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CHAPTER I
INTRODUCTION

Since World War II the study of control systems and dynamical
systems in general has received increasing attention. More recently,
the design analysis of complex missile and satellite control systems
has provided a great impetus to the advancement of studies in these
areas. However, the increasing demands for more complex and more
reliable systems have led to a realization that some of the frequen-
cy domain methods of analysis are inadequate in many cases, especially
for nonlinear systems.

The need for more comprehensive methods of system design and
analysis that are applicable to linear and nonlinear systems, Lime-
invariant, time-varying and muitivariable systems has become evident.
More specifically, a particular need exists in the area of systenm
compensation in order to achieve a more optimum response charachter-
istic. For instance, a system designer may have in mind a tentabive
systbem design which he wishes to modify or adjust in order to achieve
a specified response. However, the questions of Jjust what modifica-
tions to make or whether there exist suitable modifications are
difficult to answer. Alternatively, onermay wish to compensate an
existing system in order to improve a certain response characteristic.
‘Again the anawers to the questions of whether proper compsnsation

is possible and what form it may take are elusive.



The study reported herein was undertaken to determine a method
of system design or compensation that was applicable to nonlinear or
time-varying multivariable systems and would aid in achieving a "best"
approximation to a desired response characteristic. That is, an ana-
v;ytical technique was sought that would first determine whethér an
existing system or a proposed model could be modified sufficiently
to produce the desired respcnse. If an acceptable response were
feasible, then it was desired to know ﬁhat modifications or additional
analytic terms were necessary to achieve this respomse. Finally, but
no less important, it was desired that the designer be able tc deduce
whether the necessary modificationsg or additional terms could be
realized in the physical system. One is logically led to a study of
modern optimal control theories in an investigation of this nature.

A survey of publications pertinent to the topic of this study
revealed that the analysis techniques currently available fail to pro-
vide the desired capabilities. In most instances, conventional optimal
control theories lead to open loop control or, at best, an opbimum
parameter closed loop system. Although these methods lead to the opbi-
man values of the adjustable parameters, the designer gains no
indication of the effect of additional modificaticns or what other
modifications might be desired. Neither have previous works indicated
very well how to find fixed parameter closed loop approximations to
the optimum open loop control signal. Some techniques do lead to
optiﬁum closed loop systems with time~varying feedback gains for
linear systems with quadratic performance indices. However, in all
but the rnost sophisticated systems, the physical implementation of

the proper time-varying gains can be a most difficult task.



In view of the shortcomings and limitations imposed by curreny
compensation methods, the present study was initiated. It was pro-
posed to develop a technique that would be applicable to nonlinear
systems as well as time~invariant and itime-varying linear systems and
walch would determine the proper system modifications and compensation
to insure the 'best" fit to a preselected system response.

This report documents the results of the ensuing investigation,
the developrent of the technique, and demonstrates its application
to several nonlinear systems. In particular, Chapter 11 presents a
brief summary of the statement of the problem and the results of pre-
vious investigations. Chapiter III states the sgpecific objectives of
this study, vhile the following chapter reviews same basic principles
and presents, in detail, the development of the compensation techni-
que. Typical nonlinear hydraulic and electrical systems are ubtilized
to demonstrate the utility of the method in Chapter V. A summary of
the application and limitations of the compensation procedure and
recommendations for fubure investigations are given in the final

chapter.



CHAPTER I1
PROBLEM STATEMENT AND PREVIOUS INVESTIGATIONS

The terms "system" and "control system" are very general and
can be used to describe a wide variety of physical, chemical, socio-
economical and biological processes. Thus the first section of this
chapter is devoted to defining the types of system to which this
study is most applicable and some of the primary objectives in sjs-
tem compensation. The second section reviews the works of several
investigators who have studied the problem of system modification in

order to meet response specifications.
Statement of the Problem

The study reported herein concerns certain aspects of compen-
sating nonlinear mechanical, hydraulic, pneumatic.or electrical
systems in order to achieve desired response characteristics.
"Compensation' is generally taken in this thesis to mean.the modifi-
cation or adjustment of an existing system as opposed to the initial
"design" or synthesis of a system. The problem is generally described
as determining the proper adjustments to system parameters and select-
ing the appropriate additional feedback loops and gains.

The general dynamical system model has the form

% = £(x, u, t)

where X 1is an n-vector of state variables, u 1is an m-vector of



deterministic inputs, f is an n-vector function of x and u,
t 1is the independent variable time and % is an n-vector of state
time derivatives. The inputs u are assumed to be known and fixed
and the vector function f 1s assumed to be continucus and to have
continuous partials with respect to x and t.

In order to illustrate some of the problems encountered in sys-
tem compensation, consider the following. Assume that the following
nonlinear differential equation describes the dynamics of some

physical system.

X, =%

(2-1)

- c,x.x, + ult)

X, = =Cc. X, - c, X, 3%, %,

2 12

It is desired to alter the system represented by Eguation (2-1) in
order to obtain a "better" system. The problem, simply stated, is to
adjust the coefficients (cl’ Cos 03) and/or add additiocnal terms
to the equation so that the egquation solution will perform in a
specified desirable manner and thus, the system performance will
respond with a like behavior. |

Assume that the system model given in Equation (2-1) has initial

coefficient values and ¢ such that the solution to the sgua-

s Cp 3
tion is as shown in Figure 1, Curve A. This highly oscillatory
response may be undesirable while a response as shown by Curve B
would be acceptable. Thus it is desired to add terms as needed to
the eguation and adjust the gains 15 Sy and 03 and those asso-
cilated with the new terms so that the response approximates Curve B
as closely as possible.

However, the gains or parameter values must be limited to insure

physical realizability. Hence any technique developed that would aid
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in the derivation of the proper parameter values and necessary addi-
tional terms must be capable of considering physical realigability
requirements also.

In addition to shaping the state response to some desired value
while considering realizability requirements, it may also be desirable
in sore instances to 1limit extreme values of the state variables.
thile the above discussion was concerneq with shaping the response
xl(t) to some desired function, no control or restriction was
placed on xz(t). Thus it is quite possible that in arriving at
the response shown by Curve B in Figure 1, the other state variable
is caused to take some wndesirable form as shown in Figure 2. Al-
though the exact shape or form of the response of X, is not
critical, it may be preferable to 1imit the maximum amplitude of
Zy %o xz(max) as shown. Hence, another problem encountered in
system corpensation is to limit the maxima or minima of some of the

state variables while shaping the response of others.
Previous Investigations

A significant amcunt of investigation has been accomplished in
recent yvears in the general area of the selection of syshtem parameters
or system modificaticns in order to meet solution specificaticns. OF
consequence though, only a few of these works are generally applicable
to nonlinear systems. A brief review of these articles will aid in
understanding the technigue proposed herein. The followlng articles
are divided into three general categories--(1) parameter optimization

only for linear systems, {2) parameter optimization for nonlinear
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systems, and (3) parameter optimization and system design of linear

and nonlinear systems.

Parameter Optimization of Linear Systems

Perhaps most general in application to linear systems is a method
developed by C.M. Bacon in references (1, 2)*. Bacon presents a
technique whereby the desired response of a linear dynamical system
model 1s specified as a solution to a linear matrix differential
equation. An error criterion is formulated based on the algebraic
properties of state-space system models and is then minimized, driv-
ing the system parametersg to values which minimize weighted differences
between coefficients in the desired and optimum solutions.

Bacon discusses systems described in general by

I
i

Ax+3u

(2-2)
+

<

"
Jo
Ic

L

where x = state vector, u = input vector, y = output vectors, and

A, B, G, D = coefficient matrices. One particular advantage of
Racon's method over several others is the fact that the necesgsary
coordination of adjustments to elements of the coefficient matrices
that are functions of the same system parameter is taken into account.
However, as mentioned above, his procedure is limited to linear sys-
tenm models and allows only the specification of linear differential
egratlion solutions as desired responses.

(ne additional point with regard to Bacon's parameter optimiza-

tion method will be msde here. The error criteria formulated in his

Sl

Tumbers in parentheses refer to references listed in the
Biblicgraphy.



paper 1s not time dependent; it requires the solution of one system
of equations to match the solution of another system for all time.
Thus the designer is not able to emphasize one portion in time of the
system response over another. In’some instances, for example, only
the transient portion of the system response is of interest to the
designer and the respongse error during this time only would be of
interestn The method of parameter selection presented herein allows
this desired "weighting" of the error criteria.

4 method similar in concept to that presented by Bacon is de-
scribed by Z.V. Rekasius in (3). Rekasius presents a method generally
applicable to linear systems whereby a performance functicnal is
formed from a specified system response. The desired response, ex=
pressed by a linear homogeneous differential equation, represante
the ideal, toward which the system 1s optimized. A Lyapunov
function 1s formed to minimize the performance index which in turn
drives the system response closer to the ideal response. This method,
however, possesgses some of the same limitations as the method devel-
oped by Bacon; that is, it is applicable to linesar systems only and
the performance functional is limited in form.

A method of compensation for linear systems is developed by
J.G. Mrazek in (4). This method requires that the system state model
be written as

2=Ax+Bu. (2-3)
The state equation is then transformed to the normal form so that the
system eigenvalues (characteristic values) are displayed in the trans-
formed A matrix. The elgenvalues are used to calculaée a transient

response criterion termed "steadiness factor" which is to a degree, a



measure of the total response overshoot to a step input and is alsc

a function of the response rise time. The procedure then is to adjust
the eigenvalues to give an acceptable steadiness factor value. The
state equation is next transformed back to the standard form

(Equation (2-3)) resulting in new coefficient matrices A4 and BE.

The response to this new state equation will yield, or approaéh as
closely as possible, the desired steadiness factor,

Mrazek's method offers the advantage of emphasizing the tran-
sient portion of the response rather than the complete time history.
However, a disadvantage is inherent in that adjustments are made %o
the coefficients in the A matrix without regard for the facﬁ that
the same system parameter may be represented in two or more of the
coefficlents. That is, the possibility exists of the compensation
technique adjusting one ¢oefficient upwards and another downmwmrds
while they both represent the same system parameter. The method
presented in this thesis is not hampered by this difficulty since the

physical parameters themselves may be adjusted.

Parameter Optimization of Nonlinear Systems

A.J. Koivuniemi presents an algorithm in (5) for parameter opti-

mization of nonlinear systems in limited cases. IKe discusses a pro-

A

s,

cedure whereby the elements of a parameter set are adjusted so that
the performance index is minimized (via gradient method). However, his
method is limited to a particular performance functional, namely

J = xx(T), R x(T)> (211}
where x 1is the state vector, T is the (fixed) terminal time of

the process, R 1s a constant positive semi-definite matrix, and



J the scalar performance index value. Koivuniemi's method offers
the advantage of being applicable to nonlinear systems but is severely
limited by the fact that the whole procedure is based on the particu-
lar performance index given in Equation (2-Lh). Since the performance
index is evaluated at the terminal time only, the utility of his
method is limited to terminal cost problems only.

A method of nonlinear system compensation discussed by
‘D.A. Hullender in Chapter II of reference (6) is a method fairly
general in application. This technique makes use of the system sensi-
tivity coefficients to adjust the parameters of the system to obtain
a specified response, or essentially, to solve the parameter optiwmi-
zation problem. The sensitivity coefficient is essentially the rate
of change of a state variable with respect to a change in a system
parameter. By calcuvlating the sensitivity coefficients of a state
variable, one is able to compute the required variations in the
system parameters in order to drive that state variable to a desired
response. A numerical technique may be formulated to minimize an
error function (integral square error) by adjusting the system param-
eters using the gradient method.

This method offers several advantages, not the least of which
is its application to nonlinear systems. In addition, the error
function is not limited to the integral square error but could be any
function of the state variables. Also, this method is not hampered
by the problem of coordinating coefficient adjustments with the sys-
tem parameters since the necessary changes are made‘directly to the
parameters, not the equation coefficients. However one distinct dis-

advantage 1s apparent; one that is common to all parameter



optimigzation technigues. At no point in the compensation procedure
does the designer have any indication of what the optimum system

response might be or whether improvement of the present response is
possible. Also, some of the computational difficulties associated

with other gradient techniques are shared by this method as well.

Parameter Cptimigzation and Design of Nonlinear Systems

J.E. Bose (7, 8) presents a method of system design that has
proven guite effective. He assumes a trial system model given as
x=2x)

and then adds a control vector g(x) ‘that will drive the state

12

response to the desired value X4 when properly formulated. That is

x = £{x) + glx). (2-

However, this method requires the system designer to assume the form

of g(g) prior to the solution of the problem. That is, the func-

tional form of g is first specified, as for example

g1 = kyx; + kyx,

g, =0

2
Bn = kyx X, + k,x,

and then the technique adjusts the values of ki to cause §{t} to

5)

approximate, in a least squares sense, the desired state time history

50 -

The choice of the form of g(ﬁ) is important since once this
selection is made, the fitting technique cnly can adjust the param-
eters ki and camnot add new terms if needed. There is little

information available to guide the designer in selecting the form
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of g(x} other than perhaps ingenuity or intuition. This fact repre-
sents a fundamental diffefence between the method of Bose and the
technique of this report. It will be shown later that a control
vector similar to g(x) in Equation (2-5) will be derived, however
the form of it will not be fixed until more information is available
or can be determined.

One additional point in regards to Bose's method concerns the

specification of the time history of all of the state variables, This;
at times, requires the differentiation of the given desired stabe;
a task which can become difficuit if the desired state response lis
not given in analybical form. The method developed in this thegis
requires the specification of only the desired state variable time
history}

D.R. Unruh (9) discusses a parameter optimization algorithm
and associated computer program which is applicable in general to
continuous nonlinear systems. This technique, like Bose's, only ad-
justs constant system parameters and parameters associated with any
added terms. Again, like Bose's method, there is little information
given as %o what additional terms, if any, should be added to proper-
ly compensate the system. However, once the system designer 1s able
to determine what additional terms or feedback loops are needed,
if any, this program provides an excellent means of determining the
optimum set of parameters to yield the desired respcnse.

~The method of parametric expansion developed by C.¥W. Merriam, III
(10, 11) leads to the derivation of the necessary linear feedback
loops for optimal control of linear or nonlinear systems. The

egsence of this method involves a minimum error function F which
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has the assumed form

n n n
E = k(t) + E k, (8)x, (8) + Z ’E k;, (6)x, (6)x, (t)
i=1 i=1 j=1

where the x(t)'s are the state variables, the k(t)'s are time=-
variable parameters, and n 1s the order of the system. The elements
of the control vector are expressed as functions of the partial deriv-
atives of £ with respect to the various stéte variables and time.
The various k(t)'s are then determined as the solutions to a set

of first-order differential equations. Thus, the control vector may
be determined as a linear function of the state variables and a set

of timeevariable parameters or gains.

Once the control vector has been derived in this manner, however,
the designer is still faced with difficulties in implementing the
control. The irmplerentation of the time-variable gains would in
general be exceedingly difficult without an on-board computer.
Furthermore, there is no assurance that all of the state variables
required for the generation of the centrol vector will be cbservable
or available for use. In short, there is no censideration given to
physical realizability in the derivation of the contrel wector through
the parametric expansion technigue. The method presented herein makes
physical realizability a prime consideration.

In view of the original problem statement, the above methods of
parameter optimization and system design will now be summarized. The
techniques presented by Bacon, Rekasius and Mrazek (1, 2, 3, L) are
limited to linear system models and hence are not applicable to ‘the

class of problems under consideration, i.e. nonlinear system models.



Koivumiemi's (5} method is applicable to nonlinear systems bubt is
limite% to one particular performance index. &4 method of parameter
optimization generally applicable to nonlinear systems was discussed
by Hullender {6} which gave no a pricri information as to what system
parameters should be allowed to vary. Pose (7, 8) developed a tech-
nique applicable to nonlinear systems in which the general form of a
control vector is first assumed and then the coefficients associated
with this vector determined. The primary difficulty associated with
this method and thalb of Unruh (9) is the fact that the form of the
control vector must first be selected by the designer with little
guidance as to the proper form to assume. Finally, Merriam's {10, 11)
parametric expansion technigue provides a more analytical means of
deriving the necessary fesdback loops yet resulis in & form that re-
guires time-variable gains. In additicn, his fechnique is restricted
to linear feedback locps by the assured form of the minimum error

funection.



CHAPTER III
OBJECTIVES OF THE STUDY

Based on the discussion of past work on the problem of system
design, the objectives of this research can now be more clearly
stated. It is assumed that a trial system model will be available
to the system designer. That is, a set of nonlinear differential equa-
tions can be determined that adequately model the system. The
coefficients of the differential equaticns will be functionsg of the
physical system parameters or characteristics. The system model is
given as

% = £(x, u (3-1)
where X 1is an n-vector of state variables, u an m-vector of
external system inputs and f an n-vector function of x and u.

