two species dominate the community, a larger probability exists that 

an individual selected at random will belong to the dominating species. 

Thus, considerable repetition or redundancy of information exists and 

information per individual is low, reflecting a low diversity value and 

a highredundancy value. Redundancy (r) is inversely related to d:i..-

versity, yet it is not a mirror image, and the values range from. 0 to 1. 

Diversity of species of macroinvertebrates in each pond was calcu-

lated for each of the 14 sampling dates and a comparison of seasonal 

values using numbers of individuals and biomass units was made (Fig. 

7). Diversity per individual (d), obtained by using numbers of ind;i..-

vi.duals, was irregular and similar seasonal trends were not evident in 

any two ponds (Fig. 7). Diversity based on numbers of individuals was 

influenced equally by species which differ greatly in size. For 

example, in Pond A the phantom midge j). Chao·borus punctipennis Say, com­

prised a mean annual number of 693 individuals/m2, but the average ash­

free ·weight was only 0,11 mg/individual. The average organic weight 

of the dragonfly naiad, Gomphus sp., was 14.08 mg/individual and the 

mean annual number was only seven individuals/m.2. Thus, 128 £:. 

punctipennis were required to equal the biomass of one Gomphus sp., but 
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f. punctipennis was slightly less than 100 times more abundant numeri-

cally. Also, when numbers of individuals were used to calculate diver-

sity, no consideration was given to the variation of siie which.existed 

among species. A range of biomass content from 0.49 mg/individual to 
' . 

13.44 mg/individual of the burrowing mayfly, Hexagenia linibata 

(Serville), occurred in Pond A. Consequently, one f. punttipennis had 

the same·. influence on diversity indices as one Gomphus sp.,. and one pre-

emergent!!· limbata had no more influence than a newly hatched larva 

when numbers of. individuals were used as basic data in calculating the 

diversity index. Wilhm (1968) showed that the discrepancy could be 

corrected by using biomass units instead of numbers when calculating 

species diversity indices. This redefines diversity in terms of bio-

mass, and is therefore more closely related to energy distribution among 

species; thus, diversity is equated with uncertainty regarding biomass 

instead of numbers, Since considerable variation existed between and 

among species in the four ponds, the relative importance of each species 

was more adequately expressed in biomass units.rather than in numbers. 

When biomass units were used to calculated, the seasonal values 

formed an inverted "u" configuration for all ponds• with v.alues higher 

in fall and winter and lower in summer and spring (Fig. 7), The re-

verse trend was expressed by redundancy (Fig, 8). In general. more 

homogeneity was expressed when biomass units were used rather than num-

bers of individuals. This was true. because the less numerous yet 

larger individuals of some species were more heavily-weighted on the 

basis of biomass than the .more abundant yet smaller organisms.which 

dominated on a numerical basis. Diversity per individual, using.biomass 

as basic data, exemplified similar seasonal trends as the ,seasonal 
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number of species (Fig, 5), but the differences between ponds in each 

case were not necessarily of the same magnitude or in the same order 
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(e.g., Pond B ranked second in the number of species but had the lowest 

d values throughout the year). 

Comparisons of Diversity in Ponds Studied 

Pa-tten (1962) stated that species diversity (d) reflected the 

compositional r.ichness of mixed ag~regates of organisms •. However, 

Wilhm. (1967) found that d was closely associated with numbers of indi-
.,., 

yiduals and inadequately associated with_the wealth of species. The 
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species diversity (d) values of the macroinvertebrates in the ponds in­

vestigated ap.peared to be closely related to. biotnass, Both d and bio­

mass were highest in Pond A, while these values were slightly greater 

in Pond C than in Pond B (Figs. 9 and 6). Pond D had the lowest d 

values and biomass throughout the investigation. Diversity per indi­

vidual (d) and redundancy (r) are more closely associated with.the 

wealth of species and their values are also smaller (Wilhm, 1967), 

Therefore, diversity per individual (d) and redundancy (r) provided 

easier and better means of evaluating community structure than species 

diversity (d). 

Using:biomass units, the greatest diversity per individual (d) and 

the lowest redundancy (r) occurred in Pond A during all seasons (Figs. 

