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PREFACE

Research in the area of upper semi-.continuous decomposition
-spaces of E, and E4 has been conducted by many of the well-known
mathematicians of today. Among those who have made significant con-
tributions are R. L. Moore, R. H. Bing, G. T. Whyburn, L. F. McAuley,
and J. H. Roberts. Their results have been published in scientific
journals spanning a period of about 45 years.

The purpose of this study is to present in one paper the results
which have been obtained relative to those upper semi-continuous
decomposition spaces in E, and E3 which are topologically equivalent
to E; and Ej respectively. An effort has been made to unify and
modernize the notation, definitions and terminology used in the var-
ious. papers.

In many places in the text of this paper it was difficult to
find a notation which would properly distinguish between points in

- the original space and elements in the decomposition. In most cases
lower case letters were used to denote both, however, care was taken
to always refer to these by using the words '"point!" and "element"
in conjunction with the symbol. Although the elements in a decomposi-
tion are treated as points in the decomposition space, they are
always referred to by the word "element!. Notation such as [20, p. 3]

refers the reader to page 3 in reference number 20 in the bibliography.
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CHAPTER I
INTRODUCTION AND BASIC CONCEPTS

One of the more useful theorems relative to E, is one of R. L.
Moore's which states that if G is an upper semi-continuous decomposi-
tion of E, such that the elements of G are bounded continua which
do not separate E;, then the decomposition space is topologically
equivalent to E,. The purpose of this paper is to exhibit the work
of Moore pertaining to. this and to discuss what has been done in
extending this theorem to Ej3,

There are examples to indicate that the theorem does-not general-
ize to E3 unless additional restrictions are placed on the elements
making up the decomposition. For certain restrictions it has been
proved that the resulting decomposition space is equivalent to Eqo
For others, the question has not yet been answered.,

Work on this topic began in the 1920's and Moore presented his
conclusions relative to E_, in 1924, Much of the advancement with

2

.respect to E, has taken place in the late 1950's and early 1960's.

3
Some of the people associated with this work are R. H. Bing, L. F.
McAuley, E. Dyer, M,-E, Hamstrom, M. K. Fort, and G. T. Whyburn.

This is certainly only a partial listing for many people have pub-

lished papers related either directly or indirectly to this topic.



Basic Concepts and Assumptions

In this paper there are certain basic concepts which will be
assumed to be true for both E, and E3. Some of these will be given
here and others will be introduced in later sections when they are
needed,

First of all, a list of the axioms which are assumed for E,

are:

Axiom 1: There exists a sequence M;, M), ..., such that (a)
for every n, M  is a collection covering E, such that each element
of M, is a region, (b) for every n, Mn+l is a subcollection of Mn
and (c) if R is a region, x and y are points of R, then there exists
a natural number m such that if A is any region belonging to Mm and

containing x then A — R and, unless x=y, A does not. contain y.

Axiom 2: Every region is a connected set of points.

Axiom 3: If R is a region, E, = R is a connected set of points.

2
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Axiom 4: 1If R is a region, R satisfies the Borel-Lebesgue

property.

Axiom 5: There exists an infinite set of points with.no limit

point.

Axiom 6: If R is a region and ab is an arc such that ab - {a}

is a subset of R then (R U {a}) - ab is connected.

Axiom 7: Every boundary point of a region is a limit point of



the exterior of that region.

Axiom 8: Every simple closed curve is. the boundary of at least

one region,

" It will be shown that an upper semi-continuous decompositioen of
E, whose elements are bounded. continua in E, which do not separate
Eg will yield a decomposition space which also satisfied these
axioms. Moore [12] has proved thaf.any space satisfying these axioms
is. topologically equivalent to EZ.
All of the work in this paper is in a metric space and two con-
.cepts which will be useful here are those of lower distance and

upper distance between sets,

Definition: Let x and g be two sets and let P denote any point
of x. Let d (P,Q) denote the distance between two points, P and Q.
Let £(P,g) = glb{d(P,Q)IQ € g}. Then the lower distance from the
set x to the set g is denoted by £(x,g) where £(x,g) = glb{ﬁ(P,g)l
P ¢ x}. The upper distance, u(x,g), is defined to be equal to

lub{4(P,g)| P € x}.

There are several definitions of an upper semi-continuous

collection. Two of them are stated here.

Definition A: [16, p. 416] A collection G is said to be upper
semi-continuous if for each element g € G and for every € > 0 there

existsa >0 such that if x € G and 4(x,g) < § then u(x,g) < €.



Definition B: [22, p. 122] A collection of sets G is said to
be upper semi-continuous provided that if g € G and U is any neighbor-
hood of g then there exists a neighborhood V of g such that if h € G

and hn V.# @ then h = U,

The second of these, Definition B, is the more common of the
two, however, Definition A seems to be the most convenient for this
paper.' Before adopting Definition A it would be advisable to show
that the two definitions are actually equivalent, This 1is done in

the following theorem.

Theorem 1: Let G be a collection of sets. Then for each ele=
ment. g € G and for every ¢ >0 there existsa & > 0 such that 1if x € G
and £(x,g)<§ then u(x,g) < ¢ if and only if‘when U is any neighborheod
of g there exists a neighborhood V of g such that if h € G and

hnV#P@ then hc U.

Proof: Let G be a collection such that for every g € G and
every € > 0 there exists a 6 > 0 such that if x € G and Z(x,g) < §
then u(x,g) < ¢. .Then forbevery e >0 let'Ue be a neighborhood of
g such that every point of Ueis at a distance less than ¢ from g.

If U is any neighborhood of g there exists an € > 0 such that Ug.c U
Then there exists a § > 0 sdch that if x € G and £(x,g) < § then
u(x,g) < e. Let Vé be & neighborhood of g for which every point is
at a distance less than § from g. If x € G and x N Vé # @ then
4(x,8) < 8 and therefore u(x,g) < e¢. But if u(x,g) < e¢ then x Ue

and. therefore x — U,



Conversely, let G be a collection of sets, g € G, such that
when U is any neighborhood of g there exists a neighborhood V of g
suéh that if h € G and hN V. # @ then h « U, Then for every ¢ » 0
let U. be a neighborhood of G such that for every point p of U the
distance from p to some point of g 1s less than €, Then there exists
.a neighborhood V of g such that if h € G and h N V# @ then h = Ue'
Choose § such that 0 < § < ¢» Then V5 is a neighborhood of g such
that every point of Ve 1s at a distance less than § from some point
of g. But Vé N V is a neighborhood of g and"(Vé nvVv)ec U, If
heGand hn (Vg V) # @ then £(h,g) < &, but also h < U, and
therefore u(h,g) < e.

Thus Definitions A. and B are equivalent and may be used inter-

changeably.
Procedure

A survey of the published results concerning upper semi-continuous
decompositions of E, and Ej was made. The principal sources were
research articles published in mathematical and scientific journals.,
The material was analyzed and is presented here in expository form.

In Chapter II of this paper the results of Moore pertaining to
E, will be exhibited in detail. Using a general upper semi-continuous
decomposition of Ep, a space will be formed and it will be shown that
this space satisfies the eight axioms which were stated previously.
Chapter 1II will consist of examples of upper semi-continuous decom-

-positions of Ejy. Particular emphasis will be given to an example

by J. H. Roberts of a decomposition of E, into nondegenerate continua,



no one of which separates the plane.

Many people have made attempts toward extending the theorem
of Moore's to Eg. 1In Chapter IV the results of their efforts will
be discussed along with some examples and counterexamples related
to this work. In addition, some problems which are as yet unsolved
will be mentioned. Perhaps someone reading this paper will be able

‘to find the solution to some of these.



CHAPTER II
R. L. MOORE!'S THEOREM

The study of decomposition spaces was begun in the 1920's.
The first important result was the following theorem published by

R. L. Moore [16] in 1925,

Theorem: If G is an upper semi-continuous decomposition of
E, into continua which do not separate the plane, then the decom-

“position space of elements of G is topologically equivalent to E,.

In his proof of this theorem, Moore [12] used a previous result
which showed that a space satisfying Axioms 1-8 was topologically
iequivalent to E5. If G is any upper'éemi-continuous collection
satisfying the hypothesis of this theorem, then following Moore's
method. of  proof, iﬁ will be shown that if each continuum of G is con-
.sidered as a point, and if a suitable definition of region is chosen,
‘then all the axioms previously stated for E2 will hold when the space
is ‘the collection G. The space of elements of G will be topologi-
cally equivalent to the space of points in E,. A detailed develop-
ment of Moore's work will be given in this chapter.

Suppose that some definite upper semi-continuous collection G
of bounded coentinua of E, has been selected in such a way that no

element of G separates E; and such that every point of Ejy belongs



to some element of G, The letter G will be used throughout this
chapter to refer to this particular upper semi-continuous collection.
The following. definitiens will be used in connection with the

collection G.

Definition 1: If K is some subcollection of the collection
G and if p is an element of G, then p is said to be a limit element
of the set K provided that for every real number € > 0 there exists

some element g of K, g # p, such that u(g,p) < €.

Definition 2: If K< G then K = K; U K, provided every element
of K belongs to either Ky or K, and every element of either‘Kl or K2

also belongs to K.

Definition 3: If Ac G and B G, then A and B are saild to
be mutually exclusive provided no element of G belongs to both A
and B, In addition, if A and B are mutually exclusive and neither
"contains a limit element of the other then A and B are said to be

mutually separated.

Definition 4: If A~ G then A is said to be connected in G

if it cannot be written as the union of two mutually separated sets.

Definition 5: A subset A of G is closed in G provided it con-

tains all of its limit elements.

Definition 6: A continuum of elements of G is any set which

is both closed and connected in G.



Definition 7: A set K of elements of G is said to be bounded
in G provided the set K* is bounded in Ep. The notation K* is used
to denote the set of points obtained by taking the union of the points

of all the elements of K.

Definition 8: A.closed, connected and bounded subset H of G
is a simple closed curve in G provided H is disconnected by the

omission of any two of 1lts elements.

Definition 9: .If h; and hy are elements of a bounded continuum
H in G, then H is said to be an arc in G from hy to h, provided H
is disconnected by the omission of any element other than hj; and h,.

The elements hl and h2 are called end-elements.

Definition 10: A domain D of elements of G is a connected sub-
set of G such that for every element d € D there exists a real num-

ber 6§ > 0 such that if g € G and u(g,x) < § then g € D,

Definition 11: An element g of G belongs to the boundary of
a set H of elements of G if and only if x either belongs to H and
is a limit element: of G - H or x.belongs to G - H and 'is a limit

element of H.

Definition 12: ' A domain D of elements of G is a complementary

domain of a closed set H in G provided (D - D) c H,

Definition 13: If D is a bounded domain then the outer boun-
“dary of D is the boundary of the unbounded complementary domain. of

the boundary of D.



Lemma: If H is a finite subcollection of elements of G then H

has no limit element.

Proof: Let H = {gl,‘gz, ...,‘gk} and suppose that H has a limit

. element g, We would like to show that this leads to a contradiction.
Let €, represent the upper distance of g, from g for every n =1, 2,
~+es, k, such that g # g. Choose ¢ = ¥(min{es|L =1, 2, +u., Kk,

gi-% g}); Then € > 0 and therefore By the definition of a limit
element there must exist an element 8o of H, distinct from g, for which
u(go,g) < €. But no such element exists since e¢ was chosen to be

- less than u(gi,g) for every i = 1,’2, oee, k., Therefore, the original

suppesition must be false and the set H has no limit element,

Theorem 1l: TIf K is a set of points and H is the set of all
elements g € G such that g contains at least one point of K, then
H is closed in G if K is closed.and H is connected in G if K is con-

nected.

Proof: If H is a finite collection, then, by the lemma, H is
closed. Therefore suppose H is an infinite set. Then assuming K
is closed, let us show that H is also closed. Let p be a .limit: ele-
ment of H. Then for every integer n there exists an element hn of
H such that u(hn’p) < ln,and if i# j, hi‘% hj' Thus for every point

x, € hn’ z(xn,p)'< 1/n. For every n, h_  contains a point k, belonging

n
to K. Thus for every n there exists a point y, € p such- that  the
distance from k, to y, is less than 1l/n. Since p € G, p is a bounded

continuum and therefore the sequence MATID PYRERE has a sequential

. limit point- y € p, Then y is a limit point of the sequence
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ky, kg, s+, and, since K 1s closed, y € K. Therefore p ¢ H since
p contains a point of K, and H is clesed.

If K is connected, let us show that the supposition H is not
connected in G leads to a contradiction. If H is not connected in
- G then H can be written as the union of mutually separated sets Hy
and H2 in G, Let Kl = K f Hl* and Ky = K n Hz*. Since K 1s connected,
either K; contains a limit point of K, or vice versa. Without loss
of generality suppose there . exists a point k € K; such that k is a
limit poeint of KZ' Let p € Hl‘such that k'€ p. Since G is an.upper
semi-continuous collection, if ¢ > O there exists a & > 0 such that
whenever there exists an element P, for which z(p63p) < § then
u(po,p) <.e. But, since k is a limit point of Kz,,thére exists a
point kg € K, such that the distance from ké‘tO'k is less than §.
Let hy be an element of H, which contains k., Then z(hé,p) < § and
this implies that u(hg,p) < ¢, and, since this is true for every
€ >0, p is a limit element of Hy,. But this contradicts .the assump-
tion that H; and H, were mutually separatedrsetsysince p € Hl and
therefore it must be false that H can be written as the union of

mutually separated sets, Thus H is connected in G,
Lemma: TIf K is a continuum in G then K* is a continuum in EZo

Proof: Let p be a 1imit point of K¥. Then every region in E,
containing p contains infinitely many points of K¥. Consider the
collection of open. disks with center at p and radii l/n, n =1, 2,
~sess Then for every integer n > 0 there exists a point p, belonging

to .the open disk with radius 1/n such that P, € K* and p, # p.» Then
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the distance from p, to p is less than 1/n. Let k € G such that

p € k .and suppose that k kz,‘...»are elements of K such:.that

1°
p; € ky for every i =1, 2, .... Then for every n, z(kn,k).< 1/n
.and, since G is an upper semi-continuous collection, this implies

‘that for every ¢ > 0 there exists a ki such that u(ki,k) < €.
Therefore k € K- and p € K¥. Thus K* is closed.

Suppose, however, that K* is not connected, Then K* = A (J B

where A.and B are mutually separated closed sets, closed because K¥

is closed. Let K; and K, be subcollections-of»eleménts of K which
contain points of A and B respectively, If Kl n K2 # @ then there
exists a k € K such that k N A # @ and k A B # @, Therefore

k =(k.n A) U (knB)., But since A and B are mutually separated sets,
so also are (k n A) and (k 0 B)., This contradicts the fact thét k

is a continuum in E, and therefore it must be true that K; n K, = @.
~Then because K is connected, there exists a k & K1 such that k is a
limit element of K2 or vice versa, Without loss of generality suppose
k € K; and k 1s a limit element of Ky. Then for every n > 0 the;e
‘exists kn € KZ such that‘u(kn,k) < 1/n. Then for each n there is
_an x, € K, such that the distance from x, to some point y, € k is
- less than 1/n., Since k is a bounded corntinuum the sequence Yis Yoo
.+s has a limit point in k which is also a limit point of the sequence
X5 Koy eeas This implies that k contains a limit point of B and
therefore A contains a limit point of B. But this contradicts the
,assump;ion that A and B were mutually separated. Therefore K* is

connected,



Theorem 2:  I1f D is a bounded complementary domain of a bounded
continuum of elements of G, and K is the outer boundary of D, and
p is an element of K, then K is a continuum of elements of G and

K = {p} is connected.