A control vector g will be added to Equation (3-1) which will drive
the state trajectory =(t) to the desired trajectory §d(t>'

£=2x,u) +g (3-2)
The form of g will not be specified initially.

A technique was desired that would aid the system designer in
selecting the optimum trajectory of -the vector g to cause x(t) to
approach as closely as possible the desired system response, and fur-
ther, to relate the control ¢ to the physical system. In an effort

to realize this technique, this study was initiated with the follow-

ing objectives in mind:

16
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1. Determine a method of formulating a performance index to
indicate, among other things, how well the system response ap-
proximates the desired response.

2. Establish a method of expressing the desired response
characteristics in analytical terms, cémpatable with the pro-
cedure for determining the optimum control g.

3. Develop a compensation procedure that does not require

the specification of the time histories of all of the system
states. Rather, only the states with a specific desired
response should require specification.

li. Demonstrate the feasibility of deriving the time history
of the necessary control g for the type problems discussed.
5. Relate the time history of the control vector q ‘to the
state variables in'such a way as to generate the control vec-
tor ¢ as a function of the stéte variables.

6. Insure that the compensation technique allows the sbecifiw
cation of a desired response trajectory as well as the Ilimiting
of state extrema.

7. Insure that the procedure provides a ﬁeans to.maintain‘
physical realizability regquirements.

This document reports on a study to develop a method of system

compensation that encompasses the objectives stated above.



CHAPTER IV
COMPENSATION TECHNIQUE FOR NONLINEAR SYSTEMS

The primary objectives of this chapter are twofold. Presented
firgt is a general staterment of the system compensation method to be
developéd, a short review of the theory underlying this development
and a listing of the necessary assumptions and restrictions that will
be impbsed. The second objective is the detailed presentétion and
discussion of a compensation procedure. An attempt has been made
throughout the chapter to retain a sense of practicality and realism.
That is, many theoretical complexities and difficulties arise in a
strictly formal development of any optimal control thecry that may
be of little consequence in physical systems. Thus some points dis-
cussed in this chapter could Be belabored further but will not be
where it is believed that sufficient development is given for proper

‘application of the method.
Basic Concepts

The general system model that will be studied during this investi-
gation will have the form
x = £(x, u, t)

where t, X, £ and u are as described in Chapter II. An un-

determined control vecﬁof g will be added to the system model

so that

18
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i=1x g, t) +g

Then classical optimization theories will be utiligzed to derive a time
‘history of the optimum g. That is, a vector control signal will be
found that optimizes the system response along some desired trajec-
tory Ed(t) or limits the response to some desired maximum or minimum.
The optimum control signal will be designated g%(t) and the cor-
responding optimum response designated g%(t). Although an analytical
expression exists for g*(t), it is not easily found for nonliinear
systems; generally only computational methods are available which
result in s numerical solution for g%(t).

The next step will involve correlating g%(t) with the state
variables to determine an approximation to g*(t) that can be im-

plemented in terms of the state variables. That is, it is desired

to find a Q such that

A A

4= gl B = g*s)
where k = [kl k2 . e ki]T is a constant parameter vector. The
objective here is to generate the necessary optimum centrol g% as
a function of the state variables. To do so will require a knowledge
of what terms or state variables are required and what can be physi-~

cally implemented in the systenm.

Restrictions on the Optimal Control Problem

4s mentioned above, classical optimal control theory will be
ubilized to aid in obtaining the optimum control vector gw(t); hence
a statement concerning optimization in general is in order. Briefly,

ruch of the work in optimal controls involves a dynamical system

described by a relation such as
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% = £(x, u, tl. (h-1)
The optimal control problem is normally to determine an input control
vector u = u(t) ‘that will minimize a performance index or "cost"
function
| @f
J = K[x(te)] + L{x, u, t) at

t
0

while meeting a set of constraints imposed by

£(x, us t) - x =0,
This requires the X appearing in the cost‘function equation to be
a solution of Eguation (L~1). In addition, a set of inequality con-
straints
2

hix, u, t)

o
may also be imposed, depending on the particular problem requirements.
A more precise statement of the control problem will now be

given. The dynamical system described by
% = £[x(t), ult), t]

on the closed interval (to, t t =-to, will be cconsidered. Here

o b
x(t) and f are n-vectors and u(t) is an m-vector, with O<m< n.
AL 1-:;0 s bhe initigl time,
2(to) = x4
is the initial state and the final state, }_g(‘tf), is not fixed. The
functions
L(x, u, t) and K(x)

are assumed differentiable in x and t and describe the performance
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functional, J{(u), given by

t
: b
J(u) = K{x(t,)] + fL[;g(.t), ult), t] dt.
-b .
(0]

Here g(t) is the trajectory of the state of the system start-
ing from §(to) = x  and generated by the control u(t). The
essenfial problem is to determine the control E(t) which minimizes
the performance functional J(u).

Athans and Falb (12), the primary reference for the following
statement of the maximum principle of Pontryagin, list additional
assumptions. If fl(E’ u, t), fg(g, u, b)) ... fn(g, u, t) dencte

the componentg of f(g, u, t), then it is assumed that the functions

| aty 32;
fi(:_;",lz_,_t’),‘a—(i,g_,t), a_t"(x_,g,t), i=1,2, .4 .n
X

and the functions
oL oL
L(isﬂst) ’ _a-g(is}ist ), —é'_t-(isll_,st}

are continuous in the vector space containing the vectors x, u,

and the scalar +t, that is the (x, u, t) space. The terminal

cost function K[E(tf)] must be independent of + and the functions
3%k

K(x),——< 2 5ot
9x

must be continuous.
It is further assumed in the following discussion that if the
function f or L depends explicitly on time (i.e. t appears in

the equation for f or L), then an auxiliary variable



X is introduced so that
n+1

Mo

L]
-

n+l

The (n + 1)st-order system

x(t) = £lx(t), ult), xn+l(t)]
£n+l(t) =1

x(t ) =x

-0 -0
xn+l(to) = o]

and the performance functional
tf

J'(u) = Klx(t )] + j;L[a(t), ult), x . {t)] at

o}

is then considered. In the formulation, the state variable Xn+1
is in reality the independent variable time and the problem has sim-
ply been restated in such a manner that f and L are functions

of the state variables and contrels only. Such a formmlation will

allow the statement of all problems in the form

x(t) = gx(t), ult)]
e
J(&) = Ki[f_(tf)] + fl’[a{n(t)s B-(t)] at
» ‘ t
Q

where it 1s understood that if t appears explicitly, the necessary

auxiliary variable is included in the n gtate variables.
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The Maximum Principle for No Terminal Cost

A statement of the maximum principle of Pontryagin will now be
given, under the assumptions listed above, and for the special case
of no terminal cost, i.e. K(E) = 0. Following this discusgion, the
maximum principle for the case where the performance functional de-
pends uvpon the terminal state will be given. For the case of no

terminal cost, the problem is formed as

x = f£(x, u)
xU"'o) =X
x(te) = unspecified
(L-2)
tf
J(u) = f L{x, u) at
-t )
o

where X and u are understood to be functions of time. The prob-
lem is to determine the control wu(t) which minimizes the performance
functional J(u); the control that doés so will be designated E%(t)a
A set of n M"adjoint" or "costate" véfiables, E(t), are introduced
that play a role similar to Lagrange.mﬁltipliers in differential
calculus. A scalar function called the Hamiltonian function, or
simply the Hamiltonian, is also introduced as

B = Lz, u) + <p, £{x, w)>.
The notation < > denotes the scalar product of the vectors p and
f. The maximum principle of Pontryagin for this broblem can now be
stated as Theorem L-1 {12).

Theorem L-1. Let E%(t) be an admissible control which

drives the system of Equation (L=2) from the initial point
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oo Let x () be the

state trajectory corresponding to E%(t) originating at

(x

X to) during the time t_ -t

(50, to), In order that E%(t) be optimal it is necessary
that there exist a function E*(t) such that:
a. Q%(t) corresponds to E*(t) and §%(t), so that Eﬁ(t)

and 5%(t) are a solution of the canonical system

)
i*(t) = —Eifﬁf’ p*, u*)
oH
p*(t) = —Ax*, p¥, u¥)
x(t ) = x
E&tf) = 0.

S
2y

b, The function H[g (), Q%(i), E], has an absolute mini-
(

mum as a function of u at u = u (t), to:f t =1t

fB
that is,

min H[x*, p*, u] = H[x*, p¥*, u*].
U

)5

# % w1 . .
c. The function H[g s P, U ] is zero for ¢ in (t09 tf

that is,

Blx*(t), p*t), w*(t)] =0, t_ St 54,

The Maximum Principle for the Terminal Cogt Problem

Here, the maximum principle will be given for the problem in
which the performance functional is penalized for missing a given
point, i.e. the terminal cost problem. For this case, the problem

ig stated as
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x = f£(x, u) {L~3)
x(t ) = x_
x(te) = unspecified
be
Jlu) = Kx(t )] + .ll L(x, u) dat (L=l
o

vhere, again, x and u are understcod to be functicns of tire,

but K(E? does not explicitly contain +. The Hamiltonian is

formed as
B(x, p» u} = L(x, w) + <p, £lx, >,

Theorem li-2 gives the maximun principle for this problem.
Theorem L-2. ILet B%(t} be an admissible control which
drives the system of Equation (L-3) from the initial point

oo Lot x'(t) be the

state trajectory corresponding to E%(t) originating at

(50, to) during the time to -1t

(50, tm). In order that u (%) be optimal for the per-
formance functicn (L-li), it is necessary that there exist
a function p (%) such that:

o , o ey R
a. p {t) corresponds to u (t) and x (t} so that p (%)

and x (t) are a solution of the canonical system

3*(t) = %%(g*. ¥, u*),
. oH
R*(t) = "5;‘(5,,*’ ¥, },1_*)9
Eﬁto) = Xy

3K .
R(tf) = E[i*(tf)]o
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b. The function H[Ee(t), P

(t), p] has an absolute minimum

).

as a function of u at u= ~X~(t) for t in (t o’ o

c. The function H{;ﬁ(t), pﬁ(t), ~)(b)] satisfies the

relations

Hlx#(t), p*(t), u*(t))] p*(A), w*(A)] ax,

]
[ ]
Q Q)'—;J
3E
*®

fl
o

H[ﬁf(tf), Rf(tf), Ef(tf)]

Hote however that this condition is automatically satisiied

and no additional information can be gained from it. Thig

would not be the case if K(x} were an explicit function of

tine.

The above statements of Pontryagin's maximum principle have
been stated for documentation only. WNo attempt to prove or jusﬁi»
£y these theorems will be made. Athans and Falb (12) present a
therough and readable discussicn of these principles while Pontryagin
et al. (13) give a rigorous proof for the interested reader. These
theorers are well established and presented in several of the current

texts on modern control theory.

se of the Maximum Principle in System Compensation

The basic idea underlying the technique of system ccmpensation
presented in this thesis will be outlined in this section. A more
complete development will be given in the following sections. As
mentioned at the beginning of the chapter, use will be made of opti-

mal control theories to aid in the derivation of the nscessary
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system compensation. The system compensation problem will be formu-
lated so as to meet the requirements necessary to apply the maximum
principle of Pontryagin to determine the optimum compensation.

It is assumed that a deterministic mathematical model of the
system is available in differential equation form,

X = 2(x, u, t).
The system input g(t) is a known, fixed function of time and will
not be changed in corpensating the system. The notation "n" may
thus be eliminated from the functional notaticn of f without
loss of generality. In addition, if it is assurmed that if ¢
appears explicitly in the stalte equation, the necessary auxiliary
variable (ii =1, xi(O) = 0) has been included in the n state
variables, then 1 may also be eliminated. An unknown compensat-
ing control function of time will be added to the system state
‘model. Thus,
x = £(x) + glt). |

The first objective will be to determine the trajectory g(t}
that properly compensates the system, while meeting certain restric-
tions. Tt is at this point that the use of certain optimal cenbrol
theories comes into use. If g(t) is considered an independent
control input to the system, Theorem 4-1 or L-2 may be utilized to
a2id in debtermining an optimum time history for that centrol, as-
suming the specifications of the theorems are met. This requires
that a performance index be formulated such that minimization of

this index will yield the desired optimum control. For this case

the performance functional will be written as
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5
£

Jig) = K[J_c(tf)] + J; L{x(t), g(t)] at,
o}

vhere the functional J 1is a funetion of g(t), the compensating
control, rather than u(t), the system driving function which will
remain fixed. As in the statement of the theorems, K(x) may
equal zero if the problem has no terminal ccst.

In most problems in which the system transient résponse is of
primary interest, K(E) = 0, and the loss function or error index
L may be formulated as

Lix(t), g(+)] = L'[x(t)] + L"[q(¢)].

The function L' dis that portion of the error index which, when
minimized, will yield the desired system response characteristics
and L" is that portion which allows restrictions to be placed on
the compensating control g(t).> A detailed discussion of the formu-
lation of L for particular problem requirements will be presented
in the follewing section. For the purpose of the present discussion
it will be assumed that the error index may be formulated in terms
of x(t) and g(t) rather than w(t) and in keeping with the re-
guirements specified earlier. Formulation of the performance
functional represents the first major step in the overall problem
solution. For the no terminal cost problem, the performance func-
tional is

b
J(g) = ‘I;L(gc_, q) at.

¢}
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The problem is now to determine the control gjt) which mini-
mizes J(g); this control is designated g%(t). A set of n adjoint
variables, _E(t) s, are introduced and the Eamiltonian is formed as

B = Lix, g) + <p, £+ 9>
From Theorem L~1, in order for g*(t) to be an optimal control, it
is necessary that g*(t) correspond to Ef%t) and zf(t) which

are solutions to

() =g—§(.§_*, D*, g¥), (L-5)
: )

-.*(t) =§;‘;€£*: P*s q*)é’ (h"é)

§-(t'o) = _Jsos

g(:tf) = 0.

Also, 1t is necessary that

min H[x*, p¥*, g] = H[x*, p*, g*].
a

In most instances this conditlon can be satisfied by requiring

that

=0, (L-7)

If L 1is not a linear function of ¢, then Equation (L=7) usually
can be solved for ¢ in terms of x and p.

a* = a(z*, p*) (L-8)
This equation can be substituted into Eguations (L-5) and (1;-6) which

become

. )
(L) = Sixk, p*), (1-9)
2
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B = =2, 0, (14-10)

with the same boundary conditions as ahove.

It should be noted that it is not essential that Equations (L-7)
and (L;~8) be calculated; the prime requirement is that the minimum
of H with respect to g is H(Sﬁﬁ. In cases where g as a
function of x and p can be determined and substituted into
Equations (L4-5) and (L-6), little practical information can be gained

from the last requirement; that is

H¥{t) = 0O, t

This is true in most system ccmpensation problems.

Equations (L4~9) and (L~10) represent a 2nth-order, nonlinear,
two-point boundary value problem which, when solved along with Equa~
tion (L-8), yields the time history of the optimum control g%(t)°
Methods and requirements for solving two-point boundary value prob-
lems will be discussed in the next sub-section.

The solution of the split boundary value problem represents the
second major step in the problem solution since it yields the ophimum
control g*(t) and the resulting optimum response fﬁ(t)o At this
point the designer may decide whether the optimum response 5%(t}
is sufficiently improved over the uncompensated response g(t) to
warrant an attempt to compensate the. system. That is, a situation
may exist in which g%(t) is little improvement over the original
uncompensated g(t) or, g*(t) does not meet minimum requirements.
The judgment, of course, depends entirely on the particular problem
requirements, such as the value of the performance index, rise time,

overshoot, terminal conditions, limit cycle characteristics, or
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whether the response stays within certain bounds. The important point
here is the optimum or ideal compensated response which may be achieved
under the restrictions imposed. Hence, a measure of how much response
improvement can be expected with optimum compensation is given early

in the design process.

This fact is one of the principal advantages of the system com-
pensation method described herein; the designer is able to decide
whether proper compensation of a system is feasible before actuslly
attempting to perform the compensation, and he has a measure of the
maximum response imprOVement to be expected. OQther compensation
techniques give no a priori indication of the optimum compensation
or the corresponding optimum response and thus the extent to which

the actual compensation achieves the optimum is not known.

However, once g*(t) and §*(t) have been obtained and it is
determined that §%(t) represents a significant improvement, the
next major step becomes that of implementing g*(t). It is the
contention of this thesis that to utilize an in-line, real-time com-
puter to generate g%(t) or to record g%(t) on scme data recording
device (such as magnetic tape) and feed it into the system is unfeasi-
ble and unnecessary in many cases. Instead, it is proposed that the
system itself be altered in such a way that in effect g%(t) is
generated by the system states and thus yields the desired compen-
sation. That is, some functional form of the system state variables
is sought which will generate the same time history as g*(t), i.e.

afx(t), ¥} = g*(t),
vhere Kk 1s a vector of constant parameters. The primary objective

at this point is to determine a function of the system states that
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will generate g%(t) and is physically implementable. Normslly, a

physically realizable state dependent function that generates g*(t)
exactly canﬁot be obtained and an approximation

f-.é,_x_, k) = g*(t)
must be accepted. However if é approximates g% sufficiently well,
the response g(t) corresponding to § will closely approximate
the optimum response 5*(t). Although é will be a sub-optimal con-
trol, the designer can assure that it will be one which can be
physically implemented.