7 and 8), The lowest d values.occurred in the summer because fewer 

species were collected then, rather than pecause of the unequal distri­

bution of biomass among the different species. The summer redundancy 

· value for Pond A was only 0,32 (Fig. 8), Six species contri.buted 

five per cent or more of the organic weight: Hexagenia limbata ( 27%), 

Chaoborus punctipennis.(14%), Physa sp. (10%), Libellula sp. (8%), 

Gomphus sp. (6%), and Chrysops_sp. (6%). The ave.rage number of species 

.collected increased in the fall and the continued rehtive homogeneity 

of biomass among six species accounted for the increased diversity per 

individual (Figs. 5 and 7). The larger li· _limbat:a had emerged before 

fall and their newly hatched larvae reduced the biomass content of this 

species to eight. per cent, but .£ •. punctipennis increased in abundance 

and accounted for 22% .of the biomass. During. the winter m.onths, the 

mean number of species increased only slightly, but the distribution of 

weight was .divided among eight species. Physa sp. ~ Libellula sp,, 
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. .!!· _limbata, Epicordula sp. f· e.unctipennis, Hyallela azteca, Palpomyia 

sp. and Hydrophorus sp. contributecl 17, 12, 10,. 9, 8, 6, 5, and 5% of 

the ash-free weight,. respectively. This relatively equal distribution 

was.reflected in the increased diversity and reduced redundancy. The 
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reduced diversity per individual in spring was the result of the pres-

ence of the larger pre-emergent individuals of !!· -_ limbata, which ac-

counted for 23% of the biomass. 

Throughout the investigation, the biomass of the different species 

was unequally distributed in Pond B (Table IV). Although the numper of 

species collected from Pond B was exceeded only by Pond A, seasonal 

diversity per individual was the lowest of all ponds and redundancy was 

the greatest. The d and r values reflected the dominance of.H. limbata 
. - -------

during all seasons (Figs. 7 and 8). During the summer this species 

composed 90% of the biomass, and no other species accounted for more 

than three per cent of the biomass. The smaller individuals of H. 

limbata in fall accounted for only 60% of the biomass, and two addi-

tional species, Gomphus S(). (23%) and Sialis sp. (6%), shared in the 

biomass distribution. The higher d values during winter (Fig. 7) were 

probably due to the sharp increase in the numl;,er of species present 

(Fig. 5). The bulk of the biomass was shared by!!· limbata (62%) and 

Gomphus sp. (18%). The drastic drop from winter to spring in diversity 

per individual can be attributed again to the dominance of !!· __ limbata, 

which comprised 96% of the organic weight, and to a reduction of the 

species collected. This profusion of!!· _limbata increased redundancy 

. to its maximum annual v~lue of 0.90 in spring. 

Ponds C and D were similar ind and r for all seasons, the values 

being intermediate between A and B (Figs. 7 and 8) .. The mean number of 

species collected from each of the above ponds also fluctuated propor-

tionately, although Pond C .in most instances contained more species 

(Table III), Three species had a greater influe.nce on uncertainty in 

these two ponds during summer and fall. H. _limbata was the dominant 
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species in Pond C and cantributed 68% and 47% of the organic weight for 

summer and fall, respectively. The biomass distribution in Pond D dur­

ing these two seasons was mainly attributed to !!· _ limbata, Limnodrilus 

sp., and Gomphus sp~, which.comprised relative per cent biomass content 

values of 68, 14, and 11 in summer and 47, 24, and 11 in fall for the 

respective species. The peak of the d values for Ponds C and Doc­

curred in. winter and dee lined .. in spring, which was also true· for Ponds 

A and B. This decline-was caused by the winter-ta-spring growth of g . 

. limbata.and by a reduction in the number of species.collected. The in-

fluence exerted by the dominating species caused the r values to be 

lower in.winter and higher in spring. 

Duncan's multiple-range test (p = 0,05) showed that diversity per 

individual in Pond A (annual average of 2.98) was significantly dif­

ferent from the other three ponds. Pond B had the lowest mean value 

(0.98) and was significantly different from C and D. Ponds C and D had 

mean annual values of 1.69 and 1.78, respectively, but were not sig­

nificantly different from each other. 



CHAPTER V 

ECOLOGICAL CONSIDERATIONS 

Keup et al., (1966) stated that as the concentration of a given 

pollutant increases, the more sensitive species.are eliminated until 

only the more tolerant species survive and remain in the adverse envi­

ronment. Since the total number of species .collected from the ponds 

declined with decreasing-transparency, it might be assumed that the "more 

sensitive" species were being E:lliminated as turbidity levels increased 

and that.only the "more.tolerant" species survived the more adverse 

turbid conditions. -However, such an assumption might be in error. A 

consideration of the habitat requirements of some benthic species pro­

vides a more realistic assessment of the effect· of turbidity on the di­

versity of macroinvertebrate.s. 