Proof: Let E denote the unbounded complementary domain of the
boundary of D and let B denote -the boundary of E%, According to the
definition of outer boundary, since K is .the outer boundary of D,

K is the boundary of E. ' In order to make use of Theorém 1, let us
show that every point of B belongs to some element of K and every
‘element of K contains a point of B.

Let k € K. Then k is a boundary element of E and therefore
either k € E and is a limit element of G - E or Kk € G -~ E and 15 a
limit element of E. If the former is true then for every n » 0
there exists g, € G - E such that u(gn,k) < 1l/n. But then for each
g there exists a point x, € g, such that £(xn,k) < 1/n, This implie
that for every n there exists a point y, € k such that the distance
from X, to y, is less than 1/n. Since k is a bounded continuum
belonging.to G, the sequence ¥1s Yoo esey has a limi§ point y € k
which is also a limit point of the sequence X9 Xoy esee Then y € E*
because y € k and k.€¢ E, Therefore, y 1s a boundary point of E¥*.
By a similar méthod, if k. € G - E 'then k contains a point y € E*
which is a limit element of E¥*. Thus every element of K contains

~a point of B.
| Let b € B. Since B is the boundary of E*, either b € E* and
is a limit point of (G - E)* or b € (G - E)* and is a limit point

of E¥, If b € E*, then for every n > 0 there exists a point

13
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x, € (G - E)* such that the distance from x_  to b is less than 1l/n

n
and such that Xy # xj if 1 # j. Let e € E such that b € e, If
€1s €y, +.. represent the elements of G - E which contain X5 x2,....
respectively, then 4(ej,e) < 1/i for every i =1, 2, ..., Since G
is an upper semi-continuous collection this implies that for every
¢ > 0 there exists a § > 0 such that whenever E(ei,e) < § then
u(ei,e) < ¢ and thus e is a limit element of G - E. Therefore
e € Kand b € e. Similarly, if b € (G - E)* then there exists an
e € K such that b € e and therefore every point of B belongs to an
. element of K,

Now, 1t bas been shown that every element of K contains a poeint

of B and every point of B 1s contained in some element of K, and B
1is closed. A corollary of the Phragmen-Brouwer Theorem [22, p. 106]
states that 1f a compact set 1s the common boundary of two domains
then it is a continuum, The set B satisfies these hypotheses and
ﬁence B is a continuum. Thus Theorem I implies that K 1is both closed
“and connected. Therefore K is a continuum of elements of G.

In order to show that for any element p € K, K = {p} 1s connected,
suppose on the contrary that K - {p} can be written as the union of
mutually separated sets M and N. Then M U {p} and N U {p} are closed
and connected and their only common element is p. Let x € D and
y € E, and suppose that d € x and e € y. According to the preceding
lemma, the sets (M U {p})* and (N U {p})* are continua in E, and
their intersection:is the continuum p., Then their union is a contin-

uum - in E, which separates the point d from the point e. Thus, either

(MU {p})* or (N U {p})* separates d from e, for suppose this is not
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true. Then neither (M U {p})* nor (N y {p})* separates d from e,

But in a 2-sphere, Sz,,if two polnts are not separated by either of
two closed sets whose intersection is connected, then they are not
separated by the union of the two sets [25, p. 65]. Since E, is
homeomorphic to 82 - {x} where x is any point of Sz, and because

(MU {p})* and (N {p})* are compact sets in E,, for this case, the
theorem would also hold in E,. But this yields a contradiction

since K separates the points d and e in E2. Therefore, one of

(MU {p})* and (N U {p})* separates d from e. Without loss of
generality suppose (M | {p})* does this. Then M | {p} separates

- x fromy in G; i.e. G - (My {p}) =WU Z where W and Z are mutually
separated sets of elements with x € W.and y € -Z, The set D is a
domain cqntaining x and, since by the definition a domain is connected,
Dc W for the same reason Ec Z, Let q € N» Then q is a limit
element of D and therefore of W. Thus, since q ¢ (MU {p}), q € W,
But q 1s also a limit element of E.and therefore of Z, Tﬁis-contrau
dicts the assumption that W and Z are mutually separated. Therefofe,
the assumption that K - {p} was not connected was false and K - {p}

is connected,

It is now possible to make a definition of a region of elements
of G» It will be shown that the space G with regions defined in the

following way will properly satisfy the desired axioms.

Definition 1l4: A region of elements of G is a bounded domain

of elements of G which has a connected boundary.
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The following theorem will be useful in future proofs. It is
somewhat less general than a theorem of Moore's [15, p 469] in which
he shows that 1f M is a closed point set in E, and K is a bounded
maximal connected subset of M which does not separate E2, then, for
every ¢ > 0, there exists a simple closed curve which encloses K
.and contains no point of M and which is such that every point within
it is at a distance less than ¢ from some point of K, The more res-

tricted form of this theorem will be sufficient for this paper,

Theorem 3: If K is a continuum in E, which does not separate
E, then, for every ¢ > 0, there exists a simple closed curve which
encleses K such that for every point X contained within the closed

curve, the distance from x to some point of K is less.than €.

Proof: Let C denote any circle which encloses K, let r denote
the radius of C.and let d = {(C,K). For every integer n > 0, let
Tn be the set of points x such that x can be joined to C by a simple
continuous arc every point of which is at a distance greater than or
equal to d/2n from every point of K and at a distance less than or
equal to r from the center of C. Then by the way T, is-defined,

for every n, T is a bounded connected point set with Tn c Tn+1°

n

T  is compact. Now, consider

Since T, is a bounded subset of EZ,- n

the collection of all open disks in E2 with radii d/3n. Since for

every n, this collection covers E2, obviously it covers Tno But ?ﬁ

being closed .and compact implies that there exists a finite subcollec-

tion, call it G_, which covers Tﬁ, Let Hn be the circles of radius

n

d/3n, each of which is the boundary of a disk in Gno Then every
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x ¢ T, is contained within a circle belonging to H, with radius equal
to d/3n, and without loss of generality we may assume thét every
element of G, contains a point of Tn. Let Fn = Hn* U Gp*. The set
F, is closed because it'is the union: of a finite colleption of closed
disks. Suppose F, 1s not connected. Then F, =X U Z where X and Z
are mutually separated sets., But then T, = (Tn»n XYy (Tn‘n Z) and
since these are mutually separated sets thisﬁimplies that T, is not
connected, This is a contfadiction and therefore the. assumption that
- F, 1s not connected is false, Let J, denote the boundary of ;he comple-
~ mentary domain D, of F, which contains K, Then J, is a simple closed curve
enclosing K. Then if ¢ > 0, there exists an n > 0 such that every
point of D, is at a distance less than € from some péint of K, for,

if not, there exists an g, such that for every n, there is a point

P, e_Dn such that p, is at a distance greater than or equal to e

from every point of K. Then there exists a point p which is a sequen-
tial limit point of some subsequence of P1s Ppys s+, and such that,

fpr every n, the distance from p to every point of K is greater than
\‘or equal to ¢, Since, by hypothesis, K does not separate E,, there
exists an arc from p to some point of C which does not intersect K.
Let h be the minimum distance ffom this arc to K and let k be the
smallest positive integer such that k > d/2h. Then p € Ji; U Dy.

But since p is a sequential limit point of some subsequence of P1>

Pos eees Fhere is an integer m > k such that pmze Jk U Dye ﬁut

Pp € JmU Dy Ji U Dy .according to the way these are defined.
Therefore, a contradiction has been reached and hence it is true

that for every ¢ there exists an n > 0 for which every point of Dn
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is at a distance less than ¢ from some point of K., Therefore the

theorem is proved.

Theorem 4: If p is an element of G and € > 0, there exists a
region R of elements of G such that for every element r belonging to

R, u(r,p) < €.

Proof: Because p is a continuum which does not separate E2’
‘Theorem 3 ‘Implies there.exists a simple closed curve J of points of
E2 such that p is enclosed by J and such that every point on or within
J is at a distance less than ¢ from some point of p. Let H be the
set .of all elements of G such that if h € H then h contains at least
one- point of J., Since J is a continuum in EZ’ H is a continuum of
elements of G and H* is a continuum in EZ. Let D denote the comple-
~mentary domain of H* which contains the point set p, and let B denote
the boundary of D. According to the second Phragmen-Brouwer property
[25, p..47]), B is a closed and connected set of points. Let R denote
the set of all elements of G which are subsets of D, Then the boundary
of R 1s the collection of elements of G which contain points of B,
and it follows that the boundary of R 1is connected since B is both
closed and connected.,  Then R 1s a domain and therefore it is a
region. Every element r which belongs to R is at an upper distance

- less than ¢ from p.

Theorem 5: If p is an element of G and K is a set of elements
of G then p is a limit element of K if and only if every region of
elements of G which contains p contains at least one element of K

which is distinct frem p.
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Proof: Let p be a limit element of K and suppose there exists a
region R of elements of G which contains p but contains no element
of K, Let B be the boundary of R*¥ and let k be the smallest distance
from B to some point of p. Choose ¢ < k. Then Theorem 4 implies
that there exists a region Re of elements of G such that every element
of R, 1s at an upper distance less than ¢ from p and furthermore,
Re c R. Therefore‘R€ contains no element of K, But this implies that
_ there does not exist an element of K, distinct from p, whose upper
distance from p is less than ¢, and this is a contradiction of the
hypothesis that p is a limit element of K. Thus every region of
~elements of G which contains p also contains an element of K distinct
from p.

" If every region which contains p contains at least one element
of K distinct from p, then for every ¢ > 0, let Re be a region con-
taining p and such that for each element r belonging to Re’ u(r,p) < €.
By hypothesis then, for every e, R€ contains an element of K distinct
from p. Therefore, for every e, there exists some element of K whese

upper distance from p is less than €. Thus p is a limit element of K.

At this time it is possible to show that if the word‘“point“
in Axioms 1, 2, 4, and 5 is reinterpreted to mean "element of G,
then the space of elements of G, with regions in G defined.as bounded
domains in G whose boundaries are connected, will satisfy .these axioms,
" In the material that follows each axiom will be restated in terms
of the space G and accompanying it will be the necessary proof that
it has been‘satisfied. It is assumed that the regions of Ej are

open spheres.
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Axiom 1: There exists a sequence M, M,, ..., such that (1) for
every n, M is a collection coverihg G such that each element of M,
is a region, (2) for every n, M (q is a subcollection of M  and (3)
if R is a region of elements of G, x and y are elements of R, then
there exists a natural number m such that if A is any region: belonging
. to Mm and centaining x then Z'g R and, unless x. =y, A .does not

contain y.

Proof: If g is an element of G then g is a bounded continuum
in EZ’ The space E2 satisfies Axiom 1 as it was originally stated
and since g is a closed and bounded point set in EZ’ for every inte-
ger n there exists at: least one finite subcollection of regions be-
longing to the collection G, which properly cover g, Let
{Fa]a € 1} be all finite subcollections of G, such that for each j,

. = » - | % -
FJ properly covers g. Let RgnFj’ {x]x € G and x C:Fj'}. Then for

€ G,}. Obviously, for each n, M,

each n let M = {RgnFj[g-E G, Fj

is a collection of regions covering G, and M is a subcollection of

ntl

M. Therefore conditions (1) and (2) of the axiom have been satisfied.
In order to show that condition (3) is also satisfied, let R be

a region in G, and let x and y be elements of R. Suppose x # y.

Because x and y are mutually exclusive closed point sets in Eo, each

of which is compact, there exists a bounded domain: D in Ez which cen-

tains x and such that D contains no point of y. Furthermore it is

possible to choose D in such a way that D < R*. Then there exists a

domain D; which contains x and'Bl — D. Note that D and D1 are domains

in E; rather than domains with respect to G, There exists a region
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K with respect to G whose elements are the elements of G which are
subsets of R* - y and such that x € K. Now suppoese that for every
n, there exists a region Ry p belonging to the collection M , such

that RtnF contains x(and'itn is not a subset of K., There exists

F
an m such that no region of the set G intersects-bothv'ﬁ1 and
E2 - D. Then for each n > m, some region of F, the finite subcollection

of G, which determines Rinps Intersects E2 -~ D and therefore lies in
Ey - 31. Since t is covered by F and since it may be assumed that
every region contained in F contains some point of t, t contains a
point P . of Ep - Bl‘ Siﬁce x is also covered by F, there exists a
region belonging to F which contains both a point of x and. a point of
t, Then for every § > 0 there exists an n such that when t € RioF
then 4(t,x) < 6. Then because G 1s an upper semi-continuous collec=
‘tion, for every e > 0, there exists an n such that when t € RtnF’
u(t,x) < e. Therefore the sequence of peints Plt’ Pors sos has a
subsequence which converges to a point X € x. But this 1is a contradic-
tion since x is contained in the domain Dl and, for each i, Pit belongs
to E, -731. Therefore there exists a number m such that if A is a
region with respect to G belonging to M, and containing x, then

AcKcR -‘{y}. Therefore the collection Ml’ MZ’ +o. satisfies the

conditions of part (3) of the axiom.
Axiom 2: Every region is a connected set of elements of G.

Proof: By definition, a region of elements of G is a bounded
domain of elements of G. But a domain of elements of G is defined

to be connected. Therefore every region is a connected set of elements
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of G.

Axiom 4: If R 1s a region in G, then R satisfies the Borel-

~Lebesgue property.

Proof: If R is a region in G then R 1s closed and bounded,
Let H be any éollection of regions in G such that H covers R, Then
" R* 1s closed énd bounded in E, and therefore R* has the Borel.
~ Lebesgue property. If h is a region belonging_to the collection H
then h* 1s a domain in EZ’ Therefore there exists a finite suba
collection {hl"hZ’ eoes hn} of elements of H such‘that {h¥, ..., hﬁ}
covers R*, Thus {h1, «ov, b } covers R. Hence R satisfies the

Borel-.Lebesgue property.

Axiom 5: There exists an infinite set of elements of G with no

- 1imit element.

Proof: Let us suppose G does not satisfy this axiomj i.e,
suppose every infinite set of elements of G has a limit element., In
E2 there exists an infinite set of points P15 Py, vos with no_limit
point. Let 81 825 e be the elements of G such that 8, contains
the point P,. At most a finite number of the gi are equal since,
for every i, g; is compact and if 81 contains infinitely many of the
points then they have a limit point in 8- Thus, without loss of
generality, suppose that all. the g; are distinct. By our suppoesition,
the sequence 815 895 wes has a limit element g belonging to G, Then
for every ¢ > 0 there exists a g such that u(g,;g) < ¢, Thus for

every ¢ and for every point P, there exists a point Xﬁ belonging to
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g such that the distance from Pn to X, is less than e¢. Now, because
g is compact, there exists an X € g such that X is a limit point of
the sequence X;, Xy, ..., But this implies that X is also a limit
point of the sequence Pl’ Py, <.+, and this contradicts the fact that
they have no limit point, Therefore there :exists an infinite set of

elements of G having no limit element.

As a consequence of these four axioms the follewing theorems
‘may new be proved for the space G, Unless otherwise indicated,: in
‘the future material, the word region will be used to mean,a region

with respect to G.

Theorem 6: No element of a region is a boundary element of

that region.

Proof: Let R be a region and x an element of R such that x
belongs to the boundary of R, Then x is a limit element of G - R.
Theorem 5 implies that every region containing x contains an element
of G - R, This implies that R contains an element of G -'R, but
this is impossible, Therefore if xVE R then x does not belong to the

boundary of R.

Theorem 7: If p is a limit element of M then every region. con-

taining p contains infinitely many elements of M.