The assurance of physical realizability is another of ﬁhe princi-
pal advantages of this method of sysﬁem compensation. Even though
some techniques will yield a truly optirum compensation, there is
no guarantee that this compensation can be achieved and the designer
has no control over what form the compensation takes. On the other
hand, through the use of parameter optimization methods the designer
may assure that the parameters he selects to optimize are imple-
mentable, but he has no a priori knowledge of which parameters to
vary for the best results. Furthermore, at no point in the parameter
optimization procedure is any indication given of the truly optimum
response. ‘Thus the designer dces not know just how sub-optimum the
system is or what results might be expected with the trial of a dif-
ferent parameter.

A thorough discussion of how the state dependent approximation
of g%(t) is obtained is presented in a following section. Briefly,
the general approach is to study the optimum control g%(t) and
optimum respoﬁse gf(t) and determine a general form for é(g, 5).

For example, in the case of a scalar g, a typical a might be
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;(1!_, k) =k, +kx, + kaxzz.

Fach term in a must be a term that can be implemented in the physi-
cal system, O(nce the general form has been selected, the values of
the k, are determined to give a best fit of ?;_(;5, k) to g (b).
Various guides to aid in the selection of ;(5, g) and in the
determination of the elements of k are presented in the following
section,

In general, but not always, an increase in the complexity of

S
"

will result in a better fit to gq°, however more cormplex forms of

Wa oy kg >

are usually mecre difficult to implement. An important advantage
of this technique is that at this point in the compensation procedure,
the designer can very clearly determine the relative importance of
each term in ; in approximating g*. He can ascertain the degree
bf optimality that is sacrificed by not implementing certain terms.
That is, the trade-off between the difficulty of implementing a cer-
tain term of ; and the loss of optimality by not implementing that
term can be examined here with comparative ease. This point will be
clarified in the consideration of several e#émple problems in the
next chapter.

The final step in the Cbﬁpensation procedure is that of verify-
ing the‘rasults of the approximation and implementing the compensztion.
The approximate centrol él is simply added to the system equations

and a determination made as to whether the resulting sub-optimal

compensated response meets the original problem specifications.



Solution of Two-Point Boundary Value Problems

This section will briefly outline the general procedure for the
solution of nonlinear two-point boundary value problems. Although
the solution of the split boundary value problem resulting from the
necessary conditions of the maximum principle is a key factor in the
successful application of this system compensation method, no effort
was made to develop solution techniques. Rather, existing methods
were relied upon for the solution of the two-point bhoundary value
problems generated in the compensation procedure. A review of
"Computational Methods in Optimal Control Problems" is presented by
H.R. Sebesta in reference (1L) and will be summarized here.

In general the optimal control problem is stated as folliows:

find the functions
u(e) = [u (8], v, (8), o o .y (6)]7

which will minimize the performance functicnal
te
hi
J = Klz(t )] + j; Lix(t), ult)] at

0

wnile satisfying the state equations

e
f

= fl(ia u, t)

Ko
H]

£ (x, 1, t)
n

3

it



and the boundary conditions

x,(0) =

f
o

10

®

X

xn(o) no

Tt should be noted that it is not necessary ﬁhat éll n ’of the ini-
tial conditions be specified. Instead,>somé of the final conditions
may be specified or constrained by algebraic relationships. In any
case, a properly formulated optimal control problem will result in
a set of n system differential equaticns, n adjoint differential

equations and m algebraic eguations.

% = flx, u, t}  n-diff. eqns. (L4-11)

b = alx, u, p, t) n-diff, eqns. (4-12)
af oL

0 =—p +— m-algebraic egns. (}4-13)

- du du '

A total of 2n boundary cenditions will be specified, some at to
and the others at tf. These equations are referred to as the two-
point boundary value problem.

In many problems Equation (L-13) can be solved explicitly for
the control u asa function of p and X, i.e. 2(59 B)' This
function can then be substituted into Equations (h-11) and (L-12),
thus eliminating the m algebraic equations and leaving only the
2n differential equations for x and p with 2n boundary condi-
tions. 8Since the mammer in which optimal control theory is utilized

in this thesis will yield equations which can be solved for u, it

will be assumed in the following discussion that this has already



been accomplished. The differential equaticns become, upon substitu-
tion of u(x, p), functions only of X, p, and t.

If a simple linear system with linear control and a guadratic
performance index is being studied, an analytical solution to the
split boundary value problem may be possible. However, since this
thesis stresses the compensation of nonlinear systems, the methods
of exact analytical solutions will nol be discussed. According to
Sebesta, there are two alternatives--approximate analytical solutions 
or computational solutions. 8Since approximate analytical sclutions
become exceptionally tedious and difficult for systems of all bui
the lowest orders and since the use of digital computers 1s becoming
increasingly commonplace, only the computaticnal methods will be‘con-
sidered during the course of this study. These methods resolve the
problem into one of determining the proper ccnditions at to for
those states that are initially unspecified so that the specified
final conditions at tf are satisfied.

Two computational methods will be presented which may be com-
bined to yield a very workable method of solving two-point boundary
valve problems. The first, the method of parameter influence coef-
ficients or sensitivity coefficients, proceeds from crude estimates
of the unknown initial conditions to a fairly good approximation of
the optimum trajectory. However, this method quite often has dif-
ficulty converging cn the final solution. The seccnd method, that
of guasilinearization, will converge to the proper optimum solution
given good enough estimates of the initial conditions. The logical
combinéfion of these two methods is to use the first method to give

a close approximation to the required initial conditions and then use
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these values as the initial estimates for the second method. The com-
bination of these two methods has been achieved by Demnis Unruh (15)
with the resulting algorithm being remarkably efficient and reliable.
Unruh's work is swmarized in the following parang:r\atphs."x~

The method of parameter influence coefficients will be first .
considered. For simplicity and ease of notation the n adjoint véri;,
ables, Pys Pps « + « Py are redefined as Xn41? Fpeps ¢ o xzn;.
The two-point boundary value problem can now be stated as the 2n

vector differential egquation

3% - pix, t) (L-1b)
dat

defined on the interval tc <t < tf
with k boundary conditions specified at tf and 2r-k at to.

The initial condition vector is written

o — —

_x (t ) b 4

1 © 10
x,(t,) X20

t )] =| X

xzn—k( o) 2n-k ’
X '(to) unspecified

1 ik
x 't ) unspecified

k o

“Tn more recent work, Unruh has developed additional com-
putational algorithms for solving the two-point boundary value
problem through an algebraic minimization scheme. This work has
not been publighed as yet.
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where the primed states are those with the final conditions specified.

The specified final boundary conditions are

[~ B 7

4 t |
X ( f) X .
x 't ) x
2 f = 2f
X, "te) *xt

A final-condition performance index is formulated that measures
the absolute difference bebtween the primed states at time tf and

their specified values.

k :
I= z [xi'(Atf) - xif]2
i=1

Note that this is an auxiliary index introduced to facilitate solviﬁg 2
the two-point boundary vélue problem. Since the problem may be

simply stated as that of determining the initial conditions of the

xi‘ that will cause the state trajectory to pass through points

Xp at t:t, 1t is heipful to examine the gradient of the per-

formance index I with respect to Xi:(to)’ i=1,2, ...k

Cradient oI [ 3T 31 ]
radient = = _ Y F IR
ax' (t) axl'(to) ax, ' (t)

This gradient vector gives the directicn of steepest ascent of the
function T in k-dimensional space. Using the chain rule for
partial differentiation, the gradient may be calculated from

o1  _ a1 ax'(t,)
ax'(t ) ax'(t.) ax'(t )
-0 - f -0

(1-15)



or the transpcse of this eguation,

— — -1 r .
o | I U "RICR |l PRICH R
Bxl'(to) ax, ' (t,) axl'(to)
. =2 . . . .
aI 0x,'(tg) |, ., Ax'(tp)
' -
Bxk'(to) Bxk'(to) axk'(to) Lfk (tf) xk€:

n crder to deterrine the gradient vecter, the elerments in the s-:ﬁv.are
matrix above must be evaluated. Since the state trajectory corre-
sponding to Equation (L-1l) is in reality a function of k + 1
independent variables xl‘(to), C e xk'(t,o), t, Fouaticn {L-1l)
theoretically should be wriften

ox

B b, x5 - ),

The elzments of the 85'(tf} / 35‘(400) ratrix may be calculated

as in the following. Assuming ¥ is continuous in x and 1,

0 9x \__8__ 9x
ax'(t,) |9t | atlax' (¢ )]
Thus
9 ox _ oF
— - L}
dtlax' (¢ )) ax'(t )
=0 =0

and again using the chain rule

B | 8x |\ _3E % (14-16)
ot | ox'(t )| ax 3x'(t))
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¥riting this equation out gives

ax, ox, | [oF, 9F, o, ax, |
LN ] L] L] L] 8 0 0 '
Bxl'(to) axk'(to) ox ax, axl'(to) axk (to)
i— . = . . e @
ot
3x2n aXZn ann ann ax2n axZn
L I t . 9 L] ‘ e o0 '
_axl'(to) Bxk?( Oi _ax1 axZn__ _Bxi (to) axk (to{_

a set of 2<en*k first order differential equations with zero initial
conditions in the first 2n-k rows and the identity matrix for the
last k rows. If initial conditions are guessed for the k vari-
ables xl'(to), . . xk’(to), Eguations (L-1L) and (L-16) may be

integrated from to to t, as a coupled set of differential

f
equations. The last k rows of the solution to Equation (L-16) at
t =t, are the values required aﬁ'(tf) / 33_:’(‘00) to evaluate the
gradient of I with respect to 5'(to).

Since the gradient vector points in the direction of steepest
ascent, it can be used to determine the proper variation in §'(to)

1

to reduce I, and thus, cause 5'(tf) to approach x.'. This

variation is calculated in the following equation.

grad(I)
[i'(to)r]le; [J_(_'(to)o]la I ngad(I)Hz

The new valuve for x'(t,) may be used as initial conditicns for a
new solution to Equations (L-1lL) and (4-16) which in turn allows a

re-evaluation of the performance index I and the new values for
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§‘(té) may be calculated. This process is repeated until I 1is
sufficiently small, that is, 5‘(tf) is sufficiently close to §f!°
One undesirable characteristic of this method of solution of the
two-point boundary value proBlem is that of convergence. In many
cases as the minimum of the performance index is approached, the
solution will oscillate or "limit cycle" about the true solution and
never actvally converge o it, This problem becomes especially evi-
dent when the minimm performance index is greater than zero. It is
at this point that a different method of solution is sought, a method
that can start with the best approximation of the parameter influence
technique and approach the true solution without encountering the
same convergence problems. The method of quasilinearization is one
such technique and is discussed in the following paragraphs.
The first step in the method of quasilinearization is to obtain
a linear approximation to Equation (L-1li). This is accomplished by
truncating a Taylor's series expansion of (Li-1L) about a reference
trajectory. The original nonlinear differential equation is
_ii_?'c:= Flx, t) (L-1h)
dt

and the truncated Taylor's series expansion is

(4-17)

where gr(t) is the reference trajectory. The reference trajectory

is obtained by integrating Equation (L4-ll) forward from B to by,
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using the best available estimate for the unspecified initial
conditions §'(to).‘

The general philosophy of this technigue is briefly outlined.
Since Equation (4-17) is linear, the principle of superposition holés
and the necessary initial conditions on xi', i=1l, 2, . . .k, to

meet specified final conditions can be easily determined. If the.

reference trajectory in Equation (Li-17) is close to the true solution,‘ '”

trajectory, then the initial conditions determined from Equation (hal?)
will be the correct initial conditions to cause the soluticn of Edua-
tion (L~1h) to pass through the specified final conditions. In genéral
the solution to Equation (L-1l) will not satisfy exactly the specified
final cenditions and the process must be repeated several iterations.
With each iteration a new reference trajectory must be generated
vsing as initial conditions the specified conditions at to’
Xl(to), ... x2n-k(to) and the values for xl'(to) . e . xk‘(to)
as determined in the previous iteration. |

It is important that the first reference trajectory be close to
the correct reference trajectory since Equation (}4-17) accurately ap-
proximates the nonlinear equaticn only for small variations from the
reference trajectoryf Thus if §r(t) is not a good approximation
to the true solution, the resulting initial conditions that make the
solution to Equation (L-17) meet the specified final ccnditions will
make the solution to Equation (L-1lL) actually diverge from the correct‘”
ﬁrajectofy, rather than converge.

A computational algorithm developed by Unruh (20) combines thé
nethod of parameter influence coefficients and quasilinearization to

yvield an efficient method of solution of two-point boundary value
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problems. The algorithm starts with the method of parameter influence
coefficients and, if the solution reaches a limit éycle cendition,
switches to quasilinearization for final convergence. This algorithm
was utilized extensively during the preparation of this thesis and was.
found to be superior to another algorithm developed by Unruh and
Sebesta (16) (quasilinearization) and one by Sylvester and Meyer (1?)

(also quasilinearization).
Compensation Procedure

This section will present in detall the general nonlinear system
compensation method developed for this thesis. As mentioned in the
previous section the primary items of discussion will include a
general procedure for formulating the performance index from a problem
sta%ement. Proper utilization of the necessary conditions of Theoremé
h-1 and k-2 to yield a two-point boundary value problem amensble to
solution by the methods outlined in the previous section is also
discussed. FExtensive treatment of the problem of determining the
state dependent control §(§, E) is presented since this is a crucial
step in the successful application of this compensation technigue.
Finally, methods are presented for refining the control §(§, 5) and

improving the f£it to g#(t) after an initial approximation is made.

Formulation of the Performance Index

48 has been indicated previounsly, the perfeormance functicnal
J(g) is formulated on the basis of the desired system response and
state constraints. The performance functicnal on the system behavior

is a mathematical function of trajectories in a state space which -
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weights various output variables and control parameters in a pre-
determined fashion. The formulation of this function is an important
step in the synthesis or compensation of a control system using
optimization theory. The system designer is able to influence the
nature of the resulting system by the manner in which he formulatesf
this index.

In general, the requirements considered in performance functionai :
formulation include not only the performance requirements bubt also
restrictions on the optimal control to insure physical realizability.
The performance index almost always involves a measure of an error
term which represents the difference between some desired response
and the actual response. The system designer is interested not so
much in an instantaneous value of the error measure as he is in the
cumulative effect of this instantaneous measure throughout an interval
of time. Hence, the performance functional is usually expressed as
the time integral of the error measure over a suitable interval of
time, to to tf, throughout which the system performance ig of
interest. If specific interest in the error value at a particular
point in time is indicated, the performance index may be formulated
as an integral plus an instantaneous value at that time. Thus, as
mentioned in passing earlier, the general form of the performance

functional may be given as

t
f
J = K[_Jg(tf)] +f L{x, g, t) dt (L-18)
t .

where K[E(tf>] is a function evaluated at t, only, and L(g, 9 t) -

£

is an error function integrated from to to tf@ The following



discussion in this section is devoted to describing how to formulate
a performance functional in the general form given above for the
particular problem of system compensation as treated in this thesis.

The function I(x, g, t} is separated into two functiocans, cne
describing the response error and the other a function of the control,
thus

L =L"(x, t) + L"(g, t).

The primary objective in minimigzing the performance index is to force
the system response to meet the desired characteristics. Thus the
total effect of the L" term on the final value of J must be
minimized. This is accomplished through the proper use of weighting
coefficients which will be described shortly. First, a discussion
of the reasoning in the formulation of the L" term is presented.

The only manner in which the inclusion of L" in the per-
formance index assures physical realizability is by restricting the
variations of g. S&ince the control variable g will eventuaily
be implemented with physical hardware, it must be bounded. One means
of bounding the control is to place it in the performance funciional
through the function LY. Another reason for including g in the
integrand cf the performance functional is that by dcing so, the
singular control problem is clrcumvented. The singular conirol prob-
lem is termed the case in which the function

oH

does not yleld ¢ as a function of x and p. Although the optimal

control problem can still be solved in the case of singular contirol

3z 3
3 £

-+ < e
(the actual necessary condition is that H(x", P, g) be a minimum
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S
£

for g =3}, in the general case it is much more difficult. The

solution does nct result in a two-point boundary value problem which

£

can be solved readily on a digital computer. Therefore the function
of the control L" is included in the perforrmance index for the
system ccmpensation problem.