A great abundance of l?enthic fauna has been shown to be closely re= 

lated to the presence of aquatic plants (Needham, 1938; Pate, 1932, 

1934; Surber, 1930; Shelford, 1918). Several of the species found in 

the "clear" pond (A) which .contributed significantly to the diversity 

values were·largely dependent upon'rooted aquatic plants that provided 

living_space, food, shelter, and attachment site for repraductive pur­

poses. Many of the species were rare or absent from the other ponds 

which contained span~e or no yegetatien. 

Odonata, for example,.utilize emergent vegetation for resting sites 

as adults and their eggs are often attached to.er inserted into 
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plants (Smith.and Prichard,, 1963). In Pond A, eight odonate species 

were collected and three of these. species were influential on the di­

versity values throughot,1t the year. The odonates·in Pond A comprised 

more than seven times the biomass content of that in any of the other 

three· ponds. Only· five· odonate species were· found in the three· no.n­

vegetated ponds, in which Gomphus sp., a burrowing form, was the only 

odonate collected throughout the year (Table IV). 
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Pennak (1963) stated that Hyalella azteca reacts negatiyely to 

light and that during the daytime they can be found in vegetation or 

under debris. Mackin (1941) and Buscemi (1961) also found g. _azteca 

associated with-vegetation in shallow aituations. Caenis spp. inhabits 

stagnant bodies of water, such as vegetation-choked backwater of streams 

of bays (Burks, 1953). The dipterans Chrysops sp., Palpomyia sp., and 

many tendipedid species are also found ~ore abundantly in waters 

favored by a heavy growth of aquatic plants (Wirth and Stone, 1963). 

The taxa mentioned above were also more common in the vegetated Pond A 

than in the other ponds (Table IV). 

The more common species found in the turbid, .nonvegetated ponds 

. (B, C, and D) were ~enerally burrowing forms and not associated with 

aquatic macrophytes. Hexagenia limbata, commonly collected from all 

ponds but more. abundant·in the three.turbid ponds,.are usually found in 

.. a variety of habitats. (Hunt, 1951). Limnodrilus sp., most frequently 

collected from the pond with the ~ighest sediment organic content (D), 

feed- on bottom mud and usually are concentrated in organically enriched 

water (Pennak, 1953). Freshwater mussels are ~enerally found on many 

substrate types but usually inhabit substrata free of rooted vegetation 

(Pennak, 1953). Sphaerium sp.,. a fingernail clam, was abundant only in 
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Pond C •. Chaoborus punctipennis was-frequently collected from Pond A and 

C but was scarce in Band D. Ponds A and C maintained a larger area of 

greater depth throughput the year than did B and D. f. _punctipennis 

.has beenreported as a typical profundal benthic organism.in lakes 

(Sublette,.1957; Ransom, 1969). Therefore, depth-rather than the pres­

ence or absence of aquatic plants was probably the ~ajor factor re­

lating. to the abundance of f. _punctipennis. 

Wilhm (1968) found that species diversity was higher in vegetated 

areas as opposed to open areas of the same constant temperature spring, 

with d values of 1.85 and 0.98 for the vegetated and open areas, re­

spectively. Turbidity_ was not, however, a factor limiting the aquatic 

plant growth in open areas. 

It is apparent that benthic faunal associations in Ponds A, B, c, 

and D were not ''more. tolerant" or "more sensitive" to the suspended 

soil particles; but rather, the greater assemblageof organisms, hence 

a greater divers;ity, should be attributed to the greater number of 

habitats provided by the aquatic macrophytes. Thus, turbidity acted 

indirectly on the benthic macroinvertebrates by eliminating sufficient 

light for the success of rooted aquatic plants, the habitat of many 

benthic spe~ies. 