Proof: Let R be a region containing p. According to Theorem
5, R contains at least one element p1 of M distinct from p. By
Axiom 1 there exists a region R, such that p € R,, ﬁz c R and p; ¢ izm

But Ry contains an element Py of M distinct from p. This process may
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be continued indefinitely. Therefore, it follows that R contains

- infinitely many elements of M.,

Theorem 8: No element of G is a limit element of a finite collec-

tion. of elements of G,

Proof: Let p € G and suppoese M is a subset of G which contains
only finitely many elements. Suppose p is a limit element of M.
Then Theorem 7 implies that every region containing p contains infinite-
ly many elements of M, This is a contradiction since M contains only

finitely many elements. Thus the theorem is true,

Theorem 9: If p is an element of G then there exists an infinite

sequence of regions Rys Ryy e such that, (1) p is the only element

common to all the regions, (2) for every.n,En+1 e R, and (3) if R
is a region about p then there exists an n such that Eh is a subset

of R.

Proof: There exists a region belonging to the collection M,
which coritains p. Let R1 € M; such that p € Rl. According to Axiom

1 there exists an integer mj such that if R ¢ Mm and p € R then
: 1

.ﬁ'c;Rl. Let Ry € Mm such that p € Ry. Then there exists an integer
1
m, such that if R€ M and p € R then Re R2° Continuing this pro-
m
2
cess we get a sequence of regions Ry, R2, css, such that p ¢ Ri and

'E, c R;. Since My is a subcollection of M., whenever k > j, it is
i+l 1 J

possible to assume without any loss of generality that»mi i'mj
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whenever i > j. Suppose p # ﬁaRi. Certainly p € ﬁqRi. Then there
' i=1 i=1

) m . .
exists a g € N Ri,,q # p. Thus for every i, p € Ri’ q ErRi' By
Ti=1

Axiom 1 there exists a k such that if n > k and R € Mn’ P € R, then

"R R; and q ¢ R. But there exists a j such that R, € Mn and there-

N
fore q ¢ ij' This 1s a contradiction of the assumption that q €

FrRi-and therefore ﬁ”Riﬂ=‘p.' If R 1s any region about p then
i=1 i=1 ‘
:acc§§ding-to Axiom 1 there exists an integer n such:that if K is a
reglon of Mnﬁcontaining-p then K. R, There exists an m >-n such
that Rj eva. But then Rj € M, since Mm is a subcollection of M.n

and therefore Ej c R.

Theorem 10: If two regions H and K have an element p in common,

then there exists a region R which contains p and such that Rc H n K.

Proof: Let H and K be distinct regions such that p € H and p € K.
According to Theorem 9, there exists integers m and n such that R,
contains p and Ry ¢ H and Rn contains p and R -c K. But p € Rm s

R c Rm and Rm+n - Rn,‘and thus R

- e (R, N Ry) < (H N K.

" Theorem 11: If p is a limit element of M | N, where M and N
are subsets of the space G, then p is a limit element of either M

or N.

Proof: Suppose p is a limit element of M |y N but p is not . a
limit element of either M or N separately., Then there exists regions

R, and R, containing p such that R contains no element of M different
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from p and R, contains no other element of N. Theorem:10 implies
there is a region R containing p such that R c R N R,. But thenR
contains no element of M N different from p and this 1s a contradic-
tion of the hypothesis that p is a limit element of MN N. Therefore,

it is true that p is a limit element of either M or N,

Definition 15: An element p will be called a sequential limit
. element of the sequence of elements Pys Pps eeos 1f for every region
R containing p there exists an integer m such that if n:>m then p,

lies in R.

Theorem 12: If p is a sequential limit element of the sequence
of elements Pys Pgs ooy then the set {pi, P2’v“‘} has no. other

- limit element.

Proef: Suppoese both p and x are limit elements of the set
{pl, Pos +es}e. Theorem 8 implies that there exists a region R con-
taining p but not x. According'tQ Theorem 9 there exists a region K
containing p- such that K. c R. Then there is an integer m such that
when n > m, p; € K. But X ¢ K and thus x'is not a limit element of
{Pm+1,vpm+2, +ee}. But neither is x a limit element. of {pi,bpz,
ooy pm} since, by Theorem 8, no element is a limit element of a
finite set of elements., Therefore, by Theorem ll, x is not a limit
element.of {plg Pos «es}. Therefore, the conclusion is that p is the

only limit element of {pl, Pos eee}e

Theorem 13: If p is a limit element of the set M then .there

exists an infinite sequence of elements of M all distinct from p such
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that p is the sequential limit element of this sequence.

Proof: Let Rl’ R2""‘ be a sequence of regions containing p and
satisfying the conditions of Theorem 9. For every n, Rn contains an
element of M distinct from p. Let_qi € Ry such that q, € M and

q1,¢ p. Since q; ¢ ﬁfRi, there exists an integer n

such that-q1 ¢
i=1 o

2

R R R . . » » . ] ’
02 Let_q2 € a2 N M, q, # p. Continuing in this manner, therg will

be determined a subsequence of the sequence of regions, Rnl’ an, Rn3’
«s. such that»for each i1, qq € Rni n M, 9y # p. Then the sequence

91> 9p> +es 1s an infinite sequence of elements of M, Furthermore p

is a sequential 1limit element of this sequence., In order to show this,
let R be any region containing-p. By Theorem 9, there exists an: inte-
ger n such that En —cR. If m>n then RmF: Rn,-therefore‘Rm c R for
every m. >.n. Thus there exists an m such that an/c R for n, > n .
Then:qj € R for every j > k. Therefore, p-is a sequential limit

- element of the sequence 4, Uys seee

Definition 16: If p; and p, are distinct elements of G, then a
simple chain. from Py to p, is a finite .sequence of regions Rl’ RZ,
vees Rn’ such that (1) Py € Ri if and only if i =1, (2) p2 ¢ Ri if
and only if i =n, and (3) if 1 <i<n, 1< j<n, 1< j, then

Ri n Rj # @ if and only if j =1 + 1. Each region will be called a

link of the chain.

Theorem 1l4: 1If M is a connected set of elements, p and q are

distinct elements of M, and H is a set of regions covering M then
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there exists a simple chain from p to g, every link of which is a

region of H,

Proof: Suppose the theorem is false. If there is no such chain
from p to q then M can be written as the unien of two sets, XP and Xq

where every element belenging to X, can be joined to p by a simple

P

chain of regions of H and X_ is all other elements of M, Because M

q

is connected, either X  contains a limit element of Xq or vice versa.

P
Suppose x € Xp and x is a limit element of Xq. There is at least

.one reglon of H, say,hx, containing x. Then:/h, also contains an
element y € Xq. The element x can be joined to p by a simple chain
hy, hz, PPN hn of regions belonging to H. Let hy be the first link
of this chain which intersects hx' Then‘hl, h2, veny hk’ hx is a
simple chain of'regions of H from p to y, But this 1is a contradiction
- since y € Xq. In the second case, suppose x € Xé and x is a limit

element of XP. Let h, be a.reglon of H containing:X...Then h,.N Xp # P

Let y€h N Xp. Then there 1s a simple chain of reglons of H,
‘ x

from p to y» Let h be the first link of this chain

hl""" h K

n’?

which intersects hx' Then h h 000y hk’:hx is a simple chain

1’ 722
of regions of H from p to X, Again this is a contradiction since
X € Xq. Therefore, since both cases lead to contradictions, it must

be true that there is a simple chain of regions of H from p to q-

Theorem 15: 1If Ri» Ry, R3, ces Rn is a finite set of regions,

n
the set U R; possesses the Borel-Lebesque property.
Ci=l
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n
Proof: Let H be any collection of regions covering U Ri' But
i=1

n n ‘
URy= U‘Ei.and therefore the collection H covers Ri for every
i=1 i=1

i=1, ..., n, According to Axiom 4, there is a finite subcollection

of elements of H which coveré Ei‘ Then let Hi be a finite subcollec-

, n
tion of H which covers Ri' Then |J Hi is a finite subcollection of H
‘ =1
n n
which covers Ri' Therefore, U Ri possesses the Borel-Lebesgue
i=1 i=]

property.

Theorem 16: Every closed and bounded set of elements possesses

the Borel-lLebesgue property.,

Proof: " Let A be a closed and -bounded set of elements of G.
By definition if A is bounded then A* is bounded in E, and since A
is closed A* is closed in Ej. Then A* has the Borel-Lebesgue prop-
erty in E2. This implies there exists a collection of regions of EZ’
Ry, seey Ry, such that Ry € Gn_and the finite sub-collection of‘Gn
.
covers A*. Then R = {x]x € Gand xC ,UiRi} is a region in G and
i=
AcRcR.
Let H be any collection of regions of G which covers A, Because
A is closed, if q € R - A then q is not a limit element of A and

hence there exists a region R  containing .q such that Rq nAa=ag.

q
Then H U {Rq]q»E R - A} is a collection of regions covering R. By

Axiom 4, R satisfies the Borel-Lebesgue property and thus a finite

29
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subcollection of H U {Rq,q € R - A} covers R, This finite subcollec-
tion also covers A however, and since no Rq contains an element of A
this implies that a finite subcollection of H covers A, Therefore,

A has the Borel-Lebesgue property.

Theorem 17: Every infinite, bounded set of elements has at

least one limit element.
Proof: Let pj, Pys seo be an infinite, bounded set of elements

2 Every bounded infinite sequence

e

of G, Then U {p;} is bounded in E
1

of points of E, has a limit point. Thus let Xps Koy s be a

sequence of points of E2 such that for each 1, X, € pi. The point
o :
set {xl; x2, vesl c U {pi] and therefore forms a bounded sequence.
: 1 '

" Let x be a limit point of {xl, Xys e+s} and let p € G such that

X € p. But then, because G is an upper semi;éontinuous collection
this implies that p is a limit element of the séquence Pys Poo ceus
Therefore, every infinite, bounded set of elements has at least one

limit element.

Theorem 18: If By, B .oo 1s an infinite sequence of bounded

2’

sets of elements of G such that, for each n, B

bl © Bn’ then

©Q Oo

N B:. # @ and N B; 1is closed.
i i

i=1 i=1

Proof: By the Axiom of Choice, choose Pys Pps «ev such that,

for every i, p; € Bi' If there exists an integer j such that for
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: &
every k> j, P = Py then pj € B; for every i and hence pj €N Bi'
i=1

Otherwise the sequence Py» P «ss 1s bounded and hence, by Theorem

2’

17, it has a limit element p. Then p is a limit element of {pn+1,

which is a subset of Bn

—l—l‘and Bn

41 c Bn' Therefore

Papps +o)

o
p € B,. But since this is true for any value of n, p € N By, Thus
‘ i=1

o
in either case ) B, + 0.

- i=1
w Omas.
If q is a limit element of JllBi then for every n, q € B ,; c Bn”
-~ (-2
Therefore, q € N Bi-and N Bi is closed.,

i=1 i=1

Theorem 19: If D is a domain of elements of G then for every
element p of D there exists a region Rp, containing p, such that

‘RR c D.

Proof: By definition, D is a connected subset of G such that
. if p € D, there.exists a § > 0 such that if g € G and u(g,p) < 6
then g € D, But by Theorem 4, there exists a region Rp containing

p such that u(g,p) < § for every g € Rpe Thus Rp e D.

Theorem 20: If p and q are distinct elements of a domain D,

there 'exists an arc from p to q lying wholly in D.

Proof: 1If x € D, then there exists a region R containing x
and lying wholly in D, Let Hy be the collection of all such regions
such that each element of H; is contained in a region belonging to My,

Then Hj covers D and by Theorem 14 there exists a simple chain from
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p to q, every link of which belongs to H Call this chain C; and

1.
denote the links by Rll’ R12’ .4.,vR1m1. Let,p10 = p,‘vplm1 = q, and,

1E 0 < i< mp, let Pyi be an element common to’R ,.and R The

1i SL(i+1)’
elements p;; and Py can be connected by a simple chain C;; each link

of which along with its limit elements lies completely in‘R‘11 and in

some region of M2. Let Cil be the chain which remains after the

deletion of all the links of G after the first link which inter-

11

sects Ryjo. Some point belonging to the intersection of R, and the

12
last. link of Cil can be jolned to the point plz‘by a chain 012’ each

- link of which, along with its limit elements, is contained in Ry,
and in some region of M. Let\C]'.2 be the chain which is left after
deleting all the links of 012 which either precede the last link
which has a point in common with the last link of Cil or follow the
first link which iqtersects R13. Continuing this process, a finite

set of simple chains Cil’ C eeey C! will be generated with the

!

properties that (1) for each n, 1. < n < my, each link of Cin is a
region whose closure is contained in Ry, and in some regien belonging

to M,, (2) for each n < m, , the last link of Cin is the only one

that intersects_Rl(n+l), (3) for each n, 1< n < m;, the first link

of Cin’is the only one that intersects the last link'Of'Ci(nal)’

and (4) the first link of G!

11 contains p and the last link of G!

lml
contains q. Then the links of these chains form a simple chain C2
from p to q. It should be observed that each link of the chain C,
lies completely in one of the links of Cy and if the mth link of C,

lies in the nth link.of C, then if j>m the jth link of G, lies in



- the kth link of C; where k'> n. By the same method there exists a
chain C3 which bears the same relation to C, as that of G, to C,.
antinuing this process will generate an infinite sequence .of chains
Cl’ C2, ees, with the properties that (1) if x is a link of Cn+1

then x.is contained in. some link of Chs (2) if the mth link of Cotl
lies in the kth link of C_ , then for every i > m, the ith link of C .4
lies in the jth. link of C, for some j > k, and (3) every link of C,
~1s a reglon whose closure is contained in some region of Mn'

Let Cé.be the set of all elements which belong to some link.of

S
Cy» Then it will be shown that the set C= N C

n=1

1 is a simple arc

from p to q.

First, C is closed. Each Cﬁ is a bounded set such that

’ E'+1 (e Cé and thus Theorem 18 implies that C is. closed.
n

Next, to show that C is connected suppose that on-the contrary
C.can be written as S; U 82 where S, and S, are mutually separated
sets. Because C is closed, boeth Sl-and 82 are closed, About each
element. p of §; ihere exists a region R containing no element of S,.

There exists an integer n such that if RP.E M, and contains p then

Rp.c_R. Then Theorem. 16 implies there exists a finite collection

2p? *ets Rnp of regions which covers Sl:and, for each i,

NS,=¢@. Similarly, there exists a finite collection of regions

, ess, H which covers S_, and, such that for every j,
2q mq 2 v 1

_ n
Hig N U
T |
n m

U’Rip and {J H, . ThereforevC£ contains a boundary element of
i=1 j=1 ‘

Higs B

Rip’= . For each n, C! is connected and intersects both
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n n

U Rip‘ Let B be the boundary of U Ri . Then the sets BN CI,

i=1 i=1 *P

B n Cé, »»s satisfy the conditions of Theorem 18, which implies there

@
exists an element P, belonging to N

1=1(B N Ci). Then P, € Ci for
every i but‘po ¢ C, This is a contradiction and therefore C is
connected.