L" is formulated as

k 1 <El.’ 2”.)

whers m, = q, / K,.. TFor the more common case of & scalar control,

i 21

this reduces bt

and

The casze cof scalar ceontrel will be discussed here, but the same

e

reasoning in the fermulation of the performance functional for =

vector control will apply. The variasble m is simply the control

variable scaled by 1 / k The scaling censtant k., i3 selected

o

so that the variable m will be within the range -1 ¢ m £1 as

] varies within the desired bounds. The variable m will
sbay within the range 1.2 since it is included as a guadratic term
in the performance functional. For example, if it is decided that
¢ should be allowed to vary within the bounds 1000, k., would
be selected as 10°.

The inibial selecticn of the bounds on ¢ are kased primarily

on the manner in which it is added to the gysbsm equations. In order
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for g to influence the trajectory of the solution to the differential
equation |

!.Ci = fi(J—{" t) +q

it can be reasoned that q should take on values at least of tﬁe
same order of magnitude as ii and fi. Thus an effective techni- -

que for selecting k, is to first solve the uncompensated system i

2
equations to determine the nominal values of ki or fi. Then for

m=1,

kzm = kz = ‘qlma; (iiimax

For example, if li is found to be L.5 x 10° then the bounds

ilmax
on g may be set at ilOB. In this instance, then, k2 = 103. A

1 will be deferred until the formu-

discussion of the selection of k
lation of L' is presented.

A great deal of flexibility exists in the formulation of that
portion of the performance functional concerning the response error.
This flexibility makes it difficult to make general statements re-
garding L', but at the same time, this flexibility represents an
advantage since it allows the study of a wide variety of problems.
Perhaps the most specific description of L' is that it is simply
a means of assessing a penalty to the response when it diverges from
the degired trajectory. Any means of achieving'this end, while
meeting the requirements discussed in the section "Basic Concepts",
is satisfactory although the results are not necesgsarily the samé.
The effects of various integral pg ermance indices on system re-
sperise have been studied by severai igvestigators and the results

reported in the literature (18, 19). For instance, an integral square
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error performance index typically results in a slightly underdamped,
quick responding system while an integral‘absolute value index yields
a more heavily damped response. In general, it can be stated that
the form of the performance funcdional will have the same charac-
teristic effect on the system response in the caée of system
compensation as has been found in past studies.

It was not the purpose of this thesis to study the effects of -
various performance indices but rather to stress the variability of“
the form of the performance functional and to illustrate its formuia-
tion for some of the case problems studied. Perhaps the most commonly
used performance measure is thé ISE (integral square error) due to
its general applicability, its mathematical convenience (i.e. it
meets the differentiability and continuity requirements and is rel-
atively easy to manipulate analytically), and the fact that for
linear systems it leads to optimal feedback controls which are 1inear.
For the case of an ISE performance functional L' is given in
general as

L'

k <e, R e (L-19)

where e 1s the error vector

e x(t) - x (¢
e = a6 - g (0)],
Ed(t) = any de;ired trajectory, either

data points or a time function,

R = a positive semi-definite diagonal
weighting matrix,
k= constant,
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Carrying out the indicated vector product, L' becomes

L'=kx (Re?+Re?+.,.,.+Re?)
3011 2 2 nn

where the Ri's are terms which weight the various errors. _Thégeb
weighting terms may be time-variable if the relative importanée of‘
the errors change during the time interval of interest, or they may*-‘ o
be zero for those states which are unrestricted. The value of the }“
constant R's and the nominal value of the time=varying R's are
selected on a relative basis. That is, these weighting constants set
the relative importance of one error with respect to the others. The
constant k3 is then selected (relative to kl in L") to aséure
that the maximum expected value of L' 1is large compared to the maxi-
mum value of L".

A good rule of thumb to follow is to select k3 relative to kl‘

so that L' 1is approximately one order of magnitude larger than L".

Assume that k is selected s 1.0. Since k2 was selected so that

1
2
a 2
k;ﬂ = My = 1005
2 lmax
then
" = 2 ~
(L )ma_x (klm )mx 1.0.
The constant k3 should then be selected so that
2 2 -
[ks(Rlel +« +Re )]max = 10,0.

A more generalized performance functional is the quadratic form.

in which L' is given as in Equation (L-19) and R 1is simply a
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positive semi-definite matrix, not necessarily diagonal. Again, the
elements of R are simply weighting terms which may be constant or
time~varying. In this way terms such as
R12%:%,

may be brought into the function if it 1s deemed desirable for a
particular problemf

The use of a quadratic performaﬁce functional or the ISE.(ﬁhiéh '
is simply a special case of the quadratic) is best suited for préblemé
in which a complete state trajectory is to be optimized. That is,
the case in which it is desired that é state or states follow a
specific known path from to to tf is usually adequately described
with a quadratic or ISE performance functional. Problems in which
it is desired to limit state extrema and the terminal cost problem
will be discussed followiﬁg an example illustrating the formulation
of an ISE time weighted function. In general, it must be emphasized
thaﬁ whether or not to use a quadratic form, or any other form, must
ultimately be decided by the designer based upon the requirements
of his particular problem,

Example L-1. Aircraft Landing System,

This example problem will not be carried through to final solu-
tion since it was selected only to illustrate the formulation of g
performance functional for a trajectéry optimization problem. Thié
problem is a particularly fine example of the flexibility that exists
in the development of the performance index. The problem given here

was discussed in detail by Ellert and Merrian (11) in an example

problem using the parametric expansion technique.
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The landing problem described here concerns an automatic control
system for the final phase of an aircraft landing; the final phase
being the last 100 feet of the aircraft's descent. During this final
phase, the elevator deflection controls the longitudinal motion of
the aircraft and hence will be the control signal.% The aircraft‘ié
subject to other controlling inputs of course, but it is assumed that
motion due to these controls is uncoupled from the longitudinal motion
which, thus, may be studied separately. The objective of this ekample
is to formulate the performance index necessary to adequately describe
the system requirements.

Thé following aircraft requirements and constraints are con-
sidered of primary importance and will be used to formulate the
performance index.

1) The desired aircraft altitude hy(t) during the landing

phase ig shown in Figure 3 and is given analytically.as

A

100e~%5, 0S¢ <15,

hy(t) = 11-20
a 20-t » 15 =1 < 20, (b )

IA

2) The desired rate of ascent is simply the time derivative.qf"

hd(t) or

1A
IA

~20e"t/s, ¢

n.(t) =
d -1 , 15

15,
(L-21)

A
in

t - 20,

The rate of ascent is of major importance at touchdown and must be

less than zero for the aircraft to avoid floating over the runway and

[

*Note that in this problem the control is known a priori to be
the elevator deflection and hence the exact limits on its motion can
be stated. v
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100 4
_ CC— 100 exp(-t/5)
hd 50
(£t)
i 20 = t
0 & >
Time (sec.)
. 5 10 15 20
. -10 -1
hg
(fps)

-20 exp(~t/5)

Figure 3. Desired Altitude and Rate
of Ascent

perhaps overshooting it. A very large negétive value is equally un-
desirable since it could result in oqverstressing the landing geaf,

3) The aircraft pitch angle 6(t) at touchdown is desired to be

0° = e(tf$ S 10°, ' (L-22)

These limits on 6 at touchdown are desired since a value less than
0° would cause the nose wheel of a tricycle landing gear to contact
the ground first and a value greater than 10° would result in the
tail gear sbriking the ground.

i) Throughout the landing phase, the aircraft angle of atﬁack
a(t) must remain below the stall value, assumed to be 18°, The air-

craft enters the final phase with an angle of attack that is 80% of
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the stall value. Hence the angle of attack must not be allewed a
positive change of more than 3.6°,

5) The elevator deflection e(t) is restricted by mechanical
stops to the range

-35° < e(t) < 15°,

Since the elevator should not operate against the stops, it is desired
that e(t) remain within the limits shown above. o

For this landing system, the important fesponse characteristics.
that must be controlled are: the deviation of the aircraft altitude
and rate of ascent from the desired trajectories given in Equations
(4=20) and (L-21), respectively, deviation of the pitch angle at
touchdown from the desired value of 5° (which is the midpoinﬁ of
the prescribed range given in Equation (4-22)), and the deviatipen ef
the angle of attack from its initial equilibrium value at to. Thus
the integrand of the performance functional L(E’ g)‘ for this |

problem may be formed as

t
"

gm@)-%un2+%mu)-%un2

+

k,[8(t) - 8,(t)]% + k, [a(t) - a;(t)]?

+

k_[e(t) - ed(t)]z.

In this equatien the k's are weighting factors that indicate the
relative importance of the varicus terms and may be time-varying.
The desired values of each of the response terms are designated by

the subscript d and have the following values:
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n(t) = 1005, 054215
=20-t ,155t %20

hy(t) = -20e-t/5, 02¢S1s
= -1 , 153 ¢ 5 20

0,(t.) = 5°,

ad(t) = 1k, 4°,

To maintain the elevator deflection within the prescribed limitsjit
is convenient to select the midpoint of the range as the value of the

d

The performance requirements indicate that the altitude and rate
of ascent errocrs should be small at the desired touchdown point |
tf = 20 to insure actual touchdown very close to this point. Large
altitude and rate of ascent errors at t = 20 may result in touch-
dowvn prior to the start of%@h?_runway, or so far down the runway
that the aifcraft cannot be grought to a stop before the end of the
runway. Hence these error terms should be weighted more heavily at
or near t = 20 +to stress their importance at this point. Ellert

and Merriam therefore weight the altitude term to accomplish this

by making kl(t) a constant plus an impulse function at t = 20.

kl(t) =k '+ kl"é(t - 20)

In weighting the rate of ascent term they also take into coﬁsideration
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the fact that HK(t) is not important prior to the start of the run-

way. Hence,

: -1 - ey
kz(t) = kz' +k, §(t - 20)

where k.' =0 for t < 15 and k2‘ = constant for t 2 15, However

2
the step change in k2' at t = 15 violates the restraint that

L(x, g, t) be continuous in time. (The impulse function, which also
violates this constraint, will eventually be removed from the.inte-

gral.) In order that L and 3L / 3t be continuous as required,

k2' may be formulated as a time function that starts at tl=_l5,'iqe.

1w

kz'(t) kz'(t'- 15)%, t 215

=0 , t <15,

The pitch angle is important only at touchdown, hence the pitch
angle error term should be welghted only at the desired touchdown
time, t = 20. Ellert and Merriam accomplish this by making the time

varying weighting function an impulse at t = 20, i.e.
ka(t) = kad(t - 20).

An alternative is to recognize the pitch angle error as a terminal
cogt problem and to formulate the performance functional as in

Equation (4-18). That is,
t

£
J(e) = K[e(tf)] + .’. L{x, e, t) dt
t

i}
where

K[6(t,)] =k (6(t.) - 5°)2,
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ké is a positive constant and the integrand I(x, e, t) does not
contain the pitch angle term.

Since the angle of attack and elevator deflection errors are
important throughout the entire landing phase, kh and. k5 are sim-

ply constants. Thus the complete performance functional becomes .

20 |
k,(8(20 - 5°)2 + f {[x," + k" 8(t - 20)] [n(t) - hé(t)]z
0

ey
i)

[%%ﬂ+k;au-zm1mu)-%un2+hbu)-mﬁqz

+

k le(t) + 10°]2} at.

+

The impulse weighting of the altitudes and rate of ascent terms can
be trgated as additional terminal cogt terms and taken from under the

integral sign. The performance functional can thus be rewritten

J =k,[6(20) - 5°)% + k '[n(20)]% + k,"[B(20) + 1]*
20 | |
+ °i° {x,'[n(t) = ny(£)]% + k,(£)[A(t) + 1]% + K, [a(t) - 1k.4°]?
0
+ k[elt) + 10°]%} at. | (br23)

The problem now becomes that of determining proper values fof'
the constants in the function. It will be assumed that all tefms in
Equation (4-23) have equal importance, hence they must be weightéd
s0 that each contribute equally to the value of the index. The value
of k5 ‘ié first selected so that the elevator deflection term ap-

proaches unity as e approaches either limit. Thus
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1
k, = —= = 0,0016,
5 T 552

The desired maximum angle of attack is 18° which implies that“kh

should be

K, = —— = 0.,0772.

3.6%
The authors state in the problem definition that the aircraft is as-
suned to be waved off and does not attempt to complete the landing
if the initial altitude and rate of ascent differ by more than
20% and 25%, respectively, from their desired values. Thus thé
maximum altitude error is 20 feet, from which kl can be deter-

mined to be

At the point where the rate of ascent is first considered, a"25%_

error is 0.25 feet/second, thus

1
k,' = = 16,
' (.25)%

In order to determine the values of the constants associated
with the terminal point errors a bit more estimation and ingenuity
isvrequired. Since it was assumed that each term was of equal im-
" ‘portance, the value of each terminal error term should be approximately
the same as the integral from 0 to 20 of the other error terms.
3ince the terms under the integral were scaled to have a maximum

value of approximatelyf 1.0, it is convenient to assume that these
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terms will average about half this amount throughout the interval of
interest. Thus the contribution of the integral error terms to the
performance index should be approximately 10.0 each. This in turn
implies that each of the terminal errors should be weighted so that
their contribution is 10.0. The ;qaximwn desired error in pitch

angle is 5°, hence

k,(5)% = 10,

10
k = Ooho
3 52

If a 20 feet 1initial error in altitude error were completely un-
corrected during the landing phase, the final altitude error would

still be 20 feet and

k" =% = 0,025,
. 202
By the same reasoning
10
k " = —_— = 006250

hz

Hence the final form of the performance index is

o
]

0.4[6(20) = 5°]% + 0.025[h(20)]* + 0.625[A(20)]?

+

20 :
.’. {0.0025[n(t) - hd(t)]2 + kz'(t - 15)2 [&(t) + 1]?

+

0.0772[a(t) = 14.4°]2 + 0,0016{e(t) + 10°]2} at, (h=2h)
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where

k,' =0, t<15

=16, t 2 15,

The primary purpose in presenting this example problem was to':'
illustrate the flexibility possible in formulating the performance
index. It should be evident that a multitude of diverse performance
requirements can be described in the pefformance functional. Partic-
ularly the time weighting of the error terms is important since in
this way the particular error that is important at any point in time
can be-stressed. The particular error terms, the form of thé pef— |
formance functional or the values of the constants are not fixed. .
Indeed,1the constant values selected are only estimates arrived at
by the approximate analysis just performed. After solution of the
problem, it could be determined that certain of the terms should béx
weighed more heavily, or less so, which could easily be done and'the‘- -
problem resolved. |

One final comment regarding this problem will be made. The per-
formance functional given in Equation. (L-2L) actually attempts to
constrain the angle of attack a(t) to remain within the bounds
10.8° - 18.0°, The original problem statement was that a(%)
should not have a positive change of 3.6° from its ﬁominal value
of 14.49 that is, it should not go above the stall value of 186,
This in reality, then, is a problem of limiting the positive extreme
value of‘this variable, a problem which will be treated in the fol-

lowing paragraphs.

In many problems, controlti'bvq_output variable trajectory is

not desired, but rather it is desired to limit the maximum or minimum
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values. ‘That is, the exact shape of the trajectory is not important
so0 long as it remains below some desired maximum level, or vice versa.
This was ihe case with the angle of attack variable in the above
problem, The exact value of a(t) was'unimportant so long as it g:
remained below 18°.

Figure | illustrates the shape of the error index associated
with an error squared term and the desired shape of the index to 1imit>  :
the maximum value of an error, The top curve shows the error_ihdex |

value for a variable x, that is desired to be bounded betweenu 9

1

and 11. That is, the desired range on x, 1ig *1.0 about the.