Species diversity indices derived from information theory have 

distinct advantages over traditional methods of evaluating benthic co~­

munities. Diversity indices can be briefly defined in terms of precise 

numerical values which can be compared with or among different aquatic 

environments. Information theory describes but does not explain the 

·. observed phenomena in terms of causal factors. 
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A major objection to using. specific organisms as ''indicators of 

pollution" is that not all organisms are equally affected by all pol­

lutants. However, consideration of the abundance of the assemblage of 

the specific taxa in a community may facilitate a. better understanding 

.of differences in diversity values found in the·ponds studied. Some 

organisms collected from Pond A were·closely associated with aquatic 

plants. The absence·or scarcity of these·organistnsin Ponds B, c,.and 

D indicated the lack of aquatic plants. Censequently, the use of di­

versity indices derived from information theory and determining the 

habitat requirements of the more common species enable an investigator 

to evaluate the effect of a pollutant on a community more adequately 

than by using either tnethod by itself. 



. CHAPTER VI 

. ·SUMMARY 

. A study of physicocbemical c~n~H tioils and c;oriununi ty st:ructu~e of 

'behthic macroinvert:eb:tat:es in Jour farm ponds >was conducied frotrl JunE! ~ .•.. 

1966j through M~y, 1_967. :community_ :structure of the benthic fauna was . ' . . . ' . 

analyzed by ~pecies diverslty i~dices derived. from information th~ory 
' . . . . 

a11d 't\las subjected to tt'.aditio~al qualitative µlethods to evaluate .tut":" 
. ,• .. 

. bidity as. a pollutant •. causalrelatiopships for ~he difhrertt community.· 

·. structure~ ~ere.· estabUshed. based on phyi;ic~c~e~ical features,. or$anic 

,content of sediments, and primary productivity estimates. 

Turbidity differences among ponds appeared-to be governed by rain-
.· . . . . . .... 

fall and runoff rate' condition of' the vegetation in the watershed' 
. . 

ionic concent;ation; extent of aquatic macrophyte abundance, wave action, 
. . 

and roiling .by livestock. Conductivity was inversE!ly: related to tur..,_ 

bidity.· Suspended soil pa;ticles fu1:1; have been.redu~ed .by the formation 
. . . : . . 

of hydroxides.by aqu~ticmacrophyte photosynthesis. Photosynthetic rates 
. . ·. . . . . : . .. .. . ·.. ·, . ·· .. 

and P /R r~tios were di~ectly related to the transparency of the water 
. . . . . . : ... · 

· while organic content of the s~diments sh,~wed 1m inverse relationship ' 

t;o. transplireri.cy. ·. Primary productivity; e>rgani'c content of sediments, 
. . . .• ·.· 

and physicochemical c;ondi tions indic1:1ted. that . the pr:i,mary variable 
,· ·. . ,' .. · . · ... 

·ca~sing str~ss present: in the ponds was suspended inorganic matter; 
. ; . . . 

Fifty species of bent:hic macroinvertebrates were ct:>lleeted during 
. '· ' 

the year·. Number_s o.£ species and individuals ari.d bioma~s. content was .. 

. ·38. 
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maximal in the least turbid pond (A) and minimal in Pond D, which was 

most turbid. Seasonal changes in numbers and biomass coincided with 

.life history stage of the organisms. Generally, the species which were 

·numerically abundant accounted for a large portion of the biomass, but 

some less abundant species of greater size also contributed a large 

share of the biomass content. 

Species diversity indices based on biomass units expressed the 

relative importance of each species and were more closely related to 

energy distribution than indices based on nu~erical abundance. Gener­

ally, greater homogeneity was expressed when biomass units were used as 

basic data. Diversity per individual (d) was high and redundancy (r) 

low during fall and winter for the four ponds. Greatest d's and lowest 

r's occurred in Pond A during all seasons while Pond B reflected the 

opposite conditions. Duncan's multiple range test (p = 0.05) revealed 

mean annual d values of Ponds C and D were not significantly different 

from each other, while significant differences were shown between A and 

all other ponds and Band all other ponds. 

·Pond A maintained a heavy growth of aquatic macrophytes, but the 

other ponds contained sparse or no rooted aquatic plants. Several of 

the benthic organisms which contributed significantly to the higher di­

versity values in Pond A were·· largely dependent upon the aquatic plants 

for living space, food, shelter, and attachment site for reproductive 

purposes, Many of these benthic species were rare or absent from the 

other ponds. The different benthic faunal associations were attributed 

to the greater number of habitats provided by aquatic plants. Thus, 

turbidity acted indirectly in Ponds B, C, and D by eliminating suffi­

cient light for the growth of aquatic plants, resulting in a less 
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diverse benthic community. 
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