Finally, it is to be shown that if any element of C other than
p and q is deleted the remaining set is no longer connected. Let
% and y be any two elemenﬁs of C. By Axiom 1, there exists an inte-
ger n such that no region of Mn contains both x and y. But every
link of the chain C is contained in some region of Mn’ therefore
x and y belong to different links.of Cn' Furthermore, if x lies in
~a link that precedes the link containing y in C,» then for every m > n,
every link of C, containing x precedes every link of Cm that contains
y. The element x will be said to precede y if there is an n such
that every link of C, containing x precedes every one which contains
y. The relation "precedes" is a linear order on G,

Suppose now that x € C.and x # p, x # q» Then C - {x} = Sp U Sq
where SP is the set of elements of C which precede x, Sq is the set
of those which follow x, Clearly, because p precedes every other
element of C and every other element precedes q, p € Sp and q € Sq.
Also, Sp N Sq =@. Let y¢€ Sp and suppose y is a limit element of

S Then there exists an integer n such that every link of C, which

q.
contains y precedes every one that contains x, and no link of C,

which contains y intersects any link which contains x. But if y is

a limit element of Sq then every link containing y also contains an
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- element z belonging to Sq‘ Then 2z precedes x. But this is a COnﬁradicn
tion and hence y is not a limit element of Sq. Similarly no element

of Sq is a limit element of Sp‘  Therefore C - {x} is not. connected
“since it is the union of mutually separated sets.,

Thus C 1s an arc from p to q and the theorem has been established.

Theorem 21: No arc of elements of G is disconnected by the

omission of either of its extremities.

Proof: Let a and b be distinct elements of G and let A be an
.arc from a to b. Suppose A - {a} = X U Y where X and Y are mutually
separated sets and suppose b € Y., Let x € X, Then it was shown in
the proof of Theorem 20 that since x #a, X # b, A - {x} can be
written as the union of mutually separated sets P and Q where a € P
and b€ Q. Then
A={aluxyY={aJuEXnPUENQUENP UENQUI{x]
=[aluEnPuEnuiEnmu{xll]u@an
where the sets [{a} U (XN P) U X nQ U ENP)U{x}] and (Y n Q)
are mutﬁally separated and non-empty. This is a contradiction of the
fact that an arc is connected, therefore A - {a} is connected,
Similarly, it can be shown that A - {b} is also connected.
A convenient notation for .an arc with extremities p and q is
pq. If x is an element distinct from p and q and belonging to the

arc pq then it will be said that x is between p and q on the arc.

Theorem 22: If x is between p and q on the arc pq then pq is

the union of arcs px and xq having only the element x in common,
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- Proof: It has been shown that pq - {x} = Ay U B where,AP and

q

By are mutually separated sets, AP contains those elements which

precede x and B_ contaips those which follow x. Then‘Ap U {x} and

q
{x} U B, are closed.

Suppose Ap U {x} is not connected. Then A_p Uuf{x}=cypn,c
and D mutually separated, and without loss of generality suppose

X € D. Then C < A and therefore C and B, are mutually separated.

q
Hence pq = C Uy (D U Bq) and since C and D (J Bq‘are mutually separated
this coritradicts the fact that pq is connected, Therefore.AP u {x}
1s connected. Similarly {x} U Bq is connected. Let y be an element
of Ap U {x} different from p and x. Then.it is known that pq - {y} =

Xp U ¥q where X_ and Yq are mutually separated., The set

P
(Ap U-{x}) - {y} is contained in pq - {y} and has an element in common
with X;. Because y € (Ap U {x}) this implies that y precedes x in
order from p to q and hence x € Y, Therefore (Ap U {x}) - {y} is
the union of mutually separated sets contained in Xp and Yq. Thus

y separates AP U {x} and Ap U {x} is an arc from x to p. Similarly

{x} U By is an arc from x to q. Since Ay and B

P are mutually separated

q

sets the only element common to the arcs:px and xq is x.

Theorem 23: If x and y are elements of arc pq then pq contains

an arc with x and y as its extremities.

Proof: The theorem is obviously true if either . x =p or y = q,
hence assume that both.x and y are distinct from p and q and that x
precedes y in order from p to q. Then according to Theorem 22, py

is an arc from p to y and because X precedes y, x € py. Then applying



Theorem 22 again, xy is an arc from x to y.

Theorem 24: If K is an arc of elements of G, then every closed
and connected subset of K which contains more than one element. is

itself an arc of elements of G.

Proof: Let K be the arc pq and let H be a closed and connected
subset of K, If p € H then p will be the first element of H., Other-
wise let S; be the set of elements which precede every element of H.
Let h € H. Then ph 1s an arc from p to h and S, c ph. Let
So=ph - Sy =phN H and hence Sy is closed since it is the inter-
séction of two closed sets. Then because SN 8y = @ and S, is
closed, S, must contain a limit element s.of Sl‘ Then s belongs,to‘
H and every element which precedes s belongs to S} and therefore s
will be the first element of H. Similarl&, a last element of H, call

it t, can be found and then H is the arc st.

Theorem 25: Let pq denote an arc of elements of G with p and q
as its extremities, let' x € pq - {p,q}, and let H c pq. Then x is a
limit element of the set H if and only if for every arc A of elements
of G with the properties that (1) x € A, (2) A< pq, and (3) x is not
an extremity of A, it is true that A contains at least one element of

H which is distinct from x.

Proof: ' Suppose first that every arc which coentains x,is a
subset of pq, and dees not have x as an extremity also contains at
- least one element of H distinct from x. Now X is a limit element of

the arc px, for otherwise px is not connected., By the same reasoning

37
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x 1s also a limit element of the arc xq. Theorem 13 implies that there

exists an infinite sequence of elements of px, Pys Pos. enes such' that
x is the sequential limit element of the sequence, and, if i < j then
Py precedes.pj in order from p to x. Similarly, there exists an
infinite sequence qys Gos eee belonging to xq such that x is the
sequential limit element of the sequence and if 1 < j‘then.qi is
preceded by qj‘in order from x to q. Then the arc p;q; contains x
and thus contains an element h1 of H, Let j and k be integers such
that h; does not belong to the arc quk' Then there exists an. element
h2 of H such thaf ho is contained in quk' .Continuing in this manner

we acquire an infinite sequence hl’ h ese, of elements of H., Sup-

2,

pose an Infinite number of these, h h , ..., precede x in order

n’ "n
1

,pm,h 3 800y

from p to q. Then there exists a sequence p_ , h N
1 2 2

ny

such that hn

was chosen from the arc p_ qj for seme value of j.
i i
‘According to Theorem 17 this sequence has a limit element. Since x

is a sequential limit element of the subsequence P > Ppo» »ons
2

suppose that x is not.a limit element of the sub,sequencehn ’ hn s o000
1 2

Then there exists a y different from x such that y is a limit element
of this sﬁbsequence. Either x precedes y or y precedes x. If the
first is true then y belongs to the set xq - {x} while all the ele-
ments of the sequence belong to the set px - {x}. But these are
~mutually separated sets and hence p is not a limit element of the
sequence. If y precedes x, then there exists an ny such that y

precedes p, . Then y belongs to the arc pp,, and for infinitely
k k
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many of the values of ms s h, £follows p, and thus y is not a limit

element of the sequence, Therefore x is a limit element of H.
Now suppose x is a limit element of H and that there exists an

.arc ab, a # x, b.# x, such that x € ab and ab < pq but ab ' H = @,
Then every element of H either precedes a or follows. b in order from
p to g. Then pb is an arc and pb-{a} = X.J Y where X is the set of
elements which precede a and Y is the collection of elements which
follow a in order from p to b. Since.x € Y, x is not a limit element
of X and thus not a limit element of H N X. Similarly, if aq =.{b} =
W Z where W is the set of elements which precede b and z is those
which follow b in order frdﬁ a to q, then x € W and is not a limit
element of HNn Z. But H =.(H h X)U (HA Z2) and therefore x is not

a limit element of H. Therefore, the contradiction implies that the

assumption was false. Thus every arc containing x also contains an

element of H.

Definition 17: If p is an element belonging to a connected set
C of elements of G then p will be called-a cut element of C if

C - {p} is disconnected.

Theorem 26: Every closed, connected-and bounded set has at

least two non-cut elements.

Proof: Suppoese M is a closed, connected and bounded set of ele-
ments of G. Let p € M and suppose that if q € M - {p} then q is a
cut element of M. Then let M - {q,} = P, U Qs where g is any ele-

‘ment of M - {p}, o belongs to some index set T, and P, and Q, are
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mutually separated sets, and suppose that p € B, for each o, Let
H= {Qa U {qd}la € m}. For every @, Q, U {qa}-is closed since M is
clesed and Py contains no point or limit point of Q. Suppose

Q, U {qy} is not connected. Then QQ'U {qa} = A |y B where A and B
are mutually separated sets. :Without.loss of generality suppose that
q, € A. Then B contains no point or  limit point of Ry and hence

M is the union of the sets B and A | Pa which are mutually separated.
This contradiction: then implies.that Qa U {qa} is connected and,
since it is contained in a bounded set, it is also bounded., Let K
.be. a monotonic subcollection of sets of H, Then Theorem 18 implies
the sets of the collection K have an element k. in common. Then

M. {k} =P U Q such that Py -and Qg :are mutually separated and,
since p # k, suppose p € P o Let QB U {qB} = KB be a sét'sélonging to
the collectiqn K, qB‘# k. Then M - {qﬁ}‘= PB U QB where these are

mutually separated sets and p € P Then KB contains k.and because

5
k- # qg s k. € QB' Then since k ¢ PB‘U [qB},‘and PB U {qB} is closed
~and connected, either PB U {qB} c Py or PB U {qB} c Q. But p belongs
to both Py and PB and thus PB'U {qB} c Py. Therefore Qk Uik c KB'
But' Q U{k}belengs to the collection H and therefore it is centained
in: every other set of the collection K. But according to a theorem of
Moore's [16, p. 14] when for any monotonic subcollection K there
exists a set belonging to K which is a subset of e#ery other set
belonging to K then there exists a set H, in H such that Hj  contains
no other set of H. There is an element hj such that M - {hé} =

(H, - {ho}) U P, where H w'{ho} and P are mutually separated sets

and Py contains p. Let hy € (Ho."‘{hb})' Then M -‘{hl} =Qp U Py,
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@y and P| mutually separated with p € Py. But Qi U {hy} belongs to
the collection H and since P .U {ho}"c P1 U {hl}, Q, U {h} H.

This is a contradictioen of the assumption that H, contains no other
element of H, therefore, for every element p € M, there is a non-cut

element of M distinct from p. Thus M has at least two non-cut elements.

Theorem 27: If K is a closed, connected and bounded set of ele-
‘ments of G, and H is a connected proper subset of K, then the set

K - H contains an element of G whose omission does not disconnect K,

Proof: Suppose, on the contrary, if x-€ K - H then K . {x} is
disconnected., Therefore K - {x} is the union of mutually separated
sets A.and B, Since H is connected and x & H, H -« A or H = B. Suppose,
without loss of generality, that H< A, Then B U {x} is closed and
connected and according to Theorem 26, there exists an element b € B
such that b is a non-cut element of B U {x}. Thus, (B y {x}) - {b} is
connected. Therefore (A U {x}) U [(B U {x}) - {b}] =K - {b} is con-

"nected, Thus K -'H contains a non-cut element .of K.

Theorem 28: 1f pq is an arc of elements of G, then G - pq is

connected.

Proof: Let pq = A. Since A is closed, connected and bounded in
G, A* is closed, connected and bounded in E,. Suppose G - pq is the
union of the mutually separated sets X and Y. Then E; - A% = X% | ¥V*,
where X*. and Y* are mutually separated sets. Because A*'isvcloséd and
bounded, there exists a circle C in E; such that A* is contained in

- the interior of C. Let I be the interior of C, Then E, - T is
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closed and connected and furthermore, according to Theorem 1, the set
p= {glg € G and g n (Eg - I) # P} is both closed and connected.

Then P = X or P’ Y. Without less of generality suppose it is the
case that P Y, Then X* < I and thus X* is bounded. Let D be a
component of X%, Then D is a domain in E2, D is connected, and the
boundary of D is contained. in A¥*.

If E = {g|g € G and g — D} then it is asserted that E* = D, for
suppose this is not the case. Then-there exists a g € G such that
gND# P but g D. But g c X¥ and since g and D are both connected
and thelr intersection 1is not empty, then g U D 1s a connected subset
of ‘X* which contains D, This is a contradiction since D is a component
of X*., Thus E 1s a-maximal connected subset of X and E is a boun&ed
complementary domain with respect to A.

Let B be the outer boundary of E. According to Theorem 2, B
is closed, connected, and if b € B then B - {b} is still connected.
But B is also a connected subset of pq, and Theorem 24 implies that B
is an arc. This contradicts the fact that B - {b} is connected for

every b € B. Therefore G is not separated by any arc pq.

Theorem 29: If M is a simple closed curve of elements of G and
if p and q are distinct elements belenging to M, then M is the union

-of two arcs which have in common only their terminal elements p and q.

Proof: By definition'M - {p,q} = C U D where C and D are mutually
separated. sets.,
Suppose M has a cut element x. Then M - {x} = H | K, where H

and K are mutually separated sets. Then HU {x} and K { {x} are closed
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and connected and therefore each of them is a nondegenerate bounded
continuum. According to Theorem 26, H |y {x} has at least two non-cut
elements. and K U‘{x} has at least two non-cut elements. Therefore,
there exist elements h and k such that h and k are non-cut . elements
distinct from x belonging to H and K respectively. Then M - {h,k} =
(B U {x} - {h}) U (KU {x} - {k}) and because these are connected sets
with the element x in-common, M - {h,k} is connected, This is in
contradiction with the definition of a simple closed curve and thus
no element of M is a cut element.

Let ¢ € C and d € D. The sets C | {p,q} and-D U {p,q} are each
closed, connected, and bounded, Thus each 1is a continuum. Suppose
¢cU {p,q} and D {p,q} each has more than two non-cut elements,

Then there exist elements.x and y, distinct from p and q, such that
x € C.and y-€ D and x and y are non-cut elements of C U {p,q} and
DU {p,q} respectively. Then M - {x,y} = (C U {p,q} - {x}) U

(DU {p,>q} - {y}) and because these connected sets have elements p
and q in common, M. - {x,y} is connected, This is a contradiction of
the definition and therefore one of C.U {p,q} and D U {p,q} does not
contain a non:-cut element distinct from p and q. Without loss of
generality suppose C J {p,q} is disconnected by the omission of any
element other than p and q,» Then CU {p,q} is, by definition, an
arc- from p to q.

Suppose y € D and D U {p,q} - {y} is connected., Then C | {p,q}
- {c} = A |y B where A and B are mutually separated and p € A, q € B,
Thus M - {y,c} =AU BU (DU {p,q} - {y}). But both A and B have an

element in common with D {J {p,q} - {y}, and since each of the sets is



connected, their union is connected. This again contradicts the
definition of M. Therefore DU {p,q} is disconnected by the omission
of any element other than p and q.

Thus C | {p,q} and D U {p,q} are arcs, their union is M, and,

obviously, their only common elements are p and q.

Theorem 30: If J 1s a simple closed curve of elements of G,
then G - J 1Is the union of two domains of elements of G, Only one

of these domains 1s bounded and J is the boundary of each of them.

(In the proof of this theorem use will be made of the foilowing
" Theorems A. and B. These are theorems which have been proved for the
plane by Anna M, Mullikin [ 197.

Theorem A: If M; and M2 are two closed, connected, bounded
point . sets, neither of which disconnects a plane S, a necessary and
sufficient condition that their union, M shall disconnect S is that
Ml N My be not connected.

Theorem B: If M; and M are two closed, bounded, connected
point sets in. a plane S, such that neither M1 nor M2 disconnects S

- and such that M; and My have in common only Kl and KZ’ where K. and

1
Ko are mutually exclusive connected sets, then S - (M1 U Mz) is the

union of exactly two mutually exclusive, connected domains.)

