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CHAPTER l 

INTRODUCTION 

A mathematical theory ,,of s.ignificl;l.nce testi_ng··in· which ,test stat-: 

istics are'del'ived and.compa:red.by;method5.para:lleling those'of Neyman 

and Pears.on hypothesis testing· has been· inve:stigat;ed'by- Finley (. 5 ) . 

His form1,1lation of·the theory is based on an appro-ach·to·si~ificance 

testing suggested by ·Dempster and Schatzo£f · ( 4 ·,}. · The ·present study, __ _,_,-,----~-·-----·· 
is :intended ··to _further the ·development of thi·s···th·eory .. · 

,.,.~..---· -· =-n,c. . -- ___..._..,.._. """""' : . ---·- . 

Significance testing is a relatively,otd·c-oneept in.statistics, 

the history dating back as far as 1735'when Bernoulli used the pro-· 

cedure in· studying hypotheses in astronomy. · Fisher ( 6 ·· ) , however, 

is given credit for introducing in 1925 · the term 11t·est' of s.ignificance" 

a.ndpromoting its general use·in .scientific.research. He described a 

procedure for.assessing the significance of ,an apparent.discr:epancy· 

between the _observations .and the "null" hypothests·- H0 , and this·· 

was done without 'mention of alternative .hypotheses··to'· H0 .. It appears· 

the basic ·ingredients to the test of -significance; a:-ccordirig .to·.Fisher 

and his followers, are the .sample -space, .the observati(?ris, and the 

hypothesis under. question. ' It was argued, and still ls--, (Mscombe (1), 

· Dempster and Schatzoff), that no formal .decision·.rules0·be incorporated 

into· significance testing. 

A general theo!Y of hypothesis tes_ting .was· fornra:Uy fresented ·by -

Neyman. and Pearson · ( 9 ) in· 1933. Since .. 'dija t ·time, this :theory has , . 
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become predominant in the teaching of -statistics·;.··. There ·are several 

major differences between the .hypothes\is . testtng··theory · of Neyman and 

Pearson and the significance testing of Fisher; Hypothesis testing 

requires adherence to strict formal decision rµles, and it .insists 

upon the formal statement of an hypothesis a1ternative to .. H0 ., In 

other words, the researcher is compelled either to accept the null 

hypothesis (a term evidently borrowed from Fisher) or to reject it in 

favor of the alternative, according to some mathematical function of 

the observed data. 

2 

Finley wrote that al though Neyman-Pearson the·ory ·is almost uni ver

sally accepted over significance testing instatistica1 textbooks,. 

many applied statisticians and researchers actually evaluate their 

hypothesis problems by computing significance· levels, i.,e., performing 

significance tests. More than likely, this is done by using test 

functions derived by Neyman-Pearson theory, which·in this case is not. 

truly applicable. Therefore, it seems reasonable that if significance 

testing is going to be done in practice, then the mathematical develop

ment of a theory of significance testing is in·order, 

The formulation of the present theory is based on the paper of 

Dempster and Schatzoff, A test statistic is d·efined so that small 

values of the statistic are incortsistent witl:i the null hypothesis, 

and the distribution of the statistic is known exactly under the null 

hypothesis, For a particular hypothesis problem a class A (not 

necessarily unique) of achievable significance levels is procured in 

some manner, The·search is then undertaken for a test statistic .which 

has the largest power, in the sense of Nt)'man and Pearson, for each 

significance level in A "· For the class A this statistic is termed 
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"best'' fqr the hypothesis .problem. 

It is recalled that .in classical ,hy.potfa:rs"i;s·:testing all 'ct · - 'levels · 

in the interval (0, 1) are· achievable, even when the prob·ahiUt)' .density 

is discrete. This is due to the admission :of ·.an-extraneous1 random 

experiment which permits tests to be of.exact size tr . Since this_ 

independent experiment contains absoluteiy·.no--infm:imation · about the · 

null hypothesis and contributes nothing to the computation of a signi

ficance level, this randomization procedure appears to have no plac.e 

in significance testing. 

achihlrll.ble, and the set 

in the unit interval .. 

Therefore, all a are not in gen~ral 

A defined above n·e-ed· not· contain all values 

One of the first steps.in selecting a significance test for 

a hypothesis problem is the selection of a statistic·on which to base 

the test statistic. It is argued by Lehmann (81 ). that if.:random.., 

ization is permitted, as it is in Neyman-Pearson theory; there is 

no loss in generality in restricting consideration to a sufficient 

statistic. Lehmann states, "Given any procedure based on· x , it is-. 

possible to _construct an equivalent one ... which ·can'·be viewed as 

a randomized procedure based solely on the suf·ficient statistic," 

Thus, if randomization is permitted in the theory, and if a sufficient 

statistic exists, then test statistic candidates can be·rest:ricted 

to those based on the sufficient statistic. However·;·since the -in

dependent randomized experiment.is not used in significance·testing, 

then no_ such. justification for basing tests on sufficient statistics · 

is afforded the theory, 

Finley recogllized the need for more investigation into the role 

of the sufficient statistics in significance testing. Working with 



the one-parameter exponential family of densities, p6(x) = 

C(6)exp[6T(x)] · h(x) , he found that optimum test statistics T*(x) 

were indeed based on the sufficient statistic T(x) for one-sided 

alternatives. He remarked that this result did not seem to depend on 

the properties of a sufficient statistic; However, the optimum test 

statistic was the likelihood ratio statistic; -and the likelihood ratio 

depends on the observations only through the sufficient statistic. 

Assume T(x) is sufficient for e , and p8 (x) is the density of x 

By the factorization criterion there exists a factorization such that 

p6(x) = g6 [T(x)] · h(x) where the first factor may depend on e but 

depends on x only through T(x) , and h(x) is independent of 8 , 
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The ratio p6 (x)/p6 (x) then depends on the observations only through 
1 2 

T(x) 

Even with the above correspondence between·the·Jikelihood·ratio 

statistic and the sufficient statistic for one sided alternatives, 

there still remain unsolved similar problems for·the two-sided 

alternative hypothesis (8 le e0) , In studying the two-sided case with 

the one-parameter exponential family, Finley derived two examples of 

unbiased test statistics, both unimodal functions of the sufficient 

statistic, He suspected both test statistics to enjoy optimum pro-

perties, but he did not mathematically justify his suspicions. He 

suggested that further research be done on the necessity and sufficiency 

of optimum unbiased test statistics to be unimodal functions of the 

sufficient statistics. 

It has also been suggested that more work is-needed on the concept 

of _unbiasedness in general for significance testing. In particular, 

the usefulness of unbiased test statistics in significance testing is 



not clear when the probability density is discrete, It .has -been shown 

that its application is quite restricted~in this case; Another ques-

tion is the necessity and sufficiency of two--tail unbiased test 

statistics for two-sided alternatives, 

A Brief Review of Significance-Testing 

Let X denote a random variable, ·either vector·-or·scalar, and 

assume X has a probability density f 8 (x) , orcumulative distri

bution function ( c, d, f,) given by F 8 (x) , The parameter 8 may be 

a vector or scalar belonging to some parameter space 8 , The null 

and alternative hypotheses are given by 

where e0 c 8 , and 

· where e Ac e , 

It is required that e0 n GA=¢ and e0 u GA c:e 

Let T*(x) denote a test statistic calculated from X with 

c,d, f, G8 (t*) , It is required that G (t*) - be completely specified 
8 

for es e0 ; in other words, the null hypothesis must be simple as 

far as T*(x) is concerned, The test statistics-are chosen so that 

5 

small values of the statistic are .inconsistent with the null hypothesis, 

Then the significance level associated with T*(x) , denoted by 

SL(T*) , is given by 

SL(T*) = G0 (t*) 

= ~ [T* 0 < observed] 

= a ' say 



Since the significance level is a random va:ria:b1e; it has a··distribu-

tion function, which .is denoted by· 

where t* -1 for all = G0 (a) 
a -

will be written as H0 (a) , 

= P El [T* (x) 

achievable ()\ 

< t*] 
a 

' If e 

It will be understood 

8 8 
0 

then H* (Cl) e 
··that only non-

6 

! 

trivial achievable significance levels (a_t, O~ 1) will he considered 

unless otherwise indicated, 

The significance test cor:responding·to T*{x) is said to be 

unbiased if 

and T* (x) is said to be an unbiased test statistic, In ·this study 

unbiased significance tests will be considered only for hypothesis 

problems with the two-sided alternatives~ HA: e # e O , 

Statement of Problem 

The purpose of this investigation is to continue·the develop-

ment of a theory of significance testing, The emphasis is on 

properties and characteristics of unbiased signifie<ance tests for 

the one-parameter case~ ;and on significance testing in· general for 

the two-parameter normal distribution" 

In Ghapter Hi examples of unbiased test statistics in both the 

discrete and continuous case are given, In Chapters III and IV an 

investigation is made on necessa1·y · and sufficient conditions for 



unbiased test -statistics, . Ch.apter V. considers nu1:1- hypotheses for one 

of the two parameters of the·normal·distribution when·the otherpara

meter is assumed unknown, 

7 



CHAPTER II 

EXAMPLES OF UNBIASED TEST STATISTICS 

The basic purpose of this chapter is to give examples of unbiased 

test statistics to which reference may he made in later chapters, In 

his study, Finley ga've several examples conce:tning unbiased test stat-

istics, He showed that, without the aid of the :randomized test of 

Neyman-Pearson theory, there did not exist, in genffral, two-tail test 

statistics for the parameters of the binomial and Poisson densities, 

It is clear that the development of this new theory of significance 

testing will be somewhat restricted in the discrete cases; it is not 

clear, though, if the theory will be :restricted in the continuous 

cases, It is hoped the examples presented here will help the theory; 

Continuous Case 

Example 2,1: Consider a :random sample of size n from· N(O, cr 2) and 

the hypothesis problem H0 : o ""a 0 versus HA: o t 0 0 , Finley shows 

an unbiased test statistic may be based on the sufficient statistic 

T(x) = I:X~, where 
1 

, ) 7 2 Tl_X : CJ 
,I O has the chi-square distribution with n 

degrees of freedom, The test statistics he proposed is 

T"' (t) 
t'2 2 

- tn/2 e - I ob 

8 



We note that T* (t) is unimodal in,. .t · .for a11· ·:ff .eyen·:tho:bgh for 

n :s 2 the density .of t is not unimodal in t , 

Example :2. 2: Consider a random sample .of size • n · from N(µ, T) and 

the hypothesis problem H0 : J.l. = .:µ 0 versus . HA:· µ I-. µ0 ... The asser

tion is that an unbiased test statistic is given by 

n(x".- µ0)2 

. T* (xJ = e . 2 

To show this is true we .must show H.: (a) is minimized by setting 

µ = J.lo 

Since T* (x) is a unimodal .function .of · x ·about ·x = µ 0 , we 

have 

H* (a) ::: P J1 [T*.(x) · < t*] 
µ o; 

- P [X < cl] + p [X > c2] µ J.l -

- 1 fc2 f (x) dx 
J.l 

cl 

Taking the derivative of H*(a) with respect to µ , we obtain 
. µ 

dH*(a) 
µ 

dµ 

which equ,;1.ls zero when 

n(x - µ)&-
n -, . 2}c ~ - 2 cx - µ) 2 

cl 

2 2 
e { 

_ n(c _ . 2 ' n Z 
JJ.) · - 2{c.l - µ) } 

- e 

Hence we have 

9 



dH*(a) 
µ 

dµ I . 0 

µ = µo 

To ascertain a minimum does occur at µ = 1 ... 0 , we obtain the 

second derivative, 

-[if { - ~(c2-µ)2 - ~(cl-µ)2} 
= z;- n[c2 - µ]e - n[c1-µJe . 

n 2 n 2 
- 2Cc1 -µo) - 2Cc2-µo) 

and e = e , it follows that 

,,,. 0 

hence H~(a) is minimized at p = µ 0 , and T*(x) is an unbiased 

test statistic. 