1 ,
nominal value of 10.0. The expression for this term is (xl - 10)2.
The bottom curve, however, gives the error index for the variable |
X which is desired to have a maximum value of 10.0. The index

value for any value of x, less than 9.0 is zero. A% X, = 9.0,

2
the index becomes a squared expression that is scaled to have a
value of 1.0 at X, = 10.0 and increases as a quadratic for
X, 2 9.0. This is accomplished by formulating the error expression

for x

o as

sx, - 9)%, (L-25)

where

S =0, x, < 9.0,
>
S = l, §2 - 9.0,
This expression accomplishes the task of assessing a penalty or error

to X, as it approaches or exceeds the desired maximum of 10.0 but

does not penalize the variable for wvalues less than 9.0. The error"
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term in Equation (L-25) also satisfies the requirements that

oL oL Lo
L(x, g, t), 3¢ and = be continuous.
4
M1
z
m
Eg
0 i T
, X,
+
E lJ-
=
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g
3
&
& ;
0 1/\/ 8 X

Figure 4, Error Index for Trajectory Fitting and
Limiting State Extrems

The general development of the error index for limiting state
extrema is discussed in the following. The switch S is set to turn
on or change from 0 to 1 at about -90% of the desired maximum |
and the squared term is then scaled to have a value of 1.0 at thé
maximum. The switch and scalingvcould be set to turn on at any point
(such as 99% or even 99.99%: ;f4the desired maximum) up to théb
desired limit aﬁd still have a value of 1.0 at the limit. However
as the turn-on point approaches the desired limit, the error index
begins to come closer and closer to approximating a discontinuous

index that is zero for values less than the limit and infinity at
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or beyond the limit. To a computational algorithm used to, solve the
resulting opfimal control problem, this errof function does appear
discontinuous and serious convergence problems then makeia solution
almost impossible. 'Experiencé has shown that the squared error curve
should start at approximately 90-95% of the desired maximum value.
The proper scaling of the sqggred term is shown in general in Equa-
tion (L-26).

s{10_%_ - g)2 | (4-26)

xmax '

In this equation X oox is the desired maximum value for the variable
X, or the minimum if the limit is a negative value.
Recalling the problem of the aircraft landing system, a more

appropriate error for the angle of attack would have been the fol-

lowing:
“a(t) a(t)
x,s(10 -9} = x s( - 9}2
4 ( 180 ) * (1080 )
where
S =0, af(t) < 16.2°,
s =1, a(t)2 16.2°,

For an angle of attack less than 16.2°, the performance index would
not be penalized, but as the angle of attack approaches closer than

16.2° to the stall value, the error is penalized as a quadratic.

One final point will be made regarding the formulation of the
performance functional for use in conjunction with the system compen-
sation method of this thesis. There is no restriction on the form

of the terms used in the error index L(x, g, t) other than the



differentiability of I and the continuity of L,
many varied forms of weighting factors and error terms may appear
in the error index. Examples might be an expcnential weighting fac-

4!

error absolute value [t(x - xd)l, or a fourth power error term

~-at . . § . .
tor e™®Y, a modified error absolute value (x - x|, a time times

(x - Xd)u. In using these error terms in the perfermance funciional
for system compensation, the system degigner should expect essenﬁially
the same response characteristics that would be obitsined by using
these error terms in any other system design or medification scheme.

" The error squared form, however, possesses certain advantages
wien used in the formulaticn of the performance fvncbional for this
thesis. First, the error sguared terms satisfy the continuity and
differentiability reguirements whereas the absolute value is discon-
tinuous at x - X4 =0 and, hence, must be modified near zero to
correct this. Second, the error sguared formulation results in a set
of differential equations linear in the adjoint variables which is
much less likely to have convergence prcblems. Finally, ths error
squared form is probably the form meost generally applicable o a
variety of problems. Therefore, unless specific requirements indicate
that andther form of error term is recuired, the error sguared form
is recommended for at least the initial attempt tc compensate a sys-

tem.

B
Wy

Derivation of the Cptimal Control g'(t)

The discussion presented within this section has basgically two
objectives. The first objective is to illustrate the proper applica-

tion of the necessary conditions given in Theorems L-1 and 4-2 in
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formulating the canonical system of system states and adjoint states
and the proper boundary conditions on this system. That is, the
proper formulation of the two-point boundary value problem, the solu-
tion ¢f which yields the desired optimal centrol. Three simple
problens representing the following general cases will be discussed:
(1) no terminal cost problem, (2) terminal ccst problem, and
{3) problem in which the independent variable t appears explicitly.
The second objective is to present some suggested technicues for
determining a first guess for the initial conditions on the adjoint
variables. This problem must be considered since most of the compu-
tational techniques for solving two-point boundary value problems
reguire starting guesses for the unspecified initial cconditions.
These initial guesses must, in general, be fairly accurate.

Example L-2. No Terminal Cost Problem

This example problem illustrates the proper formulation of ‘the
two-point boundary value problem for a simple trajectory optimization
problem with no terminal cost. The system to be compensated is de-

fined on the interval (0, T) by the differential equation

x +x =0,

x(0) = x ,

o
A compensating control ¢  1is to be added to the system to minimize

the performance functional

T
J=%’—,/gf [(x - x.)% + m?] at
o a

where ¢ = km. The compensated system equation is thus

1

;::_:.,x+q_w
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The Hamiltonian is given by

H=%(x -x,)2% +%m? + p(-x + kn),

d

The necessary conditions of Theorem L-1 state that for g = q-yr to
be optimal, the associated x and p" must be solutions to the

following system.

oH
4% = —| = ax¥ 4+ km¥
op |«
oH
¥ = = -(,X* -% ) +P*
® axl# d
* =
x*¥(0) X
p*(T) = 0
oH S
0 ="_"1 =m*¥+ kp¥ +» m* = -kp¥
om' % )

If the change of variables x =x

and p =x, is made and the

1 2
equation for m is substituted into the eguation feor X*, the two-

point boundary value problem beccmes

x¥, = -x¥%, —'kzx*2
e - : %
x*, > i + xd + X 2 ‘
(L-27)
* 0 =
Xl() xo
x*¥,(T) =0

and the relation for ¢ is
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Thus Fquation (4-27) rebresents the results of the application of the
necessary conditions for optimal control. The desired optimal con-
trol will be obtained upon solution of these equations satisfying the
stated boundary conditions. v

Example li-3. Terminal Cocst Problem

The application of the necessary conditions of Pontryagiﬁ‘s
maximum principle will be illustrated for the cage of trajedééry
optimization with terminal cost. For this problem, the system is

given on the interval (0, T) by

x +x =0,

x(0)

H
ta]

oo
The system is to be compensated to minimize the performance functional
T
T =%[x(T) - x 1% +% | [(x-x)%+n?] dt
d 0 d

where ¢ = km. The compensated system equation is given by

S

X = =x + q,

and the Hamiltonian is formed as
H=%(x -~ xd)2 +4m? + p(-x + km).

Theorem L-2 states that the necessary conditions for mw ﬁo be an

2

optimal control are that m° and the associated X and p.  be

&L

solutions of the following system

x¥* =gff1 = -x* + km* w0 (be28)
op|# ', |
: 2SI %




67

where the boundary conditions are given as

x¥(0) = X,
) 2

p*(T) = (A x*(T) - x_,]1%} = x*¥(T) - x

ax(T) d a’

and
oH!
0 =— =m¥ + kp¥ » m¥ = -kp¥*.
omlx%

The final condition on p.x~ is not easily determined for this case

since it is actually a function of the optimum solution itself. - The

basic method for solution of the two-point boundary value problem

must be slightly modified for
of variable x = Xy and p =

restated as
J.(*i =
x*2 =
X*l(o) =
x*z(T) =

and

q* =

Recall that the gradient

this case. First, however, the change

X, will be made and Equation (L~-28)

2

L[]
-x*) - k’x¥,

¥ *
x*, + xd + X 2
X0
* -
x* (T) Xy
~k%x*_,

2

nethod for solving the two-point‘boundafy

value problem began with the formulation of a final=value performance

index
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k N
= ' - 2
i=1
where the xi' were the states with final values specified and Xy
were the specified final values. Since the basic problem s to ‘
determine the necessary initial conditions on xi' to cause the -

solution to pass through the specified final points, the gradient'of ;

I with respect to xi(O) was calculated. For the case at handi. . .
= - - 2
I= [xz(T) [xl(T) xd)] ’

vhere the asterisks denoting optimal solution have been deléted'fbr'
convenience in writing. The "gradient" of I with respect to $2(0)

for this scalar case is then

3 , ax,(T)  0x,(T)
= 2[x2(T) - xl(T) + xd] - .

8x,(0) 3x,(0)  3x,(0)

This form of the gradient is basically different from that for the
case of known final conditions. The two terms 8x2(T) / axg(o)"
and axl(T) / 3x2(0) may be determined, however, in the same manner
as stated previously, and thus the gradient may be evaluated affer
an initial guess for x2(0) is provided and the necessary equations
integrated from C to T. The method of solution of the ﬁwo-point
boundary value problem is therefore essentially the same with the
exception'of the form of the gradient of T. This difference musﬁﬂ
be taken into acccunt in the solution of the two-point boundary‘value
problem for the terminal cost problem. |
Example l-li. Independent Variable Explicit in System Eqﬁation»

This example problem considers the case of a simple trajectbry-
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optimization problem for a system with a time=varying coefficient.

X, f tx1 =0
xl(O) = X
T
J =3 [(x =x.)% +m?] at
0 1 d
q = km

The compensated equation is
xl = -txl + q_u

At this point an auxiliary state variable defined by iz =1 4is intro-

duced with the initial condition

Xz(.o) = Q.

The augmented system equations then become

X, ® =X;X, + km

x, =1
xl(O) = X,
x. (0} = 0.

The Hamiltonian is given by

Ho='s(x, = xg)® +7m® +p,(xpx, + dml 4 py.

s

By Theorem L-1, m must satisfy
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. oH . x .
x* = 3p: |# = ~x® x*  + km
. oH
¥ = T =
x*, 30, |+ 1
,
oH
BE = e -x¥ 4+ + p¥ x¥
b 1 2%, | = =X . xd P 1x 2
oH
¥ = | = p* x¥
p2 BX2* plxl o
_ (L-29)
x*l(Ol = X »
x*z(Ol = Q
x%,(T) = T
p* (T} =0
oH
0 == =m¥ + kp¥, - m¥ = =kp¥ ,
om|* 1 !

Equaﬂion (L-29) is the resulting two-point boundary vélﬁe problém
which must be solved while meeting the four boundary conditions

shown following the‘equation. Note that the state X,
tions specified both at & =0 and & = T. These conditions must

pas condi«

be satisfied since X, is in reality the variable t. Note also
that the adjoint variable corresponding to the system state with both
boundary conditions specified does not have either end point speci-
fied. o

The remaining paragraphs of this section present ﬁhréé:technif
ques which have proved helpful in determining starting guésses_£0rv
the initiél conditions of the states of the two-point boundafyvvaluelﬁ

problem that have unspecified initial conditions. Most of the
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computational algorithms for solving split boundary value problems
require fairly accurate starting conditions to insure convergence to
a solution,

The two-point boundary value problem to be solved‘cén be.giVen

in general by the 2n set of differential equations

£(x, u, t) + 4(pl,

x

P = glx, p» u t),

with the appropriate boundary conditions. It 1s frequently eési@r 3

- (=30).

to solve the problem
x = £(x, u, t),
- (La31)
R = glx, B» us tl,
in which the control is not applied to the systems equations,t This
modified problem certainly does not result in an optimum spluti¢n
but it will often yield a set of initial conditions for g(t)"that
will be satisfactory for the solution of Equation (Li-30). A ‘
straightforward technique for solving the equations of (L-31) is}ﬁdv
integrate the § equations from the known initial conditions fdfwardﬂ

in time from to to t The trajectory x(t) is stored during .

£
this integration. Then the p equations may be integrated frqm‘the
known final conditions p(tf) backwards in time from tf to - to,
using the previously stored trajectory x(t) as inputs to the Q‘
equations. The values of p(t) at to then become the initial
guesses for the complete solution of Eguation (4-30).

The second technique stems from recognition of the féct-that
through proper weighting in the performance functional the control
variable g 1is only slightly constrained. This is done_so thét ‘g,

may take on values as large as necessary to properly control the
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system. However in so doing, the sensitivity of g with respect to
the adjoint variables p 1is greatly increased. If the starting
guesses for the initial conditions on the adjoint variables are not
very close to the correct values, the adjoint variables (the equations
for which are unstable) will become very large on the first iteration
of the two-point boundary value solution algorithm. Thus it quite
frequently occurs that the large adjoint values and the high senéi-
tivity of g with respect to p(t) result in an overflow condition
in the computer. That is, an arithmetic operation results in a
number which is larger than the maximum value allowed in the computer.
In order to circumvent this problem, the weighting factor kl on

the control function in the equation for the error index
L = k3<_e_, re>+ k1<&, m>

should be increased. In many cases, an increase in the magnitude of
kl by one or two orders of magnitude will result in a sufficient
decrease in the sensitivity of g with respect to E(t) so that
the resulting two-point boundary value problem can be solved. The
initial conditions on the adjoint variables which result from this
modified problem can then be used as starting guesses for the original
problem with the desired.value of kl. In some instances, k1 must
be decreased in two or three steps, each time solving the two-point
boundary value problem using as starting guesses on the adjoint var-
iables the initial conditions resulting from the previous solution.
A final technique is presented for determining starting initial
condition guesses. Although sufficient experience has not been
gained with this method to fully determine its effectiveness, it is

presented as a possible alternative should the other methods
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discussed fail. The use of this technique is prompted by the fact
that the adjoint variable equations are unstable and hence their
magnitudes increase with time (for oscillatory adjoint solutions, the
peak values increése). Thus in some problems, the p(t) ‘trajectories
increase to the point of computer overflow. In these cases, the-proba
lem final time t, can be reduced to some point in timg,lessﬂthan:‘
the value»at which the overflow condition occurred, saya,tff;‘whefe
t.' < t.. The two-point boundary value problem is then solved'éver

f £

the interval t_ to t,' and the resulting initial conditions on

p used as starting guesses for the problem over the interval

- Jr o .
to to tf. As with the previous technique, this method may have to
be applied two. or three times, each time increasing the final time |

until t© is reached.

f
As should be evident from the preceding discussion, the sclution

of the two~point boundary value problem can sometimes be very diffi-
cult. In fact this problem is currently one of the major limitations
in applying optimal control theory to practical nonlinear bontrol
problems, In general, the control engineer must bring ail of the
pertinent infermation possible into the problem as well as make
liberal uvse of his intuition to solve the problem. A suggestion is
made in Chapter VI, SUMMARY, CONCLUSICNS, AND RECCMMENDATIONS for

a more refined technique for determining initial starting conditions.

Determination of the Fitted Control q(x, k)

The discussion of this section deals with the problem of deter-
mining a function of the optimum system state trajectories that will

fit the optimum comtrol q (t). It will be assumed in this section
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that the appropriate two-point boundary value problem has been solved
to yield g%(t) and that the resulting optimum system response §%(t)
is sufficiently improved over x(t) to warrant an attempt to imple-
ment the optimum control. That is, the decision has been made to:tfy
to fit some § to g%(t). The fitting process is divided basicailj.
into two steps, the first Being a determination of the general func-
tional form of é(g, k). This determination is initially Based on
the general shapes of g%(t) and 5%(t), physical realizability re-
quirements and parameters in the original system ﬁhat can be adjusted,
Once the general functional form for é(g, k) is selected, the second
step involves the determination of values of k +to give the best fit
to g*(t). During this step, the ki‘s must be limited to physi-
cally realizable values.

{ne of the principal benefits in the nmethod of system compensa-
tion discussed in this thesis can be exploited during this phase of
the compensation procedure. First, the system designer has the op- |
portunity tc study the optimum response and to &etermine its merits‘
or whether it represents any advantage over the original response.
Second, he has available the optimum or ideal control trajectory which
produced the optimum response. He thus has a means to measure the
success or failure of any of the means he chooses to compensate the
system. Finally, the fact that he has the optimum control trajectory
available affords some information as to how that control should be‘
physically implemented.

Some of the terms that should be used in &(x, k) to £fit g (%)
can be determined through a close study of plots of g%(t) and 5*(t).

By comparing the general shapes of the curves for g*(t) and 5*(t),
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correlations between the control and certain state trajectories can
be recognized. If a control signal matches fairly closely one of the
state trajectories, then a high degree of correlation between these
two variables likely exists and that state should be included in ﬁhe
functional form for é(g, k). Likewise, if the control and some dqm—
bination of states, such as the product of two states or their‘sﬁm;ér»
difference, appear to be correlated, then this combination of sﬂaﬁesj,‘
should be included in é(g, k).

For example, assume that a second-order system with states 'xi
and X5 is to be compensated with a scalar control g. After. q%(t)
has been determined, a plot of q%(t), Xl%(t) and xz%(t) 'versus

A
%

time should be examined. Assume that xl%(o) =X, (0) =0, but'that

¥ ~
g (0) #0. Obviously, in order to form q as a function of Xy

%
3 ~ ’
and X5 Q must contain a constant bias term to provide a fit at

t = 0. Thus the first term to be selected in the formulation of ¢

will be the constant kl so that

A
q = k1 + other terms to be determined.

Tn addition, if it appears that the general shape of q (t) is simi-

lar to the shape of xz*(t) then the temm k2x2 should be added to

A

g. Thus
qQ = k1 + k2x2 + other terms.

Many other observations may be considered as well. If, for instance,
q%(t) does not change sign on the interval (to, tf) but xl(t)

and xz(t) take on both positive and negative values, perhaps some

function of lxll or xiz, i=1, 2, should be considered. A full"

appreciation for the utility of this technique cannot be gained frdm
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a discussion glone. Examples 1 and 2 in Chapter V present excellent
demonstrations of the épplication and utility of this method of deter-
mining the form of a.