Proof: Let p and q denote distinct elements of J. According to
Theorem 29, J is the union of two arcs A and B which have p and q as
. their extremities., By Theorem 28, neither A ner B separates G and

therefore neither A* nor B* separates Ej. Also A* N B*¥ = p | q where
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.p and g are mutually exclusive continua. Then according to Theorems

A and B, E2 - J* is the union of mutually exclusive connected domains
D, and Dy of points of E2. Obviously then, singe J* ié bounded, one

of the domains is bounded and the other unbounded. Suppose D; is the
bounded domain. Let H; be the set of elements of G which are contained
in D1 and' let H2 be those elements of G contained in D2. Then it is

clear that H1 and H, are mutually exclusive domains of elements of G

and that G - J.=H; U H2. Let B denote the boundary of H If B#J

1.
“then it must be a proper subset of J. Since B is closed and connected,
Theorems 29. and 24 imply that B is an arc of elements of G, But G - B =
Hy U [Hp U (J - B)] and the sets H; and [Hy U'(J - B)] are mutually
separated, Thus the assumption that B # J implies a contradiction and

therefore B.= J. Similarly it can be shown that J is also the boundary

of H2.

Definition 18: Of the two.domains complementary to a simple
closed curve of elements of G, the bounded one will be called the
" interior  of the. curve, while the unbounded domain will be called the

exterior,

Theorem 31: If D1 and D2 are bounded.domains>of elements of
G, and D1 has a connected boundary, and the boundary of D, is a sub-

set of Dj, then D, is a subset of D,.

Proof: ©Since D, is bounded, it has at least one boundary element.
Each of its boundary elements belongs to Dj, therefore D; contains at

least one element of Djy. Suppose D, is not a subset of D;. Then Dy
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contains an element of G - Dl' Because D2 is connected it follows

that D, contains an element of the boundary B1 of Dl’ The boundary

2 is a subset of D1 and thus does not intersect Bl' The set

By is connected, therefore B; is necessarily contained in Dj. Let

B2 of D

E be the unbounded complementary domain of Bj. Since B, is the bound-
.ary of E and D2 contains By, then'Dz-contains_anvelement of E. But

E 1s connected and contains no element of BZ’ therefore E is con-
tained in Dy, But this is contrary to the hypothesis that D, is

- bounded. Therefore D2 is a subset of Dl‘

Theorem 32: 1If R is a region of elements of G and K 1is either
& single element or an arc of elements of G every element of which
(except possibly a terminal element, in the case K is an arc) belongs

to R, then:R - K is a domain of elements of G.

Proof: Let B denote the boundary of R. By definitien, B is con-
nected, 1f K is a single element of G then K does not separate E,
and hence does not separate G, ' Otherwise, Theorem 28, implies K does
not separate G. Thus K* does not separate E;. 1If x and y are ele-

ments of R - K then x.and y are not separated in E_ by B¥.  Also,

2

either K¥ N B* = @ or the common part of K* and B¥* is a closed,

bounded,. and connected peint set making up a single element of G.

It follows then, that K*¥ |y B* does not separate x and.y in E;., Thus,

K U B does not separate x from y in G and therefore R - K is connected.
Suppose R - K is not a domain., Then there exists an element

r-€ R - K such that every region containing r contains an element

which does not belong to R - K. Evidently then, every region
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containing r contains. an element of K, But this implies that r is a
limit element of K which is in contradiction with the fact that K is

closed. Therefore R - K:is a domain.

Theorem 33: If R 1s a region of elements of G there exists a
simple closed curve of elements of G such that every element of G

which belongs to this curve is an element of R,

Proof: Let p and q be distinct elements of R, According to
Theorem 20 there exists an arc pq of elements of G such that every
element of pq belongs to R. Let r be some element of pq distinct~
from p and q. By Theorem 32, R - {r} is a domain. Therefore, there
exlsts a simple continuous. arc pyq, having p-and q és terminal elements
and. containing the element y, such that pyq is contained in R - {r}.
Then it 1s easily seen that the arcs pxq and pyq either form a simple
closed curve of elements belonging to R eor contain one.as a proper

- subset of their union.

Theorem 34: If K and R are regions of elements of G and the

boundary of R is a subset of K, then R is a subset of K.

Proof: ' Suppose R is not contained in K. If RN (S - K) # @,
then S - K = Sl U 82 where Sl is a subset of R and no element of 82

belongs to R. The set S; can contain no limit element of the set So,

thus, since S - K is connected, S_ must contain a limit element of Slo

2
But this-implies that 82 contains a boundary element of R which is
contrary to the hypothesis. Therefore R is a subset of K., If R con.

tains a boundary element of K then R contains an element of S - K.
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Since it has been shown that this is not possible, it follows that R

is a subset of K.

Theorem 35: 1If pxq and pyq.are arcs of elements of G which have
p and q as their terminal elements but have no other elements in com-
mon, and J is the simple closed curve- formed by these two arcs, pzq
is an. arc, every element of which, except for p and q, belongs to the
interior of J, and J; is the simple closed curve formed by arcs pxq
and pzq and J2 denotes the one formed by pyq: and pzq, then (1) the
interior of Jl is a subset of the interior of J, (2) except for p
.and q, pyq lies in: the exterior.of Jl, (3) the interior of'Jl does

not intersect the interior of J2, and (4) the interior of J is the

union of the sets which are the interiors of J1 and J2, and

pzq - {P,q}.

Proof: Let R be the interior of J, Ry the interior of J1 and

9° 1’ and R, 1s a bounded domain with

a connected boundary and therefore each is a region. Then according

R, the interior of J Each. of R, R

to Theorem 34, R1 is. a subset of R.
Because pyq is a part of the boundary of R, Theorem 6 implies

that no element eof pyq is contained in R The only elements that

1.
pPyq has in common with the boundary of R; are p and q. Therefore,

except for p and q, pyq lies.in the exterior of Jye

' Suppose R1 N Ry # @. Since the boundary of R, contains elements

2

that are not contained in R1 nor the boundary of Ry, Rz.is not a

subset of Rl. Therefore R2 = S1 U'SZ where S1 is a subset of Ry

but no, element of 82 belongs to R Because Sl cannot .contain a

19
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1imit element of 82 it follows that 82 contains a limit element of Sl.

Clearly, this element must be a boundary element of R Therefore

1
"Ry contains an element of pyq or pzq. This is a contradiction however,
and, thus, R1~n R2 = 0.
| By hypothesis, pzq - {p,q} is contained in R. In part (1) it

wasvéhown that Ry is a subset of R. Similarly, R, is a subset of

R. Now, suppose R # Ry U R, U (pzq - {p,q})s Let Y be the set of

all other elements of R so that R = Ry U‘R2 U (pzq - {p,q}) U Y.

The sets Ry, Ry, and Y are mutually separated, Let w denote an ele~
ment of Y. There exists an arc wz lying: entirely in R, Let j denote
the first element of wz, in order from w to z, such that j belongs

to pzq. Then wj 1s an arc lying entirely in R. Now wj - {3} is
connected and lies entirely inR; U'R, U Y. Since wj - {j} has an
element in common with Y, it is contained in Y. The element j divides
the arc pzq into two arcs,vpzlj and jzzq. Let r be.an element of Rl.
There exists a region' T about the element z; which contains no ele-
ment belonging to the closed set {r} U jz,q U J. Since T contains
a bbundary element of R;, T contains an element g belonging>to Rie
There exist arcs rg and.gz1 lying-in Ry and T respectively. Then
'rg U gz) contains an arc rh; such that hl-is an element of T .and of
pz1j, and such that rhl --{hl} is a subset of R;. Similarly, there
exists an arc rk) such that k, belongs to jz,q and rk, ='{k1} is
contained in Rl' There exists an arc h,s.k. which is a subset of

1711

rh1 U-rk;, and hlslkl‘“ {hl,kl} is contained in R Similarly, there

10
and k

exist elements h2.and k2 on-the arcs ph q respectively but

1
such that hzszk2 - {hz,kz}

1

distinct from p and g, and an arc hzszk2
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is contained in RZ' Let‘J3 denote the simple closed curve formed

by hlslk1 U h1h2 U h252k2 U klkz. By Theorem 34, R,, the interior

32
of J3, is a subset of R, Since Sl belongs to the domain'R1 an§ is a
boundary element of Ry, it follows that R3 n R1 # @. Similarly,

R3 N Ry, #P. Since w and y are elements lying entirely without Rj,
there exists an arc wy which contains no element of Rl' Let a be
the first element that wy and pyq have in common. Then aw - {a} is
obviously a subset of Y. Thus there exists an arc ja which is a
subset of jw | aw and such that ja - {j,a} 1s contained in Y., Hence
ja contains no element of J3. But since a 1s exterior to J3, j is

alse exterior to J3 and consequently the arc hljk is exterior to J

1

with the exception-of the terminal elements h; and k. Thus every

3

element of R3 belongs to Ry, Ry, or Y. Since these are mutually

separated sets and R3 contains elements belonging to. both R; and RZ’
this implies that R3 1s not connected. This is a contradiction, there-

fore it follows that-R =R, U Ry U (pzq - {p,q}).

Theorem 36: If p and q are two distinct elements of G and pxq,
PYyq, and pzq are arcs no two of which have in common any element
. other than p and q, and Jl’ Jp, and J3»are the simple closed curves
formed by these arcs taken in pairs, then:the interiors of J1s Jos

and J3.are not mutually exclusive.

Proof: Suppose'J1 = pxq U pyq, Jo = pxq U pzq, and J3 = pyq U pzq.
Let Rl, Ry, and R3 denote the interiors of Jl, J2, and\J3 respectively,
and, in the same sense, let El,

Suppose Rl’ Ry, and Rq.are mutually exclusive. Then E1 contains RZ’

E,, and E4 denote their exteriors.
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element which does not belong to Ry, Ry, or pzq - {p,q}. Therefore

let 'Y be the collection of all such elements of Eqe Clearly,
Y=ENE,nN Eq. Let a be an element of Y., Then there exists an
~arc az which lies entirely in E. Let b be the first element that az
has in common with pzq. Then ab - {b} is a subset of Y, Similarly,
' there exists an arc ac, such that c belongs to pxq and ac - {c¢} is
contained in Y. In the same way as it was shown in the proof of
Theorem 35, it can be shown that there exist elements hl, hz, kl’

and k, such that h; € pb, h

2

2 € hyb, ky € bq, ky € Pkl’ and such. that

in each case these elements are distinct from p, b, and q. It can
‘also be shown that there exist arcs hlslk1 and h252k2 which, except

for their terminal elements, lie entirely in R, and Ry respectively.

Let Ky, Ky, and Ky denote the simple closed curves formed by

hysik) U kjk, U kpsphy U hyhy, hisky U hybky, and hys,k, U kobh,
respectively. Let Lis L2, and L3 denote their respective interiors.
By Theorem 34, L2 and La.are subsets of R2 and R3 respectively,

There are now three cases to be considered.

Case 1, Suppose b € Ly. Then by Theorem 33, L1 = Lo U L3 U
(hzbkz - {hz,kz}). But since b is a limit element of ab - {b}, it
follows that L1 must contain an element of ab - {b} and, hence, of Y.
Thus the supposition that b € L1 leads to a contradiction, since
YnLl=¢.

Case 2, Suppose p € Ll‘ Then Jl.is contained in Ll' But c is

an element of J; and ac does not intersect K;. Therefore a € Ly.

Thus every element of Y belongs to Ly. But this is a contradiction
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since Ly is bounded and Y is not bounded. Therefore p ¢ Ll.

Case 3. Suppose neither b nor p belongs to L;. Then J; N L; = )
~and pzq N Ll = 0. Thus‘Ll is contained in R1 U R2 U R3 U Y and these
‘are mutually separated sets. But Lj is connected and hence L; cannot
:intersect more than one of the sets Rl’ R2, R3, and Y. But Sy belongs
to Ry and to the boundary of L; and s, belongs to Ry and to the.
boundary of Ll, end this implies that R, n.Ll and Ry N L; are not
empty. Thus this supposition also leads to a contradiction.

It follows then that Rl’ R., and R3 are not mutually exclusive.

2

Theorem 37: If pxq and pyq are arcs of elements of G which
have p and q as their only common elements, J is the simple closed
curve forméd by these arcs, and pzq i1s an arc which, except for p and
q, lies in the exterior of J, then (1) either y is in the exterior
of Jj, the simple closed curve formed by pxq and pzq, or x is in the
exterior of J,, the simple closed curve formed by pyé and pzq, (2) if
-y is in the exterior of J; then x is in the interior of J2 and- the

interior of J2 is the union of the interiors of J and J;, and the set

pxq - {p,q}.

Proof: Suppose y is not in the exterior of Jl. Then pyq - .{p,q}
is contained in.the interior of J; and Theorem 35 implies that x is
. in the exterior of Jge

Secondly, if y belongs to the exterior of Jl, suppose X is not
in- the interior of Joe Then since x does not belong to J,, x belongs
to the exterior of J, and, hence, pxq - {p,q} belongs to the exterior

of Jjy. Let R and R1 denote the interiors of J and.Jj respectively.,
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Suppose R and R; have a common element. Then Ry =M U‘Ml where M is
contained in R and M1 does not contain an element of R nor of its
~boundary. It follows then that one of the sets'M and M; does not
exist. Thus either Rl and R have no common elements or R, is con-
tained. in R. - If Rl is contained in R then El is contained in R and
since z € §1 and z does not belong to the béundary of R, then z € R,
But this is in contradiction with the hypothesis, therefore R1 and R
have no elements in common.

Similarly, since y belongs to the exterior of Jl, it can be shown
that, if R, is the interior of JZ’ the sets R, Rl’ and R2 are mutually
exclusive. But this contradicts Theorem 36. Therefore, if y is in

. the  exterlor of Jl then x 1s in the interior of J Then Theorem 35

2.
implies that Ry = R U Ry U (pxq - {p,q}).
Theorem 38: If R is a region and p is an element of R, then

there exists a simple closed curve of elements of G which lies in R

and whose interior contains p and i1s a subset of R.

Proof: Let x be an element of R distinct from p. By Axiom 1,

there exists a region K which contains. x and is a subset of R but does
-not contain p. By Theorem:33, K contains a simple closed curve J.
Theorem 34 implies that p is exterior to J. Let a; be an element of
J. Then in R there exists an arc paj. Let a be the first element of
J which belongs to paj. Then pa is an arc whose only common element
with J is a. Let I be the interior of J. Choose ¢ to be an element
of the boundary of R. Since J |y I U pa is a closed set contained in

R there exists a region H about c which does not intersect J U I U pa.
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The set H contains at least one element d of R. Let b1 be an element
of J distinct from a. By Theorems 32 and 20, there exists an arc

bjd in R - pa. Let b denote the last element that bld has in common
with J so that bd is a subarc whose only common element with J is b.
"In H, there exists an arc cd. Let e be the first element that cd
has in common with bd. Then ce (] be is an arc cb, every element of
which, except c, belongs to R, and such that b is the only element it
has in.common with pa U J J I. The elements a and bvseparate J into
two arcs, axjb and ay;b. There exists about Xy a region R, which is
contained in R and does not intersect the closed set pa |j ay)b U bc..
There exists an element h in Ry such that h ¢ J |y I. Then there
exists an arc hxy in R, Let x be the first element hx1 has in common
with J. By Theorem 32, there exists an arc hy1 in R = (pa U ax;b U be).
-Let y be the first el‘ement»hy1 has in common with J. Then-hy U hx
contalns as a subset an.arc yzx which, except for its terminal ele-
~ments, is contained in R - (J Y I). Then yzx and xay are arcs_whose
union. is a simple closed curve Jl‘ The interior of J, belongs to R,

1
according to Theorem 34. Therefore ¢ is in the exterior of Jl° Since
bc. has no element in common with Jl’ it follows that b is exterior
to Jl. Then according to Theorem 37, the interior of the closed curve

J, formed by yzx and ybx contains a, But the arc pa contains no ele-

“ment of J, and hence p is in the interior of J2°

Definition 19: A set R of elements of G will be said to be a
region in the restricted sense if and only if it is the interior of

some simple closed curve of elements of G.