Example 2o3: Consider the density 

£8 (x) =I+ 8(x - 1/2) 

- 0 elsewhere 

-2:: 9:: 2 

The test statistic T*(x) = -Ix - 1/2] is unbiased for the 

hypothesis problem H0 : e = 80 versus HA: 8 ~ 80 • To verify this, 

write 

where = 1 

10 



H6(a) =.2(1-c2) 

= 2c1 

which does not depend on any choice of e = e0 nor any e #- e0 , 

Since H8(a) is constant for all e then T*(x) is an unbiased two

tail test statistic. 

Furthermore T*(x) = lx-l/2j is an unbiased test statistic whose 

11 

significance regions do not include either tail region of the x axis, 

It is a no-tail test statistic, 

Example 2,4 (Wilks· (10)): ··,Consider.a random sample ·of size n from 

N ( (J 2) a µ, population, The hypothesis problem is a composite null 

hypothesis versus a composite alternative hypothesis, 

HO: 
2 

> 0 ]J :::: µo (J 

HA: r' 
2 

0 µ l-l (; > 
0 

Define a test statistic as 

n 

[ + t 2 .] - 2 
T* (t) = 1 

n - 1 

where t has Student's distribution with n - 1 degrees of freedom, 

The density of t is given by 

1 
fn-1 (t) -~ 

For any point 

r1,·_· t2 J- E.. t + n-1 2 

-oo < t < 00 , 



where 

1
-rn OC-p 0) j 

Pe [SL (T*) < Cl] = Pe [ . . . > t ] 
1 1 · S a 

6 = ~n(n-1) (µ~µ)/a 
1 0 1 

and t and u have the following joint density: 

f(t, u) = 

2 t 2 

cf) T e - ~u + ~] 

i n-1 2-rr (n-1). r (2 ) 
-oo < t <"" 

0 < U < GO 

We note the symmetry of the density function about t = 0 for 

any value of u, It follows then that 

J 6 }-t" u)dt +ft" 

0 
i ta --Fu f(t, u)dt f(t, --ftf" £ Ct, u)dt 

6 6 
-t - -- -t vu -t 

a -vu" a a 

,... 6 .ft" 6 

=Jta + -
-rufCt, ,fiT f (t, u)dt u)dt 

t -t a a 

{" ·f" 
6 -ru 

f (t' u)dt £Ct, u)dt 
6 

t -Fu -t 
a a 

ft" f(t, u)dt 

-t 
a 

12 



from which we obtain 

P8 [SL(T*) 
1 

S a].= 1 - P8 [ jT + !! < t ] 
l "VU Cl 

t ] 
a 

= a 

Therefore T*(t) is unbiased for the hypothesis problem. 

Discrete Case 

Example 2.5: Consider n independent BernoulH··trials and the 

hypothesis H0: 8 = 1/2 versus HA: 8 11/2 • The statistic 
n 

T = r: X. is sufficient, and. it has probability function, 
1 J. 

t=0,1, ... ,n 

Finley shows that 

. nl T* (t) = - It - 2 

is an unbiased test statistic for the problem, The probability func-

tion under 

Example 2.6: 

8 ·· is symmetric in t , as is the test statistic, 
0 

Let the random variable X have probability function 

,;-- 2(x + 8) 
(n+Ij (n+W) x· =:O, 1, 

0-::;S<oo 

We wish to show T*(x) = -Ix - n/21 gives an unbiased significance 

test for H0: s = s0 versus HA: 8 # e0 

13 



Let c1.. be the significance level attained by observing either 
J 

x = j or x. = n-j ·, Then 

. 2 j n 
H6(ajJ - . }: .(x+8) + E (x+8) 

(n+l) (n+28) x=O n-j 

14 

2 
j (j+l) . ("+l) J J 

= 2(j+1)e + 2 + n(j+l) -
(n+l) (n+28) 

2 
[ (j+l) (28 + n)] = 

(n+l) (n+28) 

= 
2(j+l) 

Cri+l) 
, · j = O, 1, ,,,, [n/2] 

Since H~ (a} is constant for each achievable a for all .e , then 

it trivially follows ·that T*(x) is unbiased. It should be noted 

that p8 (x) is not symmetric in x nor is it unimodal, 

Furthermore, by letting T*(x) = Ix - ii we· obtain-a no-tail 

unbiased test statistic. 

Example 2, 7: Let x · have probability function 

Pe (x) 
e-s.in e(sin.e)x 

·= x = o, 1, 2, 
x!. 

o < e < 1r 

For the hypothesis problem H0 : e = 7T/2 versus· HA: e;. rr/2 

the test statistic T*(x) = x is unbiased. 

j -sin .e ('sin e)x 
H8(a) = t 

e • ... 

x=O x! 

2 
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f/ 
k 

1 t 
2- - 2 cit 

1 
t .. e = k 

22 r (~) 

where sin e 1 2 and j + 1 
k We can then write =2x , = 2 .•. 

where Fk(2 sin 6) is chi-square distribution function for ~ degrees 

of freedom evaluated at x2: ·= 2 sin e . 

By taking the first derivative with respect·to e , we obtain 

or 

= 0 , wheJl 
7T 

8 = 2 

and by taking the second derivative with respect to 8 . 
J 

d2He(a.) ~ 2 
__ ..,,......_J_ = - Fk" .(2 sin 8) [2 cos 8] 

de 2 

i 
Fk:(2 sin 8)2 sin Ej, 

'IT 
8 = 2 

or 

··, 
There:fore H6* (a.) . J has its minimum at 8 = !.. and T*(x) = x· is an .. 2 , 

unbiased test statistic. We note here that an infinite number of 

achievable a levels is possible; we also note T*{x) is a one-tail 

test statistic for a 2"".sided alternative hypothesis. 
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Example 2.8: Let x be a random variable with probability function 

The test statistic 

Pe (x) 

-sin e( . e)x 1 ... e · · · sin 
2 

x! 

1 

1 
= 2 

- sin e ( . e)x e . sin 

1 
1 -sine 
2 (e + e 

0 
T*(x) = 

' 2 
-(x - 1/2) 9 

+-
4 

is unbiased for the hypothesis problem H0 : e 1T 
=2 

I 
I 

2 
T*(x) 

x = 1,2,3," 0 

x = -1,-2, '° 0 

x = 0 

0 < 8 < 1r 

x = -1,0,J,2 

all other integers, 

versus 

Fig, 2.1: An Unbiased Test Statistic for Ex; 2.?. 

Consider positive integers a and b such that for ~ < 1 , 



1 
-a sin e (sin e)x 00 -sin 8 ; 8)x 

H8 (a) r; e, 
2: 

·e (sin = + 
-00 2(!xln b 2 (x!) 

x' 
-m x 2 Since 2:(e m )/x! = 1 - F (x) with m = 

O n 

F n (x2) the chi-square distribution:, then 

1 2 n 
-2 X , x ' + 1 = - , and 2 

where 1 2 1 2 1/sin 8 = 2 x1 , sin 8 = 2 x2 , and 2a and 2b are the res-

pective degrees of freedom. 

As before we proceed to take first and second derivatives to 

determine if a minimum occurs at 8 = ,r I 2 . 

which equals zerb when 8 ~ n/2 • 

( -, 
+ [2 cos e] 2 F11 . ·. 2 "+ [-2 sin 8] F2b (2 sin 8) 

Zb sin el 

and at 8 = n/2, we have 

17 
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Since F 2a (2) is the. chbsquare. d.ensi ty function for 2a d_egrees of 

freedom evaluated at 2 = .. 2 ., .similarly for, F 2b (2) -. , then F2a (2) x -

F 2b (2) > 0 for all a and . b .. such 2 < 2a < 2b . The test statistic 

T*(x) is defined such that for achievable a< 1· the integers a 

and b satisfy this inequality. 

We note th,.at this example gives a two-tail unbiased test statistic 

with an infinite number of achievable a.' s.. Furthermore) the pro-

bability function is not symmetric in x. 

A brief summary of the important characteristics of the preceding 

examples is in .order. It is hoped some questions will be answered re-

garding the nature of density functions. Pe(x). which admit an unbiased 

test statistic. This summary. is offe-red in the f·orm of a· short list. 

1. Jt is not necessary in either. -the.- continuous- or· discrete 

case that Pe (x) be unimodal in . x ·· or symmetric in x 

(examples 2.3 and 2.6) . 

2. It is possible to have a two-tai:1' ·test statistic based 

x when Pe (x) is not symmetric in: · x:· in the discrete 

case (examples 2.6 and 2. 8). 

3. It is possible to have a one-tailed test··-~stati$tiC when 

the alternative hypothesis .is· two·-sided (8 ·- '# e 0) in 

the discrete case (example 2.7). 

on 

4. It is possible to have a no-tail unbias·ed test statistic 

in botn the continuous and discrete cases (examples 2.3 

and 2.6). 

5, It is possible to have an infinite· number· of achi_evable 

_a.' s in the discrete case ( examples 2. T and 2. 8) . 



6. It is possible ... to have .an unbias.ed test;:statistic when 

the nul 1 hypothesis.:is composite: (exampte 2. 4) . 

19 

The work in the following.chapters will investigate:ilecessary and 

sufficient conditions for unbias.ed tesL,s.tatistics to exist in the 

context of significance testing. 