Another device for determining the proper correlation Eetween
the control and the states involves plotting g%(t) versus the states
5*(t) themselves. Consider again the example of the previous,para- |

graph. Since q%(t), Xl%(t) and x£%t) are all known at the same

o

S
W

1

+ U
versus Xx, . may

be obtained. If q% can be approximated by a linear function bf one

points in time, plots of q* versus Xx and q

of the states, then the appropriate plot should be approximately a

straight line. If however the plot appears more as a squared or- cubic

curve, this suggests that a be made a function of k.x.2 or k,x.3.
: i3 -1

This concept can be extended to plotting q% versus various combina-
tions of the states such as x x,, x1x22, lel, x) + X etc; A
close correlation between q* and one of these terms can easily.be
recognized from these plots.

In most system compensation problems, certain of the System
parameters may be adjustable. To determine the proper parameter
- changes, the terms containing these parameters'should be included in

q. Thus if the example system cited previously contains a nonlinear

spring modeled by the expression kx 3 and if it is determined that

1

the spring rate can be changed, then the term k3x13 should be added

A~

to the others in q.fiThﬁs
a=k +kx +kx?3,
1 272 371

It should be pointed out, however, that the fact that a parameter is

not adjustable does not prevent the use of the term associated with
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that parameter in the expression for é. In this case the system de-
signer simply must realize that this poftion of g(g, k) camot be
implemented by adjusting a parameter in the original system; instead,
a new element must be added to the system.

A4 very important consideration in determining the generai form
for é(g, g) ig that of physical realizability. If it is determined
by one of the techniques described above that a particulér term shouid
be included in §3 but it is found that the term cannot‘bé implemented
in the physical system, then this term should not be included in EL
An attempt must be made to fit g to g without the use of that
particular term. In this manner, the designer can assure that the
resulting fitted control é(g, k) will contain only terms which rep-
resent physical elements. If however he learns that a satisfactory
fit to g%(t) cannot be accomplished without this term, then addi-
tional consideration should be given to determining a means to
physically realize the desired expression, perhaps by a more elaborate
mechanization. If this cannot be achieved, then the designer nmust
either accept the poorly fitted_ §(§9 5), attempt to completely re-
design the basic systen, ofégﬁggdon the compensation attempt
altogether. In any case the system designer has a measure of the
degree of optimality he is sacrificing by not implementing the partic-
ular term involved. _

Cne final pdint will be made with regard to physical'realizability
in connection with determining the general form of (§(§, k). If the
system'designer recognizes that some physical element could be easily
‘added fo the system, the desirability of dcing so can be quickly ex-

amined, even if no previous indication of the appropriateness of this
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term has been made. The expression representing the physical element
simply can be added to the expression for é and the resulting im-
provement, if any, in the fit of é to g* observed.

Once the general form of é(g, E) has been selected, the next
problem is to determine the proper values of the elements of .5. .This
can normally be acccmplished through the use of a computational curvé
fitting routine. Several nonlinear least squares curve fiﬁting rou-
tines are available for this purpose, two of which have been used
successfully &n connection with this thesis (23, 2L). The requirements
of physical realizability must be considered during the fitting process
as well as in determining the general form of é(f, k). Since the
terms in é represent known physical elements, the constant coeffi-
cients must in general be limited to insure realigzability. The
fitting routines then select the proper values of k within specified
bounds to give-the best least sguares fit of é(g, k) to g*(t).

In most physical systems, exact, rigid limits cannot be defined
on the realizable parameter values. In many instances regsonable
congtraints can be selected within which the parameters could be fairly
easily implemented, but values outside these bounds might be possible
with additional effort if necessary. In problems uwhere this situation
exists, it is recommended that first g(x, k) be fitted to g (t)
without constrainté on the parameters k. If the selected values of

k fall outside the proposed bounds, then § should again be fitted

to q', this time with constraints on the values of k. If the fit
~
of g 1is significantly deteriorated as a result of ccnstraining Kk,
then consideration should be given to relaxing some of the bounds. The

relative importance of the various ki in affecting the overall system
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response can be determined by calculating the sensitivity of the per-
formance index J with respect to the elements of k. This is
accomplished by evaluating

aJ
ok

A high sensitivity of J with respect to ki (relative to the other
parameters) indicates that the parameter ki has a significant effect
on the performance index and hence should receive top priority in
being implemented with the proper value.

It must be pointed out that the procedures for selecting the
general form of E(E, 5) and determining the values of k discussed
in this section cannot be applied in a simple straightforward manner.
A trial form for ; must first be selected and the value for k
determined. If the resulting fit is unsatisfactory or if the ki's
fall outside their bounds, then the form of ﬁ must be modified and
the new ﬁ(g, k) fitted to 3*(t). A technique for determining the

proper modification to q is presented in the next section.

Verification of the Control

After an initial fit of §(§, k) to g*(t) has been accom-
plished, the resulting control trajectory must be examined to determine
what modifications may be necessary to improve the fit. One device
that is helpful in this respect is a study of the difference in
é({, k) and gﬁ(t), or the residual r, defined as

r(t) = glx(t), k] = g*(t). (L-32)
Equation (L4-32) may be written as

a*(t) = g(x, k) - x(t).
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This equation states that the optimal control g*(t) is given exactly
by é(g, k) minus r(t), where r(t) is defined in Zquation (L-32).
Thus if the trajectory for r{t) can be approximated by a function

of x(t) and k, r(t) = £(§, k), and then subtracted from é,'the
resulting function would fit g% more closely. Thus the prébiem,at
this point becomes one of determining the general form of 5(5, E);

The values of k are not evaluated to fit r(x, k) to r(t), instead,

r with the undetermined ki‘s is used to modify the general form of
alx, k).

a'(x, ) = glx, K) - oz, B)

The values of k in the modified g'(ﬁ, g) are then evaluated to

.
3*

' to g .

.

Fal
fit

Loy

The same technigues that were used to determine the general form
of §(§, k) can be used to determine the general form of E(ﬁ’ k).
That is, plots of r(t) and §*(t) versus time can be studied to
determine possible recognigable correlations between g(t) and the
state variables. Also, plots of E(t) versus the various state-
variables or combinations of the state variables can be examined for
the same purpose. The same restrictions pertaining to physical
realizability apply in formulating £(§, k) as in formulating
§(§, k). Example 2 in Chapter IV illustrates the use of this techni-
gue.

Instead of using a least squared error fitting routine to deter-
mine the proper elements of k, an alternate procedure may be utilized.
Once the functional form for §(§, k) has been determined, § can
be added to the original system equations

%= 20z, +) + alg, k)
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with 5 as yet unspecified. Then a parameter optimization routine
such as described by Unruh (9) can be used to determine the values of
k that minimize the appropriate performance index. The utilization
of this technique possesses certain advantages as Wellvas disadvan-
tages. This method represents a slightly more direct approach since
the values of k are calculated directly to minimize the pefformance '
index and the resulting compensated response is generated in ﬁhe
processes. On the other hand, it is more difficult to constréin fhe
variations of the parameters in a pérameter optimization routine than
in a least squares fitting program. The computational algorithm
developed by Unruh (9) does not allow limiting the parameter values.
In addition, the ability to further modify é(g, k) by examining the
residval r(t) is lost in using the parameter optimization approach.
Perhaps a combination of the two techniques might be utilized in
which é(g, k) is first fitted as closely as possible to g*(t).
When the final form for é(g, g) has been determined and no further
modification is desired or possible, then a parameter optimization
routine could be used to re-evaluate the k parameters. The set
of parameters within the desired bouhds that resulted in the smallest
performance index would be the desired set.

~ The techniques for determining the fitted control §(§,'5) pre-
sented in the last two sections are not meant to be applied_in‘a
straightforward maﬁhér without regard for the physical implications
of each step. In general it is desired to compensate the_system in
the most»economical way possible which in turn usually impiies the
fewest aaditions or changes to the original system. Thus the first

attempts at approximating g*(t) should be with a simple é(g, k).
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If this attempt fails, then appropriate terms should be added onto
Az, X)-

The entire system compensation procedure discussed in this chap-
ter is designed to give the system designer a maximum insight into
the effect of each step in the procedure. A great deal of flexibility
exists in the application of this technique which requires the:designer
to make several decisions. This result is desired, however, because
this compensation procedure is meant to be a tool which the designer
can vse to aid him in first determining whether compensation of a
system is feasible and then provide him with information as to how
to effect the desired compensation. The overall objective has been
to apply some of the sophisticated modern control thecries to the
practical problem of system design and compensation in such a way
that the system designer can direct and be directed by the compensa-

tien procedure.



CHAPTER V
APPLICATION OF THE METHOD

Several example problems which illustrate applicatioh of the com-
pensation technique developed in Chapter IV are presented and discussed
in this chapter. The objectives of this chapter are threefold: first, .
it is desired to vérify the basic concept of using optimal control
theory to aid in the derivation of feedback control and COmpeﬁéation
elements for a nonlinear system. The second objective is to demon-
strate the practicality of this technique in determining physically
realizable compensation terms, and finally, the third goal is to
clarify certain points discussed in previous chapters by illustrative
examples. |

The examples presented were chosen primarily to illuStraﬁe that
the objectives outlined in Chapter III had been achieved and that the
technique was not restricted to a particular class of systems. Space
would not permit, however, the inclusion of examples of all of'the
wide variety of problem requirements that could be formulated for
study by this method. The problems include the study of a hydréulic
spool valve, an electrical circuit and an electro-mechanical liquid
level controller. The final example illustrates a case in which the
optimum controlled system shows little improvement over the uncom-
pensated system, and thus, little benefit could be gained by attempting

to compensate it.

83
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In those problems which are driven by an external forcing func-
tion, the forcing function is taken to be a step input at time to.
The reasoning being that a step input is the most severe input to
which a physical system éan be subjected and that if adequate compensa-
tion can be achieved for the step input, it certainly could be
achieved for any lesser input. An impulse input can be tréated simply
as an initial condition on the state variables, a case which is gbn—

sidered in Example Two.
Example One - Hydraulic Spool Valve

The first example considers the compensation of a hydraulic
spool valve shown in Figure 5. This valve was studied by J. Bose (7)
in demonstrating a parameter optimization type of compensation pro-
cedure, This example will afford an opportunity for comparison'of‘
the compensation technique presented in this thesis with that of
Bose's.

The dynamic model for this valve is given on page 60 of ref-‘
erence (7) as

| %+ 0.36% + 0.2kx = £(t),
x(0) = 0, =x(0) = 0.
TFor this valvé, the response to a step force inmput f(t) =0.24 is
unsatisfactory since the rise time is over 4.0 seconds. In order
to compensate the valve response a control variable ié added to the
system equation.vf -

%+ 0.36x + 0.2kx = 0,24 + q

]
i
VN.

To write the equation in state variable form, let x, = x,

1
then



85

(L5 °d *L) =atej Toods oITnEspdH 'S saudig

L4777

A v
/1
\\
/ . ! E
7/ \m g 4 4 A -
v 7 VANV \\\\\\\ 7 777777 w\\\\\\
f
3 ZITY DNINLS
| Al *



86

e

=x2’

Mo
[

= -.36x, - .2bx, + .2k + q.

Also let

q = cm,

The performance index is formulated as

5.0

(o] c
J = j [-—2(xl - 1,0)? +—3m2} at.
ol2 )

Since kz is in the range of il.O*, q should be constrained
to approximately this magnitude. However since the system is under-

damped, the velocity x,. should be greater in the compénsated system.

2

Thus a reasonable assumption is to allow q to vary appfokimately

$10.0 1in the compensated system. This is accomplished by letting

c; =10.0, then as m = #1.0, q = 10.0. Also let ¢3 = 0.1c,;
therefore ¢, =1.0, c, =0.1, and q =10m. The perférmance‘index
becomes |

5.0

0.1
[%(xl - 1.0)% + —E—mz] dt,

from which the Hamiltonian is formed as

0,1 o
H =1(2(x1 - ]_,0)2 +—-2'—m2 + Ple + pz(-_-.36x2 - 02’4){1 + .24 + lOm).

Then the differential equations for the state and adjointvvariablesb

*This information is determined from a solution of the unéom;
pensated system equation. ‘
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are found to be

X, = =.36x, = .2bx, + .24 + 10m

"
~
I

P, =1-x + .24p,
iz =P, ¢ ’36P2
with boundary conditions
x,(0) =0,  p,(5) =0,
xz(ol = 0, PZES} = 0,

Thus

q = 10m = =100p,.

By letting

Xy =D, and X, = P,

the two-point boundary value problem to be solved beccmes,

X, =Xy

%, = =.36x, - .2bx, + .2k - 100x, |
| (5-1)

+ ,36x,

4
[}

with the boundary conditions
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]
o

xl(ol

i
o

x,(0) =

I
o

X3(5) =

x.,(5) =

i
o
L J

and the equation for g 1is

-

Through the use of a two-point boundary value solution program,

the initial conditions on the adjoint variables are found to be

x,(0) = -.Lk260732

~-,097628796,

x, (0}

The results of integrating Equations (5-1) using these initial condi-
tions are shown in Figures 6 and 7. The first figure shows a
comparison of the compensated state trajectory and the original un-
corpensated trajectory. It is obvious that there is a significant
improvement in the respcnse and thus the implementation of the neces-
sary control should be atterpted.

Figure 7 shows the optimum control q'(t) and the resulting
optirum states. TFrom this figure it is desired to gain sore insight
as to the terms necessary to implement an approximation to Q(t).

The optimum control q*(t) has a shape generally similar to that of

PU3

Xy s inversely of course, except that qé has a faster initial rise

rate and reaches its peak earlier. Hence q should be proporticnal

to x

1 and the constant of proportionality should be large initially
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to give q a steep slope, but should decrease as X increases to

give a good final value. One way of realizing this is to recognize

that x2 is large for a short initial interval, then decreases. Thus

if the term (klxz)x1 were used, the coefficient of the X

term
appears that it might have the desired property.
Another manner in which one might fit q is to make q a func-

tion of X, to accoﬁnt for the rapid initial change'andbthen use

n
another function of x. +to contribute to g when x_, approaches

3

1
zero. A function of xllxll or x;

2
might serve this purpose since

either one is small when x. is small but increases rapidly as x

3
1 .
with a nonlinear, "hardening" spring and a term such as xllxil might

1 1

increases. Since an x term could be easily physically realized

be more difficult, the terms k2xé + k3x13 are chosen to attempt to

approximate q*.
Thus the total expression used to approximate q 18 now

~

q = kyxpx; + kox, + ksxla.

10 %o

(observe at t = 0; % =0 and qQ" =9.76), a constant term, kh’

Since there is obviously a constant bias between X and q%v
must be added. Finally one should note that for this hydraulic valve,
it would be a quite simple task to change the spring rate of the

valve spring, so the term k§x1 is added. Hence

~

q = k]_xle +k2x2 + kaxla + k,l' + ksxll

A least squares curve fit of a to q% determines the constants

to be
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2l ,0TL6L

= w
N =
] [

=
]

-0.00837

>
£
]

9.76288
-9.75469

]

ke
This approximation to the optimum contrcl, when added to the o-

riginal system equation, yields

¥ + (4,07 + .36)% + (9.75 + 2h)x + .0012kx{x) + .00837x} = .2k + 9.76.

However, the implementation of this control would require a large
change in the coefficient of Xx. Since this coefficient is determined
‘largely by the viscous drag between the valve spool and body, a gig-
nificant change here is difficult to achieve. In addition, a change
in spring rate from 0.24 to 9.99 is not impossible but mighﬁbprove
troublesome without major revisions to the valve. Thus a slightly
different method of implementing the control should be considéred.
In determining a diffefent form for the control vector, some

thought must first be given to limiting the values of k., and kS'

2
Since the coefficients these terms affect can be changed, as mﬁch
compensation as possible should be achieved by their variation, but
they must not go beyond phyéically realizable bounds. Thus k2 is
limited to -0.5 and k5 to —ifgi Although these restrictions are
somewhat arbitrary in view of the limited details of the problem they
are certainly with?n reason.