55

Theorem 39: 1If p is an element of G and H is a set of elements
of G then p is a limit element of H if and only if every region in
the restricted sense that contains p contains an element of H distinct

from p.

Proof: First, suppose p 1s a limit element of H and let R be
a region in the restricted sense which contains p. Since R is also
a reglon in the original sense, R contains an element of H distinct
from p,

Conversely, 1f every reglon in the restricted sense which con-
tains p also. contains an element of H diétinct from p, let R be a
reglon in the usual sense which contains p, Then Theorem 38 implies
that R contains a region in the restricted sense about p and hence R
contains an element bf H distinct from p. Therefore p is a limit

element of H.

Finally now, it is possible to show that the other axioms are
satisfied by the space of elements of G if the word region now is
assumed to mean '"region in the restricted sense!. It has been estab-
lished that Axioms 1, 2, 4, and 5 hold true for the set of elements
of G with the original interpretation for regioms. It is clear, by
Theorems 38 and 39 that these axioms continue to hold if region is
interpreted in the restricted sense. Thus in the following material,
the word region should be taken to mean region in the restricted

sense.

Axiom 3: If R is a region, G - R is a connected set of elements.



Proof: 1If R is a region then R is the interior of a simple
closed curve J and R =R |y J. By Theorem 30, G - J is. the union of
two domains, one of which is R, Thus G - R is the unbounded domain

and, by definition, a domain is connected.

Axiom 6: If R is a region and ab is an arc such that ab - {a}

is a subset of R then (R U {a}) - ab is connected.
This axiom follows directly from Theorem 32.

Axiom 7: Every boundary element of a region is a limit element

of the exterior of that region.
Axiom 7 is a direct consequence of Theorem 30,

Axiom 8: Every simple closed curve is the boundary of at least

one region.,

This axiom is obviously satisfied by the way in which regions in

the restricted sense have been defined.

It has been shown that the space of elements of G with regions
.defined to be the interiors of simple closed curves of elements of

G satisfies all the axioms set down for the space E Moore [12]

5
has shown that for every space S satisfying Axioms 1-8, there exists
a one-to-one correspondence between the elements of S and the points
of E, which preserves limits. Thus there exists a one-to-one corres-
pondence between the elements of the space G and the points of Ey

such that the space of elements of G is topologically equivalent to

the space of elements of Ej.



CHAPTER III

EXAMPLES OF UPPER SEMI.CONTINUOUS DECOMPOSITIONS

In this chapter there will be exhibited examples. of upper semi-
continuous decompositions of E,, beginning with the very simple
ones and concluding with an example in which all of E2 is decomposed

into non-degenerate elements, none of which separate E The obvious

9
and trivial example is that in which each point of E, is an element
in the decomposition. This is no different from the space E2
however and therefore it is not of interest here.

A decomposition may have a finite number of nondegenerate ele-
ments or it may have infinitely many. The only upper semi-continuous
collections to be considered here are those whose nondegenerate ele-
ments are continua which do not separate E,. In the examples the
nondegenerate elements will be described in detail. It should be
understood then that the elements making up the decomposition space

will be the nondegenerate elements- together with all other points

of E2e

Example 1: Let R be the unit square with vertices (0,0), (1,0),
(1,1), (0,1). Let K= {L|L is a vertical line segment of unit
length contained within or on R}. Then. the segments- belonging to K

together with all points of E2 ~ K* form an upper semi-continuous
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decomposition of E2.
This example might be expanded by considering a collection of
disjoint unit squares Rl’ R2, R3, es.-and then £illing each square

with segments of unit length.

Example 2: Let
Ay ={Gy]x=-2" 0>y -2 U {(x,)]-2T < x g 2, y =27
U {(x,y)x = 27", -2".<y < 0},
Let K = {An\n =0, 1, 2, ++.}. Then the elements of K are the nonde-

generate elements of a decompoesition of E2'

Example 3: Suppose
K= {(x,y)]y = sin»%, 0<x<1l}U {(x,y)|x =0, -1 Svyss 1}
is the only nondegenerate element in a decomposition. Then the
decomposition space which is formed will satisfy all the conditions

of this paper.

Example 4: Let Cn be a closed disk with center at (1l,n) and
radius 1/4. Then K = {Cn‘n is an integer} is the collection of

nondegenerate elements of a decomposition of E2°

One might exhibit many examples of upper semi-continuous decom-
positions of E2 similar to these. The most interesting. example,

however, is the decomposition of E, which has no element which is a

single point and no element which separates E,.
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Roberts! Example

The question was raised by C. Kuratowski as to whether there
exists an upper semi-continuous collection of mutually exclusive
continua no one of which is a point such that (1) the union of the
continua of the collection fills a square plus its interior.and (2)
1f each continuum of the collection is regarded as a point the space
so obtained is in continuous one-to-one correspondence with a square
plus its interior.

Kuratowski posed this question:in a letter to R. L. Moore in
1927. It was answered by J. H. Roberts [20] in 1928. The material
which follows is chiefly the work of Roberts in which he exhibited
an upper semi.continuous collection of continua filling the plane,
such that each continuum i1s bounded, nondegenerate, and does not
separate the plane,

Let M = {(x,y),y = sin ;TTE:*;j, 0< x< 1}, AClearly,:ﬁ.is

_a continuum. Let C denote the Cantor set on.the interval 0 <x <1

of the x~axis and let $15 89, S ... denote the complementary seg-

3?
ments so that s; = {x|1/3 < x < 2/3}, s2,=g{x[ 1/9 < x < 2/9},

53 = {x|7/9.< x < 8/9}, ++.. For each point p of C which is not an
endpoint of any complementary segment of C let Vp denote the verti-
cal interval of length 2 with p as center, and let H be the collection
. of all such intervals. Let M  be a point set equivalent to' M, and
whose limit sets are the vertical intervals two units in- length which
" have the endpeints of the segment s, as midpoints, and such that if

(xl,yl) and (x2,y2) are distinct points of M  then xl,% Xy and

for every point (x,y) belonging to M, ly[ < 1 (see Figure 1).
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Figure 1.
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Let K denote the union of the sets My, MZ’ ..., together with
the intervals of H. Then K is the union of a collection aK of

mutually exclusive continua, the elements of &, being the intervals

K

of H and the continua of the sequence\Ml, ﬁz, sess It will be shown
that the collection.&Knis upper semi-continuous and that it is ‘an

.arc with respect to its elements. A continuum N in E2 will be equiva-
lent to K if and only if there exists a continuous transformation

Ty of E, into itself such that TN(K)_=1N. Let oy denote the collec-

tion of all point sets TN(g) where g is a continuum of the set ey
Lemma: The set K is both closed and connected.

Proof: Let p denote a point of E2 - K, Then the object is to
- prove that p 1s not a limit point of K and therefore that K is
closed.

The set K is contained within and on the rectangle R whose
vertices are (0,1), (1,1), (1l,-1), and (0,-1). Suppose first that
p belongs to the exterior of R, Then let d denote the greatest lower
bound of the set of distances from p to x where x is any element of
R, Let U be a region containing p such that if y € U the distance
from p to'y is less than d/2. Then U is a region containing p but
no point of K.and hence p is not a limit point of K.

If p € R or to the interior .of R then p lies on a vertical line
which intersects the x-axis in a point q lying in the interval
0 < x<«<1l, Since p does not belong to K, q cannot be an element of

C. Therefore q belongs to one of the complementary intervals sj.

But p does. not belong to Mi’ nor to the vertical lines Vy and V2
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which are the limiting sets of Mi' Therefore, choose d, to be the
greatest lower bound of the distances from p to points of M, d, to
be the greatest lower bound of the distances from p to points of vy
and d3 to be the greatest lower bound of the distances from p to

points ef V Let d = min {dl, d2, ds}. If U denotes a region about

2
p such that, for every x € U, the distance from p to x is less than
d/2, then U is a region containing p but no point of K. Therefore,

p is not a limit poeint of K.

Therefore the set K is closed.

In order to show that K is connected, suppose, on the contrary,
that it is not. Then K = A {J..B, where A and B are mutually separated
sets, Since each element of QK‘iS‘connected, it is contained in
either A or B,

Suppose the point (0,0) belongs to A and (1,0) to B. Then
consider the point p = sup {A n [(0,0), (1,0)]}. Necessarily, p
is a point of C and if p-is an endpeint of some interval i then
it must be the right endpeint, for otherwise, it would imply that
some element of @y intersected both A and B. But then p is.a limit
point from the right of the set C which implies that p is not the
sup {A n [(0,0), (1,0)]}.

If both (0,0) and (1,0) belong to A then consider the point
q =sup {Bn [(0,0), (1,0)]}. As in the first case, q must belong
to G and if q is an endpoint of an interval Sy then it must.be

the right endpoint. Thus q is a limit point of C from the right

and therefore q is not the sup {B n [(0,0), (1,0)]}.
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Hence both cases lead to contradictions and therefore it is

implied that K is connected.

Before continuing to show that the collection @y is upper semi-
continuous and an arc with respect to its elements, it is necessary

to state some useful definitions and theorems.

Definition: A transformation f{A) = B is saild to be monotone

provided that for each point. y € B, f”l(y) is a continuum.

If £(A) = B is monotone, the decomposition of A associated
with: £, i.e., into the sets [fdl(x)j, X € B, is an upper semi-

continuous decomposition into continua [22, p. 127].

Theorem: [22, p. 127] Any monotone transformation £(A) = B on
a compact space A 1s equivalent to an upper semi-continuous decom=
"position of A into continua. Conversely, any upper semiaconfinuous
decomposition of A into continua with decomposition space A' is

equivalent to a monotone transformation £(A) = A',

This theorem, stated without proof, is a well-known theorem
related to transformations. It implies that if a monotone trans-
formation £ is defined which maps K onto an arc A, such that

'{f‘l(a),a € A} = @, then the collection @, would be upper semi-

K
continuous and an arc with respect to its elements. It is the
intent here to define such a transformation.

Let A be a closed segment with endpoeints denoted by 0 and 1.

Any point of A will be denoted by some real number x, 0 < x <.1.

Since K is the union of elements of @y the transformation f: K—3> A
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will be defined in terms of the elements of oy (see Figure 2). It
should be recalled that ﬁl is defined over El’ ﬁz over‘gz, etc.,
where ;1 = {x|1/3 < x < 2/3}, §2v=u{x,l/9 < x<2/9}, +o.. Then

let £(M;) = 1/2, f(ﬁz) = 1/4, f(ﬁ3) =3/4, f(ﬁa) =1/8, +... For the
elements V and V

let £[V =0 and £[V

(0,0) (1,0)’ (0,0) (1,000 = -
Observe that for every Vp € H, p # (0,0), p # (1,0), p = inf {qlq € C,
q > p, and q is an endpoint of a complementary interval}. Then

let f(Vp) = inf {f(q)]q € C, ¢ > p, and q is an endpoint of a comple-
mentary interval}. Clearly, £ is a monotone transformation and

{ffl(q)lq € £(K)} = age It is necessary to show that £(K) = A.

lLet p be any element of A, Obviously, if p is an element of

the set D = {J%IO <k< 2n, n=0, 1, ...} then p is the image of some
2

element of @p. Suppose then. that p € (A: -~ D). Then p = inf {qlq > p,
g € D}, and hence p = f(Vj) where j = inf {m,m € C, m is an endpoint
of a complementary segment, and m > j}. Hence £(K) = A. It remains
to show that £ is continuous.

Let Q be any open interval in A. Then there exist points a
and b in A.such‘that a.and b are the endpoinfs of Q, a < b, Then
f“l(a) and f“l(b) are elements of @, and furthermore they belong to .
the closure of f"l(Q). For, if not, there exists an open. interval
contained in [(0,0), (1,0)] which contains =1a) n [(0,0), (1,0)]
but. contains no point of f“l(Q). But it contains points of at least
one element g of o which lies to the right of f“l(a)o Then £(g)
is greater than a and less than every point of Q and hence a is not

an endpoint of Q. Similarly, the same contradiction can be reached
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if it is assumed that f'l(b) does not belong to the closure of f“l(Q).
Hence f"l(Q) is open with respect to K and therefore f is continuous.
Thus f is a continuous one-to-one mapping of the elements of
oy onto the arc A. It is clea? that £ maps open sets of elements
of ax onto open sets., Therefore f is a homeomorphism from o to A
and o is an upper semi-continuous collection which is an arc with

respect to its elements.

Lemma. If J is a simple closed

curve axbcyda such. that the arcs axb
and cyd of J are of diaméter greater
than 1, then there exists a continuum
N equivalent to K, containing axb and
cyd and lying wholiy within or on J,
and such that the arcs axy and cyd

correspond, under the transformation

Ty, to the end elements of oy, and

R

every element of oy is of diameter

greater than 1. Figure 3.

Proof: Since the diameters of axb and cyd are each greater
than 1, there exist points p and q on the arc cb and distinct from
¢ and b and points p' and q' on arc ad but distinct from a and d
such that the distances from p to p' and from q to q' are both gréater
than 1 (see Figure 3). Furthermore p precedes q in the order from
c to b and p!' precedes q' in order from d to a, and if w and z are

points of da and cb respectively such that the distance from w to z
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is- less than or equal to 1 then w is between p' and ¢' on da and z is
between p and q on cb.

Clearly then, there exists a homeomorphic mapping h which maps
the rectangle R onto J so that h[(0,-1)] = ¢, h[(0,1)] = d,
n[(1/3,1)] = p', h[(2/3,1)] = q', h[(1,1)] = a, h[(1,-1)] = b,
h[(2/3,-1)] = q, and h[(1/3,-1)] = p, and such that h maps the
interior of R onto the interior of J. Then h(K) = N is a continuum
- homeomorphic to K, containing axb and cyd and lying wholly within
or on J, and such that the arcs axb and cyd. correspond under the
transformation to the end elements of Wy e In addition, every ele-

ment of &y is of diameter greater than 1. The homeomorphism h is

the transformation TN of the lemma.

Theorem: If k is any positive number, there exists an upper
semi-continuous collection of continua filling the plane, all
bounded, all of diameter greater than k, and no one separating the

plane.

Proof: Let Yq and Yo be arcs of diameter greater than 1 which
are subsets of Ml and M, respectively. Let T denote a transforma-
tion of the plane into itself which translates every point vertically
upward through a distance of 3 units. Let T(K) = Kj, T(yl) =81,
and T(yz) = BZ' Let J; denote the simple closed curve composed of
the arcs Y1 and B, and the two vertical intervals whose endpoints

are the endpoints of Y, and By, and let J, denote the simple closed

2

curve formed in the same way using'y2 and_Bz. Let Ni (i=1, 2)

denote a continuum equivalent to K such that the end elements of Ni



are and B., and such that each element of & is of diameter
‘Y. 1 N
i .
i

greater than 1, and all points of N, except the points on y; and Bi

i

are within Ji‘ Let Hl denote the union of the  continua ﬁl and.I_'I2

and all elements of aK.beEWeenxﬁl and ﬁz. Let H2 be the image of H1

under the translation T. Let V, (i =1, 2) be the union of the

i

continuum N, and the elements of og and &

4 which containvyi and B, .