CHAPTER III 

NECESSARY CONDITIONS FOR UNBIASEDNESS FOR 

FAMILIES WITH STRICT MONOTONE 

LIKELIHOOD RATIO 

When a uniformly most sensitive (UMS) test statistic cannot be 

found for a·hypothesis problem, one may·wish to search for a "best" 

test statistic in a smaller class, One such class is that of the un-

biased test statistics, This chapter investigates necessary conditions 

for test statistics to be unbiased when the density function has mono-

tone likelihood ratio (MLR) or strict monotone likelihood ratio (SMLR) 

in some real-valued statistic;:. An important family of distributions 

which have the latter property is a one-parameter expnnential family 

whose densities are defined by 

P (x) = C(8) eQC9)T(x)h(x) 8 . 

where Q is strictly monotone, The primary goals of this and the 

next chapter are to achieve results applicable to· this family. 

(3.1) 

It is recalled that we shall cons.ider unbiased test statistics 

only in the cases of two-sided alternative hypothesis· (8 4 00) , One 

of _the major questions, then, is whether an unbiased test statistic 

must be two-tail, It was emphasized .in Chapter II the answer to this 

question in g~neral is no, However, we need to explore··the .question 

further for the more interesting density functions. 

20 
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.It is seen from example 2.6 that .a '.one...;t:ai1··unbiased test statis-

tic is possible in the one-parameter exponential ·ca-sEr; "::However, the 

function Q(e) =sine was unimodal in e for O < e < ,r; it was 

not strictly monotone. The first.-theorem shows ·that·a.one ... tail un-

biased test statistic does .not .exist when·· Q·(e} · is· strictly monotone 

in e . 

We fir:st need a lemma close .to that .given by'·Lehinann: 

Le_mma 3. 1: Let Pe (x) belong to a family of densities· on the real 

line with MLR in x. 

i) If 1/J is a monotone Ci:iondecreasing or ·nonincreasing) · func

tion of x , then Ee 1); is .monotone (nondecreasing or non- · 

increasing, respectively) in· e , 

ii) For any e < 8' , the distribution function of· x satisfies 

Fe' (x) ~- F 8 (x) J for all x 

iii) If Pe (x) is SMLR in x J then for e. < e' J 

F '(x) e 
< F (x) 

e 
·for all x 

Proof: Lehmann gives the proof for i) and ii)·. for the· case when 

1/J (x) is nondecreasing. We follow his method·. of proof for·the case 

when 1/J(x) is nonincreasing. 

Let e < 61 and let the .sets A and B-be -defined as 

A = {x: p8 ' (x)/p8 (x) < U and 

B = {x: Pe' (x)/p8 (x) > l} 

Let a= infA 1/)(x) , b = supB 1/)(x) , _then since 1/J is nonincreasing 

' 

. 



in x , a . - b > 0 or b. - a .. < 0 • 

(p P ) d,. + b r ·cp . . p ·e· - .···e ·I-' 'Jn ··.e···- .·e)dµ 
B 

By addin:g ;and subtract~ng: .the integ~~l a£ (Pe I ·-· Pe)dµ . on the· right 

side of the inequality, and conibi,ning· terms- we ··obtain 

· This proves i) . 
\· ' 

Ea ;1> - Ea ,p < (b-1./ (pa' " Pe)dµ 
!JB 

~ o'. 

Now let 1/J (x) = .0 for x > x0· and · 1/J (x) -=· t··· otherwise. 

E61/.i(x) = F6 (x0) which implies F6 ,.(:x) ~ F6 (x} for 6 <: 6' • This 

proves part ii) . 
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For part iii) we assume that p6 (x) is· SMLR in·· x and 1/J (x) is 

nondecreasing and non-constant. It is shown in th·e appendix. that 

Let 1/.i(x) = 0 

= l 

. ~ ; . \ 
I x < x .. - 0 

then . p e I [x > xol > p e [X > xol . which implie_s Fe I (xol < Fe· (xo) .. 

If we now assume a sample of size .one ·ts taken, then we can ._prove 

.the following theorem. 

·· · Theorem 3 .1: Let p 6 (x) be a family of densities ·on°the real line 
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with SMLR in x . There does.,not .exist an unbiased test>sta:tistic 

which is a monotone function .of · x -,for the hypothests ·problem 

H0 : e = e O versus HA: e_ /: e O 

Proof:· The proof is by contradiction, -- Assume::art unbiased test 

statistic T* (x) is a nondecreasing function of x-, · Then for any e , 

H8 (a) = P [SL(T*) s a] e 

- P [T>l"(X) :s; t*] e a 

= p 8 [ x s XO ] 

where we define XO = max{ x] T* (x) ''::.· t ~} ; hem;:e He (a) = F 8 (xo) ~ and 

for e > e0 it follows from lemma 3,l (iii) that 

H*(a) < H*(a) = a 
8 0 

This contradicts the assumption that . ;T* (x) - is unbiased, 

Assume T* (x) is a nonincreasing function of xi. Then for any 

8 ' 

H8(a) = Pe [T-A-,(X) < t*] . - a 

= p 8 [ x > XO ] -

= 1 - P8 [X < x0] 

where x0 = min{xjT*(x) < t;J We next consider the- difference 

when e < e0 , If p8 (x) were continuousin x then 

H*' (a) - H* (a) 
8 0 

< 0 
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which contradicts the unbiasedness.of. T*(X) If · ···(x) is discrete .. Pe 

in x, then 

where x < x · and there exists .no vaiue .·of. · x with'"'posi ti ire· pro-
1 0 

bability such that x1 < x < x0 . Hence 

H*(a) ·· - H* (a.) e o 

< 0 e < e 
0 

again there is a contradiction and the theorem.is pr()ved, 

The following corollary may be stated directly from this theorem: 

Co-ro·liary 3 .1: Let p8 (x) be a family of densities on the real line 

with SMLR in x. For the two-sided hypothesis·problem .there does 

not exist an unbiased one-tail test statistic, -

Thus, it has been shown that fo-r densities· which are SMLR in a 

real statistic x there does not exist a o:rre..;tail.-unbiased signifi-

cance test based on x , This. still does notimply-":we· must have 

two-tail statistics in these cases, even though :thts·ts·suspected to 

be true, It may be possible that there _:exist -multi--''lil.odal test sta-. 

tisitics which are unbiased, but .this has·neither- been· proved or 

disproved. 

Let·· T* (x} be a t_est statist.ic ·for the'··hypothesi·s problem 

HO: e = 80 versus HA: e .;, • 80 where ·:x· has a ·density Pe (x) . If 

R - {x IT* (x) < t*} J then for e f 80 J - a. 

He (a.) = P8 [SL(T*) s a] 



= P8[T* (X) :5 t*] 
a 

r ·-- :~ -Ji p8 (x) dµ (x) 
R 

, p0 (x)dµ (x) • 

Now let r 8(x) = p8(x)/p0(x) 1 and write H8(a) = E0[r8{x)IR] , If 

T*(X) is unbiased, then 

or equivalently 

r 
E0 [r 8 (x) IR] ~ J p0 (X)d·µ(x) ~ which upon 

-'R 

dividing both sides of the inequality by the.right ... hand side gives 

25 

Furthermore, if(3,2) holds then T*(x) is unbiased, This implies that 

(3,2) is a necessary and sufficient condition for. T*(x) to be 

unbiased, Using the notation R for the complement of R j we state 

and prove the following theorem: 

Theorem 3,2: Let r 8 (x) = p8 (x)/p0 (x) Then 

if and only if E0[r8 (X) IT*(X) > t~] : 1 , for every e , 

Proof: 

t*] > 1 
a 



f R re , Po dµ +JR re.' Podµ.,.Jif' re • Po dµ 
= 

E0Jr,s (x:J ] 
= 

-Ji-r · · R · e 

1 -f_ Po 
R 

1 -1 r R e Po 
= 

l -JR Po dµ 

Therefore, E0 [r 9 O{) IT* (X) s t;] > 1 if and only if 

which can be written as 

and the theorem is proved. 

. Po dµ ~1 Po dµ 
R 

Ja p • dµ 
·. R o 

< 1 

' Po dJl 

dµ 

dµ 

or 
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It may be of interest to·study p8 (x) as a function of 8 for 

fixed values of x. Perhaps in doing so some clue can be foµnd as to 

the existence and/or nature of an unbiased test statistic, 

Let p8 (x) be SMLR in x and assume that for fixed x0 , 

p9 (x0) is a unimodal continuous function of 8 . The restriction of 
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continuity is noLnecessary, but it simplifies the discussion with-

out a great loss in application, · We shall also restrict e to be an 

open set on the real line; Then for fixed e0 » there exists e < e 
1 0 

and e2 > e0 such that 

from which we obtain 

r (x) = r 8 (x0) < 1 
el o 2 

Sinc_e · p6 (x) is SMLR in x , then · r 8 (x) 
1 

is strictly decreasing in 

x, and r 8 (x) is strictly increasing in x, 
. 2 

We now prove the fo1lowing theorem: 

Theorem 3,3: Let p8 (x) be SMLR in x ~ and let R be any subset of 

the domain of p8 (x) such that b = sup R is real, If p8 (x) is 

unimodal and continuous·in e at x = b thenthere exists a e 

such that E0[r8(X))xt:R] < l , If the same conditions hold for 

a= inf R the result is identical, 

Proof:· By the previous discussion there exists e2 > e0 such that· 

in R 

r 8 (x) 
2 

, r 8 (x) 
2 

r (b) = c < 1 
82 

is strictly increasing in x. 

< r (b) = c < l 
- 8 2 

This implies 

Therefore, for all 

J re 2 (x) Po (x) dµ (x) 
R - ·.· -

E0[r8 (x)Jxt:R] = --------

2 J Po(x) d~(x) 
R 

x 



< 1 

It follows th-at tf · p (x} is unimodal· and.continuous in e at e 
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a = inf R , then f?r·.· e1 < e0·:· we·,wou-id have re· (a) < l where r 6 (x) 
1 1 

is strictly decreasing in x. Then we obtain the desired result by· 

proc·eding as above • 

This theorem can be used in the following manner, Suppose x 

has a density · p e (x) such' as the binomial, pois son» or normal, and 

we wi.sh to find an unbias·e'd significance test for H0 : e = . e O versus 

Theorem 3,·3 simply tells us we need not consider test 

statistics based on ·x which allow no-tail or one-tail significance-

tests, 

If Pe (x) is unimodal in e · at x = a , denote by e a the 

value of e at which Pe(a) is maximized, Let. R = {xlT*(x) s. t~} 

and let if· be the complement of R , We now 'state and prove the 

following lemma: 

Lema 3. 2: Let·· Pe (x) be SMLR in x ·, and let T* (x) be an unbiased 

test statistic based on x, where 

is unimodal and continuous in ·e at 

i) a = tnf R ' then e < e ·, a 0 

ii) b -· sup R ' then eb ~ 80 

R ~ {xjT~(x) ~ t*} . 
(l 

Proof: The proof is by contrapositive. 