Since one of ;ﬁeudamping terms in g has been réstricted,

another form of damping should be implemented. Fluid flow through

~‘an orifice placed in the by-pass tube in the spool would result in a
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damping term k6x2 X The functional form for a now becomes

2 .

o 3
qQ =k;x;x, +k,x, +K;x,

+ k“ + ksx1 + kelesz’

with k, and k5 limited to ~0.5 and -1.0 respectively. A least

squares fit of a(g, k) to ¢ (t) yields the following values for

k.
’J k, = =h.6Q
k, = =0.50
ky = =5.996
k, = 6.996
ks = =-1.00
g = =1.2h

A plot of the optimum and fitted contrel versus time is shown in
Figure 8.
Addition of a to the original differential equation results

in the followiﬁg compensated valve equation.

x + (0,36 + 0.50)x + (0.24 + 1.0)x + 5.996x° + 4.60xx
| : (5~2)
+ 1.2ux|x| = (0.24 + 6.996),

The equation response vhen compensated by the fitted control 5 is
shovm in Figure 9. This sub-optimum response is still greatly superior
to the uncompensated response and hence certainly justifies implementa-
tion of a. An alternative to observing plots of the>response is to -
consider the perforrance index. For the optimal control the perform-
ance index value at t = tf ~is 0.1672 and for the fitted control

it is 0.1745, an increase of only L.4%. From this viewpoint too,

it appears that q should be implemented.
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In order to interpret Equation (5-2) in physical hardware, two
terms will be examined concurrently. The expression
(0.36 + 0,50)x + b4.60xx

is rewritten as
(0.36 + 0.50)x + L.60xx = ¢;x + ¢, (L + x)x

since the term 02(L + X)X represents an unsteady flow force which is
a result of fluid acceleration induced by pressure chénges and/or

valve displacement. Equating coefficients of like terms yields

c, +¢c,L 0.86,

Cp = h-é.

If c, is assured 0.16, then L, the characteristic leﬁgth of the
control volume; is found to be L = 0.155. Thus the terms under con-
sideration become

0.16x + 4,60(0.155 + x)x.
Note that the expression 02(L + x)X does not result in the addition
of any physical hardware, but rathér, represents a more accurate
mathematiéal model of the valve. It does, however, yield valuable

information in that the values of ¢, and L necessary for proper

2
compensation of the valve are knowm.
The remaining compensating ténms can now be implemented. The
linear damping term (cli) adjustment can be achieved by making the
proper changes in the spool land length, spool diameter, radial
clearance and spool mass. The spring force term will require a
change in the linear spring rate as well as the addition of a non-
linear hardening spring modeled by$§5.996x3.v The addition of an
orifice in the spool by-pass tube will yield the %|%| term with the
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coefficient determined by proper sizing of the relative diameters of
vthe spool and orifice and the orifice flow coefficient. The step
force input to the valve must be 7.236.

The hydraulic valve, when compensated as discussed above, is

described by the following differential equation.

x + 0,16x + 1.24x|x| + 4.6(0.155 + x)x + 1.2kx + 5,996x® = 7,236 (5-3)

The compensated response is compared with the ideal response in
Figure 10 where it can be observed that very little optimality has
" been sacrificed in implementing the sub-optimal control. Figure 11
shows the optimal control q*(t), the control fitted to the optimum
response, a(gf E), and the actual control that is generated in the
compensated system, a(g, E). As would be expected from the nearly
optimal compensated response, the actual control very closely ap-
proximates the optimum control.

Bose (7) used a least squares method to compensate this hy-

draulic valve and gave the compensated model as

% + 0.36% + 0.2hx + 0.801x% + 1.4039x% = 1.0,

The rise time and overshoot for‘Bose's compensation were approximately
2.0 seconds and 10% respectively while the compensation applied

in Zquation (5-3) yields a response with rise time of 1.08 seconds
and less than 3% overshoot. The results of this example can be
summarized by saying that the compensation procedure described in this
thesis haé aided in the compensation of a nonlinéar system in such a
way as to significantly iﬁprove its response and to guarantee the

physical realizability of the compensating terms.
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Example Two - Electrical Circuit

Consider a system utilized as an erample by Garrad,
N.H. McClamroch, and Clark (20) in "Some Approaches to Subeptimal
Feedback Control of Nonlinear Systems"”. This system consists of an
eiectrical circuit with a ncnliﬁear resistor showm in Figure 12. The
differential equation déscribing the dynamics of this circuit is given

as

€ofl1-¢e%)e+e=0,

Consider two sets of initial conditions

e(0}) 1.0 e(0) 0.5
. and = o

&(0) 1.0 R E-14e)! 0.5

The primary purpose for this example problem is to compare the opti-
mization technique described herein with that of Garrard, et al.;
hence the same problem will be considered. That problem is, add a

control q that will minimize the performance functional

0
J =% [ (e2 + &2 + q2) at,
0
NONLINEAR
RESISTOR
R ’ ,
ﬁL, R = «0(l - e°) o = 10.0
é%i 1
L e-f——-— C
r L = 10,0 C = 0.1

Figure 12, Nonlinear Electrical Oscillatory Circuit
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Let X Te, X, = é and write the state equations, to which a

control variable q has been added,

= (1 - xlz).-x2 - X, + Q.

=
N
I

Since the general state trajectory will be between 1.0 and 0.0, it
is desired that the ccntrol rerain within these limits also, hence

let g =1.0m. The Hamiltonian then becomes

H =:%(x12 + xz2 + m?) + p,x, + pzﬁl - xlz)x2 - x, +m.

e
[
n

»

L 2

= -xé +p, + pz(l - xlz)

|

oH
O=—-—-—=m+p2—>m=_p2
om

How substitute x3 =Py and xh =Py} the two-point boundary value
"problem to be solved beccmes
X, =X

= (1 = xlz)x2 - X, =X,

»é
[N
|

Xy ==x, + 2x1x2x“ + x,

2
-x, = x5 =(1 - x )x,

e
]



Lond
[
3%}

with the initial conditions for the two cases shown bhelow.

CASE A CASE B

xlael = 1.0 xl(O) = 0,5
xz(OI =1.0 xz(O) = 0,5
xs(lo) =0 x3(1o) =0
%, (00 = 0 x,(10) = 0

The computational algorithm TPBV is used to obtain the proper initia

conditions on the adjoint variables (16),

CASE A CASE B
x3(0) = 2.0766979 x,(0) = 1.6106961
x4 (0) = 1,67h7117 x,(0) = 1.3330923

Cage &

Now consider the results of Case A showm in Figure 13. This
figure, which sghows a compariscn of the optimum response and the un-
corpensated response, indicates that a significant improvement can
te achieved i1f the optirmm control can be implemented. The desired

opbirmm control q (t) and the time histories of %, and x, are

hovm in Figure 1.

4]

The problem at this point becomes one of approxirating q%(t}
with a function a(E’ E), that is a function of the state variables.
Clese examinaticn of the curves in Fipgure 1l will reveal a close cor-
respondence betueen the gereral shape of the XZ(t> plot and the

:"(4) plot. This svggests a term kx2 in the approximation 1o
3

q"(t). However, the magnitude of change in ¢  during the first

to)

1.6 seconds is greater with respect to x. than during the time

2

1.6 - 1,.0 seconds. 7his indicates that the coefficient of X, should
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decrease with time. Since xl(t) follows a generally decreasing

path, the coefficient could be made a linear function of X, S0 that

q%(t) would be approximated by

A selection of k. = -1.65 to make &(x(0), k) =q (0) yields

1
the approximation shown in Figure 15. Although the initial and final
portions of the curves coincide, the fit isvnot close overall. In
order to determine what additional terms in a are necessary, an
examination of plots of the residval (r = q - q*) versus the state
variables and various combinations of the state variables will be
helpful, Figures 16, 17, 18, and 19 show plots of the residual versus

2
Xqs X, (x",)

plots indicate a general nonlinear relationship between r and the

and (x",)?, respectively. Although three of the

state variable, the plot of r versus (x*l)2 can be approximated
by two straight lines. The dashed line in Figure 18 represents an
approximate linear relationship between r and (x*i)z while the
remainder of the plot indicates the residual is independent of X
Since

ro=8-q*
and

oy

qQ~7T,

q*
then if an analytical expression for F in terms of the state var-
iables can be obtained and subtracted from a, the new approximate

control

A A

Q' =g~-r

should better approximate q%. If o 1s approximated by the daghed

M
"

iime in Figure 18, the resulting q' should fit q better initially
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but will have a greater steady state error. The straight line is

represented by T = -k2x12 - k3 and thus § becomes

A
g 2
Q=kxx, +kx"+k, .

The results of fitting this form of § to q  is shown in
Figure 20. Gonsideration could now be given to reducing the steady
state difference between a and q* by adding additional terms.
First however, some thought must be given to physical implementation
of the desired control. For this circuit the task of generating the
term k1x1X2 short of adding an analog computer or function multi-
plier is indeed difficult. Since the tem k. ° can be implemented
somewhat more easily, consideration should be given to approximating
d* without the klxix2 term and with other.mbre easily realized
terms. Addition of a linear resistor to the circuit would add a
kxl term while adjusting the capacitor and nonlinear resistor would

allow the inclusion of kx. and kh<1 - xlz)x2. Thus a more readily

2

realiged control might be given as

A 2 2
a=k +Xx +kx, +k(1-x%)x +kx?*. (5-L)

Determination of k through the use of a least squared error approxi-

mation routine yields the following values (21):

k, = - ,00109 ky, = =.96851
k, = = 42201 kg = .37611 -.
k3 = "1062772

‘The use of the form for § given in Equation (5-L) with the
values for k shown above yields a close approximation to q'x~ as

shown by the Q(x , k) ocurve in Figure 21. With the addition of
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the control ¢, the state equations become

(1= xlzlx2 -x, +k +kx +kx,+k(1l- xlz)x2 + ksxlz,

)
n

or expressed in the original second-order form

°é - (.l - ez);é +e= kl + k.ze + kaé + ku(l - ez)é + ksezo

‘Grouping like terms and substituting numerical values for k yields
€ - (1 + .96851)(1 ~ e2)& + 1,62772¢ + (1 + .h2201)e
- .3761le? = -.00100 .
The original circuit with the necessary modifications and addi-
tions to implement the desired control is shown in Figure 22. The

circuit equation is first non-normalized and written as

1
108 - (10 + 9.6851)(1 ~ e*)& + 16,2772¢ + ~ = e

+ (0.0109 - 3.7611le?) = Q. (5-5)

The indicated modifications are: (1) increase the constant associated
with the nonlinear resistor by 9.6851,‘(2) add a linear reéistor

with 16.2772 ohms resistance to the circuit, (3) decrease the capac-
itance to .07032, (l4) add a voltage source with a current dependent
resigtance to realize the final term on the left-hand side of
Equation (5-5). This term can be implemented by realizing that many
batteries have an intg;nal resistance that is partially current de-
pendent. This internéi'fééistance R, can be approximated (in scme

cases and with certain limits on the current) by

R; = (R, - R,i)ohms
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NONLINEAR
RESISTOR

' Figure 22. Compensated Electrical Circuit

where Rc and Rv are constants. The inclusion of a battery with
voltage E and internal resistance Ri results in the following

term in the differential equation:
c v

Since with the addition of this battery, the constant Rc "will modify
the coefficient of the & term, it will be necessary to adjust the
linear resistor Rn so that (Rc + Rn) = 16.2772. Finally, with a
battery for which E = .0109 volts and Rv = 3,7611 ohms/arpere, thé
desired control has been implemented.

A cémparison of the responses of the compensated and original
uncompensated circuit is shown in figure 23. The performance of the

compensated circuit is a significant improvement over the original
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response, however, i1t is not as ruch of an improvement as the optimum
response which is shown in Figure 2L. This is due to the fact that
the a that actually controls the circuit is a function of g and
not E*' The difference in q%(t), &(5%, k) and a(g, k) may be
seen in Figure 21,

The decision as to whether to accept the compensated system or
atterpt to further improve its response can be based cn two factors.
First, the plots shown in Figures 23 and 24 can be studied to com-
pare the uncorpensated, the optimum and the compensated responses.

If in the judgment of the designer the compensated response meets his
requirerents, then no further refinement is required. The second
factor that can be considered is the performance index values. The
optirmum performance index value at the final time is 2.563 while
the compensated circuit has a performance»index of 2.665, approxi-
mately L% less than optimum, For this example problem, no further
compensation will be atterpted.

Garrard, McClamroch and Clark (20) compare several methods of
compensating the circuit ostigure 12. Of the techniques compared,
the perturbation method gave the smallest performance index, a value
of 2.573. As expected, this value is larger than the optimum per-
formance index, but it is smaller than the performance index given
for the cormpensated system in Figure 22. However the authors had
rade no consideration of physical realizability and hence were not
restricted in the form of compenéation used. The control used in the

perturbation technicue was

q = =0.b1hx, = 2.685 + 1,086x,%x, + 0.583x,x, + 0.072x,°
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vhich would be indeed difficult to physically implement. Thus it
might be expected that the performance index be considerably smaller
than one for which the cowpensation must be physically realizable.
The important consideration, however, is that the optimum performance
index is smaller than either of the sub-optimal cases and that the
physically realizable circuit’in Figure 22 has a performance index

.

within a few per cent of the optimum.

Case B

-

1

The second case for this example problem invelves the same cir-

cult starting from a different set of initial conditions. For this

case xl(O) = 0.5 and xz(o) = 0.5 and as mentioned previously,

o
Pt
(US]
Py
Q
I

= 1,6106961 and XM(O) = 1,3330923. The original and optimum
circuit responses are shown in Figure 25 followed by a plot of the

cptirnm control and response in Figure 26. Since the only difference
between this case and Case A is the change in initial conditions, the

sarie general form for the fitted control will be assured.
gk +kx +kx +k(L-x2%x +kx? (5-6)
1 271 372 4 1 T2 571

In order to obtain a least square fit of Eguation (5-6) to
o'(t), the constants must have the following values:
k, = =0.00029764
k, = =0,41L418
Ky = =1.59657
-1.0L4993

-
&
it

0.265226

w
wn
L}

b

Tigure 27 shows that thege values result in an extrerely close f£it to
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the optimum q*, however, implementation of a kh term with absolute
value greater than 1.0 is not possible without changing the char-
acteristics of the nonlinear resistor. That is, kh less than ~1.0
would cause a sign reversal of the nonlinear resistor term and thus
cause that elerent to become an energy sink instead of energy source
for small Eq - L1lthough it would be desirable %o change the nonlinear
resistor in this manner, to do so would not be in keeping with the
idea of compensating the circuit. It is assured that this element
cannot be reroved or replaced in the circuit, but can be modified
somewhat. Therefore kh will, be restricted to being no less than
~-0.9.

Restriction of kh results in a least squares fit as shown in

Figure 28 with the constant parameter values of

k, = -0,00109799
k, = =0.39600k
k, = -3.18588

k, = -0,90000

k., = 0.hk85762,

A plot of the resulting compensated response and the original response
is shown in Figure 29 and the compensated and optimum responses are
compared in Figure 30. The performance incex for the cptimal circuit
is 0.7970, slightly less than the ﬁalue of 0.7971 for the method
of perturbation discussed by Garrard, et al. (20). The cormpensated
circuit has a performance index value of 0;8795, approximately

104 larger than the optimum value, but again, the cowpensation can

be physically implemented in the electrical circuit.
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Exanple Three - Liquid Level Controller

This example will illustrate the application of the compensation
procedure to limiting the state extrema. The system considered in
this example is showm in Figure 32. For this system, the equations
given below describe the deviations about the initial steady state

values of all variables. At t =0,

q, =0
q;(0) = q_(0)
h=0

h=0

vhere 9, represents the maximum external step input to the system,

thus at + = O+, q, = 75.0 inchesB/second. The equations describing

the system are

-9 -9

Te]
1]
=
w
[=

-
Qt}?
ct
+
[fe]
I
o
{

e = k,h
dh
qQ=8-—
dat
The system parameters are
k, = 10.0 in®/sec-volt T = 0.2 sec
k, = 12,0 volt/in a = 10 in®
ky = 20 in?/sec” L= 0,65 in.
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Figure 32. Liquid Level Controller

The overall system differential equation can be shown to be

h + AL + Bh = Cq_ + D4,
From this equation the state variable diagram in Figure 33 can be
censtructed from which the state equations are determined as

]

X; T X, +ru

[
X, rle + r.x, + r,u

with the initial conditions xl(o) = (0 and XQ(O) = 0. The constants

r, are calculated to be

0.1

H
fl

H
il

» = =15.0

H
fl

3 - 7025

-002 .

H
[}

A solution to this set of equations shows that for an imput of
u = 75.0 inchess/seccnd, h theoretically reaches a maximum value

of 0.879 inches and would thus overflow the tank. The problem for
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Y
Q

B |-

Figure 33, State Variable Diagram for Example Three

this example is to compensate the system in such a mamner as to insure
that the tank does not overflow, or rather, limit h +to less than
0.65 inches.

To limit h(or xl) to the desired value, a control variable will
o+ Since x, has a maximum

‘amplitude of oscillation of approximately 37 inches/seconde, the

be added to the state equation for X

control will be given by

q =rm = 100m.