K
1

Let R denote the bounded complementary domain of the continuum
ViUV, U Hy U Hy.

Suppose a collection of continua Hl’ HZ’ seeosy Hn, Vl’ VZ’ vowy
Vn‘has‘been defined having the following properties:

Property l: For each k, (2 < k.<n), H cRUV, UV, and

Property 2: For each 1 <1 <n, Hy is the union of the ele-

ments of an upper seml-continuous coellection, F such that (1)

H s

i

each element of Fy 1is of diameter.greater than lwand is either a
i

simple continuous arc or a continuum equivalent to M, (2) FH
' i

. is an arc with respect to its elements, and (3) the end elements

and FV . For each 1 < i <'n, Vi is the

of FH, are elements of Fy
i -1 2

union of the elements of an upper semi-continuous collection, FV s
i
such that (1) each element of FV is of diameter greater than 1 and
i

is either an. arc or a continuum equivalent to M, (2) FV is.an arc
i
with respect to its elements, and (3) the end elements of FV are
i
elements of F and F_ .,

Hy Hy



Property 3: For each pair of values of i and j (1 < i < n,

1< j<n)), Hi N Vj is an element of Fy and FV . IE L #F ]
: i j
then B, N Hj;= @ and V; N Vj3= 0.

Property 4: (a) For each bounded complementary domain D of

k-1
the continuum X _; =V, UV, U [ U H;], k' > 2, there exist positive
' i=1 ‘

integers ij and jp (i < ip < k) such that the boundary of D is a

subset of Vl U V2 U HiD U HjD. If 1< k < n and Dk-l and D are

complementary domains of X, such that Bk ) contains H, , then
i + ] <ip+t jD, and. each point p of D, _; at a distance

Pt Per—

greater than 1/(k - 1) from every point of H; is separated from
D
k-1

this continuum in D _j1 by the continuum Hy.
(b) For each bounded complementary domain D of the continuum

k-1
Yy ; =H; UH, U [~U1 Vi], k> 2, there exist two positive integers
l=
ip and jp, (iD < jp < k), such that the boundary of D is a subset
of the point set Hl U H2 U ViD U VjD. If 1<k <nand kal and

D are complementary domains of Y 1 such that Bkal contains V., then

k’
ka . + jDk . <ip+ jD’ and each point p of Dk-l at a distance

greater than 1/(k - 1) from evefy point of Vj is separated from
D .
k-1

this continuum in the domain D by the continuum Viee

k-1l
n
Property 5: For every 1 < i <. n every component of Hi - U Vi,
-7 k=1
n - —
and every component of Vj - U H, is equivalent to Hy .:’(Ml U M),
k=1 ‘
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It is clear that the set Hl’ HZ’ Vl’ V. satisfies these five

2

properties. In order to show inductively the existence of an infinite
collection Hy, H2, TEHRLY V2, +++ having these properties, it is

necessary to exhibit an Hn+1 and a Vn+1'

Let Dn denote a bounded complementary domain of Xn =

n

ViU VyU [ U Hy) such that 1f D is any other bounded complementary
i=1 '

domain of Xn:then iDn.+ an-S iy +ipe Let e = iDh. By Theorem 3,

Chapter I1, there exists a simple closed curve Jn enclosing H, but
not containing or enclosing any point of any other continuum H.,

1 < j<n, and, in addition, such that every point within J  is at
a distance less than 1/n from some point. of H,. For every

1< t < n the arc of elements FV contains an element Etn such. that
t

(D Etn is equivalent to M and (2) if Qtn denotes the element common

to F and F 5 then M  and all elements of F between M_ . and
v, He tn v tn

Qn belong to Dn:and to the interior of Jn“ The continuum M,_ con-

tn

tains an arc Y., of diameter greater than 1 which, under a contin-

uous transformation of ﬁtn into ﬁ, goes inte a subset of M, Let S

n
be the set of n -1 components of Dn - U Vk. For each domain G
k=1

of the set S there exist just two integers r; and sg, r; < s, < n,

G

such that. vy ,and y __ are on the boundary of G. Clearly there
. an SGn .

exist in G and within J, two mutually exclusive arcs which together

with'y,. and vy,  form a simple closed curve lying, except for the
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ares y_ n_and Yo n? wholly in G. Let N, dencte a continuum equivalent

G G

to K, such that every element of @y except the end elements Yr
G Gh

and Ys n is a point set of diameter greater than 1 lying wholly within
G

JG. Let Hyt; be the union of all the continua Ny for each domain G

n

of the set .S, together with { M, .
gy In

In an analegous manner Vn+1‘may be defined, Clearly, H .;
and V41 are defined in such a way as to satisfy properties 1.5,
Thus there :exists an infinite collection of continua Hl, H2, eee}
Vs Vo, eee, such that for every positive integer n, n > 2, the
subcollection Hl, Hpy eowy Hpys Vl’ V2, ooy Vn:has properties 1-5,
Property 4 implies that if p is any point of R not belonging
to the continuum Ho» there exists an integer t such that H, sep-
arates p from H, in R,  To see that this is true, let p € R such that

p ¢ Hy and suppose m > 2, - If the elements of FH , 1= 1, 2, m,
: M '

and the elements of F ., j =1, 2, are considered as the nondegenerate

V.
J

elements in a decomposition of EZ’ then in the decomposition space
formed of these elements and all points of E, not contained in one

of them, FH and F are arcs with respect to their elements. No
iy Vi
two of the arcs F

P

have an element in common, and F nF
Hy 1.V,

For every pair of values of i and j, FH N F, 1is a single element.
i

Vv,

Let g7, 825 8y and g,, denote respectively the elements which belong

toF, NFy,F NFy,F, NF, ,andF, nF . Let gg and g4
V1 1 V) 1 V2 By Vi H
denote the-elements which beleng to FH m:FV .and F N FV respectively.
n .

-1 Hm 2
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Then g¢g838485>, 8581898¢, 2and 858 are arcs with only their terminal
belements in common and, except for its terminal elements, 858¢ is
contained in the interior of the simple closed curve J formed by
86838485 U 8581878 Theorem 35, Chapter II, implies thgt the
- interior of J, which is the region R, is the union of disjoint sets
Dy, Dy, and gggg "{35’86}’ where D, denotes the. interior qf the
simple closed curve gcg,8,8¢ U 8584 .and D2 is the interior of the
simple closed curve 86838485 U 858¢° Hence if the point p of R does
not belong to H then either p € D; or p € D2.

Without loss of generality suppose ﬁTE_Dl. Let k, be an inte-

k =1

ger such that m < ko. Let Xkd’1'= Vl U.Vé U (:9 Hi).and suppose

1
D, is the complementary domain of X1 such that D, D; and the

o
boundary of D, is a subset of H U.Hj UVvViuVy.e Ifp qrﬁmlthen
. p 1s separated from‘Hm in R by the continuum Hj. Suppoese. then. that
p € 5m‘ This implies that either p € D or p € Hj'

If p € Hj,then by the way in which the elemen.tS«Hi are defined
in property 4 (a), there‘existé an integer k, k:> m,.k > j, such. that
if D is any complementary demain of X1 then m + j < iD-+'jD»and
Hy-c Dy. Then by definition of Hy, Hy separates p from H_ in:R,

1f p € D, then for seme integer k, 1/(k - 1) < d, where
d‘=‘g;1.b.{dXIX‘E Hy»' d, denotes the distance from x to. p}, the com-
- plementary demain kal of Xi.j which is a subset of D and whose
*boundary is contained: in Hm U Hs U Vl U‘Vé, is determined by the
-unique integers m and s where m < s and, if D is any ether comple-

- mentary domain of Xj_7 then m.+ s < ip + jp. ' Then by property &4 (a),
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Hk,g kal and every peint of kal'whose distance from every point of
H, is greater than 1/(k --'1) is separated from Hj by Hy. Therefore,
if p € Dy _p then it is separated from H_ by H, and if p ¢ D, .; then
it 1s separated fromva‘by’both Hy-and H_.

Thus, in the preceding paragraphs two things have been shown:
(1) if p is any point of R and p'¢ H_, m > 2, then p is separated
from Hy in R by H  for some integer t, and (2) if Hj:and Hy -are dis-
tinct continua then for some inﬁeger t, H; separates Hj from Hk'in R,
In a similar way it can be shown that if m =1 or 2 and p ¢ H. then
. p 1s separated from Hm in R by'Ht, for some integer t. In an analo-
gous manner these same properties can be shown to hold for the continua
Vi;o 1In particular it can be shown that if p € Rand p ¢ V, then there
exists an integer t such that V. separates p from~anin:R.

Let p denote any point whatsoever of R. Consider the collection
AL = {S|s is a continuum which is a finite union of continua of the

n

form H; or V., p ¢S, S Cv;il(Hi UvVi), n > 2}, For each n > 2,
there exists a continuum S € A, such that if S'€ A then S c S .
Let A = {Sh]n.= 2, 3, «00, 5, € An}. For each‘Sn-belonging.to A

let G, denote the complementary domain of Sn which contains. p.

P
For any integer n > 2, the complementary d‘omain'Gnvp is.bounded
o
by Hi U Hj U Vi U Vﬁ, for integers i, j, k, m, each of which is less

than or equal to ny. The truth of this can be shown in the following

way. Let Q = {HilHi c Sn and H; separates p from’H1 in-R}. 1If
)

Q. # 0 let Hq denote the element of Q such that if Hi €Q, 1 # q,
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then Hq separates H; from p. If Q = @ then IEt'Hq =H Let

1.
T = {Hi]Hi c S, and Hi separates p from'H, in R}. If T-# @ let
0

Ht denote the element of T such that 1f H; € T, 1 # t, then Hy
separates H; from p. Otherwise, if T = @, let Ht = H2‘ Let W=

'{Vilvi c Sno_and V, separates p from V, in R}, IfW# P let Vo,
denote the element of W such that if Vi € W, 1 # w, then VQ separates

v, from p. If W=0, let V. =V;. Let X ={V,|V, c s.no‘ and Vy

separates p from V, in R}, If X # @, let V, denote the element of

2

X such that 1f Vi € X, i #x, Vx separates V, from p. Otherwise,

i

lethx;=,V For the continua H sz and Vk consider the collec-

2- q"Hvt’

tlons F

T FH" F; , and FV . Each of these collections 1is an arc
q t

W X
with respect to its elements and, if g = FH n‘FV ) 8y = FH nFy .
q W q X

N FV , then 8,8,838,8 forms a simple

g, =Fy NF,, and g, =F g
-3 Tt Ve t - 2737471

H

closed curve J with respect to its elements. No point. of S, 1is
: o

contained in the interior of J for if there were then it woulg con=

tradict the conditions on‘Hq, H

w, and x are. less than or equal to n, for otherwise HqU‘-Ht U’VW.U Vye

£ Vw’ and Vx.. In additien, q, t,

would not be contained in: S, . Hence the interior of J is a cdmplea
-

‘mentary domain of S . Clearly, p 1s contained in the interior of J
)

since any assumption that 1t does not will contradict one of the

‘conditions placed upon Hq, Heo Vi, or Vg Therefore Gnop is the

interior of J.

Then. applying property 4, there exist integers q', t', w!, and

x! such that Hq, separates p from H_, H separates p from Ht’ \

q’ Tt wi
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separates p from V&, and V,, separates p from VX. Let ny be the

maximum of the integers q', t', w', and x'., Then the complementary

domain G of Sn is bounded by a subset. of Hq’ UH, U Vﬁl U Vx'

P 1.
and G c G . VFurthermore if n is an integer such that n < n < ny
nlp nop Po) ;
then Gnlp c an c Gnop. Hence there exists a subsequence Gis Ggy 5o
of the set of domains of the form an‘suchvthat Sl © Gk.
[ Qo
Let Tp = Qlick = élanp. Sincg TP is the intersection of a

countable collection of compact sets with the above properties, TP
is a continuum, For every integer k, the boundary of Gk is a subset

- of Hy U.Hj U VUV, for positive integers i, j, m, and n, and the

Vv =V

- boundary contains at least one element of Fy U FH UF UF
o1 j m n

Hence its boundary contains a subset of diameter greater than 1,
Therefore the domain G, is of diameter greater than 1. Thus‘Tp is
of "diameter greater than or equal to 1.

Let X = {Tp’p € R}, 1In order for the collection X to be the
desired decomposition of the domain R, it is necessary to show that
the continua are disjoint and that the collection is upper semi-
con;inuous.

"To show that the comntinua.are disjoint, let p and q be distinct
points. of R.and suppose Tp n Iq-# @ and Tp,¢ Iq‘ Then either IP
contains a- peint x. such that x ¢ Tq or there exists a point y € Tq
such that y ¢ Tp. If x ¢ Tp and . x ¢ Tq then there exists a doemain
Gnq q

domain an:which contains x is distinct from Gnq,and, by definition,

which contains T, but such that x:¢ Enq' Then the complementary



Tx.c an. Thus either x ¢ Tp or Tp N Tq = @, 1In elther case a con-
tradiction of the hypothesis results. Similarly thefassumption»that
y € Tq and y ¢ Tp yields a contradiction. Therefore if p and q are

p q
Let h € X and let M be any region containing h. By definition

distinct points of R, either T, = T_ or Tp n Tq =P,

o
- h= n G, where the domains G, have the properties defined abhove.
k=1

Then: there exists a domain G, of this collection such that Gk‘cyM,

k
for, if not, one could exhibit a sequence of points belonging to

‘EZ -'M and having a limit point in M. 1If p is any point of G, then
by the way in which the elements of X are defined, the continuum of
X which contains p 1s a subset of Gk' Therefore, if k. € X, k # h,
and kN D # @, then kc D -~ M, Thus the collection X is upper semi.
continuous,

Suppose there exists an element h € X such that R - h‘='R1 U R2
where Ry and Ry are mutually separated., Then this implies that each
of the domains which determine h separates R, Hence, according to
the way these domains are defined, every domain containing h either

intersects every V;, 1 > 2, or every one intersects every H , 1 > 2,

i,
‘But this is contrary again to the way in which these sets are defined
since no point can belong to more than one Hy or to more than one V4
-and since in each successive step of selecting the complementary

domain which contains h, certain of the H, and V, were excluded from

i

intersecting that domain. Thus no continuum belonging to X separates

R,
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Therefore X is an upper semi-continuous collection of continua
filling up the domain R, each element of X is of diameter greater
than or equal to 1, and no element of X separates R, The domain R
is bounded and its boundary is connected, hence R is homeomorphic
with the interior of the unit circle [22; p. 161]., The interior of
the unit circle is homeomorphic to EZ’ therefore R is homeomorphic
to Ey. In particular, if k is any positive number there exists a
continuous one-to-one mapping f between the poilnts of R and Ez‘such
that if x and y are distinct points of R, the distance between £(x)
and £(y) 1s greater than k times the distance from x to y in R,
Obviously the image under £ of a continuum in R will be a continuum
in Ej and the collection of continua corresponding to X under the
mapping will be an upper semi-continuous decomposition of E2 into
continua no one of which separates the plane. Furthermore every
element of the decomposition will be of diameter greater than k.