. ' Assume e > 80 then Pe (a) > p0(a) or re J. .. a ' » 
a 

where re (x) is strictly increasing in x . 
a 

If Pe (x) 

(a) = c > 1 
a 
Therefore, for 



all x in -R we· hav.e · r 6_ .. (x) -~ c .. > ,L, .. which implies 

E [r (X)Jxt::R] > 1·. o e a 
biasedness of T*(x) 

Therefore. - e < e.0 • , a --

a 
This is'a contradiction, since .by·un-

we must.have E0 [r8 .(X)l_:iceR] < l, 
a 
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ii) Assume eb < e O , then · r 8 (b) > 1 • where 
b 

ir (x). is.strictly 
eb 

decreasing in x • · Again it follows that E0[r 8 (X) I xe;R] > I , 
b 

which contradicts the hypothesis of unbiasedness. 

· Theorem 3; 4; Let the conditions of lemma 3. 2 hold. If x0 is a 

point' at which· e = ·e0- maximizes·- p (x ) as a function of e , then e o 

Proof: The proof is again by contrapositive. Assume that x > b O I 

and let eb be the maximizing e at x = b . 

which implies r-e (x0) ~ 1 . It follows that 
b 

Since p8 (x) is SMLR in x and x0 >··-h ,· then 

Then Pe (b) ~ p0 (b) , 
b 

which implies re (x) is strictly d·ecreasing and, thus, eb must be 
b 

less than 

x0 :'.: b • 

e 
0 

By lemlila 3.2 (ii) this is a contradiction. Therefore 

Simi1arly it 'can be shown that·_.· x0 ~ a . 

In example 2, 1 it was shown the statistic T*·(t) = tn/~exp [-t/20'~] 
n 

is unbiased, where T = i: X~ It is well kn-own that when µ = 0 , 
1 1 

T/n is the maximum likelihood estimate for 0' 2 . Therefore t 0 = ncr~ 

is the -point at which o:. = cr 0 max:i.mizes p6 (t0J as a function of 
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It is seen that for·every level .of .a(< l) the closed in-

terval [a, b] contains t 0 , 

In example 2, 5 the· statistic T* (:x) = -Jx - n/2 J.. is unbiased. 

The maximum likelihood estimate of 8 in the binomial is x/n . TheTe-

fore, if e O = 1/2 and n · is even, then x0 "" ne O = n/2 is the · 

point at which e = e0 maximizes p8 (x) as a function of e For 

n = 6 and e0 = 1/2 , Theorem 3,4 states that x = 3 will be a point 

in R for all ex< 1 , If n be odd, the application of the theorem 

in this discrete case appears to·fail; for in this case, 

is not an integer and p8 (x0) = 0 , 

x "" n/2 0 

It was shown by Finley that for the family (3,1) a necessary 

condition for unbiasedness is 

(3,2) 

This condition may be written in a form closely resembling that given 

by Lehmann , 

where R = {xjT*[T(X)] :: t~} , We exhibit an example to show this 

condition is not sufficient, 

(3, 3) 

Consider a sample of size n to be taken from a N(µ, 1) popu

lation, Let the hypothesis problem be H0: 1-i = 0 versus HA: ll # 0 

By letting T(x) = :X, it is seen for example 2,2 that the unbiased 

. - ' -2 test statistic T* (x) = exp[- nx /2] satisfies (3, 3), We shall show 

that the bimodal statistic 

T' (x) 
. -2 

= x 
-'2 

-x /2 
e 



also satisfies (3 ,.3) ~ but it is not unbiased, 

t' a 

Fig, 3,1 

By the symmetry of T' (x) it is clear that 

0 

-x 

thus T' (x) satisfies the necessary condition, To investigate its 

unbias·edness we examine W (a) and its derivative with respee;t to 
;cl 

ll , With c. 1 and c 2 defined in figure 3 ., 1 , 

H' (aJ :µ.. 

2 

l e 

ee, \ (i) e 
0 

l ''2 
n 1

112 exp -[n(x-JJ,) 2/2Jdx 
(2:r) 

31 



It is then straightforward to show 

dH1 (Ol)/2 l 1/2 
2 

-nc/2 .. µ n [e 
j ].l 

::: 

(2,r) 1/2 dµ 
= 0 

The derivative does not equal zero at µ = 0 since 

e 

2 -nc /2 
2 

therefore T' (x) cannot be unbiased, 

2 
--nc1/2 

e ] 

One can see at first glance that T' (x) is·not a "good" test 

-
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statistic; for one could observe a value of x -O and obtain a signi-

ficance level of a·= 0 , A statistic such as this would be useless. 



CHAPTER IV 

SUFFICIENT CONDITIONS FOR UNBIASED AND UMSU 

TEST STATISTICS IN THE ONE-PARAMETER 

.. EXPONENTIAL FAMILY 

The preceding chapter gave several necessary conditions for the 

existence of an unbiased test statistic involving densities with strict 

monotone likelihood ratio, One of these necessary conditions will now 

be used in producing a sufficient condition for a test statistic to 

be U1'b:iiased, Attention will be mainly restricted to the one-parameter 

I exponential family of densities, 

We first state and prove, in the context of significance testing~ 

a portion of Lehmann's generalization of the fundamental lemma, 

Theorem 4,1: Let f 1 , , , , ; f 1 be real-valued functions on a Eucli.,, m+ 

dean space X, , For a hypothesis problem let T* (x) · be a test 

statistic, and let R = {xjTt(x) < t*} , 
- Cl 

Assume there exists a T*(x) 

such that for constants 0 0 -"' ) c m 

i - 1, , , ,m 

Finally, let ( be the set of all such test statistics which satisfy 

(4,1), A sufficient condition for a number oft' to maximize JR fm+ldµ 

is the existence of constants 0 0 0 ,SI k 
m 

such that 

33 
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m 
. fm+l (x) 2: ~· k1 f i (x) . ,. 

m 
<Ek. f.{x) 

l l l 
otherwise (4, 2) 

Proof: .. Assume there exists T* (x) e (; such that (4, 2) holds, Let 

T' (x) be any other t·est statistic belonging to t' ~ where 

R' = {:x:] T' (x) ~ t 1 } • Furthermore, define ·. . . a 

Then 

J (IR -
m 

- E k. f. )dµ 
1 l 1 

and 

m ei+ (IR - IR,)O'm+l c I ki fi)d/+ f s- (IR -, IR 1 )(f~+l - ~ ki fi)dµ 

m +. .. 
When .xe:S ·~ fm+l(x) >Ek. f.(x); similarly~ when 

m - 1. i i 

fm+l (x) < E k. f.. (x) , 
1 J. l 

Therefore, we have that 

Since both T* (x) and T' (x) . belong . to g , 

xe:S 

or· 



Therefore 

(R f d·µ JR m+l 

as was to be proved, 

= Co - C. 
1 l 

= 0 i - l~ ...• m 

f · du m+l · 

Assume that fmtl(x) = p8(x) for ec:eA then 
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= H* (a) 
8 

( 4, 3) 

Therefore, if T* (x) belongs to (; and maximizes ( 4, 3) for all achiev

able a, T*(x) is moSt sensitive among those statistics in f;7 If 

T* (x) is most sensitive for all e in e then T*(x) would be 
A 

termed UMS in : , 

Consider the hypothesis problem H0 : 8 = e0 versus HA: 8 '# e0 

when X· has the one-parameter exponential density (3,1), Let t' 

be the class of all test statistics T* (x) which satisfy 

i) PO [T* (x) < t*J = I 
o; J P0,{x).d.u Cx) = · a , 

R 

and 



= o: , E [T (x) ] 
0 
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Condition i) requires that all test statistics in 6° must he comparable" 

Condition ii) states that all test statistics in ·c satisfy a necessary 

condition for T*(x) to be unbiased for this family of densities, 

For m=2 let f ) 1 a ' 

and c = Cl ' 2 
t (x) is the mathematical notation for 

the statistic T(x) " It is seen then that a sufficient condition for 

a test statistic T* (x) in {; to be uniformly most sensitive is that 

for every e in eA there exists constants k1(e, a) and k2(e., 

such that 

p6 (x) > k1 · p0 (x) + k 2 , t (x)p0 (x) (4, 4) 

where the values of k1 and k2 may depend on the values of e and 

a" and R = {xJ'T*(x) :.: t*} 
a 

Define U to be a set of comparable unbiased test statistics for 

this hypothesis problem. Clearly i C/.L is a subset of tP , Assume U 

is not·empty, that is, there exists at least one unbiased test statis-

tic for the problem, If T* (x) is UMS among those in f , then it 

necessarily follows that T* (x) is unbiased, for if rt (x)c::. CUC t/ 

then 

H*(o:) > H! (aJ· ' > -tx e c::8A e - e -

We can summarize the preceding paragraph as a.sufficient condition 

for unbiasedness: 



Let U and b be defined as above, If 

· U is n:ot empty, and . T* (x). is UMS in 

{;, then: -- T*(x} is unbiased,. and; hence 

UMSU, 
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This sufficient condition appears to be more academic than useful 

in significance ·testing, After all I one of our most difficult problems 

is determining whether·or n:ot an unbiased test statistic exists, It 

should be noted that in the Neyman-Pearson approach to hypothesis 

testing the conditional clause "lf?l is not empty11 would have no 

meaning, for there would always exist the trivial unbiased test stat-

istic T*(x) = a . 

The next theorem is intended to.be more useful in application, 

We first must define what is meant by a function being concave upwards, 

Definition 4.1: Let 

and consider ys(O, 1) 

x 
1 

and x2 

such that 

Then f(x) is concave upwards if 

be points at which f(x) is defined, 

f(x) is defined at 

Note that r 8 (:x) - p6 (:x)/p0 (x) for the density (3.1) satisfies 

this definition. 

Theorem 4,2: For the hypothesis problem H0: 8 = e0 versus 

HA: e I e0 , let p6 (x) be a density such that r 8 (x) be concave up

wards in T(x) for e '/:: e0 , Assume a test statistic T*(x) is such 

that 

i) T* (x) · = F [T{x)] , where F is unimodal in 

T(x) , and 
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Then T*(x} - F[T(x)] is a UMSU test statistic for·the hypothesis 

problem. 

Proof: Let t be the set of test statistics which satisfy i) and ii), 

We first show that · T*(x) · is UMS among those in (; . 