This scale is chosen so that q may take on values of the same order

of magnitude as %, when |m| < 1.0. The performance index is

;-
formulated as

1.5

S{10x, 2 re
—{— - 9| +—m?| at

J. -y -
210,65 2

#l
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where

4]
"

0 if x, < 0,585,

) >
S 1.0 if X, = 0.585,

r 0.10,

&

The Hamiltonian is now written

2 Te ,
—m

2

5[10x
—-—( 1 + p,{x, = rju)

" 2l0.65

+ pylr,x; + ryx, + r,u + rom)
from vhich the following equations are calculated.
X, =X, = ru

Xy = roX; +* rgxp + ryu + rsm

le1
p, = =5 €5 - 9) = TP,
b, = =p; - I';P,
Ts r52
m="p, > q=F =Py
r r

The boundary conditions for these equations are

x00)=0
x,{0)=0
p1<i.5) =0
p,(1.5) =0 .

The computer progran TPBV@Q”(ZO) for solving two-peoint boundary value

problem gives
0.0011471k

p, (0)

pz(O) 0.000291052 ,
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A solution to the optimum controlled system is shown compared
to the vncompensated system in Figure 3h. The optimum response stays
satisfactorily below the desired maximum, hence a means to implement
the control showvm in Figure 35 is sought. However, there appears to
be no simple continuous relationship between the control and the state -
variables. In fact, a relay type control is suggested by the shape
of q(t) in the figure. Thus the physical system will be studied
to determine the feasibility of implementing a relay controller.

For the system showm in Figure 32, a negative ccnstant voltage
source that is switched in and out by a relay could be ingerted be-
tweeﬁ3%£é 1iquid level sensing element and the input flow controller.
This relay could be activated upon sensing an input‘ a and de-
activated when h exceeds 0.58 inches.

Figure 36 pictures the system with the compensating relay con-
trol installed and Figure 37 shows the resulting system respcnse
cormpared to the uncompensated respense. The optimum response and the
actugl compensated response are corpared in Figure 38 while Figure 39
shows q (t), a(x, k) and §(% k). This example has illustrated
that the compensation procedure may be used to limit state extrema
rather than‘shape the entire response. Also, it has shown that in
some cases a relay or discontinuous ccntrol may be found desirable

from the application of this compensation method.

Example Four - Dynamic System

oS ©

This exarple problem, at first glance, appears to be formulated
similarly to the other problems, and hence, similar results might be

expected, The system equation is
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Activated downward on
introduction of q_ and

e
////_q_.upward when e > 8,02 volts

] E " W
o —
=29 volts _ ./é%?7§ s
—= = 4
H

‘,JL Qi : Qo v

Figure 36, Compensated Liquid Level Controller

X + 108% - 1238xx + 288600x = r(t),
x(0) = 0, x(0) = 0,

vhere f(t) is a step input at time zero of -112520. The bbjective
- is simply to atterpt to decrease the reéponse rise time and to de-~
crease the amount of overshcot. The uncerpensated system response
reaches the steady state value of approximately -0.39 in slightly
lecs than 0.005 seconds and overshoots to about -0.47 before
settling to the final value.

In order to effect the compensation, an undebermined control
q is added to the system equation which in state variable form be-

ceres
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e
[}

1 = %

~ - A a -
-r X, = T XX, ~T,X, + £f{t} +q

X 1*1

A performance index for the transient portion of the solution is

formulated as

oy
il

tf I
j‘l/g[r,’(,x1 - xdlz + r (m)?] at
0

0.03, xd= -0.39 and m is the control g

Y =0 "Cc,,
here to s

scaled by Tgs i.e.

M ="

T
Since . g should be allowed to take on the same order of magnitude

L

as J'Cz which reaches approximately L x 107, q is desired to be
within the range lq| & 10°. Tn order to maintain Im| £ 1.0, the
scaling co.nstant is chosen Ty = 105 .

The next consideration is that of selecting the relative sizes
of _rh and rs. The primary objective in minimizing J is to
minimize the term r'h(x:L - X d)z’ hence this term must be weighted

d
(xl - X d)2 is approxirately 0.1 and r, has already been selected

more heavily than rsmz. Wth x, = -0.39, the maximm value for

so that m° is approximately 1.0. Thus if T), is chosen as 1.0
and ry as 0.01, then the approximate maximum value of rb'(xl - X d)2
will be ten times that of rs(m)z. With the constants thus determined

the Hamiltonian Bec:omes

H = 1/2(;(1 - xd)2 + 0.0lmz + Plxz + Pz('rlxl = r2x),x2

- rix, + £{t) - 10°m}.
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The necessary conditions for optimality given by Theorem L-1

require that the following equaticns be solved.
X, T X

5
- - - + £(t) + 10
) rX =TXX -TZX, £(t) m

el
it

P, = --x1 + xd + r1p2,+ rzxzpz

=P, * TP, *IXP,

g
[}]

The boundary conditions and constants for these equations are

x,(0) =0 r; = 288600
x,(0) =0 r, =-1238
p,(0.03) =0 r, = 108
p,(0.03) = 0 £t} = =112520

and the minimization of H(q) requires

m=-p, X 107,

Solution of the above two-point boundary value problem gives
the following values for the necessary initial conditions on: Py and

Do

6.2131809 x 107%,

pl(o)

6.2986326 x 10”7,

n

pz(O)

A plot of the optimum respense and the original response are shown
for corpariscon in Figure LO. The very little difference in these two

plots shows that for this formulation of the problem, the optimal
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. response is only slightly better than the original. Thus the com-
pensated system could hardly be expected to show any improvement and
would certainly not be worth the effort to attempt to implement this
control., The conclusion reached for this problem is that any form
of compensation to the basic system would not be expected to improve
the response significantly. Any real change in the response would

probably reguire a major change in the system design.
Sumnmary

The illustrative problems used in this chapter were not chosen
to demonstrate the breadth of problems for which the compensatiocn
technique discussed was gpplicable. Rather, these exarmples were
selected to illustrate some of the specific characteristics proposed
in the statement of the objectives. Indeed, the totalvscope of
different problem formulations, desired characteristics, response
trajectory shapes, terﬁinal cost problems and time-varying weighting
schemes which could be used cannot be discussed in a few pages. In-
stead these problems are intended to dermonstrate that the compensation
technique presented in Chapter IV can be used to achieve the follow-
ing: (1) the compensation of nonlinear systems, (2) the shaping of
the response trajectory, (3) the limiting of state extrema, (L) a
determinatibn of vhether compensation will result in a significant
response improvement and (5) most irmportant, the assurance of physical-
1y realizable corpensation. Another significant fact is that this
technique represents a iink between some of the somevhat lofty
theoretical developments:in modern ccntrol theory and some of the

actual system design problems.



CHAPTER VI
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The general problem of compensating nonlinear deterministic
systems in the time domain in order to achieve certain response
characteristics has been studied in this dissertation. A general
procedure for determining if compensation is feasible and what the
proper compensation should be has been developed. This chapter pre-~
sents a brief summary of the advantages and disadvantages of this
procedure and a review of the steps t; be followed in applying the
compensation method to a particular problem. A list of the areas
in which it is felt that this thesis represents a contribution to the
state of the art is also presented. Finally, several points are dis-
»cussed which should receive further study in order to extend the ca-

pability of the results of this thesis.
Summary and Conclusions

One of the principal advantages of the compensation technique
presented in this study is the fact that the entire analysis is con-
ducted in the time domain. That is, the response characteristics
may be studied in the real time plane rather than in a complex fre-
quency plane. This fact may at times be thought of as a disadvantage
since it does not allow the specification of some frequency response

characteristic such as gain margin or phase margin. A far greater

1L3
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advantage that stems from study in the time domain is the ability to
apply this compensation method to nonlinear systems. At no point in
the development of the theory in Chapter IV was the system model or
the control elements restricted to linear form. The examples pre-
sented in Chapter V verify this since they all contain nonlinear
elements in the system or control vector or both.

Another of the primary advantages is the fact that the perform-
ance functional is formulated from the problem requirements and is
not some fixed form. The error index may be formulated and weighted
as desired to fit the particular problem. The weighting may be time-
variable to stress the importance of some state at a particular point
in time. The performance functional has the flexibility of being
formed to fit the response to some desired trajectory or to restrict
the state response from exceeding some maximum or minimum level.
Closely connected with the formulation of the performance functional
is another advantage which lies in the fact that only the desired
state characteristics need be specified. That is if only the tra-
Jectory of the first state in a third-order system is of interest,
then only that state need be specified in the performance functional.

Once the performance functional has been determined and the
two-point boundary value problem formulated, one of the more difficult
steps in the compensation procedure must be made. This step involves
the solution of the two-point boundary value problem and may be con-
sidered as somevhat of a disadvantage for this procedure because of
its general difficulty. However once the two-point boundary value
problem has been solved, the system designer has the optimum system

response available for study. This represents a significant advantage
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since with this infbrmation he can make a decision early in the design
process on whether the optimum response represents a significant im-
provenent over the uncompensated rééponse. He further has an
indication of just how much improveﬁent stands to be gained if the
optimum control is implemented.

The fact that the optimum controi1trajectory is available for
study is also an advantage since guidelines have been established for
using the optimum trajectory to aid in determining the general form
of the fitted control. In addition, the degree to which the sub-
optimum physically implemented control approximates the optimum control
can easily be studied. The trade-off between optimality and imple-
mentability can also’be quickly determined by using the optimum
trajectory as a aﬁandard.

The assurance that the compensating control can be physically
realizable is one of the principal advantages of this compensation
technique. The system designer controls the general form of the
fitted control by selecting oaly terms that are implementable and as-
sures that the parameters can be realized by limiting their possible
values. He is further assured that no time-varying parameters will
result. In connection with determining the proper compensating con-
trol, both the original system parameters as well as parameters
associated with any new terms may be adjusted and the proper values
for each set selected.

One final capability will be mentioned that certainly represents
an advantage. The ability to adjust the physical system parameters
and not just the equation coefficients is very beneficial. Although

this point was not made during the discussion of the fitting procedure,
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either the least squared error fitting routines or a parameter op-
timization technique may be used to determine proper parameter values
as well as coefficient values to fit é(g, k) to gﬁ(t).

Two requirements on the system state equations limit its applica-
tion to some extent. The restrictions on the optimal control problem
require that f(x, t) be continuous and differentiable in x and
t. Thus the many physical systems that have discontinuous state
equations cannot utilize this compensation procedure. Another broad
category of systems which‘cannot be studied using the present tech-
niques is stochastic systems or systems with random variables.
Recommendations for extending the present compensation method to in-
clude both of these types of systems is made in the next section.

" A brief step-by-step summary of how to apply the compensation
technique to a problem will te given here.

1. Determine the time interval over which the problem is to

be studied, (to - tf). Integrate the original uncompensated

systen equations over the interval to - tf,
2. Determine how many control states will be generated and
how they will be added to the system equations.

3. From the problem statement of the desired response char-
acteristics, formulate the performance functional.

L. Select the proper values of the weighting coefficients
in the error in@ex based on the general form of the per-
formance functicnal and the information gained in step #1.
5. Form the Hamiltonian function and from this, formulate
the two-point boundary value problen.

6. Estimate starting guesses for the states with unspecified



initial conditions.
7. Solve the two~point boundary value probleﬁ;to obtain the
optimum response and the optimum control trajeé@ory.

8. At this point decide whether the optimum reSbonse is suf-
ficiently improved over‘the uncompensated response to warrant
an attempt to implement the optimum control.

9, From the’optimum control trajectory, knowiedge of vari-
able parameters in the original system, and physical
realizability considerations, determine the general form of
the fitted control a(x, k). |

10. Determine the proper values of the‘constant'parameters

k that will fit é(g, k) to the optimum control g*(t).

11. If &(x, k) does not fit g (t) sufficiently close,
modify the general form of é by adding or deleting terms

to obtain a better fit. Examine the residue, - gfz

IH
ha >

A

to determine the appropriate modifications to g. Repeat
step #10. |

12. Add the fitted control g(x, k) to the original state
equaticns, Integrate the compensated system equations from
to to tf to obtain the compensated response.

13, If the compensated response is satisfactory, the problem
ig finished. If not, return to step #11 and atterpt to. fur-
ther modify g to obtain a still better fit to g . If this
action does not result in a satisfactory response, return to
step #4 or #3 and change the weighting ccefficients or the

general form of the performance functional to place added

emphasis on the particular characteristic that is

17
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unsatisfactory. &hould this again fail to produce ac-

ceptable results, return to step #2 and consider the

possibility of utiliéing additional ecntrol states,

The developments presented in this study which should consﬁitute
contributions to the general knowledge of dynamical systems analysis
and design are listed below.

1. The primary contribution involves developmenf of a gen-

eral concept of utilizing optimal control theories in the

physical compensation of nonlinear dynamicai systems._

2. The state of system design and analysis art has been

advanced through the development of a compensation tech-

nique that incorporates all of the advantages described
above into one method. Some of these advantages were
available in previous compensation or design procedures,
but no one technique combined the several advantages and
was as generally applicable as the present method.

3. Another significant development involves the estab-

lishment of design guidelines to aid in determining the

proper physical elements that should be used to compensate
the system. |

li. The development of g performance functiongl to limit

state extrema such as in this thesis has not been observed

in any published literature. Thﬁs this development repre-
sents a further advancement of the state of the art in this

area.,
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Recommendations for Future Invéstigations

During the development of the compensation procedure presented
in this thesis, several areas were recognized as warranting further
investigation. In some areas the lack of development hampered the
application of this technique, whereas in other instances, it was
recognized that further investigations might greatly expand the ap-
plicability of the present method. Thus additional,fesearch is
recormended in the following areas:

1. Efforts should be made to improve existing methods for

solving nonlinear two-point boundary value problems. Al-

though three computational routines are referencéd which

solve this type problem (15, 16, 17), the requirement of

providing accurate estimates on the unspecified initial

conditions is sometires difficuit to satisfy. The routine

developed by Unruh in (15) represents a significant im-

provement over the other two, but additional development is

still desirable.

2. In line with the above requirements, more refined tech-

niques should be developed to aid in determining starting

guesses for the unspecified initial conditions in two-point
boundary value problems. C(ne possible technique that bears
investigation can be outlined Eriefly by congidering the
nth-order two-point boundary value problem

x = £(x, t) 0StST

with boundary conditions
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The solution x(t) can be expanded in a Taylor's series
expansion about the point T with an expansion interval of

-T. Thus

2
x(T - T) = x(0) = x(T) + x(T)T + g('.n)T—l
) (6-1)

3

+.iq{T}"I‘l—+ e:¢ a .o
3!

The entire right-hand side of the above equation can be
expressed in terms of the n state variables evaluated at

t =T. Equation (6-1) is then simply a set of n non-
linear algebraic equations in n unknowns

xl(T), . .. xk(T), xk+l(0),'. .. xn(o). If these e-
quations can be solved, the values of xk+1(0), . e xﬁ(o)
should be the desired starting conditions, the accuracy of
vhich depends .on the number of terms in the series expan-
sion. Due to the general complexity of the original
two-point boundary value problem, this technigque would of
course have to be computerized. However, computer techni-

ques currently exist for taking the derivative of an
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| analytical function. An IBM compiler language FORMAC will
perform this function as well as handle other manipulations
of equations in analytical form. A computer routine es-
pecially for the purpose of taking partial or total
derivativec of analytic functions has been written by
Stanley Wendt of the School of lMechanical and Aerospace
BEngineering at Oklahoma State University, but the results
of this are as yet unpublished.

3. The extension of this method of compensation to systems
with discontinuities or stochastic systems should be in-
vesitgated. Many systems have components which operate
against physical 1limits or stops for periods of time and
hence the system model«must.exhibit these discontinuous
constraints. COther systems are described by randdm
variable models in g statistical sense. The inclusion of
these system categories would greatly enhance the general
applicability of the present compensation technigue.

L. A technique for constraining the values of k in the
fitted control q(x, k) without placing rigid limits on
the parameter variaticns would be more compatible with
physical system design. As discussed in Chapter IV, in
actual system design the designer is rarely able to specify
exactly the limits to which a parameter can vary, thus the
imposed limits are somewhat arbitrary. A more desirable
procedure would be to assess an increasing penalty to the
parameter as it approaches a tentative limiting point. The

technique would be formilated to fit &(x, K to g'(v)
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vhile minimizing the penalties assessed the parameter varia-
tions.

5. The final recormendation céncerns an investigation into
the possibility of making the fitted control ﬁ a funcﬁion
of the system initial conditiégs and input. For nonlinear
systems, a control which is opéimal for one set of initial
conditions and driving functioﬁ:is not necessarily optimal
for a different input or initialvgondition. Therefqre it
would be desirable for a system which is subject to a variety
of initial conditions or inputs to be able to forﬁulate‘ é
as a function of these variables as well as the state vari-

able trajectories, i.e.
a = alx, k, x_» ul.

The continued development of the procedures and techniques recom-
mended here combined with the system compensation method presented in
this dissertation should proviae a corprehengive design tool that
makes full use of some of the developments of recent years in the

field of modern control theory.
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