It is of interest here to note that in a later paper (Duke
Mathematical Journal, Vol. II, 1936, pp+s 10-17) Roberts proved that
there dees not exist an upper semi-continuous collection G of arcs
£illing the plane. Prior to that publication some believed that the
previous example implied the existence of a decompesition of E2 into

arcs.
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CHAPTER 1V
RESULTS OBTAINED FOR E3

It was in 1925 that Moore proved that an upper semi-continuous
decomposition of E2 into continua which‘didéﬁot separate E, formed
a decomposition space homeomorphicfwith EZ' During the next ten
- years several people wefe doing significant work on the theory of
upper semi—continuous decompositions but none of.it pertained directly
to E5. In. an address before the American Mathemafical‘Society in
- 1935, G. T. Whyburn suggested that there was a need\towstudy what
conditions on an upper seml-continuocus decomposition of E3 were
sufficient for the assoclated decomposition space to be topologilc-
-ally Eq.

It 1s known that Moore's theorem cannot be extended to Eq with-
out some édditionalurestrictions. ‘The investigations are continuing
and many question remain.unanswered. It is the aim here to point
out what has been accomplished and to list some of the questions
which have yet to be anéwered.

A simple example will show that not every decomposition of Ej
will yield Ej. Consider the decompositien whose only nondegenerate
element is a circle, Certainly this is a decomposition of E3~into
. continua which do not separate Ej. It is known, however, that.not

only is Ej simply connected but it will remain so if a single point
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is removed, The decomposition space which has been formed is also
simply connected but it fails to remain so when the point corres-
ponding to the circle is removed [5]. It can be seen that this is
the case since an open disk containing the circle is disconnected
when the circle is removed.

To show that a decomposition space is not topologically E3 it
- is best to find some simple property that is knoewn for E3 which the
space lacks. The alternate technique is to prove that there does
-not exist a homeomorphism between the two spaces. This second
method was used by Bing [3] to show that the space known as the
"doghone space! was topologically different from E3. It seems useful
to give a brief description of the dogbone space here since it Has
been a favorite counterexample for several theories on decomposi-

A

tions of E3.

Definition: An arc.J in E3 is tame if it has the following
properties at each point p € J. (1) For every ¢ > 0, there exists
a 2-sphere K of diameter less than ¢ such that p lies in the bounded
complementary domain of K-and J N K is a set containing exactly one
point when p is an endpoint and exactly two points when.p is not
an endpoeint. (2) An open subset of J containing p lies on a disk

in: E3 .

An arc which is not tame is said to be wild. Figure 4 is an

. illustration of an arc in E3 which is not tame. It fails to satis-

fy the first property at the points p and q.
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A 0

Figure 4,

The dogbone space is a decomposition of E_ into points and tame

3
~arcs. The way in which the tame arcs are formed is probably best
described by use of a picture., Let T be a double solid torus, as
shown in Figure 5, and in the interior of T place four double tori
Tl, T2, T3, T4 so that Ti is linked with Tj through their correspond-

ing loops as indicated in the.figure;. and . so.that if i # j, Ti n Tj = §.

T in the same

In each T; are placed four double tori Til’ Ti2’ Ti3’ il

way and the process is continued in this fashion. Then each com-

ponent of TN (?3 Ti) N (.S -S Tij) Nl »os is a tame arc and Bing
i=] i=1l j=1
[3] has indicated that there are uncountably many of these.
Once it was observed that the theorem of Moore's did not general-
ize to Eg, inquiries were begun to find what restrictiens were nec-
essary in order that an upper semi-continuous decomposition of E3

into continua which do not separate Eq will form a decomposition

space topologically equivalent to Ej. Several theorems have been
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proved in this area and many unresolved questions remain to be explored.
Some of the results which have been obtained will be stated and dis-

cussed and some of the unsolved problems will be noted.

Definition: A compact continuum g is starlike if it contains a
point p such that for every line L through p, LN g is a line segment.

Then the set g is sald to be starlike with respect to p.

Iﬁ order for a coentinuum to be starlike in Eqy it must. be three
dimensional and contain an';nterior point. The drawing in Figure
6 (a) represents an ordinary cylinder plus its interior. This set
of points is starlike since for any point p in the interior, any
line through p will intersect the set in a line segment. In Figure

6 (b), the solid cube is starlike with respect to any point except

-

~—
(a) (b)
() (a)

Figure 6.
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those points which lie on an edge, Figures 6 (c) and 6 (d) repre-
sent surfaces in Ej which are not starlike. The set ofrstarlike
continua in E3 includes as a subset the set of all convex bodies in
E3, i.e., the set of convex sets which contain an interior point.

Bing [ 8] has proved the following theorem relative to this.

Theorem 1: Suppose G is an upper semi-continuous decomposition
of E3~such that G has only a countable number of nondegenerate ele-
"ments .and each is starlike. Then the decomposition space G is

topologically equivalent to.E3.

A simple example of a decomposition such as this éan easily
be defined. It is known that the set of points (x,y,z) in Eq,
where x, y, and z.are integers, is a countable collection. Suppose
Sxyz is defined to be the set of points of E, whose distance from

3
(x,y,2z) 1s less than or equal to. 1/4. Then let K = {S l(x,y,z) € E3,

Xyz
X, ¥, z are integers} be the collection of nondegenerate elements in
.a decomposition of Ej. Every element of K is a convex body and
hence the decomposition space so formed is topologically Ej.

In a similar theorem, W. R. Smythe, Jr. [21], has proved that
if G is an upper semi.continuous decomposition: of En whose nondegener-
ate elements are compact and strictly convex then the decomposition
- space is homeomorphic to E,. A set C in E, is strictly convex if
every segment jolning: two points of C is contained, except possibly
for its endpoints, in the interior of the set. As far as E3 is con-

cerned, Smythe's theorem is a special case of Theorem 1. His theorem

is more general in that it can be applied to E  for n > 3.
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From Theorem 1, one is led to inquire whether the theorem would
also hold if the nondegenerate elements were merely convex continua.
This question has been partially answered in a theorem proved by
Louis F. McAuley [11]., He has considered the case where G is an
upper semi-continuous collection of straight line intervals and

points filling up Ej and has proved the following theorem.

Theorem 2: Suppose that G is an upper semi-continuous collec-
tion of straight line intervals and points such that each member
of the collection H of 'all nondegenerate elements of G is parallel
to at least one of a countable number of fixed lines Ll’ L2, L3, ssca

Then the decomposition space is topolegically Eso

This theorem can be illustrated with an example such as the
following., Let Ll’ L2, oo L180 be a collection of lines in the
yz-plane such that Ln forms an angle of n degrees with the positive
y-axis and ;ontains the point (0,0,0). Let C be a cylinder defined
by the equa'tion‘y2 + zz.=,1. Let Lé, 1 < n< 180, be a collection
of lines on the cylinder C. such that Lé»is perpendicular to L, at
its point of intersection with C for which the z coordinate is
greater than or equal to 0 and y # 1; Each pair L, and Lﬁ of inter-
secting lines determines a plane p;,» For each n, let 5§, = {sx]sx is
a segment of unit length which does not intersect the interior of C,

s, c.P

< s, is perpendicular to Lé»at the point (x, sin n, cos n),

n’
. S 180

, es+} (see Figure 7). Then H= U s, is
n=1

x=0,1, 1/2, 4., 1/2"

the set of nondegenerate elements of a decomposition of E3. Each
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Figure 7.

element of H is parallel to one of the lines Ln_and'no two qf the
elements have a point in common. For any element of Si there exists
'a domain contalning it which does not intersect an element of Sj

for j # i. Furthermore, for any element of S except s,, there exists
a domain. containing 1t which intersecté no other element of S;o

For the element s,, every domain containing it contains infinitely
many of the elements of S;. Let D be any such domain and let

A= {sx’sx ND#P, s, & D}. The set A contains at most a finite
number of elements of H. There exists a domain:D' containing s
which does not intersect. an element of A. Then. D' N D is a domain
containing s, (D' N D) <« D, and if sx N (D' N D) # P, then s, < D.
Hence the collection of elements of H is upper semi-continuous and

according to Theorem 2, the resulting decompositien space is topo-

logiéally Ej.



Four years prior to the publication of McAuley's theorem Bing
[8) published the proof of a theorem which could be treated as a
corellary to Theorem 2., In it the nondegenerate elements of the
decomposition were all vertical intervals.

E. Dyer and M.-E. Hamstrom [9, p., 116] have proved a theorem
havingbto do with a decompesition whose nondegenerate elements are
compact continua in E3. These are not restricted to being convex
but as a special case the theorem may also be applied to convex
continua and will partially answer the question regarding convex

continua. Their theorem is the following one.

Theorem 3: If G is a decomposition of Ej into points and com-
pact continua such that each continuum lies in a horizontal plane
and does not separate that plane, then:the decomposition space is

topologically equivalent to Eqe

This theorem makes it possible to consider decompositions in

. which the nondegenerate elements are closed disks, curves, arcs, and
other continua so long as they each lie in a horizontal plane. It
has contributed toward varying the types of'decomposition elements
that can be used, but the restriction of each element to a horizon-
tal plane remains a hindrance.

Two additional theorems of Bing's [8] cover some of the decom-
positions one might wish to consider where the elements are not
confined to a horizontal plane. They each impose another restriction
- which is equally limiting, however. That is, to satisfy these

theorems the collection of nondegenerate elements must be countable,



. The theorems are these.

Theorem 4: Let G. be an upper seml-continuous decomposition
of E3 into continua with the following properties: (a) the comple-
ment of each element of G is topologically equivalent to the comple-
"ment of a point, (b) G has only a countable number of nondegenérate
eleménts, and (c) the union of the nondegenerate elements is'the
intersection of a countable collection of open sets. Then the decom-

position space G 1s topologically equivalent to Ej.

Theorem 5: Suppose G is an upper semi-continuous decompesition
of Ej such that G has only a countable number of nondegenerate ele-
ments and each is a tame arc. Then the decomposition space 1s

topologically equivalent to E3a

The example following Theorem 1 can. also be used as an example
to illustrate Theorem 4, The dogbone space can be used. to shgw the
- necessity for the: restriction.to:countable collections in Theérem
5. The set of nondegenerate:elements in the dogbone space ig una
countable and the decomposition space is not homeomorphic to Ej.
The following example does satisfy the conditions of Theorem 5.

Let S = {s|s is rational, 1 < s < 2}. For each element s in
-8 let Cg be a right circular cylinder having its base on the
xy+plane, the center of its base at (0,0,0), and the radius of. its
- base s, and let the height of Cg be two, Then for every s €8,

let Hy be a circular helix lying on C, and described by the para-

. 1
metric equations x = s(cot t), y = s(sin't), z = o te "Then if the
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. set H = {HSlS'E S} is the set of nondegenerate elements of a decom-
position of E3, the conditioens of Theorem 5 are met and therefore
the space is homeomorphic to Eq.

Another theorem regarding decompositions with only a countable
number of ﬁondegenerate elements has been proved by Steve Armentrout
[2]. His theorem places conditions on the decomposition space

- rather than on the decomposition elements which cause the space to

be homeomorphic to Ej.

Theorem 6: Suppose G 1s an upper semi-continuous decomposition
of E5 into compact sets and that G has only countably many nonde-
generate elements. If the decomposition space S associated with G
is a separable metric space such that each point of S has an open

-neighborhood V in S such that V is homeomorphic to Ej, then S is

homeomorphic to Ejs
Known Counterexamples

In addition to the positive results that have been mentioned,
some negative results have also been obtained. That is, for some
of the conjectures on upper semi-continuous decompositions, counter.
examples have been found. The first of these is, of course, the
dogbone space, It disproved the theory that.a decomposition for
which the complement of any element was equivalent to the complement
of a point in E3 would form a space homeomorphic to Eqe

Bing [ 7] has described another decomposition of E3 which shows
that having only a countable number of nondegenerate elements is

not sufficient for the space to be homeomorphic to Eq. Each
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nondegepérate element in this example is an incecomposable .continuum
formed'ﬁf the intersection of a countable collection of solid tori
in.E3. The nondegenerate elements are formed in the following way.
Let Ty be a solid round torus. In the interior of Ty are placed

two solid tori T . and TOl’ linked as shown in Figure 8. These are

00
constructed so that the diameter of Ty, is less than half that of

Tg. The center axis of TOO lies. in the same plane as the axis of

TO’ while the axis of T,. is in a plane perpendicular to this one.

01
In the same manner asvT01 and TOO were constructed in TO’ construct

TOiO and TO in TOi’ i=1, 2, and continue in this way.

il
Let

Y=ToN (U Todn (U U TozdNCU U )N e

U T,
1=0,1 1=0,1 §=0,1 7 1=0,1 j=0,1 k=0,1 01k

Then the components of Y together with the pointS-of‘Ea‘-'Y are the
elements of the decomposition G, Using the ternary.represeqtation
of the numbers of the Cantor set, .Oalaz..., where -a; = 0 or'l, can
N eses ILE the

be used to represent the component TO nert ]

T
Oal oaz

ternary representation contalns infinitely many 1l's, then for some

integer k, if j >k, a, =1, and the tori in this sequence are defined

3
in such. a way that their diameters form a decreasing sequence of
rumbers gpproaching 0. Hence their intersection is a point. There-
fore there exists only a countable number of nondegenerate elements
in G.

" Bing proved that the space formed by the elements of G was

different from E, by showing that there is an element 'in the decom-
3% 8 ;

position space which is not contained in a small neighborhood bounded
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by a 2-sphere.
Bing [5] and McAuley [10] have each published examples of decom-

- positions of E3‘whose nondegenerate elements are straight line inter-
vals. In each case it has been conjectured that the resulting space
is different from Ej. The examples are similar in that each consists
of an uncountable collection of line segments formed by the inter-
section of a collection of tubular neighborhoods and contained between
~a palr.of horizontal planes. Whether or not a decomposition of Eq
into points and straight .line. segments must necessarily yield a space

equivalent to E3 seems .to remain an open.question.
Some Unanswered Questions

Many questions have been raised in regard to decompositions of
Eq for which no published answer has been found. Some of these will

be noted here.

Question 1l: Does there exist an upper semi-continuous decom-
“position of E3 into, at most, countably many disks and one«point

sets such that the decomposition space is not homeomorphic to E3?

Question 2: 1Is it true that if G is an upper semi~continuous
- decomposition of Ej into straight-line intervals and one-point sets,

then the decomposition space is equivalent to Eq?

If the conjectures on the examples of Bing and McAuley men-
tioned above are correct then a negative answer can be given to
Question 2. In both examples there are uncountably many nondegenerate

elements. It may be that in order to have an affirmative answer to
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this question the set. of nondegenerate elements will have to be
countable.

J. H. Roberts showed that there was no upper semi-continuous
decomposition of E, into arcs. In connection with this one might

ask the following question.

Question 3: Is there an upper semi-continuous decomposition

of E3 into arcs?

Questions have also been raised in related areas. Some work
has .been done on embedding. decompositions of Eq in E, or ES’ and
on the cross product of certain of the decompdsition'spaces.with E1a
It would appear than an expository paper on the work that has been
done: along this line would:. be of value.

The notion of equivalent decompositions has also been studied.
The equivalence used in this area is more~restrictive»than-tobologi=
"cal. equivalence. A definition of it and a survey of the Work*that
has been done in the area can be found in "Equivalent Decompositions
of E3” by Steve Armentrout, Lloyd Lininger, and Donald Myer, Annals
of Mathematics Studies, No. 60, Princeton University Press, 1966,

pp. 27-31.
Conclusion

The study of decompositions and decomposition spaces is wvaluable
in furthering the study of topology in general. Many properties of
a space can be more easily revealed by using a decomposition of the

space. Once two spaces are known to be topologically equivalent



then topological properties which hold in one space will alsc hold
in the other. Perhaps when more 1s known about the decomposition
of Euclidean spaces of dimension higher than 3, more properties of

these spaces will be revealed,
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