By hypothesis we may write 

R = {x I T*{x.) ·~ t*} 
a 

- {xjF[T.(x)] :s: t~} 

= {x I T(x) s t 1lU {x J T(x) :: t 2} 

Also byhypothesis we have 

J,.. p0 (x)dµ(x);:::ia and 

R 

IT(x) p (x)d·µ.(x) =a, E [t(xJ] 
·. 0 · 0 

Therefore we may apply Theorem· ·4, 1 which implies T* (x) is most 

sensitive if thf;:re exists constants k1 (e, a) and k2 (e, a) such 

that 

xe:::R 

xe:R 

or 

Consider the curve r 8 (x} graphed as a function of the real-,valued 

t{x); it is concave upwards by hypothesis, A straight line can be 

passed through the coordinates (tp r 8 (t1)) and (t2, r 8 (t2)) where 

r 8(ti) is understood to be the value of r 9 evaluated at 



T(x) = t., i = 1, 2 , (See.Fig, 4.ll, Let.the.equation of this 
1 . 
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straight line be y '= a + bt (x) · By th·e concavity .of r 6 (x) , we have 

- · -re-(x) > a + bt (x) . , xe:R 

< a + bt (x) otherwise 

Let_ k1 (e, a)= a and k2 (e, a)= b , Since this can-be done for each 

e in 8 A and all achievable a , then T* (x) is UMS in {} , 

We now show · T* (x} · is unbiased, In the preceding--argument we 

found constants k1 (6, a) and· k2(e ~· er) such that 

Define 8* = { eJk1 (e, a) + k2 (e, a) E0 [T(x)IT* :; t~] ?.: 1 } , and 

8-8* = { e jk1 (e, a) + k2 (e, a) E0 [r(x) Jr :s t~l < 1 } . Then for 

any e in 8* , 

f r 6 (x) p0{i)d:,;. (~) 
R 

t*] = -------
Cl, . k p0(x) dv (~) 

f [k 1 +k2 t (x) ]p0(x.) dµ (x) 

R 
~~~~~~~~~~~-

~ 1 

t*] 
a 

Therefore, for any 8e:8* , a sufficient condition for·· T'* (x) to be 

unbiased is satisfied, 

Consider e in G-8* ; then 



L [k1+k2 t(x)jp0(x)dµ 

Ecf. r 8 (x) IT* > .. t;f ··-:· R· ·. · .. : · /: ... ::.. · · · 

k Po(x)dµ 

<. 1 

t*] 
(l 

Therefore, by Theorem 3. 2, a sufficient condition for T*-Cx) to be 
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· unbiased is satisfied for all · ee:e-e* . The statistic is then- unbiased 

and, in conjunction with the first part of the .proof·, it is UMSU. 

tt is clear that a density p8 (x) from the·one-,parameter exponen.,. 

tial family satisfies .the initial conditions .of Theorem 4.2, where 

T(x)· is sufficient for e , This theorem imp;ies that, in our search 

for UMSU tes:t· statistics· for this family, it is sufficient t'o consider 

only unimodal functions of the sufficient· statistic. The use of the · 

sufficient statistic has not been proved necessary; nor has the use of 

a unimodal·function of any statistic been proved necessary~ However, 

it is still suspected .. by this writer that both c·ondi tions are necessary, 

at least in r1regular" cases .. 

It has been mentioned previou~ly that the:·real...;.valued statistic 

T(x) in the exponential density has a density whic:h also belongs to 

the one-parame~·er exponential family. There may exist .other stati~tics 

Y (x) which are not sufficient fOJ:'. 8 , but which also have d·ensi ties . 

in this family. · For example in the normal. case (example 2, 1) when 

µ = 0 and e0 = cr~, the density for 
n 

T = EX~ 
l 1 

is 



and the density for y1 

and the density for y 2 

-2 = nx is 

(1/2)-1 - (y / 2cr~) 
y1 .e 

n - 2 
- . I (x. -x) 

1 l 
is 

( (n-1)/2) - 1 
Y2· . 

( 2cr~) ((n-1)/2) 
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(4. 6) 

(4. 7) 

( 4. 8) 

All three densities are of the expon.ential family involving Q(a 2) -

2 
-1/ (2cr ) , but only·· T 2 is sufficient for a 

0 

We now state and prove the following: 

Theorem 4. 3: For the hypothesis problem H0 : .6 = 8 0 versus 

~: 6 'f 6 0 ; let T be a real-valued statistic such that a) p 8 (t) 

belongs to the one-parameter exponential family b)-: · T*··(t) is unimodal 

in t , c) E [T] 
0 

for every achievable a; then 

i) T*(t) is a UMSU test statistic among all test statistics 

based on t, and 

ii) if T is sufficient for 6 , then T*(t) is UMSU among all 

test statistics. 

Proof: From a) a necessary· condition for unbiasedness of a test 



statistic T* · based on T is given by c), By using the density 

p8 (t) in place of p8 (x) in theorems 4,1 and 4,2 and letting 

R = {xjT*(t) :: t*} , one can argue i) in almost exactly the same 
Cl 

manner as that used in the two theorems,· Therefore, for any· real-

valued statistic T satisfying a), it follows that any T* (t) 

satisfying b) and c) is UMSU among all test statistics based on T, 

Part i) is proved, 

If T is sufficient for e , then there· exists a function 

g8[t (x)] which depends on x ·· only through "the statistic T and 

a function h(x) such that 

In our·case, however, 

p (x) = C(8) /Cx)Q(e) h(x) 
e 

Therefore, if T is sufficient then it must oc'cur as th·e statistic 

T (x) in the one-parameter exponential joint density, · Theorem 4, 2 

gives T* [T (x)] = T* (t) as ·uMSU. and the theorem is proved, 

By applying this theorem to the ·statistics 
.. -2 

Y =·nx 1 . , 
n 

Y · = · r (X . -· X) 2 
2 l 1 

• and 
2 

T "" r X . 
1 

of the densities 4, 7, 4, 8, and 4, 6 

respectively, we have 

T*' (y ) 
1 

= y (3/2) - . 1 
l 

is UMSU among all test statistics based on 

T*(y) a Y[(n+l)/2] - l 
2 2 

is UMSU among all test statistics based on y2 ·; and 

- (t/20~) 
T* (t) = tn/ 2 e 
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n -~ 
is UMSU amo_ng all test statistics since T = .:r x... is .sufficient for 

1 J. 
2 a0 • The test statistics T*(y1) and· T*(y2J we-re obtained in the 

same mannel' as· Finley obtained T*(t) . 

It may be of interest to -the reader to :.compare. the statistics 

T and Y1 . Suppos·e ·a-·rando:iir sample of size·.6-.is· taken from··a· normal 

population with mean O and - cr 2 unknown? L~t·· a~ -.:i 2· under H0 . 

2 From 1the sample, T = :E X. is computed to be·,. say, 15, 6 . By using 
J. 

the chi-square density with: 6 degrees of freedom, one can compute 

2 Y1 t 
·· SL = .65 . At cr = 1, He. (a) = .69 and He (a) = .84 Therefore 

we see, as expected, the probability of obtaining a SL less than or 
. .. 2 . . 

equal to· -. 65 when a = 1 is greater when using the sufficient 

statistic. Note tha1;· it would be possible for a sample with x = 0 

2 and s =·2 to give· a significance level of a.=· O when using the 

statistic Y1 • 

According to the results given in . this chapter it may be con

cluded that the test statistics propos·ed by· Finley in examples 2~ 1 

and 2;4 are indeed UMSU. The test statisti-c in example 2.2·1s also 

UMSU . Therefore we now ·have· UMSU test statistics for the ·binomial 

when p = 1/2 the· normal .µ = µ (cr 2 known)· and the normal Q I . . . Q . I 

· a2 = a~ (µ known). The next step may naturally seem to be. the normal 

case w~en both·parametersare unknown. This is the purpose of the 

next· chapter. 



t* a 

Fig. 4. l Normal case: H0 : c "" a O vs::~: HA-::: sr f:. o-0 (µ "" 0) ; · 

T*(t) is chi"'."square·density with ·n + 2 df. 
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CHAPTER V 

TEST STATISTICS FOR PARAMETERS OF NORMAL 

DISTRIBUTION IN COMPOSITE NULL HYPOTHESES 

Di$cussion of significance testing previously has been restricted 

to simp1e hypotheses conc~r:iling only one parameter; This, of course~ 

is due to therequirement that the distribution of a SL be known 

exactly under H0 , There are still several important null hypotheses 

in statistics which are composite. One of these is Student's problem, 

In this chapter we will consider Student I s problem in the context of 

significance testing, More generally, we will examine hypotheses in

volving the two parameters of the normal distribution, 

Hypothesis problems considered in this chapter are 

a) HO: -· 0 
2 

0 (5, 2) µ cr > 

HA: 'µ > 0 
2 cr > 0 

b) HO: µ ::, 0 
2 

0 > 0 

HA: 0 
2 

0 µ < cr > 

c) HO: ]1 = 0 
2 cr > 0 

HA: 'f 0 
2 

0 µ cr > 

d) HO: cr = ao -00 < µ < Q(J 

HA: cr > CJ'.o , -00 < µ < CCl 
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e) HO: cr ::: cr O -00 < µ < 00 

HA: (j < cro _,x, < µ < 00 

f) HO: (j ::: cro ~oo < Ji < 00 

HA: cr 'F cro -00 < j.i < <X; 

The general approach to the problems in Chapters III and IV has 

been parallel to Neyman-Pearson theory as treated by Lehmann. The 

same.is true in this chapter, except that no attempt is made to give 

necessary and sufficient conditions for significance testing in the 

multiparameter case. The main objective here is·to· find test statis-

tics for the hypothesis problems in (5.2) with desirable properties. 

Suppose T* (x) and T' (x) are two test statistics for one of 

the.above hypothesis problems. Let R·= {xJTt(x) ~ t*} and 
o; 

S = {x]T' (x) ~· t'} . Note for any statistic 
a 

t. and any 2 e = (µ ~ cr ) , 

H* (a) "" P [SL{T*) ,• a] 
e e . C; 

"" Ee[IR(x)] 

- Ee [Ee [IR (x) l t] J 

"' Ee[Pe[SL{T*) S a J tJJ 

If P6[sL(T*) :: ajt] ;;;: P6[SL(T') -s aJt] for every value of t ,_for 

every achievable o., and a11 8r:0 A, then T* (x) would be UMS, 

How can such a test statistic T*(x) be found? For definiteness 

and clarity, let e0 be the set of e1s corresponding to H0 of 

5.2a), Suppose the statistic ·t 
2 is sufficient for o under H0 , 

and consider the conditional sample space for a fixed value of t , 

46 
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It may be possible to find a ·conditional t:est statisttc·:.on this" space· 

which is UMS· for the hypothesis problem.· .. in·'·othe.r words, ·we now examine 

the hypothesis problem--un- the-·conditional· sp-a-c:e .. ra:ther ·than on the un-. 

conditional sample space. ·The di'stribution· of the conditional test 

statistic· may or may nut depend·.on- · t for &e:0 · · • ' 0 If· it should happen 

that the · distribution· under H ·.- does not d·epend oh t , then the 
0 

conditional statistic has a distribution which does not depend on c/ 

nor·· t · for ee:e 0 • Therefore, the distribution of this statistic is 

exactly known under H0 , so it satisfies the definition of a test 

statistic. Since· it is UMS for each value of t it is UMS for the 

hypothesis problem. 

To briefly summarize, the search is for a test statistic T*(x) 

such that for any · T' (x) 

for each value of the sufficient statistic t , and 

= a a.e.t. 

8e:0 
A 

The search will be initiated in the conditiona1 sampl'e space for a 

fixed but arbitrary t , 

UMS Tes.t Statistics for HA: µ > O 

and HA: µ < 0 , ri unknown 

Consider the hypothesis·problem 5.2,a), For mathematical 

convenience, we make an orthogonal· transformation from the sample 

(5. 3) 

(SA) 

space X to a new space ·<?.j . In matrix notation, the transformation is 



48 

defined to be 

Y = AX 

where x is the nx1·· column Vector of the. X, ,. y is the nxl column 

vector of the y. , i = l, 0 (II O !) n and the 
1 ' 

1 1 1 1 
,Pf Fn iln ,jff 

1 -1 
0 0 if' -rt 

A 1 1 -2 
0 = -16 -v1r- 15'" 

1 1 

-Jn (n-1) 

The joint· density of the y. 's is then 
l. 

1 

nxn· matrix A is 

1 l 
,rn -nr 

0 0 

0 0 

l · - (n-1) 

~) 'fu(n-1) 

1 

and some interesting relationships between the x's and the y' s are 
i-1 
r X, - (i-l)X, 

a) y 1 = in x , y, - j =1 J . . · 1 i ·- 2,,,, ~n 
1 

b) 

c) 

d) 

-Ji (i-1) (5 0 5) 

E (yl) = n µ , E (y.) = 0 .. i = 2. 0 0 I) ) n • 1 

n 
2 

n 
2 

n 
2 

n 
- 2 

i: Yi - I: X; I Yi = r; (x, -x) 
l 1 

:J. 2 l 
1 

the y. 1 s are statistically independent with variance 
1 

2 
a , . and 
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e) the statistic· t = is a sufficient and 

complete statistic When µ = 0 • 

The transformation just defined is a· one-to;.;one mapping from the 

· original sample space ~ to the, 1 space. · A hypothesis ·problem about 

the paramet·ers for the~ space·is equivalent to the problem in the new 

2 
cr in both cases, space since the parameters are· µ and 

n 2 
Since t = I y. is sufficient for 

1 1 
e under H0 , we are now in-

terested in finding the conditional distribution of the y. 's 
l. 

this choice of t . To do this we make the transformation 
n 

given 

y = Y1 'Y2 = Y2 ' ... , Yn-1· = Yn-1 'and 

value of the Jacobian is 

- 2 
t '"' 2.: y .. 

l 1 
The absolute 

)J) 1 = (-)Ct -2 

n-1 
-~ 2)-1/2 Ly. 

J. 
1 

and the conditional density is given by 

= 

f e CY1, . , . ·,-, Y:n:~1' t) 

Xe (t) 

exp - ~[ (y1--ln µ) 2 + t - yiJ 

n-l 2 1/2 
I y.] Xe' (t) 
1 1 

where x8(t) is·the density for-the non-central chi-square 

distribution with n degrees of freedom and noncentrality parameter 

2 ( 2 
:>,_ = nµ I 2cr) 

On the conditional space consider the composite null hypothesis 

versus a simple alternative~ 



Ii0 : µ == o a2 > 0 

HA: µ = µl (>()) 
2 2 

a = al 

By the sufficiency of t for e in · e0 , the·.conditiona1- density of 

2 the · y. 's ·· does not·· depend · on a 
]. 

Therefore·, .o:h .. this· conditional 

space H0 is in reality a simple· hypothesis;·· For· this case of a 

simple· hypothesis·· versus a simple alternative,· th-e· Neyman-Pearson 

so 

lemma for significanc·e· testing gives the most s·ensitive t·est statistic 

to be the likelihoo'd ratio statistic ... This would be 

LR(· It)= 
go (yl, ... _, y n'-11 t) 

ge (yl, "·' >"n-1 lt) 
1 

Let. Q, be the value of the conditional likelihood ratio-stat-
a. 

is tic such that· 

Since LR(· It) is the most sensitive test·statistic· on this conditional· 

space among all comparable test statistics, then. 

for any other test Statistic S* on the conditional space. 

For this simple alternative· we check to see· if the distribution 

of LR ( · J t) depends on · t under tt0· • If it d·oes not, then LR ( · J t) 

will give· a most sensitive test statistic for-- the· hypothesis problem. 

Tf ;· in'. addition, the distribution under a0 does not· depend on the. 

· choice of e 1 e:8 A , then the statistic will be UMS. 

It is·easy.to show 



LR(· It) 

2 
- [ ('{fiµi/crl)' Y1J 

=e 

and it follows that for any e , 

P 8 [ LR (, I t) < 

2/ 2 nµ• 2cf. · 1 - 1 
e 

Xe (t) 
1 

Xr, (t) 
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(5, 6) 

when 11 1 > 0 . When 8EEY 
0 

this probability is equal to a . 

It is seen from (5;6) that LR(· It)· has a conditional distribu-

tion which does not dep· end on the choice of e 
1 in BA, therefore 

the conditional statistic LR( 0 It) isUMS on the conditional space, 

The equation also implies the statistic ·s = -y1 is UMS on the con

ditional space, but it will not do for a test statistic because its 

distribution is not exactly known under H0 , 

Consider the conditional distribution of y1 given t , We 

recall that this is the distribution of the sample mean (apart from a 

constant) given the uncorrected -swn of squares, It can be shown that 

this density is given by 

(-2. _ 2)_."'.1/2 _ -- :rrcr _ e 

2 
(yl_-fnµ) 

202 t(_;. 2)-'3/2 -._ 
. - Y-i -

2 

-t:) ~ 
e 

(202) (n-1)/2 · r t-1) , x, (t) 
2 8 

(5 0 7) 



By making the change of variable 1/2 z "' y /t ·· , (5. 7) can be written 

as a density h8 (z]t) with the range on z being the open interval 

( -1, l) . Therefore we have 
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(S. 8) 

When ese 
0 

it follows from (5. 7) 

h0 (z It) = h0 (z) 

r CI) (l-z2) Cn-3) /2 
, -1 ·;., z < l 

which does not depend on t . Therefore, for µ = 0 the density of 

1/2 2 z =·y1/t · does not depend on a nor t . This suggests letting 

our test statistic be 

S* (y) 
-y 

1 
- tl/2 

where 
n 

t -, 2 = 1 y. 
1 J. 

It satisfies the condition that its distribution be known exactly under 

H0 , and by 5.8) it is UMS for the hypothesis problem 5.2.a). 

Furthermore, since 

then 

Y1 

n 
I("' 2), 1/2 

Y1. L, y, . 
2 1 --------

u ::::------ say, 



P [SL{S*) 
0 

< a] =; p ofr i.Jtl/2 ~ c ] a 

r u ~j' 
= Pot (l+u'2)172::: co; 
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/··c. 2)112 where u is define above, Since u 1 +u · · · is a monotone function 

of · u , we may write 

The statistic u ·has Student's distribution with n'-1 degrees of 

freedom" We may now Say a UMS test statistic for 5" 2a) is given by· 

T* (y) 
-y 

1 

or in the ;ltspace, a UMS test statistic is· 

T* (x) 

It is clear that if µ 1 < 0 then the inequality in 5,6) would 

be ·reversed, It follows that a UMS test statistic for 5,2,b) would 

be given by 

T*(x) = 

For the hypothesis problem 5,2oc) we refer to the argument p:resen-

ted by Finley for the two-sided alternative hypotheses HA:· e ~ e0 in 

one parameter, He shows that a UMS test statistic for that problem 



does·not ·exist. - His argument· a1str applies·to 5 .. 2 .. :c); so·it can be 

stated that· no- UMS test· statistic exists for H(): 1 . .r :at O , versus 

2 
HA: µ -/: 0 , a -- unknown. - The search for·a UMS test statistic in the 

smaller class of unbiased test statistics· is carried out in the next -

section. 

2 - UMSU Test Statistic for HA: - µ "f- 0 , o Unknown 
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It was pointed· out in the p:r·eceding· section that· a UMS test stat;.,. 

istic'for the hypothesis problem 

,....2 0 
v > 

2 
(j - > 0 

does not exist. In this section the rest'I'iction- of· unbiasedness is 

added to the test statistics, and the .existence OT nonexistence of a 

UMSU test statistic is investigated. 

It is again mathematically easier· to work in the -~ space defined 

in the preceding section. - The plan of attack in obtaining a test 

statistic is essentially the same as <befor-e; except·forthe restriction 

of unbiasedness. We first go to the cond'i tional space given the suffi-

cient statistic to look· for a test statistic· _which is UMSD for each 

va.1ue of t . In symbols, we seek a statistic T* (y) such that for 

each value -of - t and any unbiased test statistic T' (y) , 

Pe[T*(y) $ t~lt] ~ Pe[T' (y) ~ t&Jt) ::: Ci ' -

when 

"'a a.e.t. 



It then foll'ows that 

which im:pli.es T*{y)· is· a UMSU iest·.stat:i,stic. 

ee:e 
A 
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Let S* (·It) be a test statistic _derived· on· the·-:condi tional space 
- n 

for· a ·fixed --t· ,--·and · iet Rt =·{YI S* C· J t) ~ s~ , t = r Yil Then we 
-· .. 1 

have 

P0 [S*(;Jt)_ss~ltJ=a and_ 

Since it is desired to impose the restriction that our test· stat-· 

istic--be unbias·ed··on· this· conditional· space, .then·_.fur each cr2 we must 

··It can be shown that 

'clH6{aJt) 

d µ 

.. __ .-- -~:· :: :a~;.ca It)_ 

d µ 
= 0 

µ = 0 

where K(e, t) is defined at·µ= .o , then this implies we must have 



for unbiasedness of S* (·It) , 

On the conditional spa-ce ·consider two ·conditions- ofi'·the test 

statistics, 

ii)J y1£0 (yl' .. ,, yn_ift)dy1 , .•. , dyn-l • a 

Rt 

and 

Restriction i) -just states that only comparable test statistics are 

considered; ii) gives a necessary condition for· S*(· It) to be un-

biased in the conditional space. 

Let · t\ be the set of all test· statistics which satisfy the 

necessary conditions i) and ii). For fixed t , we attempt to apply 
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the theorems of' Chapter IV to the conditional spa·ce, · A sufficient con-

dition for S*(,jt) to be UMS among those in at is that 
·.: .. (\· 

there exis.t 

constants kl (e ,a, t) and k2 (e,a,t) such that 

k1 + k2 Y{·., 

or 

(5.9) 

where ei:::eA, 

Let S* ( 0 j t) ""' F[u (y)] where u (y) = y1 · for fixed t- , Then 

since Rt = {y]F(y1) < fa , t = f yf} ; and lett:ingR{= {yrfyt~tJ , it 

follows that 
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_ r y [ f O (y l' t) 1.· 
J R i 1 L x I (t)-J dyl' 

t e 

Condition ii) now·can be viewed as·requiring the conditional expectation 

of y 1 over the significance region- to· be equa1 to zero when the 

statistic is based on y1 . 

Observe now the symmetry·· of the conditiona'l density· of y 1 about 

(or equivalently, when J..: =· O) ' 

· 2 (n-3)/2 

r (~0 .[1 - · :iJ · 1/2 1/2 -t < y < t 
1 

If one choses S*(· JtJ = F[u(y)] = (1 - yf/t) (n- 3)/Z , then 

Rt = {yr: c~ 'S I y 1 I ':: t 1/ 2} is a two-tail region- symmetric· about . 

y i = 0 It is clear that for this choice of · · S* (, It) both conditions 

i) and ii) are satisfied. Therefore. S* (·It) is a member of at 

and it is a unimodal function of y . 1 



s* 
a 

-tl/2_ c 
a 0 

y 
1/2 l 

c t 
a 
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Fig 5,1 UMSU Conditional Test Statistic S*(" jt) 

From inequality (5 .. 9) it is seen that f 6 (, jt)/f0 (, It) is c.oncave 

upwards in y for fixed t , Since this is true, and since s~ l" lt) 
1 

is unimodal in Y then appH cation of Theorem 4 ,, 2 on the conditional l ~ 

space gives S* ( It) ,,, (1 Yilt) (n- 3)/ 2 to be a UMSU conditional 

test statistic, 

The distribution of th:is test statistic for arbit:r·ary 6 is given 

by 

p [S"(·· it' () .. I : J s*it) • Pe(IY1 1 ~ c~jt] 
tx - \.h 

- P [ I Yi_:.[··.· . ca '1' ~l 
(J 1/2 ' :.. 1/2 :J t ' t 

,,. P.[lzl ;:; z It] 
t! · Ct 

1/ 2 is discussed in the preceding section. Therefore 

p IS*(· It) s*l't] ~ P ['JUI. ~ u !1 t]. 
- Q 9 - a 



where u has Student's distribution with n..,L degrees· of freedom. 

Since the distribution ·of u is indep·endent·:of both. t ·and 2 cr 
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for ese0 ·, then this ·:bnplies :a statistic .. based .on ·· U'. - which' allows all 

a will satisfy the requirements of a test statistic· .for the· hypothesis 

problem. Furthermorel> the above· results sta:te that if the statistic 

is unimodal and symmetric about u =- 0 , then the" statistic will be 

UMSU for the problem. 

The density for Student·1s distribution fur n-1 degrees of 

freedom is 

If we let 

f l(u} = l 
n- ../rr (n-1) 

r c!!.2) 
--- · [1 + u 2 I (n-1) ]-n/2 

1'(n-1)·. 
-' 2 

T* (y) = [ 1 + u2/ (ri-1) ]-n/2 Y1 
u .. ------

(~ y~) 1/2 
2 ]. 

then T*(y) is a UMSU test statistic for the hypothesis problem 

5.2.c). 

UMS Test Statistic For HA: a > c0 , 

HA: c < cr0 When 11 ls Unknown 

The purpose of this section is to find a UMS test statistic for 

hypothesis problems 5. 2, d) and 5, 2; e). There will be no need to make 

a transformation on the·~ spac·e in this and the following section, 

The procedure is again the same as in the two preceding sections, The 

statistic X is sufficient for 8 when 6i:::e0 ; hence the search for 

a test statistic on the conditional space can be undertaken since the 

conditional density under H0 is independent of µ. The goal is to 

find a test statistic T*(x) such that for any test statistic T 1 
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P8·[SL(T*) .< O\ltl •>· .p [SL(T1) $ aJt] ee:e - - e A 

for each value of t ' when 

P [SL (T*) < od t] = P0 [SL(T 1) .•$ alt] 
0 

= a a,e.t. 

For fixed t = x, consider the following- composite null hypothesis 

and simple alternative hypothesis· in· the redtrced space: 

The most sensitive test statistic for this problem in the conditional 

space is the likelihood ratio statistic, 

For arbitrary 6 , 

. fo{xF . , . , xn-1 lxJ 
LR(· j:x) = ------

x 1 ix) n-

. . n 
· 2 - 2 

exp· (-l/2cr ):I(x.-x) 
.fe(x1,····,xn-1ii)· .. · . 1 i 

1/2 (2. 2) .cn-1)/2 n 'll'cr . 

and 

(S.10) 

Therefore, the most sensitive conditional statistic LR(• Ji) is UMS 

on the conditional space, and its distribution is the same as that of 
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a statistic based on the c,orrected .sum· of s,quares •.. Our next -step· would 

be· to find the cnnditional densityfunction·cf the corrected sum of 

squares given the sampte me-an, but they are statistically· independent 

in this case.· Therefore we may· write: £01- -arbitrary El 

P 6 [LR C· Ii) :::: 2 a Ix] 
n 

= PA[:Z 
v 1 

= P [V > v] e - a 

where · v has the chi-square distrib'Ution with n:-el. degrees of 

freedom, 

It fol'lows that a· UMS test statistic for hypothesis problem 

5,2,d) is given by 
n 

T* (:x) 

'Z 2 -i .(xi - ?) 
:=. ' . ~ 

and a UMS test statistic for 5.2,e) is given by 

n 
'E (x - x) 2 

T*(x) ·.:._1_·_'"""1_' ---

UMSU Test Statistic For HA: cr l c- 0 , 11 Unknown 

It has been discussed that a UMS significance test is not possible 

for the hypothesis problem 

... ,,. -~ ( 00 -~-'i ·i-l ,:, - .-; 



As in the third section of this chapter·, we shaJl add· the restriction 

of unbiasedness and look for a UMS test statistic ,in that class· of 

statistics, This investigation will be initiated in- the conditional 

space of Jt for fixed x , where it is .hoped .tn find a test statistic 

that is UMSU for each value of x , 
Let x = t , and let S*(· Jt) be a conditional test statistic. 

n 
Define x.,/n} , and consider 

l. 

,. , , , dx 1 n-

In order for S*(· It) to be unbiased on the conditional space 
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it must be true that H6(ajtj) is a: minimum at c-. cr0 , After sub

stituting the conditional density found in (5, 10), one can easily show 

8He (a j t) 

d a2 

= 

n 
· I (x, -x) 2 

(n-1} ·+ 1 1 · 

'' 2 ,,' 2 2 
20 ·• 2 (cr ) . 

f ( -)2 (n-l)-1 ~ xi-x . 

Eel- 2(c/)2 2 
2cr -f 

e 

IR 
t. 

n - 2 
...,f (x, -x) 

' 1 1. 

202 

I t} 

dx1 • . , , , dx 1 n- . 

Setting this equal to zero at cr = 0 0 implies a necessary condition 

for S* ( • It) to be unbiased on the conditional space is 

] ~ = a(n-1) 



But sinc·e · r (x. -x) 2 is statistically ·independent .of· ·· t = x· ·, this 
l. . 

condition is equivalent to 
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. 2 . . . . 
··· E0 [W/cr0 r5J _ .. =.· .a (n-1) (S .11) 

where w(x) 
n 

= r (x. - xl , and· S = w (Rt) , . 
1 l. 

w/cr~ ·· has· the chi-square distribution· with: n-1 · degrees 

of freedom, then it follows. from· ·chapter ·IV that ·.the· .statistic 

· ·· T* (x) 
n+l .. 1 -2-·'"'· 

= w 
-w/20'~ 

e 
n -2 w =:-: r (x. -x) 

. 1 l. 

satisfies (5.11):. Furthermore·; sirrce· ·its·:distribution· do·es no.t depend 

on x nor µ , T* (x) is a test statistic f~r ·the ·hypothesi·s pro

blem, and by Theorem· 4 ;·3·;· T*·(x) ·· is a· UMSU- test statistic. This is 

almost the same result ·as that ·found fnr examp1.e 2-.1; except that 

here the significance levels are computed- fr.om the· chi;..square density 

with n-1 degrees of freedom instead of n. ,·· This is in accordance 

with the findings of Lehmann. 



·CHAPTER VI 

EXTENSIONS 

Many of the· more important hypothesis pr1obi-ems have been attempted. 

It is admitted that not all questions originally asked have been answer

ed adequately, A prime example is the role of ·the sufficient statis- . 

tic in significance testing, As Finley pointed out, there does not 

seems tobe an argument in significance testing analogous to the one 

in NeymaJ'\-Pearson theory for basing a test on the sufficient statistic. 

But this writer feels there still may be possibilities for favorable 

results on this subject, One approach is to write the joint density 

in the factored form 

and to.study 

istic: extl.st$, 

H* (oi) e 

g [T(x)] 0 h(:x) e as mentioned in the introduction 

under the assumption a most sensitive test stat-

There is still need for work on unbiasedness in significance test-

ing, The question of the necessity of two-tail test·statistics has not 

been adequately answered, ei;ther in the continuous or discrete case. _. 

Arguments· for necessary a.nd sufficient conditions for the existence of 

unbiased test statistics are very' limited, 

There are interesting problems for this theory which have not 

been considered, _ One· is comparing the means of two independent normal 

populations with equal but unknown varia.nc,5s·, Next comes the question 

of an analogy in signifi\~ance testing to the F-test in -the analysis. 

of variance, - That isi are we justified in using the F-test in our 

-64 
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context of significance testing? ·one could always tackle the Behrens

Fisher problem, where the variances are assumed une.q,u.a.l.,A ,5i:gnificance 

test for independence in a bivariate normal ~opulation would also be 

of interest, 

The above suggestions are for additional counterparts of Neyman-

Pearson theory in the context of significance testing o · There are meth-

ods of comparing test statistics other than by the basic·criterion 

"most sensitive" used here, Another way is to study and compare the 

asymptotic properties of various test statistics, An approach of 

this kind has been advanced by Bahadur [2], 

Bahadur Efficiency 

Bahadur has developed a theory for comparing test statistics 

asymptotically when they hold 

statistic T(l}(x) = T(l)(x) 
n 

certain properties, · Consider the test 

as ·a term of a sequence 

If two test sequences.satisfy the proper conditions for increasing n, 

then a comparison of statistic l versus statistic 2 can be made by the· 

asymptotic properties of the sequences and can be stated in terms of 

asymptotic efficiency, 

Consider the following definition of a standard sequence by 

Bahadur, The·sequence {T} 
n 

is a. standard sequence for testing 

8 = e0 is (I) lim Fn(x) = F(x) for every x, where F is a con-
n+oo 

tinuous c.d.f. (II) There exists a constant k , 0 < k < 00 , such 

that log[l - F(x}] 2 
-+ -kx /2 

function b on 8 such that 

a.s x ·-~ (XJ Q 

b (6 ) ea O 
0 

(III) There exists a · 

and 0 < b (8) < 00 for 

e -:! 80 , and such that {T /fn} 
n 

is a consistent estimate of b . 



Suppose {T } 
n 

is a standard sequence. Bahadur argues 

the asymptotic distribution F when e = e0 ·• but otherwise 

T has 
n 

T + oo 
n 

in . probability. Consequently, large values of T 
n 

are significant 
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when Tn is regarded as a test statistic fo:r· H0 Note that this is 

in contrast to the.definition of a test statistic in this paper. 

Bahadur then defines SL = · 1 - F [T ] to be the level attained by T 
n n n 

for a given sample; in other words, the significance level is computed 

from the asymptotic distribution of T :; not from the actual distribu
n 

tion. Even though SL 
n 

is only an approximate level Bahadur argues 

the·study of such levels appear legitimate and useful. 

Bahadur observes that in typical cases SL is asymptotically 
n 

uniformly distributed over (O, 1) · when e E: e0 . When 8 B eA, he 

maintains that it is also typical that 

SL + 0 as n ·+ oo 
n 

(6 .1) 

with probability one. It is asserted thatthe 11:rate" at which (6.1) 

occurs when 8 # 8 
0 

against that e . 

is an indication of asy1nptotic efficiency of T 
n 

It is pointed out that·in typical cases ·(6.1) occurs exponentially 

fast, This is; in essence, wha:t condition II is stating: 

SL 
n "" e 

aT2 
n ---r- [l ,i, 0(1)] 

as T ·+ co 
n 

where it is recalled that for e # e0 , Tn ~· ,x, in probability. 

Suppose that there exists a parametric function c: (8) defined over 

GA such that O < c(e) < x and 
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. '+ 1 .;. 2 c(El) as n ...... oo (6. 2) 
n 

with probability one when · e 

the "slope'' of·the sequence·· 

,. eo 
{T } • 

n 

The function · c (e) is called 

An intuitive :.reason ·for using ·slopes in·_·cumparing test statistics 

can now be given. t·et . r~l) and T~2) · be ·two ·test ·sequences with 

slopes c1 (e) and c/El) ·. Then suppose c1 (e) > c 2 (e) where 

n 

-2 log SL(2) 
____ n_._ ..... c2(e) 

n 
as n -+ 00 

It is reasoned that -log SL (l) -+ ·:io 

n 
at a "faster" rate than -log SL(2) 

n 
Cl) (2) . 

or SL + 0 faster than SL • · 
n n 

T (l) is better; ·asymptotically, than 
n 

Hence, it would ·be judged that 

(2) 
T n 

Bahadur argues that the ratio c (e)/c (e) · serves· as the asymp-
1 2 

totic efficiency of T~l) ·relative to-· T~2) when e ..;. e0 • lf 

c1/c2 > 1 then T~l)is judged more efficient th~n r~2) ·Le., it 

will take a larger sample size for r!2) to·attain a given signifi

cance level than T(l) . n ' 

It would be highly des'irable tb compare some of the test statis-. 

tics offered ·in· this paper by the Bahadur method, for instance, ·the 
2 

unbiased test statis~ics Ti(t} = tn/2 e-t/Zcro , and 

-1/2 y/20' T2(y) =.y e- 0 mentioned in Chapter IV. Unfortunately, this 

writer.has not been able to show.these statistics satisfy the necess-

ary conditions of the standard sequence. It would seem that the 
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relatively simple unbiased test statistic T*(x) = -]x - n/2J/Cn/4) 112 

for the binomfal prob1em might be a likely candidate for a standard 

sequence, .but this has not. been established by this writer. 

Thus, it seems a major difficulty in incorp·orattng Bahadur effi-

ciency into this theory of ·significance testing·:may be in showing the 

test statistics satisfy the requirements for Bahadur' s test sequences. 

It is felt that more investigation in this may bring observations 

which are more definite, 

If· significance testing does not lend ·easily to standard sequences 

then it may be possible ·to get a measure of asymptotic efficiency in. 

some other manner, Bahadur notes that there is a formal connection 

between the asymptotic slope of a standard sequence and the asymptotic 

power of the·corresponding·sequenceof tests, This presents the 

·· question of a corresp·onding ·relationship in an asymptotic theory of 

signific·ance testing· involving asymptotic sensitivity of test statistics. 

It has been suggested that other asymptotic comparisons of test 

statistics may be ·possible, Consider two test· s·tatistics 

rC2) ~ where for a given sample 
n 

SL (l} '1) 
'l 

= P[TC · < observed] 
n n -

SL (2) = P[T (Z) c· observed] .. 
n n 

· One then define the· statistic 
.. D (1, 2) (1) SL (2) may = SL · -n n n 

its asymptotic properties when 8 t: 80 ' For instance, if 

asn+,oo 

and 

and study 

for 8 'f 

with probability· one, then we could rate T(l) inferior, equal, or 
n 

80 



superior to T(2). when d 
n 

is 
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> , = , or < 0 · , respectively, Similar-

ly, it may be possible ;tll · study· ratios . irtstread of differences. Another 

interesting question might be whether ·or net tw-Cf test ·statistics 

T (l) and T (2) being equally efficient according to Bahadur implies 
n n 

that D (l, 2) -+ 0 in probability, 
n 



CHAPTER VII 

SUMMARY 

The purpose -of this ·investigation was- to:·advance a theory. of 

significance testing. Primary -empha-sis· ·was--p1-.1cred· on e:x:aminj;ng the 

concept of -- un~iasedn~_s_~ for the two...;sided alternative hypothesis. 

Work was done on s:tgnificance·tests for composite null hypotheses in 

the ·normal ca·se with no ·parameters ·assumed known. No attempt was 

made ·to· discuss ·significance· testing and the phi·1os9phies· '.of· ·stat-

istical inference. 

Examp1es· of ·unbias·ed test ·s·tatistics for both continuous and 

' 
discrete densities were given in Chapter II; Attention was'called to 

certain properties and ·characteristics ·of the· examples. In particular, 

it was.shown there exists an unbiased test statistic for the discrete 

case which allowed· an iirfinite ·number of achievabTe signi.:ficance 

levels·. · There also exist one-tail and no--tail •unbiased statistics 

for the two...;sided alternative. 

Necessary conditions for unbiased test statistics were examined 

in Chapter -III; Investigation was concentrated on probability densi-

ties with strict monotone likelihood ratio, It was shown for dens_ities 

with this property a-one-tail unbiased test.statistic does not exist. 

Unbiasedness was studied when the probability density was a continuous 

unimodal function of· e for fixed value of x. 

· Chapter IV dealt with sufftcient >eiemdi tions for· a test statistics 

70 
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to be uniformly most sensitiv'e· unbiased. It was shown ·for ·the· one-

parameter exponentia1density that a unimodal £unction: of the suffici

ent statistic· satisfying certain ·conditions· was· UMSU. In particular, 

the test statistics.:in examples 2.L, 2.2, · and 2S are UMSU. 

All work on this theory prior· to Chapter Y ·had been restricted to 

hypotheses .concerning ·one··parameter. · In that· ·chapte:r~·hyp·otheses are 

considered concerning ·.·one-·,·o·f 'the· p·a'r·amet-ers···±n the·norma-i· distribution 

with the other assumed unknown, thereby creating-a·composite null 

hypotheses. it was shown that for on·e..;sided a1ternative hypotheses on 

the mean µ , the familiar on·e-·sided t-test is UMS in significance 

testing. The equal-tails t-test is UMSU for:·the two..;sided alternative 

2 
HA: µ -:/: 0 , a > 0 , For testing 

2 
C1 the .familiar one-sided· chi-

square tests were shown to be· optimum. For the-hypothesis problem 

HA: a-:/: a0 , µE(- 00 , 00) ; a· two-tail test statistic·:based··c;,n the chi-

square density with n+l degrees of freedom was· shown ~o l;>e UMSU. 
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·· ·-· :APPENDIX 

Lemma 1: Let· f (x):. •· be. strictly:·inc:reasing··~and ·l"Eft. g·(x) be 

nondecreasing ·and ·non~·constant· in--a· re·al ·random variable · x with pro-

bability density · p 6·(x) . lf · ·E-9tf(x)'] ;:· µi an_d Ee g(x) = ug are 

finite, then ·cov:[f(x};· g(x}] > 0 • 

Proof: Let XO be the·-point such that 

f'(x) uf < 0 J. x < XO -
f'(x) · - µf > 0 J x > XO -

Suppose. there exists an. x1 < x0 such that g:(x1} < g (x0), then 

. g (x} "'.'._ g (x0) < 0 for every. x < x1 . Since -cov {f, g) = E~:[g (f-µf)] 

can be expressed as 

then by derroting g0 ·=. g (x0) it follows that 

For the·interval ('- 00 , :x:1] the integrand·is positive, and for the two 

intervals· (x1 ,· xJ·, (x0 , 00). the integrand is nonnegative, which 

implies 
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> 0 

Suppos·e th:ere 'exists an x2 > x0 such that' . g (x2) > g (x0L then 

g(x)-g(x0) > 0 for all x ~ x2 • With modification of the above· argu

ment the result again follows. 

Lemma 2: If p8 (x) is SMLR in x and ljJ(x) is nondecreasing 

and non-constant with finite exp·ected· value,- them Ee, ljJ > Eel/! for 

e' > e . 

· Proof: Since 

,.. 

=Ji/J~e' Pe dµ 

then E ljJ > 6 I o 
E ljJ e if and on1y if ES [tj; re·,] >.Eel/! , - and since E6 [re,]=l 

this is equivalent to Ee' :iJ; > E 1jJ 
e if and only if cov{re ,, I/!) > 0 . 

Direct app1ication o·f the pre·ceding "lemma c·omplet·es the· proof. 
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